21-Carba-23-oxaporphyrinoids and 21-Oxo-21-carba-23oxaporphyrinoids – Macrocyclic π-Conjugation Involving Carbonyl Moiety

Anna Berlicka*, Paulina Foryś-Martowłos, Karolina Hassa, Michał J. Białek, Katarzyna Ślepokura, and Lechosław Latos-Grażyński*

Supporting Information

Table of Contents

Experimental Procedures	2	
NMR spectroscopy	2	
Mass spectrometry	2	
Electronic spectroscopy	2	
DFT calculations	2	
X-ray data	2	
Synthetic procedures and analytical data	4	
R spectroscopy ss spectrometry stronic spectroscopy calculations ay data thetic procedures and analytical data sults and Discussions emes ay structures MR spectra NMR spectra NMR spectra NMR spectra is spectra is spectra is spectra is spectra is spectra	10	
Schemes	10	
X-ray structures	11	
¹ H NMR spectra	12	
¹³ C NMR spectra	16	
2D NMR spectra	19	
UV-vis spectra	20	
DFT figures and tables	23	
References	25	

Experimental Procedures

NMR Spectroscopy

NMR spectra were recorded on Bruker Avance 500 MHz and Bruker Avance III 600 MHz spectrometers. Spectra were referenced to the residual solvent signal (CDCl₃, 7.24 and 77.0 ppm; CD₂Cl₂, 5.32 and 54.0 ppm). Two dimensional NMR spectra were recorded with 2048 data points in the t_2 domain and up to 1024 points in the t_1 domain, with a 1s recovery delay. ¹³C NMR spectra of 21-carba-23-oxaporphyrins **14**, **14a** and 21-carba-23-oxachlorins **15**,**15a** were measured for their monoprotonated forms because of possible tautomerization shown in Schemes S2 and S3.

Mass Spectrometry

Mass spectra (High Resolution and Accurate Mass) were recorded on Bruker micrOTOF-Q, Shimadzu Q-TOF LCMS 9030 and WATERS LCT Premier XE spectrometers using the electrospray ionization technique.

UV/Vis Spectroscopy

Electronic spectra were recorded in CH₂Cl₂ solutions on a Varian Carry-50 Bio spectrophotometer.

DFT calculations

Geometry optimizations were carried out within unconstrained *C*₁ symmetry in vacuo, with starting coordinates derived from preoptimized models or crystal structures using Gaussian software.^[1] Harmonic frequencies were calculated using analytical second derivatives to verify local minimum achievement with no negative frequencies observed. The calculations were performed at B3LYP/6-31G(d,p) level of theory.^[2,3] NICS values^[4] and NMR shifts were calculated using the GIAO method with TMS shieldings as a reference for NMR. For relative energy calculations, values with zero-point correction were taken. AICD plots were obtained by generation of the input file from CSGT calculations (Gaussian 09) and its processing by the AICD program.^[5]

X-ray data for 14·xC₆H₁₄ and 15a·0.5CH₂Cl₂

X-ray quality crystals of $14 \cdot xC_6H_{14}$ and $15a \cdot 0.5CH_2Cl_2$ were both prepared by slow diffusion of hexane to solutions of 14 and 15 dissolved in dichloromethane. X-ray diffraction data for the crystals were collected at 100(2) K on a κ -geometry Rigaku XtaLAB Synergy DW (with rotating anode) or an Agilent Technologies Gemini Ultra four-circle diffractometer (ω scans) with CuK α radiation. Data collections, cell refinements, data reductions and analyses, including analytical or empirical (multi-scan) absorption corrections, were carried out with *CrysAlisPRO*.^[6] Structures were solved using dual-space algorithm with *SHELXT* program^[7] and refined on *F*² by a full-matrix least-squares technique using *SHELXL-2014* program^[8] with anisotropic displacement parameters for all non-H atoms.

There is a half of **14** molecule in the asymmetric unit of the **14**·xC₆H₁₄ crystal (Z = 0.5) and two molecules of **15a** and one CH₂Cl₂ molecule in the asymmetric unit of **15a**·0.5CH₂Cl₂ (Z = 2). In **14**·xC₆H₁₄ highly disordered solvent molecule (most probably *n*-hexane from crystallization solution) was detected. It was not modelled and their electron density was taken into account using the SQUEEZE procedure^[9] in *PLATON* program.^[10] Disordered *n*-hexane molecules are located in the hydrophobic channels running down the **c** axis. The volume of the solvent accessible voids (473 Å³ and 123 electrons per unit cell, i.e. about 118 Å³ and 31 electrons per molecule of **14**) suggests that the chemical formula of the crystal might be **14**·0.5C₆H₁₄.

p-Tolyl ring in **14**·xC₆H₁₄ was found to be disordered and was refined in two positions with site occupation factors of 0.613(7) and 0.387(7). To get acceptable and appropriate model of this disordered fragment, some constraints on the coordinates and displacement parameters (EXYZ and EADP instructions in *SHELXL*) as well as restraint on the U_{ij} (ISOR) were applied in the refinement procedure.

All H atoms (including both positions of those from NH groups) in $14 \cdot xC_6H_{14}$ and $15a \cdot 0.5CH_2Cl_2$ were found in difference Fourier maps. N-bound H atom in $14 \cdot xC_6H_{14}$ (s.o.f. = 0.5) was refined freely. N-bound H atoms in $15a \cdot 0.5CH_2Cl_2$ (two positions of one H atom per molecule) were initially refined freely with isotropic displacement parameters and site occupation factor (s.o.f.) 0.5, resulting in a rational model (with the correct geometry, i.e. N–H distances, C–N–H angles and U_{150} for H atoms). In the final refinement cycles, all the H atoms in $15a \cdot 0.5CH_2Cl_2$ and C-bound H atoms in $14 \cdot xC_6H_{14}$ were repositioned in their calculated positions and refined using a riding model, with N–H = 0.88 and C–H = 0.95–0.99 Å, with $U_{150}(H) = 1.2U_{eq}(N,C)$ for NH, CH and CH₂ or $U_{150}(H) = 1.5U_{eq}(C)$ for CH₃, and with s.o.fs. of the NH hydrogen atoms = 0.5. The details of structures refinements are given in Table S1. The crystallographic information files (CIF) have been deposited at the Cambridge Crystallographic Data Centre (CCDC Nos. **2177053**, **2177054**) and provided as Supporting Information.

	14 ·xC ₆ H ₁₄ ^(a)	15a·0.5CH ₂ Cl ₂	
CCDC No.	2177053	2177054	
Chemical formula	C ₃₅ H ₂₆ N ₂ O [+ solvent]	C _{39.5} H ₃₇ CIN ₂ O	
Mr	490.58	591.16	
Crystal system, space group	Monoclinic, C2/c	Monoclinic, P21/c	
Temperature (K)	100(2)	100(2)	
a, b, c (Å)	14.077(2), 20.144(3), 10.359(2)	17.670(4), 15.120(3), 23.890(6)	
β (°)	94.94(2)	98.85(2)	
V (Å ³)	2926.6 (8)	6307(2)	
Ζ	4	8	
Radiation type	Cu <i>Κ</i> α	Cu <i>K</i> a	
μ (mm ⁻¹)	0.52	1.33	
<i>F</i> (000)	1032	2504	
Crystal size (mm)	0.59 × 0.08 × 0.04	0.27 × 0.03 × 0.01	
Diffractometer	Rigaku XtaLAB Synergy DW system, HyPix-Arc 150 detector	Agilent Technologies Gemini Ultra with Ruby CCD detector	
Absorption correction	Multi-scan	Analytical	
T _{min} , T _{max}	0.476, 1.000	0.788, 0.981	
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	26068, 2874, 2649	29556, 10610, 6033	
Rint	0.025	0.098	
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.620	0.588	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.125, 1.05	0.063, 0.134, 1.01	
No. of reflections	2874	10610	
No. of parameters	223	796	
No. of restraints	21	0	
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.37, -0.29	0.24, -0.51	

Table S1. Crystal data for $15a \cdot 0.5CH_2CI_2$ and $14 \cdot xC_6H_{14}$.

^(a) Given values do not contain the contribution of the disordered solvent.

Computer programs: *CrysAlis PRO* 1.171.39.46 (Rigaku OD, 2018), SHELXT-2014/7 (Sheldrick, 2015), *SHELXL2014*/7 (Sheldrick, 2015), *PLATON* (Spek, 2009).

Synthetic procedures and analytical data

Solvents and reagents

Dichloromethane was distilled over calcium hydride. CDCl₃ was prepared directly before use by running through a basic alumina column. Reagents not listed here were used as received.

Compounds 12 and 13 were obtained as described in literature. ^{11,12}

Synthesis of 10,15-di(p-tolyl)-21-carba-23-oxaporhyrin 14 and 10,15-di(p-tolyl)-21-carba-23-oxachlorin 15

12 (50 mg, 0.223 mmol), mesitylaldehyde (0.39 mL, 2.68 mmol), **13** (76 mg, 0.246 mmol), and solution of 2 % EtOH in CH₂Cl₂ (100 mL) were placed in a two-necked 250-mL flask. Nitrogen was bubbled through the solution for 15 min, then Et₂O:BF₃ (28 μ L, 0.227 mmol) was added, and the mixture was stirred in the dark for 1 h under N₂. Triethylamine (45 μ L, 0.323 mmol) and DDQ (0.27 g, 1.2 mmol) were added and the solution was stirred for a further 1 h. The solvent was evaporated, and the reaction mixture was chromatographed on basic alumina (Brockmann III grade) with dichloromethane as eluant. Product **14** was found in the first fraction, while **15** in the third fraction. **14** was further purified through a chromatographic procedure on basic alumina (Brockmann III grade) with dichloromethane as eluant. Yields: **14**, 12 mg (11%) and **15**, 25 mg (23%).

10,15-Di(p-tolyl)-21-carba-23-oxaporhyrin 14

UV-vis (CH_2CI_2) : λ_{max} $(log \varepsilon) = 313$ (4.4), 410 (4.9), 499 (4.0), 535 (4.0), 608 (3.6), 728 nm (2.7). ¹H NMR (600 MHz, CDCI₃, 300 K): $\delta = 9.79$ (s, 2H; H5,20); 8.98 (d, ³*J*(H,H) = 4.3 Hz, 2H; H7,18); 8.97 (s, 2H; H12,13); 8.60 (d, ³*J*(H,H) = 4.3 Hz, 2H; H8,17); 8.04 (d, ⁴*J*(H,H) = 1.1 Hz, 2H; H2,3); 8.00 (d, ³*J*(H,H) = 7.8 Hz, 4H; *o*-Tol); 7.54 (d, ³*J*(H,H) = 7.8 Hz, 4H; *m*-Tol); 2.68 (s, 6H; *p*-CH₃(Tol)); -0.41 (s, 1H, NH); -4.30 ppm (s, 1H; H21). **HR-MS** (ESI): *m/z* calcd for C₃₅H₂₇N₂O⁺[M+H]⁺: 491,2118; found: 491,2115.

Protonation of 14

14-H⁺ was obtained by titration of **14** with diluted solution of TFA in chloroform or dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 296 (4.4), 319 (4.4), 404 (5.0), 467 (4.5), 499 (4.2), 576 (3.9), 612 (4.0), 699 nm (3.6). **1H NMR** (600 MHz, CDCl₃, 270 K): δ = 9.97 (s, 2H; H5,20); 9.09 (s, 2H; H12,13); 8.98 (d, ³*J*(H,H) = 4.4 Hz, 2H; H7,18); 8.31 (d, ³*J*(H,H) = 4.4 Hz, 2H; H8,17); 8.09 (d, ³*J*(H,H) = 7.5 Hz, 4H; *o*-Tol); 7.80 (d, ⁴*J*(H,H) = 1.1 Hz, 2H; H2,3); 7.60 (d, ³*J*(H,H) = 7.7 Hz, 4H; *m*-Tol); 2.69 (s, 6H; *p*-CH₃(Tol)); 0.43 (s, 1H; NH); -5.84 ppm (s, 1H; H21). **13C NMR** (150.9 MHz, CDCl₃, 300 K): δ = 155.8, 142.1, 141.9, 141.7, 139.1, 137.4, 135.1, 130.8, 129.9, 128.6, 127.6, 125.5, 121.1, 118.6, 113.4, 21.5 ppm.

14-H₂²⁺ was obtained by addition of concentrated TFA to **14** in chloroform or dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 341 (4.3), 442 (5.2), 538 (4.1), 607 (3.8), 670 nm (4.1). ¹H NMR (600 MHz, CDCl₃, 270 K): δ = 11.25 (s, 2H; H5,20); 10.96 (s, 2H; H2,3); 9.73 (s, 2H; H12,13); 9.58 (d, ³J(H,H) = 4.6 Hz, 2H; H7,18); 9.07 (d, ³J(H,H) = 4.6 Hz, 2H; H8,17); 8.31 (d, ³J(H,H) = 7.7 Hz, 4H; *o*-Tol); 7.82 (d, ³J(H,H) = 7.7 Hz, 4H; *m*-Tol); 2.79 (s, 6H; *p*-CH₃(Tol)); -1.86 (s, 1H; NH); -7.43 ppm (s, 1H; H21). ¹³C NMR (data from HSQC, CDCl₃, 280 K): δ = 151.6 (C2,3), 137.4 (*o*-Tol), 134.9 (C8,17), 134.4 (C12,13), 131.7 (C7,18), 129.6 (*m*-Tol), 117.3 (C5,20), 28.4 (C21), 21.6 ppm (*p*-CH₃(Tol)).

10,15-Di(p-tolyl)-21-carba-23-oxachlorin 15

UV-vis (CH_2CI_2) : λ_{max} $(log \varepsilon) = 351$ (4.3), 402 (5.0), 434 5.0), 518 (4.2), 618 (3.7), 679 nm (4.0). ¹H NMR (600 MHz, CDCI₃, 300 K): $\delta = 9.44$ (s, 2H; H5,20); 9.00 (s, 2H; H12,13); 8.93 (d, ³*J*(H,H) = 4.5 Hz, 2H; H7,18); 8.66 (d, ³*J*(H,H) = 4.5 Hz, 2H; H8,17); 8.04 (d, ³*J*(H,H) = 7.7 Hz, 4H; *o*-Tol); 7.54 (d, ³*J*(H,H) = 7.7 Hz, 4H; *m*-Tol); 4.81 (s, 4H; H2,3); 2.70 (s, 6H; *p*-Tol(CH₃)); -1.57 (s, 1H; NH); -4.94 ppm (s, 1H; H21). **HR-MS** (ESI): *m*/*z* calcd for C₃₅H₂₉N₂O⁺ [M+H]⁺: 493.2274; found: 493.2310.

Protonation of 15

15-H⁺ was obtained by titration of **15** with diluted solution of TFA in chloroform or dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 349 (4.0), 408 (5.2), 439 (5.1), 578 (4.2), 625 nm (4.1). ¹H NMR (600 MHz, CDCl₃, 300 K): δ = 9.73 (s, 2H; H5,20); 9.23 (s, 2H; H12,13); 8.96 (d, ³*J*(H,H) = 4.5 Hz, 2H; H7,18); 8.59 (d, ³*J*(H,H) = 4.5 Hz, 2H; H7,18); 8.59 (d, ³*J*(H,H) = 4.5 Hz, 2H; H8,17); 8.16 (d, ³*J*(H,H) = 7.7 Hz, 4H; *o*-Tol); 7.62 (d, ³*J*(H,H) = 7.7 Hz, 4H; *m*-Tol); 4.83 (s, 4H; H2,3); 2.71 (s, 6H; *p*-CH₃(Tol)); -1.43 (s, 1H; NH); -6.75 ppm (s, 1H; H21-H). ¹³C NMR (150.9 MHz, CDCl₃, 300 K): δ = 153.8, 143.6, 138.8, 138.0, 137.5, 135.3, 128.4, 127.1, 126.9, 125.4, 113.1, 109.1, 35.8, 21.6 ppm.

Synthesis of 10,15-dimesityl-21-carba-23-oxaporhyrin 14a and 10,15-dimesityl-21-carba-23-oxachlorin 15a

Macrocycles **14a** and **15a** were synthesized using the same synthetic and purifications procedures as for **14** and **15**, however purification of **14a** required additional chromatography on basic aluminum oxide (Brockmann III grade) with dichloromethane as eluant. Yields: **14a**, 3.6 mg (3%) and **15a**, 19.5 mg (16%).

10,15-Dimesityl-21-carba-23-oxaporphyrin 14a

UV-vis (CH_2CI_2) : λ_{max} $(log \varepsilon) = 311$ (4.4), 410 (4.8), 536 (4.0), 614 (3.4), 727 nm (3.1). ¹H NMR (600 MHz, CD_2CI_2, 300 K): $\delta = 9.76$ (s, 2H; H5,20); 8.99 (d, ³*J*(H,H) = 4.4 Hz, 2H; H7,18); 8.83 (s, 2H; H12,13); 8.32 (d, ³*J*(H,H) = 4.4 Hz, 2H; H2, 2H; H2,3); 7.31 (s, 4H; *m*-Mes); 2.61 (s, 6H; *p*-Mes(CH₃)); 1.84 (s, 6H; *o*-MesI(CH₃)); -4.12 ppm (s, 1H; H21). NH is invisible. **HR-MS** (ESI): *m/z* calcd for C₃₉H₃₅N₂O⁺ [M+H]⁺: 547.2750; found: 547.2755.

Protonation of 14a

14a-H⁺ was obtained by titration of **14a** with diluted solution of TFA in chloroform or dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 322 (4.4), 401 (4.9), 467 (4.5), 501 (4.3), 575 (3.9), 611 nm (3.9). ¹H NMR (600 MHz, CD₂Cl₂, 300 K): δ = 10.03 (s, 2H; H5,20); 9.09 (d, ³*J*(H,H) = 4.4 Hz, 2H; H7,18); 8.92 (s, 2H; H12,13); 8.32 (d, ³*J*(H,H) = 4.4 Hz, 2H; H2, 2H; H8,17); 7.87 (d, ⁴*J*(H,H) = 1.4 Hz, 2H; H2,3); 7.33 (s, 4H; *m*-Mes); 2.61 (s, 6H; *p*-Mes(CH₃)); 1.83 (s, 6H; *o*-MesI(CH₃)); 0.49 (s, 1H; NH); -5.50 ppm (s, 1H; H21). ¹³C NMR (150.9 MHz, CD₂Cl₂, 300 K): δ = 155.3, 142.7, 142.2, 141.8, 140.4, 139.8, 136.0, 131.1, 129.9, 129.5, 129.1, 125.4, 122.2, 119.3, 111.4, 21.8, 21.0 ppm.

14a-H₂²⁺ was obtained by addition of concentrated TFA to **14a** in chloroform or dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 395 (5.3), 528 (4.0), 568 (3.8), 594 (3.8), 651 nm (3.8). ¹H NMR (600 MHz, CDCl₃, 270 K): δ = 11.56 (s, 2H; H5,20); 11.22 (s, 2H; H2,3); 9.83 (s, 2H; H12,13); 9.82 (d, ³J(H,H) = 4.2 Hz, 2H; H7,18);

9.22 (d, ³J(H,H) = 4.2 Hz, 2H; H8,17); 7.42 (s, 4H; *m*-Mes); 2.67 (s, 6H; *p*-Mes(CH₃)); 1.73 (s, 6H; *o*-Mes(CH₃)); -3.00 (s, 1H; NH); -7.93 ppm (s, 1H; H21).

10,15-Dimesityl-21-carba-23-oxachlorin 15a

UV-vis (CH_2Cl_2) : λ_{max} $(\log \varepsilon) = 351$ (4.3), 402 (5.0), 435 (5.0), 519 (4.1), 618 (3.6), 681 nm (3.9). ¹H NMR (600 MHz, CDCl_3, 300K): $\delta = 9.35$ (s, 2H; H5,20); 8.85 (d, ³*J*(H,H) = 4.4 Hz, 2H; H7,18); 8.77 (s, 2H; H12,13); 8.48 (d, ³*J*(H,H) = 4.7 Hz, 2H; H8,17); 7.20 (s, 4H; *m*-Mes); 4.75 (s, 2H; H2,3); 2.58 (s, 6H; *p*-CH₃(Mes)); 1.78 (s, 12H; *o*-CH₃(Mes)); -1.41 (br s, 1H; NH); -4.81 ppm (s, 1H, H21). HR-MS (ESI): *m/z* calcd for C₃₉H₃₇N₂O⁺ [M+H]⁺: 549.2906, found: 549.2910.

15a-H⁺ was obtained by titration of **15a** with diluted solution of TFA in chloroform or dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 348 (4.0), 408 (5.2), 442 (5.1), 580 (4.1), 627 nm (4.0). ¹H NMR (600 MHz, CDCl₃, 300K): δ = 9.68 (s, 2H; H5,20); 8.98 (s, 2H; H12,13); 8.91 (d, ³*J*(H,H) = 4.5 Hz, 2H; H7,18); 8.48 (d, ³*J*(H,H) = 4.5 Hz, 2H; H8,17); 7.17 (s, 4H, *m*-Mes); 4.77 (s, 2H; H2,3); 2.56 (s, 6H; *p*-CH₃(Mes)); 1.72 (s, 12H; *o*-CH₃(Mes)); -1.23 (s, 1H; NH); -6.62 (s, 1H; H21) ppm.¹³C NMR (150.9 MHz, CDCl₃, 300K): δ = 153.8, 152.3, 143.6, 140.0, 138.8, 138.7, 136.7, 136.3, 128.4, 126.2, 126.1, 125.9, 110.2, 109.3, 35.8, 21.5, 20.7 ppm.

10,15-Dimesityl-21-carbachlorin 16

Pyrrole (93 µL, 1.34 mmol), mesitylaldehyde (0.39 mL, 2.68 mmol), **12** (0.15 g, 0.67 mmol), and solution of 3 % EtOH in CHCl₃ (300 mL) were placed in a 500-mL flask. Nitrogen was bubbled through the solution for 30 min, then Et₂O:BF₃ (83 µL,0.67 mmol) was added, and the mixture was stirred in the dark for 1 h under N₂. Triethylamine (0.11 mL, 0.74 mmol) and *p*-chloranil (0.98 g, 4.0 mmol) were added and the solution was stirred for a further 1 h. The solvent was evaporated, and the reaction mixture was purified by recrystalization from CH₂Cl₂/hexane. The filtrate (product **16**) was further purified through a chromatographic procedure on silica gel with MeOH/CH₂Cl₂ (2:98 V/V) as eluant. The third fraction was identified as compound **16**, which was finally purified by chromatography on basic aluminum oxide with CH₂Cl₂ as eluant (3.8 mg, 1.04 %). **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 372 (4.4), 402 (4.9), 419 (5.2), 510 (4.1), 536 (3.7), 596 (3.7), 652 nm (3.9). ¹H

NMR (600 MHz, CD₂Cl₂, 300 K): δ = 9.21 (s, 2H; H5,20); 8.91 (d, ³*J*(H,H) = 4.6 Hz, 2H; H7,18); 8.54 (d, ³*J*(H,H) = 4.6 Hz, 2H, H8,17); 8.39 (s, 2H; H12,13); 7.26 (s, 4H; 10,15-*m*-Mes); 4.76 (s, 4H; H2,3); 2.60 (s, 6H; 10,15-*p*-CH₃(Mes)); 1.83 (s, 12H; 10,15-*o*-CH₃(Mes)); -3.06 (br s, 1H; NH); -6.42 ppm (s, 1H; H21). ¹³**C NMR** (150.9 MHz, CDCl₃, 300 K): δ = 151.8, 149.2, 139.3, 138.5, 137.9, 137.3, 134.2, 131.3, 127.7, 124.6, 123.8, 123.1, 116.8, 100.9, 35.3, 21.42, 21.36 ppm. **HR-MS** (ESI): *m*/*z* calcd for C₃₉H₃₈N₃⁺ [M+H]⁺: 548.3060; found: 548.3013.

16-H⁺ was obtained by titration of **16** with diluted solution of TFA in dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 420 (5.1), 438 (5.0), 559 (4.0), 587 (4.2), 636 nm (3.8).¹**H NMR** (600 MHz, CD₂Cl₂, 300 K): δ = 9.61 (s, 2H; H5,20); 9.02 (d, ³*J*(H,H) = 4.6 Hz, 2H; H7,18); 8.69 (d, ³*J*(H,H) = 4.6 Hz, 2H, H8,17); 8.67 (s, 2H; H12,13); 7.33 (s, 4H; 10,15-*m*-Mes); 4.85 (s, 4H; H2,3); 2.62 (s, 6H; 10,15-*p*-CH₃(Mes)); 1.79 (s, 12H; 10,15-*o*-CH₃(Mes)); -2.65 (s, 2H; NH); -4.89 (s, 1H; NH); -6.50 ppm (s, 1H; H21).

10,15-Di(p-tolyl)-21-oxo-21-carba-23-oxaporphyrinoids 17 and 18

10,15-Di(p-tolyl)-21-oxo-21-carba-23-oxaporphyrin 17

Macrocycle **17** was achieved as a side product in the synthesis of 10,15-ditolyl-21-carba-23-oxaporphyrinoids with the use of DDQ as oxidant. Initially, **17** was eluted with **14** in the first fraction during chromatographic procedure on basic aluminum oxide (Brockmann III grade; CH₂Cl₂). Final separation by chromatography on basic aluminum oxide (Brockmann III grade) with CHCl₃ as eluant gave **9** in trace amount (<1%). **UV-vis** (CH₂Cl₂): $\lambda_{max} = 369$, 624, 671 nm. ¹**H NMR** (600 MHz, CDCl₃, 300K): $\delta = 13.34$ (s, 2H; NH); 7.28 (d, ³*J*(H,H) = 7.9 Hz, 4H; *o*-Tol); 7.20 (d, ³*J*(H,H) = 7.9 Hz, 4H, *m*-Tol); 6.61 (dd, ³*J*(H,H) = 4.1 Hz, ⁴*J*(H,H) = 1.8 Hz, 2H; H7,18); 6.42 (s, 2H; H12,13); 6.38 (s, 2H; H5,20); 5.93 (dd, ³*J*(H,H) = 4.1 Hz, ⁴*J*(H,H) = 2.3 Hz, 2H; H8,17); 5.31 (s, 2H; H2,3); 2.40 ppm (s, 6H; *p*-CH₃(Tol)). ¹³C **NMR** (data from HSQC and HMBC, CDCl₃, 300 K): $\delta = 195.5$ (C21), 132.2 (*o*-Tol), 129.5 (C2,3), 129.2 (*m*-Tol), 128.4 (C12,13), 122.0 (C7,18), 121.4 (C5,20), 118.8 (C8,17), 21.3 ppm (*p*-CH₃(Tol)). **HR-MS** (ESI): *m/z* calcd for C₃₅H₂₆N₂O₂+ [M]⁺: 506.1989; found: 506.1958.

In solution the compound **17** was unstable and its decomposition during long ¹³C and 2D NMR measurements was observed.

10,15-Di(p-tolyl)-21-oxo-21-carba-23-oxachlorin 18

10,15-Di(p-tolyl)-21-carba-23-oxachlorin **15** (6.7 mg, 0.014 mmol) was dissolved in 10 ml of dichloromethane and AgOAc (8.5 mg, 0.05 mmol) dissolved in 7 ml of methanol was added. The mixture was stirred at reflux for 1 h. The reaction progress was monitored by UV-Vis spectroscopy. The solvent was evaporated, and the reaction mixture was purified by chromatography on silica gel column with CH₂Cl₂ as eluant. The first fraction was identified as compound **18** (1.8 mg, 25%). **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 311 (4.3), 378 (4.3), 430 (5.1), 448 (5.1), 542 (3.7), 561 (3.7), 603 (3.7), 613 (3.8), 657 nm (4.2). ¹H **NMR** (600 MHz, CD₂Cl₂, 300K): δ = 9.29 (s, 2H; H5,20); 8.65 (s, 2H; H12,13); 8.50 (dd, ³*J*(H,H) = 4.4 Hz, ⁴*J*(H,H) = 1.4 Hz, 2H; H7,18); 8.03 (dd, ³*J*(H,H) = 4.4 Hz, ⁴*J*(H,H) = 1.4 Hz, 2H; H7,18); 8.03 (dd, ³*J*(H,H) = 4.4 Hz, ⁴*J*(H,H) = 1.4 Hz, 2H; H7,18); 8.03 (dd, ³*J*(H,H) = 4.53 (s, 4H; H2,3); 2.91 (s, 2H; NH); 2.67 ppm (s, 6H, *p*-CH₃(Tol)). ¹³C **NMR** (150.9 MHz, CDCl₃, 300K): δ = 179.1, 152.1, 138.6, 137.7, 135.9, 133.9, 133.4, 130.3, 128.3, 125.6, 122.2, 121.9, 118.2, 108.2, 30.6, 21.5 ppm. **HR-MS** (ESI): *m*/*z* calcd for C₃₅H₂₈N₂O₂+ [M]⁺: 508.2151; found: 508.2153.

[18-OH]-H⁺ was obtained by titration of **18** with diluted solution of TFA in dichloromethane. **UV-vis** (CH₂Cl₂): λ_{max} (log ε) = 291 (4.3), 409 (5.1), 440 (5.0), 581 (4.0), 627 nm (3.8). ¹H NMR (600 MHz, CD₂Cl₂, 220K): δ = 9.82 (s, 2H; H5,20); 9.48 (s, 2H; H12,13); 9.35 (d, ³*J*(H,H) = 3.8 Hz, 2H; H7,18); 8.98 (d, ³*J*(H,H) = 3.8 Hz, 2H; H8,17); 8.11 (d, ³*J* = 7.6 Hz, 2H; o-Tol); 8.05 (d, ³*J* = 7.2 Hz, 2H; o-Tol); 7.66 (d, ³*J* = 7.6 Hz, 2H, *m*-Tol); 7.64 (d, ³*J* = 7.2 Hz, 2H; *m*-Tol); 5.14 (d, ²*J* = 13.7 Hz, 2H; H2,3); 4.22 (d, ²*J* = 13.7 Hz, 2H; H2',3'); 2.70 (s, 6H, *p*-CH₃(Tol)); -4.59 ppm (s, 2H; NH).

Results and Discussion

Schemes

Scheme S1 Atoms numerations (all hydrogen atoms are omitted).

Scheme S2 Tautomers of 10,15-diaryl-21-carba-23-oxaporphyrin 14.

Scheme S3 Tautomers of 10,15-diaryl-21-carba-23-oxachlorin 15.

Scheme S4 Protonation of 10,15-diaryl-21-carba-23-oxachlorin 15.

Scheme S5 Protonation of 10,15-dimesityl-21-carbachlorin 16.

X-ray structures

Fig. S1 Molecular structures of **15a**. Two crystallographically different molecules are present in the crystal: ruffled (A) and saddle (B) Top: perspective view; bottom: side view (*meso*-mesityl groups and H atoms are omitted for clarity). Displacement ellipsoids represent the 30% probability. Site occupation factors of N-bound H atoms are 0.5.

¹H NMR spectra

Fig. S2 ¹H NMR spectra of 14 at 300 K (bottom) and 180 K (top) (600 MHz, CD_2Cl_2).

Fig. S3 ^1H NMR spectra of 15 at 300 K (bottom) and 180 K (top) (600 MHz, CD_2Cl_2).

Fig. S4 ¹H NMR spectra of A) **14a** (600 MHz, CD₂Cl₂, 300 K), B) **14a-H**⁺ (600 MHz, CD₂Cl₂, 300 K) and C) **14a-H₂²⁺** (600 MHz, CDCl₃, 270 K).

Fig. S5 ¹H NMR spectra of 15-H⁺ (600 MHz, CDCl₃, 300 K).

Fig. S6 ¹H NMR spectra of A) 15a and B) 15a-H⁺ (600 MHz, CDCl₃, 300 K).

Fig. S7 ¹H NMR spectrum of 16-H⁺ (600 MHz, CD_2CI_2 , 300 K).

¹³C NMR spectra

Fig. S8 ¹³C NMR spectrum of 14-H⁺ (150.9 MHz, CDCl₃, 300 K).

Fig. S9 ^{13}C NMR spectrum of 14a-H+ (150.9 MHz, CD₂Cl₂, 300 K).

Fig. S10 ^{13}C NMR spectrum of 15-H+ (150.9 MHz, CDCl_3, 300 K).

Fig. S11 ¹³C NMR spectrum of 15a-H⁺ (150.9 MHz, CDCl₃, 300 K).

Fig. S13 ¹³C NMR spectrum of **18** (150.9 MHz, CDCl₃, 300 K).

2D NMR spectra

Fig. S14 Crucial fragment of HMBC spectrum of 17 (600 MHz, CD₂Cl₂, 300 K).

19

UV-vis spectra

Fig. S16 The electronic absorption spectra (CH₂Cl₂) of 14a (red line), 14a-H⁺ (green line) and 14a-H₂²⁺ (orange line).

Fig. S17 The electronic absorption spectra (CH_2CI_2) of 15 (red line) and 15-H⁺ (blue line).

Fig. S18 The electronic absorption spectra (CH₂Cl₂) of 15a (orange line) and 15a-H⁺ (green line).

Fig. S19 The electronic absorption spectra (CH_2Cl_2) of 16 (green line) and 16-H⁺ (black line).

Fig. S20 The electronic absorption spectrum (CH_2Cl_2) of 17.

Fig. S21 Titration of 18 with TFA (CH₂Cl₂): 18 (red) and 18-H⁺ (blue).

DFT figures and tables

Position	¹ H NMR		¹³ C NMR	
	δ _{exp} (ppm) 300 K	δ _{calc} (ppm) ^[a]	δ _{exp} (ppm) 300 K	δ _{calc} (ppm) ^[a]
5,20	6.38	5.43	121.4	116.8
12,13	6.42	6.09	128.4	122.9
7,18	6.61	6.21	122.0	116.2
8,17	5.93	5.71	118.8	114.8
o-Tol	7.29	7.31, 7.44 (7.37)	132.2	128.0, 127.9 (127.9)
<i>m</i> -Tol	7.20	7.22, 7.28 (7.25)	129.2	123.3, 123.3 (123.3)
2,3	5.31	4.17	129.5	126.2
NH	13.34	15.07	-	-
<i>p</i> -CH₃	2.40	2.02, 2.27, 2.55 (2.28)	21.3	22.2
21	-	-	195.5	189.3

 Table S2. ¹H and ¹³C NMR (selected) chemical shifts calculated for 17 using the GIAO method.

[a] The average values of calculated chemical shifts are included in brackets.

Fig. S22 Linear correlation between calculated (average values were used) and experimental values of ¹H (A) and ¹³C (B) chemical shifts for **17**

Position	¹ H NMR		¹³ C NMR	
	δ _{exp} (ppm) 300 K	δ _{calc} (ppm) ^[a]	δ _{exp} (ppm) 300 K	δ _{calc} (ppm) ^[a]
5,20	9.29	9.37	118.2	114.7
12,13	8.65	8.76	125.6	120.0
7,18	8.50	8.33	121.9	116.5
8,17	8.03	8.09	122.2	117.7
o-Tol	7.99	8.11, 8.29 (8.2)	133.9	131.8, 130.5 (131.1)
<i>m</i> -Tol	7.56	7.72, 7.64 (7.68)	128.3	123.1, 123.2 (123.1)
2,3	4.53	4.63, 4.16 (4.40)	30.6	32.2
NH	2.91	1.8	-	-
<i>p</i> -CH₃	2.67	2.5, 2.85, 2.36 (2.57)	21.5	22.4
1,4	-	-	136.9	134.2
11,14	-	-	152.1	147.6
21	-	-	179.1	167.7

Table S3. ¹H and ¹³C NMR (selected) chemical shifts calculated for 18 using the GIAO method.

[a] The average values of calculated chemical shifts are included in brackets.

Fig. S23 Linear correlation between calculated (average values were used) and experimental values of ^{1}H (A) and ^{13}C (B) chemical shifts for 18.

References

- M. J. T. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Mongomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Danneneberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Revision D.01; Gaussian, Inc.: Wallingford CT, **2009**.
- 2. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Phys. Rev. B* 1988, **37**, 785–789.
- 3. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, *Phys. Rev. A* 1988, **38**, 3098–3100.
- 4. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion, *Chem. Rev.* 2005, **105**, 3842–3888.
- D.Geuenich, K. Hess, F. Köhler, R. Herges, Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization, *Chem. Rev.*, 2005, **105**, 7758– 3772.
- 6. Rigaku Oxford Diffraction, *CrysAlisPRO* Software system, version 1.171.39.46, Rigaku Corporation, Oxford, UK, 2018, 2020.
- 7. G.M. Sheldrick, SHELXT-Integrated Space-Group and Crystal-Structure Determination, *Acta Crystallogr., Sect. A*, 2015, **A71**, 3–8.
- 8. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C, 2015, C71, 3-8.
- 9. A. L. Spek, PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors, *Acta Crystallogr., Sect. C*, 2015, **71**, 9–18.
- 10. A. L. Spek, Structure validation in chemical crystallography, *Acta Crystallogr., Sect. D*, 2009, **65**, 148–155.
- W. S. Seo, Y. J. Cho, S. C. Yoon, J. T. Park, Y. Park, Synthesis and structure of ansacyclopentadienyl pyrrolyl titanium complexes: [(η⁵-C₅H₄)CH₂(2-C₄H₃N)]Ti(NMe₂)₂ and [1,3-{CH₂(2-C₄H₃N)]₂(η⁵-C₅H₃)]Ti(NMe₂), *J. Organomet. Chem.*, 2001, **640**, 79–84.
- Ulman, A., Manassen, J., Synthesis of Tetraphenylporphyrin Molecules containing Heteroatoms other than Nitrogen. Part 4. Symmetrically and Unsymmetrically Substituted Tetraphenyl-21,23dithiaporphyrins, *J. Chem. Soc., Perkin Trans.* 1979, **1**, 1066–1069.