Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

## **Supporting Information**

Hypervalentiodine(III)-mediatedring-expansivedifluorinationofalkynylcyclopropanesenroutetothesynthesis ofdifluorinatedalkylidenecyclobutanes

Shuang Yang,<sup>a</sup> Xiao-Bin Liu,<sup>a</sup> Si-Xin Feng,<sup>a</sup> Yin Li,<sup>a</sup> Fang-Hai Tu,<sup>a</sup> Bin Huang,<sup>c</sup> Long-Ling Huang,<sup>a</sup> Zhi-Shu Huang,<sup>a</sup> Honggen Wang<sup>a</sup> and Qingjiang Li<sup>\*a,b</sup>

<sup>a</sup> Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery,

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006,

P.R. China

<sup>b</sup> State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P.R. China

<sup>c</sup> College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R.

China

\*Corresponding author: liqingj3@mail.sysu.edu.cn

## **Table of Contents**

| 1.  | General information                                           | 3  |
|-----|---------------------------------------------------------------|----|
| 2.  | Preparation of the starting materials                         | 4  |
| 3.  | Synthesis of difluorinated alkylidenecyclobutanes             | 13 |
| 4.  | Characterization data of difluorinated alkylidenecyclobutanes | 14 |
| 5.  | Scale-up experiment                                           | 27 |
| 6.  | Mechanistic studies                                           | 28 |
| 7.  | X-ray data for compound <i>E-2a</i>                           | 33 |
| 8.  | X-ray data for compound Z-2g                                  | 40 |
| 9.  | References                                                    | 46 |
| 10. | NMR spectrum                                                  | 48 |

#### 1. General information

The solvents used were dried by distillation over the drying agents indicated in parentheses and were transferred under argon: tetrahydrofuran (Na-benzophenone) and toluene (CaH<sub>2</sub>), chloroform (CaH<sub>2</sub>), dichloromethane (CaH<sub>2</sub>). Nitromethane, 1,2-dichloroethane (DCE), tetrachloride (CCl<sub>4</sub>), acetonitrile (CH<sub>3</sub>CN), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) were purchased from Energy-chemical. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton (<sup>1</sup>H), fluorine (<sup>19</sup>F), and carbon (<sup>13</sup>C) NMR spectra were recorded at 500 (or 400), 471 (or 376), and 126 (or 101) MHz, respectively. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd = doublet of doublet for proton spectra, p: quintet. Coupling constants (*J*) are reported in hertz (Hz).

High-resolution mass spectra (HRMS) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. TLCs were visualized with UV light (254 nm) and/or using KMnO<sub>4</sub> solution or phosphomolybdic acid in ethanol followed by heating using hot gun. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate synthesis.

#### 2. Preparation of the starting materials

### 2.1. Synthesis of alkynylcyclopropanes by Sonogashira coupling<sup>1-2</sup>

$$R \xrightarrow{Pd(PPh_3)_2Cl_2 (2 \text{ mol}\%)} R \xrightarrow{$$

General procedure A: According to the classical Sonogashira procedure, a dry round bottle was charged with aryl iodide **S** (5.0 mmol), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (2 mol%), and CuI (4 mol%). The mixture was vacuumed and flushed with N<sub>2</sub> for three times. Et<sub>3</sub>N (12 mL) and ethynylcyclopropane (6.0 mmol, 1.2 equiv) was then added. The mixture was stirred at room temperature for 12 h until all the aryl iodide was consumed. The reaction mixture was quenched with saturated NH<sub>4</sub>Cl, and the aqueous layer was extracted with diethyl ether (3×50 mL). The combined organic phase was washed with water and brine, dried with anhydrous MgSO<sub>4</sub>, and filtered. The filtrate was concentrated under vacuum. The residue was purified by column chromatography on silica gel to afford alkynylcyclopropanes **1**.

According to general procedure A, aryl-substituted alkynylcyclopropanes 1a-1e, 1g-1r, 1u-v, 1y-z, 1ab, and 1ac were prepared, and compounds 1a-e, 1g, 1i-k, 1o, 1y-z, 1ab, and 1ac have been reported in literature.<sup>1-7</sup>

#### 3-(cyclopropylethynyl)benzonitrile (1h)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE:EA = 200:1) to yield a yellow liquid (0.47 g, 56%).  $R_f = 0.47$  (PE:EA = 10:1). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.63 (s, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.8 Hz,

1H), 7.37 (t, J = 7.8 Hz, 1H), 1.45 (tt, J = 8.2, 5.0 Hz, 1H), 0.93 – 0.88 (m, 2H), 0.84 – 0.80 (m, 2H). <sup>13</sup>C NMR (101 MHz, Chloroform-d)  $\delta = 135.72$ , 134.92,

130.64, 129.11, 125.64, 118.26, 112.63, 96.48, 73.73, 8.81, 0.16. **HRMS** (EI): m/z calculated for C<sub>12</sub>H<sub>9</sub>N<sup>+</sup> [M]<sup>+</sup>: 167.0735; found: 167.0729.

#### 1-(3-(cyclopropylethynyl)phenyl)ethan-1-one (11)



1H), 7.31 (t, J = 7.7 Hz, 1H), 2.53 (s, 3H), 1.41 (tt, J = 8.3, 5.0 Hz, 1H), 0.86 – 0.82 (m, 2H), 0.79 - 0.76 (m, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-d)  $\delta$  197.43, 137.03, 135.83, 131.56, 128.51, 127.03, 124.56, 93.34, 74.87, 26.59, 8.67, 0.17. **HRMS** (ESI): m/z calculated for C<sub>13</sub>H<sub>12</sub>ONa<sup>+</sup> [M+Na]<sup>+</sup>: 207.0780; found: 207.0771.

#### 1,2-dichloro-4-(cyclopropylethynyl)benzene (1m)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE) to yield a yellow liquid (0.65 g, 62%).  $R_f = 0.71$ (PE). <sup>1</sup>**H NMR (500 MHz, Chloroform-***d*)  $\delta$  7.43 (d, *J* = 2.0 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.16 (dd, J = 8.3, 2.0 Hz, 1H), 1.42 (tt, J = 8.2, 5.0 Hz, 1H), 0.90 – 0.85 (m, 2H), 0.82 – 0.77 (m, 2H).

<sup>13</sup>C NMR (126 MHz, Chloroform-d) δ 133.25, 132.33, 131.72, 130.79, 130.17, 124.10, 95.86, 73.76, 8.79, 0.24. **HRMS** (EI): m/z calculated for C<sub>11</sub>H<sub>8</sub>C<sub>12<sup>+</sup></sub> [M]<sup>+</sup>: 210.0003; found: 209.9998.

#### 1-(cyclopropylethynyl)-2-(trifluoromethyl)benzene (1n)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE) to yield a yellow liquid (0.69 g, 65%).  $R_f = 0.78$  (PE). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.60 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 1.48 (tt, J = 8.2, 5.0 Hz, 1H), 0.91 (dtd, J = 8.1, 5.4, 2.4 Hz, 2H), 0.86 (dt, J = 5.3, 2.9 Hz, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  133.91, 131.64 (q, J = 30.1 Hz), 131.36, 127.16, 123.82 (q, J = 273.3 Hz),  $\delta$  125.80 (q, J = 5.1 Hz), 122.53 (q, J = 2.4 Hz), 99.98, 71.90, 8.84, 0.50. <sup>19</sup>F NMR (376 MHz, Chloroform-*d*)  $\delta$  -62.65. HRMS (EI): m/z calculated for C<sub>12</sub>H<sub>9</sub>F<sub>3</sub><sup>+</sup> [M]<sup>+</sup>: 210.0656; found: 210.0651.

#### 1-(cyclopropylethynyl)-3,5-bis(trifluoromethyl)benzene (1p)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE) to yield a yellow liquid (0.76 g, 55%).  $R_f = 0.73$  (PE). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.78 (s, 2H), 7.73 (s, 1H), 1.47 (tt, *J* = 8.2, 5.0 Hz, 1H), 0.96 – 0.91 (m, 2H),

0.88 – 0.83 (m, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 131.7 (q, J = 33.5 Hz), 131.6 (q, J = 3.8 Hz), 126.61, 123.0 (q, J = 272.7 Hz), 120.9 (m, J = 4.0 Hz), 97.83, 73.43, 8.93, 0.22. <sup>19</sup>F NMR (376 MHz, Chloroform-*d*) δ -63.5. HRMS (ESI): m/zcalculated for C<sub>13</sub>H<sub>8</sub>F<sub>6</sub><sup>+</sup> [M]<sup>+</sup>: 278.0530; found: 278.0524.

#### 4-dichloro-1-(cyclopropylethynyl)benzene (1q)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE) to yield a yellow liquid (0.69 g, 66%).  $R_f = 0.71$  (PE). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.36 (s, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 1.52 – 1.47 (m,

1H), 0.91 (ddt, J = 8.3, 5.7, 3.0 Hz, 2H), 0.87 – 0.83 (m, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  136.61, 133.87, 133.60, 129.13, 126.85, 122.51, 100.37, 71.83, 9.07, 0.50. HRMS (EI): m/z calculated for C<sub>11</sub>H<sub>8</sub>C<sub>12<sup>+</sup></sub> [M]<sup>+</sup>: 210.0003; found: 209.9997.

#### 2-bromo-4-(cyclopropylethynyl)benzonitrile (1r)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE:EA = 100:1) to yield a colorless solid (0.76 g, 62%).  $R_f$  = 0.52 (PE:EA = 10:1). m.p.: 66-70 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.64 (s, 1H), 7.52 (d, *J* = 8.0 Hz,

1H), 7.34 (d, J = 8.0 Hz, 1H), 1.46 (tt, J = 8.2, 5.0 Hz, 1H), 0.93 (dt, J = 8.0, 3.3 Hz, 2H), 0.87 – 0.81 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  135.8, 133.8, 130.6, 130.6, 125.0, 117.2, 114.2, 100.6, 73.7, 9.2, 0.4. HRMS (ESI): m/z calculated for C<sub>12</sub>H<sub>8</sub>BrNNa<sup>+</sup>[M+Na]<sup>+</sup>: 267.9732; found: 267.9743.

#### 2-bromo-1-(cyclopropylethynyl)-4-nitrobenzene (1u)



The title compound was prepared following the general procedure A and purified using silica gel chromatography (PE:EA = 100:1) to yield a pale yellow solid (0.78 g, 59%).  $R_f = 0.55$  (PE:EA = 10:1). m.p.: 68-73 °C. <sup>1</sup>H NMR 1H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.39 (d, J = 2.3 Hz,

1H), 8.05 (dd, J = 8.6, 2.3 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 1.53 (tt, J = 8.2, 5.0 Hz, 1H), 0.99 (ddt, J = 8.3, 5.8, 3.0 Hz, 2H), 0.92 (dt, J = 5.3, 3.0 Hz, 2H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  146.4, 133.3, 132.9, 127.5, 125.7, 122.0, 105.6, 73.9, 9.5, 0.7. HRMS (ESI): m/z calculated for C<sub>11</sub>H<sub>8</sub>BrNO<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 264.9738; found: 264.9735.

#### methyl 2-bromo-4-(cyclopropylethynyl)benzoate (1v)



Hz, 1H), 7.86 (dd, J = 8.1, 1.7 Hz, 1H), 7.43 (d, J = 8.1 Hz, 1H), 3.90 (s, 3H), 1.57 – 1.46 (m, 1H), 0.98 – 0.92 (m, 2H), 0.92 – 0.87 (m, 2H). <sup>13</sup>**C** NMR (101 MHz, **CDCl**<sub>3</sub>)  $\delta$  165.6, 133.4, 133.0, 130.6, 130.0, 128.0, 125.4, 102.6, 74.5, 52.5, 9.3, 0.7. HRMS (EI): m/z calculated for C<sub>13</sub>H<sub>11</sub>BrO<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 277.9942; found: 277.9938.

# **2.2.** Preparation of 1-cyclopropyl-2-(4-(cyclopropylethynyl)phenyl) ethane-1,2-dione (1x)<sup>8-9</sup>



To a vigorously stirred mixture of 1-bromo-4-(cyclopropylethynyl)benzene (6.9 mmol), NaHCO<sub>3</sub> (1.45 g, 17.25 mmol), and Oxone (10.6 g, 17.25 mmol) in MeNO<sub>2</sub> (31 mL) was added [Ru(cymene)Cl<sub>2</sub>]<sub>2</sub> (42.1 mg, 0.069 mmol) at room temperature under air. Then, H<sub>2</sub>O (6 mL) and TEMPO (0.11 g, 0.69 mmol) were added, and the reaction flask was rinsed with MeNO<sub>2</sub> (4 mL). After 12 h, the reaction mixture was quenched by sat. aq. NaHSO<sub>3</sub> (75 mL) and extracted with EtOAc (50 mL). The organic layer was washed with brine (75 mL). The combined organic layer was dried over MgSO<sub>4</sub>, filtered through a glass frit, and concentrated under reduced pressure. The residue was purified by column chromatography (PE:EA = 50:1) to afford 1,2-diketone product (1.2 g, 66%) as a green oil.  $R_f = 0.40$  (PE:EA = 10:1).

According to the reported literature, a dry round bottle was charged with the above 1,2-diketone product (4.5 mmol),  $Pd(PPh_3)_2Cl_2$  (5 mol%), and  $Et_3N$  (1.2 equiv). The mixture was vacuumed and flushed with N<sub>2</sub> for three times. CH<sub>3</sub>CN (8 mL) and the ethynylcyclopropane (1.2 equiv) was then added. The mixture was stirred at 70 °C. After 2 h, the reaction mixture was quenched with saturated NH<sub>4</sub>Cl, and the aqueous layer was extracted with diethyl ether (3×50 mL). The combined organic phase was washed with water and brine, dried with anhydrous MgSO<sub>4</sub>, and

filtered. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography. The product **1x** was obtained in 55% yield (0.59 g) as a yellow liquid after column chromatography (PE:EA = 30:1).  $R_f = 0.35$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.89 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 2.53 (tt, J = 7.9, 4.6 Hz, 1H), 1.46 (tt, J = 8.2, 5.0 Hz, 1H), 1.32 – 1.25 (m, 2H), 1.15 (dt, J = 7.6, 4.0 Hz, 2H), 0.95 – 0.85 (m, 2H), 0.84 (dt, J = 5.4, 2.9 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  202.5, 191.4, 131.9, 130.7, 130.7, 130.2, 99.0, 75.5, 18.6, 13.4, 9.0, 0.5. HRMS (ESI): *m*/*z* calculated for C<sub>16</sub>H<sub>14</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 261.0886; found: 261.0899.

## **2.3.** Preparation of 5-(cyclopropylethynyl)-[1,1'-biphenyl]-2-carbonitrile (1s)



According to the reported literature, Reaction conditions: **1r** (4.3 mmol, 1.0 equiv), phenylboronic acid (5.2 mmol, 1.2 equiv), K<sub>2</sub>CO<sub>3</sub> (10.8 mmol, 2.5 equiv) and the catalyst PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.1 mol%) were stirred in toluene (43 mL) at 110 °C under air atmosphere over 4 h. the product **1s** was obtained in 50% yield (0.52 g) as a white solid after column chromatography (PE:EA = 100:1) , R<sub>f</sub> = 0.52 (PE:EA = 10:1). m.p.: 66-68 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.65 (d, *J* = 8.0 Hz, 1H), 7.54 (dd, *J* = 8.1, 1.7 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.39 (dd, *J* = 8.1, 1.6 Hz, 1H), 1.48 (tt, *J* = 8.2, 5.0 Hz, 1H), 0.96 – 0.90 (m, 2H), 0.87 – 0.82 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  145.4, 137.7, 133.6, 133.1, 130.4, 129.1, 129.0, 128.8, 128.8, 118.7, 109.7, 98.8, 74.8, 9.1, 0.4. HRMS (ESI): *m*/z calculated for C<sub>18</sub>H<sub>13</sub>NNa<sup>+</sup> [M+Na]<sup>+</sup>: 266.0940; found: 266.0960.

#### **2.4.** Preparation of 4-(cyclopropylethynyl)-2-ethynylbenzonitrile (1w)<sup>11-12</sup>



According to the reported literature, in a dry flask under an atmosphere of nitrogen, the **1r** (2.5 mmol) was dissolved in 6 mL Et<sub>3</sub>N. 5 mol% of Pd(PPh<sub>3</sub>)<sub>4</sub>, 1.2 equiv of the trimethyl silyl acetylene and 5 mol% of CuI were added. The mixture was stirred at 80 °C for 12 hours until complete conversion. The crude reaction mixture was washed by water, dried over Na<sub>2</sub>SO<sub>4</sub> and purified by column chromatography on silica gel (PE:EA = 100:1).  $R_f = 0.56$  (PE:EA = 10:1). The product was obtained in 93% yield (0.61 g).

The above product (2.3 mmol), in 1:1 mixture of MeOH/THF (30 mL) was added K<sub>2</sub>CO<sub>3</sub> (1.0 equiv). The solution was stirred at room temperature for 3 h under nitrogen. Water was added to quench the reaction and an aqueous work up was performed. The product **1w** was obtained in 90% (0.39 g) yield as a white solid after column chromatography (PE:EA = 100:1), R<sub>f</sub> = 0.45 (PE:EA = 10:1). m.p.: 68-71 °C. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.53 (s, 1H), 7.52 (d, *J* = 5.2 Hz, 1H), 7.36 (dd, *J* = 8.2, 1.6 Hz, 1H), 3.45 (s, 1H), 1.44 (tt, *J* = 8.3, 5.0 Hz, 1H), 0.93 – 0.89 (m, 2H), 0.84 – 0.79 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  135.7, 132.5, 131.8, 129.1, 125.9, 117.2, 113.9, 99.7, 84.1, 79.1, 74.0, 9.1, 0.3. HRMS (ESI): *m/z* calculated for C<sub>14</sub>H<sub>9</sub>NNa<sup>+</sup> [M+Na]<sup>+</sup>: 214.0627; found: 214.0622.

#### 2.5. Preparation of 4-(cyclopropylethynyl)-2-methylbenzonitrile (1t)<sup>13</sup>



**1r** (1.5 mmol), potassium carbonate (3.0 equiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (10 mol%), DMF (4 mL) and TMB (1.0 equiv) were charged to a flask and the contents was heated to 115 °C (oil bath temperature) under nitrogen for 6 h and then stirred overnight at ambient temperature. The reaction mixture was filtered through a pad of Celite, washed with THF and concentrated in vacuo. The product **1t** was obtained in 50% (0.14 g) yield as a white solid after column chromatography (PE:EA = 120:1),  $R_f = 0.63$  (PE:EA = 10:1). m.p.: 66-69 °C. <sup>1</sup>H NMR (**500** MHz, Chloroform-*d*) δ 7.46 (d, *J* = 8.0 Hz, 1H), 7.28 (s, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 2.47 (s, 3H), 1.44 (tt, *J* = 8.2, 5.0 Hz, 1H), 0.92 – 0.87 (m, 2H), 0.83 – 0.79 (m, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 141.8, 133.1, 132.3, 129.3, 128.8, 118.1, 111.3, 98.2, 74.8, 20.3, 9.0, 0.3. HRMS (ESI): *m/z* calculated for C<sub>13</sub>H<sub>11</sub>NNa<sup>+</sup> [M+Na]<sup>+</sup>: 204.0784; found: 204.0780.

#### **2.6.** Preparation of Preparation of 4-(cyclopropylethynyl)-2methylbenzonitrile (1f)<sup>8</sup>



According to the reported literature, a dry round bottle was charged with aryl bromide (5.0 mmol), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (5 mol%) , Et<sub>3</sub>N (1.2 equiv). The mixture was vacuumed and flushed with N<sub>2</sub> for three times. CH<sub>3</sub>CN (12 mL) and the ethynylcyclopropane (1.2 equiv) was then added. The mixture was stirred at 70 °C 2 h. The reaction mixture was quenched with saturated NH<sub>4</sub>Cl, and the aqueous layer was extracted with diethyl ether (3×50 mL). The combined organic phase washed with water and brine, dried with anhydrous MgSO<sub>4</sub>, and filtered. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography. The product **1f** was obtained in 40% yield (0.44 g) as a yellow

solid after column chromatography (PE:EA = 4:1),  $R_f = 0.52$  (PE:EA = 2:1). The product was recrystallized into a white solid. m.p.: 67-70 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.82 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 3.03 (s, 3H), 1.47 (tt, J = 8.2, 5.0 Hz, 1H), 0.92 (dtd, J = 7.4, 5.0, 2.3 Hz, 2H), 0.85 (m, J = 5.3, 3.1 Hz, 2H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  138.9, 132.4, 130.2, 127.4, 98.6, 74.6, 44.6, 9.0, 0.4. HRMS (EI): m/z calculated for C<sub>12</sub>H<sub>12</sub>O<sub>2</sub>S<sup>+</sup> [M]<sup>+</sup>: 220.0558; found: 220.0553.

#### 2.7. Preparation of Preparation of 4-(cyclopropylethynyl)-2methylbenzonitrile(1aa)<sup>2</sup>



To a cold (-20 °C), stirred solution of ethynylcyclopropane (0.4 g, 0.5 mL, 6.0 mmol), in anhydrous THF (15 mL) was added dropwise *n*-BuLi (2.2 mL, 2.5 M in hexanes, 5.5 mmol) for the period of 0.5 h. The reaction mixture was stirred for 15 minutes and then the 1-heptyl-4-(2-iodoethyl)benzene (1.72 g, 5 mmol) was added dropwise for the period of 10 minutes. Under stirring, the reaction mixture was allowed to warm up to ambient temperature overnight. The reaction mixture was quenched with water, and the aqueous layer was extracted with diethyl ether (3×20 mL). The combined organic phase was washed with water and brine, dried with anhydrous MgSO<sub>4</sub>, and filtered. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography (PE) to yield **1aa** as a colorless oil (0.81 g, 57%). <sup>1</sup>H NMR (**400 MHz, Chloroform-d**)  $\delta$  = 7.13 (s, 4H), 2.79 (t, *J* = 7.7, 2H), 2.60 (dd, *J* = 8.7, 6.8, 2H), 2.42 (td, *J* = 7.8, 2.0, 2H), 1.63 (p, *J* = 7.5, 2H), 1.32 (d, *J* = 14.4, 10H), 1.26 – 1.16 (m, 1H), 0.99 – 0.86 (m, 3H), 0.77 – 0.69 (m, 2H), 0.65 – 0.60 (m, 2H). <sup>13</sup>C NMR (**101 MHz, Chloroform-d**)  $\delta$  = 140.75, 138.21, 128.37, 83.94, 75.12, 35.72, 35.36, 32.04, 31.71, 29.64, 29.51, 29.43,

22.81 , 21.25 , 14.22 , 8.02 , -0.31 . HRMS (EI): m/z calculated for  $C_{21}H_{30}^+$  [M]<sup>+</sup>: 282.2348; found: 282.2346.

#### 3. Synthesis of difluorinated alkylidenecyclobutanes



**General Procedure B :** A low density polyethylene tube with a stir bar was charged with **HVI-3** (98.9 mg, 1.2 equiv, stored in glove box), chloroform (1.0 mL), and Py•9HF (adamas, 65% hydrogen fluoride by weight, 140 uL, 25 equiv hydrogen fluoride) carefully at room temperature. After stirring for 2 minutes, the reaction mixture was cooled to -15 °C. After stirring for another 5 minutes, the mixture was added alkynylcyclopropanes **1** (0.2 mmol). Then, the mixture was stirred at -15 °C for 2 h. The reaction mixture was quenched with basic alumina (15 g per 100 mmol Py•9HF) in -15 °C, after stirring for another 5 minutes at room temperature followed by filteration. The filter cake was washed with DCM. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography.

#### **Important notes**:

1) Py·9HF should be carefully handled by wearing gloves in a fumehood because of its corrosiveness and toxicity.

2) The equivalent and state of  $Py \cdot 9HF$  (sensitive to air and humidity) were found to be particularly important to the reaction. The use of  $Py \cdot 9HF$  storaged for different time may result in different yield and reaction time.

3) Partial products (e.g. 2c, 2k, 2n) should be carefully handled because of its high volatility and instability in air.

#### 4. Characterization data of difluorinated alkylidenecyclobutanes

#### Methyl (E)-4-(fluoro (2-fluorocyclobutylidene) methyl)benzoate (2a)

The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 100:1) to yield a white solid (36.2 mg, 76%, E/Z = 85:15). The data of major *E*-isomer was shown as

below:  $R_f = 0.61$  (PE:EA = 10:1). m.p.: 84-88 °C. <sup>1</sup>H NMR (500 MHz, Chloroform-d)  $\delta$  8.04 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.3 Hz, 2H), 5.70 (ddq, J = 56.1, 7.3, 3.6 Hz, 1H), 3.92 (s, 3H), 3.05 – 2.92 (m, 1H), 2.68 – 2.57 (m, 1H), 2.59 – 2.46 (m, 1H), 2.49 – 2.34 (m, 1H). <sup>19</sup>F NMR (470 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -118.44 (d, J = 3.3 Hz), -162.28 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, CDCI<sub>3</sub>)  $\delta$  166.61, 153.34 (dd, J = 248.0, 6.8 Hz), 134.97 (dd, J = 28.3, 3.0 Hz), 130.45, 129.82 (d, J = 2.3 Hz), 125.19 (dd, J = 7.2, 4.6 Hz), 120.33 (dd, J = 27.1, 14.8 Hz), 88.44 (dd, J = 208.0, 15.9 Hz), 52.30, 27.54 (d, J = 21.8 Hz), 21.10 (dd, J = 7.7, 6.1 Hz). HRMS (EI): *m*/*z* calculated for C<sub>13</sub>H<sub>12</sub>F<sub>2</sub>O<sub>2</sub>+ [M]+: 238.0805; found: 238.07990.

#### (*E*)-4-(fluoro(2-fluorocyclobutylidene)methyl)benzonitrile (2b)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 100:1) to yield a white solid (31.2 mg, 76%, E/Z = 84:16). The data of major *E*-isomer was shown as below:  $R_f =$ 

0.63 (PE:EA = 10:1). m.p.: 85-87 °C. <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.67 (d, J = 1.1 Hz, 4H), 5.77 (ddq, J = 56.0, 7.4, 3.7 Hz, 1H), 3.04 – 2.94 (m, 1H), 2.68 – 2.56 (m, 1H), 2.58 – 2.49 (m, 1H), 2.51 – 2.35 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -119.21 (d, J = 2.7 Hz), -162.33 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  152.34 (dd, J = 247.7, 6.4 Hz), 135.03 (dd, J = 28.8, 2.8 Hz), 132.43 (d, J = 2.4 Hz), 125.81 (dd, J = 7.3, 5.0 Hz),

121.83 (dd, J = 26.9, 14.7 Hz), 118.61, 112.57 (d, J = 1.6 Hz), 88.08 (dd, J = 209.3, 15.5 Hz), 27.52 (d, J = 21.4 Hz), 20.98 (dd, J = 8.1, 5.9 Hz). **HRMS** (EI): m/z calculated for C<sub>12</sub>H<sub>9</sub>F<sub>2</sub>N<sup>+</sup>[M]<sup>+</sup>: 205.0703; found: 205.0698.

#### (*E*)-1-(fluoro(2-fluorocyclobutylidene)methyl)-4-(trifluoromethyl)benzene (2c)



The title compound was prepared following a general procedure B and purified using silica gel chromatography (PE) to yield a colourless liquid (24.8 mg, 50%, E/Z = 85:15).

The data of major *E*-isomer was shown as below:  $R_f = 0.65$ 

(PE). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.67 (q, J = 8.6 Hz, 4H), 5.64 (ddq, J = 56.17, 7.3, 3.6 Hz, 1H), 3.07 - 2.94 (m, 1H), 2.69 - 2.57 (m, 1H), 2.57 - 2.48 (m, 1H), 2.48 - 2.34 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -62.87, -118.55 (d, J = 2.7 Hz), -162.19 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  152.96 (dd, J = 248.0, 6.8 Hz), 134.27 (d, J = 28.8 Hz), 130.9 (q, J = 32.81),  $\delta$  125.62 (qd, J = 6.9, 4.1 Hz), 124.04 (q, J = 272.0 Hz), 120.32 (dd, J = 26.9, 14.7 Hz). 88.38 (dd, J = 208.2, 15.9 Hz), 27.58 (d, J = 21.7 Hz), 21.01 (dd, J = 7.8, 6.0 Hz). HRMS (EI): m/z calculated for C<sub>12</sub>H<sub>9</sub>F<sub>5</sub> + [M]+: 248.0624; found: 248.0617.

#### (*E*)-1-(4-(fluoro(2-fluorocyclobutylidene)methyl)phenyl)ethan-1-one (2d)

The title compound was prepared following a modified general procedure B (30 equiv Py·9HF was used) using silica gel chromatography (PE:EA = 50:1) to yield a colorless liquid (35.1 mg, 79%, E/Z = 84:16). The data of major *E*-isomer was shown as below:  $R_f = 0.38$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, Chloroform-d) $\delta$  7.97 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 5.72 (ddq, J = 55.44, 7.3, 3.6 Hz, 1H), 3.09 – 2.91 (m,1H), 2.70 – 2.55 (m, 4H), 2.58 – 2.46 (m, 1H), 2.49 – 2.32 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-d, composite pulse decoupling)  $\delta$  -118.52 (d, J = 2.7 Hz), -162.27 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN)  $\delta$  198.36, 153.46 (dd, J = 245.1, 6.4 Hz), 138.25, 135.64 (dd, J = 28.5, 2.8 Hz), 129.47 (d, J = 2.4 Hz), 126.14 (dd, J = 7.2, 4.4 Hz), 122.23 (dd, J = 26.8, 14.5 Hz), 89.34 (dd, J = 206.6, 15.9 Hz), 28.03 (d, J = 21.0 Hz), 27.07, 21.24 (dd, J = 8.4, 6.3 Hz). **HRMS** (ESI): m/z calculated for C<sub>10</sub>H<sub>9</sub>F<sub>2</sub>NO<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 236.0494; found: 236.0503.

#### Ethyl(*E*)-4-(fluoro(2-fluorocyclobutylidene)methyl)benzoate (2e)

below:  $R_f = 0.62$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.08 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.5 Hz, 2H), 5.73 (ddq, *J* = 56.1, 7.1, 3.3 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 3.10 – 2.94 (m, 1H), 2.72 – 2.57 (m, 1H), 2.60 – 2.47 (m, 1H), 2.51 – 2.34 (m, 1H), 1.42 (t, *J* = 7.1 Hz, 3H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -118.36 (d, *J* = 2.7 Hz), -162.25 (d, *J* = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  166.21, 153.46 (dd, *J* = 248.2, 7.0 Hz), 134.9 (dd, *J* = 28.0, 3.1 Hz), 130.84, 129.83 (d, *J* = 2.3 Hz), 125.21 (dd, *J* = 7.1, 4.7 Hz), 120.24 (dd, *J* = 27.2, 14.7 Hz), 88.53 (dd, *J* = 208.0, 16.1 Hz), 61.28, 27.59 (d, *J* = 21.7 Hz), 21.16(t, *J* = 6.8 Hz), 14.45. HRMS (ESI): *m*/*z* calculated for C<sub>14</sub>H<sub>14</sub>F<sub>2</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 275.0854; found: 275.0853.

#### (*E*)-1-(fluoro(2-fluorocyclobutylidene)methyl)-4-(methylsulfonyl)benzene (2f)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 4:1) to yield a white solid (30.1 mg, 60%, E/Z = 84:16). The data of major *E*-isomer was shown as below:

R<sub>f</sub> = 0.52 (PE:EA = 2:1). m.p.: 88-90 °C. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN) δ 7.96 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 8.6 Hz, 2H), 5.78 (ddq, J = 56.21, 7.3, 3.6 Hz, 1H), 3.07 (s, 3H), 3.02 - 2.86 (m, 1H), 2.69 - 2.47 (m, 2H), 2.43 - 2.26 (m, 1H). <sup>19</sup>F NMR (376 MHz, CD<sub>3</sub>CN, composite pulse decoupling) δ -121.19 (d, J = 2.7 Hz),

-164.47 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN)  $\delta$  152.59 (dd, J = 244.9, 6.3 Hz), 141.96, 136.39 (dd, J = 28.9, 2.8 Hz), 128.53 (d, J = 2.3 Hz), 126.73 (dd, J = 7.2, 4.5 Hz), 123.33 (dd, J = 26.5, 14.2 Hz), 89.04 (dd, J = 207.2, 15.5 Hz), 44.36, 27.93 (d, J = 20.9 Hz), 21.08 (dd, J = 8.7, 6.3 Hz). HRMS (ESI): m/z calculated for C<sub>12</sub>H<sub>12</sub>F<sub>2</sub>O<sub>2</sub>S Na<sup>+</sup> [M+Na]<sup>+</sup>: 281.0418; found: 281.0416.

#### (*E*)-1-(fluoro(2-fluorocyclobutylidene) methyl)-4-nitrobenzene (2g)



The title compound was prepared following a modified general procedure B (30 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 100:1) to yield a pare yellow solid (34.6 mg, 77%, E/Z = 84:16). The

data of major *E*-isomer was shown as below:  $R_f = 0.60$  (PE:EA = 10:1). m.p.: 84-86 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.25 (d, J = 8.8 Hz, 2H), 7.73 (d, J = 8.9 Hz, 2H), 5.85 – 5.63 (ddq, 1H), 3.07 – 2.93 (m, 1H), 2.70 – 2.58 (m, 1H), 2.58 – 2.47 (m, 1H), 2.47 – 2.36 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -118.52 (d, J = 2.7 Hz), -162.44 (d, J = 2.6 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  152.06 (dd, J = 247.7, 6.3 Hz), 147.78, 136.76 (dd, J = 28.7, 2.7 Hz), 126.06 (dd, J = 7.3, 5.0 Hz), 123.91 (d, J = 2.3 Hz), 122.69 (dd, J = 26.6, 14.4 Hz), 87.97 (dd, J = 209.6, 15.4 Hz), 27.47 (d, J = 21.3 Hz), 20.97 (dd, J = 8.3, 6.1 Hz). HRMS (EI): *m*/*z* calculated for C<sub>11</sub>H<sub>9</sub>F<sub>2</sub>NO<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 225.0601; found: 225.0595.

#### (E)-3-(fluoro(2-fluorocyclobutylidene)methyl)benzonitrile (2h)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 100:1) to yield a colourless liquid (25.0 mg, 61%, E/Z = 88:12). The data of major *E*-isomer was shown as below:  $R_f = 0.62$  (PE:EA = 10:1). <sup>1</sup>H

**NMR (500 MHz, Chloroform-***d***)**  $\delta$  7.84 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 10.4 Hz, 1H), 7.51 (t, J = 7.9 Hz, 1H),  $\delta$  5.80 (ddq, J = 55.7, 7.2, 3.7 Hz, 1H), 3.03 – 2.94 (m, 1H), 2.67 – 2.55 (m, 1H), 2.58 – 2.48 (m, 1H), 2.51 – 2.35 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -119.09 (d, J = 2.8 Hz), -162.14 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  151.91 (dd, J = 247.7, 6.5 Hz), 132.40, 132.14 (d, J = 2.9 Hz), 129.54 (d, J = 2.4 Hz), 129.48 (dd, J = 7.1, 5.2 Hz), 128.82 (dd, J = 7.4, 4.7 Hz), 120.49 (dd, J = 26.6, 14.7 Hz), 118.49, 113.09 (d, J = 2.4 Hz), 88.02 (dd, J = 209.0, 15.6 Hz), 27.55 (d, J = 21.4 Hz), 20.81 (dd, J = 8.2, 5.9 Hz). **HRMS** (EI): m/z calculated for C<sub>12</sub>H<sub>9</sub>F<sub>2</sub>N<sup>+</sup> [M]<sup>+</sup>: 205.0703; found: 205.0698.

#### Methyl (E)-3-(fluoro(2-fluorocyclobutylidene)methyl)benzoate (2i)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 100:1) to yield a white solid (28.1 mg, 59%, E/Z = 89:11). The data of major *E*-isomer was shown as below:  $R_f = 0.62$  (PE:EA = 10:1). m.p.: 84-86 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.24 (s, 1H), 8.02

(d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 5.66 (ddq, J = 56.3, 7.2, 3.5 Hz, 1H), 3.93 (s, 3H), 3.06 – 2.92 (m, 1H), 2.71 – 2.56 (m, 1H), 2.56 – 2.45 (m, 1H), 2.45 – 2.35 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -118.08$  (d, J = 2.7), -162.25 (d, J = 2.7). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 166.70, 153.30$  (dd, J = 248.4, 6.8), 131.35 (dd, J = 28.8, 3.0), 130.69 (d, J = 2.3), 130.16, 129.71 (dd, J = 7.0, 4.8), 128.77 (d, J = 2.3), 126.43 (dd, J = 7.3, 4.5), 118.81 (dd, J = 26.8, 15.0), 88.50 (dd, J = 207.8, 16.1), 52.41, 27.62 (d, J = 21.8), 20.98 (dd, J = 7.7, 5.9). HRMS (ESI): *m/z* calculated for C<sub>13H12</sub>F<sub>2</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 261.0698; found: 261.0691.

#### Ethyl (*E*)-3-(fluoro(2-fluorocyclobutylidene)methyl)benzoate (2j)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 100:1) to yield a colourless liquid (19.6 mg, 39%, E/Z = 90:10). The data of major *E*-isomer was shown as below:  $R_f = 0.60$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta = 8.25$  (s, 1H), 8.02 (d, J = 7.8,

1H), 7.74 (d, J = 7.9, 1H), 7.46 (t, J = 7.8, 1H), 5.71 (ddq, J = 57.3, 7.1, 3.5, 1H),

4.38 (q, J = 7.1, 2H), 3.04 – 2.91 (m, 1H), 2.62 (dddd, J = 15.5, 10.9, 5.7, 3.2, 1H), 2.55 – 2.45 (m, 1H), 2.45 – 2.32 (m, 1H), 1.39 (t, J = 7.2, 3H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -118.37$  (d, J = 2.7), -162.26 (d, J = 2.7). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 166.19, 153.39$  (dd, J = 248.0, 6.8), 131.29 (dd, J = 28.8, 3.0), 131.03 (d, J = 1.8), 130.12, 129.58 (dd, J = 7.0, 4.8), 128.71 (d, J = 2.3), 126.43 (dd, J = 7.3, 4.1), 118.74 (dd, J = 27.2, 15.0), 88.52 (dd, J = 207.8, 16.1), 61.31, 27.62 (d, J = 21.8), 20.99 (dd, J = 7.7, 5.9), 14.39. HRMS (ESI): *m/z* calculated for C<sub>14</sub>H<sub>14</sub>F<sub>2</sub>O<sub>2</sub>Na<sup>+</sup> [M+Na]<sup>+</sup>: 275.0854; found: 275.0858.

#### (E)-1-(fluoro(2-fluorocyclobutylidene)methyl)-3-(trifluoromethyl)benzene (2k)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE) to yield a colourless liquid (21.8 mg, 44%, E/Z = 83:17). The data of major *E*-isomer was shown as below:  $R_f = 0.65$  (PE). <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta = 7.83$  (s, 1H), 7.76 (d, J = 7.9, 1H), 7.60 (d, J = 7.9)

7.9, 1H), 7.52 (t, J = 7.8, 1H), 5.71 (ddq, J = 55.9, 7.3, 3.5, 1H), 3.07 – 2.92 (m, 1H), 2.68 – 2.57 (m, 1H), 2.57 – 2.48 (m, 1H), 2.47 – 2.37 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -62.96$ , -118.51 (d, J = 2.7), -162.18 (d, J = 3.4). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 152.88$  (dd, J =248.0, 6.8), 131.80 (dd, J = 29.1, 3.2), 131.23 (dd, J = 32.7, 2.3), 129.18 (d, J = 2.3), 128.65 (t, J = 5.9), 125.78 (q, J = 3.9),  $\delta = 124.01$  (q, J = 272.4), 122.19 (dp, J =8.2, 4.1), 119.60 (dd, J = 27.0, 14.8), 88.35 (dd, J = 208.4, 15.9), 27.61 (d, J = 21.8), 20.94 (dd, J = 7.7, 5.9). HRMS (EI): *m*/*z* calculated for C<sub>12</sub>H<sub>9</sub>F<sub>5</sub><sup>+</sup>[M]<sup>+</sup>: 248.0624; found: 248.0619.

#### (E)-1-(3-(fluoro(2-fluorocyclobutylidene)methyl)phenyl)ethan-1-one (2l)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 50:1) to yield a yellow liquid (27.5 mg, 62%, E/Z = 91:9). The data of major *E*-isomer was shown as below:  $R_f = 0.38$  (PE:EA = 10:1). <sup>1</sup>H NMR

(400 MHz, Chloroform-*d*)  $\delta$  8.17 (s, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 5.72 (ddq, J = 56.48, 7.4, 3.6 Hz, 1H), 3.07 – 2.92 (m, 1H), 2.69 – 2.57 (m, 4H), 2.57 – 2.48 (m, 1H), 2.48 – 2.36 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -117.87 (d, J = 3.0 Hz), -161.71 (d, J = 3.1 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  197.80, 153.44 (dd, J = 248.4, 6.8 Hz), 137.46 (d, J = 1.9 Hz), 131.49 (dd, J = 28.8, 3.0 Hz), 129.76 (dd, J = 6.7, 4.6 Hz), 129.04 (d, J = 2.2 Hz), 128.73, 125.52 (dd, J = 7.1, 4.7 Hz), 118.92 (dd, J = 27.1, 14.9 Hz), 88.58 (dd, J = 207.7, 16.1 Hz), 27.63 (d, J = 21.5 Hz), 26.78, 20.96 (dd, J = 7.8, 6.0 Hz). HRMS (ESI): m/z calculated for C<sub>13</sub>H<sub>12</sub>F<sub>2</sub>ONa <sup>+</sup> [M+Na]<sup>+</sup>: 245.0748; found: 245.0746.

#### (*E*)-1,2-dichloro-4-(fluoro(2-fluorocyclobutylidene)methyl)benzene (2m)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE) to yield a colourless liquid (26.3 mg, 53%, E/Z = 85:15). The data of major *E*-isomer was shown as below:  $R_f = 0.65$  (PE). <sup>1</sup>H

NMR (400 MHz, Chloroform-*d*)  $\delta = 7.65$  (d, J = 2.6, 1H), 7.45 (d, J = 8.4, 1H), 7.40 (dd, J = 8.6, 2.1, 1H), 5.67 (ddq, J = 55.8, 7.2, 3.6, 1H), 3.03 – 2.91 (m, 1H), 2.67 – 2.55 (m, 1H), 2.55 – 2.44 (m, 1H), 2.44 – 2.35 (m, 1H). <sup>19</sup>F NMR (470 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -118.27$ (d, J =2.7), -161.99 (d, J = 2.7). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 152.14$  (dd, J =247.7, 6.6), 133.20 (dd, J = 32.5, 2.0), 130.99 (d, J = 2.7), 130.76 (d, J = 3.2), 130.67 (d, J = 2.3), 127.14 (dd, J = 7.5, 4.8), 124.69 (dd, J = 7.3, 5.0), 119.62 (dd, J =26.8, 15.0), 88.23 (dd, J = 208.4, 15.9), 27.54 (d, J = 21.8), 20.92 (dd, J = 8.2, 5.9). HRMS (EI): *m/z* calculated for C<sub>11</sub>H<sub>8</sub>C<sub>12</sub>F<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 247.9971; found: 247.9967.

#### (E)-1-(fluoro(2-fluorocyclobutylidene)methyl)-2-(trifluoromethyl)benzene (2n)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE) to yield a colourless liquid (19.3 mg, 39%, E/Z = 81:19). The data of major

*E*-isomer was shown as below:  $R_f = 0.65$  (PE). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta = 7.73$  (d, J = 7.4, 1H), 7.56 (dd, J = 15.5, 6.4, 3H), 5.37 (ddq, J = 57.3, 7.0, 4.0, 1H), 3.02 – 2.90 (m, 1H), 2.66 – 2.52 (m, 1H), 2.53 – 2.38 (m, 1H), 2.42 – 2.24 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -60.68$ (d, J = 14.9), -99.06 (qd, J = 15.0, 3.7), -162.99 (d, J = 4.1). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 152.68$  (dd, J = 256.1, 5.4), 132.19 (t, J = 3.6), 131.78, 130.10 (d, J = 2.3), 129.03 (q, J = 32.0), 129.1 (dt, J = 28.4, 2.3), 126.74 (qd, J = 5.2, 1.4), 123.72 (q, J = 273.6), 120.37 (dd, J = 25.0, 15.2), 88.01 (dd, J = 208.9, 14.5), 27.75 (d, J = 20.9), 20.82 (dd, J = 7.7, 4.1). HRMS (EI): *m*/*z* calculated for C<sub>12</sub>H<sub>9</sub>F<sub>5</sub><sup>+</sup> [M]<sup>+</sup>: 248.0624; found: 248.0619.

#### (*E*)-2-(fluoro(2-fluorocyclobutylidene)methyl)benzonitrile (20)



The title compound was prepared following a modified general procedure B (30 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 100:1) to yield a colorless liquid

20 (21.7 mg, 53%, E/Z = 85:15). The data of major *E*-isomer was shown as below:  $R_f = 0.62$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$ = 7.72 (d, J = 7.8, 1H), 7.69 – 7.57 (m, 2H), 7.47 (td, J = 7.5, 1.8, 1H), 5.73 (ddq, J= 55.8, 7.1, 2.9, 1H), 3.05 – 2.87 (m, 1H), 2.66 – 2.53 (m, 1H), 2.52 – 2.44 (m, 1H), 2.42 – 2.29 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  = -109.53 (d, J = 3.4), -164.62 (d, J = 3.4). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  = 150.18 (dd, J = 250.2, 4.5), 134.51 (dd, J = 27.8, 1.8), 133.78, 132.52, 129.56, 128.82 (t, J = 4.1), 123.06 (dd, J = 25.0, 14.5), 117.70, 110.26 (t, J= 2.3), 87.37 (dd, J = 213.0, 13.6), 27.51 (d, J = 19.5), 20.32 (dd, J = 9.5, 5.0). HRMS (ESI): m/z calculated for C<sub>12</sub>H<sub>9</sub>F<sub>2</sub>NNa<sup>+</sup> [M+Na]<sup>+</sup>: 228.0595; found: 228.0596.

## (*E*)-1-(fluoro(2-fluorocyclobutylidene)methyl)-3,5-bis(trifluoromethyl)benzene (2p)



The title compound was prepared following a modified general procedure B (30 equiv Py·9HF was used) and purified using silica gel chromatography (PE) to yield a colorless liquid (38.5 mg, 61%, E/Z = 84:16). The data of major *E*-isomer was shown as below:  $R_f = 0.64$  (PE). <sup>1</sup>H NMR (400

**MHz, Chloroform-***d*)  $\delta = 8.01$  (s, 2H), 7.85 (s, 1H), 5.75 (ddq, J = 56.1, 7.2, 3.7, 1H), 3.07 – 2.95 (m, 1H), 2.68 – 2.58 (m, 1H), 2.58 – 2.50 (m, 1H), 2.50 – 2.38 (m, 1H). <sup>19</sup>**F NMR (376 MHz, Chloroform-***d***, composite pulse decoupling**)  $\delta = -63.14, -119.25$  (d, J = 2.7), -162.54 (d, J = 2.7). <sup>13</sup>**C NMR (126 MHz, Chloroform-***d***)**  $\delta = 151.27$  (dd, J = 247.5, 5.9), 133.06 (dd, J = 30.0, 3.6), 132.27 (qd, J = 33.6, 1.9), 125.40, 123.23 (q, J = 272.7), 122.59 (p, J = 4.5), 121.95 (dd, J = 26.3, 14.5), 87.69 (dd, J = 210.7, 15.4), 27.52 (d, J = 20.9), 20.63 (dd, J = 8.6, 5.9). **HRMS** (EI): m/z calculated for C<sub>13</sub>H<sub>8</sub>F<sub>8</sub><sup>+</sup> [M]<sup>+</sup>: 316.0498; found: 316.0492.

#### (*E*)-2,4-dichloro-1-(fluoro(2-fluorocyclobutylidene)methyl)benzene (2q)



The title compound was prepared following a general procedure B and purified using silica gel chromatography (PE) to yield a colorless liquid (22.8 mg, 46%, E/Z = 83:17). The data of major *E*-isomer was shown as below:  $R_f = 0.64$  (PE).

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta = 7.47$  (d, J = 2.2, 1H), 7.45 (d, J = 8.3, 1H), 7.30 (d, J = 8.7, 1H), 5.48 (ddq, J = 57.1, 7.2, 4.0, 1H), 3.02 – 2.86 (m, 1H), 2.65 – 2.50 (m, 1H), 2.54 – 2.40 (m, 1H), 2.44 – 2.25 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -105.17$  (d, J = 3.4), -163.79 (d, J = 3.4). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 150.83$  (dd, J = 253.0, 4.5), 136.29 (d, J = 1.8), 133.82 (d, J = 2.7), 132.01 (t, J = 3.0), 129.96, 128.80 (dd, J = 27.2, 2.3), 126.96, 121.50 (dd, J = 25.0, 14.5), 87.44 (dd, J = 211.6, 14.1), 27.52 (d, J = 20.4), 20.27 (dd, J = 9.1, 4.1). **HRMS** (EI): m/z calculated for C<sub>11</sub>H<sub>8</sub>C<sub>12</sub>F<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 247.9971; found: 247.9968.

#### (E)-2-bromo-4-(fluoro(2-fluorocyclobutylidene)methyl)benzonitrile (2r)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 80:1) to yield a white solid (24.9 mg, 44%, E/Z = 85:15). The data of major *E*-isomer was shown as below: R<sub>f</sub> = 0.57 (PE:EA = 10:1). m.p.: 101-103 °C. <sup>1</sup>H NMR (400 MHz,

**Chloroform-***d*)  $\delta = 7.86$  (s, 1H), 7.66 (d, J = 8.2, 1H), 7.60 (d, J = 8.3, 1H), 5.71 (ddq, J = 55.2, 7.3, 3.8, 1H), 3.09 – 2.92 (m, 1H), 2.61 (ddd, J = 15.9, 10.9, 6.4, 1H), 2.57 – 2.50 (m, 1H), 2.50 – 2.38 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta = -119.47$  (d, J = 2.7), -162.45 (d, J = 2.7). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta = 150.93$  (dd, J = 248.0, 6.4), 136.29 (dd, J = 29.3, 3.0), 134.33 (d, J = 2.7), 129.45 (dd, J = 7.7, 5.0), 125.66 (d, J = 2.3), 124.3 (dd, J = 6.1, 1.6), 123.43 (dd, J = 26.6, 14.3), 117.03, 115.73 (d, J = 1.8), 87.65 (dd, J = 210.5, 15.2), 27.45 (d, J = 21.3), 20.88 (dd, J = 8.6, 5.9). HRMS (EI): m/z calculated for C<sub>12</sub>H<sub>8</sub>BrF<sub>2</sub>N<sup>+</sup> [M]<sup>+</sup>: 282.9808; found: 282.9809.

#### (E)-5-(fluoro(2-fluorocyclobutylidene)methyl)-[1,1'-biphenyl]-2-carbonitrile (2s)



The title compound was prepared following a modified general procedure B (35 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 100:1) to yield a white solid (38.2 mg, 68%, E/Z = 84:16). The data of major *E*-isomer was shown as below:  $R_f = 0.61$  (PE:EA = 10:1). m.p.:

97-100 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  = 7.78 (d, *J* = 8.2, 1H), 7.72 (d, *J* = 2.0, 1H), 7.63 (dd, *J* = 8.2, 1.8, 1H), 7.58 (dd, *J* = 8.1, 1.5, 2H), 7.53 – 7.45 (m, 3H), 5.74 (ddq, *J* = 55.5, 7.3, 3.7, 1H), 3.07 – 2.92 (m, 1H), 2.63 (dddd, *J* = 16.6, 9.9, 5.1, 2.5, 1H), 2.58 – 2.50 (m, 1H), 2.48 – 2.37 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  = -119.13 (d, *J* = 2.7), -162.37 (d, *J* 

= 2.7). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  = 152.24 (dd, *J* = 248.0, 6.4), 145.75 (d, *J* = 2.7), 137.79, 135.05 (dd, *J* = 28.6, 3.2), 134.01 (d, *J* = 3.6), 129.06, 128.93, 128.81, 126.61 (dd, *J* = 7.3, 4.5), 124.16 (dd, *J* = 7.1, 5.6), 122.03 (dd, *J* = 27.2, 14.5), 118.50, 111.33, 87.98 (dd, *J* = 209.8, 15.4), 27.51 (d, *J* = 21.8), 20.91 (dd, *J* = 8.6, 5.9). **HRMS** (ESI): *m*/*z* calculated for C<sub>18</sub>H<sub>13</sub>F<sub>2</sub>NNa<sup>+</sup> [M+Na]<sup>+</sup>: 304.0908; found: 304.0912.

#### (E)-4-(fluoro(2-fluorocyclobutylidene)methyl)-2-methylbenzonitrile (2t)

The title compound was prepared following the general F procedure B and purified using silica gel chromatography (PE:EA = 100:1) to yield a colourless liquid (28.9 mg, 66%, E/Z = 85:15). The data of major *E*-isomer was shown as 2t below:  $R_f = 0.63$  (PE:EA = 10:1). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN)  $\delta$  7.68 (d, J = 8.2 Hz, 1H), 7.54 (s, 1H), 7.48 (d, J = 8.2 Hz, 1H), 5.77 (ddq, J = 55.6, 8.2, 4.0 Hz, 1H), 2.92 (dddd, *J* = 16.2, 7.9, 5.0, 2.5 Hz, 1H), 2.63 – 2.49 (m, 5H), 2.44 – 2.26 (m, 1H). <sup>19</sup>F NMR (470 MHz, CD<sub>3</sub>CN, composite pulse decoupling)  $\delta$  -120.69 (d, J = 2.6Hz), -163.58 (d, J = 2.6 Hz). <sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN)  $\delta$  152.62 (dd, J = 244.8, 6.4 Hz), 143.32 (d, *J* = 2.3 Hz), 135.53 (dd, *J* = 28.6, 2.7 Hz), 133.68 (d, *J* = 2.3 Hz), 127.24 (dd, J = 7.3, 4.1 Hz), 123.83 (dd, J = 7.3, 4.5 Hz), 123.12 (dd, J = 26.6, 14.3 Hz), 118.47, 113.66, 89.00 (dd, J = 207.3, 15.7 Hz), 27.91 (d, J = 20.9 Hz), 21.09 (dd, J = 8.6, 6.4 Hz), 20.65. **HRMS** (EI): m/z calculated for  $C_{13}H_{11}F_2N^+$  [M]<sup>+</sup>: 219.0860; found: 219.0854.

#### (*E*)-2-bromo-1-(fluoro(2-fluorocyclobutylidene)methyl)-4-nitrobenzene (2u)



The title compound was prepared following a modified general procedure B (35 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 80:1) to yield a colorless liquid (35.7 mg, 59%, E/Z = 83:17). The

data of major *E*-isomer was shown as below:  $R_f = 0.58$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.48 (d, J = 2.3 Hz, 1H), 8.18 (d, J = 8.6 Hz, 1H), 7.65

(d, J = 8.6 Hz, 1H), 5.49 (ddq, J = 57.3, 7.2, 2.8 Hz, 1H), 3.02 – 2.87 (m, 1H), 2.64 – 2.52 (m, 1H), 2.52 – 2.43 (m, 1H), 2.42 – 2.29 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -106.08 (d, J = 3.4 Hz), -163.82 (d, J = 3.4 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  149.50 (dd, J = 253.9, 4.5 Hz), 147.48, 137.25 (dd, J = 26.3, 2.3 Hz), 131.17 (t, J = 3.2 Hz), 127.39, 122.32 (dd, J= 23.6, 14.5 Hz), 121.61 (d, J = 2.7 Hz), 121.01, 85.94 (dd, J = 213.0, 13.6 Hz), 26.53 (d, J = 20.0 Hz), 19.16 (dd, J = 9.3, 3.9 Hz). HRMS (EI): *m*/*z* calculated for C<sub>11</sub>H<sub>8</sub>BrF<sub>2</sub>NO<sub>2<sup>+</sup></sub> [M]<sup>+</sup>: 302.9706; found: 302.9701.

#### methyl (*E*)-2-bromo-4-(fluoro(2-fluorocyclobutylidene)methyl)benzoate (2v)



The title compound was prepared following a modified general procedure B (35 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 80:1) to yield a white solid (27.9 mg, 60%, E/Z = 82:18). The data of major *E*-isomer was shown as below:  $R_f = 0.54$ 

(PE:EA = 10:1). m.p.: 96-99 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.27 (s, 1H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 5.54 (ddq, *J* = 56.7, 7.2, 4.1 Hz, 1H,), 3.93 (s, 3H), 3.00 – 2.86 (m, 1H), 2.62 – 2.51 (m, 1H), 2.50 – 2.41 (m, 1H), 2.41 – 2.26 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -104.92 (d, *J* = 4.1 Hz), -163.83 (d, *J* = 4.1 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  165.21, 151.90 (dd, *J* = 254.1, 4.8 Hz), 136.29 (dd, *J* = 25.9, 2.3 Hz), 134.30, 132.56 (d, *J* = 1.8 Hz), 131.61 (t, *J* = 3.0 Hz), 128.10, 122.10 (d, *J* = 2.7), 121.83 (dd, *J* = 24.1, 15.0), 87.33 (dd, *J* = 211.6, 14.1 Hz), 52.57, 27.57 (d, *J* = 20.4 Hz), 20.31 (dd, *J* = 8.6, 4.1 Hz). HRMS (EI): *m*/*z* calculated for C<sub>13</sub>H<sub>11</sub>BrF<sub>2</sub>O<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 315.9910; found: 315.9901.

#### (E)-2-ethynyl-4-(fluoro(2-fluorocyclobutylidene)methyl)benzonitrile (2w)



The title compound was prepared following a modified general procedure B (30 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 80:1) to yield a white solid (32.5 mg, 71%, E/Z = 85:15). The data of major *E*-isomer was shown as below:  $R_f = 0.48$  (PE:EA = 10:1). m.p.: 100-103 °C.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta = 7.78$  (s, 1H), 7.67 (d, J = 8.3, 1H), 7.62 (dd, J = 8.4, 2.0, 1H), 5.71 (ddq, J = 54.9, 7.2, 3.8, 1H), 3.49 (s, 1H), 2.99 (dddd, J = 13.1, 11.0, 5.2, 2.6, 1H), 2.62 (dddd, J = 18.8, 10.8, 5.9, 2.4, 1H), 2.56 – 2.47 (m, 1H), 2.47 – 2.38 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -119.57 (d, J = 2.7 Hz), -162.43 (d, J = 2.7 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  151.41 (dd, J = 248.0, 6.4 Hz), 134.93 (dd, J = 29.1, 2.7 Hz), 132.93 (d, J = 2.7 Hz), 129.38 (dd, J = 7.3, 5.0 Hz), 126.37 (d, J = 2.3 Hz), 125.55 (dd, J = 7.5, 5.2 Hz), 122.77 (dd, J = 26.3, 14.5 Hz), 117.09, 115.67, 87.77 (dd, J = 210.0, 15.2 Hz), 84.33, 79.36, 27.46 (d, J = 20.9 Hz), 20.89 (dd, J = 8.2, 5.9 Hz). HRMS (ESI): *m*/*z* calculated for C<sub>14</sub>H<sub>9</sub>F<sub>2</sub>NNa<sup>+</sup> [M+Na]<sup>+</sup>: 252.0595; found: 252.0594.

(E)-1-cyclopropyl-2-(4-(fluoro(2-fluorocyclobutylidene)methyl)phenyl)ethane-1,2-dione (2x)



The title compound was prepared following the general procedure B and purified using silica gel chromatography (PE:EA = 30:1) to yield a liquid (33.6 mg, 61%, E/Z = 83:17). The data of major *E*-isomer was shown as below: R<sub>f</sub> = 0.31 (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz,

Acetonitrile-*d*)  $\delta$  = 7.98 (d, *J* = 8.4, 2H), 7.70 (d, *J* = 8.5, 2H), 5.83 (ddt, *J* = 54.8, 7.0, 3.6, 1H), 2.94 (dddd, *J* = 18.7, 10.8, 6.3, 3.5, 1H), 2.68 – 2.47 (m, 3H), 2.43 – 2.24 (m, 1H), 1.25 – 1.17 (m, 4H). <sup>19</sup>F NMR (376 MHz, Acetonitrile-*d*, composite pulse decoupling)  $\delta$  = -121.32 (d, *J* = 2.8), -164.28 (d, *J* = 2.8). <sup>13</sup>C NMR (126

**MHz, Chloroform-***d*)  $\delta = 202.21, 191.22, 152.82$  (dd, J = 248.0, 6.8), 136.15 (dd, J = 28.2, 2.7), 132.09, 130.45 (d, J = 2.3), 125.38 (dd, J = 7.3, 5.0), 121.60 (dd, J = 27.2, 14.5), 88.13 (dd, J = 208.9, 15.4), 27.40 (d, J = 21.3), 21.01 (dd, J = 7.9, 6.1), 18.50, 13.41 (d, J = 1.5). **HRMS** (EI): m/z calculated for C<sub>16</sub>H<sub>14</sub>F<sub>2</sub>O<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 276.0962; found: 276.0949.

#### (Z)-1-(fluoro(2-fluorocyclobutylidene)methyl)-4-nitrobenzene (Z-2g)



The title compound was prepared following a modified general procedure B (30 equiv Py·9HF was used) and purified using silica gel chromatography (PE:EA = 30:1) to yield a colourless solid (2.4 mg, 12%).  $R_f = 0.38$  (PE:EA =

10:1). The final purification is by recrystallization. m.p.: 123-126 °C. <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.26 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 5.82 (ddq, J = 55.7, 7.6, 3.0 Hz, 1H), 3.04 (dddd, J = 17.8, 11.6, 5.9, 3.3 Hz, 1H), 2.86 – 2.73 (m, 1H), 2.68 – 2.55 (m, 1H), 2.53 – 2.36 (m, 1H). <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -119.85 (d, J = 6.4 Hz), -166.55 (d, J = 6.7 Hz). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  150.33 (dd, J = 247.9, 4.6 Hz), 147.66, 137.51 (dd, J = 28.6, 2.3 Hz), 125.95 (dd, J = 7.0, 1.5 Hz), 123.95 (d, J = 2.3 Hz), 122.53 (dd, J = 22.4, 13.4 Hz), 87.14 (dd, J = 211.6, 8.2 Hz), 28.57 (d, J = 20.5 Hz), 22.66 (t, J = 8.3 Hz). HRMS (EI): m/z calculated for C<sub>11</sub>H<sub>9</sub>F<sub>2</sub>NO<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 225.0601; found: 225.0595.

#### 5. Scale-up experiment



A 50 ml of polyethylene tube with a stir bar was charged with **HVI-3** (0.99 g, 1.2 equiv, stored in glove box), chloroform (10 ml), and Py•9HF (adamas, 65%)

hydrogen fluoride by weight, 1.4 mL, 25 equiv hydrogen fluoride) carefully at room temperature. After stirring for 2 minutes, the reaction mixture was cooled to -15 °C. After stirring for another 5 minutes, the mixture was added alkynylcyclopropanes **1g** (0.37 g, 2 mmol). Then, the mixture was stirred at -15 °C 2 h. The reaction mixture was quenched with basic alumina (15 g per 100 mmol Py•9HF) in -15 °C. After stirring for another 5 minutes at room temperature followed by filteration. The filter cake washed with DCM. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography with an eluent (PE:EA = 100:1) to afford product **2g** (0.29 g, 64%, *E:Z*: 83:17) as a pale yellow solid. The *E/Z* ratio was determined by <sup>19</sup>F NMR.

#### **6.** Mechanistic studies

#### 6.1. Intermolecular competition experiment



A low density polyethylene tube with a stir bar was charged with **HVI-3** (49.4 mg, 1.2 equiv, stored in glove box), chloroform (0.5 mL) and Py•9HF (adamas, 65% hydrogen fluoride by weight, 70 uL, 25 equiv hydrogen fluoride) carefully at room temperature. After stirring for 2 minutes, the reaction mixture was cooled to -15 °C. After stirring for another 5 minutes, the mixture was added alkynylcyclopropanes **1c** (0.1 mmol, 21.0 mg) and cyclopropane **3** (0.1 mmol, 18.6 mg). Then, the mixture was stirred at -15 °C 30 minutes. The reaction mixture was quenched with basic alumina (15 g per 100 mmol Py•9HF) in -15 °C. After stirring for another 5 minutes.

at room temperature followed by filteration. The filter cake washed with DCM. The filtrate was concentrated under vacuum. The residue was added *p*-iodoanisole (0.05 mmol) as the internal standard. The result of the reaction mixture was determined by  ${}^{1}$ H and  ${}^{19}$ F NMR.

Referencing <sup>19</sup>F NMR ((no decoupling, 376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.68 (s, 3F), -182.56 (ddd, J = 47.3, 30.7, 16.9 Hz, 1F), -222.59 (tdd, J = 46.8, 30.7, 20.9 Hz, 1F)) of 1-(1,3-difluoropropyl)-4-(trifluoromethyl)benzene (4).<sup>14</sup> The <sup>19</sup>F NMR of the reaction mixture does not show signal of two fluorine atom ( $\delta$  -182.56, -222.59) (figure 1). And arylcyclopropane was recoveried in 62% yield calculated by <sup>1</sup>H NMR. Meanwhile, the target product, alkylidenecyclobutanes, was observed in 50% yield calculated by <sup>1</sup>H NMR, and the yield did not decrease compared to reacting alone (figure 2).



Figure 2. <sup>19</sup>F NMR (composite pulse decoupling) of the reaction mixture to intermolecular competition experiment.



Figure 3. <sup>1</sup>H NMR of the reaction mixture to intermolecular competition experiment. (*p*-iodoanisole (0.05 mmol) as the internal standard).

# 6.2. Direct fluorohydroxylation of compound 1ac by neighbouring group participation



A low density polyethylene tube with a stir bar was charged with **HVI-3** (49.4 mg, 1.2 equiv, stored in glove box), chloroform (0.50 mL) and Py•9HF (adamas, 65% hydrogen fluoride by weight, 70 uL, 25 equiv hydrogen fluoride) carefully at room temperature. After stirring for 2 minutes, the reaction mixture was cooled to -15 °C. After stirring for another 5 minutes, the mixture was added alkynylcyclopropanes **1ac** (0.1 mmol, 20.0 mg). Then, the mixture was stirred at -15 °C 1 h. The reaction mixture was quenched with basic alumina (15 g per 100 mmol Py•9HF) in -15 °C. After stirring for another 5 minutes at room temperature followed by filteration. The filter cake washed with DCM. The filtrate was concentrated under vacuum. The product **5** was obtained in 42% yield (9.9 mg) as a white solid after column

chromatography (PE:EA = 30:1),  $R_f = 0.37$  (PE:EA = 10:1). <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.01 (d, J = 7.9 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.44 (ddd, J = 8.4, 6.0, 2.7 Hz, 1H), 6.92 (d, J = 47.7, 1H), 3.90 (s, 3H),  $\delta$  2.40 – 2.31 (m, 1H) , 1.13 (dddd, J = 9.4, 6.9, 4.6, 2.8 Hz, 1H), 1.07 (dddd, J = 9.5, 7.2, 4.7, 2.9 Hz, 1H), 1.00 (tdd, J = 8.2, 6.4, 2.7 Hz, 1H), 0.98 – 0.89 (m, 1H). <sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  204.92 (d, J = 22.8 Hz), 167.25, 136.11 (d, J = 19.5 Hz), 132.66, 130.73, 128.83 (d, J = 2.0 Hz), 128.78, 127.33 (d, J = 11.0 Hz), 92.42 (d, J = 182.1 Hz), 52.36, 17.36, 12.18, 11.96. <sup>19</sup>F NMR (376 MHz, Chloroform-*d*, composite pulse decoupling)  $\delta$  -183.03. HRMS (ESI): m/z calculated for C<sub>13</sub>H<sub>13</sub>FO<sub>3</sub><sup>+</sup> [M]<sup>+</sup>: 236.0849; found: 236.0845.

#### 6.3. Control experiments



A low density polyethylene tube with a stir bar was charged with *E*-**2g** (22.5 mg, 0.1 mmol) in DCM (0.2 ml). The reaction mixture was cooled to -15 °C. After stirring for another 5 minutes, the reaction mixture was added Py•9HF (adamas, 65% hydrogen fluoride by weight, 140 uL, 50 equiv hydrogen fluoride) carefully. The mixture was stirred at -15 °C 2 hours. The reaction mixture was quenched with basic alumina (15 g per 100 mmol Py•9HF) in -15 °C. After stirring for another 5 minutes at room temperature followed by filteration. The filter cake washed with DCM. The filtrate was concentrated under vacuum. The substrate *E*-**2g** was recoveried using silica gel chromatography (PE:EA = 100:1) to yield a pare yellow solid (10.1 mg, 44%, *E*/*Z* = 91:9). The *E*/*Z* ratio was determined by <sup>19</sup>F NMR. The product **7** in

reaction **1** was obtained in 23% yield (5.3 mg) as a white solid after column chromatography (PE:EA = 120:1),  $R_f = 0.71$  (PE:EA = 10:1). <sup>1</sup>H NMR (400 MHz, **Chloroform-d**)  $\delta$  8.29 (d, J = 9.0 Hz, 2H), 7.69 (d, J = 8.8 Hz, 2H), 6.05 (td, J = 3.3, 1.7, 1H), 2.70 – 2.58 (m, 2H), 2.47 (ddt, J = 4.3, 2.1, 1.2 Hz, 2H). <sup>13</sup>C NMR (126 MHz, Chloroform-d)  $\delta$  149.0, 142.13 (t, J = 33.2 Hz).  $\delta$  141.78 (t, J = 27.9 Hz),  $\delta$  137.07 (t, J = 9.2 Hz),  $\delta$  126.84 (t, J = 5.4 Hz), 123.8, $\delta$  115.44 (t, J = 237.4 Hz),  $\delta$  28.16 (t, J = 2.7 Hz), 27.08 (t, J = 2.2 Hz). <sup>19</sup>F NMR (376 MHz, Chloroform-d, composite pulse decoupling)  $\delta$  -97.29. HRMS (EI): m/z calculated for C<sub>11</sub>H<sub>9</sub>F<sub>2</sub>NO<sub>2</sub><sup>+</sup> [M]<sup>+</sup>: 225.0601; found: 225.0596.

A low density polyethylene tube with a stir bar was charged with Z-2g (11.3 mg, 0.05 mmol) in DCM (0.1 mL). The reaction mixture was cooled to -15 °C, after stirring for another 5 minutes. The reaction mixture was added Py•9HF (adamas, 65% hydrogen fluoride by weight, 42 uL, 30 equiv hydrogen fluoride) carefully. The mixture was stirred at -15 °C 2 hours. The reaction mixture was quenched with basic alumina (15 g per 100 mmol Py•9HF) in -15 °C. After stirring for another 5 minutes at room temperature followed by filteration. The filter cake washed with DCM. The filtrate was concentrated under vacuum. The residue was added *p*-iodoanisole (0.05 mmol) as the internal standard. The yield of product **7** in the reaction **2** was determined by <sup>1</sup>H NMR. The substrate Z-2g was recoveried using silica gel chromatography (PE:EA = 30:1) to yield a colourless solid (8.6 mg, 76%, E/Z = 99:1). The E/Z ratio was determined by <sup>19</sup>F NMR.

#### 7. X-ray data for compound *E*-2a

Single crystals of  $C_{13}H_{12}F_2O_2$  were white needle. A suitable crystal was selected and on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 99.99(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

**Crystal Data** for C<sub>13</sub>H<sub>12</sub>F<sub>2</sub>O<sub>2</sub> (*M* =238.23 g/mol): triclinic, space group P-1 (no. 2), a = 4.0300(3) Å, b = 10.8122(9) Å, c = 12.5820(8) Å,  $\alpha$  = 97.471(6)°,  $\beta$  = 91.394(7)°,  $\gamma$  = 94.032(7)°, V = 541.93(7) Å3, Z = 2, T = 99.99(10) K,  $\mu$ (Cu K $\alpha$ ) = 1.026 mm-1, Dcalc = 1.460 g/cm3, 5032 reflections measured (7.09°  $\leq 2\Theta \leq$  153.238°), 2080 unique (Rint = 0.0479, Rsigma = 0.0577) which were used in all calculations. The final R1 was 0.0639 (I > 2 $\sigma$ (I)) and wR2 was 0.1936 (all data).



Figure S1. X-Ray Crystallography of E-2a.

(ellipsoid contour at 50% probability level)

| Table 1 Crystal data and structure refinement for E-2a |                                                                    |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| Identification code                                    | <i>E</i> -2a                                                       |  |  |  |  |  |
| Empirical formula                                      | $C_{13}H_{12}F_2O_2$                                               |  |  |  |  |  |
| Formula weight                                         | 238.23                                                             |  |  |  |  |  |
| Temperature/K                                          | 99.99(10)                                                          |  |  |  |  |  |
| Crystal system                                         | triclinic                                                          |  |  |  |  |  |
| Space group                                            | P-1                                                                |  |  |  |  |  |
| a/Å                                                    | 4.0300(3)                                                          |  |  |  |  |  |
| b/Å                                                    | 10.8122(9)                                                         |  |  |  |  |  |
| c/Å                                                    | 12.5820(8)                                                         |  |  |  |  |  |
| $\alpha$ / $^{\circ}$                                  | 97.471(6)                                                          |  |  |  |  |  |
| β/°                                                    | 91.394(7)                                                          |  |  |  |  |  |
| $\gamma^{\prime \circ}$                                | 94.032(7)                                                          |  |  |  |  |  |
| Volume/Å <sup>3</sup>                                  | 541.93(7)                                                          |  |  |  |  |  |
| Z                                                      | 2                                                                  |  |  |  |  |  |
| $\rho_{calc} mg/mm^3$                                  | 1.460                                                              |  |  |  |  |  |
| $\mu/\text{mm}^{-1}$                                   | 1.026                                                              |  |  |  |  |  |
| F(000)                                                 | 248.0                                                              |  |  |  |  |  |
| Crystal size/mm <sup>3</sup>                           | $0.25\times0.25\times0.05$                                         |  |  |  |  |  |
| $2\Theta$ range for data collection                    | 7.09 to 153.238°                                                   |  |  |  |  |  |
| Index ranges                                           | $-5 \le h \le 2, -13 \le k \le 13,$                                |  |  |  |  |  |
|                                                        | $-15 \le 1 \le 15$                                                 |  |  |  |  |  |
| Reflections collected                                  | 5032                                                               |  |  |  |  |  |
| Independent reflections                                | 2080[R(int) = 0.0479]                                              |  |  |  |  |  |
| Data/restraints/parameters                             | 2080/0/155                                                         |  |  |  |  |  |
| Goodness-of-fit on $F^2$                               | 1.085                                                              |  |  |  |  |  |
| Final R indexes [I>= $2\sigma$ (I)]                    | $R_1 = 0.0639,  wR_2 = 0.1817$                                     |  |  |  |  |  |
| Final R indexes [all data]                             | $\begin{array}{ll} R_1 = & 0.0740, & wR_2 = \\ 0.1936 \end{array}$ |  |  |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup>            | 0.73/-0.39                                                         |  |  |  |  |  |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for *E*-2a. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x        | У          | Z.         | U(eq)   |
|------|----------|------------|------------|---------|
| F8   | 5906(3)  | 1715.7(12) | 1663.4(11) | 34.6(4) |
| F17  | 8014(3)  | 3509.2(13) | 5055.5(11) | 34.6(4) |
| O10  | 1798(4)  | 7589.2(15) | 924.0(14)  | 33.5(4) |
| 012  | 3887(4)  | 8437.8(15) | 2545.3(15) | 36.8(4) |
| C4   | 4292(5)  | 6252(2)    | 1996.0(18) | 26.9(5) |
| C13  | 8546(5)  | 2223(2)    | 3310.8(19) | 28.0(5) |
| C1   | 6029(5)  | 3874(2)    | 2327.3(18) | 26.9(5) |
| C5   | 6134(5)  | 6094(2)    | 2910.4(19) | 29.2(5) |
| C9   | 3344(5)  | 7536(2)    | 1876.3(19) | 29.9(5) |
| C2   | 4215(5)  | 4039(2)    | 1403.7(19) | 29.7(5) |
| C3   | 3356(5)  | 5223(2)    | 1239.9(19) | 31.0(5) |
| C7   | 6934(5)  | 2615(2)    | 2498.0(18) | 28.0(5) |
| C16  | 10101(5) | 2823(2)    | 4375.5(19) | 30.3(5) |
| C6   | 7010(5)  | 4915(2)    | 3079.8(19) | 30.0(5) |
| C15  | 10614(5) | 1516(2)    | 4673(2)    | 32.6(5) |
| C14  | 9502(5)  | 935(2)     | 3510(2)    | 32.7(5) |
| C11  | 799(6)   | 8808(2)    | 756(2)     | 36.0(6) |

Table 3 Anisotropic Displacement Parameters (Å2×103) for *E*-2a. The Anisotropic displacement factor exponent takes the form:  $-2\pi 2[h2a*2U11+2hka*b*U12+...]$ 

| Atom | U11      | U22      | U33      | U23      | U13     | U12    |
|------|----------|----------|----------|----------|---------|--------|
| F8   | 42.7(7)  | 32.5(7)  | 27.6(8)  | -0.4(5)  | -0.3(6) | 4.0(5) |
| F17  | 31.2(7)  | 42.2(8)  | 30.2(8)  | 0.6(6)   | 5.0(5)  | 7.8(5) |
| O10  | 39.3(8)  | 34.4(9)  | 28.3(9)  | 6.5(6)   | 0.3(7)  | 8.1(6) |
| O12  | 41.6(9)  | 30.1(8)  | 38.5(10) | 2.6(7)   | -1.9(7) | 6.9(6) |
| C4   | 23.8(10) | 32.2(11) | 25.6(12) | 5.6(9)   | 6.4(8)  | 2.6(7) |
| C13  | 26.0(10) | 31.9(11) | 26.7(12) | 3.9(9)   | 5.4(8)  | 4.4(7) |
| C1   | 22.5(9)  | 33.5(11) | 25.2(11) | 4.8(9)   | 7.2(8)  | 1.5(7) |
| C5   | 28.7(10) | 33.1(11) | 25.1(12) | 1.3(9)   | 4.3(8)  | 1.5(8) |
| C9   | 23.7(10) | 35.1(11) | 31.4(12) | 5.1(9)   | 6.0(8)  | 3.5(8) |
| C2   | 30.8(10) | 34.0(11) | 24.2(11) | 4.0(9)   | 1.7(8)  | 1.7(8) |
| C3   | 29.6(10) | 37.2(12) | 26.5(12) | 4.7(9)   | 1.0(9)  | 4.1(8) |
| C7   | 26.9(10) | 31.4(11) | 25.1(12) | 0.1(9)   | 6.4(8)  | 1.7(7) |
| C16  | 26.6(10) | 34.8(12) | 29.6(12) | 2.6(9)   | 3.6(8)  | 4.8(8) |
| C6   | 29.3(10) | 34.5(11) | 26.8(12) | 5.1(9)   | 2.0(9)  | 4.8(8) |
| C15  | 28.2(10) | 39.4(12) | 31.4(13) | 7.9(10)  | -1.6(9) | 5.8(8) |
| C14  | 33.2(11) | 31.5(11) | 33.6(13) | 3.0(9)   | 1.4(9)  | 6.4(8) |
| C11  | 38.6(12) | 36.7(12) | 35.4(14) | 10.2(10) | 3.2(10) | 9.7(9  |

#### Table 4 Bond Lengths for *E*-2a.

| Atom |     | Atom     | Length/ | 'Å  | Atom | Atom     | Length/Å |
|------|-----|----------|---------|-----|------|----------|----------|
| F8   | C7  | 1.370(3) |         | C13 | C16  | 1.511(3) |          |
| F17  | C16 | 1.396(2) |         | C13 | C14  | 1.520(3) |          |
| O10  | C9  | 1.347(3) |         | C1  | C2   | 1.396(3) |          |
| O10  | C11 | 1.445(3) |         | C1  | C7   | 1.474(3) |          |
| O12  | C9  | 1.206(3) |         | C1  | C6   | 1.401(3) |          |
| C4   | C5  | 1.390(3) |         | C5  | C6   | 1.388(3) |          |
| C4   | C9  | 1.491(3) |         | C2  | C3   | 1.388(3) |          |
| C4   | C3  | 1.391(3) |         | C16 | C15  | 1.534(3) |          |
| C13  | C7  | 1.329(3) |         | C15 | C14  | 1.558(3) |          |
| Table 5 Bond Angles for E-2 | 2a. |
|-----------------------------|-----|
|-----------------------------|-----|

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C9   | O10  | C11  | 115.29(19) | O12  | C9   | C4   | 124.7(2)   |
| C5   | C4   | C9   | 117.9(2)   | C3   | C2   | C1   | 120.3(2)   |
| C5   | C4   | C3   | 119.7(2)   | C2   | C3   | C4   | 120.2(2)   |
| C3   | C4   | C9   | 122.4(2)   | F8   | C7   | C1   | 112.87(19) |
| C7   | C13  | C16  | 135.9(2)   | C13  | C7   | F8   | 116.07(19) |
| C7   | C13  | C14  | 132.2(2)   | C13  | C7   | C1   | 131.1(2)   |
| C16  | C13  | C14  | 91.94(18)  | F17  | C16  | C13  | 115.82(17) |
| C2   | C1   | C7   | 120.1(2)   | F17  | C16  | C15  | 114.04(18) |
| C2   | C1   | C6   | 119.4(2)   | C13  | C16  | C15  | 89.22(17)  |
| C6   | C1   | C7   | 120.6(2)   | C5   | C6   | C1   | 120.0(2)   |
| C6   | C5   | C4   | 120.5(2)   | C16  | C15  | C14  | 89.65(18)  |
| O10  | C9   | C4   | 112.4(2)   | C13  | C14  | C15  | 88.05(17)  |
| O12  | C9   | O10  | 122.9(2)   |      |      |      |            |

### Table 6 Torsion Angles for E-2a.

| Α               | B               | С               | D               | Angle/°                        | Α               | В               | С              | D              |
|-----------------|-----------------|-----------------|-----------------|--------------------------------|-----------------|-----------------|----------------|----------------|
| F17             | C16             | C15             | C14             | 126.10(18)                     | C7              | C13             | C14            | C15            |
| C4<br>C13<br>C1 | C5<br>C16<br>C2 | C6<br>C15<br>C3 | C1<br>C14<br>C4 | -0.2(3)<br>8.01(15)<br>-0.1(3) | C7<br>C7<br>C16 | C1<br>C1<br>C13 | C2<br>C6<br>C7 | C3<br>C5<br>F8 |
| C5              | C4              | C9              | O10             | 175.12(16)                     | C16             | C13             | C7             | C1             |
| C5<br>C5        | C4<br>C4        | C9<br>C3        | 012<br>C2       | -4.7(3)<br>0.9(3)              | C16<br>C16      | C13<br>C15      | C14<br>C14     | C15<br>C13     |
| 09              | C4              | 05              | C6              | 1/8.23(17)                     | C6              | CI              | C2             | C3             |
| C9              | C4              | C3              | C2              | -178.03(17)                    | C6              | C1              | C7             | F8             |
| C2              | C1              | C7              | F8              | 2.0(3)                         | C6              | C1              | C7             | C13            |
| C2              | C1              | C7              | C13             | -178.0(2)                      | C14             | C13             | C7             | F8             |
| C2              | C1              | C6              | C5              | 1.0(3)                         | C14             | C13             | C7             | C1             |
| C3              | C4              | C5              | C6              | -0.8(3)                        | C14             | C13             | C16            | F17            |
| C3              | C4              | C9              | O10             | -5.9(3)                        | C14             | C13             | C16            | C15            |
| C3              | C4              | C9              | O12             | 174.31(19)                     | C11             | O10             | C9             | O12            |
| C7              | C13             | C16             | F17             | 54.9(3)                        | C11             | O10             | C9             | C4             |
| C7              | C13             | C16             | C15             | 171.4(2)                       |                 |                 |                |                |

Table 7 Hydrogen Atom Coordinates (Å×104) and IsotropicDisplacement Parameters (Å2×103) for E-2a.

| Atom | x        | у       | z       | U(eq) |
|------|----------|---------|---------|-------|
| Н5   | 6783.32  | 6783.13 | 3412.45 | 35    |
| H2   | 3578.57  | 3354.19 | 896.07  | 36    |
| Н3   | 2151.27  | 5327.6  | 622.32  | 37    |
| H16  | 12219.89 | 3296.4  | 4289.17 | 36    |
| H6   | 8248.32  | 4816.08 | 3692.49 | 36    |
| H15A | 9132.21  | 1266.64 | 5215.62 | 39    |
| H15B | 12906.79 | 1393.8  | 4858.45 | 39    |
| H14A | 11304.45 | 628.03  | 3076.66 | 39    |
| H14B | 7634.4   | 312.44  | 3472.79 | 39    |
| H11A | -159.37  | 8767.72 | 45.1    | 54    |
| H11B | 2707.54  | 9400.18 | 840.01  | 54    |
| H11C | -816.83  | 9067.57 | 1271.34 | 54    |

#### 8. X-ray data for compound Z-2g

Single crystals of  $C_{11}H_9F_2NO_2$  were colourless block. A suitable crystal was selected and on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 100.01(10) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation.

**Crystal Data** for C<sub>11</sub>H<sub>9</sub>F<sub>2</sub>NO<sub>2</sub> (M = 225.19 g/mol): triclinic, space group P-1 (no. 2), a = 6.1659(3) Å, b = 7.2541(4) Å, c = 10.9186(5) Å,  $a = 78.829(4)^{\circ}$ ,  $\beta = 81.971(4)^{\circ}$ ,  $\gamma = 82.243(4)^{\circ}$ , V = 471.48(4) Å<sup>3</sup>, Z = 2, T = 100.01(10) K,  $\mu$ (Cu K $\alpha$ ) = 1.176 mm<sup>-1</sup>, Dcalc = 1.586 g/cm<sup>3</sup>, 4220 reflections measured ( $8.312^{\circ} \le 2\Theta \le 150.062^{\circ}$ ), 1818 unique ( $R_{int} = 0.0469$ ,  $R_{sigma} = 0.0453$ ) which were used in all calculations. The final  $R_1$  was 0.0480 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1414 (all data).



Figure S2. X-Ray Crystallography of Z-2g.

| e e e e e e e e e e e e e e e e e e e       | 8                                                  |
|---------------------------------------------|----------------------------------------------------|
| Identification code                         | Z-2g                                               |
| Empirical formula                           | $C_{11}H_9F_2NO_2$                                 |
| Formula weight                              | 225.19                                             |
| Temperature/K                               | 100.01(10)                                         |
| Crystal system                              | triclinic                                          |
| Space group                                 | P-1                                                |
| a/Å                                         | 6.1659(3)                                          |
| b/Å                                         | 7.2541(4)                                          |
| c/Å                                         | 10.9186(5)                                         |
| $\alpha/^{\circ}$                           | 78.829(4)                                          |
| β/°                                         | 81.971(4)                                          |
| $\gamma/^{\circ}$                           | 82.243(4)                                          |
| Volume/Å <sup>3</sup>                       | 471.48(4)                                          |
| Z                                           | 2                                                  |
| $\rho_{calc}g/cm^3$                         | 1.586                                              |
| $\mu/\text{mm}^{-1}$                        | 1.176                                              |
| F(000)                                      | 232                                                |
| Crystal size/mm <sup>3</sup>                | 0.4 	imes 0.3 	imes 0.2                            |
| Radiation                                   | Cu Ka ( $\lambda = 1.54184$ )                      |
| $2\Theta$ range for data collection/°       | 8.312 to 150.062                                   |
| Index ranges                                | $-7 \le h \le 7, -9 \le k \le 8, -13 \le l \le 13$ |
| Reflections collected                       | 4220                                               |
| Independent reflections                     | 1818 [ $R_{int} = 0.0469, R_{sigma} = 0.0453$ ]    |
| Data/restraints/parameters                  | 1818/0/146                                         |
| Goodness-of-fit on F <sup>2</sup>           | 1.088                                              |
| Final R indexes [I>=2 $\sigma$ (I)]         | $R_1 = 0.0480, wR_2 = 0.1374$                      |
| Final R indexes [all data]                  | $R_1 = 0.0522, wR_2 = 0.1414$                      |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.30/-0.35                                         |

### Table 1' Crystal data and structure refinement for Z-2g.

| Atom | x           | у          | Z          | U(eq)   |
|------|-------------|------------|------------|---------|
| F8   | 9463.2(13)  | 6560.4(12) | 3984.0(8)  | 24.6(3) |
| F16  | 10036.1(14) | 5120.4(12) | 1571.0(9)  | 28.0(3) |
| 011  | -405.2(17)  | 9189.4(15) | 7864.1(11) | 28.1(3) |
| O10  | 2283.9(18)  | 8374.6(16) | 9017.2(11) | 28.4(3) |
| N9   | 1518(2)     | 8569.7(17) | 8012.4(13) | 22.3(3) |
| C7   | 7327(2)     | 7005(2)    | 3723.8(15) | 20.1(4) |
| C12  | 7014(2)     | 7141.1(19) | 2529.4(15) | 20.3(4) |
| C4   | 2988(2)     | 8066.7(19) | 6920.2(15) | 20.4(4) |
| C1   | 5798(2)     | 7301.2(19) | 4836.9(14) | 19.4(4) |
| C2   | 6551(2)     | 6962.6(19) | 6015.3(15) | 20.6(4) |
| C5   | 2173(2)     | 8344(2)    | 5777.0(15) | 21.4(4) |
| C6   | 3571(2)     | 7985(2)    | 4726.0(15) | 20.7(4) |
| C3   | 5161(2)     | 7364(2)    | 7069.4(15) | 21.1(4) |
| C15  | 8646(2)     | 6820(2)    | 1404.2(15) | 22.1(4) |
| C13  | 5096(2)     | 7537(2)    | 1744.2(15) | 23.3(4) |
| C14  | 6715(3)     | 6851(2)    | 650.2(15)  | 26.6(4  |

Table 2' Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for Z -2g. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Table 3<br>Anisotr                  | 3' Anisotro<br>opic disj | opic Displa<br>placement | cement Pa<br>factor | exponent | A <sup>2</sup> ×10 <sup>3</sup> ) for<br>takes th | Z-2g. The<br>ne form: |
|-------------------------------------|--------------------------|--------------------------|---------------------|----------|---------------------------------------------------|-----------------------|
| $-2\pi^2$ [h <sup>2</sup> a<br>Atom | 1*2U11+2hka<br>U11       | a*b*U12+<br>U22          | ].<br>U33           | U23      | <b>U</b> 13                                       | <b>U</b> 12           |
|                                     | 17.0(5)                  | 0.22                     | 0.55                | 5 1 (1)  |                                                   | 0.12                  |
| Гð                                  | 17.0(5)                  | 29.5(5)                  | 25.7(0)             | -5.1(4)  | -2.2(4)                                           | 2.1(3)                |
| F16                                 | 27.2(5)                  | 22.9(5)                  | 30.7(6)             | -5.9(4)  | 1.4(4)                                            | 5.3(4)                |
| 011                                 | 21.9(6)                  | 25.8(6)                  | 33.6(7)             | -5.6(5)  | 3.0(5)                                            | 1.6(4)                |
| O10                                 | 32.0(6)                  | 30.7(6)                  | 21.3(7)             | -5.0(5)  | 0.9(5)                                            | -2.6(5)               |
| N9                                  | 23.2(6)                  | 16.5(6)                  | 25.1(8)             | -2.7(5)  | 2.3(5)                                            | -2.1(5)               |
| C7                                  | 18.1(7)                  | 15.7(7)                  | 25.2(9)             | -0.7(6)  | -2.4(6)                                           | -1.5(5)               |
| C12                                 | 21.2(7)                  | 14.8(7)                  | 23.7(9)             | -2.0(6)  | -0.4(6)                                           | -1.5(5)               |
| C4                                  | 22.7(7)                  | 14.1(7)                  | 23.0(9)             | -2.8(6)  | 2.7(6)                                            | -2.7(5)               |
| C1                                  | 20.4(7)                  | 12.7(7)                  | 24.2(9)             | -2.0(6)  | -1.0(6)                                           | -2.4(5)               |
| C2                                  | 19.2(7)                  | 16.6(7)                  | 24.6(8)             | -1.7(6)  | -2.1(6)                                           | -0.3(5)               |
| C5                                  | 18.0(7)                  | 17.6(7)                  | 26.4(9)             | -0.4(6)  | -1.5(6)                                           | -0.7(5)               |
| C6                                  | 22.3(7)                  | 17.1(7)                  | 21.9(8)             | -2.0(6)  | -3.0(6)                                           | -1.8(5)               |
| C3                                  | 23.0(7)                  | 17.8(7)                  | 21.3(8)             | -1.1(6)  | -2.0(6)                                           | -2.1(5)               |
| C15                                 | 23.0(7)                  | 17.9(7)                  | 23.3(8)             | -3.9(6)  | -0.1(6)                                           | 2.0(5)                |
| C13                                 | 23.6(7)                  | 22.2(7)                  | 22.6(8)             | -2.6(6)  | -3.2(6)                                           | 0.8(5)                |
| C14                                 | 29.0(8)                  | 27.8(8)                  | 21.8(9)             | -5.1(6)  | -1.2(7)                                           | 0.2(6)                |

### Table 4' Bond Lengths for Z-2g

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| F8   | C7   | 1.3691(16) | C4   | C5   | 1.379(2) |
| F16  | C15  | 1.4001(17) | C4   | C3   | 1.388(2) |
| 011  | N9   | 1.2312(16) | C1   | C2   | 1.395(2) |
| O10  | N9   | 1.2303(18) | C1   | C6   | 1.409(2) |
| N9   | C4   | 1.468(2)   | C2   | C3   | 1.390(2) |
| C7   | C12  | 1.328(2)   | C5   | C6   | 1.381(2) |

| C7  | C1  | 1.462(2) | C15 | C14 | 1.535(2) |
|-----|-----|----------|-----|-----|----------|
| C12 | C15 | 1.509(2) | C13 | C14 | 1.560(2) |
| C12 | C13 | 1.520(2) |     |     |          |

### Table 5' Bond Angles for Z-2g

| 011 | N9  | C4  | 117.99(13) | C2  | C1  | C7  | 120.10(13) |
|-----|-----|-----|------------|-----|-----|-----|------------|
| O10 | N9  | 011 | 123.79(13) | C2  | C1  | C6  | 119.37(15) |
| O10 | N9  | C4  | 118.21(12) | C6  | C1  | C7  | 120.50(14) |
| F8  | C7  | C1  | 112.46(13) | C3  | C2  | C1  | 120.94(13) |
| C12 | C7  | F8  | 115.81(13) | C4  | C5  | C6  | 119.44(14) |
| C12 | C7  | C1  | 131.71(13) | C5  | C6  | C1  | 119.80(15) |
| C7  | C12 | C15 | 130.05(14) | C4  | C3  | C2  | 118.03(15) |
| C7  | C12 | C13 | 138.03(14) | F16 | C15 | C12 | 115.06(12) |
| C15 | C12 | C13 | 91.86(12)  | F16 | C15 | C14 | 115.61(13) |
| C5  | C4  | N9  | 118.82(13) | C12 | C15 | C14 | 89.23(11)  |
| C5  | C4  | C3  | 122.35(15) | C12 | C13 | C14 | 87.90(11)  |
| C3  | C4  | N9  | 118.82(14) | C15 | C14 | C13 | 89.39(12)  |

| Α   | B       | С       | D       | Angle/°     | Α       | B       | С       | D       | Angle/°     |
|-----|---------|---------|---------|-------------|---------|---------|---------|---------|-------------|
| F8  | C7      | C1<br>2 | C1<br>5 | 2.2(2)      | C1<br>2 | C7      | C1      | C2      | 176.59(14)  |
| F8  | C7      | C1<br>2 | C1<br>3 | 178.53(15)  | C1<br>2 | C7      | C1      | C6      | -5.4(2)     |
| F8  | C7      | C1      | C2      | -5.49(18)   | C1<br>2 | C1<br>5 | C1<br>4 | C1<br>3 | 9.51(11)    |
| F8  | C7      | C1      | C6      | 172.54(11)  | C1<br>2 | C1<br>3 | C1<br>4 | C1<br>5 | -9.45(11)   |
| F16 | C1<br>5 | C1<br>4 | C1<br>3 | 127.12(12)  | C4      | C5      | C6      | C1      | 1.4(2)      |
| 011 | N9      | C4      | C5      | 1.3(2)      | C1      | C7      | C1<br>2 | C1<br>5 | -179.95(13) |
| 011 | N9      | C4      | C3      | -179.93(11) | C1      | C7      | C1<br>2 | C1<br>3 | -3.6(3)     |
| O10 | N9      | C4      | C5      | -177.63(12) | C1      | C2      | C3      | C4      | 1.6(2)      |
| O10 | N9      | C4      | C3      | 1.12(19)    | C2      | C1      | C6      | C5      | 1.2(2)      |
| N9  | C4      | C5      | C6      | 176.12(12)  | C5      | C4      | C3      | C2      | 1.1(2)      |
| N9  | C4      | C3      | C2      | -177.61(12) | C6      | C1      | C2      | C3      | -2.7(2)     |
| C7  | C1<br>2 | C1<br>5 | F16     | 49.7(2)     | C3      | C4      | C5      | C6      | -2.6(2)     |
| C7  | C1<br>2 | C1<br>5 | C1<br>4 | 167.79(16)  | C1<br>5 | C1<br>2 | C1<br>3 | C1<br>4 | 9.61(11)    |
| C7  | C1<br>2 | C1<br>3 | C1<br>4 | -167.59(18) | C1<br>3 | C1<br>2 | C1<br>5 | F16     | -127.87(13) |
| C7  | C1      | C2      | C3      | 175.35(12)  | C1<br>3 | C1<br>2 | C1<br>5 | C1<br>4 | -9.77(11)   |
| C7  | C1      | C6      | C5      | -176.85(13) |         |         |         |         |             |

Table 7' Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for Z-2g

| Atom | x      | у    | Z      | U(eq) |
|------|--------|------|--------|-------|
| H2   | 8035.3 | 6450 | 6098.6 | 25    |
| Н5   | 661.73 | 8779 | 5713   | 26    |
| H6   | 3033.1 | 8198 | 3930.7 | 25    |
| Н3   | 5682.6 | 7163 | 7868.5 | 25    |
| H15  | 9495   | 7930 | 1074.9 | 26    |
| H13A | 4510.6 | 8889 | 1560.8 | 28    |
| H13B | 3895.8 | 6730 | 2071.1 | 28    |
| H14A | 6488.6 | 5589 | 503.89 | 32    |
| H14B | 6766.3 | 7781 | -144.2 | 32    |

### 9. References

1. Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070-14072.

2. Deponti, M.; Kozhushkov, S. I.; Yufit, D. S.; Ackermann, L. Org. Biomol. Chem. 2013, 11, 142-148.

3. Bao, M.; Chen, J.; Pei, C.; Zhang, S.; Lei, J.; Hu, W.; Xu, X., *Sci. China. Chem.* **2021**, *64*, 778-787.

4. Li, C. W.; Pati, K.; Lin, G. Y.; Sohel, S. M.; Hung, H. H.; Liu, R. S. *Angew. Chem. Int. Ed.* **2010**, *49*, 9891-9894.

5. Lu, C. J.; Chen, Y. T.; Wang, H.; Li, Y. J. Org. Biomol. Chem. 2021, 19, 635-644.

6. Ye, S.; Yu, Z.-X. Org. Lett. 2010, 12, 804-807.

Yu, H.; Li, J.; Kou, Z.; Du, X.; Wei, Y.; Fun, H. K.; Xu, J.; Zhang,
 Y. J. Org. Chem. 2010, 75, 2989-3001.

 Verma, S.; Mishra, P. K.; Kumar, M.; Sur, S.; Verma, A. K. J. Org. Chem. 2018, 83, 6650-6663.

Choi, G.; Kim, H. E.; Hwang, S.; Jang, H.; Chung, W.-j. Org. Lett.
 2020, 22, 4190-4195.

10. Kołodziejski, M.; Brock, A. J.; Kurpik, G.; Walczak, A.; Li, F.; Clegg, J. K.; Stefankiewicz, A. R. *Inorg. Chem.* **2021**, *60*, 9673-9679.

11. Ge, C.; Wang, G.; Wu, P.; Chen, C. Org. Lett. 2019, 21, 5010-5014.

12. Yu, C.; Ma, X.; Chen, B.; Tang, B.; Paton, R. S.; Zhang, G. Eur. J. Org. Chem. 2017, 2017, 1561-1565.

13. Gray, M.; Andrews, I. P.; Hook, D. F.; Kitteringham, J.; Voyle, M. *Tetrahedron Lett.* **2000**, *41*, 6237-6240.

Peng, P.; Yan, X.; Zhang, K.; Liu, Z.; Zeng, L.; Chen, Y.; Zhang, H.;
 Lei, A. *Nat. Commun.* 2021, *12*, 3075-3081.

### 10. NMR spectrum

















10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)



11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)





## $\begin{array}{c} 0.96\\ 0.95\\ 0.94\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.92\\ 0.93\\ 0.85\\ 0.86\\ 0.86\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\$

## 

∣H NMR (400 MHz, CD,¢l





















210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)









I9F NMR (470 MHz, CDC)



-162.27
 -162.28







H NMR (500 MHz, CDC)







10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)







10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

# 8 8 9 8 9 8 9 8 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5







10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)






10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)













10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)









10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)





















































10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20( f1 (ppm)



## $\begin{array}{c} 8.02 \\ 8.02 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.55 \\ 7.23 \\ 7.23 \\ 7.23 \\ 7.11 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\$





## 







f1 (ppm)





10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)