Supporting Information for

Direct Intermolecular Three-Component Aminotrifluoromethylation

of Styrenes by Visible Light Photoredox Catalysis

Lvyin Zheng,*[‡]Liuhuan Cai,[‡]Xiaoya Zhuo, Lei Deng, Yingying Wu,

Bening Yang, Yihan Wang and Wei Guo*

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China

Fax: (+86) 0797-8393536; *E-mail: zhenglvyin@126.com; guoweigw@126.com

Table of Contents	Pages
1. Optimization of the Reaction Conditions	
2. GC-MS of 4p	S6
3. GC-MS of Intermediate 8	
4. Fluorescence Quenching Experiments	S8
5. Cyclic Voltammetry (CV) Experiments	
6. Light On/off Experiments	
7. Characterization Data	S11-28
8. NMR Spectra	S29-S73

1. Optimization of the Reaction Conditions

+ 1a	H NNH ₂ 2a	+ 0 - CF ₃	$\frac{\text{Rose bengal (x mol \%)}}{K_2 \text{HPO}_4 (2 \text{ equiv})}$ $\frac{\text{CH}_3 \text{CN} (2 \text{ mL})}{10 \text{ W Blue LEDs}}$ r. t., 24 h	HN CF ₃ 4a
entry	R	lose bengal (x	. mol %)	yield (%)
1		1		62
2		2		58
3		3		57
4		4		57

Table S1. The Effect of the Amount of Rose bengal for 4a^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **3** (0.3 mmol), K_2HPO_4 (2 equiv), and Rose bengal (x mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) at room temperature for 24 h in the open air. Isolated yields based on **1a**.

+ 1a	H NH ₂ 2a	+ CF ₃	Rose bengal (1 mol %) K ₂ HPO ₄ (2 equiv) CH ₃ CN (2 mL) 10 W Blue LEDs r. t., 24 h	HN CF ₃ 4a
entry		2a (x mm	ol)	yield (%)
1		0.10		28
2		0.15		33
3		0.20		42
4		0.30		62

Table S2. The Effect of the Amount of 2a for 4a^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (x mmol), **3** (0.3 mmol), K_2HPO_4 (2 equiv), and Rose bengal (1 mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) at room temperature for 24 h in the open air. Isolated yields based on **1a**.

la la	+ +	² + 0 - CF ₃	Rose bengal (1 mol %) K ₂ HPO ₄ (2 equiv) CH ₃ CN (2 mL) 10 W Blue LEDs r. t., 24 h	HN CF ₃ 4a
entry		3 (x mmo	ol)	yield (%)
1		0.10		23
2		0.20		50
3		0.30		62
4		0.40		63

Table S3. The Effect of the Amount of 3 for 4a^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **3** (x mmol), K_2HPO_4 (2 equiv), and Rose bengal (1 mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) at room temperature for 24 h in the open air. Isolated yields based on **1a**.

Table S4. The Effect of the Amount of K₂HPO₄ for 4a^a

la la	+ HNNH	² + CF ₃	Rose bengal (1 mol %) K ₂ HPO ₄ (x equiv) CH ₃ CN (2 mL) 10 W Blue LEDs r. t., 24 h	HN CF ₃ 4a
entry		K ₂ HPO ₄ (x eq	uiv)	yield (%)
1		1.0		40
2		1.5		58
3		2.0		62
4		3.0		59

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **3** (0.3 mmol), K_2HPO_4 (x equiv), and Rose bengal (1 mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) at room temperature for 24 h in the open air. Isolated yields based on **1a**.

Table S5. The Effect of Reaction Temperature for 4a^a

13	+ , NH ₂ ,	CF ₃	Rose bengal (1 mol %) K ₂ HPO ₄ (2 equiv) CH ₃ CN (2 mL) 10 W Blue LEDs 24 h	
entry	20			vield (%)
Chuy		1(0)		yiciu (70)
1		25		62
2		40		60
3		60		51
4		80		39

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **3** (0.3 mmol), K_2HPO_4 (2 equiv), and Rose bengal (1 mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) for 24 h in the open air. Isolated yields based on **1a**.

Table S6. The Effect of Light Sources for 4a^a

+ 1a	$H_{NH_2} + H_{I}$	$CF_{3} = \frac{CF_{3}}{CF_{3}} = \frac{CF_{3}}{CF_{3$	+N CF ₃ 4a
entry	light source	ces (10 W)	yield (%)
1	UV LEDs ((385 nm)	25
2	Blue LEDs	(440 nm)	34
3	Blue LEDs	(465 nm)	62
4	Green LEDs	(550 nm)	23
5	White LEDs	s (6000k)	20

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **3** (0.3 mmol), K_2HPO_4 (2 equiv), and Rose bengal (1 mol %) in CH₃CN (2 mL), under light irradiation for 24 h in the open air. Isolated yields based on **1a**.

Table S7. The Effect of Reaction Time for 4a^a

la la	+ HNNNH	H_2 + H_2 + H_2 + H_2 + H_3 + H_3 + H_3 + H_3 + H_3 + H_3 + H_3 + H_3 + H_3 + H_3	Se bengal (1 mol %) (2 HPO ₄ (2 equiv) CH ₃ CN (2 mL) 10 W Blue LEDs r. t. 4a
entry	y	reaction time (h)	yield (%)
1		12	49
2		18	56
3		24	62
4		36	60
5		48	58

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **3** (0.3 mmol), K_2HPO_4 (2 equiv), and Rose bengal (1 mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) at room temperature in the open air. Isolated yields based on **1a**.

	+ $N_{N}H_{2}$ + $ICH_{2}CF_{3}$	photocatalyst (1 mol %) base (2 equiv) CH ₃ CN (2 mL) 10 W Blue LEDs	HN CF ₃
1a	2a 6	1. (.	7a
entry	photocatalyst (1 mol %)	base (2 equiv)	yield (%)
1	Rose Bengal	K ₂ HPO ₄	0
2	Eosin Y	K ₂ HPO ₄	0
3	<i>fac</i> -Ir(ppy) ₃	K ₂ HPO ₄	trace
4	$Ru(phen)_3Cl_2$	K ₂ HPO ₄	50%
5	$Ru(phen)_3Cl_2$	DBU	30%
6	$Ru(phen)_3Cl_2$	NEt ₃	28%
7	$Ru(phen)_3Cl_2$	K ₂ CO ₃	40%
8	$Ru(phen)_3Cl_2$	K ₃ PO ₄	45%

Table S8.	Screening	Reaction	Conditions	for	7a ^a
1 4010 500	Servening	neuction	contantions	101	/

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), **6** (0.3 mmol), base (2 equiv), and photocatalyst (1 mol %) in CH₃CN (2 mL), under a 10 W blue LEDs irradiation (465 nm) at room temperature for 24 h in the open air. Isolated yields based on **1a**.

2. GC-MS of 4p

Figure S1: GC-MS of 4p The retention time: 5.151 min; MS (EI, 70 eV) *m/z*: 271, 252, 203, 178, 145.

3. GC-MS of Intermediate 8

Figure S2: GC-MS of intermediate 8

The retention time: 9.039 min; MS (EI, 70 eV) *m/z*: 248, 199, 156, 131, 83.

4. Fluorescence Quenching Experiments

Quenched by **2a**: For each quenching experiment, the emission intensity of photocatalyst **Rose bengal** (1×10^{-5} M in THF, $\lambda_{ex} = 557$ nm, $\lambda_{em} = 578$ nm) with different concentration of quencher **Rose bengal** (0, 1.0, 2.0, 3.0, 4.0, 5.0 mM) was collected. As shown in Figure S2, compound **2a** was capable of quenching the excited state of photocatalyst **Rose bengal**.

Figure S3 The Fluorescence Emission Spectra of a Solution of **Rose bengal** in THF Containing Different Concentration of Compound **2a** and Stern-Volmer Graph

Quenched by compound 3: For each quenching experiment, the emission intensity of photocatalyst **Rose bengal** (1×10^{-5} M in THF, $\lambda_{ex} = 557$ nm, $\lambda_{em} = 578$ nm) with different concentration of quencher 3 (0, 1.0, 2.0, 3.0, 4.0, 5.0 mM) was collected. As shown in Figure S3, compound 3 was capable of quenching the excited state of photocatalyst **Rose bengal**.

Figure S4 The Fluorescence Emission Spectra of a Solution of **PC 3** in THF Containing Different Concentration of Compound **4** and Stern-Volmer Graph

5. Cyclic Voltammetry (CV) Experiments

Figure S5 Cyclic Voltammogram of Compound 2a in CH₃CN at 100 mV/s (v.s. SCE)

Figure S6 Cyclic Voltammogram of Compound 3 in CH₃CN at 100 mV/s (v.s. SCE)

6. Light On/off Experiments

Figure S7 Light On/off Experiments

The procedures for Light On/off experiments: To a mixture of styrene 1a (0.1 mmol), phenylhydrazine 2a (0.3 mmol), Togni's reagent 3 (0.3 mmol), Rose bengal (1 mol %), and CH₃CN (2 mL) were successively added into a quartz reaction tube with a stir bar. The reaction mixture was separately stirred and irradiated by 10 W blue LEDs (465 nm) at room temperature for 2 h, 4 h, 6 h and 8 h. The desired product 4a was isolated in 18%, 32%, 41% and 51%, respectively. Additionally, the reaction mixture was stirred and irradiated by 10 W blue LEDs (465 nm) at room temperature for 2 h, then the reaction mixture was continuously stirred in the dark for 2 h, the corresponding product was also obtained in 18% yield. Additionally, when the reaction mixture was stirred and irradiated by 10 W blue LEDs (465 nm) at room temperature for 4 h, then the reaction mixture was continuously stirred in the dark for 2 h, the corresponding product 4a was obtained in 32% yield. Additionally, when the reaction mixture was stirred and irradiated by 10 W blue LEDs (465 nm) at room temperature for 6 h, then the reaction mixture was continuously stirred in the dark for 2 h, the corresponding product 4a was still obtained in 41% yield. Additionally, when the reaction mixture was stirred and irradiated by 10 W blue LEDs (465 nm) at room temperature for 8 h, the corresponding product 4a was still obtained in 51% yield.

7. Characterization Data

N-(*3*, *3*, *3*-*Trifluoro-1-phenylpropyl)aniline* (*4a*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 62% yield (16.5 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3030, 2926, 2855, 1603, 1506, 1455, 1318, 1202, 1144, 1031, 905, 866, 750; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.42-7.35 (m, 4H), 7.32-7.28 (m, 1H), 7.14 (t, *J* = 8.0 Hz, 2H), 6.72 (t, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 2H), 4.75 (dd, *J* = 4.0 Hz, 8.0 Hz, 1H), 4.18 (s, 1H), 2.73-2.55 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.3, 141.8, 129.2, 129.1, 127.9, 126.2, 125.8 (q, *J* = 276.0 Hz), 118.3, 113.7, 53.2 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.32; MS (EI, 70 eV) *m*/z 265, 224, 204, 182, 151, 133; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₁₅H₁₅F₃N 266.1151, found 266.1157.

N-(*3*, *3*, *3*-*Trifluoro-1-(4-fluorophenyl)propyl)aniline* (*4b*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 48% yield (13.6 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3058, 2926, 2855, 1603, 1509, 1432, 1316, 1260, 1201, 1145, 1028, 908, 826; ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃), ppm) δ 7.38-7.32 (m, 2H), 7.12 (t, *J* = 8.0 Hz, 2H), 7.04 (t, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 8.0 Hz, 1H), 6.50 (d,

J = 8.0 Hz, 2H), 4.68 (dd, J = 4.0 Hz, 8.0 Hz, 1H), 4.15 (s, 1H), 2.67-2.48 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 162.3 (d, J = 245.0 Hz), 146.1, 137.4 (d, J = 4.0 Hz), 129.3, 127.8 (d, J = 8.0 Hz), 125.6 (q, J = 276.0 Hz), 118.5, 116.0 (d, J = 21.0 Hz), 113.7, 52.6 (q, J = 2.0 Hz), 41.9 (q, J = 26.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.22, -114.37; MS (EI, 70 eV) *m*/*z* 283, 200, 191, 151, 127, 104; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₅H₁₄F₄N 284.1057, found 284.1064.

N-(*1*-(*4*-*Chlorophenyl*)-*3*,*3*,*3*-*trifluoropropyl*)*aniline* (*4c*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 50% (15.0 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3032, 2956, 2925, 2854, 1673, 1603, 1493, 1379, 1137, 1017, 969, 868, 750; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35-7.34 (m, 4H), 7.12 (t, *J* = 8.0 Hz, 2H), 6.73 (t, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 4.70 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 2.66-2.51 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.0, 140.2, 133.6, 129.3, 129.3, 127.6, 125.6 (q, *J* = 276.0 Hz), 118.6, 113.7, 52.7 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.20; MS (EI, 70 eV) *m/z* 299, 248, 231, 216, 180, 151; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄ClF₃N 300.0761, found 300.0765.

N-(*1*-(*4*-*Bromophenyl*)-*3*,*3*,*3*-*trifluoropropyl*)*aniline* (*4d*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 70% (24.1 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3043, 2925, 2854, 1735, 1619, 1533, 1457, 1323, 1202, 1114, 1033, 972, 829, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.39 (m, 1H), 7.32-7.28 (m, 3H), 7.13 (t, *J* = 8.0 Hz, 2H), 6.74 (t, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 4.69 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 2.68-2.54 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.0, 140.8, 132.2, 129.3, 127.9, 125.6 (q, *J* = 276.0 Hz), 121.7, 118.6, 113.7, 52.7 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.20; MS (EI, 70 eV) *m/z* 343, 260, 251, 187, 151, 132; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄BrF₃N 344.0256, found 344.0242.

N-(*3*, *3*, *3*-*Trifluoro-1-(4-(trifluoromethyl)phenyl)propyl)aniline (4e)*. Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 51% (17.0 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3048, 2926, 2851, 1724, 1603, 1500, 1420, 1325, 1261, 1131, 1081, 913, 824, 750; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 2H), 6.74 (t, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 8 Hz, 2H), 4.81 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.22 (s, 1H), 2.69-2.52 (m. 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 145.8, 130.3 (d, *J* = 32.0 Hz), 129.8, 129.3, 126.1 (q, *J* = 4.0 Hz) (CF₃), 125.6 (q, *J* = 276.0 Hz) (CF₃), 125.3, 122.6, 118.7, 113.7, 52.9 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 8.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -62.49, -63.17; MS (EI, 70 eV) *m/z* 333, 314, 292, 250, 173, 145; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₆H₁₄F₆N 334.1025, found 334.1014.

N-(*3*,*3*,*3*-*Trifluoro-1-(p-tolyl)propyl)aniline* (*4f*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 56% (15.8 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3051, 2925, 2855, 1603, 1502, 1460, 1377, 1261, 1138, 1084, 969, 812, 749, 692; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.28-7.27 (m, 2H), 7.17-7.10 (m, 4H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 2H), 4.70 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.15 (s, 1H), 2.65-2.54 (m, 2H), 2.33 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.4, 138.7, 137.6, 129.7, 129.2, 126.1, 125.8 (d, *J* = 276.0 Hz), 118.2, 113.6, 52.9 (q, *J* = 3.0 Hz), 41.9 (q, *J* = 27.0 Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.27; MS (EI, 70 eV) *m*/*z* 279, 196, 187, 151, 123, 104; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₆H₁₇F₃N 280.1308, found 280.1319.

N-(*3*,*3*,*3*-*Trifluoro-1-(4-methoxyphenyl)propyl)aniline* (*4g*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 58% (17.2 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3035, 2925, 2869, 1603, 1511, 1461, 1378, 1247, 1134, 1033, 908, 826, 751; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 8.0 Hz, 2H),

6.88 (d, J = 8.0 Hz, 2H), 6.71 (t, J = 8.0 Hz, 1H), 6.55 (d, J = 8.0 Hz, 2H), 4.69 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 4.13 (s, 1H), 3.79 (s, 3H), 2.70-2.49 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 159.2, 146.4, 133.7, 129.2, 127.3, 125.8 (q, J = 276.0 Hz), 118.2, 114.4, 113.7, 55.3, 52.6 (q, J = 3.0 Hz), 41.8 (q, J = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.24; MS (EI, 70 eV) m/z 295, 212, 203, 168, 139, 104, 93; HRMS (ESI) m/z [M + H]⁺ calcd for C₁₆H₁₇F₃NO 296.1257, found 296.1249.

N-(*1*-(*4*-(*Tert-butyl*)*phenyl*)-*3*,*3*,*3*-*trifluoropropyl*)*aniline* (*4h*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 53% (17.0 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3058, 2962, 2863, 1603, 1505, 1431, 1319, 1210, 1137, 1625, 902, 876, 750; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 2H), 6.71 (t, *J* = 8.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 2H), 4.72 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.14 (s, 1H), 2.68-2.54 (m, 2H), 1,31 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 150.8, 146.4, 138.7, 129.2, 125.9, 125.8, 125.8 (q, *J* = 276.0 Hz), 118.1, 113.6, 52.7 (q, *J* = 3.0 Hz), 41.7 (q, *J* = 27.0 Hz), 34.5, 31.3; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.33; MS (EI, 70 eV) *m*/z 321, 238, 229, 214, 173, 104; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₁₉H₂₃F₃N 322.1777, found 322.1748.

N-(*3*, *3*, *3*-*Trifluoro-1-(3-fluorophenyl)propyl)aniline* (*4i*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 48% (13.6 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3039, 2923, 2854, 1601, 1513, 1450, 1315, 1247, 1135, 1079, 970, 880, 750; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35-7.32 (m, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 3H), 6.98 (t, *J* = 8.0 Hz, 1H), 6.73 (t, *J* = 8.0 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 2H), 4.72 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.21 (s, 1H), 2.67-2.50 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 163.3 (d, *J* = 246.0 Hz), 146.0, 144.6 (d, *J* = 7.0 Hz), 130.7 (d, *J* = 8.0 Hz), 129.3, 125.5 (q, *J* = 289.0 Hz) (CF₃), 121.8 (d, *J* = 3.0 Hz), 41.7; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.26, -111.86; MS (EI, 70 eV) *m/z* 283, 262, 242, 200, 127, 104; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄F₄N 284.1057, found 284.1061.

N-(*1*-(*3*-*Chlorophenyl*)-*3*,*3*,*3*-*trifluoropropyl*)*aniline* (*4j*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 52% (15.6 mg, 0.05 mmol); IR (KBr, cm⁻¹) 2925, 2855, 1602, 1499, 1379, 1260, 1139, 1081, 972, 854, 753; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7,39 (m, 1H), 7.34-7.28 (m, 3H), 7.13 (t, *J* = 8.0 Hz, 2H), 6.74 (t, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 4.70 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.68-2.54 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.0, 144.0, 135.0, 130.4, 129.3, 128.2, 126.3, 125.6 (q, *J* = 277.0 Hz), 124.4, 118.6, 113.7, 52.9 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.26; MS (EI, 70 eV)

m/*z* 299, 216, 188, 151, 143, 104; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₅H₁₄ClF₃N 300.0761, found 300.0771.

N-(*1*-(*3*-*Bromophenyl*)-*3*, *3*, *3*-*trifluoropropyl*)*aniline* (*4k*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 68% (23.3 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3057, 2923, 2856, 1703, 1638, 1509, 1423, 1375, 1084, 995, 868, 747, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.47 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.05 (t, *J* = 8.0 Hz, 2H), 6.65 (t, *J* = 8.0 Hz, 1H), 6.44 (d, *J* = 8.0 Hz, 2H), 4.60 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.08 (s, 1H), 2.59-2.40 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.0, 144.3, 131.1, 130.1, 129.3, 129.3, 125.6 (q, *J* = 276.0 Hz), 124.9, 123.2, 118.6, 113.7, 52.9 (q, *J* = 3.0 Hz), 41.9 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.28; MS (EI, 70 eV) *m/z* 343, 260, 189, 151, 104, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄BrF₃N 344.0256, found 344.0242.

N-(*3*,*3*,*3*-*Trifluoro-1-(m-tolyl)propyl)aniline* (*41*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 58% (16.2 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3035, 2924, 2855, 1603, 1503, 1460, 1316, 1261, 1136, 1039, 910, 846, 749, 697; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.24 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.15-

7.09 (m, 3H), 6.71 (t, J = 8.0 Hz, 1H), 6.56 (d, J = 8.0 Hz, 2H), 4.69 (q, J = 8.0 Hz, 4.0 Hz, 1H), 4.17 (s, 1H), 2.66-2.55 (m, 2H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.4, 141.8, 138.8, 129.2, 128.9, 128.7, 126.8, 125.8 (d, J = 276.0Hz), 123.2, 118.2, 113.6, 53.2 (q, J = 3.0 Hz), 41.7 (t, J = 27.0 Hz), 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.33; MS (EI, 70 eV) m/z 279, 196, 187, 151, 123, 104; HRMS (ESI) m/z [M + H]⁺ calcd for C₁₆H₁₇F₃N 280.1308, found 280.1308.

N-(*3*,*3*,*3*-*Trifluoro-1-(o-tolyl)propyl)aniline* (*4m*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 57% (16.0 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3035, 2926, 2855, 1603, 1504, 1432, 1318, 1213, 1135, 1096, 902, 868, 726, 692; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.45-7.43 (m, 1H), 7.21-7.16 (m, 3H), 7.12 (t, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 8.0 Hz, 1H), 6.48 (d, *J* = 8.0 Hz, 2H), 4.94 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.14 (s, 1H), 2.62-2.47 (m, 2H), 2.45 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.4, 139.5, 134.6, 131.1, 129.3, 127.7, 126.9, 125.9 (d, *J* = 276.0 Hz), 125.1, 118.1, 113.4, 49.2 (q, *J* = 3.0 Hz), 40.4 (q, *J* = 27.0 Hz), 18.9; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.65, MS (EI, 70 eV) *m/z* 279, 196, 187, 165, 123, 104; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₆H₁₇F₃N 280.1308, found 280.1312.

N-(*1*-(2,5-*Dimethylphenyl*)-3,3,3-*trifluoropropyl*)*aniline* (4*n*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 44% (13.0 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3030, 2925, 2869, 1603, 1502, 1460, 1313, 1260, 1136, 1031, 907, 806, 748, 692; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.24 (s, 1H), 7.14-7.07 (m, 3H), 6.99 (d, J =8.0 Hz, 1H), 6.70 (t, J = 8.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 2H), 4.89 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 4.10 (s, 1H), 2.60-2.45 (m, 2H), 2.39 (s, 3H), 2.27 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.6, 139.4, 136.4, 131.3, 131.0, 129.3, 128.4, 125.7, 118.1, 113.3, 112.9, 49.3 (q, J = 3.0 Hz), 40.4 (q, J = 26.0 Hz), 21.2, 18.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.75; MS (EI, 70 eV) *m*/*z* 293, 264, 237, 210, 185, 165; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₇H₁₉F₃N 294.1464, found 294.1454.

N-(*3*, *3*, *3*-*Trifluoro-1-(thiophen-2-yl)propyl)aniline* (*40*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 56% (15.2 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3038, 2923, 2852, 1735, 1603, 1504, 1432, 1310, 1258, 1133, 1033, 905, 857, 751; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.23-7.22 (m, 1H), 7.17 (t, *J* = 8.0 Hz, 2H), 7.04 (s, 1H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.76 (t, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 2H), 5.06 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.10 (s, 1H), 2.81-2.64 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.4, 145.9, 129.3, 127.1, 125.5 (q, *J* = 276.0 Hz) (CF₃), 124.7, 124.2, 118.8, 113.8, 49.2 (q, *J* = 3.0 Hz), 42.0 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.35; MS (EI, 70 eV) *m*/*z* 271, 188, 179, 159, 115, 93; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₃H₁₃F₃NS 272.0715, found 272.0726.

4-Fluoro-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*5a*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 71% (20.1 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3040, 2925, 1614, 1511, 1434, 1380, 1259, 1143, 1031, 904, 821, 701; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.37-7.28 (m, 5H), 6.81 (t, *J* = 8.0 Hz, 2H), 6.48-6.44 (m, 2H), 4.65 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 2.66-2.51 (m, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm) δ 156.2 (d, *J* = 235.0 Hz), 142.6 (d, *J* = 2.0 Hz), 142.6, 129.1, 128.0, 126.2, 125.8 (q, *J* = 276.0 Hz), 115.7 (d, *J* = 22.0 Hz), 114.6 (d, *J* = 8.0 Hz), 53.8 (d, *J* = 3.0 Hz), 42.4 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.32, -126.92; MS (EI, 70 eV) *m/z* 283, 200, 173, 133, 122, 109; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄F₄N 284.1057, found 284.1051.

4-Chloro-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*5b*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 40% (12.0 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3033, 2924, 2862, 1601, 1501, 1454, 1381, 1258, 1139, 1031, 905, 816, 701; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.39-7.35 (m, 4H), 7.33-7.27 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.46 (d, *J* = 8.0 Hz, 2H), 4.68 (t, *J* = 8.0 Hz, 1H), 4.21 (s, 1H), 2.66-2.56 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 144.8, 144.2, 129.1, 129.1, 128.1,

126.1, 125.7 (q, J = 276.0 Hz), 123.0, 114.8, 53.3 (q, J = 3.0 Hz), 41.8 (q, J = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.37; MS (EI, 70 eV) m/z 299, 216, 188, 151, 143, 104; HRMS (ESI) m/z [M + H]⁺ calcd for C₁₅H₁₄ClF₃N 300.0761, found 300.0769.

4-Bromo-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (5c). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 75% (26.0 mg, 0.08 mmol); IR (KBr, cm⁻¹) 3033, 2924, 1595, 1497, 1380, 1258, 1146, 1075, 910, 814, 701, 608, 504; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.34 (m, 4H), 7.33-7.27 (m, 1H), 7.19 (d, J =8.0 Hz, 2H), 6.42 (d, J = 8.0 Hz, 2H), 4.68 (t, J = 8.0 Hz, 1H), 4.21 (s, 1H), 2.69-2.53 (m, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃, ppm) δ 145.2, 141.2, 132.0, 129.1, 128.1, 126.1, 125.7 (q, J = 276.0 Hz), 115.3, 110.1, 53.2 (q, J = 3.0 Hz), 41.8 (q, J = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.37; MS (EI, 70 eV) *m/z* 343, 260, 189, 151, 104, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄BrF₃N 344.0256, found 344.0268.

4-((3,3,3-Trifluoro-1-phenylpropyl)amino)benzonitrile (5d). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 78% (23.0 mg, 0.08 mmol); IR (KBr,

cm⁻¹) 3030, 2926, 2853, 2215, 1606, 1525, 1454, 1337, 1033, 910, 825, 701; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.45-7.29 (m, 7H), 6.53 (d, J = 8.0 Hz, 2H), 4.80-4.75 (m, 2H), 2.69-2.59 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 149.5, 140.3, 133.7, 129.3, 128.4, 125.9, 125.5 (q, J = 276.0 Hz), 120.0, 113.3, 100.2, 52.6 (q, J = 3.0 Hz), 41.7 (q, J = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.36; MS (EI, 70 eV) m/z 290, 207, 173, 109, 77; HRMS (ESI) m/z [M + H]⁺ calcd for C₁₆H₁₄F₃N₂ 291.1104, found 291.1106.

N-(*3*, *3*, *3*-*Trifluoro-1-phenylpropyl*)-*4*-(*trifluoromethyl*)*aniline* (*5e*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 64% (21.3 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3400, 3030, 2926, 2853, 1738, 1619, 1532, 1491, 1324, 1203, 1113, 1068, 938, 826, 701; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.29 (m, 7H), 6.56 (d, *J* = 8.0 Hz, 2H), 4.77 (t, *J* = 8.0 Hz, 1H), 4.50 (s, 1H), 2.68-2.59 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 148.7, 140.8, 129.2, 128.2, 126.6 (q, *J* = 4.0 Hz), 126.5 (q, *J* = 86.0 Hz), 126.0, 123.8 (d, *J* = 78.0 Hz), 119.9 (d, *J* = 33.0 Hz), 112.9, 52.9 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -61.20, -63.35; MS (EI, 70 eV) *m/z* 333, 314, 292, 250, 173, 109; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₆H₁₄F₆N 334.1025, found 334.1013.

4-Methyl-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*5f*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 43% (12.2 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3401, 3033, 2926, 1619, 1520, 1457, 1381, 1259, 1138, 1034, 910, 809, 701; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.39-7.32 (m, 4H), 7.29-7.27 (m, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.46 (d, *J* = 8.0 Hz, 2H), 4.68 (q, *J* = 8.0 Hz, 4.0 Hz, 1H), 2.67-2.52 (m, 2H), 2.19 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 144.0, 141.9, 129.7, 129.0 127.9, 127.5, 126.2, 125.8 (q, *J* = 276.0 Hz), 113.9, 53.5 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz), 20.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.32; MS (EI, 70 eV) *m/z* 279, 262, 196, 152, 133, 109; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₆H₁₇F₃N 280.1308, found 280.1314.

3-Chloro-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*5g*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 56% (17.0 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3400, 3038, 2926, 2853, 1598, 1484, 1380, 1258, 1146, 1031, 930, 851, 763; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.39-7.34 (m, 4H), 7.32-7.28 (m, 1H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 6.53 (t, *J* = 8.0 Hz, 1H), 6.40 (d, *J* = 8.0 Hz, 1H), 4.70 (t, *J* = 8.0 Hz, 1H), 4.24 (s, 1H), 2.65-2.55 (m, 2H); ¹³C{¹H} NMR (100

MHz, CDCl₃, ppm) δ 147.4, 141.1, 135.0, 130.2, 129.2, 128.1, 126.1, 125.6 (q, J = 276.0 Hz), 118.2, 113.5, 111.8, 53.1 (q, J = 3.0 Hz), 41.8 (q, J = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.30; MS (EI, 70 eV) m/z 299, 216, 188, 151, 143, 104; HRMS (ESI) m/z [M + H]⁺ calcd for C₁₅H₁₄ClF₃N 300.0761, found 300.0774.

3-Bromo-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*5h*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquild: 66% (22.8 mg, 0.07 mmol); IR (KBr, cm⁻¹) 3395, 3034, 2925, 2854, 1595, 1480, 1379, 1257, 1146, 1031, 986, 849, 762, 683; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.39-7.33 (m, 4H), 7.32-7.28 (m, 1H), 6.96 (t, *J* = 8.0 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 6.44 (d, *J* = 8.0 Hz, 1H), 4.70 (t, *J* = 8.0 Hz, 1H), 4.24 (s, 1H), 2.65-2.56 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 147.5, 141.0, 130.5, 129.2, 128.1, 126.1, 125.6 (q, *J* = 276.0 Hz), 123.1, 121.1, 116.5, 112.1, 52.5 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.30; MS (EI, 70 eV) *m/z* 343, 260, 231, 173, 133, 109; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₄BrF₃N 344.0265, found 344.0254.

3-Methyl-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (5i). Eluent: petroleum

ether/ethyl acetate (v/v = 30:1). Yellow liquild: 55% (15.4 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3430, 3039, 2925, 2855, 1606, 1518, 1454, 1320, 1204, 1137, 1034, 950, 852, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.34 (m, 4H), 7.30-7.28 (m, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 1H), 6.40 (s, 1H), 6.33 (d, *J* = 8.0 Hz, 1H), 4.73 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.14 (s, 1H), 2.67-2.56 (m, 2H). 2.23 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.3, 141.9, 139.0, 129.1, 129.0, 127.8, 126.2, 125.8 (q, *J* = 276.0 Hz), 119.2, 114.6, 110.6, 53.1 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz), 21.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.26; MS (EI, 70 eV) *m/z* 279, 196, 173, 133, 109, 77; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₆H₁₇F₃N 280.1308, found 280.1329.

3,5-Dichloro-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (5j). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquild: 45% (15.1 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3395, 3051, 2926, 2853, 1593, 1452, 1315, 1252, 1147, 1095, 964, 826, 701; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.42-7.30 (m, 5H), 6.68-6.66 (m, 1H), 6.41-6.40 (m, 2H), 4.69 (dd, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.34 (s, 1H), 2.65-2.54 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 147.9, 140.4, 135.5, 129.3, 128.3, 125.9, 125.5 (q, *J* = 277.0 Hz), 118.1, 111.8, 52.9 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.32; MS (EI, 70 eV) *m*/z 333, 292, 250, 173, 133, 109; HRMS (ESI) *m*/z [M + H]⁺ calcd for C₁₅H₁₃Cl₂F₃N 334.0372, found 334.0368.

3,4-Dichloro-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*5k*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 48% (15.9 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3403, 3033, 2926, 2855, 1598, 1477, 1380, 1256, 1132, 1023, 930, 846, 700; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.29 (m, 5H), 7.13 (d, *J* = 8.0 Hz, 1H), 6.62 (s, 1H), 6.37 (d, *J* = 8.0 Hz, 1H), 4.68-4.67 (m, 1H), 4.28 (s, 1H), 2.65-2.55 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 145.7, 140.7, 132.8, 130.6, 129.3, 128.3, 126.0, 125.6 (q, *J* = 276.0 Hz), 121.0, 115.0, 113.2, 53.1 (q, *J* = 3.0 Hz), 41.8 (q. *J* = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.32; MS (EI, 70 eV) *m/z* 333, 250, 173, 161, 133, 109; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₅H₁₃Cl₂F₃N 334.0372, found 334.0380.

3,4-Dimethyl-N-(3,3,3-trifluoro-1-phenylpropyl)aniline (*51*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid : 59% (17.2 mg, 0.06 mmol); IR (KBr, cm⁻¹) 3396, 3029, 2924, 2868, 1620, 1510, 1458, 1378, 1261, 1137, 1082, 972, 849, 702; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.33 (m, 4H), 7.30-7.27 (m, 1H), 6.87 (d, *J* = 8.0 Hz, 1H)), 6.41 (s, 1H), 6.29 (d, *J* = 8.0 Hz, 1H), 4.70 (q, *J* = 8.0 Hz, 4.0 Hz,

1H), 2.67-2.55 (m, 2H), 2.14 (s, 3H), 2.12 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 144.4, 142.0, 137.3, 130.2, 129.0, 127.8, 126.3, 126.2, 123.2 (d, *J* = 242.0 Hz), 115.6, 111.0, 53.4 (q, *J* = 3.0 Hz), 41.8 (q, *J* = 27.0 Hz), 20.0, 18.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -63.28; MS (EI, 70 eV) *m*/*z* 293, 248, 231, 210, 132, 109; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₁₇H₁₉F₃N 294.1464, found 294.1475.

N-(*4*, *4*, *4*-*Trifluoro-1-phenylbutyl*)*aniline* (*7a*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 50% (14.0 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3395, 3057, 2924, 2869, 1600, 1564, 1457, 1379, 1223, 1182, 1085, 983, 843, 751; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35-7.30 (m, 4H), 7.25-7.23(m, 1H), 7.10 (t, *J* = 8.0 Hz, 2H), 6.67 (t, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 4.38 (t, *J* = 8.0 Hz, 1H), 4.00 (s, 1H), 2.27-1.99 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.8, 142.4, 129.3, 129.9, 128.8 (q, *J* = 45.0 Hz), 127.6, 126.3, 117.9, 113.5, 57.0, 31.0 (d, *J* = 29.0 Hz), 30.6 (q, *J* = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -66.04; MS (EI, 70 eV) *m/z* 279, 260, 202, 182, 167; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₆H₁₇F₃N 280.1308, found 280.1324.

N-(5,5,5-*Trifluoro-1-phenylpentyl*)*aniline* (7*b*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid : 45% (13.3 mg, 0.05 mmol); IR (KBr, cm⁻¹) 3326,

3055, 2923, 2869, 1656, 1500, 1460, 1378, 1257, 1141, 1081, 974, 849, 749, 699; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.33 (d, *J* = 8.0 Hz, 4H), 7.25-7.21(m, 1H), 7.09 (t, *J* = 8.0 Hz, 2H), 6.65 (t, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 4.32 (q, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.03(s, 1H) 2.14-2.02 (m, 2H), 1.94-1.79 (m, 2H), 1.75-1.58 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 147.1, 143.3, 129.2, 128.8, 127.5 (q, *J* = 172 Hz), 127.3, 126.3, 117.5, 113.3, 57.8, 37.6, 33.5 (q, *J* = 28.0 Hz), 19.0 (q, *J* = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -66.09; MS (EI, 70 eV) *m/z* 293, 263, 200, 182, 167; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₇H₁₉F₃N 294.1464, found 294.1465.

N-(*3*, *4*, *4*-*Tetrafluoro-1-phenyl-3-(trifluoromethyl)butyl)aniline* (7*c*). Eluent: petroleum ether/ethyl acetate (v/v = 30:1). Yellow liquid: 43% (16.1 mg, 0.04 mmol); IR (KBr, cm⁻¹) 3389, 3029, 2927, 2856, 1603, 1508, 1429, 1317, 1154, 1028, 961, 871, 750, 699; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.34 (m, 4H), 7.31-7.29 (m, 1H), 7.11 (t, *J* = 8.0 Hz, 2H), 6.71 (t, *J* = 8.0 Hz, 1H), 6.51 (d, *J* = 8.0 Hz, 2H), 4.76 (q, *J* = 8.0 Hz, 4.0 Hz, 1H), 4.15 (s, 1H), 2.65-2.46 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃, ppm) δ 146.2, 142.4, 129.4, 129.2 (d, *J* = 5.0 Hz), 128.0, 126.0, 118.3, 117.8, 113.6, 112.9, 53.4, 36.7 (d, *J* = 19.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -75.72, -76.94; MS (EI, 70 eV) *m/z* 365, 337, 306, 273, 182; HRMS (ESI) *m/z* [M + H]⁺ calcd for C₁₇H₁₅F₇N 366.1087, found 366.1075.

8. NMR Spectra

¹³C NMR of product 4a in CDCl₃ (100 MHz)

¹³C NMR of product 4c in CDCl₃ (100 MHz)

$\begin{array}{c} 7.55\\$

¹⁹F NMR of product 4f in CDCl₃ (376 MHz)

¹³C NMR of product 4g in CDCl₃ (100 MHz)

¹H NMR of product 4h in CDCl₃ (400 MHz)

¹⁹F NMR of product 4h in CDCl₃ (376 MHz)

¹³C NMR of product 4i in CDCl₃ (100 MHz)

¹H NMR of product 4j in CDCl₃ (400 MHz)

¹⁹F NMR of product 4j in CDCl₃ (376 MHz)

¹³C NMR of product 4k in CDCl₃ (100 MHz)

¹H NMR of product 4l in CDCl₃ (400 MHz)

¹⁹F NMR of product 4l in CDCl₃ (376 MHz)

7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.10 7.110 7.112 7.122 7.122 7.132 <

¹³C NMR of product 4m in CDCl₃ (100 MHz)

¹H NMR of product 4n in CDCl₃ (400 MHz)

¹⁹F NMR of product 4n in CDCl₃ (376 MHz)

7.23 7.23 7.23 7.23 7.23 7.24 7.23 7.24 7.23 7.24 7.24 7.24 7.25 7.25 7.25 7.25 7.25 7.24 7.25 <t

¹³C NMR of product 40 in CDCl₃ (100 MHz)

¹H NMR of product 5a in CDCl₃ (400 MHz)

¹⁹F NMR of product 5a in CDCl₃ (376 MHz)

¹³C NMR of product 5b in CDCl₃ (100 MHz)

¹H NMR of product 5c in CDCl₃ (400 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR of product 5c in CDCl₃ (376 MHz)

¹³C NMR of product 5d in CDCl₃ (100 MHz)

¹H NMR of product 5e in CDCl₃ (400 MHz)

¹⁹F NMR of product 5e in CDCl₃ (376 MHz)

¹³C NMR of product 5f in CDCl₃ (100 MHz)

¹H NMR of product 5g in CDCl₃ (400 MHz)

¹⁹F NMR of product 5g in CDCl₃ (376 MHz)

7.39 7.35 7.36 7.37 7.37 7.37 7.37 7.37 7.38 7.39 7.39 7.30 7.31 7.32 7.32 7.32 7.32 7.33 7.34 7.35 7.37 7.38 7.37 </tr

¹³C NMR of product 5h in CDCl₃ (100 MHz)

¹H NMR of product 5i in CDCl₃ (400 MHz)

¹⁹F NMR of product 5i in CDCl₃ (376 MHz)

7.42 7.42 7.33 7.34 7.35 7.35 7.34 7.35 7.35 7.44 7.34 7.35 7.44 7.45 7.44 7.45 7.45 7.46 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 </tr

¹³C NMR of product 5j in CDCl₃ (100 MHz)

¹H NMR of product 5k in CDCl₃ (400 MHz)

¹⁹F NMR of product 5k in CDCl₃ (376 MHz)

7.40 7.40 7.40 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.26 6.30 6.30 6.31 6.32 6.33 6.34 4.45 4.68 4.68 2.55 2.12 2.12 2.12

¹³C NMR of product 5l in CDCl₃ (100 MHz)

¹³C NMR of product 7b in CDCl₃ (100 MHz)

¹H NMR of product 7c in CDCl₃ (400 MHz)

¹⁹F NMR of product 7c in CDCl₃ (376 MHz)