A Cascade Indazolone-directed Ir(III)- and Rh(III)-Catalyzed C(sp ${ }^{2}$)-H Functionalization/[4+2]
 Annulation of 1-arylindazolones with Sulfoxonium Ylides to Access Chemical Divergent 8H-indazolo [1,2-a]cinnolines

Yi-Chuan Zheng, ${ }^{\text {a }}$ Bing Shu, ${ }^{\text {b }}$ Yao-Fu Zeng, ${ }^{\text {d }}$ Shao-Yong Chen, ${ }^{\text {a }}$ Jia-Lin Song, ${ }^{\text {a }}$ Yan-Zhi Liu, ${ }^{\text {a }}$ Lin Xiao, ${ }^{\text {a }}$ Xu-Ge Liu, ${ }^{\text {c }}$ Xuanxuan Zhang,*a Shang-Shi Zhang*a
${ }^{a}$ Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
${ }^{b}$ School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
${ }^{c}$ School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China.
${ }^{d}$ School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China.

*Email: zhangshangshi@gdpu.edu.cn
*Email: phil2424123@163.com
*Email: liuxg7@henu.edu.cn

Supporting Information

1. General information 2
2. Synthesis of 1-phenyl-1,2-dihydro-3H-indazol-3-one derivatives 3
3. Synthesis of sulfoxonium ylides 4
4. General procedure for the product 5
5. Synthetic application of the product 7
6. Mechanistic studies 9
7. X-Ray crystal data for compound $\mathbf{3 k}$ 13
8. X-Ray crystal data for compound $\mathbf{5 a}$ 19
9. Product characterization 26
10. Copies of product NMR spectra. 47
11. References 101

1. General information

Unless otherwise noted, all reactions were carried out at room temperature under an atmosphere of nitrogen with flame-dried glassware. If reaction was not conducted at room temperature, reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under nitrogen: THF (Na-benzophenone), 1,2-dichloroethane $\left(\mathrm{CaH}_{2}\right)$, dichloromethane $\left(\mathrm{CaH}_{2}\right)$. Anhydrous $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$, DMF and MeOH were purchased from Acros Organics and stored under nitrogen atmosphere. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton NMR $\left({ }^{1} \mathrm{H}\right)$ were recorded at 400 MHz , and Carbon NMR $\left({ }^{13} \mathrm{C}\right)$ at 101 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d : doublet, t: triplet, q : quartet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (J) are reported in Hertz (Hz).

High-resolution mass spectra (HRMS) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. Visualization was accomplished with short wave UV light, or KMnO4 staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate synthesis.

2. Synthesis of 1-phenyl-1,2-dihydro-3H-indazol-3-one derivatives

Experimental procedure for the synthesis of 2-chloro- N-phenylbenzohydrazide derivatives:

According to a previous reference, ${ }^{[1]}$ to an oven-dried round bottom flask charged with 2-chlorobenzoic acids ($10.0 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in DMF (20 mL) were added EDC• $\mathrm{HCl}(2.1 \mathrm{~g}$, $11.0 \mathrm{mmol}, 110 \mathrm{~mol} \%), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(1.49 \mathrm{~g}, 11.0 \mathrm{mmol}, 110 \mathrm{~mol} \%), 4$-(dimethylamino)pyridine (DMAP, $61.1 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and phenylhydrazines $\left(10.0 \mathrm{mmol}, 100 \mathrm{~mol} \%\right.$) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction mixture was allowed to stir for 24 h at room temperature. The reaction mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Extractive workup with EtOAc and purification by column chromatography afforded acid hydrzide as a white solid.

Experimental procedure for the synthesis of 1-phenyl-1,2-dihydro-3H-indazol-3-one derivatives:

According to a previous reference, ${ }^{[1]}$ a mixture of 2-chloro- N '-phenylbenzohydrazides (5.25 mmol), $\mathrm{CuI}\left(5 \mathrm{mg}, 0.026 \mathrm{mmol}, 0.5 \mathrm{~mol} \%\right.$), L-proline ($120 \mathrm{mg}, 1.05 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.45 \mathrm{~g}, 10.5 \mathrm{mmol})$ in DMSO $(15 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ for 24 h under nitrogen atmosphere. After cooling, the mixture was treated with sat. NaHCO_{3} aq. (100 mL) and the mixture was extracted eight times with ethyl acetate $(30 \mathrm{~mL} \times 8)$. The combined organic layer was washed with water $(50 \mathrm{~mL} \times 3)$ and brine $(50 \mathrm{~mL})$ and dried over magnesium sulfate. After filtration, solvent was evaporated in vacuo to afford a crude product which was recrystallized to provide pure1-phenyl-1,2-dihydro-3H-indazol-3-one derivatives.

3. Synthesis of sulfoxonium ylides

All the sulfoxonium ylides were synthesized according to literature. ${ }^{[2]}$ In a 125 mL flame-dried round bottom flask attached to a reflux condenser, under argon atmosphere, 3.0 g of potassium tertbutoxide ($27.2 \mathrm{mmol}, 4.0$ equiv) and 27.0 mL of anhydrous THF were added. Then, 4.48 g of trimethylsulfoxonium iodide $(20.4 \mathrm{mmol} ; 3.0$ equiv) was added in one portion. The suspension was heated at reflux for 2 hours. After this time, the mixture was cooled at $0^{\circ} \mathrm{C}$, followed by slow addition of the appropriate benzoyl chloride ($6.8 \mathrm{mmol}, 1.0$ equiv). The reaction mixture temperature was naturally increased to room temperature and this mixture stirred for additional 3 hours. Then, the solvent was removed on a rotary evaporator. After that, 70 mL of water was added and the product extracted with a $3: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: i$ - PrOH mixture $(20 \mathrm{~mL} \times 8)$. The organic phase was washed with water $(10 \mathrm{~mL} \times 8)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed on a rotary evaporator. The crude material was purified by solubilization in the minimal amount of hot AcOEt (10-15 mL), followed by slow addition of 15 mL of hexanes. The solid was filtered and washed with two portions of a $2: 1$ mixture of hexanes:AcOEt ($2 \times 10 \mathrm{~mL}$), furnishing the respective sulfoxonium ylides.

4. General procedure for the product

(1) General procedure A

To a Schlenk tube, 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one $2 \mathbf{2 a}$ ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}(4.0 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{mmol} \%), \mathrm{HOAc}(12.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Zn}(\mathrm{OTf})_{2}(145.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv $)$ were added. The resulting mixture was stirred at 100 ${ }^{\circ} \mathrm{C}$ (oil bath) for 12 h . The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for two times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography using a mixture of petroleum ether/ethyl acetate as an eluent to get the products 3 and 4 .

(2) General procedure B

To a Schlenk tube, 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{mmol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10.0 \mathrm{mmol} \%)$, CsOPiv ($46.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{KF}(23.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{PhCl}(1.0 \mathrm{~mL}$, 0.2 M) were added. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) for 12 h . The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer
was extracted with DCM for two times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography using a mixture of petroleum ether/ethyl acetate as an eluent to get the products 5.

5. Synthetic application of the product

Gram- Scale Synthesis

According to the general procedure A, to a Schlenk tube, 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a $\left(630.7 \mathrm{mg}, 3.0 \mathrm{mmol}\right.$), 2-(dimethyl(oxo) λ^{6} -sulfanylidene)-1-phenylethan-1-one 2a ($883.1 \mathrm{mg}, 1.5$ equiv), $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}(59.8 \mathrm{mg}, 2.5 \mathrm{mmol} \%$), HOAc ($180.2 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Zn}(\mathrm{OTf})_{2}(2181.1 \mathrm{mg}, 2.0$ equiv) were added. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ (oil bath) for 12 h . The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for two times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1$) to get the product 3 a as a yellow solid $(991.9 \mathrm{mg}, 98 \%$ yield).

The larger-scale Synthesis

 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (210.2 mg, 1.0 mmol), 2-(dimethyl(oxo)- λ^{6} -sulfanylidene)-1-phenylethan-1-one 2a (294.0 mg, 1.5 equiv), [$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(15.3 \mathrm{mg}, 2.5 \mathrm{mmol} \%)$, $\mathrm{AgSbF}_{6}(34.3 \mathrm{mg}, 10.0 \mathrm{mmol} \%)$, CsOPiv ($234.0 \mathrm{mg}, 1.0$ equiv), $\mathrm{KF}(116.2 \mathrm{mg}, 2.0$ equiv) and $\mathrm{PhCl}(10.0 \mathrm{~mL}, 0.2 \mathrm{M})$ were added. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) for 12 h .

The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for two times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1$) to get the product 5a as a yellow solid ($138.4 \mathrm{mg}, 40 \%$ yield).

6. Mechanistic studies

(1) Preparation of Rhodium Complex 6

Preparation of Rhodium complex 6 was carried out according to the reported procedure ${ }^{[1]}$: To an oven-dried sealed tube charged with 1-phenyl- $1 H$-indazol-3-ol (1a) ($42.1 \mathrm{mg}, 0.2 \mathrm{mmol}$, $100 \mathrm{~mol} \%),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(61.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 50 \mathrm{~mol} \%)$, and $\mathrm{NaOAc}(32.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 200$ $\mathrm{mol} \%$) was added $\mathrm{DCE}(3.5 \mathrm{~mL})$ under air atmosphere at room temperature. The reaction mixture was allowed to stir at room temperature for 2 h . The reaction mixture was diluted with EtOAc (5 mL) and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 1\right)$ to afford a dark brown solid, which was further recrystallized by $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (1:5) to give Rhodium complex 6 as a red solid (18 mg, 16%).

(2) Mechanistic experiments with Rhodium Complex 6

 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (42.0 mg, 0.2 mmol), 2-(dimethyl(oxo) λ^{6} -sulfanylidene)-1-phenylethan-1-one $\mathbf{2 a}(58.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), Rhodium complex 6 (6.1 $\mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{mmol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10.0 \mathrm{mmol} \%)$, CsOPiv ($46.8 \mathrm{mg}, 0.2$ mmol, 1.0 equiv), $\mathrm{KF}(23.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv $)$ and $\mathrm{PhCl}(1.0 \mathrm{~mL}, 0.2 \mathrm{M})$ were added. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) for 12 h . The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for
two times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1$) to get the product $\mathbf{5 a}$ as a yellow solid $(47.9 \mathrm{mg}, 70 \%$ yield).

(3) Control experiment

In order to discuss the oxygen source in this oxidizing reaction, we designed two control experiments as follow. According to the general procedure B, to a Schlenk tube, 1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 a}\left(42.0 \mathrm{mg}, \quad 0.2 \mathrm{mmol}\right.$), 2-(dimethyl(oxo)- λ^{6} -sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}$, $0.005 \mathrm{mmol}, 2.5 \mathrm{mmol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10.0 \mathrm{mmol} \%)$, CsOPiv ($46.8 \mathrm{mg}, 0.2$ mmol, 1.0 equiv), $\mathrm{KF}(23.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{DMSO}(78.1 \mathrm{mg}, 77 \mu \mathrm{~L}, 5.0)$ and PhCl $(1.0 \mathrm{~mL}, 0.2 \mathrm{M})$ were added. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) for 12 h . It was remarkable that we cannot detected the desired product $5 \mathbf{5}$ in the resulting mixture by TLC. (Formula 9) Same results also occurred when we using the standard condition according to procedure B, in contrast, under the N_{2} atmosphere. (Formula 10) To a Schlenk tube, 1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 a} \quad\left(42.0 \mathrm{mg}, \quad 0.2 \mathrm{mmol}\right.$), 2-(dimethyl(oxo)- λ^{6} -sulfanylidene)-1-phenylethan-1-one $\mathbf{2 a}\left(58.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5\right.$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}$, $0.005 \mathrm{mmol}, 2.5 \mathrm{mmol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10.0 \mathrm{mmol} \%)$, CsOPiv$(46.8 \mathrm{mg}, 0.2$ mmol, 1.0 equiv), $\mathrm{KF}(23.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{PhCl}(1.0 \mathrm{~mL}, 0.2 \mathrm{M})$ were added. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) under N_{2} atmosphere for 12 h .

(4) Synthesis of the intermediate V

To a Schlenk tube, 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{mmol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10.0 \mathrm{mmol} \%)$, CsOPiv ($46.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{PhCl}(1.0 \mathrm{~mL}, 0.2 \mathrm{M})$ were added. The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ (oil bath) for 4 h under the N_{2} atmosphere. The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for two times. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography using a mixture of petroleum ether/ethyl acetate (4:1) as an eluent to get the products 7 as a yellow solid ($26.0 \mathrm{mg}, 39 \%$ yield).

1-(2-(2-oxo-2-phenylethyl)phenyl)-1,2-dihydro-3H-indazol-3-one (7)

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}$, 2H). ${ }^{13}$ C NMR (101 MHz, DMSO) δ 196.8, 138.4, 136.5, 133.0, 132.7, $132.5,128.7,128.6,128.1,127.9,127.8,127.6,126.4,120.7,120.2,119.7,109.8,41.4$ HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 351.1109$, found: 351.1112.
(5) Mechanistic experiments with Intermediate V

According to the general procedure A, to a Schlenk tube, 1-(2-(2-oxo-2-phenylethyl)phenyl)-1,2-dihydro-3H-indazol-3-one $7 \quad$ (32.8 $\mathrm{mg}, \quad 0.1 \mathrm{mmol}$), $\left[\mathrm{Cp} * \operatorname{IrCl}_{2}\right]_{2}(2.0 \mathrm{mg}, 2.5 \mathrm{mmol} \%)$, $\mathrm{HOAc}\left(6.0 \mathrm{mg}, 1.0\right.$ equiv) and $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 2.0$ equiv) were added. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ (oil bath) for 12 h . The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for two times. The combined organic layer was dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1$) to get the product $\mathbf{3 a}$ as a yellow solid (30.7 mg , 99% yield).

According to the general procedure B, to a Schlenk tube, 1-(2-(2-oxo-2-phenylethyl)phenyl)-1,2-dihydro-3H-indazol-3-one 7 (32.8 mg, 0.1 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(1.5 \mathrm{mg}, 2.5 \mathrm{mmol} \%), \mathrm{AgSbF}_{6}(3.4 \mathrm{mg}, 10.0 \mathrm{mmol} \%), \mathrm{CsOPiv}(23.4 \mathrm{mg}, 1.0$ equiv), $\mathrm{KF}(11.6 \mathrm{mg}, 2.0$ equiv $)$ and $\mathrm{PhCl}(0.5 \mathrm{~mL}, 0.2 \mathrm{M})$ were added. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) for 12 h . The reaction mixture was cooled to room temperature and quenched with saturated sodium chloride. The mixture was diluted with DCM and water. The organic phase was separated and the aqueous layer was extracted with DCM for two times. The combined organic layer was dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. After that, the resulting mixture was purified by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1)$ to get the product $\mathbf{5 a}$ as a yellow solid ($30.4 \mathrm{mg}, 89 \%$ yield $)$.

7. X-Ray crystal data for compound $3 k$

X-ray-quality crystal was obtained by slow diffusion of Petroleum ether into a dilute dichloromethane solution of $\mathbf{3 k}$ at room temperature under air. Thermal ellipsoids drawn at the 50% probability level. Crystal data were obtained on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$). The crystal was kept at 199.99 (10) K during data collection.

Table 1 Crystal data and structure refinement for $\mathbf{3 k}(\mathbf{d}-243)$.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /^{\circ}$
$\beta /{ }^{\circ}$
$\gamma^{\circ} \quad 90$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
d-243
$\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$
344.78
199.99(10)
monoclinic
P2 $1_{1} / \mathrm{c}$
12.5768(6)
8.3055(3)
15.5210(7)

90
94.117(4)
1617.09(12)

4
1.416
0.247
712.0
$0.15 \times 0.13 \times 0.12$
Mo K $\alpha(\lambda=0.71073)$
5.262 to 49.986
$-13 \leq h \leq 14,-8 \leq k \leq 9,-18 \leq 1 \leq 15$
7003
$2838\left[\mathrm{R}_{\text {int }}=0.0186, \mathrm{R}_{\text {sigma }}=0.0252\right]$
2838/0/226

Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole /e \AA^{-3}
1.042
$\mathrm{R}_{1}=0.0363, \mathrm{wR}_{2}=0.0956$
$\mathrm{R}_{1}=0.0422, \mathrm{wR}_{2}=0.1004$
0.58/-0.30

Crystal structure determination of $\mathbf{3 k}$

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}(M=344.78 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=$ $12.5768(6) \AA, b=8.3055(3) \AA, c=15.5210(7) \AA, \beta=94.117(4)^{\circ}, V=1617.09(12) \AA^{3}, Z=4, T=$ 199.99 (10) K, $\mu($ Mo K $\alpha)=0.247 \mathrm{~mm}^{-1}$, Dcalc $=1.416 \mathrm{~g} / \mathrm{cm}^{3}, 7003$ reflections measured $\left(5.262^{\circ} \leq 2 \Theta\right.$ $\left.\leq 49.986^{\circ}\right), 2838$ unique ($R_{\mathrm{int}}=0.0186, \mathrm{R}_{\text {sigma }}=0.0252$) which were used in all calculations. The final R_{1} was 0.0363 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1004 (all data).

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3 k . U_{eq} is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$	
Cl1	$426.1(4)$	$6392.7(6)$	$4383.1(3)$	$31.66(16)$
O1	$1952.2(11)$	$3713.6(16)$	$3225.8(8)$	$30.7(3)$
N1	$3004.0(12)$	$4664.6(18)$	$5306.1(9)$	$25.3(4)$
N2	$2764.2(12)$	$5016.9(18)$	$4416.6(9)$	$23.7(3)$
C1	$3894.9(15)$	$5481(2)$	$5706.1(11)$	$25.5(4)$
C2	$4510.6(15)$	$4851(3)$	$6402.3(12)$	$31.6(5)$
C3	$5295.5(16)$	$5804(3)$	$6823.8(13)$	$38.5(5)$
C4	$5467.7(16)$	$7356(3)$	$6557.1(14)$	$39.5(5)$
C5	$4869.8(16)$	$7967(3)$	$5848.5(14)$	$36.4(5)$
C6	$4084.4(14)$	$7044(2)$	$5404.2(12)$	$27.8(4)$
C7	$3438.0(15)$	$7630(2)$	$4656.8(12)$	$29.4(4)$
C8	$2800.1(14)$	$6650(2)$	$343.7(12)$	$24.8(4)$
C9	$2078.2(15)$	$7180(2)$	$3457.4(11)$	$24.7(4)$
C10	$974.1(14)$	$7095(2)$	$2775.0(13)$	$24.9(4)$
C11	$290.6(16)$	$7597(2)$	$2050.5(13)$	$32.6(5)$
C12	$715.2(18)$	$8222(3)$	$2016.1(14)$	$39.0(5)$
C13	$1801.7(18)$	$8360(3)$	$2702.5(13)$	$31.0(5)$
C14	$2480.3(16)$	$7842(2)$	$3995.3(12)$	$23.4(5)$
C15	$2246.5(14)$	$3729(2)$	$4663.6(11)$	$24.2(4)$
C16	$2141.8(14)$	$2532(2)$	$5440.8(11)$	$23.9(4)$
C17	$2614.7(14)$	$3126(2)$	$6207.4(12)$	$30.9(4)$
C18	$2564.0(16)$	$2258(2)$	$6161.0(13)$	$35.8(5)$
C19	$2037.5(17)$	$800(2)$		

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3 k . $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{\text {IJ }}$ tensor.

Atom \boldsymbol{x}	\boldsymbol{y}	z	$\mathbf{U}(\mathbf{e q)}$	
C 20	$1565.1(18)$	$203(2)$	$5385.5(13)$	$36.6(5)$
C21	$1605.9(16)$	$1062(2)$	$4632.2(13)$	$30.8(4)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3 k . The Anisotropic displacement factor exponent takes the form: $-\mathbf{2} \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	U_{11}	\mathbf{U}_{22}	U_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	U_{12}
Cl 1	30.4(3)	37.8(3)	27.7(3)	1.3(2)	8.21(19)	-4.0(2)
O1	35.6(8)	35.6(8)	19.9(7)	-1.9(6)	-6.0(6)	-0.9(6)
N1	29.0(9)	28.4(8)	17.6(7)	0.1(6)	-3.9(6)	-1.4(7)
N2	26.1(8)	26.6(8)	17.7(7)	1.0(6)	-3.0(6)	-0.6(6)
C1	21.4(9)	34.4(10)	20.7(9)	-6.7(8)	1.5(7)	2.0(8)
C2	28.3(11)	40.5(11)	25.6(10)	-2.8(9)	-0.7(8)	5.4(9)
C3	26.3(11)	60.0(14)	28.3(11)	-4.7(10)	-5.3(8)	6.1(10)
C4	25.5(11)	56.3(14)	35.7(11)	-13.0(10)	-3.4(9)	-6.9(10)
C5	29.2(11)	40.4(12)	39.3(12)	-6.1(10)	0.2(9)	-7.0(9)
C6	20.8(10)	33.0(10)	29.5(10)	-4.7(9)	1.6(8)	-0.2(8)
C7	25.8(10)	27.0(10)	35.2(11)	1.7(8)	1.4(8)	-2.7(8)
C8	22.4(9)	26.3(9)	26.1(10)	1.4(8)	3.7(7)	-0.1(7)
C9	25.9(10)	21.8(9)	26.3(9)	1.6(8)	0.5(7)	0.4(7)
C10	26.6(10)	23.5(9)	24.8(9)	1.2(8)	3.2(7)	0.5(8)
C11	25.0(10)	35.1(11)	37.1(11)	2.5(9)	-2.2(8)	4.5(8)
C12	41.6(13)	41.7(12)	32.7(11)	13.5(10)	-4.3(9)	7.4(10)
C13	43.8(13)	45.0(12)	34.8(12)	18.7(10)	8.1(10)	1.3(10)
C14	28.1(11)	35.6(11)	37.1(11)	9.3(9)	5.2(9)	-2.1(9)
C15	19.8(9)	26.4(9)	25.3(10)	-4.5(8)	0.3(7)	2.7(7)
C16	24.0(10)	25.1(9)	23.4(9)	-2.5(8)	1.0(7)	4.6(7)
C17	24.3(9)	24.8(9)	22.5(9)	-2.1(8)	1.4(7)	4.1(7)
C18	37.6(11)	31.8(10)	23.1(10)	0.0(8)	0.7(8)	3.0(9)
C19	46.6(13)	30.4(11)	31.1(11)	6.4(9)	6.9(9)	3.7(9)
C20	46.3(13)	23.0(10)	41.0(12)	-1.2(9)	7.4(10)	-2.9(9)
C21	35.7(11)	27.5(10)	29.1(10)	-6.6(8)	1.8(8)	1.4(8)

Table 4 Bond Lengths for 3k.

Atom Atom Length/Å									Atom Atom Length/Å			
C11	C10	$1.7384(18)$		C8	C9	$1.481(2)$						
O1	C15	$1.225(2)$		C9	C10	$1.393(3)$						
N1	N 2	$1.4224(19)$		C9	C14	$1.390(3)$						
N1	C1	$1.414(2)$		C10	C11	$1.380(3)$						

Table 4 Bond Lengths for 3 k .

Atom Atom Length $/$ Å

N1	C17	1.390(2)	C11	C12	1.380(3)
N2	C8	1.408(2)	C12	C13	1.376(3)
N2	C15	1.391(2)	C13	C14	1.385(3)
C1	C2	1.386(3)	C15	C16	1.450(3)
C1	C6	1.406(3)	C16	C17	1.396(2)
C2	C3	1.392(3)	C16	C21	1.394(3)
C3	C4	1.376 (3)	C17	C18	1.397(3)
C4	C5	1.383(3)	C18	C19	1.379(3)
C5	C6	1.393(3)	C19	C20	1.395(3)
C6	C7	1.452(3)	C20	C21	1.374(3)
C7	C8	1.332(3)			

Table 5 Bond Angles for 3k.

Atom Atom Atom Angle/ ${ }^{\circ}$				Atom Atom Atom Angle/ ${ }^{\circ}$			
C1	N1	N2	115.69(14)	C14	C9	C10	117.55(17)
C17	N1	N2	106.42(13)	C9	C10	Cl1	119.54(14)
C17	N1	C1	130.64(15)	C11	C10	Cl1	118.27(15)
C8	N2	N1	116.50(14)	C11	C10	C9	122.16(17)
C15	N2	N1	110.96(14)	C10	C11	C12	118.87(19)
C15	N2	C8	129.74(15)	C13	C12	C11	120.41(19)
C2	C1	N1	122.82(17)	C12	C13	C14	120.20(19)
C2	C1	C6	120.64(18)	C13	C14	C9	120.77(19)
C6	C1	N1	116.37(16)	O1	C15	N2	124.41(17)
C1	C2	C3	119.3(2)	O1	C15	C16	130.83(17)
C4	C3	C2	120.88(19)	N2	C15	C16	104.75(15)
C3	C4	C5	119.63(19)	C17	C16	C15	108.73(16)
C4	C5	C6	121.2(2)	C21	C16	C15	130.11(17)
C1	C6	C7	118.48(17)	C21	C16	C17	120.97(17)
C5	C6	C1	118.30(18)	N1	C17	C16	109.13(15)
C5	C6	C7	123.20(18)	N1	C17	C18	129.87(17)
C8	C7	C6	121.51(18)	C18	C17	C16	120.74(17)
N2	C8	C9	117.53(15)	C19	C18	C17	117.37(18)
C7	C8	N2	118.01(17)	C18	C19	C20	122.04(19)
C7	C8	C9	124.36(17)	C21	C20	C19	120.66(19)
C10	C9	C8	121.44(16)	C20	C21	C16	118.22(18)
C14	C9	C8	120.96(17)				

Table 6 Torsion Angles for 3k.
$\begin{array}{lllll}\text { A } & \text { B } & \text { C } & \text { Angle }\end{array}{ }^{\circ}$
C11 C10 C11 C12 177.25(16)
O1 C15C16C17 179.82(19)
O1 C15C16C21-5.2(3)
N1 N2 C8 C7 27.0(2)
N1 N2 C8 C9 -149.67(15)
N1 N2 C15 O1 -179.86(17)
N1 N2 C15C161.20(19)
N1 C1 C2 C3-172.52(17)
N1 C1 C6 C5 172.19(17)
N1 C1 C6 C7 -6.5(2)
N1 C17 C18 C19 173.78(19)
N2 N1 C1 C2 -151.77(17)
N2 N1 C1 C6 33.1(2)
N2 N1 C17C16-0.25(19)
N2 N1 C17C18-174.23(19)
N2 C8 C9 C1062.7(2)
N2 C8 C9 C14-119.94(19)
N2 C15C16C17-1.33(19)
N2 C15C16C21 173.62(18)
C1 N1 N2 C8 -44.2(2)
C1 N1 N2 C15 152.92(15)
C1 N1 C17C16-148.32(18)
C1 N1 C17C1837.7(3)
C1 C2 C3 C4 -0.1(3)
C1 C6 C7 C8 -10.8(3)
C2 C1 C6 C5 -3.1(3)
C2 C1 C6 C7 178.19(17)
C2 C3 C4 C5 -1.5(3)
C3 C4 C5 C6 0.8(3)
C4 C5 C6 C1 1.5(3)
C4 C5 C6 C7 -179.89(19)
C5 C6 C7 C8 170.57(19)
C6 C1 C2 C3 2.5(3)

A B C D Angle $/^{\circ}$
C6 C7 C8 N2 0.3(3)
C6 C7 C8 C9 176.66(17)
C7 C8 C9 C10-113.8(2)
C7 C8 C9 C1463.7(3)
C8 N2 C15O1 20.1(3)
C8 N2 C15C16-158.81(17)
C8 C9 C10Cl1 1.4(2)
C8 C9 C10C11 179.41(17)
C8 C9 C14C13-178.91(18)
C9 C10C11C12-0.8(3)
C10C9 C14C13-1.4(3)
C10C11 C12C13-0.8(3)
C11 C12C13C14 1.3(3)
C12C13C14C9 -0.2(3)
C14C9 C10Cl1-176.12(14)
C14C9 C10C111.9(3)
C15N2 C8 C7-173.93(18)
C15N2 C8 C9 9.4(3)
C15C16C17N1 1.0(2)
C15C16C17C18 175.62(17)
C15C16C21 C20-175.13(19)
C16C17C18C190.4(3)
C17N1 N2 C8 162.28(15)
C17N1 N2 C15-0.63(19)
C17N1 C1 C2 -6.0(3)
C17N1 C1 C6 178.80(17)
C17C16C21 C20-0.7(3)
C17C18C19C20-0.3(3)
C18C19C20C21-0.3(3)
C19 C20 C21 C160.8(3)
C21 C16C17N1-174.51(16)
C21 C16C17C18 0.1(3)

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3 k .

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$	
H2	4400.28	3802.25	6585.88	38
H3	5709.08	5386.3	7292.09	46

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3k.

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$	
H4	5983.3	7991.17	6851.6	47
H5	4994.21	9011.91	5665.53	44
H7	3470.02	8713.17	4509.88	35
H11	-443.69	7515.8	2802.72	39
H12	264.21	8552.28	1582.65	47
H13	2081.18	8803.16	1530.57	49
H14	3213.54	7937.01	2673.06	40
H18 2872.99	2647.11	6728.61	37	
H19	1996.25	197.06	6662.35	43
H20	1219.02	-787.15	5378.21	44
H21	1284.5	673.58	4115.22	37

8. X-Ray crystal data for compound 5a

X-ray-quality crystal was obtained by slow diffusion of Petroleum ether into a dilute dichloromethane solution of $\mathbf{5 a}$ at room temperature under air. Thermal ellipsoids drawn at the 50 \% probability level. Crystal data were obtained on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer using Mo K α radiation $(\lambda=0.71073 \AA$ A). The crystal was kept at 179.99 (10) K during data collection.

Table 1 Crystal data and structure refinement for 5a(d-40f).

Identification code	$\mathrm{d}-40 \mathrm{f}$
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	342.34
Temperature $/ \mathrm{K}$	$179.99(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{n}$
a / \AA	$14.3638(11)$
b / \AA	$7.4704(7)$
c / \AA	$15.0035(10)$
$\alpha /{ }^{\circ}$	90
$\beta /^{\circ}$	$94.451(7)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1605.1(2)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.417
μ / mm^{-1}	0.096
$\mathrm{~F}(000)$	712.0
Crystal size $/ \mathrm{mm}^{3}$	$0.14 \times 0.12 \times 0.1$
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$

2Θ range for data collection $/{ }^{\circ} 4.088$ to 49.99
Index ranges $\quad-14 \leq h \leq 17,-6 \leq k \leq 8,-17 \leq 1 \leq 17$

Reflections collected 7251
Independent reflections $2824\left[\mathrm{R}_{\text {int }}=0.0380, \mathrm{R}_{\text {sigma }}=0.0446\right]$
Data/restraints/parameters 2824/0/237
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.030$
Final R indexes [I>=2 $\sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0460, \mathrm{wR}_{2}=0.1137$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0601, \mathrm{wR}_{2}=0.1249$
Largest diff. peak/hole / e $\AA^{-3} 0.19 /-0.25$

Crystal structure determination of 5a

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}(M=342.34 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ (no. 14), $a=$ $14.3638(11) \AA, b=7.4704(7) \AA, c=15.0035(10) \AA, \beta=94.451(7)^{\circ}, V=1605.1(2) \AA^{3}, Z=4, T=$ $179.99(10) \mathrm{K}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=0.096 \mathrm{~mm}^{-1}$, Dcalc $=1.417 \mathrm{~g} / \mathrm{cm}^{3}, 7251$ reflections measured $\left(4.088^{\circ} \leq\right.$ $\left.2 \Theta \leq 49.99^{\circ}\right), 2824$ unique $\left(R_{\text {int }}=0.0380, \mathrm{R}_{\text {sigma }}=0.0446\right)$ which were used in all calculations. The final R_{1} was $0.0460(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1249 (all data).

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $5 \mathrm{a} . \mathrm{U}_{\mathrm{eq}}$ is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$	
O 2	$3490.2(9)$	$3844.8(16)$	$5229.7(8)$	$31.7(3)$
O 1	$1620.9(9)$	$4490(2)$	$4817.3(8)$	$40.3(4)$
O3	$5013.9(9)$	$6559(2)$	$5782.5(9)$	$41.8(4)$
N 1	$3110.9(10)$	$6040(2)$	$7041.3(9)$	$28.8(4)$
N 2	$3523.4(10)$	$6302(2)$	$6225.6(9)$	$31.0(4)$
C16	$3206.3(11)$	$6857(3)$	$4625.5(11)$	$26.9(4)$
C15	$3110.0(12)$	$5525(2)$	$5383.2(11)$	$27.6(4)$
C1	$1614.6(12)$	$5885(2)$	$6224.0(11)$	$27.5(4)$
C14	$2051.8(12)$	$5228(3)$	$5438.4(11)$	$28.8(4)$
C6	$2145.6(12)$	$6245(2)$	$7030.1(11)$	$26.2(4)$
C17	$3170.9(12)$	$6220(3)$	$3755.3(11)$	$30.2(5)$
C13	$4480.8(13)$	$6500(3)$	$7722.5(11)$	$30.3(4)$
C7	$3816.7(13)$	$6277(2)$	$7345.9(12)$	$29.2(4)$
C8	$4656.1(13)$	$6550(3)$	$7782.3(12)$	$31.1(5)$
C5	$1691.3(13)$	$6724(3)$	$3049.3(12)$	$32.8(5)$
C18	$3203.4(13)$	$7399(3)$	$4771.1(13)$	$34.9(5)$
C21	$3251.8(14)$	$8686(3)$	$6189.2(12)$	$37.2(5)$
C2	$648.1(12)$	$6038(3)$	$3199.7(13)$	$39.8(5)$
C19	$3259.9(14)$	$9208(3)$		

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 5 a . $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$	
C12	$3787.1(15)$	$6190(3)$	$8652.1(12)$	$37.3(5)$
C4	$730.8(14)$	$6842(3)$	$7725.4(13)$	$39.8(5)$
C9	$5491.6(14)$	$6733(3)$	$7871.6(13)$	$39.4(5)$
C3	$206.7(13)$	$6518(3)$	$6926.7(13)$	$40.6(5)$
C20	$3279.0(15)$	$9860(3)$	$4058.2(14)$	$45.9(5)$
C11	$4616.6(16)$	$6421(3)$	$9160.1(13)$	$44.4(6)$
C10	$5458.4(16)$	$6681(3)$	$8785.3(13)$	$45.0(6)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 5a. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom $\mathbf{U 1 1}_{11}$		\mathbf{U}_{22}	$\mathbf{U 3 3}$	\mathbf{U}_{23}	$\mathbf{U 1 3}_{13}$	\mathbf{U}_{12}
O2	32.3(7)	34.6(8)	29.4(7)	-0.2(5)	9.6(6)	0.9(6)
O1	32.6(7)	61.4(10)	26.8(7)	-10.6(7)	2.1(6)	-10.9(7)
O3	25.8(7)	61.5(10)	39.1(8)	-6.4(7)	9.5(6)	-3.4(7)
N1	25.3(8)	43.3(10)	18.1(7)	-2.3(6)	3.7(6)	2.4(7)
N2	23.4(8)	49.9(10)	20.0(7)	-3.7(7)	4.5(6)	-3.0(7)
C16	18.3(8)	37.0(11)	25.8(9)	-2.6(8)	3.9(7)	-2.3(8)
C15	26.8(9)	36.0(11)	20.1(8)	-4.2(8)	2.9(7)	-0.5(9)
C1	27.2(9)	30.8(10)	24.6(9)	-0.5(8)	3.5(8)	-2.6(8)
C14	28.4(9)	34.2(10)	23.8(9)	1.3(8)	1.8 (8)	-2.7(8)
C6	25.6(9)	27.7(10)	25.9(9)	-0.5(7)	5.8(8)	-0.7(8)
C17	30.3(10)	33.8(11)	26.7(9)	-2.6(8)	2.5(8)	-3.1(8)
C13	22.8(9)	36.6(11)	31.6(10)	-5.2(8)	2.8(8)	0.1(8)
C7	31.0(10)	30.2(10)	25.3(9)	-3.4(8)	-3.6(8)	3.2(8)
C8	27.9(10)	32.1(10)	32.6(10)	-2.8(8)	-2.5(8)	3.0(8)
C5	33.7(10)	38.3(11)	27.0(9)	-5.0(8)	6.5(8)	-1.7(9)
C18	31.1(10)	47.7(12)	26.1(9)	2.1(9)	4.4(8)	-5.6(9)
C21	40.0(11)	38.5(12)	33.2(10)	-6.4(9)	3.5(9)	-0.8(9)
C2	25.1(10)	43.0(12)	33.4(10)	-3.5(9)	3.4(8)	-2.4(9)
C19	35.7(11)	45.2(13)	38.6(11)	13.6(9)	4.9(9)	-1.7(10)
C12	43.2(12)	41.1(12)	26.9(10)	0.4(8)	-1.4(9)	5.3(9)
C4	35.2(11)	48.7(13)	37.5(11)	-8.6(9)	16.6(9)	-1.9(10)
C9	32.4(11)	40.2(12)	43.6(11)	-4.5(9)	-9.2(9)	1.1(9)
C3	24.1(10)	50.8(13)	47.8(12)	-8.6(10)	9.0(9)	-2.3(9)
C20	53.8(13)	32.3(11)	51.9(13)	3.5(10)	6.6(11)	-0.7(10)
C11	56.6(14)	45.4(13)	28.8(10)	-2.4(9)	-12.9(10)	8.7(11)
C10	45.6(12)	44.2(13)	41.8(12)	-5.9(10)	-19.2(10)	4.8(11)

Table 4 Bond Lengths for 5 a.

Atom Atom Length/A		Atom Atom Length/Å				
O 2	C 15	$1.395(2)$		C 6	C 5	$1.393(2)$
O 1	C 14	$1.211(2)$		C 17	C 18	$1.381(3)$
O 3	C 13	$1.225(2)$		C 13	C 8	$1.451(2)$
N 1	N 2	$1.414(2)$		C 7	C 8	$1.386(3)$
N 1	C 6	$1.394(2)$		C 7	C 12	$1.400(3)$
N 1	C 7	$1.394(2)$		C 8	C 9	$1.391(3)$
N 2	C 15	$1.473(2)$		C 5	C 4	$1.378(3)$
N 2	C 13	$1.385(2)$		C 18	C 19	$1.372(3)$
C 16	C 15	$1.526(2)$		C 21	C 20	$1.386(3)$
C 16	C 17	$1.387(2)$		C 2	C 3	$1.365(3)$
C 16	C 21	$1.384(3)$		C 19	C 20	$1.375(3)$
C 15	C 14	$1.545(2)$		C 12	C 11	$1.375(3)$
C 1	C 14	$1.463(2)$		C 4	C 3	$1.386(3)$
C 1	C 6	$1.405(2)$		C 9	C 10	$1.376(3)$
C 1	C 2	$1.390(2)$		C 11	C 10	$1.386(3)$

Table 5 Bond Angles for 5a.

Atom Atom Atom Angle ${ }^{\circ}$
C6 N1 N2 117.23(13)
C6 N1 C7 131.38(15)
C7 N1 N2 106.69(14)
$\mathrm{N} 1 \quad \mathrm{~N} 2 \quad \mathrm{C} 15 \quad 121.31(14)$
C13 N2 N1 110.30(14)
C13 N2 C15 121.00(14)
C17 C16 C15 118.59(17)
$\mathrm{C} 21 \mathrm{C} 16 \mathrm{C} 15 \quad 122.17(16)$
$\mathrm{C} 21 \quad \mathrm{C} 16 \mathrm{C} 17 \quad 119.04(17)$
O2 C15 N2 111.06(14)
O2 C15 C16 113.88(14)
O2 C15 C14 106.22(14)
N2 C15 C16 109.15(15)
$\mathrm{N} 2 \quad \mathrm{C} 15 \quad \mathrm{C} 14 \quad 110.08(14)$
C16 C15 C14 106.27(13)
C6 C1 C14 121.31(16)
C2 C1 C14 119.17(15)
$\mathrm{C} 2 \quad \mathrm{C} 1 \quad \mathrm{C} 6 \quad 119.37(17)$
O1 C14 C15 118.06(15)

Atom Atom Atom Angle $/^{\circ}$

C5 C6 C1 119.30(17)
C18 C17 C16 120.12(18)
O3 C13 N2 123.37(16)
O3 C13 C8 131.33(17)
N2 C13 C8 105.27(15)
N1 C7 C12 130.39(18)
C8 C7 N1 109.03(15)
C8 C7 C12 120.50(17)
C7 C8 C13 108.31(15)
C7 C8 C9 121.54(17)
C9 C8 C13 130.07(18)
C4 C5 C6 119.72(17)
C19 C18 C17 120.49(18)
C16 C21 C20 120.43(18)
C3 C2 C1 121.09(17)
C18 C19 C20 119.97(19)
C11 C12 C7 117.0(2)
C5 C4 C3 121.08(18)
C10 C9 C8 117.8(2)

Table 5 Bond Angles for 5a.

Atom Atom Atom Angle $/^{\circ}$			
O1	C14	C1	$123.17(16)$
C1	C14	C15	$118.75(15)$
N1	C6	C1	$117.53(15)$
C5	C6	N1	$123.13(16)$

Atom Atom Atom Angle $/^{\circ}$

$\mathrm{C} 2 \quad \mathrm{C} 3 \quad \mathrm{C} 4 \quad 119.43(18)$
C19 C20 C21 119.9(2)
C12 C11 C10 122.58(19)
C9 $\quad \mathrm{C} 10 \quad \mathrm{C} 11 \quad 120.46(19)$

Table 6 Torsion Angles for 5a.

Table 6 Torsion Angles for 5a.
$\begin{array}{lllll}A & \mathbf{B} & \mathbf{C} & \mathbf{D} & \text { Angle } /{ }^{\circ}\end{array}$
$\begin{array}{lllll}A & \mathbf{B} & \mathbf{C} & \text { Angle }\end{array}{ }^{\circ}$
C14C1 C6 N1 3.1(3)
C2 C1 C6 N1 178.68(17)
C14C1 C6 C5 -174.62(17)
C2 C1 C6 C5 0.9(3)
C14C1 C2 C3 175.12(19)
C12 C7 C8 C13 177.54(17)
C6 N1 N2 C15-44.8(2)
C12C7 C8 C9 0.5(3)
C6 N1 N2 C13 164.99(16)
C12C11C10C9 0.6(3)

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right.$) for 5 a .

Atom \boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	U(eq)	
H2	3965.52	3963.85	4966.19	48
H17	3125.23	4995.7	3646.93	36
H5	2034.56	6962.19	8320.45	39
H18	3186.93	6963.1	2467.64	42
H21	3264.14	9129.45	5351.03	45
H2A 296.16	5808.88	5654.73	41	
H19	3285.19	9993.93	2721.39	48
H12	3230.99	5985.74	8914.23	45
H4	429.6	7144.72	8231.11	48
H9	6054.53	6886.17	7613.86	47
H3	-440.05	6627.12	6893.52	49
H20	3310.22	11086.96	4160.43	55
H11	4612.95	6402.37	9779.65	53
H10	6004.53	6820.57	9154.01	54

Experimental

Single crystals of $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ were [5a]. A suitable crystal was selected and [5a] on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 179.99(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2015). Acta Cryst. C71,
4. a Aromatic/amide H refined with riding coordinates:

C17(H17), C5(H5), C18(H18), C21(H21), C2(H2A), C19(H19), C12(H12), C4(H4),
C9(H9), C3(H3), C20(H20), C11(H11), C10(H10)
2. b Idealised tetrahedral OH refined as rotating group:

O2(H2)

9. Product characterization

6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (3a)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (42.0 mg, 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3$ mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 a}$ was obtained as a yellow solid ($56.7 \mathrm{mg}, 91 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}$, $5 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,140.0,138.5,137.5,132.3,132.1,129.1,129.0,128.0,128.0$, 127.2, 124.5, 124.3, 123.4, 123.2, 118.7, 114.3, 112.7, 111.1. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 311.1184$, found: 311.1187.

6-(p-tolyl)-8H-indazolo[1,2-a]cinnolin-8-one (3b)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(p-tolyl)ethan-1-one 2b ($63.1 \mathrm{mg}, 0.3$ mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=5: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 b}$ was obtained as a yellow solid ($60.8 \mathrm{mg}, 94 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=14.1,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.3,139.0,137.7,137.5,136.9,132.8,132.4,129.7,129.3,129.2,128.9,127.0$, 125.8, 124.6, 124.3, 123.4, 122.6, 117.7, 113.4, 111.6, 111.4, 19.6. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 325.1341$, found: 325.1342 .

6-(4-methoxyphenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3c)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one $1 \mathbf{1 a}(42.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(4-methoxyphenyl)ethan-1-one 2c ($67.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 c}$ was obtained as a yellow solid ($60.8 \mathrm{mg}, 94 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.4,156.1,140.1,138.5,137.4,132.3,129.4,128.7,127.0,124.6,124.5,124.4,123.7,123.3$, $118.9,114.5,113.5,111.6,111.1,55.5$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 341.1290, found: 341.1292.

6-([1,1'-biphenyl]-4-yl)-8H-indazolo[1,2-a]cinnolin-8-one (3d)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3 H -indazol-3-one $\mathbf{1 a}(41.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-([1, 1'-biphenyl]-4-yl)-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1one $\mathbf{2 d}$ ($81.7 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 3d was obtained as a yellow solid ($70.8 \mathrm{mg}, 92 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.4,5.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.23(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.2,142.0,140.8,140.2,138.7,137.2,132.4$, $131.1,129.1,128.9,128.4,127.6,127.3,127.3,126.8,124.6,124.4,123.5,123.4,118.9,114.5$, 112.9, 111.2. HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 387.1497, found: 387.1500 .

6-(4-bromophenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3e)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro- 3 H -indazol-3-one $\mathbf{1 a}(42.0 \mathrm{mg}, \quad 0.2 \mathrm{mmol})$ and 1-(4-bromophenyl)-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1-one 2e $(82.5 \mathrm{mg}$, 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=5: 1, R_{f}=0.2$), the desired product $3 \mathbf{e}$ was obtained as a yellow solid ($69.1 \mathrm{mg}, 89 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,140.1,138.5,136.4,132.4,131.2$, 131.0, 129.4, 129.2, 127.3, 124.5, 124.4, 123.3, 123.1, 118.5, 114.3, 113.0, 111.1. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 389.0290$, found: 389.0292.

6-(4-(trifluoromethyl)phenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3f)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (41.9 mg, 0.2 mmol$)$ and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(4-(trifluoromethyl)phenyl)ethan-1-one $\mathbf{2 f}$ ($79.3 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, R_{f}=0.2$), the desired product $3 f$ was obtained as a yellow solid ($74.5 \mathrm{mg}, 98 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,140.2,138.6,136.0,135.7,132.6$, $130.9(\mathrm{~d}, J=32.6 \mathrm{~Hz}), 129.7,128.2,127.6,125.5,125.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.5(\mathrm{~d}, J=6.3 \mathrm{~Hz})$, 123.5, 122.9, 122.8, 118.5, 114.4, 114.1, 111.2. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.62. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 379.1058$, found: 379.1060.

6-(4-(trifluoromethoxy)phenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3g)

The reaction was performed according to general procedure A with
 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (42.1 mg, 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(4-(trifluoromethoxy)phenyl)ethan-1one $\mathbf{2 g}(84.1 \mathrm{mg}, 0.3 \mathrm{mmol})$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=6: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 g}$ was obtained as a yellow solid ($35.7 \mathrm{mg}, 45 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.1,149.8,140.2,138.6,136.2,132.5,130.8,129.5,129.4,127.4,124.6,124.5,123.5$, 123.2, 120.4, 118.6, 114.4, 113.3, 111.3. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{- 5 7 . 6 0 .}$ HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 395.1007$, found: 395.1010.

methyl 4-(8-oxo-8H-indazolo[1,2-a]cinnolin-6-yl)benzoate (3h)

 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and methyl 4-(2-(dimethyl(oxo)- λ^{6}-sulfanylidene)acetyl)benzoate $\mathbf{2 h}(76.3 \mathrm{mg}$, 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 h}$ was obtained as a yellow solid ($66.4 \mathrm{mg}, 90 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=13.6,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8$, $156.1,140.2,138.7,136.5,136.4,132.5,130.5,129.6,129.3,127.8,127.6,124.6,124.5,123.5$, 123.0, 118.6, 114.4, 114.1, 111.2, 52.3. HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 369.1239, found: 369.1240 .

6-(3-methoxyphenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3i)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(3-methoxyphenyl)ethan-1-one $\mathbf{2 i}$ $(67.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 i}$ was obtained as a yellow solid ($62.7 \mathrm{mg}, 92 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,156.0,140.2,138.7,137.4,133.6,132.3,129.1,129.0,127.2$, 124.6, 124.4, 123.4, 123.3, 120.6, 118.9, 114.7, 114.4, 113.7, 112.8, 111.1, 55.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 341.1290, found: 341.1293.

6-(3-chlorophenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3j)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-(3-chlorophenyl)-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1-one $\quad \mathbf{2 j}$ ($69.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3} \mathbf{j}$ was obtained as a yellow solid ($63.0 \mathrm{mg}, 91 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H})$, $7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,140.2,138.7,136.1$, $134.1,133.9,132.5,129.4,129.2,129.1,127.9,127.4,126.4,124.6,124.5,123.5,123.1,118.6$, 114.4, 113.6, 111.2. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 345.0795$, found: 345.0796.

6-(2-chlorophenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3k)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (42.2 mg, $0.2 \quad \mathrm{mmol})$ and
 1-(2-chlorophenyl)-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1-one $\quad \mathbf{2 k}$ ($69.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=3: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 k}$ was obtained as a yellow solid ($57.2 \mathrm{mg}, 83 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{dd}, J$ $=13.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,139.1,138.0,135.2,133.7,132.5,132.1,130.7,130.5,129.4,129.2,127.3$, 126.9, 124.7, 124.3, 123.0, 122.7, 117.7, 113.3, 112.8, 111.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 345.0795$, found: 345.0796.

6-(3-fluoro-4-methylphenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3I)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(3-fluoro-4-methylphenyl)ethan-1-o ne $2 \mathbf{2}$ ($68.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 31 was obtained as a yellow solid ($58.4 \mathrm{mg}, 85 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dt}, J=15.0,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.5,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~s}$, $1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 156.0,140.2,138.7$, 136.4, 132.4, $131.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 129.2,127.3,126.0(\mathrm{~d}, J=17.3 \mathrm{~Hz})$, $124.6,124.4,123.5(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 123.4,123.3,118.8,114.6(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 114.5,112.9,111.1$, $14.71(\mathrm{~d}, J=3.3 \mathrm{~Hz}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.44$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 343.1247$, found: 343.1247

6-(3,5-dimethylphenyl)-8H-indazolo[1,2-a]cinnolin-8-one (3m)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (41.9 mg, 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(3,5-dimethylphenyl)ethan-1-one $\mathbf{2 m}$ ($67.3 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 m}$ was obtained as a yellow solid ($31.6 \mathrm{mg}, 47 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $2.39(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,140.2,138.7,137.9,137.5,132.2,131.1$, $128.8,127.1,125.8,124.6,124.4,123.7,123.3,119.0,114.5,112.5,111.1,21.5$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 339.1497, found: 339.1496.

6-(naphthalen-2-yl)-8H-indazolo[1,2-a]cinnolin-8-one (3n)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(naphthalen-2-yl)ethan-1-one $2 \mathbf{n}$ ($73.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 n}$ was obtained as a yellow solid ($67.2 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 1 \mathrm{H})$, $7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,140.1,138.59,137.53$, $133.72,133.08,132.35,130.11,129.05,128.52,127.83,127.23,127.22,126.99,126.72,126.37$, $125.79,124.64,124.41,123.49,123.30,118.73,114.38,113.05,111.17$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 361.1341$, found: 361.1345 .

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one $1 \mathbf{1 a}(42.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1-cyclohexyl-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1-one 2 o (60.7 mg , 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=16: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 3 o was obtained as a yellow solid ($47.2 \mathrm{mg}, 75 \%$ yield $).{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=18.7,16.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.17(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.7,146.1,138.5,136.9,132.2,128.0$, 126.2, 124.4, 124.2, 123.4, 122.4, 118.0, 113.3, 111.3, 105.3, 36.6, 32.6, 26.5, 26.4. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.1654$, found: 317.1656.

2-(2-(8-oxo-8H-indazolo[1,2-a]cinnolin-6-yl)ethyl)-3a,7a-dihydro-1 H -isoindole-1,3(2H)-dione

 (3p) The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a $(41.9 \quad \mathrm{mg}, \quad 0.2 \quad \mathrm{mmol}) \quad$ and

2-(4-(dimethyl(oxo)- λ^{6}-sulfanylidene)-3-oxobutyl)isoindol ine-1,3-dione $\mathbf{2 p}$ ($88.0 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=3: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 p}$ was obtained as a yellow solid ($53.6 \mathrm{mg}, 65 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{dd}, J=5.3,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,156.6,138.4,136.9,136.2,133.9,132.4,132.1,128.5,126.0,124.5,124.1$, 123.3, 122.8, 122.3, 117.4, 113.0, 111.5, 110.1, 37.3, 30.8. HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 432.1324, found: 432.1322.

4-(8-oxo-8H-indazolo[1,2-a]cinnolin-6-yl)- N, N-dipropylbenzenesulfonamide (3q)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a $\quad(42.0 \quad \mathrm{mg}, \quad 0.2 \quad \mathrm{mmol}) \quad$ and 4-(2-(dimethyl(oxo)- λ^{6}-sulfanylidene)acetyl)-N,N-dipropyl benzenesulfonamide 2q (107.9 mg, 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 q}$ was obtained as a yellow solid $(89.5 \mathrm{mg}$, 94% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=15.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.14$ $-3.08(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.1,140.2,140.1,138.6,136.0,135.7,132.6,129.8,128.4,127.7,126.7,124.6,124.5,123.6$, $122.8,118.4,114.7,114.5,111.3,50.6,22.5,11.3$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 474.1851$, found: 474.1856.

6-(1-(6-methoxynaphthalen-2-yl)ethyl)-8H-indazolo[1,2-a]cinnolin-8-one (3r)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (42.1 mg, 0.2 mmol) and
(S)-1-(dimethyl(oxo)- λ^{6}-sulfanylidene)-3-(6-methoxynaph thalen-2-yl)butan-2-one $\mathbf{2 r}(91.3 \mathrm{mg}, 0.3 \mathrm{mmol})$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{3 r}$ was obtained as a yellow solid (59.0 mg, 70 \% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})$, $7.87(\mathrm{t}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=7.4,4.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5$, $156.8,144.3,138.8,138.7,137.2,133.6,132.2,129.4,129.0,128.5,127.6,127.1,126.6,126.1$, 124.3, 124.2, 123.0, 122.5, 118.7, 118.1, 113.4, 111.1, 108.3, 105.6, 55.4, 37.8, 20.8. HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 474.1851$, found: 474.1856. HRMS (ESI) m/z calcd. for

6-(1-(4-isobutylphenyl)ethyl)-8H-indazolo[1,2-a]cinnolin-8-one (3s)

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a (42.0 mg, 0.2 mmol) and (R)-1-(dimethyl(oxo)- λ^{6}-sulfanylidene)-3-(4-isobutylphen yl)butan-2-one 2s ($44.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). However, this product will be detected by TLC until the temperature rises to $120^{\circ} \mathrm{C}$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=16: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 3 s was obtained as a yellow oil $(58.4 \mathrm{mg}, 74 \%$ yield $) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $3 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,144.6$, $140.7,140.1,138.7,137.1,132.1,129.3,128.4,127.8,126.6,124.4,124.2,123.1,122.5,118.1$, 113.4, 111.1, 108.1, 45.2, 37.5, 30.2, 22.5, 21.0. HRMS (ESI) m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 395.2123 , found: 395.2123.

11-methyl-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4a)

The reaction was performed according to general procedure A with 6-methyl-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 b}(44.9 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 a}$ was obtained as a yellow solid ($43.0 \mathrm{mg}, 66 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}$, $5 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}$, 1H), $2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,143.5,140.7,138.7,137.7,132.3,129.2$, 128.9, 128.0, 128.0, 127.1, 125.0, 124.3, 124.2, 123.7, 116.6, 114.3, 112.5, 111.2, 22.8. HRMS
(ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 325.1341$, found: 325.1345.

11-methoxy-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4b)

The reaction was performed according to general procedure A with 6-methoxy-1-phenyl-1,2-dihydro-3H-indazol-3-one 1c $(48.3 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a $(58.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 b}$ was obtained as a yellow solid ($55.6 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.28(\mathrm{dd}, J=11.4,5.4 \mathrm{~Hz}, 3 \mathrm{H})$, $7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.7,155.9,141.7,138.4,137.9,132.3,129.1,128.7,128.0,128.0,127.1,125.7,124.4$, 123.9, 112.2, 112.1, 112.0, 110.9, 98.0, 56.1. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 341.1290, found: 341.1294.

11-fluoro-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4c)

The reaction was performed according to general procedure A with 6-fluoro-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 d}$ ($45.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a (58.9 mg , 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, R_{f}=0.2$), the desired product $\mathbf{4 c}$ was obtained as a yellow solid ($64.1 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 5 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 166.9,164.4,155.3,140.5,140.3,137.8,137.6,132.0,129.3,129.0,128.0,127.3,126.7,126.6$, $124.8,123.5,114.9,112.4,112.2,111.9,111.0,101.3,101.0 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -104.51. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 329.1090, found: 329.1093.

The reaction was performed according to general procedure A with 5-chloro-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 e}(48.9 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 d}$ was obtained as a yellow solid ($43.6 \mathrm{mg}, 63 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{s}, 5 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.8,138.2,138.1,137.4,132.6,131.9,129.4,129.2,128.9,128.1,128.0,127.4,124.7$, 124.1, 123.3, 120.0, 115.6, 113.0, 111.2. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 345.1090, found: 345.1093.

10-bromo-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4e)

The reaction was performed according to general procedure A with 5-bromo-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 f}$ ($57.8 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4} \mathbf{e}$ was obtained as a yellow solid ($40.6 \mathrm{mg}, 52 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{s}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.5,138.4,137.9,137.3,135.2,131.8,129.3,129.2,128.0,127.9,127.4,127.2,124.7$, 123.2, 120.3, 116.0, 115.8, 112.9, 111.1. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 389.0290, found: 389.0285 .

6-phenyl-10-(trifluoromethyl)-8H-indazolo[1,2-a]cinnolin-8-one (4f)
The reaction was performed according to general procedure A with 1-phenyl-5-(trifluoromethyl)-1,2-dihydro-3H-indazol-3-one $\quad \mathbf{1 g}(55.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one $\mathbf{2 a} \quad(58.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. After

purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 f}$ was obtained as a yellow solid ($48.5 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.31(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 5 \mathrm{H}), 7.34$ $-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.93,140.69,137.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 131.75,129.45$, $129.24,129.00(\mathrm{dd}, J=6.4,3.2 \mathrm{~Hz}), 128.07,127.51,125.41(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 125.14,125.12(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}), 123.30,122.62(\mathrm{dd}, J=8.0,3.8 \mathrm{~Hz}), 118.19,114.44,112.69,111.40 .{ }^{19}$ F NMR $(376 \mathrm{MHz}$, CDCl_{3}) δ-61.54. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 379.1058$, found: 379.1060 .

10-nitro-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4g)

The reaction was performed according to general procedure A with 5-nitro-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 h}(51.0 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 g}$ was obtained as a red solid $\left(35.7 \mathrm{mg}, 50 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.92(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, J=9.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 5 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.4,142.7,140.7,137.4,136.3,131.6,129.6$, 129.4, 128.2, 128.1, 127.7, 127.3, 125.9, 123.3, 121.9, 117.8, 113.6, 112.3, 111.9. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 356.1035$, found: 356.1040.

10,11-difluoro-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4h)

The reaction was performed according to general procedure A with 5,6-difluoro-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 i}$ ($49.2 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a $(58.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. After purification by silica gel chromatography
(petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 h}$ was obtained as a yellow solid ($51.7 \mathrm{mg}, 75 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=$ $10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 5 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,154.8,149.1,148.9,146.6,146.5,137.8$, $137.4,135.8,135.7,131.8,129.4,129.2,128.1,128.0,127.5,125.0,123.3,114.5,114.5,114.4$, $114.4,112.8,112.0,112.0,111.8,111.8,110.8,103.5,103.2$.(extra signals due to $\mathrm{C}-\mathrm{F}$ coupling); ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-126.66,-140.23$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 347.0996$, found: 347.0995 .

11-bromo-10-fluoro-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4i)

The reaction was performed according to general procedure A with 6-bromo-5-fluoro-1-phenyl-1,2-dihydro-3H-indazol-3-one $\mathbf{1 j}$ (61.4 mg , 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 i}$ was obtained as a yellow solid ($57.0 \mathrm{mg}, 70 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 5 \mathrm{H}), 7.31(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 156.5,154.7,154.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 154.7,154.0,137.9,137.3,136.4,131.7,129.4,129.4(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}), 129.3,128.1,127.9,127.5,124.9,123.2,119.2,119.0(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=24.3$ $\mathrm{Hz}), 115.5,115.3,113.1,110.9,110.6,110.5(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 110.3,77.5,77.2,76.8 .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.57$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BrFN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 407.0195$, found: 407.0190 .

3-methyl-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4j)

The reaction was performed according to general procedure A with 1-(p-tolyl)-1,2-dihydro-3H-indazol-3-one $\mathbf{1 k}(44.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a (58.9 mg , 0.3 mmol). After purification by silica gel chromatography (petroleum
ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4} \mathbf{j}$ was obtained as a yellow solid (33.1 mg , 51% yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 5 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~s}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,140.1,137.3,136.2$, $133.9,132.2,132.2,129.3,129.1,128.0,127.9,127.7,124.5,123.2,123.0,118.5,114.2,112.9$, 111.0, 20.7. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 325.1341, found: 325.1341.

6-phenyl-3-(trifluoromethyl)-8H-indazolo[1,2-a]cinnolin-8-one (4k)

The reaction was performed according to general procedure A with 1-(4-(trifluoromethyl)phenyl)-1,2-dihydro-3H-indazol-3-one $110 \quad(55.6 \quad \mathrm{mg}$, 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a (58.9 $\mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 k}$ was obtained as a yellow solid ($69.6 \mathrm{mg}, 92 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 6 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.9,140.9,139.8,139.0$, $132.8,131.6,129.6,128.1,128.0,126.6,126.2,126.0,126.0,125.9,125.9,125.2,124.8,124.1$, $123.9,123.8,123.8,123.7,122.5,119.0,114.3,111.4,111.2 .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -62.38. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 379.1058$, found: 379.1057.

2,3-dimethyl-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (41)

The reaction was performed according to general procedure A with 1-(3,4-dimethylphenyl)-1,2-dihydro-3H-indazol-3-one 1m (47.7 mg, 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a (58.9 mg , 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 4 l was obtained as a yellow solid ($66.1 \mathrm{mg}, 98 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=7.1,4.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.36(\mathrm{t}, J$
$=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 156.0,140.1,137.8,136.5,132.5,132.4,132.1,128.9,128.3,128.0,127.9,124.5,122.9,120.8$, 118.6, 114.3, 112.9, 112.3, 20.5, 19.1. HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 339.1497, found: 339.1499.

2-chloro-3-methyl-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4m)

The reaction was performed according to general procedure A with 1-(3-chloro-4-methylphenyl)-1,2-dihydro-3H-indazol-3-one 1n (51.9 $\mathrm{mg}, \quad 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene) -1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=$ 0.2), the desired product $\mathbf{4 m}$ was obtained as a yellow oil $(57.0 \mathrm{mg}$, 79% yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 5 \mathrm{H}), 7.38(\mathrm{dd}, J=7.9,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,140.0,137.6,137.3,134.0,132.6,131.9,131.8,129.2$, 129.0, 128.0, 127.9, 124.6, 123.6, 122.1, 118.8, 114.2, 111.9, 111.8, 19.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 359.0951$, found: 359.0952 .

2,3-dichloro-6-phenyl-8H-indazolo[1,2-a]cinnolin-8-one (4n)

The reaction was performed according to general procedure A with 1-(3,4-dichlorophenyl)-1,2-dihydro-3H-indazol-3-one 10 ($56.2 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a $(58.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=8: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{4 n}$ was obtained as a yellow oil ($45.2 \mathrm{mg}, 60 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.43$ ($\mathrm{s}, 6 \mathrm{H}$), $7.26(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.1, 140.0, 139.0, 137.8, $133.0,131.9,131.5,129.7,128.2,128.0,127.8,127.7,124.9,124.1,123.9,119.0,114.2,113.0$, 110.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 379.0405$, found: 379.0407.

The reaction was performed according to general procedure A with 1-phenyl-1,2-dihydro-3H-thieno[3,2-c]pyrazol-3-one 1p (43.2 mg, 0.2 mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a $(58.9 \mathrm{mg}$, 0.3 mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 4 o was obtained as a yellow oil ($48.3 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 151.9,146.3,138.7,136.2,136.0,132.2,129.6,128.7,127.7$, 127.6, 127.4, 124.3, 121.1, 114.8, 112.9, 111.8, 111.3. HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 317.0749$, found: 317.0750.

6-hydroxy-6-phenyl-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5a)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3$ mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{5 a}$ was obtained as a yellow solid ($52.4 \mathrm{mg}, 77 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.6,164.5,141.1,139.7,138.3,136.4,134.3,130.3,129.7,129.1,125.7,125.1$, 123.7, 117.9, 117.3, 113.1, 112.9, 91.4. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 343.1083, found: 343.1076 .

6-(4-bromophenyl)-6-hydroxy-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5b)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro-3 H -indazol-3-one 1a (42.0 mg, 0.2 mmol) and 1-(4-bromophenyl)-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1-one $\mathbf{2 e}$ ($76.3 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the

desired product $\mathbf{5 b}$ was obtained as a yellow oil ($25.3 \mathrm{mg}, 30 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.3,164.5,141.3,139.9,137.5,136.6,134.4$, $132.2,130.4,127.5,125.2,124.2,123.9,123.9,117.9,117.3,113.2,112.9,90.8$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 421.0188$, found: 421.0190 .

6-hydroxy-6-(4-(trifluoromethyl)phenyl)-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5c)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro-3 H -indazol-3-one 1a ($41.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(4-(trifluoromethyl)phenyl)ethan-1 -one $\mathbf{2 f}$ ($79.3 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{5 c}$ was obtained as a yellow oil ($27.9 \mathrm{mg}, 34 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}$, 4H), $7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 185.24,164.48,142.25,141.47,139.98,136.76,136.09,134.54,130.47,126.95,126.36,126.05$ (dd), 125.21, 123.99 (d), 123.86, 122.46, 117.55 (d), 113.08 (d), 110.70, 90.55. ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.88$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 411.0957$, found: 411.0954.

6-hydroxy-6-(3-methoxyphenyl)-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5d)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a $(42.0 \mathrm{mg}, 0.2$ mmol) and 2 -(dimethyl(oxo) $-\lambda^{6}$-sulfanylidene)-1-(3-methoxyphenyl)ethan-1-one $\mathbf{2 i}$ ($67.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). After
purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 5d was obtained as a yellow oil ($36.3 \mathrm{mg}, 49 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dt}, J$ $=12.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=11.1,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.4,164.4,160.1,141.0,139.9,139.6,136.4,134.3,130.3,130.0$, 125.0, 123.7, 123.6, 117.9, 117.6, 117.2, 115.4, 113.0, 112.9, 111.5, 91.2, 55.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 373.1188, found: 373.1180.

6-(2-chlorophenyl)-6-hydroxy-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5e)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro-3 H -indazol-3-one 1a ($41.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-(2-chlorophenyl)-2-(dimethyl(oxo)- λ^{6}-sulfanylidene)ethan-1-one $\quad \mathbf{2 k}$ ($69.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 5 e was obtained as a yellow oil ($21.4 \mathrm{mg}, 28 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.3,162.3,141.2$, $139.9,136.1,135.5,133.9,131.2,130.4,130.2,130.1,129.9,126.9,125.0,123.5,123.0,118.1$, 117.6, 112.9, 87.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 399.0512$, found: 399.0518.

6-(3-fluoro-4-methylphenyl)-6-hydroxy-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5f)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro-3H-indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-(3-fluoro-4-methylphenyl)ethan-1-one 2l ($68.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=4: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{5 f}$ was obtained as a yellow oil ($24.4 \mathrm{mg}, 33 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.3,164.4,161.5(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 141.2,139.8,138.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 136.5$, 134.4, $132.1(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 130.4,126.9,126.7(\mathrm{~d}, J=0.5 \mathrm{~Hz}), 125.2,123.8(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, $121.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 117.9,117.3,113.2,112.9,112.7,90.6,14.5 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -115.56. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 375.1145, found: 375.1139.

6-(tert-butyl)-6-hydroxy-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5g)

The reaction was performed according to general procedure B with 1-phenyl-1,2-dihydro- 3 H -indazol-3-one 1a ($42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-(dimethyl(oxo)- λ^{6}-sulfanylidene)-3,3-dimethylbutan-2-one $\mathbf{2 t}$ (52.9 mg , 0.3 mmol). However, this product will be detected by TLC until the temperature rises to $120^{\circ} \mathrm{C}$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 5 g was obtained as a yellow oil ($34.8 \mathrm{mg}, 57 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,158.1,141.0,135.8,133.6,129.7,128.9,126.6,126.3$, 125.1, 122.9, 116.2, 112.3, 112.1, 79.2, 41.9, 25.1. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 349.1552$, found: 349.1554 .

6-hydroxy-11-methyl-6-phenyl-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5h)

The reaction was performed according to general procedure B with 6-methyl-1-phenyl-1,2-dihydro-3 H -indazol-3-one $\mathbf{1 b}$ ($44.8 \mathrm{mg}, 0.2$ mmol) and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a (58.9 mg, 0.3 mmol$)$. After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product 5 h was obtained as a yellow oil ($43.6 \mathrm{mg}, 61 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=6.7,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.7,164.8,145.7,141.7,139.9,138.4,136.3,130.3,129.68,129.0$, 125.7, 125.4, 124.7, 123.6, 117.3, 115.7, 113.1, 112.9, 91.4, 23.0. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 357.1239$, found: 357.1232.

6-hydroxy-3-methyl-6-phenyl-8H-indazolo[1,2-a]cinnoline-5,8(6H)-dione (5i)

The reaction was performed according to general procedure B with 1-(p-tolyl)-1,2-dihydro-3H-indazol-3-one $\mathbf{1 k}(44.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-(dimethyl(oxo)- λ^{6}-sulfanylidene)-1-phenylethan-1-one 2a ($58.9 \mathrm{mg}, 0.3$ mmol). After purification by silica gel chromatography (petroleum ether/ethyl acetate $=2: 1, \mathrm{R}_{\mathrm{f}}=0.2$), the desired product $\mathbf{5 i}$ was obtained as a yellow oil ($46.3 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.7,164.2,140.9,138.3,137.6$, $137.2,134.1,133.5,130.0,129.6,129.0,125.6,124.9,123.3,117.6,117.1,112.8,112.7,91.2$, 20.5. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 357.1239$, found: 357.1246.

10. Copies of product NMR spectra

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

180	170	160	150	140	130	120	110	100	f1 ${ }^{90}$ (ppal)	80	70	60	50	40	30	20	10	0
									47									

3b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{0}{\square}$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
														30			

3c

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3d

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

SB
 ooncirinnvinmencirio

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 f$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170									80	-		5					
170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

$3 i$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	1
																	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3k

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

31

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]
3m

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

170	160	150	140	130	120	110	100	90	80	70	60	15	40	30	20	10	0
									(ppm)								

3n

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170	160	150							80	70							
	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

30

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1

3p

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~ C D C l ~} 3$)
$1 \xrightarrow{\text { - }}$

3r

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\pm
\dot{j}
i

$\stackrel{\infty}{\infty}$

${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

in in in in in
$\stackrel{\infty}{\sim}$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3s

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$4 a$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

170	160	150	140	130	120	110	100		70	60	50	40	30	20	10	0

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4 g$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

170	160	150	140	130	120	110	100	$90 \quad 80$	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

170	160	150	140	130	120	110	100		80	70	60	50	40	30	20.	10	0

${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

\qquad

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

170	160	150	140	130	120	110	100	80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)
人

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

4m

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

170	160	150	140				100			70	1	50	10				
170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO)

${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \text { ががかべがたがい }
\end{aligned}
$$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$ ）

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
													0	.		,	2		0

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

5e

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

$5 f$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C ~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO)

$\stackrel{\stackrel{n}{1}}{\stackrel{\sim}{1}}$

${ }^{13}$ C NMR (101 MHz, DMSO)

11. References

[1] J. Y. Kang, W. An, S. Kim, N. Y. Kwon, T. Jeong, P. Ghosh, H. S. Kim, N. K. Mishra, I. S. Kim. Chem. Commun., 2021, 57, 10947-10950.
[2] M. Barday, C. Janot, N. R. Halcovitch, J. Muir, C. Aïssa. Angew. Chem. Int. Ed., 2017, 56, 13117-13121.

[^0]:

[^1]:

