Supporting Information for

Regioselective and late-stage polyfluoroarylation of arenes with divers fluoroaryl nucleophiles via Pd-catalysis

Lei Liang,^{*, †} Yue-Hui Wang,[†] Chen Li,[†] Hua-Jie Wang,[†] Chang-Gong Li,[†] Qi-Liang Yang,[‡] Gui-Rong Qu,[‡] Hai-Ming Guo,[‡] Hong-Ying Niu^{*,}

[†]School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China

[‡]School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province 453007, China

E-mail: niu_hy@163.com, skyliang1126@hist.edu.cn

1. General information	S2
2. Various of arenes	S3
3. Various of polyfluorinated nucleophiles	S4
4. Condition optimization	S9
5. General procedure for the coupling reaction	S13
6. Radical trapping experiment	S18
7. Radical clock cyclization experiment	S19
8. Control experiments for SMC and C-H/C-H coupling	S20
9. Possible pathways for Suzuki–Miyaura coupling	S21
10. Possible pathways for C-H/C-H coupling	S21
11. References	S22
12. Characterization of compounds	S23
13. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S47

1. General information

¹H NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quaternary, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected on Bruker Avance III HD 150 or Avance 100 MHz spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. HRMS was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). All regents and solvents were purchased from commercial sources and purified commonly before used.

2. Various of arenes

Figure S1: Arenes and Drug molecules

All arenes and drug molecules are commercially available.

3. Various of fluoroaryl nucleophiles

All fluoroaryl nucleophiles are commercially available, and reagent information is shown in the following Figure S2–S4.

Figure S2: Various of fluorobenzoic acids

Figure S4: Various of fluorobenzenes

Figure S5: Structure of 19 Ar^F

Varying the F-content (1F-5F) and F-substitution patterns on phenyl groups will lead to 19 Ar^F.

Table S1: Introduce Ar^F (Varying the F-content (1F–5F) and F-substitution patterns on phenyl groups) into aromatic ring by employing Ar^F –CO₂H as polyfluoroaryl nucleophiles.

Entry	References	Ar ^F –CO ₂ H	Ar ^F
1	Chem. Commun., 2021, 57, 3696–3699	Ar ^F –CO ₂ K	5
2	Org. Lett., 2019, 21, 4734–4738	Ar ^F CO ₂ Na	4
3	Chem. Commun., 2019, 55, 6445–6448	Ar ^F -CO ₂ H	1
4	Adv. Syn. Cat., 2018, 360, 3239-3244	Ar ^F –CO ₂ K	4
5	RSC Adv., 2017, 7, 34722–34729	Ar ^F –CO ₂ K	4
6	Org. Lett., 2015, 17, 1256–1259	Ar ^F -CO ₂ K	3
7	Tetrahedron Lett., 2013, 54, 283-286	Ar ^F –CO ₂ H	1
8	Org. Lett., 2010, 12, 1000–1003	Ar ^F –CO ₂ K	7
9	Angew. Chem., Int. Ed., 2009, 48, 9350 –9354	Ar ^F –CO ₂ K	6
10	Org. Lett., 2008, 10, 3161–3164	Ar ^F –CO ₂ H	1

(Representative examples)

Table S2: Introduce Ar^{F} (Varying the F-content (1F–5F) and F-substitution patterns on phenyl groups) into aromatic ring by employing Ar^{F} –[B] as polyfluoroaryl nucleophiles.

(Representative examples)

Entry	References	Ar ^F –[B]	Ar ^F
1	1 ACS Catal., 2021, 11 , 14803–14810	Ar ^F –B(OH) ₂	4
1		Ar ^F –Bpin	4
2	ACS Catal., 2020, 10, 352–357	Ar ^F –B(dan)	3
3	ChemCatChem., 2019, 11, 5387–5396	Ar ^F –Bpin	8
5	5 ACC Cretel 2018 8 2020 2004	Ar ^F –B(OH) ₂	7
5 ACS Catal., 2018, 8 , 2989–2994	ACS Calal., 2018, 8 , 2989–2994	Ar ^F –Bpin	/
6	J. Am. Chem. Soc., 2017, 139, 12418–12421	Ar ^F –B(OH) ₂	6
7	J. Org. Chem., 2017, 82, 13188–13203	Ar ^F –B(OH) ₂	7
8	Angew. Chem., Int. Ed., 2017, 56, 1021–1025	Ar ^F –Bpin	5
9	Tetrahedron., 2011, 67, 5432–5436	Ar ^F –B(OH) ₂	1
10	J. Am. Chem. Soc., 2010, 132, 14073–14075	Ar ^F –B(OH) ₂	2
11	Org. Lett., 2005, 7, 4915–4917	Ar ^F –B(OH) ₂	1

Table S3: Introduce Ar^{F} (Varying the F-content (1F–5F) and F-substitution patterns on phenyl groups) into aromatic ring by employing Ar^{F} –H as polyfluoroaryl nucleophiles.

Entry	References	Ar ^F –H	Ar ^F
1	ACS Catal., 2017, 7, 7421-7430	Ar ^F –H	6
2	J Catal., 2015, 321 , 62–69	Ar ^F –H	4
3	Tetrahedron Lett., 2015, 56, 123-126	Ar ^F –H	3
4	Chem. Commun., 2014, 50, 8927-8929	Ar ^F –H	4
5	Eur. J. Org. Chem., 2014, 2014, 3323–3327	Ar ^F –H	3
6	J. Fluorine. Chem., 2014, 165, 76-80	Ar ^F –H	2
7	Appl. Organometal. Chem., 2014, 28, 180–185	Ar ^F –H	3
8	Adv. Synth. Catal., 2014, 356, 429-436	Ar ^F –H	3
9	Eur. J. Org. Chem., 2014, 2014, 1327–1332	Ar ^F –H	4
10	Angew. Chem., Int. Ed., 2013, 52, 1781–1784	Ar ^F –H	3
11	Tetrahedron Lett., 2013, 54, 1285–1289	Ar ^F –H	6
12	J. Fluorine Chem., 2013, 151, 50–57	Ar ^F –H	3
13	Org. Biomol. Chem., 2012, 10, 2289–2299	Ar ^F –H	3
14	Org. Lett., 2011, 13, 276–279	Ar ^F –H	7
15	J. Am. Chem. Soc., 2011, 133, 13577–13586	Ar ^F –H	4
16	Tetrahedron Lett., 2011, 52, 5525-5529	Ar ^F –H	2
17	J. Am. Chem. Soc., 2010, 132, 16377–16379	Ar ^F –H	3
18	Org. Lett., 2009, 11, 3346–3349	Ar ^F –H	7
19	Org. Lett., 2006, 8, 5097–5100	Ar ^F –H	2

(Representative examples)

Table S4: Introduce Ar^F (Varying the F-content (1F-5F) and F-substitution patterns on phenyl groups) into aromatic ring by employing Ar^F-X as polyfluoroaryl nucleophiles.

Entry	References	Ar ^F –X	Ar ^F
1	Chem.–Eur. J., 2021, 27, 11061–11064	Ar ^F –F	1
2	Chem. Commun., 2019, 55, 6503-6506	Ar ^F –SnBu ₃	5
3	Angew. Chem., Int. Ed., 2019, 58, 17788–17795	Ar ^F -GeEt ₃	4
4	Org. Lett., 2018, 20, 2543–2546	Ar ^F –F	2
5	ACS Catal., 2016, 6, 369-375	Ar ^F –Br	2
6	Chem.–Eur. J., 2015, 21 , 3895–3900	Ar ^F –I	2
7	Chem.–Eur. J., 2014, 20 , 2040–2048	Ar ^F –F	3
0		Ar ^F –F	2
0	Organometatiles, 2014, 33 , 3669–3672	Ar ^F –Si(OMe) ₃	Z
9	Tetrahedron, 2014, 70, 3720-3725	Ar ^F –BF ₃	1
10		Ar ^F –Br	2
10	Organometanics, 2012, 31 , 1529–1534	Ar ^F –B(OH) ₂	3
11	Org. Lett., 2012, 14, 3316–3319	Ar ^F –F	8
12	Adv. Synth. Catal., 2003, 345, 979–985	Ar ^F –Br, Ar ^F –I	2

(Representative examples)

4. Condition optimization

		TTO (1.0 equiv.), (CF ₃ CO)₂O (3 HBF₄∙Et₂O (1.2 equiv.), MeCN, 0	.0 equiv.) ^o C to r.t.;	
MeO—	$H + HO_2C - C_6F_5 -$	then [Pd] (5 mol%), [Ag] (1.0 Solvent (1.0 ml.), No. 80 °C	─── ── MeO─∙ equiv.) _24 h	-C ₆ F ₅
	1a 2a	00000m (1.0 mL), 112, 00 0	, 2 , 11	5a
Entry	5% [Pd]	1.0 equiv. [Ag]	Solvent	Yield ^b (%)
1	PdCl ₂	Ag ₂ CO ₃	DCE	51
2	PdCl ₂	Ag_2CO_3	DMA	41
3	PdCl ₂	Ag_2CO_3	DMF	47
4	PdCl ₂	Ag_2CO_3	DMSO	58
5	PdCl ₂	Ag_2CO_3	EA	50
6	PdCl ₂	Ag_2CO_3	THF	39
7	$Pd(OAc)_2$	Ag_2CO_3	DMSO	71
8	Pd(PPh ₃) ₄	Ag_2CO_3	DMSO	18
9	$Pd_2(dba)_3$	Ag_2CO_3	DMSO	39
10	$Pd(PPh_3)_2Cl_2$	Ag_2CO_3	DMSO	77
11	$Pd(PPh_3)_2Cl_2$	Ag_2O	DMSO	25
12	$Pd(PPh_3)_2Cl_2$	AgNO ₃	DMSO	n.d.
13	$Pd(PPh_3)_2Cl_2$	AgOTf	DMSO	23
14	—	Ag_2CO_3	DMSO	n.d.
15	$Pd(PPh_3)_2Cl_2$		DMSO	n.d.
16	$Pd(PPh_3)_2Cl_2$	Ag_2CO_3	DCE	71
17	$Pd(PPh_3)_2Cl_2$	Ag_2CO_3	DMA	73
18	$Pd(PPh_3)_2Cl_2$	Ag_2CO_3	DMF	68
19	$Pd(PPh_3)_2Cl_2$	Ag ₂ CO ₃	EA	36
20	Pd(PPh ₃) ₂ Cl ₂	Ag ₂ CO ₃	THF	35

Table S5: Decarboxylative polyfluoroarylation^{*a*}

^{*a*}For decarboxylative coupling. **1a** (33 μ L, 0.3 mmol), TTO (69.7 mg, 0.3 mmol, 1.0 equiv.), trifluoroacetic anhydride (126 μ L, 0.9 mmol, 3.0 equiv.), HBF₄·Et₂O (49 μ L, 0.36 mmol, 1.20 equiv.) in MeCN (1.0 mL) at 0 °C for 1 h, r.t. for another 2 h; then **Reaction condition A: 2a** (95.4 mg, 0.45 mmol, 1.5 equiv.), [Pd] (5 mol%), [Ag] (0.3 mmol, 1.0 equiv.) in Solvent (1.0 mL) at 80 °C for 24 h. ^{*b*}The yield was determined by ¹H NMR analysis using CH₂Br₂ as the internal standard. n.d. = not detected.

Table S6: Suzuki-Miyaura coupling^a

TTO (1.0 equiv.), $(CF_3CO)_2O$ (3.0 equiv.) HBF ₄ ·Et ₂ O (1.2 equiv.), MeCN, 0 °C to r.t.;					
MeO-	1a 3a	then Pd(PPh ₃) ₂ C Ag ₂ CO ₃ (1.0 equiv.), E Solvent (1.0 mL), N	l ₂ (5 mol%) Base (2.0 equiv.) ₂ , 80 °C, 24 h	- MeO	-C ₆ F ₅
Entry	5% [Pd]	1.0 equiv. [Ag]	Base	Solvent	Yield ^b (%)
1	Pd(PPh ₃) ₂ Cl ₂	Ag ₂ CO ₃		DMSO	67
2	Pd(PPh ₃) ₂ Cl ₂	Ag ₂ CO ₃		DCE	trace
3	Pd(PPh ₃) ₂ Cl ₂	Ag ₂ CO ₃		DMA	38
4	Pd(PPh ₃) ₂ Cl ₂	Ag_2CO_3		THF	n.d.
5	Pd(PPh ₃) ₂ Cl ₂	Ag_2CO_3	K_2CO_3	DMSO	72
7	Pd(PPh ₃) ₂ Cl ₂	Ag ₂ CO ₃	^t BuONa	DMSO	74
8	Pd(PPh ₃) ₂ Cl ₂	Ag_2CO_3	Cs_2CO_3	DMSO	76
9	Pd(PPh ₃) ₂ Cl ₂	Ag_2CO_3	CsF	DMSO	78

^{*a*}For Suzuki–Miyaura coupling. **1a** (33 μ L, 0.3 mmol), TTO (69.7 mg, 0.3 mmol, 1.0 equiv.), trifluoroacetic anhydride (126 μ L, 0.9 mmol, 3.0 equiv.), HBF₄·Et₂O (49 μ L, 0.36 mmol, 1.20 equiv.) in MeCN (1.0 mL) at 0 °C for 1 h, r.t. for another 2 h; then **Reaction condition B: 3a** (95.3mg, 0.45 mmol), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), Ag₂CO₃ (82.7 mg, 0.3 mmol, 1.0 equiv.) and Base (0.6 mmol, 2.0 equiv.) in Solvent (1.0 mL) at 80 °C for 24 h. ^{*b*}The yield was determined by ¹H NMR analysis using CH₂Br₂ as the internal standard.

MaQ		TTO HBF	(1.0 equiv.), (₄ Et ₂ O (1.2 eq	(CF ₃ CO) ₂ O (3.0 equ uiv.), MeCN, 0 ^o C to	iiv.) • r.t.;	
MeO-	1a -	then P Ag	d(PPh ₃) ₂ Cl ₂ (\$ ₂ CO ₃ (0.5 equ Solvent (1.0	5 mol%), Ligand (6 r iv.), Base (2.0 equiv mL), N ₂ , r.t., 24 h	nol%) /.)	5a
Entry	5% [Pd]	[Ag]	Base	Ligand	Solvent	Yield ^{<i>b</i>} (%)
1	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	K_2CO_3	_	DMSO	12
2	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	K_2CO_3	_	DMA	55
3	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	K_2CO_3	_	DCE	26
4	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	K_2CO_3	_	THF	53
5	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	K_2CO_3	_	EA	39
6	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	_	DMA	61
7	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	^t BuONa	_	DMA	56
8	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	Cs_2CO_3	_	DMA	45
9	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	_	_	DMA	33
10	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	PPh ₃	DMA	56
11	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	DavePhos	DMA	65
12	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	JohnPhos	DMA	74
13	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	RuPhos	DMA	69
14	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	X-Phos	DMA	58
15	Pd(PPh ₃) ₂ Cl	1.0 eq Ag ₂ CO ₃	CsF	CyJohnPhos	DMA	67
16	Pd(PPh ₃) ₂ Cl	0.5 eq Ag ₂ CO ₃	CsF	JohnPhos	DMA	73

Table S7: C-H/C-H coupling^a

^{*a*}For C–H/C–H coupling. **1a** (33 μ L, 0.3 mmol), TTO (69.7 mg, 0.3 mmol, 1.0 equiv.), trifluoroacetic anhydride (126 μ L, 0.9 mmol, 3.0 equiv.), HBF₄·Et₂O (49 μ L, 0.36 mmol, 1.20 equiv.) in MeCN (1.0 mL) at 0 °C for 1 h, r.t. for another 2 h; then **Reaction condition C: 4a** (134 μ L, 1.2 mmol, 1.2 equiv.), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), Ag₂CO₃ (41.4 mg, 0.15 mmol, 0.5 equiv.), Base (0.6 mmol, 2.0 equiv.), Ligand (6 mol%) in Solvent (1.0 mL) at 25 °C for 24 h. ^{*b*}The yield was determined by ¹H NMR analysis using CH₂Br₂ as the internal standard.

M-0		TTO (1.0 equiv.), (CF ₃ CO) ₂ O (3.0 equiv.) HBF ₄ ·Et ₂ O (1.2 equiv.), MeCN, 0 °C to r.t.	;
weo-	$H + HO_2C - C_6F_5$	then Pd(PPh ₃) ₂ Cl ₂ (5 mol%)	MeO C ₆ F ₅
	1a 2a	Ag ₂ CO ₃ (1.0 equiv) DMSO (1.0 mL), N ₂ , 80 °C, 24 h	5a
Entry	Variation fr	om the "standard" conditions	Yield ^c (%)
1		none	77
2	PdCl ₂	PdCl ₂ instead of Pd(PPh ₃) ₂ Cl ₂	
3	Pd ₂ (dba	h)3 instead of Pd(PPh3)2Cl2	39
4	D	CE instead of DMSO	71
5	DN	MA instead of DMSO	73
6	Age	OTf instead of Ag ₂ CO ₃	23
7	Ag ₂ O instead Ag ₂ CO ₃		25
8		no Pd(PPh ₃) ₂ Cl ₂	
9		no Ag ₂ CO ₃	
10		3a instead of 2a	
11	3a inst	3a instead of 2a, CsF was added	
12	4a instead of	of 2a , DMA instead of DMSO CsF was added	61
13 ^b	4a instead CsF a	of 2a , DMA instead of DMSO nd JohnPhos were added	73
HO ₂ C	F F F F F F F F F F	$(HO)_2B \xrightarrow{F}_{F} F$ $3a$ Perfluorophenylboric acid	$H \rightarrow F \qquad F$

Table S8. Full Optimiazation^{*a*, *b*}

^{*a*}Reaction conditions for decarboxylation coupling: **1a** (33 µL, 0.3 mmol), TTO (69.7 mg, 0.3 mmol, 1.0 equiv.), trifluoroacetic anhydride (126 µL, 0.9 mmol, 3.0 equiv.), HBF₄·Et₂O (49 µL, 0.36 mmol, 1.20 equiv.) in MeCN (1.0 mL) at 0 °C for 1 h, r.t. 2 h; then **2a** (95.4 mg, 0.45 mmol, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), Ag₂CO₃ (82.7 mg, 0.3 mmol, 1 equiv.) in DMSO (1.0 mL) at 80 °C for 24 h. ^{*b*}Reaction conditions for Suzuki–Miyaura and C–H/C–H couplings: See Table S2 and S3 for details. ^{*c*}The yield was determined by ¹H NMR analysis using CH₂Br₂ as the internal standard. ^{*d*}n.d. = not detected. TTO: Thianthrene S-oxide.

5. General procedure for the coupling reaction

• Decarboxylative coupling is selected as the preferred method, and Suzuki-Miyaura and C-H/C-H couplings are used as the supplementary methods.

• Cheap and accessible raw materials were preferentially selected as coupling reagent.

1) Procedure A: Reaction conditions for decarboxylative polyfluoroarylation.

In situ activation step: Under ambient atmosphere arene 1a-1i and 1m-1v (0.3 mmol), thianthrene-S-oxide (69.7 mg, 0.3 mmol 1.0 equiv.), and MeCN (1.0 mL) were added in an oven-dried 10 mL test tube. After cooling to 0 °C, HBF4 Et2O (49 µL, 0.36 mmol, 1.20 equiv.) was added, followed by trifluoroacetic anhydride (126 µL, 0.9 mmol, 3.0 equiv.) leading to a dark purple solution which quickly lost its color. The vial was sealed with a screw-cap, and the mixture was stirred at x °C for 1 h, followed by stirring at 25 °C for y h. Further, the resulting beige reaction mixture was concentrated under reduced pressure, and diluted with 5 mL CH₂Cl₂. The CH₂Cl₂ solution was poured into a saturated aqueous NaHCO₃ solution (ca. 5 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH_2Cl_2 (2 × ca. 5 mL). The combined CH_2Cl_2 solution was washed with aqueous NaBF₄ solution (2 × ca. 5 mL, 5 % w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. Then, Condition A: The residue, Ar^F–CO₂H 2a–2d (0.45 mmol, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), Ag₂CO₃ (82.7 mg, 0.3 mmol, 1 equiv.) were added in an oven-dried 10 mL test tube. The reaction tube was placed under vacuum and backfilled with argon three times. Then DMSO (1.0 mL) was added in the test tube via syringe. The mixture was stirred at 80 °C for 24 h. The crude product residue was purified by column chromatography on silica gel or thin layer chromatography (pure PE to PE/EA : 5/1) to afford the purified product (5a-5i, 5m-5v, 6a, 6c, 6f, 6h).

NOTE: 2.2 equivalent of HBF₄ Et_2O was used for **10**, **1t** and **1v**. The extraction operation is necessary after the in situ activation step.

Temperature:	Time:
	y = 2 h: 1a-1c, 1f, 1h, 1l, 1m, 1q-1w, 1y, 1z
x = 0 °C: 1a , 1b , 1d – 1f , 1h – 1t , 1v – 1z .	y = 12 h: 1d, 1e, 1g, 1i–1k, 1n, 1x
x = -40 °C: 1c , 1g , 1u	y = 24 h: 10 , 1p ,

The temperature and reaction time in situ activation step are as follows:

2) Procedure B: Reaction conditions for Suzuki–Miyaura coupling.

In situ activation step: Under ambient atmosphere arene 1a, 1j, 1w (0.3 mmol), thianthrene-S-oxide (69.7 mg, 0.3 mmol 1.0 equiv.), and MeCN (1.0 mL) were added in an oven-dried 10 mL test tube. After cooling to 0 °C, HBF₄·Et₂O (49 µL, 0.36 mmol, 1.20 equiv.) was added, followed by trifluoroacetic anhydride (126 µL, 0.9 mmol, 3.0 equiv.) leading to a dark purple solution which quickly lost its color. The vial was sealed with a screw-cap, and the mixture was stirred at $\mathbf{x} \circ \mathbf{C}$ for 1 h, followed by stirring at 25 °C for y h. Further, the resulting beige reaction mixture was concentrated under reduced pressure, and diluted with 5 mL CH₂Cl₂. The CH₂Cl₂ solution was poured into a saturated aqueous NaHCO3 solution (ca. 5 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH_2Cl_2 (2 × ca. 5 mL). The combined CH_2Cl_2 solution was washed with aqueous NaBF₄ solution (2 × ca. 5 mL, 5 % w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. Then, Condition B: The residue, Ar^F-B(OH)₂ 3a-3m (0.45 mmol, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), Ag₂CO₃ (82.7 mg, 0.3 mmol, 1.0 equiv.) and CsF (91.1 mg, 0.6 mmol, 2.0 equiv.) were added in an oven-dried 10 mL test tube. The reaction tube was placed under vacuum and backfilled with argon three times. Then DMSO (1.0 mL) was added in the test tube via syringe. The mixture was stirred at 80 °C for 24 h. The crude product residue was purified by column chromatography on silica gel or thin layer chromatography (pure PE to PE/EA : 5/1) to afford the purified product (5a, 5j, 5w, 6d, 6e, 6g, 6i–6l, 6n–6r).

NOTE: The extraction operation is necessary after the in situ activation step.

Temperature:	Time:
	y = 2 h: 1a–1c, 1f, 1h, 1l, 1m, 1q–1w, 1y, 1z
x = 0 °C: 1a , 1b , 1d–1f , 1h–1t , 1v–1z .	y = 12 h: 1d , 1e , 1g , 1i–1k , 1n , 1x
x = -40 °C: 1c, 1g, 1u	y = 24 h: 10 , 1p ,

The temperature and reaction time in situ activation step are as follows:

3) Procedure C: Reaction conditions for C–H/C–H coupling.

In situ activation step: Under ambient atmosphere arene 1a, 1k, 1l and 1x-1z (0.3 mmol), thianthrene-S-oxide (69.7 mg, 0.3 mmol 1.0 equiv.), and MeCN (1.0 mL) were added in an oven-dried 10 mL test tube. After cooling to 0 °C, HBF4 Et2O (49 µL, 0.36 mmol, 1.20 equiv.) was added, followed by trifluoroacetic anhydride (126 µL, 0.9 mmol, 3.0 equiv.) leading to a dark purple solution which quickly lost its color. The vial was sealed with a screw-cap, and the mixture was stirred at x °C for 1 h, followed by stirring at 25 °C for y h. Further, the resulting beige reaction mixture was concentrated under reduced pressure, and diluted with 5 mL CH₂Cl₂. The CH₂Cl₂ solution was poured into a saturated aqueous NaHCO₃ solution (ca. 5 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH_2Cl_2 (2 × ca. 5 mL). The combined CH₂Cl₂ solution was washed with aqueous NaBF₄ solution ($2 \times ca. 5 \text{ mL}, 5 \% \text{ w/w}$). The CH₂Cl₂ layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. Then, Condition C: The residue, Ar^F-H 4a-4d (1.2 mmol), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), JohnPhos (5.4 mg, 6 mol%), Ag₂CO₃ (41.4 mg, 0.15 mmol, 0.5 equiv.) and CsF (91.1 mg, 0.6 mmol, 2.0 equiv.) were added in an oven-dried 10 mL test tube. The reaction tube was placed under vacuum and backfilled with argon three times. Then DMA (1.0 mL) was added in the test tube via syringe. The mixture was stirred at r.t. for 24 h. The crude product residue was purified by column chromatography on silica gel or thin layer chromatography (pure PE to DCM/MeOH: 30/1) to afford the purified product (5a, 5k, 5l, 5x-5z, 6b, 6s, 6t).

NOTE: The extraction operation is necessary after the in situ activation step.

Temperature:	Time:
	y = 2 h: 1a - 1c , 1f , 1h , 1l , 1m , 1q - 1w , 1y , 1z
x = 0 °C: 1a, 1b, 1d–1f, 1h–1t, 1v–1z.	y = 12 h: 1d, 1e, 1g, 1i–1k, 1n, 1x
x = -40 °C: 1c , 1g , 1u	y = 24 h: 10 , 1p ,

The temperature and reaction time in situ activation step are as follows:

4) Gram-scale experiment and recovery of TT

In situ activation step: Under ambient atmosphere pyriproxyfen 1v (1.0 g, 3.11 mmol), thianthrene-S-oxide (720.2 mg, 3.11 mmol, 1.0 equiv.), and MeCN (10 mL) were added in an oven-dried 10 mL test tube. After cooling to 0 °C, HBF₄·Et₂O (0.51 mL, 3.72 mmol, 1.20 equiv.) was added, followed by trifluoroacetic anhydride (1.30 mL, 9.3 mmol, 3.0 equiv.) leading to a dark purple solution which quickly lost its color. The vial was sealed with a screw-cap, and the mixture was stirred at 0 °C for 1 h, followed by stirring at 25 °C for 2 h. Further, the resulting beige reaction mixture was concentrated under reduced pressure, and diluted with 50 mL CH₂Cl₂. The CH₂Cl₂ solution was poured into a saturated aqueous NaHCO₃ solution (ca. 50 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH_2Cl_2 layer was collected, and the aqueous layer was further extracted with CH_2Cl_2 (2 × ca. 50 mL). The combined CH₂Cl₂ solution was washed with aqueous NaBF₄ solution (2 \times ca. 50 mL, 5 % w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. Then, Condition A: The residue, pentafluorobenzoic acid 2a (0.99 g, 4.67 mmol, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (109.5 mg, 5 mol%), Ag₂CO₃ (854.6 mg, 3.1 mmol, 1 equiv.) were added in an oven-dried 50 mL test tube. The reaction tube was placed under vacuum and backfilled with argon three times. Then DMSO (10.3 mL) was added in the test tube via syringe. The mixture was stirred at 80 °C for 24 h. The crude product residue was purified by column chromatography on silica gel or thin layer chromatography (pure PE to PE/EA : 50/1) to afford the purified product 5v (1.15 g, 74% yield) and thianthrene (0.51 g, 75% yield).

5) The synthesis of 1-(2',3',4',5',6'-Pentafluoro-[1,1'-biphenyl]-4-yl)ethan-1one (5r)

In situ activation step: Under ambient atmosphere 4-Acetylphenylboronic acid 1r (49.2 mg, 0.3 mmol), thianthrene-S-oxide (69.7 mg, 0.3 mmol 1.0 equiv.), and MeCN (1.0 mL) were added in an oven-dried 10 mL test tube. After cooling to 0 °C, HBF₄·Et₂O (49 µL, 0.36 mmol, 1.20 equiv.) was added, followed by trifluoroacetic anhydride (126 μ L, 0.9 mmol, 3.0 equiv.) leading to a dark purple solution which quickly lost its color. The vial was sealed with a screw-cap, and the mixture was stirred at 0 °C for 1 h, followed by stirring at 25 °C for 2 h. Further, the resulting beige reaction mixture was concentrated under reduced pressure, and diluted with 5 mL CH₂Cl₂. The CH₂Cl₂ solution was poured into a saturated aqueous NaHCO₃ solution (ca. 5 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH_2Cl_2 (2 × ca. 5 mL). The combined CH_2Cl_2 solution was washed with aqueous NaBF₄ solution (2 × ca. 5 mL, 5 % w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. Then, Condition A: The residue, pentafluorobenzoic acid 2a (95.4 mg, 0.45 mmol, 1.5 equiv.), Pd(PPh₃)₂Cl₂ (10.6 mg, 5 mol%), Ag₂CO₃ (82.7 mg, 0.3 mmol, 1 equiv.) were added in an oven-dried 10 mL test tube. The reaction tube was placed under vacuum and backfilled with argon three times. Then DMSO (1.0 mL) was added in the test tube via syringe. The mixture was stirred at 80 °C for 24 h. The crude product residue was purified by column chromatography on silica gel or thin layer chromatography (pure PE to PE/EA : 40/1) to afford the purified product 5r (43.8 mg, 51% yield).

6. Radical trapping experiment

 $Y = CO_2H (n.d.); Y = B(OH)_2 (n.d.); Y = H (n.d.)$

 $Y = CO_2H$: A reaction under the optimized reaction conditions was conducted in the presence of 3.0 equivalents of TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) as a radical scavenger. Under such conditions, the corresponding TEMPO-adduct was not detected by HRMS (ESI).

 $Y = B(OH)_2$: A reaction under the optimized reaction conditions was conducted in the presence of 3.0 equivalents of TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) as a radical scavenger. Under such conditions, the corresponding TEMPO-adduct was not detected by HRMS (ESI).

Y = H: A reaction under the optimized reaction conditions was conducted in the presence of 3.0 equivalents of TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) as a radical scavenger. Under such conditions, the corresponding TEMPO-adduct was not detected by HRMS (ESI).

Reaction procedures are consistent with those described in Page S13-S15.

7. Radical clock cyclization experiment

 $Y = CO_2H$: Under the optimized reaction Condition A, the corresponding cyclization product was not detected by HRMS (ESI).

 $Y = B(OH)_2$: Under the optimized reaction Condition B, the corresponding cyclization product was not detected by HRMS (ESI).

Y = H: Under the optimized reaction **Condition C**, the corresponding cyclization product was not detected by HRMS (ESI).

Reaction procedures are consistent with those described in Page S13-S15.

8. Control experiments for SMC and C-H/C-H coupling

Figure S5: SMC

Figure S6: C–H/C–H coupling

Condition C: 5% Pd(PPh₃)₂Cl₂, 6% DavePhos, 0.5 equiv. Ag₂CO₃, 2.0 equiv. CsF, DMA (1.0 mL)

OMe

9. Possible pathways for Suzuki-Miyaura coupling

Figure S7: Possible pathways for SMC

According to previous reports¹⁻⁵ and our experimental results, we propose a possible catalytic cycle for SMC.

10. Possible pathways for C-H/C-H coupling

Figure S8: Possible pathways for C–H/C–H coupling

According to previous reports^{1, 6-9} and our experimental results, we propose a possible catalytic cycle for C–H/C–H coupling.

11. References

[1] B. Lansbergen, P. Granatino and T. Ritter, Site-Selective C–H alkylation of Complex Arenes by a Two-Step Aryl Thianthrenation-Reductive Alkylation Sequence, *J. Am. Chem. Soc.*, 2021, **143**, 7909–7914.

[2] T. Korenaga, T. Kosaki, R. Fukumura, T. Ema and T. Sakai, Suzuki–Miyaura Coupling Reaction Using Pentafluorophenylboronic Acid, *Org. Lett.*, 2005, **7**, 4915–4917.

[3] Y. Nishihara, H. Onodera and K. Osakada, Synthesis and structural characterization of the first unsymmetrical diarylpalladium complex trans-Pd(C_6F_5)(2,4,6- $C_6F_3H_2$)(PEt₃)₂, derived from transmetallation between 2,4,6-trifluorophenylboronic acid and trans-Pd(C_6F_5)I(PEt₃)₂, *Chem. Comm.*, 2004, 192–193.

[4] J. Chen, A. Cammers-Goodwin, 2-(Fluorophenyl)pyridines by the Suzuki–Miyaura method: Ag₂O accelerates coupling over undesired ipso substitution (S_NAr) of fluorine, *Tetrahedron Lett.*, 2003, 44, 1503–1506.

[5] K. Hirabayashi, A. Mori, J. Kawashima, M. Suguro, Y. Nishihara and T. Hiyama, Palladium-Catalyzed Cross-Coupling of Silanols, Silanediols, and Silanetriols Promoted by Silver(I) Oxide, *J. Org. Chem.*, 2000, **65**, 5342–5349.

[6] N. Lebrasseur and L. Larrosa, Room Temperature and Phosphine Free Palladium Catalyzed Direct C-2 Arylation of Indoles, *J. Am. Chem. Soc.*, 2008, **130**, 2926–2927.

[7] L.-C. Campeau, M. Parisien, A. Jean and K. Fagnou, Catalytic Direct Arylation with Aryl Chlorides, Bromides, and Iodides: Intramolecular Studies Leading to New Intermolecular Reactions, *J. Am. Chem. Soc.*, 2006, **128**, 581–590.

[8] O. Daugulis and V. G. Zaitsev, Anilide ortho-Arylation by Using C–H Activation Methodolog, *Angew. Chem., Int. Ed.*, 2005, **44**, 4046–4048.

[9] O. René and K. Fagnou, Room-Temperature Direct Arylation of Polyfluorinated Arenes under Biphasic Conditions, *Org. Lett.*, 2010, **12**, 2116–2119.

12. Characterization of compounds

2,3,4,5,6-Pentafluoro-4'-phenoxy-1,1'-biphenyl (5a)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

White solid 73% yield, 73.6 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 50 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.03 – 7.01 (m, 2H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.4, 144.3 (d of m, J = 241.6 Hz), 140.2 (d of m, J = 256.7 Hz), 138.0 (d of m, J = 241.6 Hz), 131.6, 118.52, 115.9 (td, J = 18.1, 4.5 Hz), 114.4, 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.68 (dd, J = 22.6, 5.7 Hz), -156.59 (t, J = 19.78 Hz), -162.62 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_8F_5O^+$ [M+H]⁺ 275.0490. found m/z 275.0486. These data are in agreement with those reported previously in the literature.^[A]

[A] R. Takahashi, T. Seo, K. Kubota and H. Ito, Palladium-Catalyzed Solid-State Polyfluoroarylation of Aryl Halides Using Mechanochemistry, *ACS Catal.*, 2021, **11**, 14803–14810.

4'-(Benzyloxy)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (5b)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 52% yield, 54.6 mg.

 $R_f = 0.45 (PE / EA = 50 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.38 – 7.35 (m, 3H), 7.11 – 7.08 (m, 2H), 5.13 (s, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 159.6, 144.3 (d of m, *J* = 241.6 Hz), 140.2 (d of m, *J* = 256.7 Hz), 138.0 (d of m, *J* = 256.7 Hz), 136.7, 131.6, 128.8, 128.3, 127.6, 118.8, 115.2 (td, *J* = 16.6, 4.5 Hz), 77.2, 70.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.58 (dd, J = 22.6, 11.3 Hz), -156.43 (t, J = 22.6 Hz), -162.50 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{19}H_{12}F_5O^+$ [M+H]⁺ 351.0803. found m/z 351.0809.

2,3,4,5,6-Pentafluoro-3',4'-dimethoxy-1,1'-biphenyl (5c)

The crude product was purified by PE / EA (pure PE to 30 : 1) as an eluent.

Light yellow solid 58% yield, 52.9 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 30 / 1)$

¹**H NMR** (400 MHz, CDCl₃) δ 7.03 – 6.96 (m, 2H), 6.92 (s, 1H), 3.94 (s, 3H), 3.90 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 149.9, 149.1, 144.4 (d of m, J = 256.7 Hz), 140.3 (d of m, J = 256.7 Hz), 138.0 (d of m, J = 241.6 Hz), 123.2, 118.6, 115.9 (td, J = 18.1, 4.5 Hz), 113.3, 111.3, 77.2, 56.1, 56.0.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -143.22 (dd, J = 28.3, 5.7 Hz), -156.34 (t, J = 19.8 Hz), -162.5 (td, J = 19.8 Hz, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{14}H_{10}F_5O_2^+$ [M+H]⁺ 305.0595. found m/z 305.0605.

(R)-2,3,4,5,6-pentafluoro-4'-methoxy-2',5'-dimethyl-1,1'-biphenyl (5d)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow oil 66% yield, 59.8 mg.

 $\mathbf{R_f} = 0.35 (PE / EA = 50 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 6.96 (s, 1H), 6.80 (s, 1H), 3.88 (s, 3H), 2.22 (s, 3H), 2.17 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 158.7, 144.4 (d of m, *J* = 241.6 Hz), 140.5 (d of m, *J* = 241.6 Hz), 137.8 (d of m, *J* = 256.7 Hz), 136.2, 132.6, 124.6, 117.2, 115.7 (td, *J* = 19.6, 4.5 Hz), 112.0, 77.2, 55.4, 19.9, 15.8.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -140.61 (dd, J = 25.4, 8.5 Hz), -156.18 (t, J = 19.78 Hz), -162.68 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{15}H_{11}F_5NaO^+$ [M+Na]⁺ 325.0622. found m/z 325.0627.

2,3,4,5,6-Pentafluoro-1,1'-biphenyl (5e)

The crude product was purified by pure PE as an eluent.

White solid 74% yield, 54.2 mg.

R_f = 0.5 (pure PE) ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 5H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.6 (m), 142.5 (d of m, J = 196.3 Hz), 138.0 (d of m, J = 362.4 Hz), 130.3, 129.5, 128.9, 126.6, 116.1 (td, J = 27.2, 6.0 Hz), 77.2. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.28 (dd, J = 22.6, 11.3 Hz), -155.68 (t, J = 19.78 Hz), -162.31 (td, J = 21.2, 7.5 Hz). **HRMS** (ESI-TOF): m/z calcd. For C₁₂H₆F₅⁺ [M+H]⁺ 245.0384. found m/z 245.0381.

4'-Ethyl-2,3,4,5,6-pentafluoro-1,1'-biphenyl (5f)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

White solid 75% yield, 61.2 mg.

 $R_f = 0.40 (PE / EA = 50 / 1)$

¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.26 (m, 4H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.30 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 145.8, 144.4 (d of m, J = 256.7 Hz), 140.4 (d of m, J = 256.7 Hz), 138.0 (d of m, J = 241.6 Hz), 130.2, 128.4, 123.7, 116.1 (td, J = 16.6, 4.5 Hz), 77.2, 28.8, 15.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.39 (dd, J =17.0, 11.3 Hz), -156.22 (t, J = 19.8 Hz), -162.5 (td, J =25.4, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{14}H_{10}F_5^+$ [M+H]⁺ 273.0697. found m/z 273.0686.

4'-Cyclopropyl-2,3,4,5,6-pentafluoro-1,1'-biphenyl (5g)

The crude product was purified by pure PE as an eluent.

Colorless solid 70% yield, 59.7 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.50 \text{ (pure PE)}$

¹**H** NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 1.99 – 1.95 (m, 1H), 1.09 – 1.01 (m, 2H), 0.82 – 0.75 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 145.8, 144.3 (d of m, *J* = 241.6 Hz), 140.3 (d of m, *J* = 241.6 Hz), 138.0 (d of m, *J* = 241.6 Hz), 130.2, 126.0, 123.4, 116.1 (td, *J* = 16.6, 4.5 Hz), 77.2, 29.9, 15.5, 9.8.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -143.41 (dd, J = 22.6, 11.3 Hz), -156.27 (t, J = 22.60 Hz), -162.53 (td, J = 22.6, 11.3 Hz).

HRMS (ESI-TOF): m/z calcd. For C₁₅H₁₀F₅⁺ [M+H]⁺ 285.0697. found m/z 285.0710.

2',3',4',5',6'-Pentafluoro-4-methoxy-[1,1'-biphenyl]-3-carbaldehyde (5h)

The crude product was purified by PE / EA (pure PE to 40 : 1) as an eluent.

Light yellow solid 73% yield, 66.1 mg.

 $\mathbf{R_f} = 0.35 (PE / EA = 50 / 1)$

¹**H** NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 7.89 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.13 (d, *J* = 9.0 Hz, 1H), 4.00 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 189.0, 162.3, 144.3 (d of m, J = 241.6 Hz), 140.6 (d of m, J = 256.76 Hz), 138.0 (d of m, J = 241.6 Hz), 130.5, 125.1, 119.0, 114.7 (td, J = 16.6, 3.0 Hz), 112.4, 77.2, 56.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.41 (dd, J = 22.6, 11.3 Hz), -155.26 (t, J = 22.6 Hz), -162.04 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{14}H_8F_5O_2^+$ [M+H]⁺ 303.0439. found m/z 303.0433.

2',3',4',5',6'-Pentafluoro-4-methoxy-[1,1'-biphenyl]-3-carbonitrile (5i)

The crude product was purified by PE / EA (pure PE to 10 : 1) as an eluent.

Light yellow solid 71% yield, 63.7 mg.

 $R_f = 0.40 (PE / EA = 5 / 1)$

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, *J* = 10.8 Hz, 2H), 7.12 (d, *J* = 8.8 Hz, 1H), 4.00 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 161.8, 144.3 (d of m, *J* = 241.6 Hz), 140.9 (d of m, *J* = 256.7 Hz), 138.1 (d of m, *J* = 256.7 Hz), 136.3, 135.4, 119.1, 115.7, 113.7 (td, *J* = 16.6, 3.0 Hz), 112.0, 102.8, 77.2, 56.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.39 (dd, J = 28.3, 5.7 Hz), -154.25 (t, J = 19.8 Hz), -161.45 (td, J = 25.4, 11.3 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{14}H_7F_5NO^+$ [M+H]⁺ 300.0442. found m/z 300.0451.

2,2,2-Trifluoro-N-(2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-4-yl)acetamide (5j)

The crude product was purified by PE / EA (pure PE to 20:1) as an eluent.

White solid 65% yield, 69.2 mg.

 $R_f = 0.40 (PE / EA = 10 / 1)$

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H).

¹³**C NMR** (151 MHz, DMSO) δ 155.1, 154.9, 154.6, 154.4, 143.7 (d of m, J = 241.6 Hz), 139.8 (d of m, J = 241.6 Hz), 137.5, 137.3 (d of m, J = 241.6 Hz), 130.8, 122.7, 121.1, 116.7, 115.0 (td, J = 18.1, 3.0 Hz), 114.8, 39.5 (m).

¹⁹**F NMR** (565 MHz, DMSO) δ -74.1, -143.71 (dd, J = 22.6, 5.7 Hz), -156.29 (t, J = 22.6 Hz), -162.85 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{14}H_6F_8NO^+$ $[M+H]^+$ 356.0316. found m/z 356.0309.

4'-(3-Chloropropyl)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (5k)

The crude product was purified by PE / EA (pure PE to 20 : 1) as an eluent.

Light yellow solid 52% yield, 49.9 mg.

 $R_f = 0.35 (PE / EA = 10 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 3.59 (t, *J* = 6.3 Hz, 2H), 2.88 (t, *J* = 7.5 Hz, 2H), 2.18 – 2.13 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 144.3 (d of m, *J* = 241.6 Hz), 142.3, 140.4 (d of m, *J* = 241.6 Hz), 138.0 (d of m, *J* = 241.6 Hz), 130.4, 129.1, 124.3, 115.9 (td, *J* = 16.6, 3.0 Hz), 77.2, 44.2, 33.9, 32.7.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.39 (dd, *J* = 25.4, 8.5 Hz), -155.98 (t, *J* = 22.6 Hz), -162.43 (td, *J* = 22.6, 11.3 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{15}H_{10}ClF_5Na^+$ [M+Na]⁺ 343.0283. found m/z 343.0294.

4'-(4-Bromophenoxy)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (5l)

The crude product was purified by pure PE as an eluent.

Light yellow solid 75% yield, 93.1 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 158.1, 155.6, 144.3 (d of m, *J* = 241.6 Hz), 140.5 (d of m, *J* = 256.7 Hz), 138.0 (d of m, *J* = 241.6 Hz), 133.1, 131.9, 121.4, 121.3, 118.6, 116.8, 115.4 (td, *J* = 16.6, 3.0 Hz), 77.2.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.33 (dd, J = 22.6, 11.3 Hz), -155.64 (t, J = 22.60 Hz), -162.15 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{18}H_8BrF_5NaO^+$ [M+Na]⁺ 436.9571. found m/z 436.9592.

Methyl 2',3',4',5',6'-pentafluoro-4-methoxy-[1,1'-biphenyl]-3-carboxylate (5m)

The crude product was purified by PE / EA (pure PE to 20 : 1) as an eluent.

White solid 67% yield, 66.7 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 10 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 165.9, 159.8, 144.3 (d of m, *J* = 241.6 Hz), 140.5 (d of m, *J* = 256.7 Hz), 138.0 (d of m, *J* = 256.7 Hz), 135.2, 133.7, 120.5, 118.2, 114.8 (td, *J* = 18.1, 4.5 Hz), 112.5, 77.2, 56.3, 52.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.44 (dd, J = 22.6, 11.3 Hz), -155.59 (t, J = 19.78 Hz), -162.20 (td, J = 22.6, 7.5 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{15}H_{10}F_5O_3^+$ [M+H]⁺ 333.0545. found m/z 333.0539. These data are in agreement with those reported previously in the literature.^[B]

[B] M. Hofer, A. Genoux, R. Kumar and C. Nevado, Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners, *Angew. Chem.*, *Int. Ed.*, 2017, **56**, 1021–1025.

(2',3',4',5',6'-Pentafluoro-[1,1'-biphenyl]-4-yl)methyl benzoate (5n)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

Yellow solid 65% yield, 73.7 mg.

 $\mathbf{R_f} = 0.35 (PE / EA = 50 / 1)$

¹**H NMR** (600 MHz, CDC₃) δ 8.12 (d, *J* = 7.5 Hz, 2H), 7.59 (t, *J* = 7.8 Hz, 3H), 7.46 (t, *J* = 6.9 Hz, 3H), 5.45 (s, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 166.5, 144.3 (d of m, J = 241.6 Hz), 140.6 (d of m, J = 241.6 Hz), 138.0 (d of m, J = 256.7 Hz), 137.5, 133.3, 130.5, 130.0, 129.8, 129.2, 128.6, 128.4, 126.4, 115.6 (td, J = 16.6, 4.5 Hz), 77.2, 66.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.16 (dd, J = 22.6, 11.3 Hz), -155.29 (t, J = 19.78 Hz), -162.07 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{20}H_{11}F_5NaO_2^+$ [M+Na]⁺ 401.0571. found m/z 401.0572.

The crude product was purified by PE / EA (pure PE to 20 : 1) as an eluent.

Light yellow viscous liquid 60% yield, 78.1 mg.

 $R_f = 0.45 (PE / EA = 10 / 1)$

¹**H** NMR (600 MHz, CDCl₃) δ 7.36 (q, J = 9.0 Hz, 4H), 7.31 – 7.26 (m, 4H), 7.20 – 7.17 (m, 1H), 4.13 (t, J = 6.0 Hz, 1H), 4.09 – 4.03 (m, 2H), 2.47 – 2.38 (m, 2H), 1.99 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 171.0, 145.6, 145.1(m), 143.4, 140.4 (d of m, J = 256.7 Hz), 137.9 (d of m, J = 241.6 Hz), 130.4, 128.8, 128.2, 127.9, 126.7, 124.5, 115.7 (td, J = 18.8, 4.5 Hz), 77.2, 62.8, 47.7, 34.2, 20.8.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.23 (dd, *J* = 22.6, 8.5 Hz), -155.90 (t, *J* = 22.6 Hz), -162.36 (td, *J* = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{24}H_{19}F_5NaO_2^+$ [M+Na]⁺ 457.1197. found m/z 457.1188.

2'',3'',4'',5'',6''-Pentafluoro-[1,1':4',1''-terphenyl]-4-yl trifluoromethanesulfonate (5p)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

White solid 50% yield, 70.2 mg.

 $\mathbf{R_f} = 0.35 (PE / EA = 50 / 1)$

¹**H** NMR (600 MHz, CDC₃) δ 7.71 – 7.68 (m, 4H), 7.54 (d, J = 8.4 Hz, 2H), 7.41 – 7.38 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 149.4, 144.4 (d of m, *J* = 256.7 Hz), 140.8, 140.7 (d of m, *J* = 241.6 Hz), 140.4, 138.1 (d of m, *J* = 241.6 Hz), 130.9, 129.1, 127.6, 126.3, 122.0, 120.0, 117.9, 115.8, 115.4 (td, *J* = 16.6, 4.5 Hz), 77.2.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -72.83, -143.18 (dd, J = 22.6, 5.7 Hz), -155.09 (t, J = 22.6 Hz), -161.99 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{19}H_9F_8O_3S^+[M+H]^+$ 469.0139. found m/z 469.0116.

2-(Perfluorophenyl)-9H-xanthen-9-one (5q)

5q

The crude product was purified by PE / EA (pure PE to 40:1) as an eluent.

White solid 67% yield, 72.8 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 30 / 1)$

¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.47 – 7.38 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 176.6, 156.5, 156.2, 144.4 (d of m, *J* = 362.4 Hz), 142.1(m), 138.0 (d of m, *J* = 422.8 Hz), 135.3, 129.1, 127.0, 124.5, 122.3, 122.2, 121.9, 118.9, 118.2, 114.6 (td, *J* = 25.7, 6.0 Hz), 77.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -147.79 (dd, *J* = 22.56, 7.52 Hz), -159.12 (t, *J* = 20.68 Hz), -166.35 (td, *J* = 22.56, 7.52 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{19}H_8F_5O_2^+$ [M+H]⁺ 363.0439. found m/z 363.0436.

1-(2',3',4',5',6'-Pentafluoro-[1,1'-biphenyl]-4-yl)ethan-1-one (5r)

The crude product was purified by PE / EA (pure PE to 40:1) as an eluent.

White solid 51% yield, 43.8 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 30 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 2.55 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 197.4, 144.2 (d of m, *J* = 241.6 Hz), 141.5 (d of m, *J* = 256.7 Hz), 138.1 (d of m, *J* = 256.7 Hz), 137.6, 131.2, 130.6, 128.7, 115.0 (td, *J* = 18.1, 4.5 Hz), 77.2, 26.7.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -142.82 (dd, J = 22.6, 11.3 Hz), -154.08 (t, J = 19.78 Hz), -161.60 (td, J = 22.6, 7.5 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{14}H_8F_5O^+$ [M+H]⁺ 287.0490. found m/z 287.0485. These data are in agreement with those reported previously in the literature.^[C]

[C] D. S. Lee, P. Y. Choy, C. M. So, J. Wang, C. P. Lau and F. Y. Kwong, Palladiumcatalyzed direct arylation of polyfluoroarenes with aryl tosylates and mesylates, *RSC Adv.*, 2012, **2**, 9179–9182. Isopropyl (s)-2-((5-(4-chlorobenzoyl)-2',3',4',5',6'-pentafluoro-[1,1'-biphen yl]-2-yl)oxy)-2-methylpropanoate (5s)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow viscous liquid 77% yield, 121.5 mg.

 $\mathbf{R_f} = 0.43 \; (\text{PE} / \text{EA} = 50 / 1)$

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.73 (d, *J* = 8.8 Hz, 3H), 7.47 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 1H), 5.07 (m, 1H), 1.60 (s, 6H), 1.20 (s, 3H), 1.19 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 193.6, 172.7, 157.3, 144.6 (d of m, J = 347.3 Hz), 140.8 (d of m, J = 256.7 Hz), 138.8, 138.5 (d of m, J = 241.6 Hz), 136.1, 134.7, 132.9, 131.3, 130.0, 128.8, 117.2 (td, J = 13.6, 3.0 Hz), 115.1, 77.2, 69.7, 25.1, 21.6.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -139.43 (dd, J = 22.6 Hz), -154.96 (t, J = 19.78 Hz), -162.71 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{26}H_{21}ClF_5O_4^+$ [M+H]⁺ 527.1043. found m/z 527.1057.

(2R,8R,9S,13S,14S)-3-methoxy-13-methyl-2-(perfluorophenyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (5t)

5t

The crude product was purified by PE / EA (pure PE to 15 : 1) as an eluent.

Light brown solid 58% yield, 78.3 mg.

 $\mathbf{R_f} = 0.30 \; (\text{PE} / \text{EA} = 10 / 1)$

¹**H** NMR (400 MHz, CDCl₃) δ 7.13 (s, 1H), 6.76 (s, 1H), 3.78 (s, 3H), 2.99 (dd, *J* = 9.6, 4.7 Hz, 2H), 2.52 (dd, *J* = 18.7, 8.7 Hz, 1H), 2.40 – 2.27 (m, 2H), 2.21 – 2.04 (m, 3H), 1.95 (dd, *J* = 11.7, 2.8 Hz, 1H), 1.70 – 1.46 (m, 6H), 0.93 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.2, 144.6 (d of m, *J* = 377.5 Hz), 140.5 (d of m, *J* = 377.5 Hz), 139.9, 137.7 (d of m, *J* = 407.8 Hz), 132.3, 128.9, 113.0 (td, *J* = 16.6, 6.0

Hz), 112.7, 111.7, 77.2, 55.8, 50.5, 48.1, 43.9, 38.3, 36.0, 31.6, 30.0, 26.6, 26.0, 21.7, 14.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -140.11 - -140.36 (m), -156.47 (t, *J* = 19.78 Hz), -163.19 - -163.30 (m). HRMS (ESI-TOF): m/z calcd. For C₂₅H₂₄F₅O₂⁺ [M+H]⁺ 451.1691. found m/z 451.1688.

(R)-2'-ethoxy-2,3,4,5,6-pentafluoro-5'-(2-methyl-1-((3-phenoxybenzyl)oxy)propan-2-yl)-1,1'-biphenyl (5u)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Colorless viscous liquid 71% yield, 115.5 mg.

 $R_f = 0.35 (PE / EA = 50 / 1)$

¹**H** NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 9.0 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.05 – 7.02 (m, 3H), 6.99 (s, 1H), 6.96 – 6.93 (m, 2H), 4.50 (s, 2H), 4.08 (q, *J* = 6.8 Hz, 2H), 3.49 (s, 2H), 1.39 (s, 6H), 1.34 (t, *J* = 6.9 Hz, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 157.5, 157.3, 154.7, 144.6 (d of m, *J* = 241.6 Hz), 141.3 (m), 141.0, 139.7, 137.7 (d of m, *J* = 241.6 Hz), 129.8, 129.7, 128.8, 123.4, 122.1, 119.1, 117.8, 117.7, 115.0, 113.5 (t, *J* = 19.6 Hz), 111.9, 80.2, 77.2, 72.9, 64.2, 38.7, 26.2, 14.7.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -139.9 (dd, J = 25.4, 8.5 Hz), -156.62 (t, J = 22.6 Hz), -163.5 (td, J = 22.6, 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{31}H_{27}F_5NaO_3^+$ [M+Na]⁺ 565.1773. found m/z 565.1779.

2-((1-(4-((2',3',4',5',6'-Pentafluoro-[1,1'-biphenyl]-4yl)oxy)phenoxy)propan-2-yl)oxy)pyridine (5v)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow oil 76% yield, 111.1 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 30 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 8.17 (m, 1H), 7.57 (m, 1H), 7.36 (m, 2H), 7.04 (d, J = 9.0 Hz, 4H), 7.00 – 6.96 (m, 2H), 6.86 (m, 1H), 6.76 (d, J = 8.4 Hz, 1H), 5.63 (m, 1H), 4.23 (dd, J = 9.6, 4.8 Hz, 1H), 4.11 (dd, J = 9.6, 4.8 Hz, 1H), 1.51 (d, J = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 163.3, 159.8, 155.9, 149.3, 146.9, 144.3 (d of m, J = 241.6 Hz), 140.3 (d of m, J = 256.7 Hz), 138.8, 137.1 (m), 131.7, 121.5, 112.0, 117.3, 116.9, 116.1, 115.6 (td, J = 16.6, 3.0 Hz), 111.8, 77.2, 71.2, 69.34, 17.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.45 (dd, *J* = 19.8, 8.5 Hz), -156.12 (t, *J* = 22.60 Hz), -162.35 (td, *J* = 22.6, 11.3 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{26}H_{19}F_5NO_3^+$ [M+H]⁺ 488.1280. found m/z 488.1276.

Ethyl 2-((5-chloro-2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-2-yl)oxy)-2methylpropanoate (5w)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

White solid 65% yield, 79.6 mg.

 $\mathbf{R_f} = 0.40 \; (\text{PE} / \text{EA} = 50 / 1)$

¹**H** NMR (600 MHz, CDCl₃) δ 7.30 (dd, J = 9.0, 3.0 Hz, 1H), 7.23 (d, J = 2.4 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 1.50 (s, 6H), 1.22 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 152.2, 144.5 (d of m, *J* = 377.5 Hz), 140.9 (d of m, *J* = 392.6 Hz), 137.7 (d of m, *J* = 377.5 Hz), 131.8, 130.3, 126.5, 119.4, 117.7, 112.1 (td, *J* = 27.2, 6.0 Hz), 80.0, 77.2, 61.8, 24.9, 14.0.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -139.40 (dd, *J* = 22.6, 7.5 Hz), -155.16 (t, *J* = 20.7 Hz), -163.0 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{18}H_{15}ClF_5O_3^+$ [M+H]⁺ 409.0624. For found m/z. 409.0630.

Methyl 2-(2,2'',3'',4'',5'',6''-hexafluoro-[1,1':4',1''-terphenyl]-4-yl)pro panoate (5x)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

White solid 82% yield, 104.3 mg.

 $R_f = 0.35 (PE / EA = 50 / 1)$

¹**H** NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 8.1 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 12.0 Hz, 1H), 3.80 (q, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 1.57 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 174.4, 160.7, 159.0, 144.4 (d of m, J = 256.7 Hz), 142.7, 142.6, 140.6 (d of m, J = 256.7 Hz), 138.0 (d of m, J = 241.6 Hz), 136.6, 130.8, 130.7, 130.3, 129.3, 129.2, 126.9, 126.8, 125.8, 123.9, 123.8, 115.6 (td, J = 16.6, 3.0 Hz), 115.5, 115.4, 77.2, 52.3, 45.1, 18.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -117.28 (m), -143.07 (dd, J = 25.4, 8.5 Hz), -155.50 (td, J = 19.8, 11.3 Hz), -162.13 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{22}H_{14}F_6NaO_2^+$ [M+Na]⁺ 447.0790. found m/z 447.0796.

(2R,3R,48,5R,68)-2-(acetoxymethyl)-6-((3-(acetoxymethyl)-2',3',4',5',6'pentafluoro-[1,1'-biphenyl]-4-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5y)

5y

The crude product was purified by DCM / MeOH (50 : 1) as an eluent.

Light brown solid 73% yield, 145.1 mg.

 $R_f = 0.45 (DCM / MeOH = 30 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 (s, 1H), 7.32 (d, J = 12.0 Hz, 1H), 7.17 (d, J = 6.0 Hz, 1H), 5.34 – 5.28 (m, 2H), 5.20 – 5.12 (m, 3H), 5.06 (d, J = 12.0 Hz, 1H), 4.27 (dd, J = 12.0, 6.0 Hz, 1H), 4.18 (dd, J = 12.0, 1.8 Hz, 1H), 3.92 – 3.89 (m, 1H), 2.08 (s, 3H), 2.08 (s, 3H), 2.04 – 2.03 (m, 9H).

¹³**C NMR** (151 MHz, CDCl₃) δ 170.6, 170.5, 170.3, 169.5, 169.3, 155.0, 144.2 (d of m, J = 241.6 Hz), 140.5 (d of m, J = 256.7 Hz), 137.9 (d of m, J = 241.6 Hz), 131.2, 126.9, 121.4, 115.6, 115.1 (td, J = 16.6, 3.0 Hz), 98.9, 77.2, 72.2, 71.0, 68.3, 61.9, 60.6, 20.9, 20.6.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -143.34 (dd, J = 22.6, 5.7 Hz), -155.48 (td, J = 21.2, 9.4 Hz), -162.1(td, J = 21.2, 7.5 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{29}H_{28}F_5O_{12}^+$ [M+H]⁺ 663.1495. found m/z 663.1504.

Methyl 2,2-dimethyl-5-((2',3',4',5',6'-pentafluoro-2,5-dimethyl-[1,1'biphenyl]-4-yl)oxy)pentanoate (5z)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Colorless viscous liquid 56% yield, 72.3 mg.

 $R_f = 0.35 (PE / EA = 30 / 1)$

¹**H NMR** (600 MHz, CDCl₃) δ 6.95 (s, 1H), 6.75 (s, 1H), 3.99 (t, *J* = 5.4 Hz, 2H), 3.68 (s, 3H), 2.22 (s, 3H), 2.14 (s, 3H), 1.76 (t, *J* = 9.3 Hz, 4H), 1.25 (s, 6H).

¹³**C NMR** (151 MHz, CDCl₃) δ 178.4, 158.0, 144.4 (d of m, *J* = 241.6 Hz), 140.5 (d of m, *J* = 256.7 Hz), 137.7 (d of m, *J* = 241.6 Hz), 136.1, 132.5, 124.7, 117.0, 115.7 (td, *J* = 19.6, 3.0 Hz), 112.7, 77.2, 68.1, 51.8, 42.2, 37.2, 25.3, 25.2, 19.8, 15.8.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -140.65 (dd, J = 22.6, 5.7 Hz), -156.31 (t, J = 19.78 Hz), -162.77 (td, J = 22.6, 11.3 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{22}H_{24}F_5O_3^+$ [M+H]⁺ 431.1640. found m/z 431.1633.

2,3,4,5-Tetrafluoro-4'-methoxy-1,1'-biphenyl (6a)

6a

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

White solid 79% yield, 60.9 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2H), 7.04 – 6.99 (m, 3H), 3.86 (s,
3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.1, 147.2 (d of m, J = 256.7 Hz), 144.9 (d of m, J = 241.6 Hz), 141.5 (d of m, J = 256.7 Hz), 139.5 (d of m, J = 256.7 Hz), 130.2, 130.1, 125.3(m), 114.4, 111.1 (dt, J = 19.6, 3.0 Hz), 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -139.94 (m), -144.2 (m), -155.5 (t, J = 19.8 Hz), -158.12 (td, J = 21.2, 7.5 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_8F_4NaO^+$ [M+Na]⁺ 279.0403. found m/z 279.0401.

2,3,4,6-Tetrafluoro-4'-methoxy-1,1'-biphenyl (6b)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 69% yield, 53.1 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H** NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 9.0 Hz, 2H), 7.03 – 7.00 (m, 2H), 6.88 – 6.83 (m, 1H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.0, 154.4 (d of m, *J* = 241.6 Hz), 150.2 (d of m, *J* = 75.5 Hz), 148.5 (d of m, *J* = 75.5 Hz), 137.7 (d of m, *J* = 256.7 Hz), 131.5, 119.7, 115.9 (m), 114.2, 101.0 (m), 77.2, 55.4.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -118.42 (dd, J = 17.0, 5.7 Hz), -134.27 (m), -135.82 (d, J = 22.6 Hz), -165.04 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_8F_4NaO^+$ [M+Na]⁺ 279.0403. found m/z 279.0405.

These data are in agreement with those reported previously in the literature.^[D]

[D] F. Chen, Q.-Q. Min and X. Zhang, Pd-Catalyzed Direct Arylation of Polyfluoroarenes on Water under Mild Conditions Using PPh₃ Ligand, *J. Org. Chem.*, 2012, **77**, 2992–2998.

2,3,5,6-Tetrafluoro-4'-methoxy-1,1'-biphenyl (6c)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

White solid 66% yield, 50.7 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H NMR** (600 MHz, CDCl₃) δ 7.41 (dt, *J* = 8.8, 1.2 Hz, 2H), 7.06 – 6.99 (m, 3H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.3, 146.4 (d of m, J = 241.6 Hz), 143.9 (d of m, J = 241.6 Hz), 131.6, 121.47 (t, J = 16.6 Hz), 119.7, 114.3, 104.5 (t, J = 22.7 Hz), 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ-139.44 (m), -144.28 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_8F_4NaO^+$ [M+Na]⁺ 279.0403. found m/z 279.0407.

These data are in agreement with those reported previously in the literature.^[D]

[D] F. Chen, Q.-Q. Min and X. Zhang, Pd-Catalyzed Direct Arylation of Polyfluoroarenes on Water under Mild Conditions Using PPh₃ Ligand, *J. Org. Chem.*, 2012, **77**, 2992–2998.

2,3,4-Trifluoro-4'-methoxy-1,1'-biphenyl (6d)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 83% yield, 59.3 mg.

 $R_{f} = 0.40$ (pure PE)

¹**H** NMR (600 MHz, CDCl₃) δ 7.44 (dd, J = 9.0, 1.8 Hz, 2H), 7.12 (m, 2.4 Hz, 1H), 7.05 – 6.98 (m, 3H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 159.8, 151.1 (dd, J = 9.8, 2.3 Hz), 149.6 (dd, J = 10.6, 3.0 Hz), 149.4 (dd, J = 10.6, 1.5 Hz), 148.0 (dd, J = 10.6, 3.0 Hz), 141.3 (t, J = 15.9 Hz), 139.6 (t, J = 15.9 Hz), 130.1, 130.0, 126.6 (dd, J = 10.6, 4.5 Hz), 123.7, 114.3, 112.1 (dd, J = 17.3, 3.8 Hz), 77.2, 55.4.

¹⁹**F** NMR (565 MHz, CDCl₃) δ-136.62 (m), -139.18 (m), -160.33 (td, J = 19.8, 7.5 Hz). HRMS (ESI-TOF): m/z calcd. For C₁₃H₉F₃NaO⁺ [M+Na]⁺ 261.0498. found m/z 261.0494.

[E] R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides, *Angew. Chem., Int. Ed.*, 2009, **48**, 9350–9354.

2,3,5-Trifluoro-4'-methoxy-1,1'-biphenyl (6e)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

White solid 82% yield, 58.6 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H NMR** (600 MHz, CDCl₃) δ 7.48 (d, *J* = 7.2 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.92 (m, 1H), 6.90 – 6.84 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.1, 158.5 (dd, J = 10.6, 3.0 Hz), 156.9 (dd, J = 10.6, 3.0 Hz), 151.1 (d of m, J = 256.7 Hz), 145.5 (dd, J = 12.1, 3.0 Hz), 143.8 (dd, J = 12.1, 4.5 Hz), 131.6 (m), 130.2 (d, J = 3.0 Hz), 126.2, 114.3, 111.4 (d, J = 24.2 Hz), 103.7 (m), 77.2, 55.4.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -115.81(m), -133.37(q, J = 11.3 Hz), -148.85(m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_9F_3NaO^+$ [M+Na]⁺ 261.0498. found m/z 261.0492.

2,3,6-Trifluoro-4'-methoxy-1,1'-biphenyl (6f)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

Light yellow oil 69% yield, 49.3 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H** NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 8.4 Hz, 2H), 7.11 – 7.06 (m, 1H), 7.02 – 7.00 (m, 2H), 6.92 – 6.88(m, 1H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.0, 155.5 (d of m, *J* = 241.6 Hz), 148.7 (d of m, *J* = 45.3 Hz), 147.1 (d of m, *J* = 45.3 Hz), 131.6, 120.6, 120.1 (m), 115.2 (m), 114.1, 110.9 (m), 77.2, 55.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -120.04 (m), -138.18 (m), -142.19 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_9F_3NaO^+$ [M+Na]⁺ 261.0498. found m/z 261.0492.

These data are in agreement with those reported previously in the literature.^[E]

[E] R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides, *Angew. Chem., Int. Ed.*, 2009, **48**, 9350–9354.

2,4,5-Trifluoro-4'-methoxy-1,1'-biphenyl (6g)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 80% yield, 57.1 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.29 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.12 – 7.06 (m, 1H), 6.89 – 6.82 (m, 3H), 3.72 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 159.7, 154.7 (d of m, J = 241.6 Hz), 149.0 (d of m, J = 256.7 Hz), 147.0 (d of m, J = 241.6 Hz), 130.1, 130.0, 126.4, 125.3 (m), 117.9 (m), 114.2, 106.1 (m), 77.2, 55.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -119.63 (m), -136.00 (m), -142.98 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_9F_3NaO^+$ [M+Na]⁺ 261.0498. found m/z 261.0495.

These data are in agreement with those reported previously in the literature.^[F]

[F] Y. Mutoh, K. Yamamoto and S. Saito, Suzuki–Miyaura Cross-Coupling of 1,8-Diaminonaphthalene (dan)-Protected Arylboronic Acids, *ACS Catal.*, 2020, **10**, 352–357.

2,4,6-Trifluoro-4'-methoxy-1,1'-biphenyl (6h)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

White solid 65% yield, 46.4 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H NMR** (600 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.75 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 162.4 (t, J = 16.6 Hz), 161.3 (m), 160.7 (t, J = 15.1 Hz), 159.6 (m), 131.6, 120.6, 114.6 (td, J = 19.6, 4.5 Hz), 114.0, 100.5 (m), 77.2, 55.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -109.86 (m), -111.57 (t, J = 8.5 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_9F_3NaO^+$ [M+Na]⁺ 261.0498. found m/z 261.0493.

These data are in agreement with those reported previously in the literature.^[E]

[E] R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides, *Angew. Chem., Int. Ed.*, 2009, **48**, 9350–9354.

3,4,5-Trifluoro-4'-methoxy-1,1'-biphenyl (6i)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 79% yield, 56.4 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.45 – 7.40 (m, 1H), 7.15 – 7.10 (m, 1H), 7.00 – 6.97 (m, 1H), 3.86 (s, 2H).

¹³**C** NMR (151 MHz, CDCl₃) δ 160.1, 152.3 (dd, J = 10.6, 4.5 Hz), 150.7 (dd, J = 9.1, 4.5 Hz), 139.7 (t, J = 15.1 Hz), 138.1 (t, J = 16.6 Hz), 137.1 (m), 130.7, 128.0, 114.6, 110.5 (dd, J = 18.1, 4.5 Hz), 77.2, 55.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -134.54(m), -163.89(m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_9F_3NaO^+$ [M+Na]⁺ 261.0498. found m/z 261.0503.

2,3-Difluoro-4'-methoxy-1,1'-biphenyl (6j)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Yellow oil 84% yield, 55.5 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H** NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 7.2 Hz, 2H), 7.21 – 7.17 (m, 1H), 7.15 – 7.10 (m, 2H), 7.02 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 159.7, 152.1 (d, J = 4.6 Hz), 150.5 (d, J = 13.6 Hz), 148.8 (d, J = 13.6 Hz), 147.2 (d, J = 13.6Hz), 131.1 (d, J = 10.6 Hz), 130.2 (d, J = 3.0 Hz), 127.1 (d, J = 1.5 Hz), 125.2 (t, J = 2.3 Hz), 124.1 (m), 115.6, 115.5, 114.2, 77.2, 55.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -138.13 (m), -144.08 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}F_2O^+$ [M+H]⁺ 221.0772. found m/z 221.0768.

2,4-Difluoro-4'-methoxy-1,1'-biphenyl (6k)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Yellow oil 85% yield, 56.1 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.39 – 7.35 (m, 1H), 7.00 – 6.98 (m, 2H), 6.95 – 6.88 (m, 2H), 3.86 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 162.9 (d, *J* =12.1 Hz), 161.2 (d, *J* =10.6 Hz), 160.6 (d, *J* =10.6 Hz), 159.4, 159.0 (d, *J* =10.6 Hz), 131.3, 131.2, 131.1, 131.0, 130.2, 130.1, 127.5, 125.2 (d, *J* = 4.5 Hz) 125.1 (d, *J* = 4.5 Hz), 114.1, 111.6 (m), 104.4 (m), 77.2, 55.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -112.34(m), -113.8(m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}F_2O^+$ [M+H]⁺ 221.0772. found m/z 221.0773. [G] Y. Wei, J. Kan, M. Wang, W. Su and M. Hong, Palladium-Catalyzed Direct Arylation of Electron-Deficient Polyfluoroarenes with Arylboronic Acids, *Org. Lett.*, 2009, **11**, 3346–3349.

2,5-Difluoro-4'-methoxy-1,1'-biphenyl (6l)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Yellow oil 83% yield, 54.8 mg.

 $R_{f} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 2H), 7.15 – 7.08 (m, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.98 – 6.94 (m, 1H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 159.7, 158.1 (d, *J* = 3.0 Hz), 156.6 (d, *J* = 1.5 Hz), 155.0 (d, *J* = 1.5 Hz), 130.2, 130.1, 127.3, 117.2 (dd, *J* = 25.7, 7.6 Hz), 116.6 (dd, *J* = 24.2, 3.0 Hz), 114.6 (dd, *J* = 24.2, 9.1 Hz), 77.2, 55.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -119.19 (m), -124.31 (d, J = 5.65 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}F_2O^+$ [M+H]⁺ 221.0772. found m/z 221.0775.

These data are in agreement with those reported previously in the literature.^[H]

[H] W. Wu, E. Cui, Y. Zhang, C. Zhang, F. Zhu, C.-H. Tung and Y. Wang, Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation, *ACS Catal.*, 2019, **9**, 6335–6341.

2,6-Difluoro-4'-methoxy-1,1'-biphenyl (6m)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Yellow oil 81% yield, 53.5 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H** NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 9.0 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.01 – 6.94 (m, 4H), 3.85 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 161.1 (d, J = 7.6 Hz), 159.6, 159.5 (d, J = 7.6 Hz), 131.6, 128.5 (t, J = 9.8 Hz), 121.4, 118.3 (t, J = 18.9 Hz), 111.7 (dd, J = 22.7, 6.0 Hz), 77.2, 55.4.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -114.76 (t, J = 5.7 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}F_2O^+$ [M+H]⁺ 221.0772. found m/z 221.0779. These data are in agreement with those reported previously in the literature.^[E]

[E] R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, Copper-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides, *Angew. Chem., Int. Ed.*, 2009, **48**, 9350–9354.

3,4-Difluoro-4'-methoxy-1,1'-biphenyl (6n)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Yellow oil 81% yield, 53.4 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40 \text{ (pure PE)}$

¹**H NMR** (600 MHz, CDCl₃) δ 7.32 – 7.30 (m, 2H), 7.21 – 7.17 (m, 1H), 7.11 – 7.09 (m, 1H), 7.06 – 7.02 (m, 1H), 6.85 – 6.82 (m, 2H), 3.71 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 159.6, 151.4 (d, *J* = 13.6 Hz), 150.4 (d, *J* = 12.1 Hz), 149.8 (d, *J* = 13.6 Hz), 148.8 (d, *J* = 12.1 Hz), 138.1 (m), 131.7, 128.1, 122.6 (m), 117.5 (d, *J* = 16.6 Hz), 115.5 (d, *J* = 18.1 Hz), 114.5, 77.2, 55.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -137.75 (m), -141.31 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}F_2O^+$ [M+H]⁺ 221.0772. found m/z 221.0763.

3,5-Difluoro-4'-methoxy-1,1'-biphenyl (60)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

Light yellow solid 72% yield, 47.5 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 – 7.48 (m, 2H), 7.09 – 7.05 (m, 2H), 7.00 – 6.97 (m, 2H), 6.76 – 6.73 (m, 1H), 3.86 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 164.3 (d, *J* = 13.6 Hz), 162.6 (d, *J* = 13.6 Hz), 160.12, 144.3 (t, *J* = 9.8 Hz), 131.5 (d, *J* = 1.5 Hz), 128.2, 114.5, 109.5 (dd, *J* = 21.1, 6.0 Hz), 102.1, 101.9, 101.7, 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -110.01 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{10}F_2NaO^+$ [M+Na]⁺ 243.0592. found m/z 243.0589.

2-Fluoro-4'-methoxy-1,1'-biphenyl (6p)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent. Yellow oil 86% yield, 52.1 mg.

 $R_{f} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.45 – 7.42 (m 1H), 7.31 – 7.17 (m, 1H), 7.20 (t, 1H), 7.17 – 7.14 (m, 1H), 7.02 – 7.00 (m, 2H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 160.7, 159.4, 159.1, 130.6 (d, *J* = 3.3 Hz), 130.3 (d, *J* = 3.0 Hz), 128.9, 128.8, 128.5 (d, *J* = 8.0 Hz), 128.3, 124.4 (d, *J* = 3.5 Hz), 116.3, 116.1, 114.1, 77.2, 55.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -118.20.

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}FNaO^+$ [M+Na]⁺ 225.0686. found m/z. 225.0695.

3-Fluoro-4'-methoxy-1,1'-biphenyl (6q)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 87% yield, 52.7 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.26 (d, *J* = 9.6 Hz, 1H), 7.00 (m, 3H), 3.86 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 164.2, 162.6, 159.7, 143.2 (d, *J* = 7.6 Hz), 132.6 (d, *J* = 1.5 Hz), 130.3 (d, *J* = 9.1 Hz), 128.3, 122.4 (d, *J* = 3.0 Hz), 114.4, 113.6 (m), 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -113.25.

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}FNaO^+$ [M+Na]⁺ 225.0686. found m/z 225.0692.

4-Fluoro-4'-methoxy-1,1'-biphenyl (6r)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 88% yield, 53.3 mg.

 $R_{f} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.49 – 7.45 (m, 4H), 7.08 (t, J = 9 Hz, 2H), 6.96 (d, J = 6.0 Hz, 2H), 3.83 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 163.1, 161.4, 159.3, 137.1(d, J = 3.0 Hz), 133.0, 128.4, 128.3, 128.2, 115.7, 115.6, 114.4, 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -116.70.

HRMS (ESI-TOF): m/z calcd. For $C_{13}H_{11}FNaO^+$ [M+Na]⁺ 225.0686. found m/z 225.0688.

These data are in agreement with those reported previously in the literature.^[F]

[F] Y. Mutoh, K. Yamamoto and S. Saito, Suzuki–Miyaura Cross-Coupling of 1,8-Diaminonaphthalene (dan)-Protected Arylboronic Acids, *ACS Catal.*, 2020, **10**, 352–357.

2,3,5,6-Tetrafluoro-4-(4-methoxyphenyl)pyridine (6s)

The crude product was purified by PE / EA (pure PE to 50 : 1) as an eluent.

Light yellow solid 71% yield, 54.8 mg.

 $\mathbf{R}_{\mathbf{f}} = 0.40$ (pure PE)

¹H NMR (600 MHz, CDCl₃) δ 7.51 (m, 2H), 7.07 – 7.04 (m, 2H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.4, 144.2 (d of m, J = 241.6 Hz), 139.4 (d of m, J = 256.7 Hz), 133.3 (tt, J = 13.6, 3.0 Hz), 131.5 (t, J = 2.3 Hz), 118.1, 114.6, 77.2, 55.6. ¹⁹F NMR (565 MHz, CDCl₃) δ -91.28 (m), -145.77 (m).

HRMS (ESI-TOF): m/z calcd. For $C_{12}H_8F_4NO^+$ [M+H]⁺ 258.0537. found m/z 258.0541.

These data are in agreement with those reported previously in the literature.^[I]

[I] A. Dahiya, C. Fricke and F. Schoenebeck, Gold-Catalyzed Chemoselective Couplings of Polyfluoroarenes with Aryl Germanes and Downstream Diversification, *J. Am. Chem. Soc.*, 2020, **142**, 7754–7759.

2,3,5-Trifluoro-4-(4-methoxyphenyl)pyridine (6t)

The crude product was purified by PE / EA (pure PE to 50:1) as an eluent.

White solid 55% yield, 39.5 mg.

 $R_{f} = 0.40$ (pure PE)

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 3.87 (s, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 161.0, 155.0 (d, J = 4.5 Hz), 153.3 (d, J = 4.5 Hz), 149.9 (dd, J = 16.6, 1.5 Hz), 148.3 (dd, J = 16.6, 1.5 Hz), 143.1 (dd, J = 31.0, 3.8 Hz), 141.3 (dd, J = 31.7, 3.0 Hz), 131.5, 129.6 (m), 128.6 (m), 127.8, 118.4, 114.4, 77.2, 55.5.

¹⁹**F NMR** (565 MHz, CDCl₃) -89.55 (t, J = 28.25 Hz), -133.06 (d, J = 28.25 Hz), -141.54 (d, J = 28.25 Hz).

HRMS (ESI-TOF): m/z calcd. For $C_{12}H_9F_3NO^+$ [M+H]⁺ 240.0631. found m/z 240.0635. These data are in agreement with those reported previously in the literature.^[I]

[I] A. Dahiya, C. Fricke and F. Schoenebeck, Gold-Catalyzed Chemoselective Couplings of Polyfluoroarenes with Aryl Germanes and Downstream Diversification, *J. Am. Chem. Soc.*, 2020, **142**, 7754–7759.

13. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

¹³C NMR of 5a (151 MHz, CDCl₃)

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 f1 (ppm)

¹³F NMR of 5d (565 MHz, CDCl₃)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

¹⁹F NMR of 5e (565 MHz, CDCl₃)

¹⁹F NMR of 5g (565 MHz, CDCl₃)

-90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 f1 (ppm)

¹³C NMR of 5h (151 MHz, CDCl₃)

¹⁹F NMR of 5h (565 MHz, CDCl₃)

¹⁹F NMR of 5i (565 MHz, CDCl₃)

¹H NMR of 5j (400 MHz, DMSO-d6)

¹⁹F NMR of 5l (565 MHz, CDCl₃)

¹³C NMR of 5m (151 MHz, CDCl₃)

¹⁹F NMR of 5m (565 MHz, CDCl₃)

¹³C NMR of 5n (151 MHz, CDCl₃)

¹⁹F NMR of 5n (565 MHz, CDCl₃)

1H NMR of 5q (400 MHz, CDCl₃)

¹³C NMR of 5q (101 MHz, CDCl₃)

¹H NMR of 5r (600 MHz, CDCl₃)

S83

¹⁹F NMR of 5s (565 MHz, CDCl₃)

¹H NMR of 5t (400 MHz, CDCl₃)

¹⁹F NMR of 5t (565 MHz, CDCl₃)

¹³C NMR of 5v (151 MHz, CDCl₃)

¹³C NMR of 5w (101 MHz, CDCl₃)

¹⁹F NMR of 5w (376 MHz, CDCl₃)

¹H NMR of 5x (600 MHz, CDCl₃)

¹³C NMR of 5x (151 MHz, CDCl₃)

65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 f1 (ppm)

¹³C NMR of 5y (151 MHz, CDCl₃)

¹⁹F NMR of 5y (565 MHz, CDCl₃)

¹⁹F NMR of 5z (565 MHz, CDCl₃)

S98

¹⁹F NMR of 6b (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR of 6c (565 MHz, CDCl₃)

116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 fil (ppm)

¹⁹**F NMR of 6d** (565 MHz, CDCl₃)

¹⁹F NMR of 6e (565 MHz, CDCl₃)

¹⁹F NMR of 6f (565 MHz, CDCl₃)

-107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 f1 (ppm)

¹H NMR of 6i (600 MHz, CDCl₃)

¹⁹F NMR of 6i (565 MHz, CDCl₃)

¹H NMR of 6j (600 MHz, CDCl₃)

¹⁹F NMR of 6k (565 MHz, CDCl₃)

¹H NMR of 6l (600 MHz, CDCl₃)

¹⁹F NMR of 6l (565 MHz, CDCl₃)

¹³C NMR of 6n (151 MHz, CDCl₃)

-137 -139 f1 (ppm) -135 -141 -143

¹⁹F NMR of 60 (565 MHz, CDCl₃)

¹³C NMR of 6p (151 MHz, CDCl₃)

¹⁹F NMR of 6p (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR of 6q (565 MHz, CDCl₃)

¹³C NMR of 6r (151 MHz, CDCl₃)

¹⁹F NMR of 6r (565 MHz, CDCl₃)

¹⁹F NMR of 6s (565 MHz, CDCl₃)

