Exploring the regioselectivity for the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones

Jia-Qin He, Zhi-Xian Yang, Xue-Lu Zhou, Yanni Li, Shulin Gao, Lou Shi* and Deqiang Liang*

School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China

E-mail: shil090@nenu.edu.cn, liangdq695@nenu.edu.cn

Table of Contents

I. General considerations	3
II. Optimization of reaction conditions	4
III. 2D NMR for 3y	7
IV. 2D NMR for 3z	
V. Experimental procedures	12
1. General procedure for the synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones	12
2. Gram-scale synthesis	12
3. Natural sunlight experiment	13
4. General procedure for the synthesis of <i>N</i> -vinylacrylamide substrates 1	14
5. General procedure for the synthesis of oxime esters 2	
VI. Mechanistic investigations	
1. KIE experiments	31
2. Quenching experiments	32
3. Light on-off experiments	32
4. Quantum yield measurements	33
5. Stern-Volmer experiments	34
6. Cyclic voltammetry studies	36
7. Determination of the excited-state oxidation potential of Ir(ppy) ₃ in MeCN	39
VII. Spectral data of products	
VIII. Copies of ¹ H, ¹⁹ F, ¹³ C and DEPT NMR spectra	63

I. General considerations

Unless otherwise stated, commercially available chemicals were used without treatment. Solvents were degassed by bubbling Ar for 10 minutes before use. Reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Products were purified by column chromatography over 300-400 mesh silica gel under a positive pressure of air. ¹H NMR, ¹⁹F NMR, ¹³C NMR and DEPT NMR spectra were recorded at 25 °C on a Bruker AscendTM 400 spectrometer using TMS as internal standard. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II Focus spectrometer (ESI). UV-Vis measurements were carried out on a UV-2450 UV-Visible spectrophotometer (Shimadzu, Japan). Cyclic voltammetry studies were carried out on a CHI600E electrochemical workstation (Shanghai CH Instruments Co., China). The emission spectra were recorded on a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies). The photoreactors used in this research were bought from GeAo Chem (Figure S1, containing 24 small LEDs, 1 W for every LED, and every reaction tube is irradiated by 6 LEDs).

Figure S1 Photochemical setup

II. Optimization of reaction conditions

Table S1 Photocatalyst screening ^a		
F	$\begin{array}{c} Ph & O \\ N \\ Bn \\ 1a \end{array} + N \\ CH_3CN, Ar, rt \\ blue LEDs, 12 h \end{array}$	$\rightarrow \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
entry	photocatalyst (mol%)	yield ^b (%)
1	none	nr
2	<i>fac</i> -Ir(ppy) ₃ (1)	50
3	[Ir(dtbbpy)(ppy)2]PF6 (1)	41
4	(Ir[dF(CF3)ppy]2(dtbpy))PF6 (1)	0 (decomposition)
5	Ru(bpy) ₃ Cl ₂ (1)	15
6	$Mes-Acr^+ClO_4^-(1)$	31
7	4CzIPN (1)	28
8	Eosin Y (5)	38
9	Rose bengal (5)	nr

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.3 mmol), MeCN (3.0 mL), 6 W blue LEDs (455 nm), Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard.

Ph N Br 1a	$ \begin{array}{c} 0 \\ + \\ 0 \\ 2a \end{array} $	CF ₃ <u>fac-lr(ppy)₃ (1 mol%)</u> CH ₃ CN, Ar, rt blue LEDs, 12 h	P N Ph N Bh $3a$
entry	1a (mmol)	2a (mmol)	yield ^{b} (%)
1	0.3	0.36	49
2	0.3	0.45	34
3	0.36	0.3	56
4	0.45	0.3	68
5	0.525	0.3	68

Table S2 Optimization of the loadings of the starting materials^a

^{*a*} Reaction conditions: *fac*-Ir(ppy)₃ (0.003 mmol), MeCN (3.0 mL), 6 W blue LEDs (455 nm), Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard.

Table S3 Additive screening^a CF_3 fac-lr(ppy)3 (1 mol%) ל<u>ה</u>ל⊂N O additive (1 equiv) O CH₃CN, Ar, rt ö Ph Β'n blue LEDs, 12 h Βn 2a 1a 3a additive (equiv) yield^b (%) entry K₂CO₃ 1 59 2 KOAc 54 3 2,6-lutidine 44 4 DABCO 35 5 HOAc 51 6 PhCO₂H 34

^{*a*} Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), *fac*-Ir(ppy)₃ (0.003 mmol), MeCN (3.0 mL), 6 W blue LEDs (455 nm), Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard.

Table S4 Solvent screening^a

Ph O N Bn 1a	+ N O C	$\frac{fac-lr(ppy)_3 (1 \text{ mol}\%)}{\text{solvent, Ar, rt}} \xrightarrow{Ph} N \xrightarrow{Ph} 3a$
entry	solvent	yield ^{b} (%)
1	DCE	60
2	toluene	52
3	PhCF ₃	52
4	EtOAc	65
5	THF	50
6	acetone	67
7	CH ₃ NO ₂	nr
8	DMA	39
9	DMSO	55

^{*a*} Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), *fac*-Ir(ppy)₃ (0.003 mmol), 6 W blue LEDs (455 nm), Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard.

Ph	a b	CF ₃ <i>fac</i> -lr(ppy) ₃ CH ₃ CN, Ar, rt blue LEDs, 12 h	$- \frac{H_4 CN}{N} = 0$ $- H_1 CN$ $- H_2 CN$
entry	PC (mol%)	solvent (mL)	yield ^b (%)
1	0.2	3	55
2	0.5	3	69
3	2	3	63
4	0.5	1	65
5	0.5	2	74 (70) ^c
6	0.5	4	68
7	0.5	5	69
8	0.5	7.5	66
9	0.5	10	60

Table S5 Optimization of the loading of the PC and the volume of the solvent^a

^{*a*} Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), 6 W blue LEDs (455 nm), Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} Isolated yield.

Table S6 Optimization of the reaction time and LEDs^a

Ph	0 H Bn 1a	CF_{3} $fac-lr(ppy)_{3} (0.5 m)$ $CH_{3}CN, Ar, ridente LEDs, t$	$\frac{100\%}{t} \xrightarrow{Ph} N \xrightarrow{Bn} 3a$
entry	<i>t</i> (h)	LEDs	yield ^b (%)
1	9	blue 63	
2	18	blue 75	
3	24	blue 74	
4	12	violet (395 nm) 65	
5	12	white 72	
6	12	green (525 nm) 67	
7	12	none (in the dark) nr	
8 ^c	12	blue trace	
9^d	12	blue 74	

^{*a*} Reaction conditions: **1a** (0.45 mmol), **2a** (0.3 mmol), *fac*-Ir(ppy)₃ (0.0015 mmol), MeCN (2.0 mL), 6 W LEDs, Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} The reaction was run under air atmosphere. ^{*d*} The reaction was run under N₂ atmosphere.

Ph O N Bn 1a		$\frac{fac\text{-Ir(ppy)}_3 (0.5 \text{ mol\%})}{CH_3CN, Ar, rt} \xrightarrow{Ph} N \xrightarrow{N} O$
entry	R	yield ^b (%)
1	4-Me	57
2	4-MeO	48
3	Н	45
4	4-Br	55
5	4-C1	66
6	2,4-Cl ₂	72

Table S7 Optimization of the leaving group of the cyclobutanone oxime ester^a

^{*a*} Reaction conditions: **1a** (0.45 mmol), **2** (0.3 mmol), *fac*-Ir(ppy)₃ (0.0015 mmol), MeCN (2.0 mL), 6 W blue LEDs, Ar, room temperature, 12 h. ^{*b*} ¹H NMR yield with 1,3,5-trimethoxybenzene as an internal standard.

III. 2D NMR for 3y

COSY

HSQC

IV. 2D NMR for 3z

3z, HMBC

COSY

V. Experimental procedures

1. General procedure for the synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones

A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with oxime ester 2 (0.3 mmol), *N*-vinylacrylamide 1 (1.5 equiv, 0.45 mmol), and *fac*-Ir(ppy)₃ (0.5 mol%, 0.0015 mmol, 1 mg) under argon, followed by the addition of degassed MeCN (2.0 mL). A strictly oxygen-free environment is necessary. The mixture was stirred at room temperature under blue LED irradiation for 12 h, then it was quenched with water (20.0 mL), and extracted with CH₂Cl₂ (20.0 mL × 4) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate, mostly 21:1) to afford the product.

2. Gram-scale synthesis

Figure S2 Setup for gram-scale synthesis

A 100-mL reaction tube, equipped with a magnetic stirring bar, was charged

sequentially with oxime ester **2a** (4 mmol, 1.029 g), *N*-vinylacrylamide **1j3** (1.5 equiv, 6 mmol, 1.955 g), and *fac*-Ir(ppy)₃ (0.5 mol%, 0.02 mmol, 13 mg) under argon, followed by the addition of degassed MeCN (27.0 mL). The mixture was stirred at room temperature under blue LED irradiation for 14 h (25 W × 2, 455 nm, Figure S2), then it was quenched with water (100.0 mL), and extracted with CH₂Cl₂ (50.0 mL × 4) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 21:1) to afford 5-(1-(4-chlorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile**3j3**as a colorless oil (1.106 g, 70% yield).

3. Natural sunlight experiment

Figure S3 Setup for natural sunlight experiment

A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with oxime ester 2a (0.3 mmol, 77 mg), *N*-vinylacrylamide 1a (1.5 equiv, 0.45 mmol, 131 mg), and *fac*-Ir(ppy)₃ (0.5 mol%, 0.0015 mmol, 1 mg) under argon, followed by the addition of degassed MeCN (2.0 mL). The mixture was stirred at room temperature under natural sunlight irradiation for 12 h (2020.12.24 (6 h, 10:30-16:30) and 2020.12.25 (6 h, 10:30-16:30), Kunming, Figure S3), then it was

quenched with water (20.0 mL), and extracted with CH₂Cl₂ (20.0 mL × 4) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 21:1) to afford 5-(1-benzyl-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile **3a** as a colorless oil (71 mg, 66% yield).

4. General procedure for the synthesis of N-vinylacrylamide substrates 1

$$\begin{array}{c} O \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ N \\ H_{2} \\ \hline \begin{array}{c} 4 \\ A \\ MS \\ (300 \\ mg/mmol) \\ toluene, 120 \\ {}^{\circ}C, 6 \\ h \\ \end{array} \begin{array}{c} O \\ Cl \\ \hline \\ H_{1} \\ Cl \\ \hline \\ (1.2 \\ equiv) \\ 0 \\ {}^{\circ}C \\ - rt, 12 \\ h \\ \end{array} \begin{array}{c} R^{4} \\ R^{2} \\ R^{3} \\ R^{4} \\ \end{array} \right)$$

Substrates 1 were synthesized according to the literature procedure.¹

A mixture of primary amine (13.9 mmol), ketone (13.9 mmol) and 4Å molecular sieves (4.5 g) in toluene (14 mL) was stirred at 120 °C for 6 h, which furnished the corresponding crude imine. After cooling, the mixture was filtrated and washed with toluene (3 mL). To the filtrate were added triethylamine (2 equiv, 27.8 mmol) and methacryloyl chloride (1.2 equiv, 16.7 mmol) at 0 °C, and the mixture was allowed to warm to room temperature and stirred for another 12 h. Then, it was quenched with water (50 mL) and extracted with CH₂Cl₂ (25 mL × 4). The residue obtained after evaporation of the solvent was purified on silica gel (petroleum ether–ethyl acetate) to afford the *N*-vinylacrylamides.

New compounds:

1a, *N*-benzyl-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.21 (m, 10H), 5.44 (q, *J* = 7.3 Hz, 1H), 5.34 (s, 1H), 5.10 (t, *J* = 1.6 Hz, 1H), 4.65 (s, 2H), 1.76 (s, 3H), 1.72 (d, *J* = 7.3 Hz, 3H). ¹³C{¹H}

¹ M. Kobayashi, T. Suda, K. Noguchi and K. Tanaka, *Angew. Chem., Int. Ed.*, 2011, **50**, 1664–1667.

NMR (101 MHz, CDCl₃) δ 172.6, 141.8, 139.9 (br), 137.8, 135.3, 129.3, 128.7, 128.6, 128.4, 128.3, 128.1, 127.2, 123.8 (br), 117.6 (br), 50.5 (br), 20.2, 14.6. HRMS (ESI-TOF) Calcd for C₂₀H₂₂NO⁺ ([M+H]⁺) 292.1696. Found 292.1699.

1b1, *N*-benzyl-*N*-(1-phenylbut-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), yellowish solid: mp 74–75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.21 (m, 10H), 5.34 (s, 1H), 5.30 (t, *J* = 7.6 Hz, 1H), 5.09 (t, *J* = 1.6 Hz, 1H), 4.63 (s, 2H), 2.16 (p, *J* = 7.5 Hz, 2H), 1.79 (s, 3H), 0.89 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.7, 141.8, 138.5 (br), 137.6, 135.4, 131.3 (br), 129.2, 128.9, 128.4, 128.3, 128.2, 127.2, 117.4 (br), 50.2 (br), 22.1, 20.4, 13.6. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO⁺ ([M+H]⁺) 306.1852. Found 306.1860.

1b2, *N*-benzyl-*N*-(1-phenylpent-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), off-white solid: mp 49–50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.21 (m, 10H), 5.35 (s, 1H), 5.32 (t, *J* = 7.6 Hz, 1H), 5.09 (p, *J* = 1.6 Hz, 1H), 4.63 (s, 2H), 2.12 (q, *J* = 7.5 Hz, 2H), 1.79 (s, 3H), 1.30 (h, *J* = 7.3 Hz, 2H), 0.81 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 141.8, 138.9 (br), 137.7, 135.5, 129.9 (br), 129.3, 128.9, 128.4, 128.3, 128.2, 127.2, 117.5 (br), 50.3 (br), 30.8, 22.6, 20.4, 13.8. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO⁺ ([M+H]⁺) 320.2009. Found 320.1998.

1b3, *N*-benzyl-*N*-(1,2-diphenylvinyl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 10H), 7.13 – 7.10 (m, 3H), 6.95 – 6.93 (m, 2H), 6.19 (s, 1H), 5.51 (t, *J* = 1.2 Hz, 1H), 5.14 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.2 Hz, 1H), 5.14 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.2 Hz, 1H), 5.14 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.2 Hz, 1H), 5.14 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.2 Hz, 1H), 5.14 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.5 Hz, 1H), 5.14 (t, *J* = 1.5 Hz, 1H), 4.66 (s, 2H), 1.86 (t, *J* = 1.5 Hz, 1H), 5.14 (t, J = 1.5 Hz, 1H), 5.14 (t,

1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.7, 141.8, 140.0, 137.3, 135.8, 134.8, 130.2, 129.1, 129.1, 128.8, 128.6, 128.3, 128.2, 127.39, 127.36, 127.2, 118.0, 49.9, 20.4. HRMS (ESI-TOF) Calcd for C₂₅H₂₄NO⁺ ([M+H]⁺) 354.1852. Found 354.1853.

1d1, *N*-benzyl-*N*-(1-(*p*-tolyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow semisolid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.13 (m, 9H), 5.37 (q, J = 7.3 Hz, 1H), 5.33 (s, 1H), 5.09 (s, 1H), 4.62 (s, 2H), 2.37 (s, 3H), 1.79 (s, 3H), 1.71 (d, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 141.9, 139.6 (br), 138.1, 137.8, 132.2, 129.2, 129.1, 128.8, 128.3, 127.1, 123.4 (br), 117.4 (br), 50.2 (br), 21.3, 20.3, 14.5. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO⁺ ([M+H]⁺) 306.1852. Found 306.1861.

1d2, *N*-benzyl-*N*-(1-(4-ethylphenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.16 (m, 9H), 5.38 (q, *J* = 7.3 Hz, 1H), 5.33 (s, 1H), 5.09 (p, *J* = 1.5 Hz, 1H), 4.62 (s, 2H), 2.67 (q, *J* = 7.6 Hz, 2H), 1.78 (s, 3H), 1.72 (d, *J* = 7.4 Hz, 3H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 144.4, 141.8, 139.7 (br), 137.8, 132.4, 129.3, 128.8, 128.2, 127.9, 127.1, 123.4 (br), 117.3 (br), 50.2 (br), 28.6, 20.2, 15.4, 14.5. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO⁺ ([M+H]⁺) 320.2009. Found 320.2013.

1d3, N-benzyl-N-(1-(4-methoxyphenyl)prop-1-en-1-yl)methacrylamide, isolated by

flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 5H), 7.18 – 7.15 (m, 2H), 6.90 – 6.87 (m, 2H), 5.34 (q, *J* = 6.6 Hz, 1H), 5.33 (s, 1H), 5.08 (t, *J* = 1.6 Hz, 1H), 4.63 (s, 2H), 3.78 (s, 3H), 1.78 (s, 3H), 1.69 (d, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 159.3, 141.9, 139.4 (br), 137.8, 130.6, 128.8, 128.3, 127.5, 127.1, 122.7 (br), 117.3 (br), 113.8, 55.3, 50.2 (br), 20.3, 14.5. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO₂⁺ ([M+H]⁺) 322.1802. Found 322.1804.

1d4, *N*-benzyl-*N*-(1-(4-(benzyloxy)phenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), yellowish solid: mp 88–89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.41 (m, 2H), 7.39 – 7.35 (m, 2H), 7.33 – 7.14 (m, 8H), 6.98 – 6.94 (m, 2H), 5.37 – 5.32 (m, 2H), 5.07 – 5.06 (m, 3H), 4.63 (s, 2H), 1.77 (s, 3H), 1.69 (d, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 158.6, 141.9, 139.5 (br), 137.8, 136.8, 130.7, 128.8, 128.7, 128.3, 128.1, 127.8, 127.6, 127.2, 122.7 (br), 117.4 (br), 114.8, 70.1, 50.3 (br), 20.3, 14.6. HRMS (ESI-TOF) Calcd for C₂₇H₂₈NO₂⁺ ([M+H]⁺) 398.2115. Found 398.2121.

1d5, *N*-benzyl-*N*-(1-(4-bromophenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), off-white solid: mp 93–94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.31 – 7.17 (m, 5H), 7.10 – 7.06 (m, 2H), 5.48 (q, J = 7.3 Hz, 1H), 5.31 (s, 1H), 5.11 (t, J = 1.5 Hz, 1H), 4.65 (s, 2H), 1.76 (s, 3H), 1.71 (d, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.5, 141.6, 138.9 (br), 137.5, 134.3, 131.6, 130.8, 128.7, 128.4, 127.3, 124.4 (br), 122.1, 117.7 (br), 50.5 (br), 20.2, 14.5. HRMS (ESI-TOF) Calcd for C₂₀H₂₁BrNO⁺ ([M+H]⁺) 370.0801. Found 370.0809.

1d6, *N*-benzyl-*N*-(1-(4-chlorophenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow solid: mp 63–64 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.29 (m, 2H), 7.28 – 7.18 (m, 5H), 7.16 – 7.12 (m, 2H), 5.48 (q, J = 7.3 Hz, 1H), 5.32 (t, J = 1.2 Hz, 1H), 5.09 (s, 1H), 4.66 (s, 2H), 1.74 (s, 3H), 1.68 (d, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.3, 141.7, 139.0 (br), 137.6, 133.9, 133.8, 130.6, 128.7, 128.6, 128.4, 127.3, 124.2 (br), 117.6 (br), 50.6 (br), 20.1, 14.5. HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO⁺ ([M+H]⁺) 326.1306. Found 326.1306.

1d7, *N*-benzyl-*N*-(1-(4-fluorophenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), white solid: mp 71–72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.16 (m, 7H), 7.03 (dddd, *J* = 8.6, 8.6, 3.1, 2.2 Hz, 2H), 5.46 (q, *J* = 7.3 Hz, 1H), 5.32 (t, *J* = 1.2 Hz, 1H), 5.10 (t, *J* = 1.6 Hz, 1H), 4.66 (s, 2H), 1.75 (s, 3H), 1.69 (d, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.5, 162.2 (d, *J* = 248.5 Hz), 141.8, 139.0 (br), 137.6, 131.4 (d, *J* = 3.4 Hz), 131.1 (d, *J* = 8.2 Hz), 128.7, 128.4, 127.3, 123.6 (br), 117.6 (br), 115.4 (d, *J* = 21.6 Hz), 50.5 (br), 20.2, 14.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.74 (s, 1F). HRMS (ESI-TOF) Calcd for C₂₀H₂₁FNO⁺ ([M+H]⁺) 310.1602. Found 310.1600.

1d8, *N*-benzyl-*N*-(1-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1),

pale yellow solid: mp 59–60 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.23 (m, 7H), 5.60 (q, *J* = 7.3 Hz, 1H), 5.33 (s, 1H), 5.12 (s, 1H), 4.70 (s, 2H), 1.75 – 1.72 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.4, 141.6, 139.3, 138.9 (br), 137.4, 129.9 (q, *J* = 32.5 Hz), 129.6, 128.7, 128.4, 127.4, 125.5 (br), 125.3 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 272.1 Hz), 117.9 (br), 50.8 (br), 20.0, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.62 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₁H₂₁F₃NO⁺ ([M+H]⁺) 360.1570. Found 360.1572.

1d9, *N*-(1-([1,1'-biphenyl]-4-yl)but-1-en-1-yl)-*N*-benzylmethacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow solid: mp 90–91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, *J* = 7.3, 7.3 Hz, 4H), 7.44 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.35 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.31 – 7.22 (m, 7H), 5.37 (s, 1H), 5.31 (t, *J* = 7.6 Hz, 1H), 5.10 (s, 1H), 4.67 (s, 2H), 2.21 (p, *J* = 7.5 Hz, 2H), 1.83 (s, 3H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.7 (br), 141.9, 141.0, 140.3, 138.2 (br), 137.7, 134.4, 131.6 (br), 129.7, 129.0, 128.9, 128.3, 127.7, 127.3, 127.0, 117.5 (br), 50.3 (br), 22.2, 20.5, 13.7. HRMS (ESI-TOF) Calcd for C₂₇H₂₈NO⁺ ([M+H]⁺) 382.2165. Found 382.2166.

1d10, *N*-benzyl-*N*-(1-(3-chlorophenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.21 (m, 7H), 7.18 (ddd, J = 2.6, 1.0, 1.0 Hz, 1H), 7.12 – 7.07 (m, 1H), 5.51 (q, J = 7.4 Hz, 1H), 5.31 (s, 1H), 5.11 (p, J = 1.6 Hz, 1H), 4.66 (s, 2H), 1.75 (s, 3H), 1.72 (d, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.4, 141.6, 138.8 (br), 137.5, 137.3, 134.4, 129.7, 129.2, 128.7, 128.4, 128.2, 127.5, 127.4, 124.9 (br), 117.8 (br), 50.7 (br), 20.2, 14.5. HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO⁺ ([M+H]⁺) 326.1306. Found 326.1305.

1d11, *N*-benzyl-*N*-(1-(3-(trifluoromethyl)phenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.47 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.38 – 7.36 (m, 2H), 7.32 – 7.22 (m, 5H), 5.61 (q, *J* = 7.4 Hz, 1H), 5.31 (t, *J* = 1.2 Hz, 1H), 5.12 (t, *J* = 1.6 Hz, 1H), 4.71 (s, 2H), 1.73 (d, *J* = 7.4 Hz, 3H), 1.70 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.4, 141.7, 138.9 (br), 137.4, 136.5, 132.5 (d, *J* = 1.5 Hz), 130.9 (q, *J* = 32.4 Hz), 128.9, 128.7, 128.5, 127.5, 126.0 (q, *J* = 3.9 Hz), 125.0 (br), 124.7 (q, *J* = 3.8 Hz), 123.9 (d, *J* = 272.4 Hz), 117.8 (br), 51.0 (br), 20.0, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₁H₂₁F₃NO⁺ ([M+H]⁺) 360.1570. Found 360.1561.

1d12, *N*-benzyl-*N*-(1-(3,5-bis(trifluoromethyl)phenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), white solid: mp 71–72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.45 (s, 2H), 7.33 – 7.26 (m, 3H), 7.24 – 7.21 (m, 2H), 5.79 (q, J = 7.4 Hz, 1H), 5.26 (s, 1H), 5.14 (s, 1H), 4.78 (s, 2H), 1.76 (d, J = 7.5 Hz, 3H), 1.65 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.1, 141.6, 138.3, 138.1 (br), 137.0, 131.7 (q, J = 33.5 Hz), 129.2 (d, J = 3.0 Hz), 128.8, 128.7, 127.8, 126.3 (br), 123.0 (q, J = 272.8 Hz), 121.5 (dt, J = 7.6, 3.8 Hz), 118.1 (br), 51.8 (br), 19.8, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.96 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₂H₂₀F₆NO⁺ ([M+H]⁺) 428.1444. Found 428.1457.

1d13, *N*-benzyl-*N*-(1-(2,4-dichlorophenyl)prop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), off-white solid:

mp 58–59 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 1.5, 1.5 Hz, 1H), 7.32 – 7.21 (m, 5H), 7.17 (dd, J = 8.4, 2.1 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 5.75 (q, J = 7.2 Hz, 1H), 5.26 (s, 1H), 5.14 (s, 1H), 4.85 (s, 2H), 1.55 (s, 3H), 1.53 (d, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.5, 141.1, 138.3, 137.5 (br), 134.8, 134.5, 133.8, 132.9, 129.8, 128.6, 127.7, 127.2, 126.9, 123.2 (br), 117.8 (br), 53.4, 19.4, 14.5. HRMS (ESI-TOF) Calcd for C₂₀H₂₀Cl₂NO⁺ ([M+H]⁺) 360.0916. Found 360.0914.

1e, *N*-benzyl-*N*-(1-(pyridin-2-yl)vinyl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (ddd, *J* = 4.8, 1.8, 1.0 Hz, 1H), 7.66 (ddd, *J* = 7.8, 7.8, 1.8 Hz, 1H), 7.33 – 7.27 (m, 5H), 7.25 – 7.20 (m, 2H), 5.93 (s, 1H), 5.26 (s, 1H), 5.06 (s, 1H), 5.02 (t, *J* = 1.5 Hz, 1H), 4.85 (s, 2H), 1.78 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.5, 154.4, 149.7, 147.0 (br), 140.9, 137.6, 136.7, 128.8, 128.4, 127.4, 123.1, 120.4, 118.0 (br), 115.1, 51.4 (br), 20.1. HRMS (ESI-TOF) Calcd for C₁₈H₁₉N₂O⁺ ([M+H]⁺) 279.1492. Found 279.1494.

1g1, *N*-(1-phenylprop-1-en-1-yl)-*N*-propylmethacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.43 – 7.39 (m, 2H), 7.34 – 7.31 (m, 3H), 5.62 (q, *J* = 7.2 Hz, 1H), 5.16 (s, 1H), 5.03 (s, 1H), 3.25 (t, *J* = 7.7 Hz, 2H), 1.75 (d, *J* = 7.3 Hz, 3H), 1.68 (s, 3H), 1.47 (h, *J* = 7.4 Hz, 2H), 0.77 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 171.6, 142.3, 140.1 (br), 135.4, 129.3, 128.8, 128.5, 122.9 (br), 116.3 (br), 48.1 (br), 21.0, 20.4, 14.8, 11.6. HRMS (ESI-TOF) Calcd for C₁₆H₂₂NO⁺ ([M+H]⁺) 244.1696. Found 244.1693.

1g2, *N*-cyclohexyl-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 5.62 (q, *J* = 7.3 Hz, 1H), 5.18 (s, 1H), 5.00 (s, 1H), 4.05 (s, 1H), 1.87 (d, *J* = 7.4 Hz, 3H), 1.75 – 1.20 (m, 12H), 0.97 (qt, *J* = 12.7, 3.6 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 142.7, 138.7 (br), 137.1 (br), 129.5, 128.0, 127.8, 125.4 (br), 115.7 (br), 57.2 (br), 31.2 (br), 26.1, 25.5, 20.6, 14.9. HRMS (ESI-TOF) Calcd for C₁₉H₂₆NO⁺ ([M+H]⁺) 284.2009. Found 284.2010.

1g3, *N*-phenyl-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 7.34 – 7.20 (m, 7H), 7.16 – 7.12 (m, 1H), 5.70 (q, *J* = 7.3 Hz, 1H), 5.34 (s, 1H), 5.15 (t, *J* = 1.5 Hz, 1H), 1.84 (d, *J* = 7.3 Hz, 3H), 1.76 (t, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.2, 143.1 (br), 141.74 (br), 141.66, 136.1, 129.0, 128.9, 128.2, 127.8, 126.4, 126.0, 124.7, 119.8 (br), 19.6, 14.5. HRMS (ESI-TOF) Calcd for C₁₉H₂₀NO⁺ ([M+H]⁺) 278.1539. Found 278.1540.

1h, *N*-(2-methoxyethyl)-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.32 – 7.27 (m, 3H), 5.73 (q, *J* = 7.3 Hz, 1H), 5.27 (s, 1H), 5.07 (s, 1H), 3.67 (t, *J* = 6.0 Hz, 2H), 3.55 (t, *J* = 6.0 Hz, 2H), 3.32 (s, 3H), 1.83 (d, *J* = 7.4 Hz, 3H), 1.69 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.8, 141.9, 140.6 (br), 135.5, 129.2, 128.3, 128.0, 123.0 (br), 117.4 (br), 69.7, 58.6, 46.8 (br), 20.0, 14.6. HRMS (ESI-TOF) Calcd for C₁₆H₂₂NO₂⁺ ([M+H]⁺) 260.1645. Found 260.1643.

1i, *N*-(2-morpholinoethyl)-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 5.67 (q, *J* = 7.4 Hz, 1H), 5.28 (s, 1H), 5.08 (t, *J* = 1.6 Hz, 1H), 3.67 – 3.65 (m, 4H), 3.56 (t, *J* = 7.3 Hz, 2H), 2.51 (t, *J* = 7.2 Hz, 2H), 2.45 – 2.43 (m, 4H), 1.84 (d, *J* = 7.4 Hz, 3H), 1.76 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.4, 141.8, 140.0 (br), 135.1, 129.2, 128.3, 128.1, 123.1 (br), 117.2 (br), 66.9, 55.8, 53.7, 53.5, 43.5 (br), 20.1, 14.6. HRMS (ESI-TOF) Calcd for C₁₉H₂₇N₂O₂⁺ ([M+H]⁺) 315.2067. Found 315.2064.

1j1, *N*-(3-methoxybenzyl)-*N*-(1-phenylbut-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 3H), 7.26 – 7.16 (m, 3H), 6.82 – 6.77 (m, 3H), 5.35 – 5.31 (m, 2H), 5.08 (p, *J* = 1.6 Hz, 1H), 4.62 (s, 2H), 3.75 (s, 3H), 2.16 (p, *J* = 7.5 Hz, 2H), 1.79 (s, 3H), 0.89 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 159.6, 141.8, 139.3, 138.6 (br), 135.5, 131.1 (br), 129.25, 129.22, 128.4, 128.2, 121.2, 117.4 (br), 114.2, 112.9, 55.2, 50.3 (br), 22.1, 20.4, 13.6. HRMS (ESI-TOF) Calcd for C₂₂H₂₆NO₂⁺ ([M+H]⁺) 336.1958. Found 336.1948.

1j2, N-(4-methylbenzyl)-N-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by

flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 2H), 7.32 – 7.28 (m, 1H), 7.26 – 7.23 (m, 2H), 7.13 – 7.07 (m, 4H), 5.43 (q, *J* = 7.3 Hz, 1H), 5.32 (s, 1H), 5.08 (p, *J* = 1.6 Hz, 1H), 4.60 (s, 2H), 2.32 (s, 3H), 1.75 (s, 3H), 1.72 (d, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.5, 141.9, 139.9 (br), 136.7, 135.3, 134.7, 129.3, 129.0, 128.7, 128.4, 128.1, 123.7 (br), 117.4 (br), 50.2 (br), 21.2, 20.2, 14.5. HRMS (ESI-TOF) Calcd for C₂₁H₂₄NO⁺ ([M+H]⁺) 306.1852. Found 306.1855.

1j3, *N*-(4-chlorobenzyl)-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 7.2, 7.2 Hz, 2H), 7.32 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.26 – 7.23 (m, 4H), 7.15 (d, *J* = 8.3 Hz, 2H), 5.40 (q, *J* = 7.4 Hz, 1H), 5.35 (s, 1H), 5.12 (s, 1H), 4.57 (s, 2H), 1.79 (s, 3H), 1.74 (d, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 141.6, 139.6 (br), 136.2, 134.9, 133.0, 130.2, 129.3, 128.5, 128.45, 128.41, 128.3, 124.0 (br), 117.8 (br), 49.6 (br), 20.2, 14.6. HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO⁺ ([M+H]⁺) 326.1306. Found 326.1309.

1j4, *N*-(4-fluorobenzyl)-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (tt, *J* = 8.0, 2.0 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.26 – 7.23 (m, 2H), 7.21 – 7.16 (m, 2H), 6.99 – 6.93 (m, 2H), 5.40 (q, *J* = 7.3 Hz, 1H), 5.34 (s, 1H), 5.11 (t, *J* = 1.5 Hz, 1H), 4.58 (s, 2H), 1.78 (s, 3H), 1.74 (d, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 162.1 (d, *J* = 245.2 Hz), 141.7, 139.6 (br), 135.0, 133.5 (d, *J* = 3.3 Hz), 130.5 (d, *J* = 8.0 Hz), 129.3, 128.5, 128.2, 124.0 (br),

117.7 (br), 115.1 (d, J = 21.3 Hz), 49.5 (br), 20.2, 14.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.41 (p, J = 7.8 Hz, 1F). HRMS (ESI-TOF) Calcd for C₂₀H₂₁FNO⁺ ([M+H]⁺) 310.1602. Found 310.1614.

1k, *N*-allyl-*N*-(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.33 – 7.29 (m, 3H), 5.86 (ddt, *J* = 16.6, 10.2, 6.2 Hz, 1H), 5.64 (q, *J* = 7.3 Hz, 1H), 5.31 (s, 1H), 5.12 (dq, *J* = 10.2, 1.3 Hz, 1H), 5.09 (q, *J* = 1.6 Hz, 1H), 5.05 (dq, *J* = 17.1, 1.6 Hz, 1H), 4.05 (d, *J* = 6.2 Hz, 2H), 1.81 (d, *J* = 7.4 Hz, 3H), 1.74 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.3, 141.8 (br), 140.2, 135.5, 133.3, 129.3, 128.3, 128.1, 123.1 (br), 117.60 (br), 117.56, 50.2, 20.1, 14.5. HRMS (ESI-TOF) Calcd for C₁₆H₂₀NO⁺ ([M+H]⁺) 242.1539. Found 242.1537.

11, *N*-(1-phenylprop-1-en-1-yl)-*N*-(prop-2-yn-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.76 (q, *J* = 7.3 Hz, 1H), 5.35 (s, 1H), 5.12 (s, 1H), 4.26 (d, *J* = 2.5 Hz, 2H), 2.22 (t, *J* = 2.5 Hz, 1H), 1.86 (d, *J* = 7.3 Hz, 3H), 1.73 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.1, 141.1 (br), 139.6, 135.0, 129.3, 128.4, 128.2, 123.6 (br), 118.4 (br), 79.2, 71.6, 37.2 (br), 19.8, 14.6. HRMS (ESI-TOF) Calcd for C₁₆H₁₈NO⁺ ([M+H]⁺) 240.1383. Found 240.1385.

1m, N-(4-chlorobenzyl)-N-(1-phenylprop-1-en-1-yl)acrylamide, isolated by flash

column chromatography (petroleum ether/ethyl acetate = 100:1), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.20 (m, 3H), 7.17 – 7.13 (m, 2H), 7.11 – 7.08 (m, 2H), 7.04 – 7.01 (m, 2H), 6.57 (dd, *J* = 16.8, 10.2 Hz, 1H), 6.38 (dd, *J* = 16.8, 2.2 Hz, 1H), 5.56 (dd, *J* = 10.2, 2.2 Hz, 1H), 5.25 (q, *J* = 7.3 Hz, 1H), 4.34 (s, 2H), 1.64 (d, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.3, 137.9, 136.0, 134.4, 133.0, 130.4, 128.8, 128.73, 128.68, 128.66, 128.4, 128.0, 127.7, 48.3, 14.5. HRMS (ESI-TOF) Calcd for C₁₉H₁₉ClNO⁺ ([M+H]⁺) 312.1150. Found 312.1151.

1n, *N*-(1-(7-(but-2-yn-1-yl)-3-methyl-1-((4-methylquinazolin-2-yl)methyl)-2,6-dioxo -2,3,6,7-tetrahydro-1*H*-purin-8-yl)piperidin-3-yl)-*N*-(1-(4-chlorophenyl)prop-1-en-1-y l)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1), white solid: mp 122–123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.76 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.52 (dddd, *J* = 8.2, 8.2, 1.4, 1.4 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 5.70 (q, *J* = 7.3 Hz, 1H), 5.56 (s, 2H), 5.25 (s, 1H), 5.08 (s, 1H), 4.90 – 4.79 (m, 2H), 4.25 (t, *J* = 10.8 Hz, 1H), 3.83 (d, *J* = 12.0 Hz, 1H), 3.72 (d, *J* = 12.8 Hz, 1H), 3.53 (s, 3H), 3.18 (s, 1H), 2.88 – 2.83 (m, 4H), 1.89 – 1.65 (m, 13H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.9, 168.5, 161.1, 155.6, 154.4, 151.9, 150.0, 147.9, 142.1, 137.9 (br), 134.9 (br), 134.1, 133.2, 130.6, 128.9, 128.6, 126.7, 126.5 (br), 124.8, 123.1, 116.8 (br), 104.6, 81.1, 73.3, 55.0 (br), 53.1 (br), 50.1, 46.3, 35.8, 29.7, 28.1 (br), 25.1, 21.8, 20.5, 15.0, 3.7. HRMS (ESI-TOF) Calcd for C₃₈H₄₀ClN₈O₃⁺ ([M+H]⁺) 691.2906. Found 691.2919.

10, *N*-(1-(4-chlorophenyl)prop-1-en-1-yl)-*N*-(1-(3-(2-cyanobenzyl)-1-methyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)piperidin-3-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 2:1), white solid: mp 89–90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.54 (ddd, *J* = 7.7, 7.7, 1.4 Hz, 1H), 7.38 – 7.34 (m, 3H), 7.25 – 7.22 (m, 2H), 7.19 (d, *J* = 7.9 Hz, 1H), 5.54 (q, *J* = 7.3 Hz, 1H), 5.32 (s, 1H), 5.29 (d, *J* = 16.0 Hz, 1H), 5.20 – 5.16 (m, 2H), 5.05 (s, 1H), 4.03 (s, 1H), 3.27 (s, 3H), 3.20 (d, *J* = 9.7 Hz, 1H), 3.04 (d, *J* = 11.8 Hz, 1H), 2.76 (t, *J* = 10.3 Hz, 1H), 2.46 (t, *J* = 11.7 Hz, 1H), 1.84 (d, *J* = 7.4 Hz, 3H), 1.77 – 1.58 (m, 7H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.8, 163.0, 159.2, 152.5, 141.8, 140.6, 137.7 (br), 134.6 (br), 134.3, 133.2, 133.0, 130.4, 128.7, 127.9, 127.4, 126.7 (br), 117.10, 117.07, 111.0, 90.2, 54.7 (br), 54.1 (br), 51.2, 46.5, 27.9, 27.6 (br), 24.5, 20.5, 14.9. HRMS (ESI-TOF) Calcd for C₃₁H₃₃ClN₅O₃⁺ ([M+H]⁺) 558.2266. Found 558.2284.

1p, *N*-(2-(((5-methoxy-1-(4-(trifluoromethyl)phenyl)pentylidene)amino)oxy)ethyl)-*N* -(1-phenylprop-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 12:1), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.38 – 7.28 (m, 5H), 5.70 (q, *J* = 7.3 Hz, 1H), 5.28 (s, 1H), 5.08 (s, 1H), 4.39 (t, *J* = 5.7 Hz, 2H), 3.81 (t, *J* = 5.7 Hz, 2H), 3.35 (t, *J* = 6.0 Hz, 2H), 3.30 (s, 3H), 2.74 (t, *J* = 7.4 Hz, 2H), 1.80 (d, *J* = 7.4 Hz, 3H),

1.73 (s, 3H), 1.65 – 1.52 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.7, 156.1, 140.8, 139.6 (br), 138.1 (d, *J* = 1.0 Hz), 134.3, 129.7 (q, *J* = 32.4 Hz), 128.2, 127.3, 127.1, 125.5, 124.3 (q, *J* = 3.8 Hz), 123.0 (q, *J* = 272.1 Hz), 121.9 (br), 116.4 (br), 71.2, 70.7, 57.5, 45.7, 28.6, 25.1, 22.1, 19.0, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.71 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₈H₃₄F₃N₂O₃⁺ ([M+H]⁺) 503.2516. Found 503.2509.

5. General procedure for the synthesis of oxime esters 2

Substrates 2 were synthesized according to the literature procedure.²

The ketone (5.0 mmol, 1.0 equiv) and hydroxylamine hydrochloride (5.5 mmol, 1.1 equiv) were placed in a 100-mL flask equipped with stirrer. The pH of the solution was held at 7–8 by adding saturated aq. sodium carbonate (10 mL). The resulting solution was stirred at 40 °C. After extraction with CH_2Cl_2 , the solution was evaporated to provide crude products which were used in the next step without further purification.

To a mixture of cyclobutanone oxime (1.0 equiv), triethylamine (2.0 equiv) and DCM (0.5 M) was added *p*-CF₃benzoyl chloride (1.5 equiv) at 0 °C. After 6 h, water was added to the above solution, and the mixture was diluted with CH₂Cl₂. The solvent was removed under vacuum and the residue was subjected to column chromatography on SiO₂ with PE-EtOAc as an eluent to give the cyclobutanone oxime esters.

New compounds:

2q, 3-(((4-(trifluoromethyl)benzoyl)oxy)imino)cyclobutane-1-carbonitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 40:1), white solid: mp 118–119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 3.69 – 3.53 (m, 4H), 3.35 (tt, *J* = 9.3, 6.9 Hz, 1H). ¹³C{¹H} NMR (101 MHz,

² X.-Y. Yu, J.-R. Chen, P.-Z. Wang, M.-N. Yang, D. Liang and W.-J. Xiao, Angew. Chem., Int. Ed., 2018, 57, 738–743.

CDCl₃) δ 162.2, 162.1, 135.1 (q, J = 32.8 Hz), 131.5 (d, J = 1.0 Hz), 130.1, 125.7 (q, J = 3.7 Hz), 123.4 (q, J = 272.9 Hz), 120.1, 37.4, 37.3, 16.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.25 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₀F₃N₂O₂⁺ ([M+H]⁺) 283.0689. Found 283.0691.

2t, diisopropyl 3-(((4-(trifluoromethyl)benzoyl)oxy)imino)cyclobutane-1,1-dicarboxylate, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), white solid: mp 75–76 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.6 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 5.12 (hept, *J* = 6.3 Hz, 2H), 3.67 – 3.64 (m, 4H), 1.29 (d, *J* = 6.3 Hz, 12H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.1, 162.6, 162.3, 134.9 (q, *J* = 32.8 Hz), 131.9 (d, *J* = 1.0 Hz), 130.1, 125.6 (q, *J* = 3.7 Hz), 123.5 (q, *J* = 272.8 Hz), 70.2, 46.8, 39.63, 39.55, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.22 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₀H₂₃F₃NO₆⁺ ([M+H]⁺) 430.1472. Found 430.1470.

2v, 3-(benzyloxy)cyclobutan-1-one *O*-(4-(trifluoromethyl)benzoyl) oxime, isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1), white solid: mp 50–51 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.40 – 7.31 (m, 5H), 4.52 (dd, *J* = 14.6, 12.0 Hz, 2H), 4.31 (p, *J* = 6.2 Hz, 1H), 3.41 (dddt, *J* = 23.8, 20.9, 6.9, 3.7 Hz, 2H), 3.19 – 3.09 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.0, 162.8, 137.0, 134.8 (q, *J* = 32.8 Hz), 132.1 (d, *J* = 0.9 Hz), 130.0, 128.6, 128.2, 127.9, 125.6 (q, *J* = 3.7 Hz), 123.5 (d, *J* = 272.7 Hz), 71.2, 66.5, 40.39, 40.37. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.15 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₉H₁₇F₃NO₃⁺ ([M+H]⁺) 364.1155. Found 364.1152.

2x, *tert*-butyl 3-(((4-(trifluoromethyl)benzoyl)oxy)imino)azetidine-1-carboxylate, isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1), white solid: mp 146–147 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.3 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 4.81 – 4.85 (m, 4H), 1.49 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.1, 159.4, 155.9, 135.2 (d, *J* = 0.9 Hz), 131.4 (q, *J* = 33.0 Hz), 130.1, 125.7 (q, *J* = 3.7 Hz), 123.4 (q, *J* = 272.9 Hz), 81.3, 58.2 (br), 28.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.28 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₆H₁₈F₃N₂O₄⁺ ([M+H]⁺) 359.1213. Found 359.1222.

2y, 2-methyldihydrofuran-3(2*H*)-one *O*-(4-(trifluoromethyl)benzoyl) oxime, isolated by flash column chromatography (petroleum ether/ethyl acetate = 100:1), white solid: mp 50–51 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.8 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 4.58 (q, *J* = 6.4 Hz, 1H), 4.24 (ddd, *J* = 9.1, 8.0, 4.2 Hz, 1H), 3.96 (td, *J* = 8.8, 7.2 Hz, 1H), 3.11 – 2.96 (m, 2H), 1.54 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.1, 162.3, 134.7 (q, *J* = 32.7 Hz), 132.0 (d, *J* = 0.9 Hz), 129.9, 125.5 (q, *J* = 3.7 Hz), 123.4 (q, *J* = 272.7 Hz), 74.8, 65.4, 29.9, 17.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.30 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₃F₃NO₃⁺ ([M+H]⁺) 288.0842. Found 288.0845.

2z, dihydrofuran-3(2H)-one *O*-(4-(trifluoromethyl)benzoyl) oxime, isolated by flash column chromatography (petroleum ether/ethyl acetate = 30:1), white solid: mp

136–137 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 4.64 (s, 2H), 4.11 (t, *J* = 7.0 Hz, 2H), 2.96 (td, *J* = 7.0, 1.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.8, 162.3, 135.0 (q, *J* = 32.8 Hz), 131.8 (d, *J* = 1.0 Hz), 130.0, 125.7 (q, *J* = 3.7 Hz), 123.5 (d, *J* = 272.8 Hz), 68.0, 67.1, 30.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.25 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₂H₁₁F₃NO₃⁺ ([M+H]⁺) 274.0686. Found 274.0689.

VI. Mechanistic investigations

1. KIE experiments

Figure S4¹⁹F and ¹H NMR analyses for the reaction mixture of the KIE experiments

A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with oxime ester **2a** (0.3 mmol, 77 mg), *N*-benzyl-*N*-(1-(4-fluorophenyl)prop-1-en-1-yl)methacrylamide **1d7** (0.75 equiv,

0.225 mmol, 70 mg), *N*-benzyl-*N*-(1-(4-fluorophenyl)prop-1-en-1-yl-2-*d*)methacrylamide $1d7-d_1$ (0.75 equiv, 0.225 mmol, 70 mg), and *fac*-Ir(ppy)₃ (0.5 mol%, 0.0015 mmol, 1 mg) under argon, followed by the addition of degassed MeCN (2.0 mL). The mixture was stirred at room temperature under blue LED irradiation for 10 min.

The yields of the product **3d7** formed, which is 9.88%, were determined by ¹⁹F NMR analysis based on a benzotrifluoride standard, and 0.36 (120.27%*0.3) mmol of the substrates remained (Figure S4). ¹H NMR analyses of the reaction mixture showed that the ratio of the remaining *N*-vinylacrylamide **1d7** (0.1576 mmol) to its deuterated counterpart **1d7-d**₁ (0.2032 mmol) is 42.15/(96.51-42.15) = 42.15/54.36, thus the consumption ratio of **1d7/1d7-d**₁ is (0.225-0.1576)/(0.225-0.2032) = 3.1:1.

2. Quenching experiments

A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with oxime ester **2a** (0.3 mmol, 77 mg), *N*-vinylacrylamide **1d7** (1.5 equiv, 0.45 mmol, 139 mg), *fac*-Ir(ppy)₃ (0.5 mol%, 0.0015 mmol, 1 mg) and a scavenger (1.0 equiv, 0.3 mmol) under argon, followed by the addition of degassed MeCN (2.0 mL). The mixture was stirred at room temperature under blue LED irradiation for 12 h. The yields of the product **3d7** formed were determined by ¹⁹F NMR analysis based on a benzotrifluoride standard. In the cases of BHT and DPE experiments, the reaction was then quenched with water (20.0 mL), and extracted with CH₂Cl₂ (20.0 mL × 4) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 42:1) to afford the radical adducts.

3. Light on-off experiments

To study the necessity of continuous irradiation with visible light for the progress of the reaction, we started a reaction with successive irradiation and black periods. Benzotrifluoride (1.0 equiv) was added as an internal standard to the reaction of 1d7 with 2a before irradiation. 0.05 mL of the crude reaction solution was taken out each time via a syringe and was subjected to ¹⁹F NMR analysis after filtered by a filter membrane with pore size of 0.45 μ m. These results demonstrated that light is necessary and a radical chain process is not the major reaction pathway.

	A(X)	B(Y)
Long Name	time	19F NMR yield
Units	h	%
Comments		
1	0	0
2	0.5	9.9
3	1	9.04
4	1.5	14.91
5	2	14.75
6	2.5	18.75
7	3	19.25
8	3.5	23.49
9	4	23.61

Table S8 Light on-off experiments

4. Quantum yield measurements

A quartz cuvette ($10 \times 10 \times 45$ mm), equipped with a magnetic stirring bar, was charged under argon sequentially with oxime ester **2a** (0.45 mmol, 116 mg), *N*-vinylacrylamide **1d7** (1.5 equiv, 0.675 mmol, 209 mg), and *fac*-Ir(ppy)₃ (0.5 mol%, 0.00225 mmol, 1.5 mg) under argon, followed by the addition of degassed MeCN (3.0 mL). The mixture was irradiated ($\lambda = 455$ nm, slit width = 8.0 mm, slit height 20.0 mm with the light intensity of 93.5 mW·cm⁻²) in a dark room for 18000 s, and the yield of the product **3d7** formed (36.10%) was determined by ¹⁹F NMR analysis based on a benzotrifluoride standard.

The set up used for this chemical actinometry is shown in Figure S5, and the light intensity was measured in the PAR-range (Photosynthetic active radiation, 400–700 nm) using a PAR sensor (FZ-A, Photoelectric Instrument Factory of Beijing Normal University).³

The fraction of photons absorbed by the reaction solution was recorded using a UV-2450 UV-Visible spectrophotometer (Shimadzu, Japan) in a 1 cm quartz cell, and the absorbance of the reaction mixture at 455 nm is 0.826.

^{3 (}*a*) J. Liu, L.-Q. Lu, Y. Luo, W. Zhao, P.-C. Sun, W. Jin, X. Qi, Y. Cheng and W.-J. Xiao, *ACS Catal.* 2022, **12**, 1879–1885; (*b*) R. Kong, T. Fu, R. Yang, D. Chen, D. Liang, Y. Dong, W. Li and B. Wang, *ChemCatChem*, 2021, **13**, 2952–2958.

Figure S5 Set up for the chemical actinometry

The quantum yield is determined as follows.³

 ϕ = Mole number of product/Mole number of absorbed photons = 0.012

$$\phi = \frac{n_{3d7}N_{A}/t}{fP\lambda/hc}$$

 n_{3d7} : the mole number of the product **3d7**; t: reaction time (t = 18000 s); N_A: 6.02 × 10^{23} /mol; f: 1-10^{-A} (455 nm, A = 0.826); P: P = E × S (E: illumination intensity, E = 0.0935 W/cm²; S: the area that irradiated, S = 1.60 cm²); λ : wavelength (λ = 4.55×10⁻⁷ m); h: planck constant (h = 6.626 × 10⁻³⁴ J*s); c: velocity of light (c = 3 × 10⁸ m/s).

5. Stern-Volmer experiments

Fluorescence spectra were collected on a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies).

Figure S6 Fluorescence quenching of Ir(ppy)₃ (10⁻³ M in MeCN) in the presence of **2a** (1.0 equiv). The solutions were excited at 344 nm (ex. slit 10 nm, em. slit 10 nm).

Figure S7 Fluorescence quenching of Ir(ppy)₃ (10⁻⁴ M in MeCN) in the presence of **2a**.

Figure S8 Fluorescence quenching of Ir(ppy)₃ (10⁻³ M in DMF) in the presence of **2a** (1.0 equiv). The solutions were excited at 366 nm (ex. slit 20 nm, em. slit 5 nm).

6. Cyclic voltammetry studies

General procedure: Cyclic voltammetries were performed in a three-electrode cell at room temperature. The working electrode was a glassy carbon (GC, d = 3 mm) disk electrode, and the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in a saturated aqueous KCl solution, and separated from reactions by a salt bridge. 10 mL solution containing 1.0 mmol *n*Bu4NBF4 was poured into the electrochemical cell in all experiments. The scan rate was 0.05 V/s.

Figure S10 Cyclic voltammograms of 2a (10⁻³ M) in CH₂Cl₂ or 1,2-dichloroethane

Figure S11 Cyclic voltammograms of 2a (10⁻³ M) in PhCl

Figure S12 Anodic cyclic voltammogram of Ir(ppy)₃ (10⁻³ M) in MeCN

Figure S13 Anodic cyclic voltammogram of Ir(ppy)₃ (10⁻³ M) in CH₂Cl₂

7. Determination of the excited-state oxidation potential of Ir(ppy)3 in MeCN

The excited-state oxidation potential of $Ir(ppy)_3$ (E[Ir^{IV}/Ir^{III*}]) is estimated to be -1.58 V vs. Ag/AgCl according to the following equations:

 $E_{1/2} \left(Ir^{IV} / Ir^{III} \ast \right) = E^{ox}$ - $E_{0,0}$

where E^{ox} (0.832 V) was obtained from its cyclic voltammetry spectrum (Figure S12); E_{0,0} is caculated from its photoluminescence maximum (514 nm as shown in Figure S6) using the equation E_{0,0} = hc/ λ_{max} = 1240 nm/514 nm.

VII. Spectral data of products

3a, 5-(1-benzyl-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 70% yield (76 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 3H),

7.19 – 7.12 (m, 3H), 7.10 – 7.05 (m, 2H), 6.88 – 6.84 (m, 2H), 4.59 – 4.50 (m, 2H), 2.26 (qt, J = 16.9, 7.1 Hz, 2H), 1.83 (ddd, J = 13.3, 11.5, 5.1 Hz, 1H), 1.64 – 1.51 (m, 6H), 1.26 (s, 3H), 1.25 – 1.11 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 137.7, 137.0, 130.3, 129.9, 128.6, 128.4, 128.2, 127.7, 127.1, 119.5, 119.1, 51.2, 44.1, 35.1, 25.4, 23.8, 22.3, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₄H₂₇N₂O⁺ ([M+H]⁺) 359.2118. Found 359.2116.

3b1, 5-(1-benzyl-4-ethyl-3-methyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 69% yield (77 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 3H), 7.15 (dddd, *J* = 5.8, 4.0, 2.2, 2.2 Hz, 3H), 7.10 – 7.07 (m, 2H), 6.87 – 6.83 (m, 2H), 4.50 (s, 2H), 2.34 – 2.17 (m, 2H), 2.04 (ddt, *J* = 32.9, 14.7, 7.4 Hz, 2H), 1.85 (ddd, *J* = 13.3, 11.8, 5.0 Hz, 1H), 1.68 – 1.51 (m, 3H), 1.31 (s, 3H), 1.30 – 1.22 (m, 1H), 1.19 – 1.08 (m, 1H), 0.92 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.0, 137.9, 137.7, 130.7, 129.9, 128.7, 128.3, 128.2, 127.7, 127.1, 124.5, 119.6, 51.8, 44.1, 35.8, 25.5, 23.9, 23.2, 17.6, 17.1, 15.1. HRMS (ESI-TOF) Calcd for C₂₅H₂₉N₂O⁺ ([M+H]⁺) 373.2274. Found 373.2277.

3b2, 5-(1-benzyl-3-methyl-2-oxo-5-phenyl-4-propyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 78% yield (91 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 3H), 7.15 (dddd, *J* = 5.7, 4.0, 2.1, 2.1 Hz, 3H), 7.08 – 7.05 (m, 2H), 6.87 – 6.82 (m, 2H), 4.50 (s, 2H), 2.34 – 2.17 (m, 2H), 2.02 (ddd, *J* = 14.4, 10.3, 6.4 Hz, 1H), 1.94 – 1.80 (m, 2H), 1.68 – 1.50 (m, 3H), 1.40 – 1.21 (m, 6H), 1.12 (dddd, *J* = 14.9, 12.6, 10.3, 5.4 Hz, 1H), 0.76 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.1, 138.3, 137.7, 130.7, 130.0, 128.6, 128.3, 128.2, 127.7, 127.1, 123.1, 119.6, 51.7, 44.1, 35.8, 26.9, 25.5, 23.9, 23.4, 23.1, 17.1, 14.5. HRMS (ESI-TOF) Calcd for C₂₆H₃₁N₂O⁺

3b3, 5-(1-benzyl-3-methyl-2-oxo-4,5-diphenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 60% yield (76 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.11 (m, 9H), 7.07 – 7.03 (m, 2H), 7.02 – 6.99 (m, 2H), 6.94 – 6.89 (m, 2H), 4.68 (d, *J* = 15.2 Hz, 1H), 4.62 (d, *J* = 15.2 Hz, 1H), 2.28 – 2.14 (m, 2H), 1.87 (ddd, *J* = 13.3, 11.8, 4.9 Hz, 1H), 1.68 – 1.50 (m, 3H), 1.49 – 1.36 (m, 4H), 1.27 – 1.15 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 139.9, 137.5, 133.8, 130.5, 130.1, 129.4, 128.7, 128.4, 128.3, 128.2, 127.7, 127.2, 126.8, 123.8, 119.6, 52.6, 44.3, 35.9, 25.4, 23.9, 23.5, 17.0. HRMS (ESI-TOF) Calcd for C₂₉H₂₉N₂O⁺ ([M+H]⁺) 421.2274. Found 421.2271.

3c, 5-(1-benzyl-4-(3-cyanopropyl)-3-methyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 36% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 3H), 7.17 – 7.14 (m, 3H), 7.06 (ddd, *J* = 6.6, 1.6, 1.6 Hz, 2H), 6.85 – 6.82 (m, 2H), 4.50 (s, 2H), 2.36 – 2.06 (m, 6H), 1.87 (ddd, *J* = 13.4, 11.6, 5.1 Hz, 1H), 1.67 – 1.51 (m, 5H), 1.34 – 1.12 (m, 5H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 181.6, 139.8, 137.4, 130.2, 129.7, 129.2, 128.7, 128.2, 127.7, 127.2, 120.4, 119.4, 119.1, 51.6, 44.1, 35.7, 25.6, 25.3, 23.7, 23.6, 23.0, 17.2, 17.0. HRMS (ESI-TOF) Calcd for C₂₇H₃₀N₃O⁺ ([M+H]⁺) 412.2383. Found 412.2370.

3d1, 5-(1-benzyl-3,4-dimethyl-2-oxo-5-(p-tolyl)-2,3-dihydro-1H-pyrrol-3-yl)pentanenitrile,

isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 58% yield (65 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.12 (m, 5H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.90 (dd, *J* = 6.6, 3.0 Hz, 2H), 4.58 – 4.49 (m, 2H), 2.38 (s, 3H), 2.25 (qt, *J* = 16.9, 7.1 Hz, 2H), 1.81 (ddd, *J* = 13.4, 11.7, 5.0 Hz, 1H), 1.64 – 1.51 (m, 6H), 1.25 (s, 3H), 1.23 – 1.05 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 138.5, 137.8, 137.0, 129.8, 129.1, 128.2, 127.7, 127.3, 127.0, 119.5, 118.8, 51.2, 44.1, 35.1, 25.4, 23.8, 22.3, 21.3, 17.0, 8.9. HRMS (ESI-TOF) Calcd for C₂₅H₂₉N₂O⁺ ([M+H]⁺) 373.2274. Found 373.2277.

3d2, 5-(1-benzyl-5-(4-ethylphenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 71% yield (83 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.13 (m, 5H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.89 – 6.87 (m, 2H), 4.58 – 4.50 (m, 2H), 2.67 (q, *J* = 7.6 Hz, 2H), 2.25 (qt, *J* = 16.9, 7.1 Hz, 2H), 1.81 (ddd, *J* = 13.3, 11.5, 5.1 Hz, 1H), 1.67 – 1.48 (m, 6H), 1.30 – 1.24 (m, 6H), 1.24 – 1.06 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 144.8, 137.8, 137.0, 129.8, 128.2, 127.8, 127.7, 127.5, 127.0, 119.5, 118.8, 51.2, 44.1, 35.1, 28.7, 25.4, 23.8, 22.3, 17.0, 15.5, 8.9. HRMS (ESI-TOF) Calcd for C₂₆H₃₁N₂O⁺ ([M+H]⁺) 387.2431. Found 387.2449.

3d3, 5-(1-benzyl-5-(4-methoxyphenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 76% yield (89 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.15 (m, 3H), 7.02 – 6.98 (m, 2H), 6.90 (dd, *J* = 6.9, 2.7 Hz, 2H), 6.88 – 6.84 (m, 2H), 4.57 – 4.48 (m, 2H), 3.83 (s, 3H), 2.25 (qt, *J* = 16.9, 7.1 Hz, 2H), 1.81 (ddd, *J* = 13.3, 11.4, 5.1 Hz, 1H), 1.64 – 1.52 (m, 6H), 1.29 – 1.07 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 159.7, 137.9, 136.7, 131.2, 128.2, 127.6, 127.0, 122.5,

119.5, 118.8, 113.8, 55.3, 51.2, 44.1, 35.1, 25.4, 23.8, 22.3, 17.0, 8.9. HRMS (ESI-TOF) Calcd for $C_{25}H_{29}N_2O_2^+$ ([M+H]⁺) 389.2224. Found 389.2228.

3d4, 5-(1-benzyl-5-(4-(benzyloxy)phenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol -3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 63% yield (87 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.32 (m, 5H), 7.17 – 7.14 (m, 3H), 6.99 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.88 (dd, *J* = 6.7, 3.0 Hz, 2H), 5.08 (s, 2H), 4.57 – 4.48 (m, 2H), 2.25 (qt, *J* = 16.9, 7.1 Hz, 2H), 1.81 (ddd, *J* = 13.2, 11.4, 5.1 Hz, 1H), 1.66 – 1.52 (m, 6H), 1.25 (s, 3H), 1.23 – 1.06 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 158.9, 137.9, 136.7, 136.6, 131.2, 128.6, 128.2, 128.1, 127.6, 127.5, 127.0, 122.8, 119.5, 118.8, 114.7, 70.0, 51.2, 44.1, 35.1, 25.4, 23.8, 22.3, 17.0, 8.9. HRMS (ESI-TOF) Calcd for C₃₁H₃₃N₂O₂⁺ ([M+H]⁺) 465.2537. Found 465.2539.

3d5, 5-(1-benzyl-5-(4-bromophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 60% yield (79 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 2H), 7.19 – 7.15 (m, 3H), 6.95 – 6.92 (m, 2H), 6.89 – 6.86 (m, 2H), 4.58 – 4.48 (m, 2H), 2.27 (qt, *J* = 16.9, 7.0 Hz, 2H), 1.83 (ddd, *J* = 13.3, 11.4, 5.3 Hz, 1H), 1.67 – 1.51 (m, 6H), 1.26 (s, 3H), 1.25 – 1.10 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 137.5, 135.9, 131.6, 131.4, 129.3, 128.3, 127.5, 127.2, 122.8, 119.9, 119.5, 51.3, 44.2, 35.1, 25.4, 23.8, 22.3, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₄H₂₆BrN₂O⁺ ([M+H]⁺) 437.1223. Found 437.1222.

3d6, 5-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 75% yield (88 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.29 (m, 2H), 7.19 – 7.15 (m, 3H), 7.01 – 6.98 (m, 2H), 6.89 – 6.86 (m, 2H), 4.58 – 4.48 (m, 2H), 2.27 (qt, *J* = 17.0, 7.1 Hz, 2H), 1.83 (ddd, *J* = 13.4, 11.4, 5.3 Hz, 1H), 1.65 – 1.54 (m, 6H), 1.26 (s, 3H), 1.25 – 1.10 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 137.5, 135.9, 134.6, 131.2, 128.8, 128.6, 128.3, 127.5, 127.2, 119.9, 119.5, 51.3, 44.2, 35.1, 25.4, 23.8, 22.3, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₄H₂₆ClN₂O⁺ ([M+H]⁺) 393.1728. Found 393.1728.

3d7, 5-(1-benzyl-5-(4-fluorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 71% yield (81 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 3H), 7.05 – 6.99 (m, 4H), 6.89 – 6.84 (m, 2H), 4.58 – 4.48 (m, 2H), 2.28 (qt, *J* = 16.9, 7.1 Hz, 2H), 1.84 (ddd, *J* = 13.3, 11.4, 5.2 Hz, 1H), 1.64 – 1.54 (m, 6H), 1.31 – 1.10 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 162.7 (d, *J* = 248.7 Hz), 137.6, 136.0, 131.8 (d, *J* = 8.2 Hz), 128.3, 127.5, 127.2, 126.3 (d, *J* = 3.5 Hz), 119.6, 119.5, 115.5 (d, *J* = 21.6 Hz), 51.2, 44.1, 35.1, 25.4, 23.8, 22.3, 17.0, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.24 (p, *J* = 7.1 Hz, 1F). HRMS (ESI-TOF) Calcd for C₂₄H₂₆FN₂O⁺ ([M+H]⁺) 377.2024. Found 377.2020.

3d8, 5-(1-benzyl-3,4-dimethyl-2-oxo-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1*H*pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 74% yield (95 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.20 – 7.15 (m, 5H), 6.85 – 6.82 (m, 2H), 4.61 – 4.50 (m, 2H), 2.37 – 2.21 (m, 2H), 1.86 (ddd, *J* = 13.3, 11.2, 5.4 Hz, 1H), 1.67 – 1.55 (m, 6H), 1.30 – 1.15 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 137.3, 135.7, 134.1 (d, *J* = 1.1 Hz), 130.6 (d, *J* = 32.8 Hz), 130.2, 128.4, 127.5, 127.3, 125.3 (q, *J* = 3.7 Hz), 123.9 (d, *J* = 272.3 Hz), 120.6, 119.4, 51.4, 44.3, 35.1, 25.3, 23.8, 22.3, 17.0, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.75 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₅H₂₆F₃N₂O⁺ ([M+H]⁺) 427.1992. Found 427.2007.

3d9, 5-(5-([1,1'-biphenyl]-4-yl)-1-benzyl-4-ethyl-3-methyl-2-oxo-2,3-dihydro-1*H*pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 50% yield (67 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.58 – 7.55 (m, 2H), 7.49 – 7.44 (m, 2H), 7.40 – 7.36 (m, 1H), 7.18 – 7.13 (m, 5H), 6.91 – 6.89 (m, 2H), 4.54 (s, 2H), 2.35 – 1.99 (m, 4H), 1.86 (ddd, *J* = 13.3, 11.7, 5.0 Hz, 1H), 1.71 – 1.54 (m, 3H), 1.36 – 1.24 (m, 4H), 1.21 – 1.10 (m, 1H), 0.97 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.0, 141.4, 140.3, 137.7, 130.3, 129.6, 128.9, 128.2, 127.71, 127.69, 127.1, 127.05, 126.95, 124.8, 119.5, 51.8, 44.1, 35.9, 25.5, 23.9, 23.2, 17.7, 17.1, 15.1. HRMS (ESI-TOF) Calcd for C₃₁H₃₃N₂O⁺ ([M+H]⁺) 449.2587. Found 449.2587.

3d10, 5-(1-benzyl-5-(3-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 63% yield (74 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (ddd, *J* = 8.1, 2.1, 1.2 Hz, 1H), 7.27 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.17 (ddd, *J* = 6.6,

2.9, 2.9 Hz, 3H), 7.01 (dd, J = 1.8, 1.8 Hz, 1H), 6.95 (ddd, J = 7.5, 1.4, 1.4 Hz, 1H), 6.86 (dd, J = 6.6, 2.9 Hz, 2H), 4.59 – 4.49 (m, 2H), 2.36 – 2.21 (m, 2H), 1.84 (ddd, J = 13.3, 11.3, 5.4 Hz, 1H), 1.67 – 1.54 (m, 6H), 1.27 (s, 3H), 1.25 – 1.10 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 137.5, 135.7, 134.3, 132.1, 129.9, 129.6, 128.8, 128.3, 128.1, 127.6, 127.3, 120.1, 119.5, 51.3, 44.3, 35.0, 25.4, 23.8, 22.3, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₄H₂₆ClN₂O⁺ ([M+H]⁺) 393.1728. Found 393.1724.

3d11, 5-(1-benzyl-3,4-dimethyl-2-oxo-5-(3-(trifluoromethyl)phenyl)-2,3-dihydro-1*H*pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 62% yield (79 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 1H), 7.46 (dd, *J* = 7.7, 7.7 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.17 – 7.13 (m, 3H), 6.82 – 6.79 (m, 2H), 4.58 (d, *J* = 15.3 Hz, 1H), 4.49 (d, *J* = 15.3 Hz, 1H), 2.38 – 2.24 (m, 2H), 1.86 (ddd, *J* = 13.3, 11.0, 5.7 Hz, 1H), 1.71 – 1.55 (m, 5H), 1.33 – 1.19 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.1, 137.3, 135.6, 133.2 (d, *J* = 0.7 Hz), 131.3, 130.9 (q, *J* = 32.6 Hz), 128.9, 128.4, 127.4, 127.3, 126.6 (q, *J* = 3.7 Hz), 125.3 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.6 Hz), 120.5, 119.4, 51.4, 44.3, 35.0, 25.4, 23.8, 22.3, 17.0, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.75 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₅H₂6F₃N₂O⁺ ([M+H]⁺) 427.1992. Found 427.1993.

3d12, 5-(1-benzyl-5-(3,5-bis(trifluoromethyl)phenyl)-3,4-dimethyl-2-oxo-2,3-dihydro -1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 59% yield (88 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.41 (s, 2H), 7.17 – 7.14 (m, 3H), 6.77 (dd, *J* = 6.7, 2.8 Hz, 2H), 4.60 (d, *J* = 15.5 Hz, 1H), 4.48 (d, *J* = 15.5 Hz, 1H), 2.35 (td, *J* = 7.1, 4.0 Hz,

2H), 1.90 (dt, J = 13.4, 8.3 Hz, 1H), 1.77 – 1.55 (m, 6H), 1.37 – 1.25 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 181.9, 136.8, 134.4, 132.7, 131.9 (q, J = 33.6 Hz), 129.9 (q, J = 2.6 Hz), 128.6, 127.6, 127.2, 122.9 (q, J = 272.9 Hz), 122.3 (dq, J = 7.6, 3.7 Hz), 122.0, 119.4, 51.6, 44.5, 34.9, 25.4, 23.8, 22.4, 17.0, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.94 (s, 6F). HRMS (ESI-TOF) Calcd for C₂₆H₂₅F₆N₂O⁺ ([M+H]⁺) 495.1866. Found 495.1864.

3d13, 5-(1-benzyl-5-(2,4-dichlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, 1:1 mixture of diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 70% yield (90 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 4.8, 2.1 Hz, 2H), 7.17 – 7.09 (m, 8H), 6.87 – 6.77 (m, 6H), 4.78 (dd, *J* = 15.3, 7.2 Hz, 2H), 4.17 (t, *J* = 15.4 Hz, 2H), 2.37 – 2.20 (m, 4H), 1.91 – 1.83 (m, 2H), 1.71 – 1.56 (m, 6H), 1.505 (s, 3H), 1.501 (s, 3H), 1.41 – 1.17 (m, 10H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 181.7, 181.6, 137.40, 137.36, 135.72, 135.68, 135.66, 135.64, 133.3, 133.12, 133.08, 133.0, 129.52, 129.45, 128.29, 128.26, 128.07, 128.06, 127.7, 127.4, 127.32, 127.27, 127.0, 126.9, 121.6, 121.4, 119.5, 119.4, 51.64, 51.56, 44.3, 44.1, 35.2, 34.8, 25.5, 25.3, 24.2, 24.0, 22.4, 22.3, 17.07, 17.05, 8.84, 8.81. HRMS (ESI-TOF) Calcd for C₂₄H₂₅Cl₂N₂O⁺ ([M+H]⁺) 427.1338. Found 427.1340.

3e, 5-(1-benzyl-4-(3-cyanopropyl)-3-methyl-2-oxo-5-(pyridin-2-yl)-2,3-dihydro-1*H*pyrrol-3-yl)pentanenitrile, 1:4 mixture of rotamers due to the restricted rotation of the pyridyl C–C bond, isolated by flash column chromatography (petroleum ether/ethyl acetate = 14:1) in 45% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.75 – 8.72 (stack, 1H major and 1H minor), 7.69 – 7.60 (stack, 1H major and 1H minor), 7.34 – 7.28 (stack, 1H major and 1H minor), 7.24 – 7.06 (stack, 4H major and 4H minor),

6.82 – 6.76 (stack, 2H major and 2H minor), 4.86 (d, J = 15.0 Hz, 1H minor), 4.82 (d, J = 15.2 Hz, 1H major), 4.68 (d, J = 15.1 Hz, 1H major), 4.66 (d, J = 15.0 Hz, 1H minor), 2.51 – 1.85 (stack, 7H major and 7H minor), 1.72 – 1.49 (stack, 5H major and 5H minor), 1.36 – 1.15 (stack, 5H major and 5H minor). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 181.3 (major), 180.0 (minor), 149.92 (minor), 149.87 (major), 149.8 (major), 149.4 (minor), 139.2 (minor), 138.5 (major), 137.5 (major), 137.2 (minor), 136.9 (minor), 136.7 (major), 128.4 (minor), 128.2 (major), 127.6 (major), 127.5 (minor), 127.4 (minor), 127.2 (major), 125.23 (minor), 125.20 (major), 123.8 (minor), 123.5 (major), 122.3 (major), 51.1 (minor), 44.1 (minor), 44.0 (major), 35.7 (major), 31.6 (minor), 25.63 (minor), 25.57 (major), 25.4, 23.8, 23.5 (minor), 23.4, 22.9, 22.2 (minor), 17.05 (major), 17.02 (minor), 16.98 (major), 12.8 (minor). HRMS (ESI-TOF) Calcd for C₂₆H₂₉N₄O⁺ ([M+H]⁺) 413.2336. Found 413.2338.

3e', *N*-benzyl-*N*-(5-cyano-1-(pyridin-2-yl)pent-1-en-1-yl)methacrylamide, isolated by flash column chromatography (petroleum ether/ethyl acetate = 14:1) in 28% yield (29 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dd, *J* = 5.4, 1.9 Hz, 1H), 7.70 (ddd, *J* = 7.8, 7.8, 1.9 Hz, 1H), 7.32 – 7.22 (m, 7H), 5.34 – 5.27 (m, 2H), 5.09 (s, 1H), 4.70 (s, 2H), 2.52 (q, *J* = 7.5 Hz, 2H), 2.17 (t, *J* = 7.2 Hz, 2H), 1.83 (s, 3H), 1.66 (p, *J* = 7.3 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.5, 154.1, 149.6, 141.2, 139.6 (br), 137.3, 136.4, 131.7, 129.0, 128.4, 127.5, 123.2, 122.8, 119.5, 117.6 (br), 50.6 (br), 27.1, 25.0, 20.4, 16.4. HRMS (ESI-TOF) Calcd for C₂₂H₂₄N₃O⁺ ([M+H]⁺) 346.1914. Found 346.1917.

3f, 5-(1-benzyl-3-methyl-2-oxo-2,3,4,5,6,7-hexahydro-1*H*-indol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 65% yield (63 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.16 (m, 5H), 4.63 (s, 2H), 2.34 – 2.19 (m, 2H), 2.17 – 1.87 (m, 4H), 1.77 – 1.41 (m, 8H), 1.24 –

1.07 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.6, 138.1, 135.4, 128.6, 127.3, 127.1, 119.6, 118.9, 50.2, 43.1, 34.9, 25.4, 24.0, 22.54, 22.46, 22.2, 21.4, 19.8, 17.0. HRMS (ESI-TOF) Calcd for C₂₁H₂₇N₂O⁺ ([M+H]⁺) 323.2118. Found 323.2122.

3g1, 5-(3,4-dimethyl-2-oxo-5-phenyl-1-propyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 62% yield (58 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.27 – 7.24 (m, 2H), 3.39 – 3.26 (m, 2H), 2.40 – 2.25 (m, 2H), 1.83 – 1.76 (m, 1H), 1.73 – 1.51 (m, 6H), 1.34 – 1.14 (m, 7H), 0.68 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 137.0, 130.7, 129.6, 128.54, 128.52, 119.5, 118.9, 51.2, 42.0, 34.9, 25.4, 23.7, 22.3, 22.0, 17.0, 11.1, 8.8. HRMS (ESI-TOF) Calcd for C₂₀H₂₇N₂O⁺ ([M+H]⁺) 311.2118. Found 311.2120.

3g2, 5-(1-cyclohexyl-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1) in 59% yield (62 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.24 – 7.21 (m, 2H), 3.19 (tt, *J* = 12.1, 3.8 Hz, 1H), 2.40 – 2.26 (m, 2H), 2.12 (qdd, *J* = 11.6, 8.7, 3.2 Hz, 2H), 1.79 – 1.48 (m, 12H), 1.34 – 1.15 (m, 5H), 1.13 – 0.95 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.5, 138.0, 131.3, 129.9, 128.55, 128.52, 119.5, 118.7, 54.2, 51.2, 35.1, 29.9, 29.8, 26.08, 26.06, 25.4, 25.1, 23.6, 22.2, 17.0, 9.1. HRMS (ESI-TOF) Calcd for C₂₃H₃₁N₂O⁺ ([M+H]⁺) 351.2431. Found 351.2418.

3g3, 5-(3,4-dimethyl-2-oxo-1,5-diphenyl-2,3-dihydro-1*H*-pyrrol-3-yl)pentanenitrile,

isolated by flash column chromatography (petroleum ether/ethyl acetate = 15:1) in 44% yield (45 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 5H), 7.14 – 7.06 (m, 3H), 6.98 – 6.94 (m, 2H), 2.40 – 2.25 (m, 2H), 1.88 (ddd, *J* = 13.3, 11.5, 5.1 Hz, 1H), 1.80 (s, 3H), 1.73 – 1.59 (m, 3H), 1.48 – 1.27 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 181.5, 137.0, 135.6, 130.3, 129.4, 128.5, 128.1, 128.0, 126.6, 126.4, 119.9, 119.5, 51.8, 35.5, 25.4, 23.7, 22.3, 17.0, 9.3. HRMS (ESI-TOF) Calcd for C₂₃H₂₅N₂O⁺ ([M+H]⁺) 345.1961. Found 345.1962.

3h, 5-(1-(2-methoxyethyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 15:1) in 42% yield (42 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 3H), 7.30 – 7.27 (m, 2H), 3.63 (dt, *J* = 14.2, 6.1 Hz, 1H), 3.49 (dt, *J* = 14.2, 5.9 Hz, 1H), 3.24 (qt, *J* = 10.1, 6.0 Hz, 2H), 3.16 (s, 3H), 2.40 – 2.25 (m, 2H), 1.79 (ddd, *J* = 13.3, 11.1, 5.5 Hz, 1H), 1.72 – 1.52 (m, 6H), 1.32 – 1.17 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.6, 136.9, 130.5, 129.8, 128.6, 128.5, 119.5, 118.8, 69.6, 58.4, 51.2, 39.7, 35.0, 25.4, 23.6, 22.2, 17.0, 8.9. HRMS (ESI-TOF) Calcd for C₂₀H₂₇N₂O₂⁺ ([M+H]⁺) 327.2067. Found 327.2069.

3i, 5-(3,4-dimethyl-1-(2-morpholinoethyl)-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 52% yield (60 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.29 – 7.27 (m, 2H), 3.57 – 3.45 (m, 6H), 2.40 – 2.16 (m, 8H), 1.78 (ddd, *J* = 13.3, 10.2, 6.4 Hz, 1H), 1.72 – 1.52 (m, 6H), 1.33 – 1.20 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.5, 136.7, 130.6, 129.6, 128.64, 128.59, 119.5, 119.0, 66.9, 56.7, 53.4, 51.2, 37.2, 34.9, 25.4, 23.6, 22.4, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₃H₃₂N₃O₂⁺ ([M+H]⁺) 382.2489. Found 382.2501.

3j1, 5-(4-ethyl-1-(3-methoxybenzyl)-3-methyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol -3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 63% yield (76 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 3H), 7.12 – 7.08 (m, 2H), 7.06 (d, *J* = 7.9 Hz, 1H), 6.70 (ddd, *J* = 8.3, 2.7, 1.0 Hz, 1H), 6.47 (ddd, *J* = 7.6, 1.7, 0.9 Hz, 1H), 6.38 (dd, *J* = 2.6, 1.6 Hz, 1H), 4.47 (s, 2H), 3.68 (s, 3H), 2.35 – 2.18 (m, 2H), 2.04 (ddt, *J* = 32.9, 14.7, 7.5 Hz, 2H), 1.85 (ddd, *J* = 13.3, 11.7, 5.0 Hz, 1H), 1.69 – 1.52 (m, 3H), 1.35 – 1.23 (s, 4H), 1.22 – 1.10 (m, 1H), 0.93 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.0, 159.4, 139.3, 137.9, 130.7, 130.0, 129.2, 128.7, 128.3, 124.5, 120.0, 119.6, 113.0, 112.9, 55.1, 51.8, 44.0, 35.8, 25.5, 23.9, 23.2, 17.6, 17.0, 15.0. HRMS (ESI-TOF) Calcd for C₂₆H₃₁N₂O₂⁺ ([M+H]⁺) 403.2380. Found 403.2383.

3j2, 5-(3,4-dimethyl-1-(4-methylbenzyl)-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 61% yield (66 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 3H), 7.10 – 7.08 (m, 2H), 6.95 (d, *J* = 7.8 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 4.50 (s, 2H), 2.34 – 2.17 (m, 5H), 1.82 (ddd, *J* = 13.3, 11.5, 5.1 Hz, 1H), 1.65 – 1.53 (m, 6H), 1.29 – 1.08 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 137.0, 136.6, 134.7, 130.4, 129.9, 128.9, 128.5, 128.3, 127.6, 119.5, 119.0, 51.2, 43.9, 35.1, 25.4, 23.8, 22.3, 21.1, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₅H₂₉N₂O⁺ ([M+H]⁺) 373.2274. Found 373.2275.

3j3, 5-(1-(4-chlorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 75% yield (89 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 3H), 7.14 – 7.11 (m, 2H), 7.10 – 7.07 (m, 2H), 6.80 – 6.77 (m, 2H), 4.56 – 4.46 (m, 2H), 2.36 – 2.21 (m, 2H), 1.82 (ddd, *J* = 13.3, 11.6, 5.0 Hz, 1H), 1.67 – 1.54 (m, 6H), 1.28 – 1.07 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 136.7, 136.2, 132.9, 130.2, 129.8, 129.1, 128.7, 128.5, 128.4, 119.5, 119.3, 51.2, 43.5, 35.1, 25.4, 23.8, 22.3, 17.0, 8.8. HRMS (ESI-TOF) Calcd for C₂₄H₂₆ClN₂O⁺ ([M+H]⁺) 393.1728. Found 393.1726.

3j4, 5-(1-(4-fluorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 61% yield (69 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 3H), 7.10 – 7.06 (m, 2H), 6.86 – 6.78 (m, 4H), 4.56 – 4.47 (m, 2H), 2.36 – 2.19 (m, 2H), 1.83 (ddd, *J* = 13.3, 11.6, 5.1 Hz, 1H), 1.66 – 1.54 (m, 6H), 1.25 (s, 3H), 1.24 – 1.07 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 161.9 (d, *J* = 245.4 Hz), 136.7, 133.5 (d, *J* = 3.3 Hz), 130.3, 129.8, 129.4 (d, *J* = 8.1 Hz), 128.7, 128.4, 119.5, 119.3, 115.1 (d, *J* = 21.3 Hz), 51.2, 43.4, 35.1, 25.4, 23.8, 22.3, 17.0, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.40 (p, *J* = 7.1, 6.4 Hz, 1F). HRMS (ESI-TOF) Calcd for C₂₄H₂₆FN₂O⁺ ([M+H]⁺) 377.2024. Found 377.2025.

3k, 5-(1-allyl-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-3-yl)pentanenitrile,

isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 36% yield (38 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 3H), 7.27 – 7.25 (m, 2H), 5.60 (ddt, *J* = 17.1, 10.4, 5.2 Hz, 1H), 4.99 (dq, *J* = 10.3, 1.5 Hz, 1H), 4.87 (dq, *J* = 17.1, 1.6 Hz, 1H), 3.96 (dt, *J* = 5.3, 1.6 Hz, 2H), 2.40 – 2.26 (m, 2H), 1.81 (ddd, *J* = 13.3, 11.5, 5.2 Hz, 1H), 1.70 – 1.54 (m, 6H), 1.35 – 1.16 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.1, 137.0, 133.2, 130.3, 129.8, 128.6, 128.4, 119.5, 118.9, 116.5, 51.2, 42.7, 35.0, 25.4, 23.8, 22.3, 17.0, 8.9. HRMS (ESI-TOF) Calcd for C₂₀H₂₅N₂O⁺ ([M+H]⁺) 309.1961. Found 309.1950.

31, 5-(3,4-dimethyl-2-oxo-5-phenyl-1-(prop-2-yn-1-yl)-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 35% yield (32 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.35 (m, 5H), 4.19 (dd, *J* = 17.6, 2.5 Hz, 1H), 4.00 (dd, *J* = 17.5, 2.5 Hz, 1H), 2.39 – 2.25 (m, 2H), 2.09 (t, *J* = 2.4 Hz, 1H), 1.86 – 1.78 (m, 1H), 1.73 – 1.55 (m, 6H), 1.36 – 1.18 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.1, 136.2, 129.78, 129.77, 128.8, 128.6, 119.5, 119.4, 78.9, 71.0, 51.2, 35.3, 30.3, 25.4, 23.7, 21.9, 17.0, 8.9. HRMS (ESI-TOF) Calcd for C₂₀H₂₃N₂O⁺ ([M+H]⁺) 307.1805. Found 307.1803.

3m, 5-(1-(4-chlorobenzyl)-4-methyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl) pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 53% yield (62 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 3H), 7.27 – 7.23 (m, 2H), 7.04 – 6.98 (m, 4H), 5.07 (d, *J* = 15.0 Hz, 1H), 4.50 (s, 1H), 3.58 (d, *J* = 15.0 Hz, 1H), 2.45 – 2.37 (m, 4H), 1.75 – 1.72 (m, 4H), 1.69 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.9, 151.6, 136.1, 135.2, 133.2, 131.0, 129.7, 129.2, 128.8, 127.6 (br), 119.7, 67.1, 43.2, 27.6, 25.2, 22.9, 17.0, 12.2. HRMS (ESI-TOF) Calcd for C₂₃H₂₄ClN₂O⁺ ([M+H]⁺) 379.1572. Found 379.1585.

3n, 5-(1-(1-(7-(but-2-yn-1-yl)-3-methyl-1-((4-methylquinazolin-2-yl)methyl)-2,6dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)piperidin-3-yl)-5-(4-chlorophenyl)-3,4-dimeth yl-2-oxo-2,3-dihydro-1H-pyrrol-3-yl)pentanenitrile, 1:1 mixture of diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1) in 51% yield (116 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.76 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.52 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 5.55 (s, 2H), 4.84 – 4.67 (m, 2H), 3.89 (dt, J = 22.7, 11.7 Hz, 1H), 3.72 - 3.51 (m, 3H), 3.47 (d, J = 9.0Hz, 3H), 3.06 – 2.95 (m, 1H), 2.89 (s, 3H), 2.60 – 2.44 (m, 1H), 2.42 – 2.26 (m, 2H), 1.82 - 1.63 (m, 8H), 1.58 - 1.49 (m, 5H), 1.33 - 1.23 (m, 2H), 1.22 (s, 3H). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CDCl₃) & 182.83, 182.80, 168.4, 161.2, 155.6, 155.5, 154.4, 151.8, 150.0, 147.87, 147.86, 136.5, 136.4, 135.1, 133.2, 131.10, 131.07, 129.23, 129.19, 129.03, 128.95, 128.9, 126.6, 124.8, 123.2, 120.2, 120.0, 119.4, 119.3, 104.52, 104.49, 81.3, 81.2, 73.20, 73.18, 51.53, 51.52, 51.3, 51.2, 51.0, 50.8, 49.9, 49.8, 46.3, 35.72, 35.69, 35.0, 34.8, 29.70, 29.68, 29.66, 26.99, 26.98, 25.3, 25.2, 24.84, 24.83, 23.5, 23.4, 22.27, 22.25, 21.8, 17.1, 16.9, 9.24, 9.22, 3.7, 3.6. HRMS (ESI-TOF) Calcd for C₄₂H₄₅ClN₉O₃⁺ ([M+H]⁺) 758.3328. Found 758.3320.

30, 2-((6-(3-(5-(4-chlorophenyl)-3-(4-cyanobutyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-1-yl)piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)m ethyl)benzonitrile, 1:1 mixture of diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1) in 64% yield (119 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (ddd, *J* = 7.7, 2.4, 1.4 Hz, 1H), 7.50

(dddd, J = 7.7, 7.7, 1.6, 1.6 Hz, 1H), 7.42 (dd, J = 8.6, 3.5 Hz, 2H), 7.37 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 7.11 (dd, J = 7.9, 6.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 1H), 5.37 (s, 1H), 5.13 – 5.00 (m, 2H), 3.60 – 3.44 (m, 1H), 3.34 – 3.23 (m, 4H), 3.03 (d, J = 11.9 Hz, 1H), 2.88 (td, J = 12.2, 3.6 Hz, 1H), 2.54 (td, J = 12.5, 4.2 Hz, 1H), 2.48 – 2.28 (m, 3H), 1.78 – 1.41 (m, 10H), 1.29 – 1.10 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.8, 182.7, 163.0, 162.9, 159.14, 159.10, 152.41, 152.38, 140.43, 140.42, 135.95, 135.89, 135.1, 133.2, 133.1, 133.04, 133.00, 131.0, 129.3, 128.63, 128.56, 128.0, 127.9, 127.0, 126.9, 120.4, 120.3, 119.5, 119.4, 117.05, 117.01, 110.8, 90.6, 90.5, 52.2, 52.1, 51.74, 51.72, 51.49, 51.47, 51.14, 51.08, 46.1, 46.0, 34.9, 34.8, 27.92, 27.90, 26.44, 26.39, 25.2, 24.4, 23.5, 23.4, 22.2, 22.1, 17.01, 16.97, 9.2. HRMS (ESI-TOF) Calcd for C₃₅H₃₈ClN₆O₃⁺ ([M+H]⁺) 625.2688. Found 625.2681.

3p, 5-(1-(2-(((5-methoxy-1-(4-(trifluoromethyl)phenyl)pentylidene)amino)oxy)ethyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-3-yl)pentanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 3:1) in 81% yield (139 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.36 (dp, *J* = 6.1, 2.0 Hz, 3H), 7.17 – 7.12 (m, 2H), 3.99 – 3.86 (m, 2H), 3.72 (ddd, *J* = 14.4, 6.6, 5.2 Hz, 1H), 3.54 (dt, *J* = 14.4, 5.4 Hz, 1H), 3.32 (t, *J* = 6.4 Hz, 2H), 3.29 (s, 3H), 2.46 – 2.43 (m, 2H), 2.25 (qt, *J* = 16.9, 7.1 Hz, 2H), 1.74 (ddd, *J* = 13.3, 11.5, 5.1 Hz, 1H), 1.63 – 1.38 (m, 10H), 1.28 – 1.06 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.3, 156.3, 137.5 (d, *J* = 1.2 Hz), 136.8, 130.4 (q, *J* = 32.5 Hz), 130.2, 129.7, 128.6, 128.5, 128.3, 125.0 (q, *J* = 3.7 Hz), 123.91 (d, *J* = 272.1 Hz), 119.5, 118.8, 72.3, 71.1, 58.5, 51.0, 39.9, 35.1, 34.9, 29.0, 25.3, 23.5, 23.1, 21.9, 16.9, 8.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.79 (s, 3F). HRMS (ESI-TOF) Calcd for C₃₂H₃₉F₃N₃O₃⁺ ([M+H]⁺) 570.2938. Found 570.2945.

3q, 2-(2-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1H-pyrrol-3yl)ethyl)succinonitrile, 4:9 mixture of diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 35:1) in 65% yield (81 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (ddd, J = 9.0, 2.5, 2.5 Hz, 2H), 7.21 -7.17 (m, 3H), 7.03 (dddd, J = 9.0, 9.0, 2.3, 2.3 Hz, 2H), 6.89 - 6.85 (m, 2H), 4.54(dd, J = 15.6, 15.6 Hz, 2H), 2.87 - 2.77 (m, 1H), 2.74 - 2.51 (m, 2H), 2.04 - 1.81 (m, 2H), 2.04 (m, 2H),1H), 1.71 – 1.64 (m, 2H), 1.62 – 1.33 (m, 4H), 1.30 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 181.7 (minor), 181.5 (major), 137.23 (minor), 137.21 (major), 136.53 (minor), 136.49 (major), 134.95 (major), 134.94 (minor), 131.14 (minor), 131.09 (major), 128.84 (minor), 128.83 (major), 128.49 (major), 128.46 (minor), 128.4, 127.7 (minor), 127.6 (major), 127.5 (major), 127.4 (minor), 119.3 (major), 119.2 (minor), 118.6 (minor), 118.5 (major), 115.4 (major), 115.2 (minor), 50.8 (minor), 50.6 (major), 44.3 (minor), 44.2 (major), 32.9 (minor), 32.0 (major), 28.5 (minor), 28.1 (major), 27.1 (minor), 26.3 (major), 22.1 (minor), 21.9 (major), 21.2 (minor), 20.5 (major), 8.83 (major), 8.77 (minor). HRMS (ESI-TOF) Calcd for C25H25ClN3O⁺ $([M+H]^+)$ 418.1681. Found 418.1678.

3r, methyl 4-(1-(4-chlorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)-2-(cyanomethyl)butanoate, 3:7 mixture of diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 20:1) in 61% yield (83 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (stack, 3H major and 3H minor), 7.14 – 7.07 (stack, 4H major and 4H minor), 6.80 – 6.76 (stack, 2H major and 2H minor), 4.55 – 4.46 (stack, 2H major and 2H minor), 3.76 (s, 3H minor), 3.75 (s, 3H major), 2.72 – 2.48 (stack, 3H major and 3H minor), 1.87 – 1.76 (stack, 1H major

and 1H minor), 1.63 - 1.27 (stack, 6H major and 6H minor), 1.26 (s, 3H major), 1.25 (s, 3H minor). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 181.93 (minor), 181.88 (major), 172.7 (minor), 172.5 (major), 137.0 (major), 136.9 (minor), 136.20 (minor), 136.18 (major), 133.0 (major and minor), 130.1 (minor), 130.0 (major), 129.8 (major and minor), 129.2 (major), 129.1 (minor), 128.80 (major), 128.77 (minor), 128.5, 128.48 (minor), 128.39 (major), 118.9 (minor), 118.8 (major), 117.5 (major), 117.3 (minor), 52.47 (major), 52.45 (minor), 51.0 (minor), 50.9 (major), 43.51 (minor), 43.49 (major), 41.2 (minor), 41.1 (major), 32.7 (minor), 32.4 (major), 26.3 (minor), 26.0 (major), 22.19 (major), 22.16 (minor), 19.7 (minor), 18.8 (major), 8.71 (major), 8.67 (minor). HRMS (ESI-TOF) Calcd for C₂₆H₂₈ClN₂O₃⁺ ([M+H]⁺) 451.1783. Found 451.1784.

3s, 5-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl)-3-phenylpentanenitrile, separable 1:1 diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 35:1). Isomer 1: colorless oil, 40% yield (57 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 7.20 – 7.13 (m, 5H), 7.03 (d, J = 7.3 Hz, 2H), 6.89 – 6.87 (m, 2H), 4.57 (d, J = 15.3 Hz, 1H), 4.51 (d, *J* = 15.3 Hz, 1H), 2.84 (p, *J* = 7.0 Hz, 1H), 2.57 (dd, *J* = 16.7, 6.5 Hz, 1H), 2.45 (dd, *J* = 16.8, 6.9 Hz, 1H), 1.75 - 1.40 (m, 7H), 1.20 (s, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) & 182.0, 141.2, 137.5, 136.0, 134.6, 131.2, 129.0, 128.8, 128.7, 128.3, 127.64, 127.56, 127.2, 127.1, 119.8, 118.4, 51.2, 44.2, 42.0, 33.5, 29.2, 25.1, 22.1, 8.8. HRMS (ESI-TOF) Calcd for C₃₀H₃₀ClN₂O⁺ ([M+H]⁺) 469.2041. Found 469.2059. *Isomer* 2: colorless oil, 38% yield (53 mg). ¹H NMR (400 MHz, CDCl₃) & 7.36 - 7.27 (m, 5H), 7.20 - 7.15 (m, 5H), 7.02 - 6.99 (m, 2H), 6.90 - 6.87 (m, 2H), 4.59 (d, J = 15.3 Hz, 1H), 4.51 (d, J = 15.3 Hz, 1H), 2.89 – 2.82 (m, 1H), 2.56 – 2.44 (m, 2H), 1.77 – 1.70 (m, 1H), 1.52 - 1.46 (m, 2H), 1.40 (s, 3H), 1.31 (ddd, J = 13.1, 11.0, 5.4 Hz, 1H), 1.17 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.2, 141.2, 137.5, 135.9, 134.7, 131.2, 129.0, 128.8, 128.7, 128.4, 127.62, 127.58, 127.23, 127.20, 119.8, 118.2, 51.2, 44.2, 42.0, 33.4, 29.8, 25.5, 22.1, 8.6. HRMS (ESI-TOF) Calcd for C₃₀H₃₀ClN₂O⁺ ([M+H]⁺) 469.2041. Found 469.2046.

3t, diisopropyl 2-(2-(1-(4-chlorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3-yl)ethyl)-2-(cyanomethyl)malonate, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 57% yield (97 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 3H), 7.14 – 7.11 (m, 2H), 7.10 – 7.07 (m, 2H), 6.82 – 6.79 (m, 2H), 5.10 (heptd, *J* = 6.3, 2.1 Hz, 2H), 4.58 (d, *J* = 15.3 Hz, 1H), 4.45 (d, *J* = 15.3 Hz, 1H), 2.97 – 2.88 (m, 2H), 1.92 – 1.84 (m, 1H), 1.70 (qd, *J* = 13.0, 3.7 Hz, 2H), 1.63 (s, 3H), 1.55 (td, *J* = 13.0, 4.3 Hz, 1H), 1.27 (td, *J* = 6.2, 3.1 Hz, 15H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 181.6, 168.1, 168.0, 137.1, 136.3, 132.8, 130.1, 129.9, 129.1, 128.7, 128.4, 118.6, 116.2, 70.5, 70.3, 54.7, 50.8, 43.5, 30.3, 27.8, 22.1, 21.9, 21.5, 21.4, 8.7. HRMS (ESI-TOF) Calcd for C₃₂H₃₈ClN₂O₅⁺ ([M+H]⁺) 565.2464. Found 565.2466.

3u, *tert*-butyl 4-(2-(1-(4-chlorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*pyrrol-3-yl)ethyl)-4-(cyanomethyl)piperidine-1-carboxylate, isolated by flash column chromatography (petroleum ether/ethyl acetate = 10:1) in 47% yield (77 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.37 (m, 3H), 7.12 – 7.09 (m, 4H), 6.79 (d, *J* = 8.4 Hz, 2H), 4.59 (d, *J* = 15.2 Hz, 1H), 4.44 (d, *J* = 15.3 Hz, 1H), 3.45 – 3.39 (m, 2H), 3.30 – 3.18 (m, 2H), 2.36 (d, *J* = 16.9 Hz, 1H), 2.27 (d, *J* = 16.9 Hz, 1H), 1.75 (td, *J* = 12.5, 4.6 Hz, 1H), 1.63 (s, 3H), 1.52 – 1.39 (s, 14H), 1.27 (s, 3H), 1.15 (ddt, *J* = 27.2, 16.4, 9.4 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.1, 154.6, 136.9, 136.2, 133.1, 130.1, 129.8, 129.3, 128.8, 128.5, 128.4, 119.0, 117.4, 79.8, 50.9, 43.5, 39.4 (br), 38.8 (br), 34.6, 33.7, 33.6 (br), 30.4, 29.2, 28.4, 26.2, 22.3, 8.8. HRMS (ESI-TOF) Calcd for C₃₃H₄₁ClN₃O₃⁺ ([M+H]⁺) 562.2831. Found

562.2828.

3v, 5-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1H-pyrrol-3-yl)-3-(benzyloxy)pentanenitrile, 4:5 mixture of diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 23% yield (34 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 7H), 7.18 – 7.15 (m, 3H), 7.02 - 6.97 (m, 2H), 6.87 (dd, J = 6.4, 2.8 Hz, 2H), 4.62 - 4.47 (m, 4H), 3.61 (ddt, J = 6.4, J = 6.4, 2.8 Hz, 2H), 4.62 - 4.47 (m, 4H), 3.61 (ddt, J = 6.4, J =17.4, 9.5, 5.2 Hz, 1H), 2.54 - 2.36 (m, 2H), 1.92 - 1.69 (m, 2H), 1.58 (d, J = 4.4 Hz, 3H), 1.53 - 1.34 (m, 2H), 1.26 (d, J = 4.6 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 182.2 (major), 182.0 (minor), 137.50, 137.47, 136.1 (minor), 136.0 (major), 134.71 (minor), 134.68 (major), 131.22 (major), 131.19 (minor), 128.73 (major), 128.72 (minor), 128.674 (major), 128.665 (minor), 128.5 (major and minor), 128.37 (minor), 128.36 (major), 128.03 (major), 127.98 (minor), 127.9 (major), 127.8 (minor), 127.6 (major), 127.5 (minor), 127.2 (major and minor), 119.8 (major), 119.7 (minor), 117.4 (minor), 117.3 (major), 74.2 (minor), 74.1 (major), 72.1 (major), 71.5 (minor), 51.0 (major), 50.9 (minor), 44.2 (major and minor), 31.2 (major), 30.8 (minor), 29.4 (major), 28.6 (minor), 23.0 (major), 22.6 (minor), 22.2 (major), 22.1 (minor), 8.8 (minor), 8.7 (major). HRMS (ESI-TOF) Calcd for C₃₁H₃₂ClN₂O₂⁺ ([M+H]⁺) 499.2147. Found 499.2144.

3w, 2-(2-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3-yl)ethoxy)acetonitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 52% yield (61 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.32 (m, 2H), 7.22 – 7.15 (m, 3H), 7.07 – 7.03 (m, 2H), 6.93 – 6.88 (m, 2H), 4.53 (dd, *J* = 15.4, 16.3 Hz, 2H), 4.00 (d, *J* = 16.1 Hz, 1H), 3.94 (d, *J* = 16.1

Hz, 1H), 3.40 (qdd, J = 9.3, 7.2, 5.6 Hz, 2H), 2.26 (ddd, J = 14.4, 7.9, 6.6 Hz, 1H), 1.85 (ddd, J = 14.2, 6.1, 5.2 Hz, 1H), 1.62 (s, 3H), 1.29 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.0, 137.5, 136.0, 134.7, 131.2, 128.73, 128.70, 128.4, 127.8, 127.3, 119.4, 115.9, 68.3, 55.9, 49.6, 44.2, 34.8, 22.8, 9.0. HRMS (ESI-TOF) Calcd for C₂₃H₂₄ClN₂O₂⁺ ([M+H]⁺) 395.1521. Found 395.1516.

3x, *tert*-butyl (2-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*pyrrol-3-yl)ethyl)(cyanomethyl)carbamate, 3:4 mixture of rotamers due to the slow rotation of the N-(CO) bond, isolated by flash column chromatography (petroleum ether/ethyl acetate = 15:1) in 40% yield (59 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.19 (dd, *J* = 5.1, 2.0 Hz, 3H), 7.01 (d, *J* = 7.9 Hz, 2H), 6.87 (ddd, *J* = 5.3, 3.7, 3.7 Hz, 2H), 4.61 – 4.02 (m, 4H), 3.31 (brs, 1H major), 3.18 (brs, 1H minor), 2.93 (ddd, *J* = 14.2, 10.8, 5.8 Hz, 1H), 2.09 (ddd, *J* = 13.3, 10.9, 5.7 Hz, 1H), 1.87 (ddd, *J* = 13.2, 10.8, 4.7 Hz, 1H), 1.64 (s, 3H), 1.48 (s, 9H), 1.29 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 181.7 (br), 154.4 (br, minor), 153.9 (br, major), 137.4, 136.1, 134.8, 131.2 (br), 128.6, 128.52, 128.46, 127.3, 119.4 (br), 116.1, 81.9, 49.9, 44.3, 44.0 (br, minor), 43.7 (br, major), 35.6 (br), 33.6 (br, minor), 33.1 (br, major), 28.3, 22.5 (br), 8.8. HRMS (ESI-TOF) Calcd for C₂₈H₃₃ClN₃O₃⁺ ([M+H]⁺) 494.2205. Found 494.2201.

3y, 3-((1-(1-(4-chlorobenzyl)-3,4-dimethyl-2-oxo-5-phenyl-2,3-dihydro-1*H*-pyrrol-3yl)propan-2-yl)oxy)propanenitrile, separable 1:1 diastereomers, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 47% yield (59 mg). Isomer 1: colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 3H), 7.14 – 7.10 (m, 2H), 7.07 – 7.04 (m, 2H), 6.81 – 6.78 (m, 2H), 4.73 (d, *J* = 15.3 Hz, 1H), 4.31 (d, *J* = 15.3 Hz, 1H), 3.63 (dt, *J* = 9.2, 6.7 Hz, 1H), 3.53 – 3.40 (m, 2H), 2.55 –

2.43 (m, 2H), 2.21 (dd, J = 14.4, 8.2 Hz, 1H), 1.65 – 1.60 (s, 4H), 1.26 (s, 3H), 1.13 (d, J = 6.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.5, 136.6, 136.4, 132.9, 130.2, 129.6, 129.1, 128.7, 128.5, 128.4, 119.4, 118.0, 73.2, 62.2, 49.7, 43.5, 42.1, 23.4, 20.0, 18.9, 9.2. HRMS (ESI-TOF) Calcd for C₂₅H₂₈ClN₂O₂⁺ ([M+H]⁺) 423.1834. Found 423.1839. Isomer 2: colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.37 (m, 3H), 7.13 – 7.09 (m, 2H), 7.09 – 7.04 (m, 2H), 6.79 – 6.75 (m, 2H), 4.59 – 4.50 (m, 2H), 3.50 (dt, J = 9.0, 6.8 Hz, 1H), 3.23 – 3.15 (m, 2H), 2.34 (t, J = 6.5 Hz, 2H), 1.98 – 1.87 (m, 2H), 1.67 (s, 3H), 1.24 (s, 3H), 1.10 (d, J = 6.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 136.3, 134.9, 133.1, 130.4, 129.6, 129.4, 128.62, 128.55, 128.3, 121.6, 117.7, 74.2, 63.0, 50.5, 43.5, 42.9, 23.7, 20.3, 19.1, 9.4. HRMS (ESI-TOF) Calcd for C₂₅H₂₈ClN₂O₂⁺ ([M+H]⁺) 423.1834. Found 423.1836.

3z, 3-(2-(1-benzyl-5-(4-chlorophenyl)-3,4-dimethyl-2-oxo-2,3-dihydro-1*H*-pyrrol-3yl)ethoxy)propanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 21:1) in 17% yield (21 mg), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.19 – 7.15 (m, 3H), 7.01 – 6.98 (m, 2H), 6.89 – 6.87 (m, 2H), 4.57 (d, *J* = 15.3 Hz, 1H), 4.50 (d, *J* = 15.3 Hz, 1H), 3.55 – 3.47 (m, 2H), 3.38 – 3.26 (m, 2H), 2.47 (t, *J* = 6.5 Hz, 2H), 2.21 (dt, *J* = 14.2, 7.2 Hz, 1H), 1.83 (ddd, *J* = 13.9, 7.2, 5.5 Hz, 1H), 1.61 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.1, 137.6, 135.6, 134.6, 131.1, 128.8, 128.6, 128.3, 127.5, 127.2, 120.0, 117.9, 67.8, 65.2, 49.7, 44.2, 35.1, 22.7, 18.7, 9.0. HRMS (ESI-TOF) Calcd for C_{24H26}ClN₂O₂⁺ ([M+H]⁺) 409.1677. Found 409.1669.

4, 4-(3,5-di-*tert*-butyl-1-methyl-4-oxocyclohexa-2,5-dien-1-yl)butanenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 42:1) in 79% yield (68 mg), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.39 (s, 2H), 2.29 (t, *J* = 6.9 Hz, 2H), 1.77 – 1.73 (m, 2H), 1.40 – 1.32 (m, 2H), 1.234 (s, 18 H), 1.226 (s, 3H).

 $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 186.3, 147.4, 145.4, 119.2, 39.9, 39.6, 34.8, 29.5, 27.3, 20.9, 17.4.. HRMS (ESI-TOF) Calcd for C₁₉H₃₀NO⁺ ([M+H]⁺) 288.2322. Found 288.2323.

5,² 6,6-diphenylhex-5-enenitrile, isolated by flash column chromatography (petroleum ether/ethyl acetate = 42:1) in 59% yield (44 mg), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.14 (m, 10H), 6.01 (t, *J* = 7.4 Hz, 1H), 2.28 (dt, *J* = 19.9, 7.4 Hz, 4H), 1.80 (p, *J* = 7.3 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.8, 142.1, 139.6, 129.7, 128.4, 128.2, 127.27, 127.25, 127.19, 126.6, 119.5, 28.7, 25.8, 16.7. HRMS (ESI-TOF) Calcd for C₁₈H₁₈N⁺ ([M+H]⁺) 248.1434. Found 248.1432.

VIII. Copies of ¹H, ¹⁹F, ¹³C and DEPT NMR spectra

3a, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

3b1, ¹H NMR

¹³C NMR

3b2, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

3b3, ¹H NMR

¹³C NMR

3c, ¹H NMR

¹³C NMR

HJQ 269 C.3.fid 90 129.7250 129.1814 128.7070 128.2527 127.6945 127.2068 -129.7250 -129.1814 -127.6945 -127.2068 -128.7070 -128.2527 CN NC =0 Ph Bn 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) 129.7255 129.1806 128.7075 128.2523 128.2523 127.6945 127.2066 -35.6595 -35.5729 -23.7529 -23.7529 -23.0265 -17.1779 -17.0476 -44.1041 ~25.5722 ~25.3040 -23.7529 23.6285 -23.0255 17.1779 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

DEPT 90 and DEPT 135

S72
3d1, ¹H NMR

¹³C NMR

3d2, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135 HJQ Q-263.33.fid 90 129.8120 128.1617 127.8327 127.6674 127.6674 -128.1617 -127.8327 -127.6674 129.8120 -126.9944 CN Bn Et 1 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) HJQ Q-263.34.fid 135 129.8119 128.1616 127.8327 127.6667 126.9943 -44.1086 -35.1324 -25.6851 -25.4369 -23.8267 -23.8267 -22.2788 -16.9977 -16.9977 -16.9977 -16.9977 35.1324 -28.6851 -25.4369 -23.8267 22.2788 -16.9977 -15.4874-8.8750 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm) 0 -10

3d3, ¹H NMR

¹³C NMR

3d4, ¹H NMR

¹³C NMR

3d5, ¹H NMR

¹³C NMR

3d6, ¹H NMR

¹³C NMR

3d7, ¹H NMR

¹³C NMR

¹⁹F NMR

3d8, ¹H NMR

¹³C NMR

¹⁹F NMR

3d9, ¹H NMR

¹³C NMR

3d10, ¹H NMR

¹³C NMR

3d11, ¹H NMR

¹³C NMR

¹⁹F NMR

3d12, ¹H NMR

¹³C NMR

¹⁹F NMR

3d13, ¹H NMR

¹³C NMR

DEPT 90

DEPT 135

3e, ¹H NMR

¹³C NMR

DEPT 135

3e', ¹H NMR

¹³C NMR

3f, ¹H NMR

¹³C NMR

3g1, ¹H NMR

¹³C NMR

3g2, ¹H NMR

¹³C NMR

3g3, ¹H NMR

¹³C NMR

3h, ¹H NMR

¹³C NMR

3i, ¹H NMR

¹³C NMR

3j1, ¹H NMR

¹³C NMR

S116

3j2, ¹H NMR

¹³C NMR

3j3, ¹H NMR

¹³C NMR

3j4, ¹H NMR

¹³C NMR

¹⁹F NMR

3k, ¹H NMR

¹³C NMR

3I, ¹H NMR

¹³C NMR

3m, ¹H NMR

¹³C NMR

3n, ¹H NMR

¹³C NMR

HJQ Q-382-1 C.12.fid 90 133.1423 131.1006 131.0768 129.2178 129.2178 129.1860 128.9420 126.6272 124.8178 50.9784 50.7484 129.2178 129.1860 128.9420 131.1006 -50.9784 -50.7484-126.6272 124.8178 133.1423 -131.10 -131.08 129.22 -128.943.5 132.5 131.5 130.5 129.5 128.5 127.5 124 126.5 125.5 50.8 CN 1:1 mixture of 0 diastereomers CI ć 0.97 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

DEPT 90

30, ¹H NMR

¹³C NMR

3p, ¹H NMR

¹³C NMR

¹⁹F NMR

3q, ¹H NMR

¹³C NMR

S137

3r, ¹H NMR

¹³C NMR

DEPT 135

3s, isomer 1, ¹H NMR

¹³C NMR

¹³C NMR

3t, ¹H NMR

¹³C NMR

3u, ¹H NMR

¹³C NMR

3v, ¹H NMR

¹³C NMR

3w, ¹H NMR

¹³C NMR

¹³C NMR

3y, isomer 1, ¹H NMR

¹³C NMR

¹³C NMR

3z, ¹H NMR

¹³C NMR

¹³C NMR

5, ¹H NMR

¹³C NMR

1a, ¹H NMR

¹³C NMR

1b1, ¹H NMR

¹³C NMR

1b2, ¹H NMR

¹³C NMR

1b3, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

1d1, ¹H NMR

¹³C NMR

1d2, ¹H NMR

¹³C NMR

1d3, ¹H NMR

¹³C NMR

1d4, ¹H NMR

¹³C NMR

1d5, ¹H NMR

¹³C NMR

1d6, ¹H NMR

¹³C NMR

1d7, ¹H NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

¹⁹F NMR

1d9, ¹H NMR

¹³C NMR

1d10, ¹H NMR

¹³C NMR

1d11, ¹H NMR

¹³C NMR

¹⁹F NMR

1d12, ¹H NMR

¹³C NMR

¹⁹F NMR

1d13, ¹H NMR

¹³C NMR

1e, ¹H NMR

¹³C NMR

1g1, ¹H NMR

¹³C NMR

1g2, ¹H NMR

¹³C NMR

1g3, ¹H NMR

¹³C NMR

1h, 1 H NMR

¹³C NMR

1i, ¹H NMR

¹³C NMR

1j1, ¹H NMR

¹³C NMR

1j2, ¹H NMR

¹³C NMR

1j3, ¹H NMR

¹³C NMR

1j4, ¹H NMR

¹³C NMR

HIG D33 (9) C 7 Hig 112, 562 112, 562 113, 4964 112, 2021 112, 2021 112, 2025 111, 2025 111, 2025 111, 2025 111, 2025 111, 2025 111, 2025							-49.4926		-20.2012 14.5485		
	-134.9911	<pre><133.4964 <133.4635</pre>	= <130.5818 130.5021	-129.2833 128.4656 128.2391		000 101	- 124.0002			-117.7013	
							۸				
141 139	137 135	133	131	129	127	125	123	121	119	117	115
Ph O F					ga nganga mandra ng kang kang kang kang kang kang kang						***
210 200 190 1	80 170 160 1	50 140 13	0 120	110 100 f1 (ppi	90 80 m)	0 70	60 50	40 30	20	10 0	-10

DEPT 90 and DEPT 135

¹⁹F NMR

1k, ¹H NMR

¹³C NMR

11, ¹H NMR

¹³C NMR

1m, ¹H NMR

¹³C NMR

1n, ¹H NMR

¹³C NMR

10, ¹H NMR

¹³C NMR

1p, ¹H NMR

¹³C NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

