21-Carba-23-oxaporphyrinoids and 21-Oxo-21-carba-23oxaporphyrinoids - Macrocyclic m-Conjugation Involving Carbonyl Moiety

Anna Berlicka*, Paulina Foryś-Martowłos, Karolina Hassa, Michał J. Białek, Katarzyna Ślepokura, and Lechosław Latos-Grażyński*

Supporting Information

Table of Contents

Experimental Procedures 2
NMR spectroscopy 2
Mass spectrometry 2
Electronic spectroscopy 2
DFT calculations 2
X-ray data 2
Synthetic procedures and analytical data 4
Results and Discussions 10
Schemes 10
X-ray structures 11
${ }^{1} \mathrm{H}$ NMR spectra 12
${ }^{13} \mathrm{C}$ NMR spectra 16
2D NMR spectra 19
UV-vis spectra 20
DFT figures and tables 23
References 25

Experimental Procedures

NMR Spectroscopy

NMR spectra were recorded on Bruker Avance 500 MHz and Bruker Avance III 600 MHz spectrometers. Spectra were referenced to the residual solvent signal $\left(\mathrm{CDCl}_{3}, 7.24\right.$ and $77.0 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}, 5.32$ and 54.0 ppm). Two dimensional NMR spectra were recorded with 2048 data points in the t_{2} domain and up to 1024 points in the t_{1} domain, with a 1 s recovery delay. ${ }^{13} \mathrm{C}$ NMR spectra of 21 -carba-23-oxaporphyrins 14 , 14a and 21-carba-23-oxachlorins 15,15a were measured for their monoprotonated forms because of possible tautomerization shown in Schemes S2 and S3.

Mass Spectrometry

Mass spectra (High Resolution and Accurate Mass) were recorded on Bruker micrOTOF-Q, Shimadzu QTOF LCMS 9030 and WATERS LCT Premier XE spectrometers using the electrospray ionization technique.

UV/Vis Spectroscopy

Electronic spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions on a Varian Carry-50 Bio spectrophotometer.

DFT calculations

Geometry optimizations were carried out within unconstrained C_{1} symmetry in vacuo, with starting coordinates derived from preoptimized models or crystal structures using Gaussian software. ${ }^{[1]}$ Harmonic frequencies were calculated using analytical second derivatives to verify local minimum achievement with no negative frequencies observed. The calculations were performed at B3LYP/6-31G(d,p) level of theory. ${ }^{[2,3]}$ NICS values ${ }^{[4]}$ and NMR shifts were calculated using the GIAO method with TMS shieldings as a reference for NMR. For relative energy calculations, values with zero-point correction were taken. AICD plots were obtained by generation of the input file from CSGT calculations (Gaussian 09) and its processing by the AICD program. ${ }^{[5]}$

X-ray data for $14 \cdot \mathrm{xC}_{6} \mathrm{H}_{14}$ and 15a $\cdot \mathbf{0 . 5} \mathrm{CH}_{2} \mathrm{Cl}_{2}$

X-ray quality crystals of $14 \cdot x \mathrm{C}_{6} \mathrm{H}_{14}$ and $15 a \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were both prepared by slow diffusion of hexane to solutions of 14 and 15 dissolved in dichloromethane. X-ray diffraction data for the crystals were collected at 100(2) K on a k-geometry Rigaku XtaLAB Synergy DW (with rotating anode) or an Agilent Technologies Gemini Ultra four-circle diffractometer (ω scans) with CuK α radiation. Data collections, cell refinements, data reductions and analyses, including analytical or empirical (multi-scan) absorption corrections, were carried out with CrysAlisPRO. ${ }^{[6]}$ Structures were solved using dual-space algorithm with SHELXT program ${ }^{[7]}$ and refined on F^{2} by a full-matrix least-squares technique using SHELXL-2014 program ${ }^{[8]}$ with anisotropic displacement parameters for all non-H atoms.

There is a half of 14 molecule in the asymmetric unit of the $14 \cdot x \mathrm{C}_{6} \mathrm{H}_{14}$ crystal $(Z=0.5)$ and two molecules of 15 and one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule in the asymmetric unit of $15 a \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(Z=2)$. In $14 \cdot x \mathrm{C}_{6} \mathrm{H}_{14}$ highly disordered solvent molecule (most probably n-hexane from crystallization solution) was detected. It was not modelled and their electron density was taken into account using the SQUEEZE procedure ${ }^{[9]}$ in PLATON program. ${ }^{[10]}$ Disordered n-hexane molecules are located in the hydrophobic channels running down the \mathbf{c} axis. The volume of the solvent accessible voids ($473 \AA^{3}$ and 123 electrons per unit cell, i.e. about $118 \AA^{3}$ and 31 electrons per molecule of 14) suggests that the chemical formula of the crystal might be $14 \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$.
p-Tolyl ring in $14 \times \mathrm{xC}_{6} \mathrm{H}_{14}$ was found to be disordered and was refined in two positions with site occupation factors of $0.613(7)$ and $0.387(7)$. To get acceptable and appropriate model of this disordered fragment, some constraints on the coordinates and displacement parameters (EXYZ and EADP instructions in SHELXL) as well as restraint on the U_{ij} (ISOR) were applied in the refinement procedure.

All H atoms (including both positions of those from NH groups) in $14 \cdot x \mathrm{C}_{6} \mathrm{H}_{14}$ and $15 a \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were found in difference Fourier maps. N -bound H atom in $14 \cdot \mathrm{xC}_{6} \mathrm{H}_{14}$ (s.o.f. $=0.5$) was refined freely. N -bound H atoms in $15 a \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (two positions of one H atom per molecule) were initially refined freely with isotropic displacement parameters and site occupation factor (s.o.f.) 0.5, resulting in a rational model (with the correct geometry, i.e. $\mathrm{N}-\mathrm{H}$ distances, $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angles and $\mathrm{U}_{\text {iso }}$ for H atoms). In the final refinement cycles, all the H atoms in $15 \mathrm{a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and C -bound H atoms in $14 \cdot x \mathrm{C}_{6} \mathrm{H}_{14}$ were repositioned in their calculated positions and refined using a riding model, with $\mathrm{N}-\mathrm{H}=0.88$ and $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{C})$ for NH , CH and CH_{2} or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for CH_{3}, and with s.o.fs. of the NH hydrogen atoms $=0.5$.

The details of structures refinements are given in Table S1. The crystallographic information files (CIF) have been deposited at the Cambridge Crystallographic Data Centre (CCDC Nos. 2177053, 2177054) and provided as Supporting Information.

Table S1. Crystal data for $\mathbf{1 5 a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{1 4} \cdot \mathrm{xC}_{6} \mathrm{H}_{14}$.

	$\mathbf{1 4} \times \mathrm{C}_{6} \mathrm{H}_{14}{ }^{(\mathrm{a})}$	15a $\cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
CCDC No.	2177053	2177054
Chemical formula	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ [+ solvent]	$\mathrm{C}_{39.5} \mathrm{H}_{37} \mathrm{CIN}_{2} \mathrm{O}$
Mr	490.58	591.16
Crystal system, space group	Monoclinic, C2/c	Monoclinic, $P 2{ }_{1 / \mathrm{C}}$
Temperature (K)	100(2)	100(2)
$a, b, c(A)$	14.077(2), 20.144(3), 10.359(2)	17.670(4), 15.120(3), 23.890(6)
$\beta\left({ }^{\circ}\right)$	94.94(2)	98.85(2)
$V\left(\AA^{3}\right)$	2926.6 (8)	6307(2)
Z	4	8
Radiation type	$\mathrm{Cu} K \mathrm{~K}$	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.52	1.33
$F(000)$	1032	2504
Crystal size (mm)	$0.59 \times 0.08 \times 0.04$	$0.27 \times 0.03 \times 0.01$
Diffractometer	Rigaku XtaLAB Synergy DW system, HyPix-Arc 150 detector	Agilent Technologies Gemini Ultra with Ruby CCD detector
Absorption correction	Multi-scan	Analytical
$T_{\text {min }}, T_{\text {max }}$	0.476, 1.000	0.788, 0.981
No. of measured, independent and observed [$1>2 \sigma(\Lambda)$] reflections	26068, 2874, 2649	29556, 10610, 6033
Rint	0.025	0.098
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.620	0.588
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.049, 0.125, 1.05	0.063, 0.134, 1.01
No. of reflections	2874	10610
No. of parameters	223	796
No. of restraints	21	0
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.37, -0.29	0.24, -0.51

${ }^{(a)}$ Given values do not contain the contribution of the disordered solvent.
Computer programs: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018), SHELXT-2014/7 (Sheldrick, 2015), SHELXL2014/7 (Sheldrick, 2015), PLATON (Spek, 2009).

Synthetic procedures and analytical data

Solvents and reagents

Dichloromethane was distilled over calcium hydride. CDCl_{3} was prepared directly before use by running through a basic alumina column. Reagents not listed here were used as received.
Compounds 12 and 13 were obtained as described in literature. 11,12

Synthesis of 10,15-di(p-tolyl)-21-carba-23-oxaporhyrin 14 and 10,15-di(p-tolyl)-21-carba-23oxachlorin 15

$12(50 \mathrm{mg}, 0.223 \mathrm{mmol})$, mesitylaldehyde ($0.39 \mathrm{~mL}, 2.68 \mathrm{mmol}$), $13(76 \mathrm{mg}, 0.246 \mathrm{mmol})$, and solution of 2% EtOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ were placed in a two-necked $250-\mathrm{mL}$ flask. Nitrogen was bubbled through the solution for 15 min , then $\mathrm{Et}_{2} \mathrm{O}: \mathrm{BF}_{3}(28 \mu \mathrm{~L}, 0.227 \mathrm{mmol})$ was added, and the mixture was stirred in the dark for 1 h under N_{2}. Triethylamine ($45 \mu \mathrm{~L}, 0.323 \mathrm{mmol}$) and DDQ ($0.27 \mathrm{~g}, 1.2 \mathrm{mmol}$) were added and the solution was stirred for a further 1 h . The solvent was evaporated, and the reaction mixture was chromatographed on basic alumina (Brockmann III grade) with dichloromethane as eluant. Product 14 was found in the first fraction, while 15 in the third fraction. 14 was further purified through a chromatographic procedure on basic alumina (Brockmann III grade) with dichloromethane as eluant. Yields: 14, 12 mg (11\%) and 15, 25 mg (23\%).

10,15-Di(p-tolyl)-21-carba-23-oxaporhyrin 14

UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=313$ (4.4), 410 (4.9), 499 (4.0), 535 (4.0), 608 (3.6), 728 nm (2.7). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=9.79$ (s, 2H; H5,20); $8.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.97$ (s, 2H; H12,13); 8.60 $\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 8.04\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 2,3\right) ; 8.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 4 \mathrm{H} ; 0\right.$-Tol); $7.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7,8 \mathrm{~Hz}, 4 \mathrm{H} ; m\right.$-Tol); $2.68\left(\mathrm{~s}, 6 \mathrm{H} ; p-\mathrm{CH}_{3}(\mathrm{Tol})\right.$); -0.41 (s, 1H, NH); $-4.30 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21)$. HR-MS (ESI): m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 491,2118$; found: 491,2115.

Protonation of 14

14- H^{+}was obtained by titration of 14 with diluted solution of TFA in chloroform or dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=296(4.4), 319$ (4.4), 404 (5.0), 467 (4.5), 499 (4.2), 576 (3.9), 612 (4.0), $699 \mathrm{~nm}(3.6)$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 270 \mathrm{~K}$): $\delta=9.97(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H}, 20) ; 9.09(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}\right.$, $2 \mathrm{H} ; \mathrm{H} 7,18) ; 8.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 8.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 4 \mathrm{H} ; 0-\mathrm{Tol}\right) ; 7.80\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.1\right.$ $\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{H} 2,3) ; 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; m\right.$-Tol); $2.69\left(\mathrm{~s}, 6 \mathrm{H} ; p-\mathrm{CH}_{3}(\mathrm{Tol})\right.$); 0.43 ($\left.\mathrm{s}, 1 \mathrm{H} ; \mathrm{NH}\right) ;-5.84 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; \mathrm{H} 21) .{ }^{13} \mathrm{C}$ NMR (150.9 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=155.8,142.1,141.9,141.7,139.1,137.4,135.1,130.8$, 129.9, 128.6, 127.6, 125.5, 121.1, 118.6, 113.4, 21.5 ppm.

14- $\mathrm{H}_{2}{ }^{2+}$ was obtained by addition of concentrated TFA to 14 in chloroform or dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=341$ (4.3), 442 (5.2), 538 (4.1), 607 (3.8), $670 \mathrm{~nm}(4.1) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 270\right.$ K): $\delta=11.25$ (s, 2H; H5,20); 10.96 (s, 2H; H2,3); 9.73 (s, 2H; H12,13); 9.58 (d, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18$); $9.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 8.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; o-\mathrm{Tol}\right) ; 7.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; m-\right.$ Tol); 2.79 (s, $6 \mathrm{H} ; \mathrm{p}-\mathrm{CH}_{3}(\mathrm{Tol})$); -1.86 ($\mathrm{s}, 1 \mathrm{H} ; \mathrm{NH}$); $-7.43 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21) .{ }^{13} \mathrm{C}$ NMR (data from HSQC, CDCl_{3}, $280 \mathrm{~K}): \delta=151.6$ (C2,3), 137.4 (o-Tol), 134.9 (C8,17), 134.4 (C12,13), 131.7 (C7,18), 129.6 (m-Tol), 117.3 (C5,20), 28.4 (C21), $21.6 \mathrm{ppm}\left(p-\mathrm{CH}_{3}(\mathrm{Tol})\right)$.

10,15-Di(p-tolyl)-21-carba-23-oxachlorin 15

UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=351$ (4.3), 402 (5.0), 4345.0), 518 (4.2), 618 (3.7), 679 nm (4.0). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=9.44(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 5,20) ; 9.00(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.66$ (d, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 8.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; 0-\mathrm{Tol}\right) ; 7.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; m\right.$-Tol); $4.81(\mathrm{~s}, 4 \mathrm{H} ; \mathrm{H} 2,3) ; 2.70\left(\mathrm{~s}, 6 \mathrm{H} ; p-\mathrm{Tol}\left(\mathrm{CH}_{3}\right)\right) ;-1.57(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}) ;-4.94 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21)$. HR-MS (ESI): m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 493.2274; found: 493.2310.

Protonation of 15

$\mathbf{1 5 - H} \mathbf{H}^{+}$was obtained by titration of 15 with diluted solution of TFA in chloroform or dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=349$ (4.0), 408 (5.2), 439 (5.1), 578 (4.2), $625 \mathrm{~nm}(4.1) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ $\mathrm{K}): \delta=9.73$ (s, 2H; H5,20); $9.23(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5\right.$ $\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17$); 8.16 ($\left.\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; o-\mathrm{Tol}\right) ; 7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H} ; m\right.$-Tol); 4.83 (s, 4H; H2,3); 2.71 (s, 6H; p-CH3(Tol)); -1.43 (s, 1H; NH); -6.75 ppm (s, 1H; H21-H). ${ }^{13}$ C NMR (150.9 MHz, CDCl $\left.3,300 \mathrm{~K}\right): \delta$ = 153.8, 143.6, 138.8, 138.0, 137.5, 135.3, 128.4, 127.1, 126.9, 125.4, 113.1, 109.1, 35.8, 21.6 ppm .

Synthesis of 10,15-dimesityl-21-carba-23-oxaporhyrin 14a and 10,15-dimesityl-21-carba-23oxachlorin 15a

Macrocycles 14a and 15a were synthesized using the same synthetic and purifications procedures as for 14 and 15, however purification of 14a required additional chromatography on basic aluminum oxide (Brockmann III grade) with dichloromethane as eluant. Yields: 14a, 3.6 mg (3\%) and 15a, 19.5 mg (16\%).

10,15-Dimesityl-21-carba-23-oxaporphyrin 14a

UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=311$ (4.4), 410 (4.8), 536 (4.0), 614 (3.4), $727 \mathrm{~nm}(3.1) .{ }^{1} \mathrm{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right): \delta=9.76$ (s, 2H; H5,20); $8.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.83(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.32$ (d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 8.08\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 2,3\right) ; 7.31$ (s, 4H; m-Mes); 2.61 (s, 6H; $p-$ $\operatorname{Mes}\left(\mathrm{CH}_{3}\right)$); 1.84 (s, 6 H ; o-Mesl $\left(\mathrm{CH}_{3}\right)$); $-4.12 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21)$. NH is invisible. HR-MS (ESI): m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 547.2750; found: 547.2755.

Protonation of 14a

14a- H^{+}was obtained by titration of 14a with diluted solution of TFA in chloroform or dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=322$ (4.4), 401 (4.9), 467 (4.5), 501 (4.3), 575 (3.9), $611 \mathrm{~nm}(3.9) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right): \delta=10.03(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 5,20) ; 9.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.92(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.32(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 7.87\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 2,3\right) ; 7.33$ (s, 4H; m-Mes); 2.61 (s, 6H; $p-$ $\operatorname{Mes}\left(\mathrm{CH}_{3}\right)$); $1.83\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{o}-\mathrm{Mesl}\left(\mathrm{CH}_{3}\right)\right.$); $0.49(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}) ;-5.50 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21) .{ }^{13} \mathrm{C}$ NMR (150.9 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right): \delta=155.3,142.7,142.2,141.8,140.4,139.8,136.0,131.1,129.9,129.5,129.1,125.4,122.2$, 119.3, 111.4, 21.8, 21.0 ppm.

$14 a-\mathrm{H}_{2}{ }^{2+}$
$\mathbf{1 4 a}-\mathrm{H}_{2}{ }^{2+}$ was obtained by addition of concentrated TFA to $\mathbf{1 4 a}$ in chloroform or dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=395(5.3), 528$ (4.0), 568 (3.8), 594 (3.8), $651 \mathrm{~nm}(3.8) .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 270$ $\mathrm{K}): \delta=11.56$ (s, 2H; H5,20); 11.22 (s, 2H; H2,3); 9.83 (s, 2H; H12,13); 9.82 (d, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18$);
$9.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 7.42$ (s, 4H; m-Mes); 2.67 (s, 6H; p-Mes($\left.\mathrm{CH}_{3}\right)$); 1.73 (s, 6H; o-Mes $\left(\mathrm{CH}_{3}\right)$); -3.00 (s, 1H; NH); -7.93 ppm (s, 1H; H21).

10,15-Dimesityl-21-carba-23-oxachlorin 15a

UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=351$ (4.3), 402 (5.0), 435 (5.0), 519 (4.1), 618 (3.6), 681 nm (3.9). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta=9.35(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 5,20) ; 8.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.77(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.48$ (d, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17$); 7.20 (s, 4H; m-Mes); 4.75 (s, 2H; H2,3); 2.58 (s, 6H; p-CH3(Mes)); 1.78 (s, $12 \mathrm{H} ; \mathrm{o}-\mathrm{CH}_{3}(\mathrm{Mes})$); -1.41 (br s, $1 \mathrm{H} ; \mathrm{NH}$); $-4.81 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 21\right.$). HR-MS (ESI): m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 549.2906$, found: 549.2910.

$15 \mathrm{a}-\mathrm{H}^{+}$was obtained by titration of $\mathbf{1 5 a}$ with diluted solution of TFA in chloroform or dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=348$ (4.0), 408 (5.2), 442 (5.1), 580 (4.1), 627 nm (4.0). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): \delta=9.68(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 5,20) ; 8.98(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $4.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17$); 7.17 (s, 4H, m-Mes); 4.77 (s, 2H; H2,3); 2.56 (s, 6H; p-CH3(Mes)); 1.72 (s, 12H; o$\mathrm{CH}_{3}(\mathrm{Mes})$); $-1.23(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}) ;-6.62(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H} 21) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=153.8$, 152.3, $143.6,140.0,138.8,138.7,136.7,136.3,128.4,126.2,126.1,125.9,110.2,109.3,35.8,21.5,20.7 \mathrm{ppm}$.

10,15-Dimesityl-21-carbachlorin 16

Pyrrole ($93 \mu \mathrm{~L}, 1.34 \mathrm{mmol}$), mesitylaldehyde ($0.39 \mathrm{~mL}, 2.68 \mathrm{mmol}$), $12(0.15 \mathrm{~g}, 0.67 \mathrm{mmol})$, and solution of 3 $\% \mathrm{EtOH}$ in $\mathrm{CHCl}_{3}(300 \mathrm{~mL})$ were placed in a $500-\mathrm{mL}$ flask. Nitrogen was bubbled through the solution for 30 min , then $\mathrm{Et}_{2} \mathrm{O}: \mathrm{BF}_{3}(83 \mu \mathrm{~L}, 0.67 \mathrm{mmol})$ was added, and the mixture was stirred in the dark for 1 h under N_{2}. Triethylamine ($0.11 \mathrm{~mL}, 0.74 \mathrm{mmol}$) and p-chloranil ($0.98 \mathrm{~g}, 4.0 \mathrm{mmol}$) were added and the solution was stirred for a further 1 h . The solvent was evaporated, and the reaction mixture was purified by recrystalization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. The filtrate (product 16) was further purified through a chromatographic procedure on silica gel with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 98 \mathrm{~V} / \mathrm{V})$ as eluant. The third fraction was identified as compound 16, which was finally purified by chromatography on basic aluminum oxide with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant ($3.8 \mathrm{mg}, 1.04 \%$). UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)=372$ (4.4), 402 (4.9), 419 (5.2), 510 (4.1), 536 (3.7), 596 (3.7), $652 \mathrm{~nm}(3.9) .{ }^{1} \mathrm{H}$

NMR (600 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right): \delta=9.21(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 5,20) ; 8.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right)$; 8.54 (d, ${ }^{3} J(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 8,17$); 8.39 (s, 2H; H12,13); 7.26 (s, 4H; 10,15-m-Mes); 4.76 (s, 4H; H2,3); 2.60 (s, 6H; $10,15-p-\mathrm{CH}_{3}(\mathrm{Mes})$); 1.83 (s, 12H; 10,15-o-CH3(Mes)); -3.06 (br s, $1 \mathrm{H} ; \mathrm{NH}$); $-6.42 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21) .{ }^{13} \mathrm{C}$ NMR (150.9 MHz, $\mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=151.8,149.2,139.3,138.5,137.9,137.3,134.2,131.3,127.7,124.6,123.8$, 123.1, 116.8, 100.9, 35.3, 21.42, 21.36 ppm. HR-MS (ESI): m/z calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{3^{+}}[\mathrm{M}+\mathrm{H}]^{+}$: 548.3060 ; found: 548.3013.

$\mathbf{1 6 - \mathbf { H } ^ { + }}$ was obtained by titration of 16 with diluted solution of TFA in dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }$ $(\log \varepsilon)=420(5.1), 438(5.0), 559(4.0), 587(4.2), 636 \mathrm{~nm}(3.8) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$): $\delta=9.61$ (s, $2 \mathrm{H} ; \mathrm{H} 5,20) ; 9.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 8,17\right) ; 8.67(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13)$; 7.33 (s, 4H; 10,15-m-Mes); 4.85 (s, $4 \mathrm{H} ; \mathrm{H} 2,3$); 2.62 (s, 6H; 10,15-p- CH_{3} (Mes)); 1.79 (s, 12H; 10,15-oCH_{3} (Mes)); -2.65 (s, 2H; NH); -4.89 (s, 1H; NH); $-6.50 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H} 21)$.

10,15-Di(p-tolyl)-21-oxo-21-carba-23-oxaporphyrinoids 17 and 18

10,15-Di(p-tolyl)-21-oxo-21-carba-23-oxaporphyrin 17

Macrocycle 17 was achieved as a side product in the synthesis of 10,15-ditolyl-21-carba-23-oxaporphyrinoids with the use of DDQ as oxidant. Initially, 17 was eluted with 14 in the first fraction during chromatographic procedure on basic aluminum oxide (Brockmann III grade; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Final separation by chromatography on basic aluminum oxide (Brockmann III grade) with CHCl_{3} as eluant gave 9 in trace amount ($<1 \%$). UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=369,624,671 \mathrm{~nm} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=13.34(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{NH}) ; 7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $7.9 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{o}$-Tol); $7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 4 \mathrm{H}, m\right.$-Tol); $6.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$; H7,18); 6.42 (s, 2H; H12,13); 6.38 (s, 2H; H5,20); 5.93 (dd, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17$); 5.31 (s, 2H; H2,3); $2.40 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H} ; p-\mathrm{CH}_{3}(\mathrm{Tol})\right.$). ${ }^{13} \mathrm{C}$ NMR (data from HSQC and $\mathrm{HMBC}^{2} \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=$ 195.5 (C21), 132.2 (o-Tol), 129.5 (C2,3), 129.2 (m-Tol), 128.4 (C12,13), 122.0 (C7,18), 121.4 (C5,20), 118.8 (C8,17), $21.3 \mathrm{ppm}\left(p-\mathrm{CH}_{3}(\mathrm{Tol})\right)$. HR-MS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2^{+}}[\mathrm{M}]^{+}: 506.1989$; found: 506.1958.

In solution the compound 17 was unstable and its decomposition during long ${ }^{13} \mathrm{C}$ and 2 D NMR measurements was observed.

10,15-Di(p-tolyl)-21-carba-23-oxachlorin $15(6.7 \mathrm{mg}, 0.014 \mathrm{mmol})$ was dissolved in 10 ml of dichloromethane and AgOAc ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) dissolved in 7 ml of methanol was added. The mixture was stirred at reflux for 1 h . The reaction progress was monitored by UV-Vis spectroscopy. The solvent was evaporated, and the reaction mixture was purified by chromatography on silica gel column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant. The first fraction was identified as compound 18 ($1.8 \mathrm{mg}, 25 \%$). UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\log \varepsilon)=311$ (4.3), 378 (4.3), 430 (5.1), 448 (5.1), 542 (3.7) , 561 (3.7), 603 (3.7), 613 (3.8), $657 \mathrm{~nm}(4.2) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$): δ $=9.29(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 5,20) ; 8.65(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{H} 12,13) ; 8.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.03$ (dd, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 8,17\right) ; 7.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{o}-\mathrm{Tol}\right) ; 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, m-\right.$ Tol); 4.53 (s, 4H; H2,3); 2.91 (s, 2H; NH); $2.67 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3}(\mathrm{Tol})\right.$). ${ }^{13} \mathrm{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta=179.1,152.1,138.6,137.7,135.9,133.9,133.4,130.3,128.3,125.6,122.2,121.9,118.2,108.2,30.6$, 21.5 ppm . HR-MS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]+: 508.2151$; found: 508.2153.

[18-OH]- H^{+}was obtained by titration of 18 with diluted solution of TFA in dichloromethane. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\log \varepsilon)=291$ (4.3), 409 (5.1), 440 (5.0), 581 (4.0), $627 \mathrm{~nm}(3.8) .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 220 \mathrm{~K}$): $\delta=$ 9.82 (s, 2H; H5,20); 9.48 (s, 2H; H12,13); $9.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 7,18\right) ; 8.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$; H8,17); 8.11 (d, $\left.{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{o}-\mathrm{Tol}\right) ; 8.05$ (d, ${ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{o}$-Tol); 7.66 (d, ${ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, m$-Tol); 7.64 (d, ${ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, m$-Tol); 5.14 (d, ${ }^{2} \mathrm{~J}=13.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H} 2,3$); 4.22 ($\mathrm{d},{ }^{2} \mathrm{~J}=13.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}^{\prime}, 3^{\prime}$); 2.70 ($\mathrm{s}, 6 \mathrm{H}, p-$ $\mathrm{CH}_{3}(\mathrm{Tol})$); $-4.59 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H} ; \mathrm{NH})$.

Results and Discussion

Schemes

Scheme S1 Atoms numerations (all hydrogen atoms are omitted).

Scheme S2 Tautomers of 10,15-diaryl-21-carba-23-oxaporphyrin 14.

Scheme S3 Tautomers of 10,15-diaryl-21-carba-23-oxachlorin 15

Scheme S4 Protonation of 10,15-diaryl-21-carba-23-oxachlorin 15.

Scheme S5 Protonation of 10,15-dimesityl-21-carbachlorin 16.

X-ray structures

Fig. S1 Molecular structures of 15a. Two crystallographically different molecules are present in the crystal: ruffled (A) and saddle (B) Top: perspective view; bottom: side view (meso-mesityl groups and H atoms are omitted for clarity). Displacement ellipsoids represent the 30% probability. Site occupation factors of N -bound H atoms are 0.5 .

${ }^{1} \mathrm{H}$ NMR spectra

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectra of 14 at 300 K (bottom) and 180 K (top) ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectra of 15 at 300 K (bottom) and 180 K (top) ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$).

 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 270 \mathrm{~K}$).

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 5 - \mathbf { H } ^ { + }}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Fig. $\mathbf{S} 6{ }^{1} \mathrm{H}$ NMR spectra of A) $\mathbf{1 5 a}$ and B) $\mathbf{1 5 a} \mathbf{-} \mathbf{H}^{+}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}-\mathbf{H}^{+}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

${ }^{13} \mathrm{C}$ NMR spectra

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4 - \mathbf { H } ^ { + }}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Fig. S9 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4 a - \mathbf { H } ^ { + }}\left(150.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

Fig. $\mathbf{S 1 0}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5 - \mathbf { H } ^ { + }}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Fig. S12 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Fig. S13 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

2D NMR spectra

Fig. S14 Crucial fragment of HMBC spectrum of $17\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

Fig. S15 Crucial fragment of HMBC spectrum of $\mathbf{1 8}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

UV-vis spectra

Fig. S16 The electronic absorption spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 4 a}$ (red line), $\mathbf{1 4 a} \mathbf{-} \mathrm{H}^{+}$(green line) and $\mathbf{1 4 a} \mathbf{-} \mathrm{H}_{2}{ }^{2+}$ (orange line).

Fig. S17 The electronic absorption spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 5}$ (red line) and $\mathbf{1 5 - \mathbf { H } ^ { + }}$ (blue line).

Fig. S18 The electronic absorption spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 5 a}$ (orange line) and $\mathbf{1 5 a} \mathbf{- \mathbf { H } ^ { + }}$ (green line).

Fig. S19 The electronic absorption spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 6}$ (green line) and $\mathbf{1 6 - \mathbf { H } ^ { + }}$ (black line).

Fig. S20 The electronic absorption spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of 17.

Fig. $\mathbf{S 2 1}$ Titration of 18 with TFA $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 18$ (red) and $18-\mathbf{H}^{+}$(blue).

DFT figures and tables

Table S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (selected) chemical shifts calculated for $\mathbf{1 7}$ using the GIAO method.

Position	${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
	$\underset{300 \mathrm{~K}}{\delta_{\text {exp }}(\text { ppm })}$	$\delta_{\text {calc }}(\mathrm{ppm})^{[\mathrm{ab}}$	$\underset{\substack{\text { exp } \\ 300 \mathrm{Kpm}}}{\delta^{2}}$	$\delta_{\text {calc }}(\mathrm{ppm})^{[\mathrm{ab]}}$
5,20	6.38	5.43	121.4	116.8
12,13	6.42	6.09	128.4	122.9
7,18	6.61	6.21	122.0	116.2
8,17	5.93	5.71	118.8	114.8
o-Tol	7.29	7.31, 7.44 (7.37)	132.2	128.0, 127.9 (127.9)
m-Tol	7.20	7.22, 7.28 (7.25)	129.2	123.3, 123.3 (123.3)
2,3	5.31	4.17	129.5	126.2
NH	13.34	15.07	-	-
$p-\mathrm{CH}_{3}$	2.40	2.02, 2.27, 2.55 (2.28)	21.3	22.2
21	-	-	195.5	189.3

[a] The average values of calculated chemical shifts are included in brackets.

Fig. S22 Linear correlation between calculated (average values were used) and experimental values of ${ }^{1} \mathrm{H}(\mathrm{A})$ and ${ }^{13} \mathrm{C}(\mathrm{B})$ chemical shifts for 17

Table S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (selected) chemical shifts calculated for 18 using the GIAO method.

Position	${ }^{1} \mathrm{H}$ NMR		${ }^{13} \mathrm{C}$ NMR	
	$\begin{gathered} \delta_{\operatorname{exx}}(\text { ppm }) \\ 300 \mathrm{~K}) \end{gathered}$	$\delta_{\text {calc }}(\mathrm{ppm})^{[\mathrm{aj}}$	$\begin{gathered} \delta_{\text {exp }}(\text { ppm }) \\ 300 \mathrm{~K} \end{gathered}$	$\delta_{\text {calc }}(\mathrm{ppm})^{[\mathrm{ad]}}$
5,20	9.29	9.37	118.2	114.7
12,13	8.65	8.76	125.6	120.0
7,18	8.50	8.33	121.9	116.5
8,17	8.03	8.09	122.2	117.7
o-Tol	7.99	8.11, 8.29 (8.2)	133.9	131.8, 130.5 (131.1)
m-Tol	7.56	7.72, 7.64 (7.68)	128.3	123.1, 123.2 (123.1)
2,3	4.53	4.63, 4.16 (4.40)	30.6	32.2
NH	2.91	1.8	-	-
$p-\mathrm{CH}_{3}$	2.67	2.5, 2.85, 2.36 (2.57)	21.5	22.4
1,4	-	-	136.9	134.2
11,14	-	-	152.1	147.6
21	-	-	179.1	167.7

[a] The average values of calculated chemical shifts are included in brackets.

Fig. S23 Linear correlation between calculated (average values were used) and experimental values of ${ }^{1} \mathrm{H}(\mathrm{A})$ and ${ }^{13} \mathrm{C}$ (B) chemical shifts for 18.

References

1. M. J. T. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Mongomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Danneneberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
2. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 1988, 37, 785-789.
3. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 1988, 38, 3098-3100.
4. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion, Chem. Rev. 2005, 105, 3842-3888.
5. D.Geuenich, K. Hess, F. Köhler, R. Herges, Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization, Chem. Rev., 2005, 105, 77583772.
6. Rigaku Oxford Diffraction, CrysAlisPRO Software system, version 1.171.39.46, Rigaku Corporation, Oxford, UK, 2018, 2020.
7. G.M. Sheldrick, SHELXT-Integrated Space-Group and Crystal-Structure Determination, Acta Crystallogr., Sect. A, 2015, A71, 3-8.
8. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C, 2015, C71, 3-8.
9. A. L. Spek, PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors, Acta Crystallogr., Sect. C, 2015, 71, 9-18.
10. A. L. Spek, Structure validation in chemical crystallography, Acta Crystallogr., Sect. D, 2009, 65, 148155.
11. W. S. Seo, Y. J. Cho, S. C. Yoon, J. T. Park, Y. Park, Synthesis and structure of ansacyclopentadienyl pyrrolyl titanium complexes: $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CH}_{2}\left(2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}\right)\right] \mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\left[1,3-\left\{\mathrm{CH}_{2}\left(2^{-}\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}\right)\right\}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\right)\right] \mathrm{Ti}\left(\mathrm{NM}_{2}\right)$, J. Organomet. Chem., 2001, 640, 79-84.
12. Ulman, A., Manassen, J., Synthesis of Tetraphenylporphyrin Molecules containing Heteroatoms other than Nitrogen. Part 4. Symmetrically and Unsymmetrically Substituted Tetraphenyl-21,23dithiaporphyrins, J. Chem. Soc., Perkin Trans. 1979, 1, 1066-1069.
