Radical Cyclization/Bis(pentafluoroethylation) of 1,6-Dienes Using HCF2CF3-Derived CuCF2CF3

Ziwei Luo and Gavin Chit Tsui*

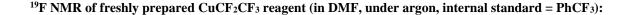
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR

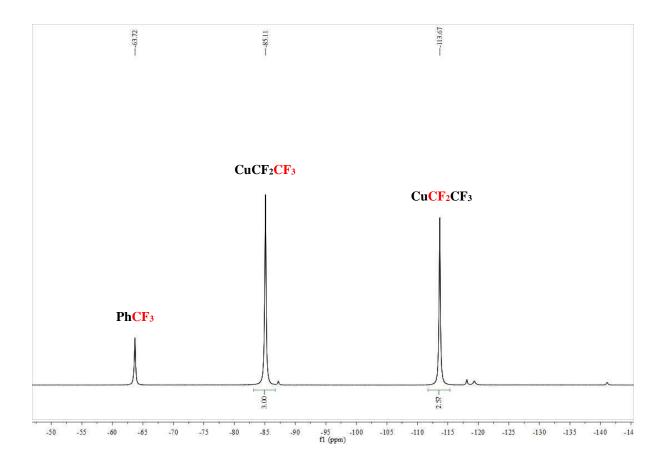
Table of Contents

General Experimental	S1
Materials	S1
Instrumentation	S1
Experimental Procedure	
Substrate table	
Control Experiment	
X-ray Structure of 2c and 4g	
Characterization Data of Products	
References	
GC Spectra	
NMR Spectra	
•	

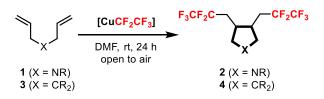
General Experimental. Analytical thin layer chromatography (TLC) was performed with EM Science silica gel 60 F254 aluminum plates. Visualization was done under a UV lamp (254 nm) and by immersion in ethanolic phosphomolybdic acid (PMA) or potassium permanganate (KMnO₄), followed by heating using a heat gun. Organic solutions were concentrated by rotary evaporation at 23–40 °C. Purification of reaction products were generally done by flash column chromatography with Grace Materials Technologies 230–400 mesh silica gel.

Materials. Halocarbon 125-Pentafluoroethane (Purity: 99.0% min., 9.1kg in 16 L size cylinder) was purchased from SCIENTIFIC GAS ENGINEERING CO., LTD. Fluoroform (Research Grade, Purity: 99.999% min., 9.1kg in 16 L size cylinder) was purchased from SynQuest Laboratories, USA. Copper(I) chloride (extra pure, 99.99%) was purchased from Acros. Potassium tert-butoxide (97%) was purchased from Alfa Aesar. Anhydrous DMF was purchased from J&K Scientific. TREAT·HF was purchased from J&K Scientific and Macklin. Other chemicals for substrates preparation were purchased from Acros, J&K Scientific, Aldrich and Dikemann.

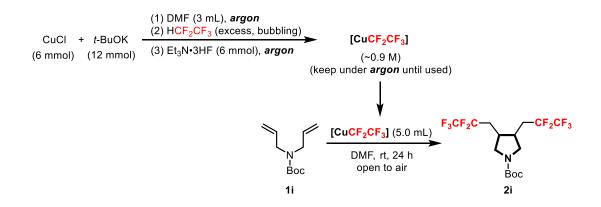

Instrumentation. Proton nuclear magnetic resonance spectra (¹H NMR) spectra, carbon nuclear magnetic resonance spectra (¹³C NMR) and fluorine nuclear magnetic resonance spectra (¹⁹F NMR) were recorded at 23 °C on a Bruker 400 spectrometer in CDCl₃ (400 MHz for ¹H, 101 MHz for ¹³C and 377 MHz for ¹⁹F) and Bruker 500 spectrometer in CDCl₃ (500 MHz for ¹H, 126 MHz for ¹³C and 471 MHz for ¹⁹F). Chemical shifts for protons were reported as parts per million in δ scale using solvent residual peak (CHCl₃: 7.26 ppm) or tetramethylsilane (0.00 ppm) as internal standards. Chemical shifts of ¹³C NMR spectra were reported in ppm from the central peak of CDCl₃ (77.16 ppm) on the δ scale. Chemical shifts of ¹⁹F NMR are reported as parts per million in δ scale using benzotrifluoride (-63.72 ppm) as internal standards. Data are represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintuplet, sx = sextet, sp = septuplet, m = multiplet, br = broad), and coupling constant (*J*, Hz). High resolution mass spectra (HRMS) were obtained on a Thermo Q Exactive Focus Orbitrap Mass Spectrometer or a Bruker 9.4T ICR Mass Spectrometer.


Experimental Procedures

Modified procedure for the preparation of pentafluoroethane-derived [CuCF₂CF₃] reagent¹:


CuCl + t-BuOK
(2 eq.)
$$(1) DMF (2 M), argon$$
(2) HCF₂CF₃ (excess, bubbling)
(3) Et₃N•3HF (1 eq.), argon
$$(2 HCF_2CF_3) = [CuCF_2CF_3]$$
(~0.9 M, 83% by ¹⁹F NMR based on Cu)
(keep under argon)

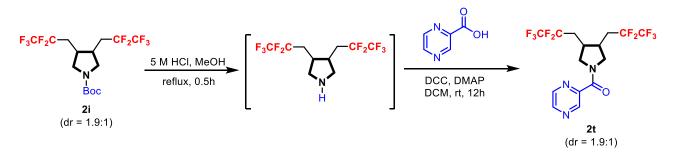
In a glove box, to a test tube was charged CuCl (200 mg, 2.0 mmol), *t*-BuOK (464 mg, 4.0 mmol) and a stirrer bar. The tube was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (1.0 mL) was added via syringe and the mixture was vigorously stirred at room temperature for 30 min. Then pentafluoroethane (HCF₂CF₃) was bubbled into the mixture by using a needle connected to the HCF₂CF₃ cylinder at room temperature for 5 min. After removing the HCF₂CF₃ inlet, the mixture was stirred for 5 min and Et₃N·3HF (326 μ L, 2.0 mmol) was slowly added under argon and the mixture was stirred for another 5 min. A slightly greyish yellow solution with white precipitates was obtained as the [CuCF₂CF₃] solution in DMF (~83%, ~0.9 M).



General procedure for cyclization/bis-pentafluoroethylation of 1,6-dienes:

Under air, to a test tube equipped with a magnetic stir bar and diene **1** or **3** (0.2 mmol) was added above freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. The color slowly changed from greyish yellow to pale grey to blue to dark red. The reaction mixture was quenched with aq. sat. EDTA·2Na and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product **2** or **4**.

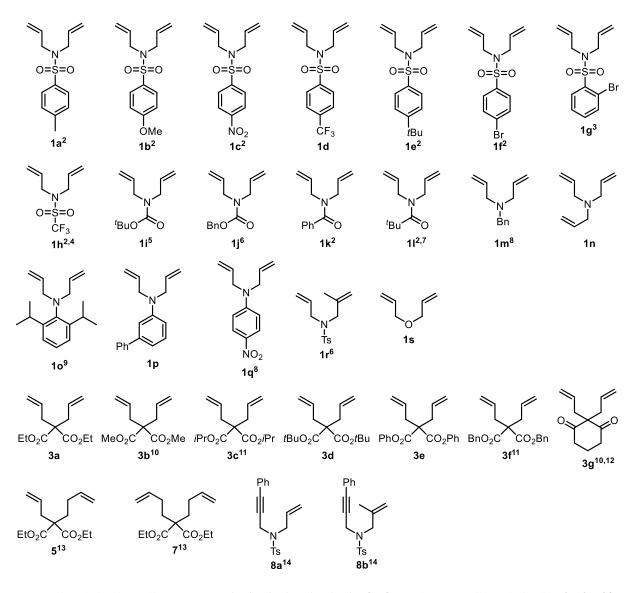
1 mmol scale reaction:

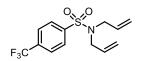


In a glove box, to a 25mL round-bottom flask was charged CuCl (600 mg, 6.0 mmol), *t*-BuOK (1.38 g, 12.0 mmol) and a stirrer bar. The flask was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (3.0 mL) was added via syringe in ambient water bath and the mixture was vigorously stirred at room temperature for 45 min. Then pentafluoroethane (HCF₂CF₃) was bubbled into the mixture by using a needle connected to the HCF₂CF₃ cylinder at room temperature for 10 min. After removing the HCF₂CF₃ inlet, the mixture was stirred for 5 min and Et₃N·3HF (0.98 mL, 6.0 mmol) was slowly added under argon and the mixture was stirred for another 5 min. A slightly greyish yellow solution with white precipitates was obtained as the [CuCF₂CF₃] solution in DMF (~0.9 M).

Under air, to a 25mL round-bottom flask equipped with a magnetic stir bar and **1i** (197.3 mg, 1.0 mmol) was added above freshly prepared [CuCF₂CF₃] (5.0 mL, 4.5 mmol in DMF) at 0°C. Then the flask was warmed to room temperature and stirred for 36 h. The color slowly changed from greyish yellow to pale grey to blue to dark red. The reaction mixture was quenched with aq. sat. EDTA \cdot 2Na and extracted with diethyl ether three times. The

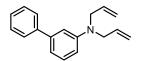
organic layers were combined, washed with water then brine, dried over anhydrous Na_2SO_4 , filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product **2i** as a yellowish liquid (240.3 mg, 0.55 mmol, 55%, dr = 1.9:1 by GC-MS). $R_f = 0.31$ (hexane:EA = 10:1).


Derivatization of 2i:

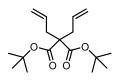

To a 10mL round-bottom flask equipped with a magnetic stir bar and **2i** (43.5mg, 0.1 mmol, dr = 1.9:1 by GC-MS) was added MeOH (2 mL) and 5M HCl (2 mL) at room temperature. Then the flask was heated to reflux (~80 °C) and stirred for 0.5 h. Upon the starting material was detected to be fully converted by TLC, the reaction mixture was quenched with aq. sat. NaOH until pH = 11 and extracted with DCM three times. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was directly used for the next step without further purification.

To a 10mL round-bottom flask equipped with a magnetic stir bar and the crude product above was added 2pyrazinecarboxylic acid (18.6 mg, 0.15 mmol) and 4-(dimethylamino)pyridine (DMAP, 1.2 mg, 0.01 mmol). Then the solution of N,N'-dicyclohexylcarbodiimide (DCC, 41.3 mg, 0.2 mmol) in DCM (2 mL) was added to the mixture at room temperature. After being stirred for 12h, the reaction was diluted with DCM, washed with water three times then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product 2t as a white solid (35.1 mg, 0.08 mmol, 80%, dr = 1.9:1 by GC-MS). $R_f = 0.48$ (hexane:EA = 1:1). Major diastereomer: ¹H **NMR** (500 MHz, CDCl₃): δ 9.20 (s, 1H), 8.60 (d, *J* = 60.2 Hz, 2H), 4.06 (dd, *J* = 12.0, 5.8 Hz, 1H), 3.97 - 3.86 (m, 2H), 3.69 (dd, J = 12.9, 5.3 Hz, 1H), 2.81 (s, 2H), 2.40 – 1.95 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 164.4, 148.1, 146.3 (d, J = 36.4 Hz), 142.4, 118.9 (qtd, $J_{C-F} = 285.5$, 35.7, 8.4 Hz), 115.5 (qt, $J_{C-F} = 253.4$, 38.1 Hz), 52.1 (dd, J = 205.8, 3.1 Hz), 34.0 (d, J = 338.6 Hz), 28.6 (dt, J = 49.1, 21.6 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.74 (d, J = 34.2 Hz, 6F), -116.55 - -119.62 (m, 4F) ppm. Minor diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 9.17 (s, 1H), 8.60 (d, *J* = 60.2 Hz, 2H), 4.25 (ddd, *J* = 18.0, 12.2, 4.6 Hz, 2H), 3.72 - 3.64 (m, 1H), 3.43 (dd, J = 12.8, 8.8 Hz, 1H), 2.40 – 1.95 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 163.9, 148.3, 146.2 (d, J =36.2 Hz), 142.4, 52.9 (dd, J = 213.2, 4.2 Hz), 36.8 (d, J = 334.3 Hz), 32.4 (dt, J = 40.6, 22.1 Hz) ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.66 (d, J = 18.3 Hz, 6F), -116.55 - -119.62 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₅H₁₃F₁₀N₃ONa [M+Na]⁺ : 464.0779; found: 464.0779.

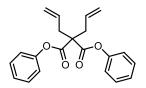
Substrate table



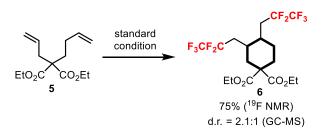
Amine derived 1,6-diene or enyne **1a-1c**, **1e-1m**, **1o**, **1q-1r**, **8a-8b**, malonate or dione derivative **3b-3c**, **3f**-**3g**, **5**, **7** were synthesized according to literature procedure, and the spectral data were in full accordance with the literature report. ²⁻¹⁴ **1n**, **1s** and **3a** were commercially available.



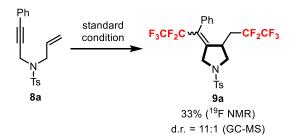
1d: *N*,*N*-diallyl-4-(trifluoromethyl)benzenesulfonamide. Prepared according to reported method.² Triethylamine (0.32 mL, 2.3 mmol) was added dropwise to a stirred solution of diallylamine (204.0 mg, 2.1 mmol) in DCM (10 mL) at 0 °C. Then 4-(trifluoromethyl)benzene sulfonyl chloride (489.2 mg, 2.0 mmol) was slowly added to the mixture. The reaction was allowed to warm up to room temperature and stirred overnight. Upon reaction completed, the reaction mixture was diluted with DCM, washed with water three times then brine, dried


over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford **1d** as a white solid (2.0 mmol, 601.4 mg, 98 %), $R_f = 0.36$ (hexane:EA = 10:1). ¹**H** NMR (500 MHz, CDCl₃): δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 2H), 5.59 (tt, *J* = 16.7, 6.4 Hz, 2H), 5.21 – 5.09 (m, 4H), 3.84 (d, *J* = 6.3 Hz, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 144.2, 134.2 (q, *J*_{C-F} = 32.9 Hz), 132.1, 127.7, 126.3 (q, *J*_{C-F} = 3.6 Hz), 123.4 (q, *J*_{C-F} = 272.8 Hz), 119.6, 49.5 ppm. **HRMS** m/z (ESI): calcd. for C₁₃H₁₄F₃NO₂SNa [M+Na]⁺ : 328.0590; found: 328.0583.

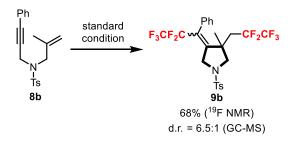
1p: *N*,*N*-diallyl-[1,1'-biphenyl]-3-amine. Prepared according to reported method.⁸ To a round-bottom flask containing dry DMF (10 mL) and NaH (60% in mineral oil, 240.0 mg, 6.0 mmol) was added 3-phenyl aniline (507.6 mg 3.0 mmol) at 0 °C under argon. The reaction mixture was stirred for 30 minutes at room temperature. Then, allyl bromide (798.5 mg, 6.6 mmol) was added to the mixture dropwise at 0 °C. The reaction was allowed to warm up to room temperature and stirred overnight. Upon reaction completed, the reaction mixture was quenched with aq. sat. NaHCO₃ and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford **1p** as a yellowish oil (1.0 mmol, 249.6 mg, 33 %), $R_f = 0.68$ (hexane:EA = 10:1). **¹H NMR** (400 MHz, CDCl₃): δ 7.65 – 7.57 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 8.1 Hz, 1H), 6.95 (d, *J* = 7.0 Hz, 2H), 6.78 – 6.69 (m, 1H), 5.93 (ddt, *J* = 17.0, 10.0, 4.8 Hz, 2H), 5.29 – 5.16 (m, 4H), 4.01 (dd, *J* = 2.8, 2.0 Hz, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 149.1, 142.3, 134.1, 129.5, 128.7, 127.4, 127.2, 116.2, 115.6, 111.5 (d, *J* = 5.6 Hz), 53.0 ppm. HRMS m/z (APCI): calcd. for C₁₈H₂₀N [M+H]⁺ : 250.1590; found: 250.1587.

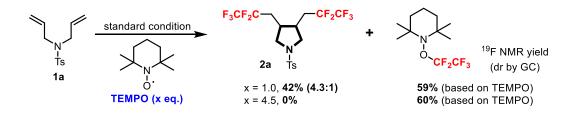


3d: Di-*tert*-butyl diallylmalonate. Prepared according to reported method.¹³ To the solution of diisopropyl malonate (432.6 mg, 2.0 mmol) in dry THF (4 mL) and was added NaH (60% in mineral oil, 320.0 mg, 8.0 mmol) portionwise at 0 °C under argon. The reaction mixture was stirred for 30 minutes at room temperature. Then, allyl bromide (604.9 mg, 5.0 mmol) was added to the mixture dropwise. The reaction was heated to 60 °C and stirred overnight. Upon reaction completed, the reaction mixture was quenched with aq. sat. NH₄Cl and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford **3d** as a white solid (1.9 mmol, 575.6 mg, 97 %), R_f = 0.47 (hexane:EA = 10:1). ¹H NMR (500 MHz, CDCl₃): δ 5.70 – 5.60 (m, 2H), 5.10 (dd, *J* = 13.6, 6.8 Hz, 4H), 2.55 (d, *J* = 7.4 Hz, 4H), 1.44 (s, 18H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 170.2, 132.8, 119.0, 81.4, 57.7, 36.6, 28.1 ppm. HRMS m/z (ESI): calcd. for C₁₇H₂₈O₄Na [M+Na]⁺ : 319.1880; found: 319.1870.



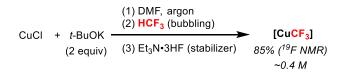
3e: Diphenyl diallylmalonate. Prepared according to reported method.¹³ To the solution of diphenyl malonate (512.5 mg, 2.0 mmol) in dry THF (4 mL) and was added NaH (60% in mineral oil, 320.0 mg, 8.0 mmol) portionwise at 0 °C under argon. The reaction mixture was stirred for 30 minutes at room temperature. Then, allyl bromide (604.9 mg, 5.0 mmol) was added to the mixture dropwise. The reaction was heated to 60 °C and stirred overnight. Upon reaction completed, the reaction mixture was quenched with aq. sat. NH₄Cl and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford **3e** as a yellowish oil (1.1 mmol, 368.0 mg, 55 %), $R_f = 0.34$ (hexane:EA = 10:1). ¹H NMR (500 MHz, CDCl₃): δ 7.44 (t, *J* = 7.9 Hz, 4H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.17 (d, *J* = 7.7 Hz, 4H), 5.96 (dq, *J* = 10.0, 7.5 Hz, 2H), 5.35 (dd, *J* = 26.1, 13.5 Hz, 4H), 2.99 (d, *J* = 7.5 Hz, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 169.1, 150.6, 131.8, 129.6, 126.3, 121.4, 120.2, 57.6, 37.2 ppm. HRMS m/z (ESI): calcd. for C₂₁H₂₀O₄Na [M+Na]⁺ : 359.1254; found: 359.1244.


Control Experiment

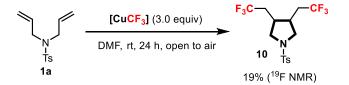

Under air, to a test tube equipped with a magnetic stir bar and 1,7-diene **5** (50.9 mg, 0.2 mmol) was added freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. After the reaction mixture was diluted by DCM, the crude yields of products were analyzed by ¹⁹F NMR (75 %) using PhCF₃ as the internal standard and GC-MS (dr = 2.1:1). The reaction mixture was quenched with aq. sat. EDTA·2Na and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford a mixture of **6** and monopentafluoroethylated by-products as a yellowish liquid, $R_f = 0.35$ (hexane:EA = 10:1). **Compound 6**: **Major diastereomer**: ¹⁹**F** NMR (471 MHz, CDCl₃): δ -87.00 (dd, *J* = 38.0, 4.8 Hz, 6F), -116.75 – -119.43 (m, 4F) ppm. **Minor diastereomer**: ¹⁹**F** NMR (471 MHz, CDCl₃): δ -87.00 (dd, *J* = 91.4, 4.9 Hz, 6F), -116.75 – -119.43 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₈H₂₂F₁₀O₄Na [M+Na]⁺ : 515.1251; found: 515.1241.

Under air, to a test tube equipped with a magnetic stir bar and enyne **8a** (65.1 mg, 0.2 mmol) was added freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. After the reaction mixture was diluted by DCM, the crude yields of products were analyzed by ¹⁹F NMR (33 %) using PhCF₃ as the internal standard and GC-MS (dr = 11:1). The reaction mixture was quenched with aq. sat. EDTA·2Na and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product **9a** (with some impurity) as a yellowish liquid (34.7 mg, ~0.06 mmol, ~31 %, dr > 20:1 by GC-MS), R_f = 0.20 (hexane:EA = 10:1). **Major diastereomer (with impurity)**: ¹**H NMR** (500 MHz, CDCl₃): δ 7.59 (d, *J* = 8.1 Hz, 2H), 7.44 – 7.38 (m, 3H), 7.34 (d, J = 8.0 Hz, 2H), 7.04 (br, 2H), 3.75 (dd, J = 22.8, 13.4 Hz, 2H), 3.65 – 3.57 (m, 1H), 3.30 (dt, J = 16.7, 3.2 Hz, 1H), 3.03 (dd, J = 10.2, 5.3 Hz, 1H), 2.45 (s, 3H), 2.42 – 2.10 (m, 2H) ppm. ¹³**C** NMR (126 MHz, CDCl₃): δ 150.7, 144.6, 133.0 (t, $J_{C-F} = 3.0$ Hz), 132.0, 130.1, 129.4, 129.2, 128.9, 127.9, 125.6 (t, $J_{C-F} = 22.1$ Hz), 53.0, 51.7, 35.4, 34.2 (t, $J_{C-F} = 21.9$ Hz), 21.7 ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹**F** NMR (471 MHz, CDCl₃): δ -83.46 (s, 3F), -87.12 (s, 3F), -111.65 (d, J = 25.9 Hz, 2F), -118.95 (dddd, J = 266.1, 33.9, 28.7, 6.6 Hz, 2F) ppm. HRMS m/z (ESI): calcd. for C₂₃H₁₉F₁₀NO₂SNa [M+Na]⁺ : 586.0869; found: 586.0860.

Under air, to a test tube equipped with a magnetic stir bar and enyne 8b (67.9 mg, 0.2 mmol) was added freshly prepared [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. After the reaction mixture was diluted by DCM, the crude yields of products were analyzed by ¹⁹F NMR (68 %) using PhCF₃ as the internal standard and GC-MS (dr = 6.5:1). The reaction mixture was quenched with aq. sat. EDTA·2Na and extracted with diethyl ether three times. The organic layers were combined, washed with water then brine, dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to afford the desired product 9b (with some impurity) as a yellowish liquid (64.3 mg, \sim 0.11 mmol, \sim 56 %, dr > 20:1 by GC-MS), R_f = 0.28 (hexane:EA = 10:1). Major diastereomer (with impurity): ¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 7.7 Hz, 5H), 7.12 (dd, J = 25.3, 7.3 Hz, 2H), 4.12 (ddt, J = 130.0, 16.2, 3.7 Hz, 2H), 3.12 (dd, J = 34.0, 9.6 Hz, 2H), 2.46 (s, 3H), 1.93 (ddd, J = 35.1, 15.5, 4.6 Hz, 1H), 1.61 (ddd, J = 34.3, 15.5, 6.8 Hz, 1H), 1.17 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 144.5, 131.6, 131.10 (t, *J_{C-F}* = 3.2 Hz), 130.97, 130.0, 129.5, 128.3, 128.2, 128.1, 125.1 (t, *J*_{C-F} = 22.9 Hz), 119.4 (qt, *J*_{C-F} = 287.1, 38.9 Hz), 118.5 (qt, *J*_{C-F} = 286.1, 35.7 Hz), 115.7 (qt, *J*_{C-F}) F = 256.3, 37.1 Hz), 113.3 (tq, J = 256.5, 38.4 Hz), 58.4 (d, J = 5.8 Hz), 51.4 (t, $J_{C-F} = 9.1$ Hz), 45.8, 36.3 = 19.3 Hz), 25.5 (d, J = 3.5 Hz), 21.7 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -82.86 (s, 3F), -87.86 (s, 3F), -111.38 (q, J = 267.9 Hz, 2F), -115.89 – -118.39 (m, 2F).ppm. **HRMS** m/z (ESI): calcd. for $C_{24}H_{21}F_{10}NO_2SNa$ [M+Na]⁺ : 600.1026; found: 600.1012.


Under air, to a test tube equipped with a magnetic stir bar was added diene **1a** (25.1 mg, 0.1 mmol), TEMPO (1.0 eq.: 15.6 mg; 4.5 eq.: 70.3 mg) and then freshly prepared [CuCF₂CF₃] (0.5 mL, 0.45 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. After the reaction mixture was diluted by DCM, the crude yields and dr ratio of **2a** and TEMPO-CF₂CF₃ were analyzed by ¹⁹F NMR using PhCF₃ as the internal standard and GC-MS. **TEMPO-CF₂CF₃**: ¹⁹F **NMR** (471 MHz, CDCl₃): δ -84.90 (s, 2F), -85.87 (s, 3F) ppm. The spectral data are in full accordance with the literature report.¹⁵

$$\begin{array}{c} \text{CuCl} + t\text{-BuOK} \\ (2 \text{ eq.}) \end{array} \xrightarrow{(1) \text{DMF } (2 \text{ M}), \text{ argon}} \\ (3) \text{Et}_3\text{N} \cdot 3\text{HF } (\textbf{0.33 eq.}), \text{ argon} \end{array} \xrightarrow{[CuCF_2CF_3]} \\ (3) \text{Et}_3\text{N} \cdot 3\text{HF } (\textbf{0.33 eq.}), \text{ argon} \\ (cmm) \text{(cmm)} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3]} \\ (cmm) \text{(cmm)} (cmm) \text{(cmm)} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3]} \\ (cmm) \text{(cmm)} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3]} \\ (cmm) \text{(cmm)} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3} \\ (cmm) \text{(cmm)} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3} \\ (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3} \\ (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3} (cmm) \xrightarrow{(1) \text{CuCF}_2CF_3}$$

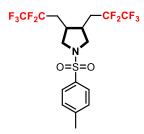

In a glove box, to a test tube was charged CuCl (200 mg, 2.0 mmol), *t*-BuOK (464 mg, 4.0 mmol) and a stirrer bar. The tube was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (1.0 mL) was added via syringe and the mixture was vigorously stirred at room temperature for 30 min. Then pentafluoroethane (HCF₂CF₃) was bubbled into the mixture by using a needle connected to the HCF₂CF₃ cylinder at room temperature for 5 min. After removing the HCF₂CF₃ inlet, the mixture was stirred for 5 min and Et₃N·3HF (107 μ L, 0.67 mmol) was slowly added under argon and the mixture was stirred for another 5 min. A slightly greyish yellow solution with white precipitates was obtained as the [CuCF₂CF₃] solution in DMF (~87%, ~1.0 M).

Under air, to a test tube equipped with a magnetic stir bar was added diene **1a** (25.1 mg, 0.1 mmol), Et₃N·3HF (48.9 μ L, 0.3 mmol) and then above freshly prepared [CuCF₂CF₃] (0.45 mL, 0.45 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. After the reaction mixture was diluted by DCM, the crude yield and dr ratio of **2a** was analyzed by ¹⁹F NMR (80 %) using PhCF₃ as the internal standard and GC-

According to literature procedure,¹⁶ in a glove box, to a test tube was charged CuCl (100 mg, 1.0 mmol), *t*-BuOK (232 mg, 2.0 mmol) and a stirrer bar. The tube was sealed with a septum, brought out of the glove box and put under an argon atmosphere. Degassed DMF (2.0 mL) was added via syringe and the mixture was vigorously stirred at room temperature for 30 min. Then fluoroform (HCF₃) was bubbled into the mixture by using a needle connected to the HCF₃ cylinder at room temperature for 5 min. After removing the HCF₃ inlet, the mixture was stirred for 5 min and Et₃N·3HF (124 μ L, 0.76 mmol) was slowly added under argon and the mixture was stirred for another 5 min. A slightly brown solution with white precipitates was obtained as the [CuCF₃] solution in DMF (~0.4 M).

Under air, to a test tube equipped with a magnetic stir bar and diene **1a** (25.1 mg, 0.1 mmol) was added above freshly prepared [CuCF₃] (0.75 mL, 0.3 mmol in DMF) at 0°C. Then the tube was warmed to room temperature and stirred for 24 h. After the reaction mixture was diluted by DCM, the crude yield of **10** was analyzed by ¹⁹F NMR (19 %) using PhCF₃ as the internal standard and GC-MS. ¹⁹F NMR (471 MHz, CDCl₃): δ -65.67 (t, *J* = 11.1 Hz, major diastereomer), -66.04 (t, *J* = 11.5 Hz, minor diastereomer) ppm. The spectral data are in full accordance with the literature report.¹⁷

X-ray Structure of 2c and 4g

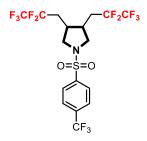

Crystals of 2c were obtained by slow diffusion from the solution in CHCl₃ layered *n*-hexane. The crystal was kept at 296 K during data collection. Crystallographic data for 2c has been deposited with the Cambridge Crystallographic Data Centre (CCDC) under deposition number 2151010.

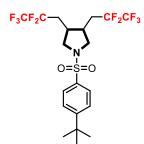
Identification code	CCDC 2151010					
Empirical formula	$C_{16}H_{14}F_{10}N_2O_4S$					
Formula weight	520.35					
Temperature	297(2) K					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group	P21/n					
Unit cell dimensions	a = 8.4047(8) Å	<i>α</i> = 90°.				
	b = 21.134(2) Å	$\beta = 101.665(3)^{\circ}.$				
	c = 11.6700(11) Å	$\gamma = 90^{\circ}$.				
Volume	2030.1(3) Å ³					
Z	$\begin{array}{lll} C_{16}H_{14}F_{10}N_{2}O_{4}S \\ 520.35 \\ 297(2) \ K \\ 0.71073 \ \AA \\ & \\ Monoclinic \\ P2_{1/n} \\ a = 8.4047(8) \ \AA \\ b = 21.134(2) \ \AA \\ c = 11.6700(11) \ \AA \\ & \gamma = 90^{\circ}. \end{array}$					
Density (calculated)	4					
Absorption coefficient	0.278 mm ⁻¹					
F(000)	1048	β = 101.665(3)°. γ = 90°.				
Crystal size	$0.500 \ x \ 0.400 \ x \ 0.300 \ mm^3$					
Theta range for data collection	1.927 to 25.249°.					
Index ranges	-10<=h<=10, -25<=k<=25, -14	4<=1<=14				
Reflections collected	28311					
Independent reflections	3620 [R(int) = 0.0272]					
Completeness to theta = 25.242°	98.6 %					
Absorption correction	multi-scan					
Max. and min. transmission	0.7456 and 0.6600					
Refinement method	Full-matrix least-squares on F	$^{14}F_{10}N_{2}O_{4}S$ 5 b) K 73 Å belinic $^{4047(8)} Å = 90^{\circ}.$ $^{1.134(2)} Å = 101.665(3)^{\circ}.$ $^{1.6700(11)} Å = \gamma = 90^{\circ}.$ $^{1(3)} Å^{3}$ $^{10}Mg/m^{3}$ $^{11}Mg/m^{3}$				
Data / restraints / parameters	3620 / 17 / 382					
Goodness-of-fit on F ²	1.049					
Final R indices [I>2sigma(I)]	R1 = 0.0786, wR2 = 0.2206					
R indices (all data)	R1 = 0.0912, wR2 = 0.2399					
Extinction coefficient	n/a					
Largest diff. peak and hole	0.376 and -0.400 e.Å ⁻³					

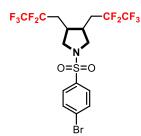
Crystals of **4g** were obtained by slow diffusion from the solution in $CHCl_3$ layered *n*-hexane. The crystal was kept at 296 K during data collection. Crystallographic data for **4g** has been deposited with the Cambridge Crystallographic Data Centre (CCDC) under deposition number 2151006.

Identification code	CCDC 2151006	
Empirical formula	$C_{16}H_{16}F_{10}O_2$	
Formula weight	430.29	
Temperature	296(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 9.9751(6) Å	α= 90°.
	b = 12.4668(7) Å	β= 99.824(3)°.
	c = 28.5860(18) Å	$\gamma = 90^{\circ}.$
Volume	3502.8(4) Å ³	
Z	8	
Density (calculated)	1.632 Mg/m ³	
Absorption coefficient	1.607 mm ⁻¹	
F(000)	1744	
Crystal size	0.400 x 0.300 x 0.200 mm ³	
Theta range for data collection	3.877 to 68.466°.	
Index ranges	-11<=h<=12, -14<=k<=15, -34	4<=1<=34
Reflections collected	52073	
Independent reflections	6392 [R(int) = 0.0477]	
Completeness to theta = 67.679°	99.3 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.7531 and 0.5592	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	6392 / 114 / 608	
Goodness-of-fit on F ²	1.076	
Final R indices [I>2sigma(I)]	R1 = 0.0887, wR2 = 0.2552	
R indices (all data)	R1 = 0.0939, wR2 = 0.2642	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.801 and -0.630 e.Å ⁻³	

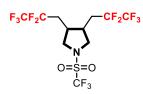
Characterization Data of Products

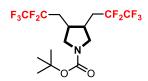

2a: 3,4-bis(2,2,3,3,3-pentafluoropropy)-1-tosylpyrrolidine. Prepared according to the general procedure. Reaction was run using **1a** (50.3 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (0.12 mmol, 58.4 mg, 60 %, dr = 4.3:1 by GC-MS), $R_f = 0.19$ (hexane:EA = 10:1). **Major diastereomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 3.46 (dd, J = 10.4, 6.0 Hz, 2H), 3.22 (dd, J = 10.5, 5.4 Hz, 2H), 2.61 – 2.54 (m, 2H), 2.43 (s, 3H), 1.96 – 1.68 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 144.3, 133.5, 130.1, 127.4, 118.8 (qt, $J_{CF} = 285.3$, 36.0 Hz), 115.3 (tq, $J_{CF} = 253.6$, 38.1 Hz), 51.5 (d, J = 3.3 Hz), 34.5, 28.4 (t, $J_{C-F} = 21.7$ Hz), 21.6 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.91 (s, 6F), -118.58 (dddd, J = 296.0, 268.1, 28.5, 7.9 Hz, 4F) ppm. Minor diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 2.64 – 0.44 (s, 3H), 2.18 – 2.07 (m, 2H), 1.96 – 1.68 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 144.3, 132.6, 130.1, 127.4, 5.2 Hz, 2H), 2.97 (dd, J = 10.5, 7.4 Hz, 2H), 2.44 (s, 3H), 2.18 – 2.07 (m, 2H), 1.96 – 1.68 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 144.3, 132.6, 130.1, 127.7, 52.4 (d, J = 4.0 Hz), 37.2, 32.9 (t, $J_{C-F} = 21.9$ Hz), 21.7 ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.83 (s, 6F), -118.35 (dddd, J = 266.3, 37.3, 29.8, 8.0 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₇H₁₇F₁₀NO₂SNa [M+Na]⁺ : 512.0713; found: 512.0709.

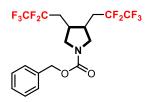

2b: 1-((4-methoxyphenyl)sulfonyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using 1b (53.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (0.10 mmol, 52.9 mg, 52 %, dr > 20:1 by GC-MS), $R_f = 0.21$ (hexane:EA = 4:1). ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, J = 7.5 Hz, 2H), 7.01 (d, J = 7.5 Hz, 2H), 3.87 (s, 3H), 3.45 (dd, J = 10.2, 5.8 Hz, 2H), 3.22 (dd, J = 10.4, 4.6 Hz, 2H), 2.00 – 1.72 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 163.4, 129.5, 128.1, 118.8 (qt, $J_{C-F} = 285.5$, 35.8 Hz), 115.4 (tq, $J_{C-F} = 253.4$, 38.2 Hz), 114.6, 55.8, 51.6, 34.5, 28.4 (t, $J_{C-F} = 21.7$ Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.89 (s, 6F), -117.43 – -119.66 (m, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₇H₁₇F₁₀NO₃SNa [M+Na]⁺: 528.0662; found: 528.0659.


2c: 1-((4-nitrophenyl)sulfonyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1c** (56.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (0.10 mmol, 49.7 mg, 48 %, dr > 20:1 by GC-MS), $R_f = 0.47$ (hexane:EA = 4:1). ¹H NMR (500 MHz, CDCl₃): δ 8.40 (d, *J* = 8.8 Hz, 2H), 8.03 (d, *J* = 8.8 Hz, 2H), 3.48 (dd, *J* = 10.3, 6.0 Hz, 2H), 3.33 (dd, *J* = 10.4, 5.4 Hz, 2H), 2.68 – 2.61 (m, 2H), 2.08 – 1.95 (m, 2H), 1.91 – 1.78 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 150.5, 142.7, 128.6, 124.8, 118.8 (qt, *J*_{C-F} = 285.3, 35.7 Hz), 115.3 (tq, *J*_{C-F} = 253.8, 38.2 Hz), 51.5 (d, *J* = 3.6 Hz), 34.7, 28.4 (t, *J*_{C-F} = 21.8 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.91 (s, 6F), -118.45 (dddd, *J* = 294.7, 267.0, 28.5, 7.6 Hz, 4F) ppm. HRMS m/z (APCI): calcd. for C₁₆H₁₅F₁₀N₂O₄S [M+H]⁺: 521.0587; found: 521.0589.

2d: 3,4-bis(2,2,3,3,3-pentafluoropropyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using 1d (61.1 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (0.10 mmol, 54.9 mg, 51 %, dr > 20:1 by GC-MS), $R_f = 0.27$ (hexane:EA = 10:1). ¹H NMR (500 MHz, CDCl₃): δ 7.97 (d, J = 8.1 Hz, 2H), 7.83 (d, J = 8.1 Hz, 2H), 3.49 (dd, J = 10.2, 5.9 Hz, 2H), 3.29 (dd, J = 10.3, 5.1 Hz, 2H), 2.67 – 2.59 (m, 2H), 2.04 – 1.91 (m, 2H), 1.85 – 1.70 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 140.4, 135.0 (q, $J_{C-F} = 33.2$ Hz), 127.8, 126.68 (q, $J_{C-F} = 3.4$ Hz), 123.27 (q, $J_{C-F} = 272.9$ Hz), 118.8 (qt, $J_{C-F} = 285.5$, 35.9 Hz), 115.3 (tq, $J_{C-F} = 253.4$, 38.2 Hz), 51.46 (d, J = 3.5 Hz), 34.6, 28.34 (t, $J_{C-F} = 21.7$ Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -64.45 (s, 3F), -86.92 (s, 6F), -118.50 (dddd, J = 266.8, 35.5, 28.5, 7.4 Hz, 4F) ppm. HRMS m/z (APCI): calcd. for C₁₇H₁₅F₁₃NO₂S [M+H]⁺: 544.0610; found: 544.0608.


2e: 1-((4-(*tert*-butyl)phenyl)sulfonyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using 1e (58.7 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (0.12 mmol, 62.0 mg, 58 %, dr = 4.8:1 by GC-MS), $R_f = 0.26$ (hexane/EA = 10:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 3.50 (dd, *J* = 10.2, 5.9 Hz, 2H), 3.23 (dd, *J* = 10.4, 5.2 Hz, 2H), 2.63 – 2.55 (m, 2H), 2.00 – 1.87 (m, 2H), 1.81 – 1.67 (m, 2H), 1.33 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 157.1, 133.5, 127.3, 126.5, 118.8 (qt, *J*_{C-F} = 285.5, 35.8 Hz), 115.4 (tq, *J*_{C-F} = 253.4, 38.1 Hz), 51.5 (d, *J* = 3.1 Hz), 35.3, 34.5, 31.1, 28.4 (t, *J*_{C-F} = 21.7 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 3.00 (dd, *J* = 10.1, 7.0 Hz, 2H), 2.17 – 2.11 (m, 2H), 2.19 – 2.06 (m, 2H), 2.00 – 1.87 (m, 2H), 1.34 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 3.67 – 3.61 (m, 2H), 3.00 (dd, *J* = 10.1, 7.0 Hz, 2H), 2.17 – 2.11 (m, 2H), 2.19 – 2.06 (m, 2H), 2.00 – 1.87 (m, 2H), 1.34 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 157.2, 133.0, 127.6, 126.4, 52.4 (d, *J* = 3.9 Hz), 37.2, 35.3, 32.9 (t, *J*_{C-F} = 21.9 Hz), 31.1 ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.78 (s, 6F), -118.30 (dddd, *J* = 275.1, 266.2, 29.2, 7.8 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₂₀H₂₃F₁₀NO₂SNa [M+Na]⁺ : 554.1182; found: 554.1177.

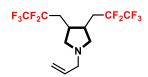

2f: 1-((4-bromophenyl)sulfonyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1f** (63.2 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (60.8 mg, 0.11 mmol, 55 %, dr > 20:1 by GC-MS), $R_f = 0.21$ (hexane:EA = 10:1). ¹H NMR (500 MHz, CDCl₃): δ 7.70 (s, 4H), 3.45 (dd, J = 10.3, 5.9 Hz, 2H), 3.25 (dd, J = 10.4, 5.2 Hz, 2H), 2.60 (dt, J = 15.6, 7.6 Hz, 2H), 2.05 – 1.90 (m, 2H), 1.89 – 1.74 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 135.7, 132.8, 128.9, 128.4, 118.8 (qt, $J_{C-F} = 285.2$, 35.5 Hz), 115.3 (tq, $J_{C-F} = 253.6$, 38.2 Hz), 51.5 (d, J = 3.4 Hz), 34.6, 28.4 (t, $J_{C-F} = 21.7$ Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.91 (s, 6F), -118.54 (dddd, J = 266.8, 35.7, 28.4, 7.7 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₆H₁₄F₁₀NO₂SBrNa [M+Na]⁺ : 577.9641; found: 577.9637.


2g: 1-((2-bromophenyl)sulfonyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1g** (63.2 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (68.8 mg, 0.12 mmol, 62 %, dr = 4.3:1 by GC-MS), $R_f = 0.21$ (hexane:EA = 10:1). **Major diastereomer:** ¹**H NMR** (500 MHz, CDCl₃): δ 8.13 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.44 (dt, J = 24.7, 7.5 Hz, 2H), 3.65 (dd, J = 9.9, 5.9 Hz, 2H), 3.34 (dd, J = 10.1, 5.1 Hz, 2H), 2.82 – 2.71 (m, 2H), 2.13 – 2.00 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 138.1, 135.8, 134.1, 132.5, 127.9, 120.5, 119.0 (qt, $J_{CF} = 285.5$, 35.8 Hz), 115.4 (tq, $J_{C-F} = 253.5$, 38.0 Hz), 51.2 (d, J = 3.3 Hz), 34.9, 28.4 (t, $J_{C-F} = 21.8$ Hz) ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ -86.89 (s, 6F), -118.50 (dddd, J = 266.8, 38.2, 21.8, 14.2 Hz, 4F) ppm. **Minor diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 1.38 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.44 (dt, J = 24.7, 7.5 Hz, 2H), 3.20 – 3.13 (m, 2H), 2.34 – 2.26 (m, 2H), 2.33 – 2.16 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 138.0, 135.8, 134.1, 132.5, 127.9, 120.5 Hz, 2Hz, 9pm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹**F NMR** (471 MHz, CDCl₃): δ -86.79 (s, 6F), -116.93 – -119.55 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₆H₁₄F₁₀NO₂SBrNa [M+Na]⁺ : 577.9641; found: 577.9634.


2h: 3,4-bis(2,2,3,3,3-pentafluoropropyl)-1-((trifluoromethyl)sulfonyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1h** (91.7 mg, 0.4 mmol) and [CuCF₂CF₃] (2.0 mL, 1.8 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a yellowish liquid (71.1 mg, 0.15 mmol, 38 %, dr = 4.0:1 by GC-MS), $R_f = 0.09$ (hexane:EA = 40:1). **Major diastereomer**: **¹H NMR** (500 MHz, CDCl₃): δ 3.77 (dd, *J* = 10.1, 5.9 Hz, 2H), 3.50 (dd, *J* = 10.4, 5.3 Hz, 2H), 2.92 – 2.81 (m, 2H), 2.21 – 1.97 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 120.3 (q, *J*_{C-F} = 323.0 Hz), 118.8 (qt, *J*_{C-F} = 285.2, 35.7 Hz), 115.3 (tq, *J*_{C-F} = 253.8, 38.2 Hz), 52.2 (d, *J*_{C-F} = 3.8 Hz), 34.9, 28.3 (t, *J*_{C-F} = 21.9 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -76.25 (s, 3F), -86.85 (s, 6F), -118.42 (dddd, *J* = 274.7, 268.1, 27.7, 7.9 Hz, 4F) ppm. **Minor diastereomer**: ¹H NMR (500 MHz, CDCl₃): δ 3.98 (t, *J* = 7.8 Hz, 2H), 3.30 (t, *J* = 9.2 Hz, 2H), 2.40 – 2.33 (m, 2H), 2.20 – 1.97 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 52.9 (d, *J*_{C-F} = 4.8 Hz), 37.6, 32.3 (t, *J*_{C-F} = 22.1 Hz) ppm (CF₃, CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -76.18 (s, 3F), -86.73 (s, 6F) -116.70 – -119.63 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₁H₉F₁₃NO₂S [M-H]⁻ : 466.0152; found: 466.0153.

2i: *tert*-butyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine-1-carboxylate. Prepared according to the general procedure. Reaction was run using 1i (39.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a colorless liquid (67.2 mg, 0.15 mmol, 77 %, dr = 2.0:1 by GC-MS), $R_f = 0.31$ (hexane:EA = 10:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 3.54 (ddd, *J* = 35.8, 10.9, 5.8 Hz, 2H), 3.33 – 3.22 (m, 2H), 2.72 – 2.63 (m, 2H), 2.30 – 1.90 (m, 4H), 1.45 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 154.6, 118.98 (qt, *J*_{C-F} = 285.4, 35.9 Hz), 115.6 (tqd , *J*_{C-F} = 253.4, 37.9, 11.4 Hz), 80.2, 49.9 (d, *J* = 58.6 Hz), 34.17 (d, *J* = 82.5 Hz), 28.8 (t, *J*_{C-F} = 21.6 Hz), 28.5 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.68 (d, *J* = 30.1 Hz, 6F), -116.61 – -119.56 (m, 4F) ppm. Minor diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 3.82 (d, *J* = 51.9 Hz, 2H), 3.06 (d, *J* = 7.9 Hz, 2H), 2.30 – 1.90 (m, 6H), 1.45 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 80.1, 50.8 (d, *J* = 33.5 Hz), 36.9 (d, *J* = 98.4 Hz), 32.6 (t, *J*_{C-F} = 22.0 Hz), 28.6 ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.60 (d, *J* = 11.4 Hz, 6F), -116.61 – -119.56 (m, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₅H₁₉F₁₀NO₂Na [M+Na]⁺ : 458.1148; found: 458.1146.

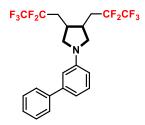
2j: benzyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine-1-carboxylate. Prepared according to the general procedure. Reaction was run using **1j** (46.3 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a colorless liquid (74.5 mg, 0.16 mmol, 79 %, dr = 2.1:1 by GC-MS), $R_f = 0.22$ (hexane:EA = 10:1). **Major diastereomer:** ¹**H NMR** (500 MHz, CDCl₃): δ 7.43 – 7.29 (m, 5H), 5.15 (p, *J* = 12.3 Hz, 2H), 3.64 (ddd, *J* = 20.4, 11.2, 6.2 Hz, 2H), 3.38 (dd, *J* = 11.0, 4.8 Hz, 2H), 2.79 – 2.65 (m, 2H), 2.36 – 1.90 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 154.9, 136.6, 128.6, 128.1, 118.9 (qt, *J*_{C-F} = 286.2, 36.3 Hz), 115.5 (tqd, *J*_{C-F} = 251.2, 36.2, 7.3 Hz), 67.2, 50.0 (d, *J* = 35.9 Hz), 34.2 (d, *J* = 91.4 Hz), 28.6 (td, *J*_{C-F} = 21.7, 13.6 Hz) ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ 7.43 – 7.29 (m, 5H), 5.22 – 5.08 (m, 2H), 3.99 – 3.86 (m, 2H), 3.15 (t, *J* = 9.9 Hz, 2H), 2.36 – 1.90 (m, 6H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 154.4, 136.7, 128.2, 128.2, 67.2, 50.9 (d, *J* = 48.3 Hz), 36.9 (d, *J* = 102.8 Hz), 32.5 (t, *J*_{C-F} = 22.1 Hz) ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹**F NMR** (471 MHz, CDCl₃): δ -86.60 (d, *J* = 11.9 Hz, 6F), -116.55 – -119.52 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₈H₁₇F₁₀NO₂Na [M+Na]⁺ : 492.0992; found: 492.0982.



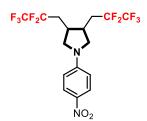
2k: 3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidin-1-yl)(phenyl)methanone. Prepared according to the general procedure. Reaction was run using **1k** (40.3 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a yellowish liquid (59.8 mg, 0.14 mmol, 68 %, dr = 2.6:1 by GC-MS), $R_f = 0.13$ (hexane:EA = 5:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 7.52 – 7.38 (m, 5H), 3.86 (dd, *J* = 12.6, 7.2 Hz, 1H), 3.66 (dd, *J* = 11.2, 5.8 Hz, 1H), 3.57 (dd, *J* = 12.6, 7.4 Hz, 1H), 3.47 (dd, *J* = 11.2, 4.7 Hz, 1H), 2.88 – 2.79 (m, 1H), 2.75 – 2.67 (m, 1H), 2.37 – 1.84 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 135.9, 130.6, 128.6, 127.2, 118.9 (qtd, *J*_{C-F} = 285.2, 35.8, 15.2 Hz), 115.5 (tq, *J*_{C-F} = 253.4, 38.4 Hz), 51.7 (dd, *J* = 419.8, 2.5 Hz), 34.2 (d, *J* = 193.8 Hz), 28.5 (dt, *J*_{C-F} = 139.3, 21.6 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ 7.52 – 7.38 (m, 5H), 4.11 (td, *J* = 11.2, 4.2 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.46 – 3.40 (m, 1H), 3.30 (t, *J* = 10.1 Hz, 1H), 2.37 – 1.84 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 7.52 – 7.38 (m, 5H), 4.11 (td, *J* = 11.2, 4.2 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.46 – 3.40 (m, 1H), 3.30 (t, *J* = 372.5, 2.0 Hz), 36.9 (d, *J* = 208.7 Hz), 32.4 (dt, *J*_{C-F} = 74.5, 22.0 Hz) ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.75 (d, *J* = 33.6 Hz, 6F), -116.61 – -119.79 (m, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₇H₁₅F₁₀NONa [M+Na]⁺ : 462.0886; found: 462.0882.

21: 3,4-bis(**2,2,3,3,3-pentafluoropropyl)pyrrolidin-1-yl)-2,2-dimethylpropan-1-one.** Prepared according to the general procedure. Reaction was run using **11** (36.3 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a colorless liquid (38.4 mg, 0.09 mmol, 46 %, dr > 20:1 by GC-MS), $R_f = 0.30$ (hexane:EA = 4:1). ¹H NMR (500 MHz, CDCl₃): δ 3.72 (dd, *J* = 11.3, 6.4 Hz, 2H), 3.31 (br, 1H), 2.71 (s, 2H), 2.27 – 1.65 (m, 5H), 1.24 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 177.3, 118.9 (qt, *J*_{C-F} = 285.4, 35.8 Hz), 115.6 (tq, *J*_{C-F} = 289.8, 37.7 Hz), 51.7, 39.0, 33.9 (d, *J* = 398.4 Hz), 27.4 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -85.72 (s, 6F), -116.99 (dt, *J* = 507.2, 281.0 Hz, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₅H₁₉F₁₀NONa [M+Na]⁺ : 442.1199; found: 442.1191.

2m: 1-benzyl-3,4-bis(**2,2,3,3,3-pentafluoropropyl)pyrrolidine.** Prepared according to the general procedure. Reaction was run using **1m** (37.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a yellowish liquid (45.9 mg, 0.11 mmol, 54 %, dr = 2.1:1 by GC-MS), $R_f = 0.37$ (hexane:EA = 10:1). **Major diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 7.37 – 7.27 (m, 5H), 3.70 (s, 2H), 2.98 (t, *J* = 7.6 Hz, 2H), 2.78 – 2.68 (m, 2H), 2.52 – 2.45 (m, 2H), 2.30 – 1.97 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 138.3, 128.8, 128.6, 127.4, 119.1 (qt, *J*_{C-F} = 288.3, 37.3 Hz), 115.8 (tq, *J*_{C-F} = 254.2, 38.4 Hz), 60.0, 58.6, 33.4, 30.3 (t, *J*_{C-F} = 21.3 Hz) ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ 7.37 – 7.27 (m, 5H), 3.63 (d, *J* = 3.6 Hz, 2H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.42 (dd, *J* = 8.9, 4.3 Hz, 2H), 2.30 – 1.97 (m, 6H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 138.0, 129.0, 128.9, 127.5, 59.8, 59.5, 37.4, 34.8 (t, *J*_{C-F} = 21.7 Hz) ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹**F NMR** (471 MHz, CDCl₃): δ -86.90 (s, 6F), -117.58 – -119.62 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₇H₁₈F₁₀N [M+H]⁺ : 426.1274; found: 426.1263.

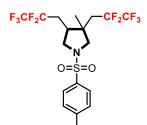


2n: 1-allyl-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1n** (54.9 mg, 0.4 mmol) and [CuCF₂CF₃] (2.0 mL, 1.8 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a colorless liquid (25.9 mg, 0.07 mmol, 17 %, dr > 20:1 by GC-MS), $R_f = 0.13$ (hexane:EA = 10:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 5.86 (ddt, *J* = 16.8, 10.2, 6.4 Hz, 1H), 5.17 (dd, *J* = 37.0, 13.6 Hz, 2H), 3.14 (d, *J* = 6.4 Hz, 2H), 2.97 (dd, *J* = 8.4, 6.8 Hz, 2H), 2.77 – 2.63 (m, 2H), 2.41 (dd, *J* = 9.3, 5.8 Hz, 2H), 2.17 – 1.94 (m, 4H) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.93 (s, 6F), -118.65 (dddd, *J* = 266.0, 36.8, 27.2, 10.1 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₃H₁₆F₁₀N [M+H]⁺ : 376.1118; found: 376.1107.



20: 1-(2,6-diisopropylphenyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **10** (51.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane) and obtained as a yellowish liquid (83.3 mg, 0.17 mmol, 84 %, dr = 3.4:1 by GC-MS), $R_f = 0.52$ (hexane). **Major diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 7.24 (t, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 2H), 3.51 (dd, *J* = 8.5, 6.1 Hz, 2H), 3.44 – 3.33 (m, 1H), 3.28 – 3.13 (m, 3H), 2.98 – 2.87 (m, 2H), 2.42 – 2.13 (m, 4H), 1.26 (ddd, *J* = 20.1, 14.9, 6.0 Hz, 12H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 149.7, 140.9, 127.2, 123.7, 119.2 (qt, *J*_{C-F} = 285.2, 36.1 Hz), 116.0 (tq, *J*_{C-F} = 252.8, 37.7 Hz), 57.2 (d, *J* = 2.9 Hz), 35.7, 29.3 (t, *J*_{C-F} = 21.6 Hz), 28.4, 24.5 (d, *J* = 33.7 Hz) ppm. ¹⁹**F NMR**

(471 MHz, CDCl₃): δ -86.89 (s, 6F), -118.47 (dddd, J = 276.7, 266.3, 28.3, 9.0 Hz, 4F) ppm. **Minor diastereomer**: ¹H NMR (500 MHz, CDCl₃): δ 7.27 – 7.21 (m, 1H), 7.18 – 7.12 (m, 2H), 3.59 (d, J = 6.8 Hz, 2H), 3.29 – 3.15 (m, 1H), 3.09 – 2.99 (m, 3H), 2.54 – 2.44 (m, 2H), 2.42 – 2.13 (m, 4H), 1.43 – 1.17 (m, 12H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 150.2, 127.3, 125.0, 124.4, 58.7, 38.5, 33.6 (t, $J_{C-F} = 21.8$ Hz), 28.3, 24.6 (d, J = 66.1 Hz) ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.73 (s, 6F), -117.09 – -119.45 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₂₂H₂₈F₁₀N [M+H]⁺ : 496.2057; found: 496.2050.



2p: 1-([1,1'-biphenyl]-3-yl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1p** (50.0 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a yellowish solid (61.7 mg, 0.13 mmol, 63 %, dr = 2.1:1 by GC-MS), $R_f = 0.17$ (hexane). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, *J* = 7.9 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.00 (d, *J* = 7.1 Hz, 1H), 6.78 (s, 1H), 6.64 – 6.58 (m, 1H), 3.59 (dd, *J* = 9.3, 6.0 Hz, 2H), 3.40 (dd, *J* = 9.5, 4.8 Hz, 2H), 2.94 – 2.82 (m, 2H), 2.49 – 2.08 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 147.6, 142.8, 142.0, 129.8, 128.8, 127.5, 119.1 (qt, *J*_{C-F} = 285.2, 35.9 Hz), 115.8 (tq, *J*_{C-F} = 253.2, 37.8 Hz), 116.1, 110.9, 110.7, 52.1 (d, *J* = 2.7 Hz), 34.5, 29.2 (t, *J*_{C-F} = 21.7 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.80 (s, 6F), -118.37 (dddd, *J* = 276.4, 267.0, 25.8, 11.4 Hz, 4F) ppm. Minor diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 7.66 – 7.58 (m, 2H), 7.49 – 7.43 (m, 2H), 7.41 – 7.33 (m, 2H), 7.03 – 6.97 (m, 1H), 6.80 (s, 1H), 6.64 – 6.58 (m, 1H), 3.85 – 3.76 (m, 2H), 3.25 – 3.18 (m, 2H), 2.49 – 2.08 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 147.2, 142.7, 142.0, 129.8, 128.8, 127.4, 116.3, 111.1, 110.9, 53.2, 37.2, 33.17 (t, *J*_{C-F} = 21.9 Hz) ppm (CF₂CF₃ peaks cannot be identified in detail). ¹⁹F NMR (471 MHz, CDCl₃): δ -86.73 (s, 6F), -116.87 – -119.49 (m, 4F) ppm. HRMS m/z (APCI): calcd. for C₂₂H₂₀F₁₀N [M+H]⁺ : 488.1431; found: 488.1430.

2q: 1-(4-nitrophenyl)-3,4-bis(2,2,3,3,3-pentafluoropropyl)pyrrolidine. Prepared according to the general procedure. Reaction was run using **1q** (43.7 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as two yellowish liquids (major diastereomer: 39.5 mg; minor diastereomer: 28.9 mg. total 68.4 mg, 0.15 mmol, 75 %, dr = 1.4:1 by isolation), $R_f = 0.21, 0.24$ (hexane:EA = 10:1). **Major diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 8.10 (d,

J = 9.1 Hz, 2H), 6.49 (d, *J* = 9.1 Hz, 2H), 3.64 (dd, *J* = 10.1, 5.9 Hz, 2H), 3.41 (dd, *J* = 10.3, 5.0 Hz, 2H), 2.98 – 2.89 (m, 2H), 2.27 – 2.02 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 151.5, 137.9, 126.4, 118.9 (qt, *J*_{C-F} = 285.4, 35.3 Hz), 115.6 (tq, *J*_{C-F} = 253.2, 38.0 Hz), 110.8, 52.0 (d, *J* = 3.3 Hz), 34.4, 29.0 (t, *J*_{C-F} = 21.7 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.81 (s, 6F), -118.32 (dddd, *J* = 266.9, 35.8, 28.0, 8.3 Hz, 4F) ppm. Minor diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, *J* = 9.2 Hz, 2H), 6.50 (d, *J* = 9.3 Hz, 2H), 3.88 – 3.81 (m, 2H), 3.26 – 3.20 (m, 2H), 2.49 – 2.31 (m, 4H), 2.22 – 2.08 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 150.9, 137.8, 126.4, 118.9 (qt, *J*_{C-F} = 285.5, 35.7 Hz), 115.4 (tq, *J*_{C-F} = 253.1, 38.2 Hz), 110.7, 52.9 (d, *J* = 4.2 Hz), 37.1, 32.7 (t, *J*_{C-F} = 22.1 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.71 (s, 6F), -118.15 (dddd, *J* = 274.8, 266.1, 29.8, 7.1 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₆H₁₄F₁₀N₂O₂Na [M+Na]⁺ : 479.0788; found: 479.0776.

2r: 3-methyl-3,4-bis(2,2,3,3,3-pentafluoropropyl)-1-tosylpyrrolidine. Prepared according to the general procedure. Reaction was run using 1r (53.1 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a yellowish solid $(83.0 \text{ mg}, 0.16 \text{ mmol}, 82\%, dr = 1.9:1 \text{ by GC-MS}), R_f = 0.51 \text{ (hexane:EA} = 4:1). Major diastereomer: ¹H NMR$ (500 MHz, CDCl₃): δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 3.63 (d, *J* = 10.3 Hz, 2H), 3.02 (dd, *J* = 96.4, 9.8 Hz, 2H), 2.42 (s, 3H), 2.14 – 1.64 (m, 5H), 1.19 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 144.1, 133.7, 130.0, 127.4, 123.04 – 112.71 (m, CF₂CF₃ peaks), 57.3 (d, J = 5.9 Hz), 50.9 (d, J = 4.5 Hz), 42.7, 42.2, 31.1 (t, J_{C-F} = 20.2 Hz), 28.8 (t, J_{C-F} = 21.9 Hz), 21.9 (d, J = 3.5 Hz), 21.6 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.81 (s, 3F), -87.72 (s, 3F), -114.89 (ddd, *J* = 264.8, 34.2, 3.5 Hz, 1F), -117.07 (ddd, *J* = 265.6, 31.1, 5.5 Hz, 1F), -118.12 (ddd, *J* = 264.8, 32.2, 4.9 Hz, 1F), -120.01 (ddd, *J* = 265.3, 27.8, 8.2 Hz, 1F) ppm. **Minor diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 7.71 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.69 – 3.45 (m, 2H), 3.15 – 2.99 (m, 2H), 2.43 (s, 3H), 2.14 – 1.64 (m, 5H), 0.89 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 144.1, 133.7, 130.0, 127.5, 122.59 – 112.61 (m, CF₂CF₃ peaks), 58.9 (d, J = 6.4 Hz), 50.2 (d, J = 4.7 Hz), 41.7, 40.8, 37.4 (t, $J_{C-F} = 20.9 \text{ Hz}$, 29.0 (t, J = 22.0 Hz), 21.6, 18.1 (d, J = 3.9 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.77 (s, 3F), -87.56 (s, 3F), -114.62 (ddd, J = 264.9, 35.7, 6.0 Hz, 1F), -116.62 - -117.30 (m, 1F), -118.43 (dd, J = 264.8, 33.8 Hz, 1F), -119.90 (ddd, J = 265.4, 28.6, 8.3 Hz, 1F) ppm. **HRMS** m/z (ESI): calcd. for C₁₈H₁₉F₁₀NO₂SNa [M+Na]⁺ : 526.0869; found: 526.0857.

2s: 3,4-bis(**2,2,3,3,3-pentafluoropropyl)tetrahydrofuran.** Prepared according to the general procedure. Reaction was run using **1s** (19.6 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The crude product was analyzed by ¹⁹F NMR (79 %) using PhCF₃ as the internal standard and GC-MS (dr = 4.2:1). **Major diastereomer**: ¹⁹F NMR (471 MHz, CDCl₃): δ -86.85 (s, 6F), -118.29 (dddd, *J* = 265.4, 37.1, 29.1, 8.5 Hz, 4F) ppm. **Minor diastereomer**: ¹⁹F NMR (471 MHz, CDCl₃): δ -86.82 (s, 6F), -118.19 (dddd, *J* = 274.9, 265.7, 30.0, 8.3 Hz, 4F) ppm.

4a: diethyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)cyclopentane-1,1-dicarboxylate. Prepared according to the general procedure. Reaction was run using **3a** (48.1 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/DCM) and obtained as a yellowish liquid (75.7 mg, 0.16 mmol, 79 %, dr = 11:1 by GC-MS), R_f = 0.65 (hexane:DCM = 1:1 twice). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 4.19 (qn, J = 10.1 Hz, 4H), 2.55 – 2.52 (m, 4H), 2.26 – 2.23 (m, 2H), 2.05 – 1.97 (m, 4H), 1.24 (td, *J* = 7.1, 3.7 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 172.3 (d, *J* = 68.6 Hz), 119.1 (qt, *J*_{C-F} = 273.3, 36.2 Hz), 115.8 (tq, *J*_{C-F} = 252.3, 37.7 Hz), 62.1 (d, *J* = 13.6 Hz), 58.2, 38.8 (d, *J* = 2.2 Hz), 35.4, 29.6 (t, *J*_{C-F} = 21.6 Hz), 14.1(d, *J* = 7.8 Hz) ppm. ¹⁹F NMR (377 MHz, CDCl₃): δ -86.94 (s, 6F), -118.35 (dddd, *J* = 279.6, 266.6, 23.4, 14.4 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₇H₂₀F₁₀O₄Na [M+Na]⁺ : 501.1094; found: 501.1091.

4b: dimethyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)**cyclopentane-1,1-dicarboxylate.** Prepared according to the general procedure. Reaction was run using **3b** (42.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/DCM) and obtained as a yellowish liquid (72.0 mg, 0.16 mmol, 80 %, dr = 10:1 by GC-MS), R_f = 0.63 (hexane:DCM = 1:1 twice). **Major diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 3.74 (d, *J* = 6.2 Hz, 6H), 2.56 – 2.53 (m, 4H), 2.28 – 2.25 (m, 2H), 2.05 – 1.97 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 172.7 (d, *J* = 68.2 Hz), 119.1 (qt, *J_{C-F}* = 285.2, 35.8 Hz), 115.8 (tq, *J_{C-F}* = 252.3, 37.7 Hz), 58.1, 53.2 (d, *J* = 1.4 Hz), 38.9 (d, *J* = 2.2 Hz), 35.4, 29.6 (t, *J_{C-F}* = 21.6 Hz) ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ -86.97 (s, 6F), -117.13 – -119.64 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₁₅H₁₆F₁₀O₄Na [M+Na]⁺ : 473.0778; found: 473.0779.

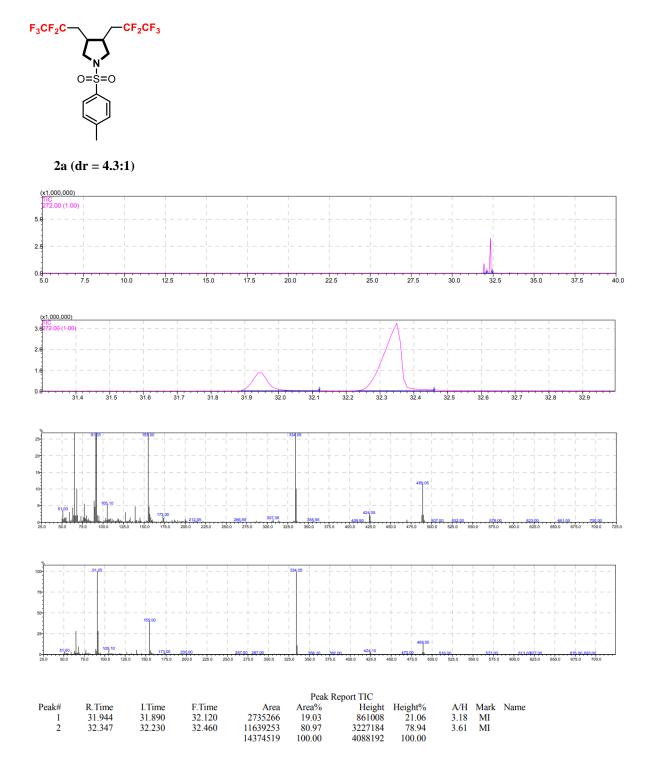
4c: diisopropyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)cyclopentane-1,1-dicarboxylate. Prepared according to the general procedure. Reaction was run using 3c (53.7 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/DCM) and obtained as a yellowish liquid (64.9 mg, 0.13 mmol, 64 %, dr = 11:1 by GC-MS), R_f = 0.38 (hexane:DCM = 2:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 5.03 (dq, J = 12.3, 6.2 Hz, 2H), 2.59 – 2.46 (m, 4H), 2.22 (dd, J = 13.8, 6.0 Hz, 2H), 2.08 – 1.93 (m, 4H), 1.21 (dd, J = 6.3, 4.1 Hz, 12H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 171.9 (d, J = 69.1 Hz), 119.1 (qt, $J_{C-F} = 285.5$, 36.2 Hz), 115.9 (tq, $J_{C-F} = 253.2$, 37.6 Hz), 69.5 (d, J = 24.8 Hz), 58.3, 38.7 (d, J = 2.1 Hz), 35.4, 29.6 (t, $J_{C-F} = 21.5$ Hz), 21.5 (d, J = 6.8 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.92 (s, 6F), -118.31 (dddd, J = 280.5, 266.4, 24.5, 13.2 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₉H₂₄F₁₀O₄Na [M+Na]⁺: 529.1407; found: 529.1401.

4d: di-*tert*-butyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)cyclopentane-1,1-dicarboxylate. Prepared according to the general procedure. Reaction was run using 3d (59.3 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/DCM) and obtained as a yellowish solid (67.0 mg, 0.13 mmol, 63 %, dr = 11:1 by GC-MS), R_f = 0.48 (hexane:DCM = 2:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 2.56 – 2.48 (m, 2H), 2.42 (dd, *J* = 14.1, 6.4 Hz, 2H), 2.16 (dd, *J* = 14.2, 6.3 Hz, 2H), 2.05 – 1.91 (m, 4H), 1.44 (d, *J* = 4.5 Hz, 18H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 171.5 (d, *J* = 60.7 Hz), 119.1 (qt, *J*_{C-F} = 285.4, 36.2 Hz), 115.9 (tq, *J*_{C-F} = 253.1, 37.6 Hz), 81.9 (d, *J* = 19.0 Hz), 59.6, 38.6 (d, *J* = 2.1 Hz), 35.4, 29.6 (t, *J*_{C-F} = 21.5 Hz), 27.9 (d, *J* = 12.4 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.94 (s, 6F), -118.32 (dddd, *J* = 279.4, 266.2, 23.6, 14.0 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₂₁H₂₈F₁₀O₄Na [M+Na]⁺ : 557.1720; found: 557.1712.

4e: diphenyl 3,4-bis(2,2,3,3,3-pentafluoropropyl)cyclopentane-1,1-dicarboxylate. Prepared according to the general procedure. Reaction was run using 3e (67.3 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/DCM) and obtained as a yellowish liquid (59.6 mg, 0.10 mmol, 52 %, dr = 11:1 by GC-MS), $R_f = 0.61$ (hexane:DCM = 1:1). Major diastereomer: ¹H NMR (500 MHz, CDCl₃): δ 7.42 (t, *J* = 7.7 Hz, 4H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.16 – 7.09 (m, 4H), 2.85 (dd, *J* = 14.2, 6.4 Hz, 2H), 2.79 – 2.70 (m, 2H), 2.57 (dd, *J* = 14.3, 6.4 Hz, 2H), 2.18 – 2.06 (m, 4H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 170.7 (d, *J* = 86.8 Hz), 150.6 (d, *J* = 1.9 Hz), 129.9 (d, *J* = 3.8 Hz), 126.6 (d, *J* = 6.5 Hz), 121.1 (d, *J* = 2.8 Hz), 119.1 (qt, *J*_{C-F} = 285.5, 35.8 Hz), 115.8 (tq, *J*_{C-F} = 253.3, 37.7 Hz), 58.4, 38.9 (d, *J* = 2.1 Hz), 35.7, 29.6 (t, *J*_{C-F} = 21.5 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.83 (s, 6F), -118.12

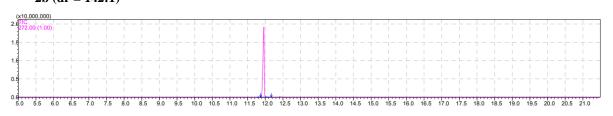
(dddd, J = 280.0, 266.7, 23.8, 13.8 Hz, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₂₅H₂₀F₁₀O₄Na [M+Na]⁺: 597.1094; found: 597.1092.

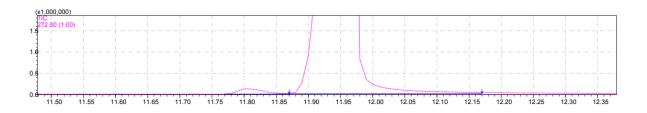
4f: dibenzyl 3,4-bis(**2,2,3,3,3-pentafluoropropyl)cyclopentane-1,1-dicarboxylate.** Prepared according to the general procedure. Reaction was run using **3f** (72.9 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/DCM) and obtained as a yellowish liquid (66.1 mg, 0.11 mmol, 55 %, dr = 12:1 by GC-MS), $R_f = 0.53$ (hexane:DCM = 1:1). **Major diastereomer**: ¹**H NMR** (500 MHz, CDCl₃): δ 7.31 – 7.27 (m, 6H), 7.23 – 7.18 (m, 4H), 5.09 (d, *J* = 6.0 Hz, 4H), 2.59 – 2.48 (m, 4H), 2.24 (dd, *J* = 16.3, 8.7 Hz, 2H), 2.03 – 1.88 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 171.9 (d, *J* = 67.7 Hz), 135.2 (d, *J* = 14.7 Hz), 128.7 (d, *J* = 1.5 Hz), 128.6, 128.3 (d, *J* = 11.4 Hz), 119.1 (qt, *J*_{C-F} = 285.2, 36.0 Hz), 115.8 (tq, *J*_{C-F} = 253.3, 37.4 Hz), 67.8 (d, *J* = 14.9 Hz), 58.4, 38.9, 35.4, 29.6 (t, *J*_{C-F} = 21.4 Hz) ppm. ¹⁹**F NMR** (471 MHz, CDCl₃): δ -86.90 (s, 6F), -117.00 – -119.66 (m, 4F) ppm. **HRMS** m/z (ESI): calcd. for C₂₇H₂₄F₁₀O₄Na [M+Na]⁺ : 625.1407; found: 625.1403.

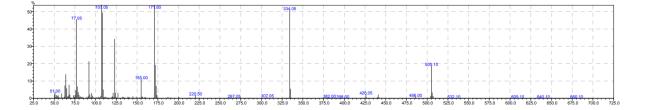


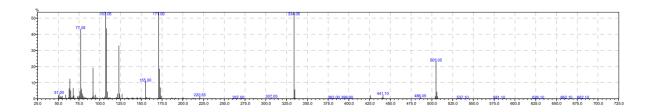
4g: 2,3-bis(2,2,3,3,3-pentafluoropropyl)spiro[4.5]decane-6,10-dione. Prepared according to the general procedure. Reaction was run using **3g** (38.5 mg, 0.2 mmol) and [CuCF₂CF₃] (1.0 mL, 0.90 mmol in DMF). The product was purified by flash column chromatography on silica gel (hexane/EA) and obtained as a white solid (60.1 mg, 0.14 mmol, 70 %, dr > 20:1 by GC-MS), $R_f = 0.60$ (hexane:EA = 2:1). ¹H NMR (500 MHz, CDCl₃): δ 2.69 (dd, J = 14.1, 7.2 Hz, 4H), 2.60 – 2.52 (m, 2H), 2.29 (dd, J = 13.6, 6.1 Hz, 2H), 2.16 (dd, J = 13.7, 6.2 Hz, 2H), 2.10 – 1.92 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 207.9 (d, J = 131.3 Hz), 119.0 (qt, $J_{C-F} = 285.4$, 36.1 Hz), 115.9 (tq, $J_{C-F} = 252.8, 37.7$ Hz), 70.2, 37.9, 37.6, 36.8 (d, J = 2.2 Hz), 36.0, 29.3 (t, $J_{C-F} = 21.5$ Hz), 17.5 ppm. ¹⁹F NMR (471 MHz, CDCl₃): δ -86.93 (s, 6F), -118.21 (dddd, J = 276.6, 266.2, 28.5, 8.6 Hz, 4F) ppm. HRMS m/z (ESI): calcd. for C₁₆H₁₅F₁₀O₂ [M-H]⁻: 429.0918; found: 429.0919.

References

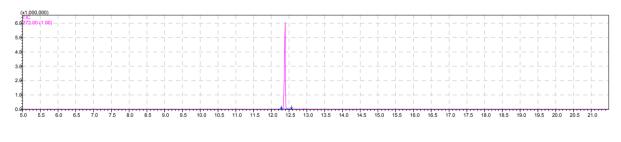

- 1. Yang, X.; Tsui, G. C. Org. Lett. 2020, 22, 4562.
- 2. Chen, W.; Zhang, Y.-L.; Li, H.-J.; Nan, X.; Liu, Y.; Wu, Y.-C. Synthesis 2019, 51, 3651.
- 3. Evans, P.; McCabe, T.; Morgan, B. S.; Reau, S. Org. Lett. 2005, 7, 43.
- 4. Shainyan, B.A.; Danilevich, Y.S.; Ushakov, I.A. Russ. J. Org. Chem. 2016, 1738.
- 5. Millet, A.; Baudoin, O. Org. Lett. 2014, 16, 3998.
- 6. Fuji, M.; Chiwata, J.; Ozaki, M.; Aratani, S.; Obora, Y. ACS Omega 2018, 3, 8865.
- 7. Krompiec, S.; Pigulla, M.; Kuźnik, N.; Krompiec, M.; Marciniec, B.; Chadyniak, D.; Kasperczyk, J. J. Mol. Catal. A: Chem. 2005, 225, 91.
- 8. Scalacci, N.; Black, G. W.; Mattedi, G.; Brown, N. L.; Turner, N. J.; Castagnolo, D. ACS Catal. 2017, 7, 1295.
- 9. Ho, C.-Y.; He, L. J. Org. Chem. 2014, 79, 11873.
- 10. Tappin, N. D. C.; Renaud, P. Adv. Synth. Catal. 2021, 363, 27.
- 11. Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc. 1999, 121, 6960.
- 12. Gruber, S.; Pregosin, P. S. Adv. Synth. Catal. 2009, 351, 3235.
- 13. Zieliński, G. K.; Samojłowicz, C.; Wdowik, T.; Grela, K. Org. Biomol. Chem. 2015, 13, 2684.
- 14. Gao, P.; Yan, X.; Tao, T.; Yang, F.; He, T.; Song, X.; Liu, X.; Liang, Y. Chem. Eur. J. 2013, 19, 14420.
- 15. Xu, J.; Qiao, L.; Ying, B.; Zhu, X.; Shen, C.; Zhang, P. Org. Chem. Front. 2017, 4, 1116.
- 16. Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 12584.
- 17. Yang, B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 1906.

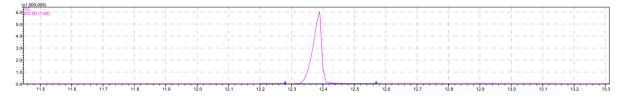

GC Spectra

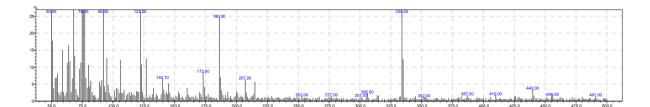


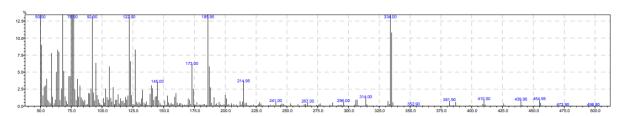


2b (dr = 142:1)

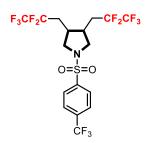


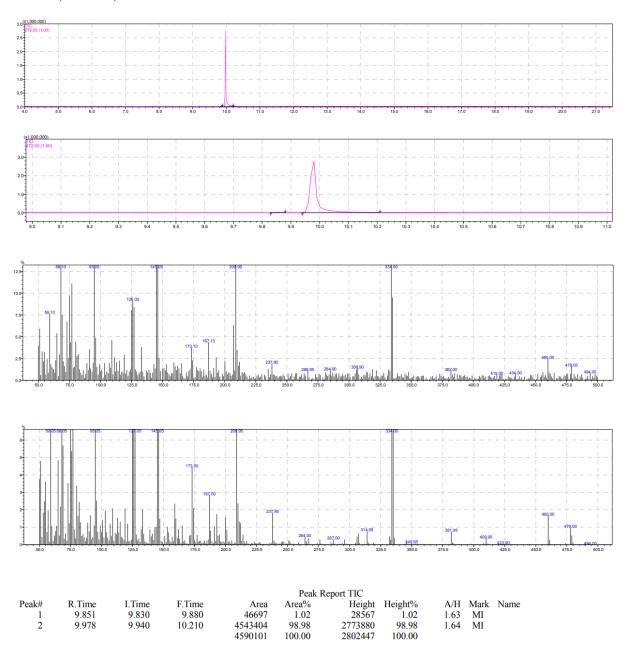


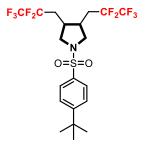

					Peak Re	port TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	11.804	11.770	11.870	347000	0.70	123873	0.64	2.80	MI	
2	11.960	11.870	12.170	49133204	99.30	19168821	99.36	2.56	MI	
				49480204	100.00	19292694	100.00			



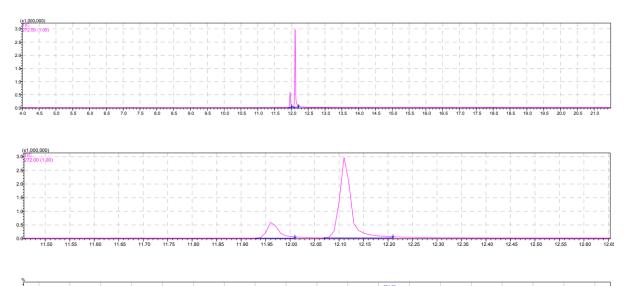
2c (dr = 1428:1)

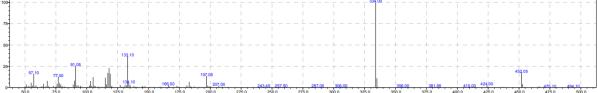


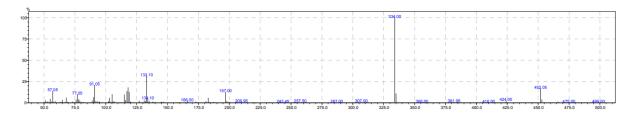




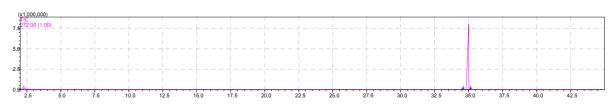
					Peak F	leport TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	12.233	12.200	12.280	8612	0.07	2620	0.04	3.29	MI	
2	12.387	12.310	12.570	11784917	99.93	6028810	99.96	1.95	MI	
				11793529	100.00	6031430	100.00			

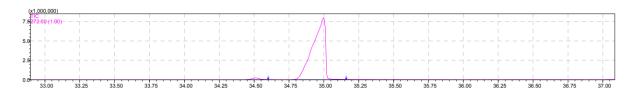


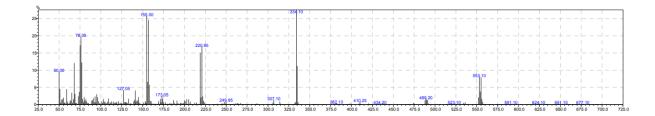

2d (dr = 97:1)

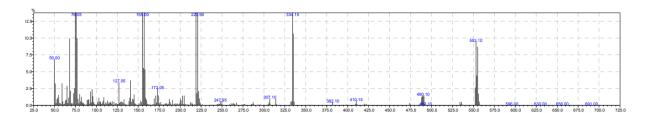


2e (dr = 4.8:1)

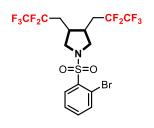


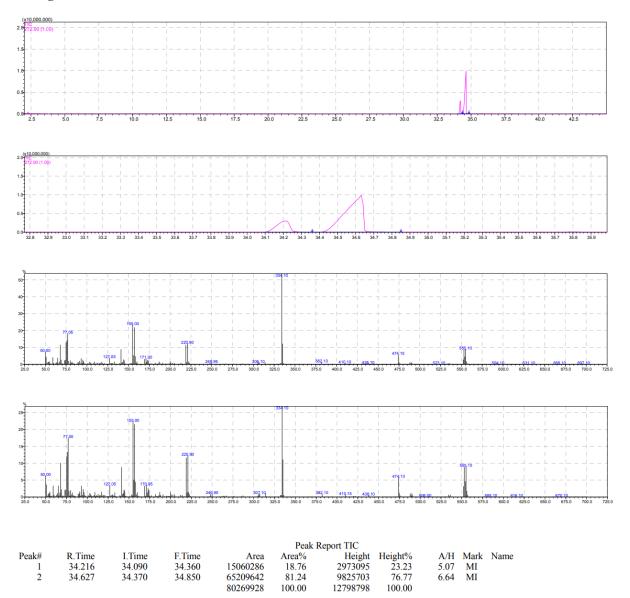


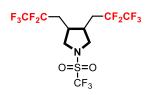

					Peak R	eport TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	11.963	11.930	12.010	983544	17.14	574528	16.35	1.71	MI	
2	12.111	12.070	12.210	4753554	82.86	2938642	83.65	1.62	MI	
				5737098	100.00	3513170	100.00			



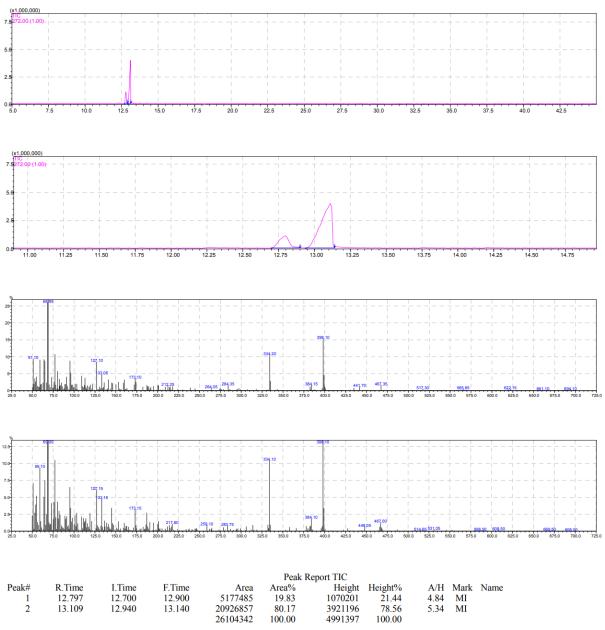
2f (dr = 63:1)

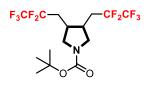


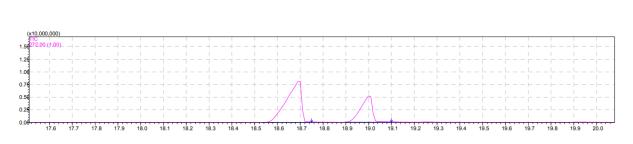


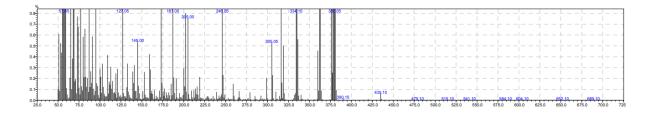


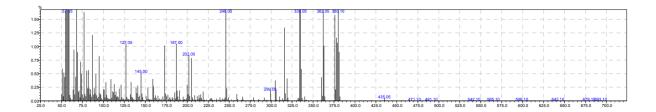
					Peak F	Report TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	34.510	34.440	34.600	791391	1.56	220049	2.68	3.60	MI	
2	34.996	34.770	35.160	50095030	98.44	8004795	97.32	6.26	MI	
				50886421	100.00	8224844	100.00			



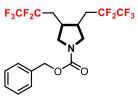

2g (dr = 4.3:1)

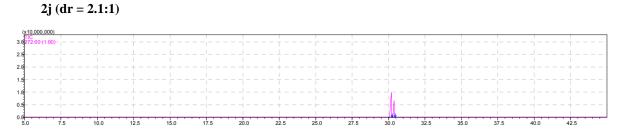

2h (dr = 4.0:1)

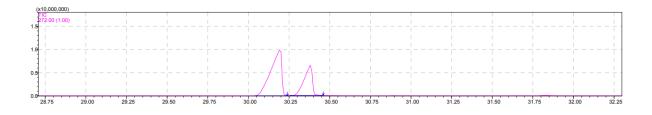


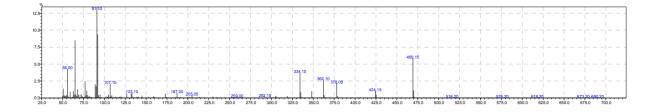


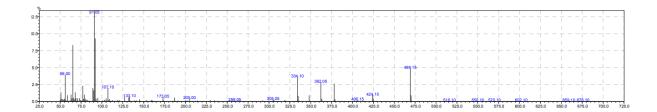
2i (dr = 2.0:1)





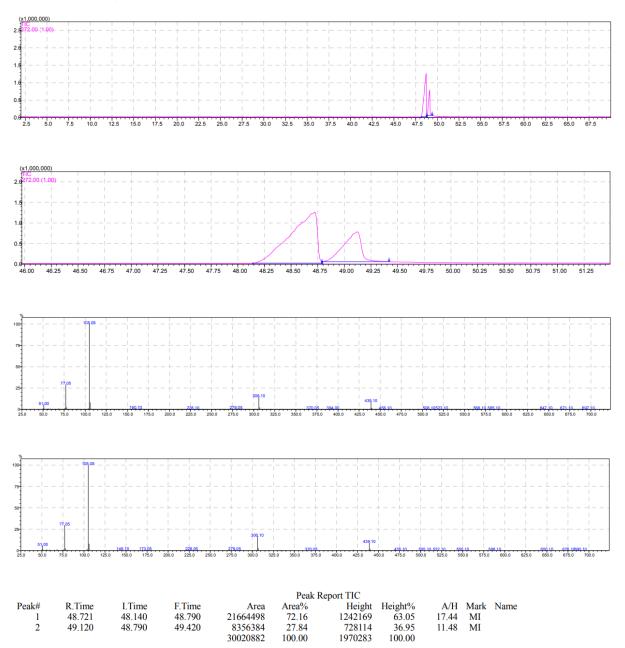


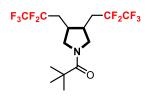

					Peak F	Report TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	18.695	18.540	18.750	36759963	66.90	8104116	60.86	4.54	MI	
2	19.002	18.900	19.100	18189786	33.10	5212832	39.14	3.49	MI	
				54949749	100.00	13316948	100.00			



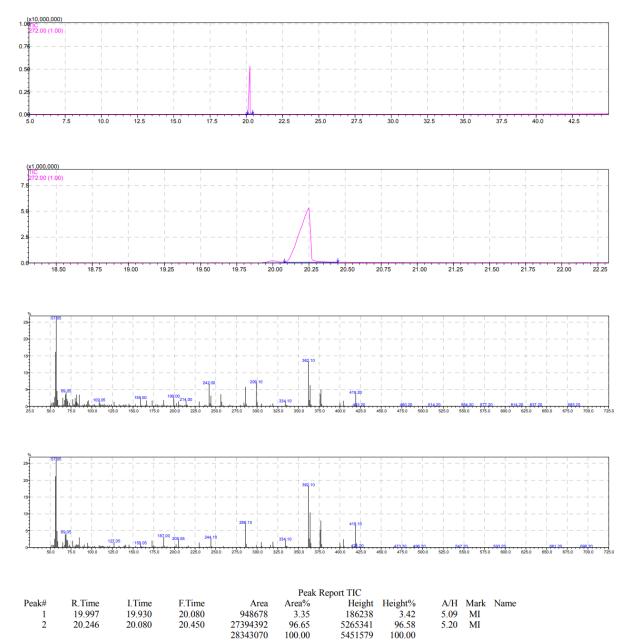
2j (dr = 2.1:1)

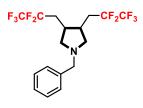


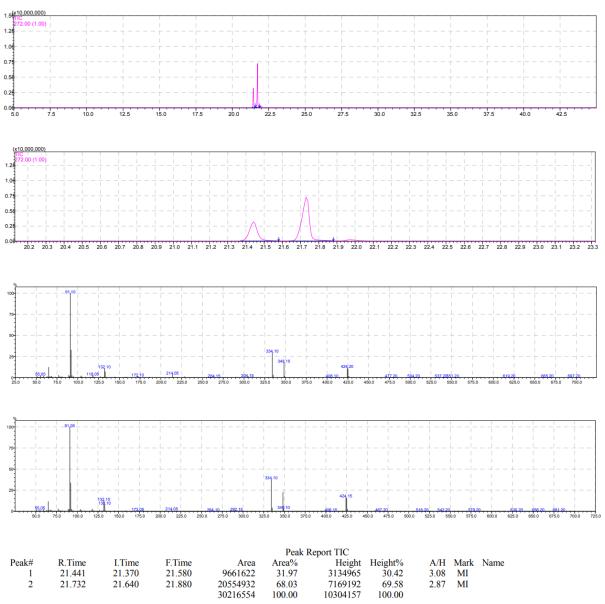


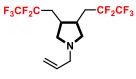


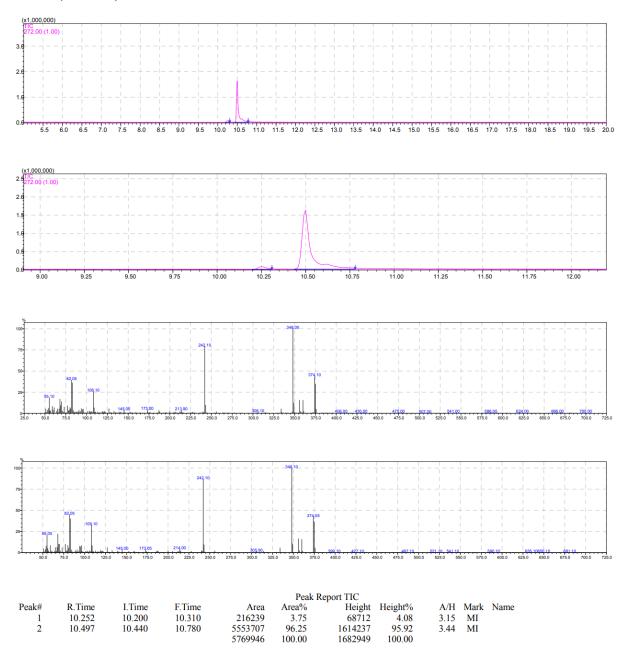
					Peak I	Report TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	30.192	30.040	30.240	46126301	67.42	9819389	60.11	4.70	MI	
2	30.379	30.260	30.460	22289603	32.58	6517047	39.89	3.42	MI	
				68415904	100.00	16336436	100.00			



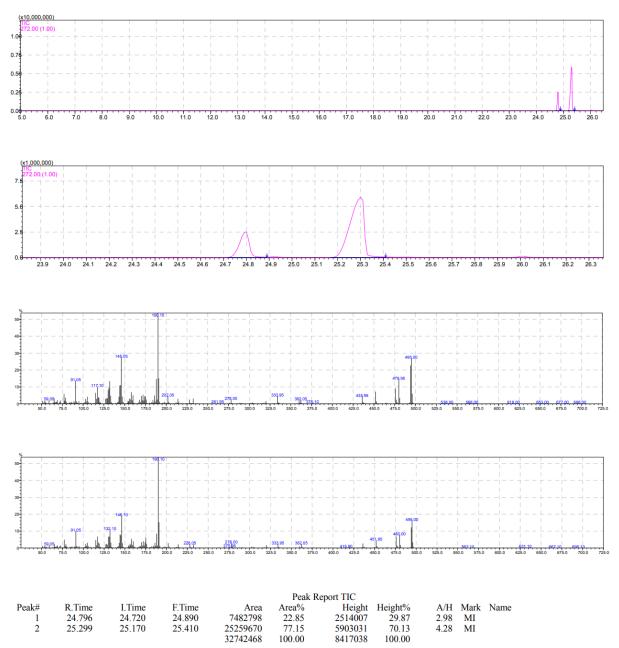

2k (dr = 2.6:1)

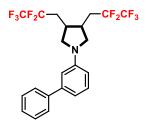


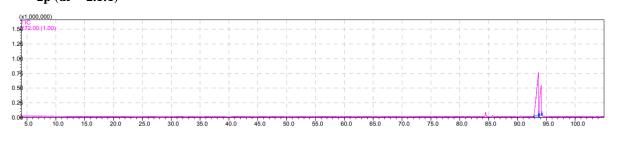


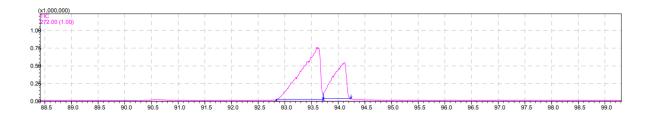


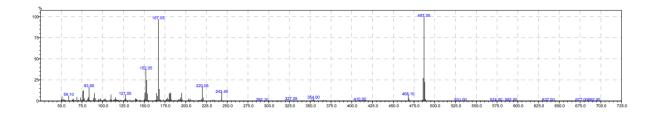
2m (dr = 2.1:1)

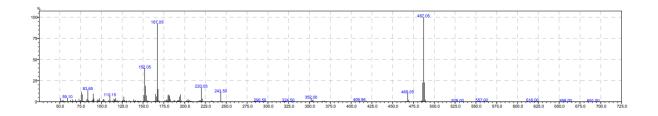




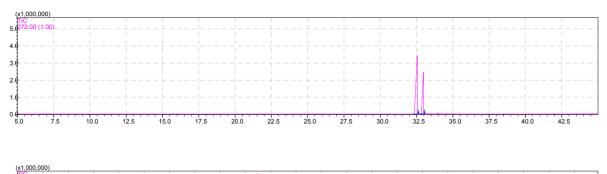

F₃CF₂C N N

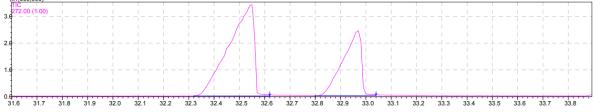

20 (dr = 3.4:1)

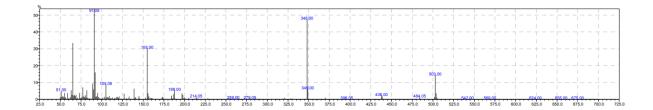


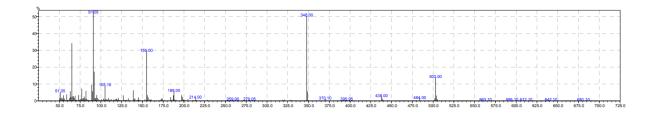


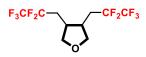


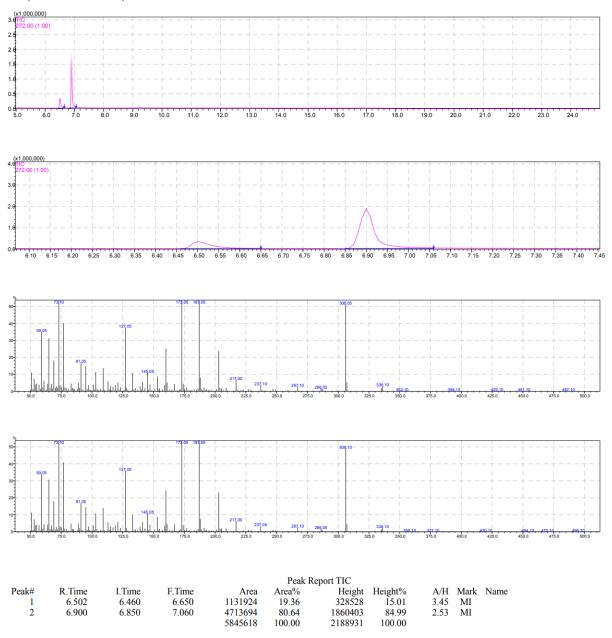


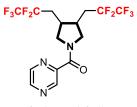



			Peak Report TIC								
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name	
1	93.600	92.840	93.720	18172844	67.46	737236	59.10	24.65	MI		
2	94.116	93.720	94.240	8767486	32.54	510217	40.90	17.18	MI		
				26940330	100.00	1247453	100.00				

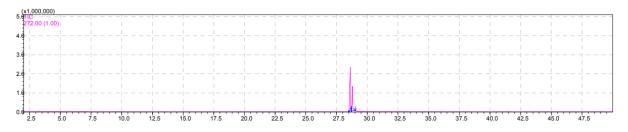


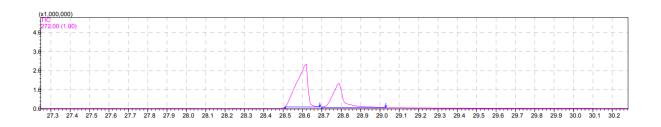


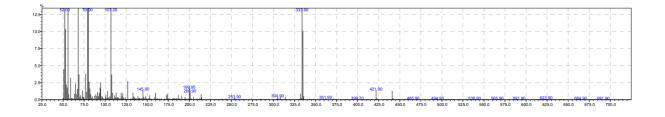


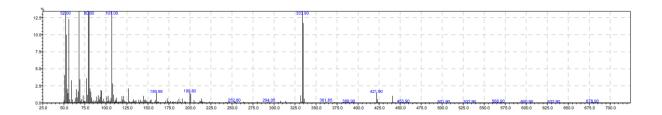


			Peak Report TIC								
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name	
1	32.545	32.320	32.620	23681633	65.98	3416510	58.44	6.93	MI		
2	32.967	32.800	33.040	12210605	34.02	2429899	41.56	5.03	MI		
				35892238	100.00	5846409	100.00				

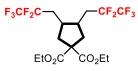


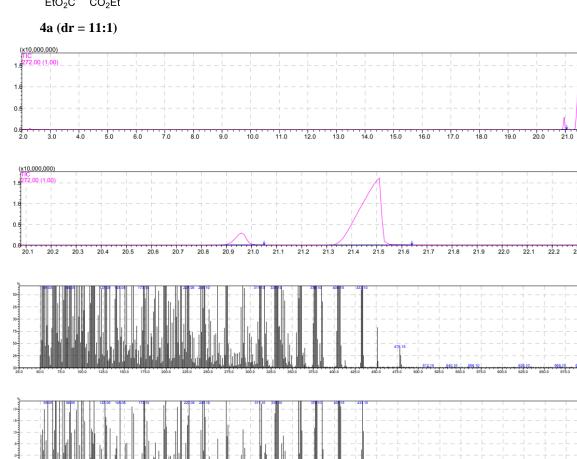

2s (crude dr = 4.2:1)



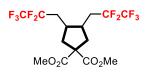


2t (dr = 1.9:1)

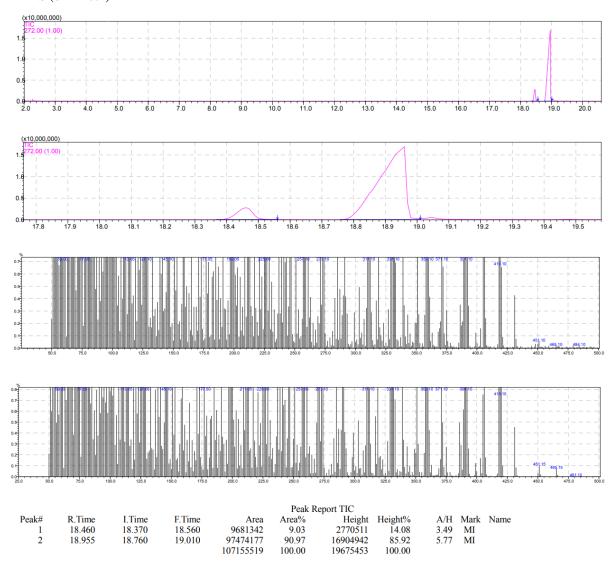


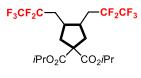


			Peak Report TIC								
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name	
1	28.616	28.510	28.690	8908593	65.15	2245216	63.86	3.97	MI		
2	28.787	28.700	29.030	4765967	34.85	1270506	36.14	3.75	MI		
				13674560	100.00	3515722	100.00				

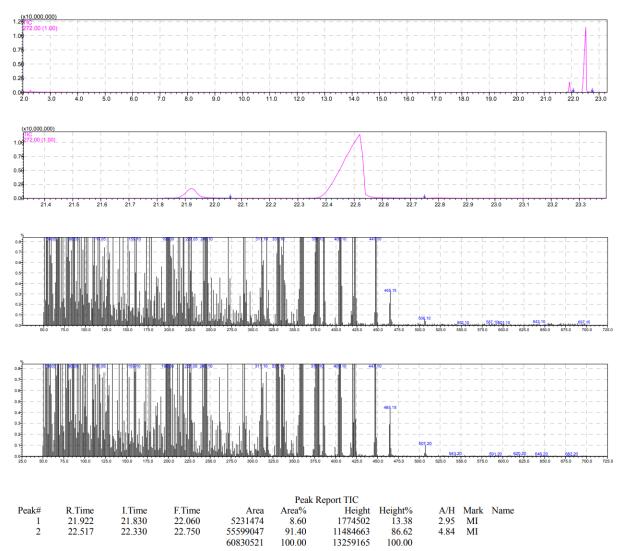

22.0

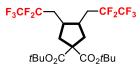
22.3

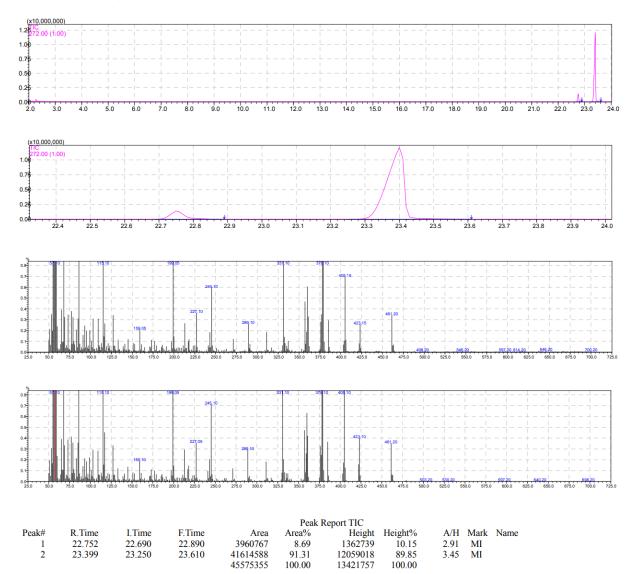

700 0

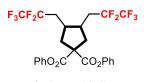

icol o 625.0 ind a 675.0 700.0 22.4

					Peak I	Report TIC				
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	20.959	20.880	21.050	8759616	8.68	2877858	15.11	3.04	MI	
2	21.505	21.310	21.640	92181897	91.32	16170409	84.89	5.70	MI	
				100941513	100.00	19048267	100.00			

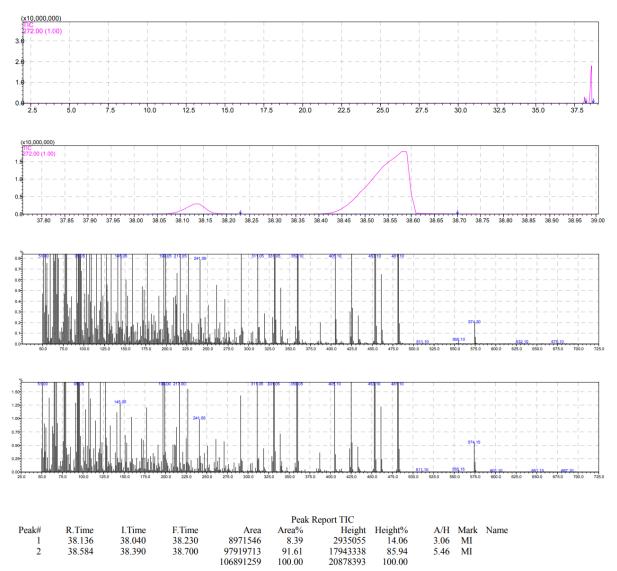


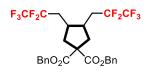

4b (dr = 10:1)

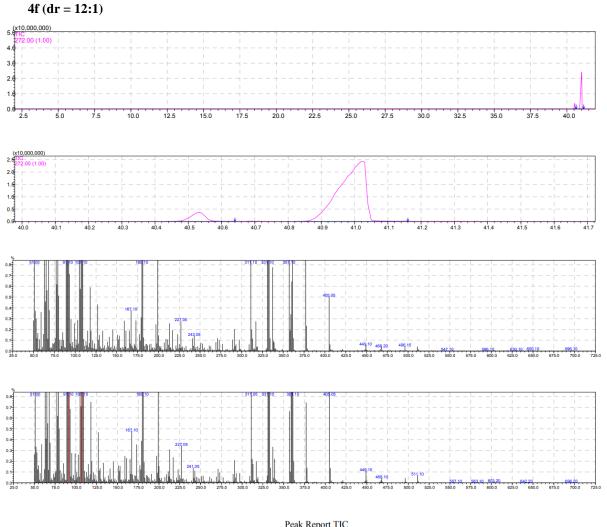



4c (dr = 11:1)

4d (dr = 11:1)

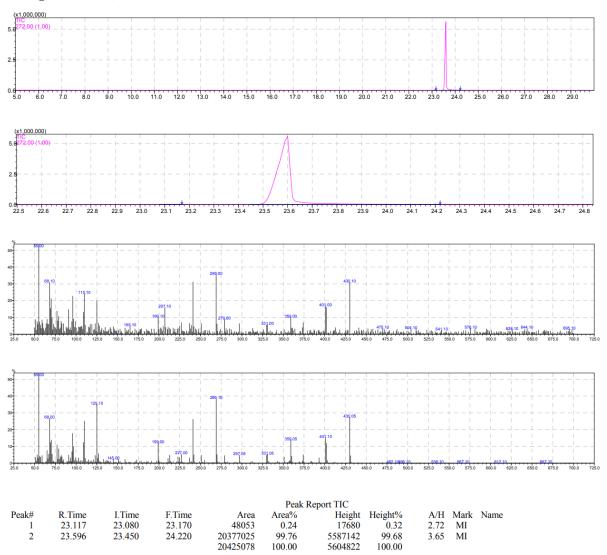



4e (dr = 11:1)

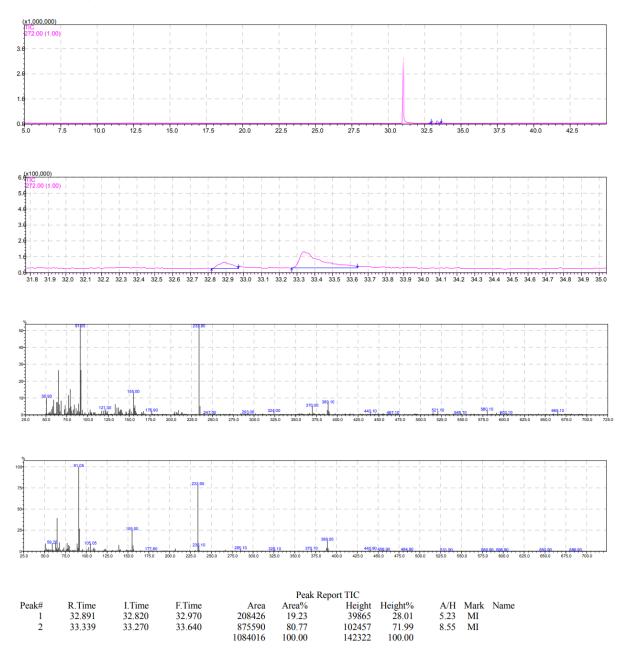

2

38.584

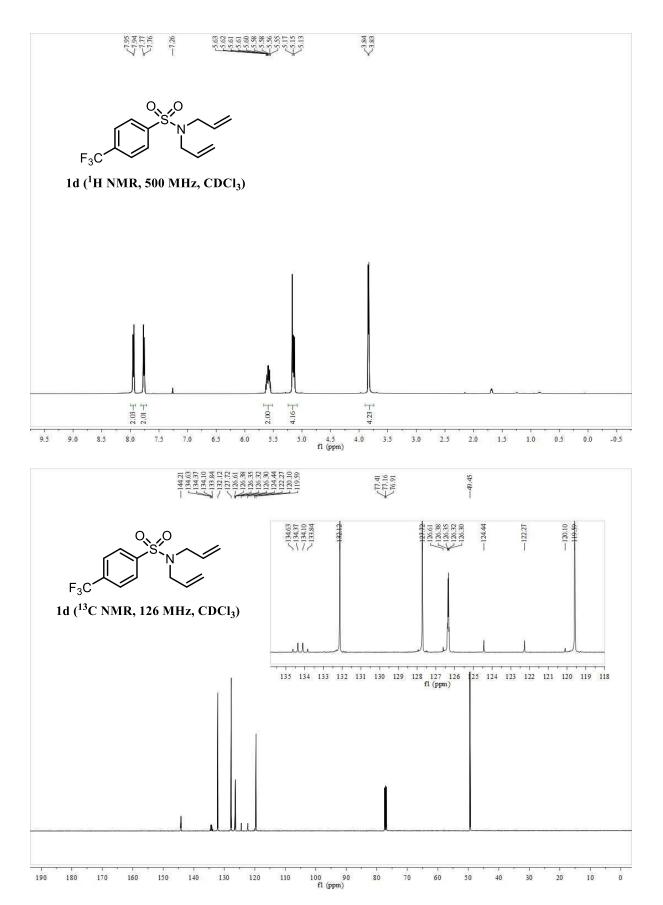
38.390

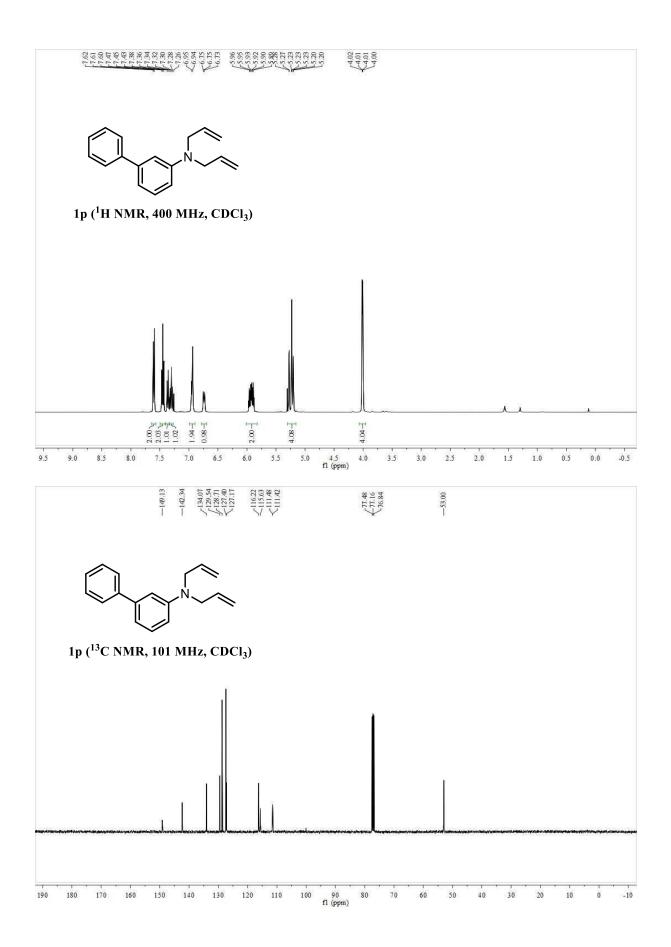


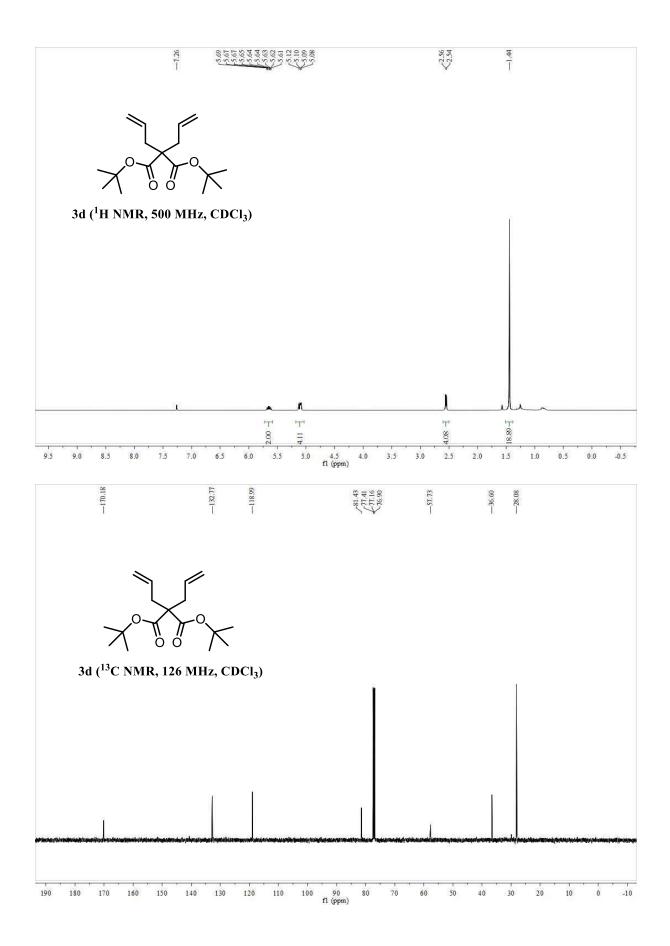
	Реак кероп ПС												
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name			
1	40.532	40.430	40.640	11087894	7.65	3692227	13.23	3.00	MI				
2	41.024	40.820	41.160	133784060	92.35	24220355	86.77	5.52	MI				
				144871954	100.00	27912582	100.00						

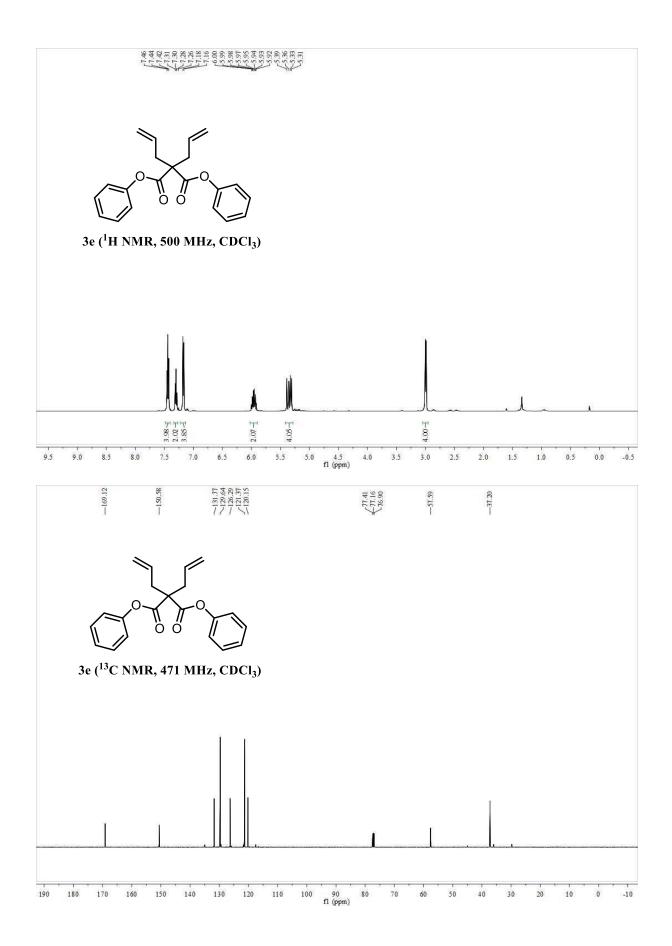


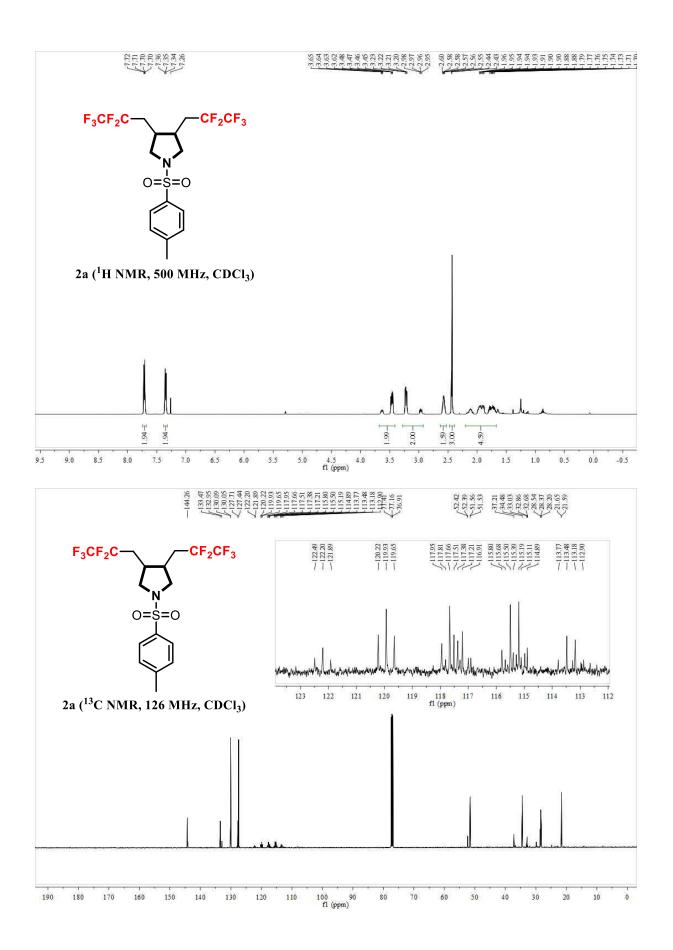
4g (dr = 416:1)






10 (crude)




NMR Spectra

