Electronic Supplementary Information

Neutrally Photoinduced MgCl₂-catalyzed Alkenylation and Imidoylation

of Alkanes

Xiaomin Zhang^a and Rong Zeng^{*,a,b}

^a School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China

^b Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055 Guangdong, P. R. China.

Corresponding author: rongzeng@xjtu.edu.cn

Table of Contents

General Information	S2-S3	
Table S1	S4-S5	
Preparation of Starting Materials	S6-S9	
C(sp ³)–H Alkenylation and Imidoylation of Alkanes	S10-S23	
Mechanistic Studies	S24-S26	
Synthetic Potentials	S28-S30	
References	S31	
Spectra	\$32-\$73	

Materials: THF was distilled from Na/benzophenone before use. Acetone was distilled from CaSO₄ under N₂. MeNO₂ distilled from CaCl₂ and CaSO₄ before use. MeCN and DCM were purified by a Vigor solvent purification system. Anhydrous MgCl₂ was purchased from Damas-beta. Anhydrous MgCl₂ was stored and weighed in the glovebox. Other commercially available chemicals were purchased and used without additional purification unless noted otherwise. The heating source used is a shot (metal pellets) bath. Infrared spectra were recorded on a Nicolet iS5 using neat thin film technique. High-resolution mass spectra (HRSM) were obtained on a Waters I-Class VION IMS QTof and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion [M+Na]⁺ or [M+H]⁺. ¹H NMR spectra were recorded on a JEOL-400 MHz spectrometer, ¹³C NMR spectra were recorded at 101 MHz, and ¹⁹F NMR spectra were recorded at 376 MHz. Unless otherwise noted, all spectra were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, $\delta = 0.00$ ppm) and are referenced to residual solvent (CDCl₃, $\delta = 7.26$ ppm (¹H) and 77.00 ppm (¹³C)). Coupling constants were reported in Hertz (Hz). Data for NMR spectra were reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublets, tt = triplet of triplets, m = multiplet, couplingconstant (Hz), and integration.

The vinyl sulfones including **1a**, **1e**, **1f**, **1g**, and **1h** were known and were prepared according to the known literature.¹⁻² The oxime ethers including **4a**, **4d**, **4e**, **4g**, **4h**, **4i**, and **4j** were known and were prepared according to the known literature.³

The LED light (100 W, emitting area: 30×30 mm) was assembled using the 390-395 nm chips purchased from GuangHong Chips. The emission spectrum of the LED light is shown below (Figure S1) and wavelength of peak intensity is 390-395 nm. The material of the reaction vessels is regular borosilicate glass. The distance from the light source to the reaction vessel is 5 cm (Figure S2).

Figure S1: The emission spectrum of the LED light.

Figure S2: The setting-up reactions.

F	Ph SO ₂ Ph + MgCl ₂ (10 mol%) MeCN, rt, Ar 390 nm light, 24 h initial conditions		Ph Ph Baa
Entry	Change from initial conditions ^a	Yield ^b	
		1a	3aa
1	None	33%	54%
2	No LED	97%	0
3	No MgCl ₂	98%	0
4	FeCl ₃ was used instead of MgCl ₂	69%	30%
5	LiCl was used instead of MgCl ₂	69%	28%
6	TBACl was used instead of MgCl ₂	78%	20%
7	CH ₃ NO ₂ was used as solvent	94%	0
8	DCM was used as solvent	42%	25%
9	Acetone was used as solvent	51%	43%
10	The reaction time was 48 h	18%	60%
11	The reaction time was 72 h	8%	70% ^c
12	20 mol% of MgCl ₂ , 24 h	17%	67%
13	20 mol% of MgCl ₂ , 72 h	0%	79%(78% ^c)
14	20 mol% of MgCl ₂ , 2.0 equiv of 2a	63%	22%
15	20 mol% of MgCl ₂ , 5.0 equiv of 2a	50%	48%

Table S1 Optimization of the Reaction Condition^a

^{*a*} The initial reaction was conducted with **1a** (0.2 mmol), **2a** (2.0 mmol, 10 equiv), MgCl2 (0.02 mmol), and MeCN (0.5 mL) in a 4 mL vial with 390 nm LED photoirradiation at rt for 24 h. ^{*b*} All yields were determined by 1H NMR with mesitylene as the internal standard. ^{*c*} The yield in the parentheses was based on isolation.

We began our exploration in the chlorine radical catalyzed $C(sp^3)$ —H alkenylation of alkanes by exposing an acetonitrile solution of diphenyl-substituted vinyl sulfone 1a, 10 mol% of MgCl₂, and 10 equiv of cyclohexane 2a to the irradiation of 390 nm LED under argon atmosphere for 24 hours (Table S1). Gladly, although about 33% of starting material was recovered, the desired alkenylation product 3aa was able to obtain successfully in 54% yield even in the absence of strong acid, oxidant, and photocatalyst (entry 1). This result was truly encouraging because it proved that the chlorine radical could be generated from chloride ion under such a neutral condition. The controlled experiments were then conducted to prove the critical roles of the light and magnesium catalyst since that the reaction did not occur in the absence of light or magnesium chloride (entries 2-3). Other metal chlorides with different cations, such as FeCl₃ and LiCl, could also proceed the transformation successfully, but the yields were lower than MgCl₂ (entries 4-5 vs entry 1). When the tetrabutylammonium chloride TBACl was used, 20% of the desired product 3aa was obtained, confirming that reaction was catalyzed by the chloride ion instead of the metal cation (entry 6). Solvent effect was also explored. Other solvents, such as DCM, acetone, and CH₃NO₂, resulted in the yield decreasing dramatically (entries 7-9). We tried to achieve a higher conversion by extending the reaction time to 48 h and 72 h, and the reaction yields were indeed increased to 60% and 70%, respectively (entries 10-11). When the catalyst loading was increasing to 20 mol%, the corresponding yield also increased to 67% (entry 12). Finally, the yield of **3aa** was able to increase to 78% by additional extending the reaction time to 72 h (entry 13). Reducing the amount of 2a to 5 or 2 equiv., the corresponding yields decreased to only 49% and 22%, respectively (entries 14-15).

Preparation of Starting Materials

Typical Procedure 1: According to the reported literature,⁴ to an oven-dried 50 mL round-bottom flask were added methyltriphenylphosphonium bromide (3.5392 g, 9.91 mmol), THF (15 mL), and KO'Bu (1.1088 g, 9.90 mmol) under a nitrogen atmosphere at 0 °C. A bright yellow color was observed. After stirring at 0 °C for 30 min, **1b-O** (0.6931 g, 3.30 mmol) was then added and the resulting mixture was stirred for additional 15 h. The temperature was allowed to increase to rt. The reaction was quenched with H₂O (10 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄. Evaporation and flash chromatography on silica gel (eluent: PE) afforded **1b-CH₂** (0.5930 g) as a white solid, which was used for next step directly.

Typical Procedure 2: To an oven-dried 50 mL round-bottom flask were added PhSO₂Na (1.3854 g, 8.56 mmol), NaOAc (0.3504 g, 4.27 mmol), MeCN (12 mL), **1b-CH**₂ (0.5912 g, 2.84 mmol), and I₂ (1.0855 g, 4.27 mmol) under a nitrogen atmosphere. The resulting mixture was heated at 110 °C for 2 h and then cooled to rt. The reaction was quenched with saturated Na₂S₂O₃ solution (20 mL) and extracted with ethyl acetate (10 mL× 3). The combined organic layer was dried over anhydrous Na₂SO₄. Evaporation and flash chromatography on silica gel afforded **1b** (0.7787 g, 68% for two steps) (eluent: PE/EA = 10/1): white solid. mp. 100.9-101.9 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.57 (m, 2 H, Ar-H), 7.52-7.44 (m, 1 H, Ar-H), 7.35 (t, *J* = 7.8 Hz, 2 H, Ar-H), 7.11-7.06 (m, 6 H, Ar-H), 6.97 (d, *J* = 8.1 Hz, 2 H, Ar-H), 6.94 (s, 1 H, CH=), 2.38 (s, 3 H, CH₃), 2.34 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.4, 141.7, 140.7, 138.8, 136.5, 132.7, 129.7, 129.2, 128.5, 128.4, 128.2, 127.5, 127.3, 21.3, 21.2. IR (neat, cm⁻¹) 3027, 2919, 1586, 1304, 1149, 1083. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀O₂SNa 371.1076; found 371.1077.

Following the typical procedure 1, the reaction of methyltriphenylphosphonium bromide (5.3558 g, 15.0 mmol), KO'Bu (1.6810 g, 15.0 mmol), and **1c-O** (1.2113 g, 5.01 mmol) in THF (25 mL) afforded **1c-CH**₂ (0.3823 g) as a white solid, which was used for next step directly.

Following the typical procedure 2, the reaction of PhSO₂Na (0.7745 g, 4.78 mmol), NaOAc (0.1960 g, 2.39 mmol), **1c-CH₂** (0.3823 g, 1.59 mmol), and I₂ (0.6072 g, 2.39 mmol) in MeCN (6.4 mL) afforded **1c** (0.5439 g, 29% for two steps): (eluent: petroleum ether/ethyl acetate = 5/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.56 (m, 2 H, Ar-H), 7.51-7.43 (m, 1 H, Ar-H), 7.35 (t, *J* = 7.8 Hz, 2 H, Ar-H), 7.18-7.12 (m, 2 H, Ar-H), 7.07-6.98 (m, 2 H, Ar-H), 6.87 (s, 1 H, CH=), 6.83-6.76 (m, 4 H, Ar-H), 3.85 (s, 3 H, CH₃), 3.80 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 160.2, 154.9, 132.6, 131.5, 130.0, 128.5, 127.5, 125.9, 113.9, 113.2, 55.4, 55.3. IR (neat, cm⁻¹) 2956, 2837, 1605, 1537, 1253, 1174. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₁O₄S 381.1155; found 381.1153.

Following the typical procedure 1, the reaction of methyltriphenylphosphonium bromide (10.7104 g, 30.0 mmol), KO'Bu (3.3610 g, 30.0 mmol), and **1d-O** (3.4051 g, 10.0 mmol) in THF (50 mL) afforded **1d-CH**₂ (3.0686 g) as a colorless oil, which was used for next step directly.

Following the typical procedure 2, the reaction of PhSO₂Na (4.4390 g, 27.4 mmol), NaOAc (1.1231 g, 13.7 mmol), **1d-CH₂** (3.0686 g, 9.13 mmol), and I₂ (3.4799 g, 13.7 mmol) in MeCN (36 mL) afforded **1d** (3.0855 g, 65% for two steps) (eluent: petroleum ether/ethyl acetate = 10/1): white solid. mp. 163.6-164.0 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.59 (m, 2 H, Ar-H), 7.58-7.51 (m, 1 H, Ar-H), 7.48-7.38 (m, 6 H, Ar-H), 7.07-7.03 (m, 2 H, Ar-H), 6.99 (s, 1 H, CH=), 6.98-6.94 (m, 2 H, Ar-H)

H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 141.0, 137.4, 133.8, 133.2, 131.9, 131.3, 131.2, 129.6, 129.4, 128.9, 127.6, 125.2, 123.7. IR (neat, cm⁻¹) 2954, 2922, 1488, 1305, 1150, 1010. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₅Br₂O₂S 476.9154; found 476.9153.

To the solution of (phenylsulfonyl)acetonitrile (5.2911 g, 29.23 mmol) in EtOH (7 mL) was added a freshly prepared solution of NaOEt in EtOH [790 mg of Na (34.35 mmol) dissolved in 20 mL EtOH] and then isoamyl nitrite (4.8 mL, d = 0.872 g/mL, 34.33 mmol, 95% purity) at rt. The resulting mixture was stirred at rt for 14 h, and a yellow solid precipitated. The precipitate was filtered and washed with cold EtOH (20 mL) and Et₂O (20 mL). Evaporation afforded the sodium salt of *N*-hydroxy-1-(phenylsulfonyl)methanimidoyl cyanide (3.5716 g, 54%) as a yellow powder, which was used for next step directly.

Typical Procedure 3: To the suspension of the sodium salt of *N*-hydroxy-1-(phenylsulfonyl)methanimidoyl cyanide (0.1955 g, 0.86 mmol) in EtOH (2 mL) was added 1-(bromomethyl)-4-nitrobenzene (0.2201 g, 1.03 mmol) under a nitrogen atmosphere. The mixture was heated to 100 °C for 1 h and then concentrated under reduced pressure. The mixture was extracted with ethyl acetate (5 mL × 3). The combined organic layer was washed with sat. NH₄Cl (5 mL) and water (5 mL) and dried over anhydrous Na₂SO₄. Evaporation and flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2.5/1) afforded **1j** (0.1634 g, 56%): yellow solid. mp. 83.3-84.3 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 8.27-8.18 (m, 2 H, Ar-H), 8.00-7.95 (m, 2 H, Ar-H), 7.84-7.75 (m, 1 H, Ar-H), 7.69-7.60 (m, 2 H, Ar-H), 7.53-7.46 (m, 2 H, Ar-H), 5.53 (s, 2 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 140.6, 136.1, 135.8, 130.0, 129.4, 129.3, 124.0, 105.4, 79.3. IR (neat, cm⁻¹) 2953, 2918, 2950,

2228, 1607, 1520, 1448, 1346. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₂N₃O₅S 346.0492; found 346.0497.

Following the typical procedure 3, the reaction of sodium salt of *N*-hydroxy-1-(phenylsulfonyl)methanimidoyl cyanide (0.2324 g, 1.00 mmol) and 1-(bromomethyl)-4-(trifluoromethyl)benzene (0.2870 g, 1.20 mmol) in EtOH (2.3 mL) afforded **1k** (0.2868 g, 78%) (eluent: petroleum ether/ethyl acetate = 10/1 to 8/1): yellow solid. mp. 67.6-68.0 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.93 (m, 2 H, Ar-H), 7.80-7.73 (m, 1 H, Ar-H), 7.66-7.57 (m, 4 H, Ar-H), 7.43 (d, *J* = 8.0 Hz, 2 H, Ar-H), 5.48 (s, 2 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 136.2, 135.7, 135.4, 131.4 (q, C-F, ²*J*_{C-F} = 32.8 Hz), 129.9, 129.5, 129.4, 129.19, 129.16, 128.7, 125.8 (q, C-F, ³*J*_{C-F} = 3.8 Hz), 123.7 (q, C-F, ¹*J*_{C-F} = 272.4 Hz), 105.5, 80.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. IR (neat, cm⁻¹) 3066, 2955, 2917, 2227, 1449, 1357, 1326, 1171, 1015. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₁F₃N₂O₃SNa 391.0335; found 391.0333.

Following the typical procedure 3, the reaction of sodium salt of *N*-hydroxy-1-(phenylsulfonyl)methanimidoyl cyanide (0.2319 g, 1.00 mmol) and 1-(bromomethyl)-4-methylbenzene (0.2221 g, 1.20 mmol) in EtOH (2.3 mL) afforded **1n** (0.2381 g, 76%) (eluent: petroleum ether/ethyl acetate = 8/1 to 7/1): white solid. mp. 77.8-78.4 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.92 (m, 2 H, Ar-H), 7.83-7.71 (m, 1 H, Ar-H), 7.67-7.55 (t, *J* = 7.9 Hz, 2 H, Ar-H), 7.21 (d, *J* = 8.2 Hz, 2 H, Ar-H), 7.17 (d, *J* = 8.1 Hz, 2 H, Ar-H), 5.40 (s, 2 H, CH₂), 2.37 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 136.5, 135.4, 134.5, 130.6, 129.8, 129.5, 129.3, 129.2, 105.7, 81.6, 21.3. IR (neat, cm⁻¹) 3062, 2954, 2921, 2228, 1448, 1355, 1171, 1016. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₅N₂O₃S 315.0798; found 315.0792.

Typical Procedure 4: To a 4 mL vial were added **1a** (64.1 mg, 0.20 mmol), MgCl₂ (4.0 mg, 0.04 mmol), **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg), and MeCN (0.5 mL) in an Ar glovebox. The vial was sealed and then transferred out of glovebox. Under irradiation at 390 nm LEDs, the resulting mixture was stirred for 72 hours at rt. Evaporation and flash chromatography on silica gel afforded **3aa** (40.8 mg, 78%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.14 (m, 10 H, Ar-H), 5.90 (d, *J* = 10.1 Hz, 1 H, CH=), 2.21-2.05 (m, 1 H, CH), 1.75-1.56 (m, 5 H), 1.23-1.08 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 142.5, 139.5, 136.0, 129.8, 128.1, 128.0, 127.2, 126.7, 126.7, 38.3, 33.3, 26.0, 25.6. IR (neat, cm⁻¹) 3055, 3020, 2921, 2849, 1597, 1445, 1073. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃ 263.1794; found 263.1800.

Gram scale reaction:

Following Typical Procedure 4, the reaction of MgCl₂ (59.8 mg, 0.63 mmol), **1a** (1.0006 g, 3.13 mmol), and **2a** (3.4 mL, d = 0.779 g/mL, 2.6250 g) in MeCN (7.8 mL) afforded **3aa** (0.5410 g, 66%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.14 (m, 10 H, Ar-H), 5.90 (d, J = 10.1 Hz, 1 H, CH=), 2.21-2.05 (m, 1 H, CH), 1.75-1.56 (m, 5 H), 1.23-1.08 (m, 5 H).

Following Typical Procedure 4, the reaction of MgCl₂ (3.8 mg, 0.04 mmol), **1a** (63.9 mg, 0.20 mmol), and **2b** (187 μ L, d = 0.75 g/mL, 140 mg) in MeCN (0.5 mL) afforded **3ab** (36.2 mg, 73%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.18 (m, 10 H, Ar-H), 5.97 (d, J = 10.1 Hz, 1 H, CH=), 2.59-2.43 (m, 1 H, CH),

1.84-1.72 (m, 2 H), 1.71-1.63 (m, 2 H), 1.54-1.46 (m, 2 H), 1.45-1.33 (m, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 140.6, 139.9, 135.5, 130.0, 128.1, 128.0, 127.2, 126.8, 126.7, 40.4, 34.2, 25.6. IR (neat, cm⁻¹) 3054, 3021, 2951, 2865, 1492, 1444, 1264, 1073. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₁ 249.1638; found 249.1637.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.1 mg, 0.20 mmol), and **2c** (242 μ L, *d* = 0.811 g/mL, 196 mg) in MeCN (0.5 mL) afforded **3ac** (39.7 mg, 72%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.14 (m, 10 H, Ar-H), 6.01 (d, *J* = 10.3 Hz, 1 H, CH=), 2.40-2.25 (m, 1 H, CH), 1.78-1.70 (m, 2 H), 1.68-1.60 (m, 2 H), 1.54-1.33 (m, 8 H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 140.5, 138.1, 136.6, 129.8, 128.1, 128.0, 127.2, 126.7, 126.6, 39.5, 35.0, 28.6, 26.1. IR (neat, cm⁻¹) 2923, 2850, 1559, 1490, 1457, 1443. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₅ 277.1951; found 277.1950.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.5 mg, 0.20 mmol), and **2d** (269 μ L, *d* = 0.834 g/mL, 224 mg) in MeCN (0.5 mL) afforded **3ad** (44.5 mg, 77%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.15 (m, 10 H, Ar-H), 6.03 (d, *J* = 10.3 Hz, 1 H, CH=), 2.45-2.31 (m, 1 H, CH), 1.75-1.58 (m, 4 H), 1.53-1.32 (m, 10 H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 140.6, 138.2, 136.7, 129.8, 128.1, 128.0, 127.2, 126.7, 126.6, 37.4, 32.5, 27.2, 26.3, 25.0. IR (neat, cm⁻¹) 3054, 3020, 2917, 2850, 1597, 1494, 1471, 1444. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₆Na 313.1927; found 313.1929.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), 1a

(64.1 mg, 0.20 mmol), and **2e** (335.9 mg, 2.0 mmol) in MeCN (1.0 mL) afforded **3ae** (49.6 mg, 71%) (eluent: PE): white solid. mp. 85.8-86.9 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.15 (m, 10 H, Ar-H), 5.92 (d, *J* = 10.2 Hz, 1 H, CH=), 2.44-2.28 (m, 1 H, CH), 1.59-1.44 (m, 2 H), 1.40-0.88 (m, 20 H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 140.64, 140.55, 136.0, 129.8, 128.1, 128.0, 127.0, 126.7, 33.5, 30.8, 23.9, 23.73, 23.68, 23.1, 22.5. IR (neat, cm⁻¹) 2928, 2847, 1559, 1507, 1468, 1457, 1443. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₃₄Na 369.2553; found 369.2552.

Following Typical Procedure 4, the reaction of MgCl₂ (3.8 mg, 0.04 mmol), **1a** (64.1 mg, 0.20 mmol), and **2f** (192.1 mg, 2.0 mmol) in MeCN (1.0 mL) afforded **3af** (39.0 mg, 71%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.15 (m, 10 H, Ar-H), 5.92 (d, *J* = 10.3 Hz, 1 H, CH=), 2.26 (s, 1 H), 2.23-2.15 (m, 1 H), 2.10 (s, 1 H), 1.58-1.52 (m, 1 H), 1.52-1.42 (m, 3 H), 1.39-1.31 (m, 1 H), 1.29-1.16 (m, 1 H), 1.13-1.04 (m, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 140.5, 138.9, 136.0, 130.2, 128.02, 127.96, 127.4, 126.8, 126.7, 43.4, 41.9, 39.7, 36.6, 36.2, 29.5, 28.8. IR (neat, cm⁻¹) 2947, 2867, 1559, 1457, 1443, 1132, 1075. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃ 275.1794; found 275.1791.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.1 mg, 0.20 mmol), and **2g** (0.5 mL) in MeCN (0.5 mL) afforded **3ag** (21.2 mg, 40%) (eluent: PE/EA = 30/1 to 15/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.31 (m, 3 H, Ar-H), 7.31-7.26 (m, 2 H, Ar-H), 7.26-7.16 (m, 5 H, Ar-H), 5.98 (d, J = 9.6 Hz, 1 H, CH=), 3.01-2.85 (m, 1 H), 2.43-2.26 (m, 2 H), 2.21-2.01 (m, 3 H), 1.88-1.72 (m, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 218.7, 142.6, 141.9, 139.8, 131.5, 129.6, 128.4, 128.2, 127.3, 127.2, 45.7, 38.3, 37.5, 30.6. IR (neat, cm⁻¹) 2956, 2924, 2853, 1740, 1491,

1456, 1444, 1153. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₈ONa 285.1250; found 281.1254.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.2 mg, 0.20 mmol), and **2h** (261 µL, d = 0.659 g/mL, 172 mg) in MeCN (0.5 mL) afforded **3ah** (32.3 mg, 61%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 2 H, Ar-H), 7.32-7.27 (m, 1 H, Ar-H), 7.25-7.15 (m, 7 H, Ar-H), 6.09 (t, J = 7.5 Hz, 0.29 H, CH= of **3ah-1**), 5.86 (d, J = 10.3 Hz, 0.47 H, CH= of **3ah-2**), and 5.83 (d, J = 10.5 Hz, 0.28 H, CH= of **3ah-3**), 2.32-2.22 (m, 0.46 H), 2.11 (q, J = 7.4 Hz, 1 H), 1.48-1.39 (m, 1 H), 1.36-1.20 (m, 6 H), 1.00 (d, J = 6.7 Hz, 1.58 H), 0.89-0.83 (m, 3 H). All ratios were determined by ¹H NMR with mesitylene as the internal standard. The spectra are matching with the literature.^{5,6,7}

Following Typical Procedure 4, the reaction of MgCl₂ (3.7 mg, 0.04 mmol), **1a** (64.1 mg, 0.20 mmol), and **2i** (0.5 mL) in MeCN (0.5 mL) afforded **3ai** (26.3 mg, 53%) (eluent: PE/EA = 50/1 to 30/1): white solid. mp. 51.2-51.8 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.19 (m, 10 H, Ar-H), 6.06 (d, *J* = 9.0 Hz, 1 H, CH=), 4.38-4.19 (m, 1 H, CH), 3.98-3.89 (m, 1 H), 3.76-3.69 (m, 1 H), 2.10-1.92 (m, 2 H), 1.91-1.79 (m, 1 H), 1.78-1.67 (m, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 142.0, 139.4, 129.9, 129.7, 128.1, 127.6, 127.4, 127.3, 76.6, 68.1, 33.1, 26.4. IR (neat, cm⁻¹) 2923, 2853, 1049. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₉O 251.1430; found 251.1436.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.2 mg, 0.20 mmol), and **2i-D** (0.5 mL) in MeCN (0.5 mL) afforded **3ai-D** (27.8 mg,

54%) (eluent: PE/EA = 100/1 to 50/1). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.31 (m, 3 H, Ar-H), 7.27-7.19 (m, 7 H, Ar-H), 6.06 (d, *J* = 9.0 Hz, 1 H, CH=). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 142.0, 139.4, 129.9, 129.7, 128.1, 127.6, 127.4, 127.3, 76.4-75.9 (m), 67.7-66.8 (quin), 32.5-31.7 (quin), 25.8-25.0 (quin). IR (neat, cm⁻¹) 2924, 1443, 1384, 1043. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₂D₇O 258.1870; found 258.1860.

Following Typical Procedure 4, the reaction of MgCl₂ (3.7 mg, 0.04 mmol), **1a** (63.9 mg, 0.20 mmol), and **2j** (170 µL, d = 1.034 g/mL, 176 mg) in MeCN (0.5 mL) afforded **3aj** (27.9 mg, 52%) (eluent: PE/EA = 100/1 to 50/1): white solid. mp. 90.0-90.9 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.10 (m, 10 H, Ar-H), 5.86 (d, J = 8.9 Hz, 1 H, CH=), 4.22-3.95 (td, $J_1 = 9.2$ Hz, $J_2 = 2.8$ Hz, 1 H, CH), 3.74-3.53 (m, 5 H), 3.41 (dd, $J_1 = 11.6$ Hz, $J_2 = 9.9$ Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 141.4, 139.0, 129.5, 128.3, 128.2, 127.9, 127.7, 127.5, 124.1, 73.7, 70.3, 66.12, 66.08. IR (neat, cm⁻¹) 2955, 2917, 2849, 1445, 1117. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₉O₂ 289.1199; found 289.1195.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.1 mg, 0.20 mmol), and **2k** (202 μ L, d = 0.968 g/mL, 196 mg) in MeCN (0.5 mL) afforded **3ak** (36.6 mg, 66%) (eluent: PE/EA = 50/1 to 30/1 to 20/1): white solid. mp. 112.7-113.7 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.12 (m, 10 H, Ar-H), 6.05 (d, J = 10.4 Hz, 1 H, CH=), 4.63 (t, J = 5.1 Hz, 1 H), 4.38-4.34 (m, 1 H), 2.46 (ddd, $J_1 = 10.3$ Hz, $J_2 = 8.4$ Hz, $J_3 = 4.2$ Hz, 1 H, CH), 1.81-1.59 (m, 4 H), 1.42-1.31 (m, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 140.1, 139.6, 133.6, 130.1, 128.1, 128.0, 127.3, 126.9, 126.9, 81.7, 76.5, 43.6, 39.9, 29.7, 29.4. IR (neat, cm⁻¹) 2923, 2868, 1495, 1464, 1457, 1444. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁O 277.1587; found

277.1573.

Following Typical Procedure 4, the reaction of MgCl₂ (3.8 mg, 0.04 mmol), **1a** (64.2 mg, 0.20 mmol), and **2l** (220 μ L, d = 0.926 g/mL, 204 mg) in MeCN (0.5 mL) afforded **3al** (27.6 mg, 49%) (eluent: PE/EA = 50/1 to 40/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05-7.78 (m, 10 H, Ar-H), 6.67 (d, J = 9.0 Hz, 1 H, CH=), 5.18 (ddd, $J_1 = 8.8$ Hz, $J_2 = 7.8$ Hz, $J_3 = 6.0$ Hz, 1 H, CH), 4.68 (dd, $J_1 = 8.1$ Hz, $J_2 = 6.1$ Hz, 1 H, CH), 4.35 (t, J = 7.9 Hz, 1 H, CH), 2.10 (s, 3 H, CH₃), 1.96 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 146.2, 141.5, 138.9, 129.8, 128.20, 128.16, 127.8, 127.70, 127.65, 126.1, 109.3, 74.0, 69.7, 26.8, 25.9. IR (neat, cm⁻¹) 3056, 3024, 2923, 2853, 1457, 1378, 1215, 1155, 1059. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₁O₂ 281.1536; found 281.1550.

Following Typical Procedure 4, the reaction of MgCl₂ (3.8 mg, 0.04 mmol), **1a** (64.1 mg, 0.20 mmol), and **2m** (195 μ L, d = 0.881 g/mL, 172 mg) in MeCN (0.5 mL) afforded **3am** (31.5 mg, 60%) (eluent: PE/EA = 30:1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.32 (m, 3 H, Ar-H), 7.26-7.15 (m, 7 H, Ar-H), 6.04 (d, J = 8.8 Hz, 0.32 H, CH= of **3am-1**), 5.90 (d, J = 9.8 Hz, 0.24 H, CH= of **3am-3**), and 5.83 (d, J = 10.0 Hz, 0.43 H, CH= of **3am-2**), 4.01-3.89 (m, 1 H), 3.89-3.78 (m, 1.24 H), 3.42-3.32 (m, 1 H), 3.31-3.23 (m, 0.88 H), 2.54-2.42 (m, 0.43 H), 2.42-2.32 (m, 0.23 H), 1.89-1.76 (m, 0.83 H), 1.68-1.60 (m, 1 H), 1.58-1.36 (m, 3 H). All ratios were determined by ¹H NMR with mesitylene as the internal standard. The spectra are matching with the literature.^{8,9}

Following Typical Procedure 4, the reaction of MgCl₂ (3.1 mg, 0.032 mmol), **1b** (56.0 mg, 0.16 mmol), and **2a** (173 μ L, *d* = 0.779 g/mL, 134.4 mg) in MeCN (0.5 mL) afforded **3ba** (29.8 mg, 64%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 7.9 Hz, 2 H, Ar-H), 7.12-7.02 (m, 6 H, Ar-H), 5.82 (d, *J* = 10.0 Hz, 1 H, CH=), 2.38 (s, 3 H, CH₃), 2.31 (s, 3 H, CH₃), 2.20-2.07 (m, 1 H, CH), 1.74-1.57 (m, 5 H), 1.24-1.09 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 139.2, 137.7, 136.3, 136.2, 135.1, 129.6, 128.8, 128.7, 127.1, 38.2, 33.4, 26.0, 25.6, 21.2, 21.0. IR (neat, cm⁻¹) 2922, 2849, 1507, 1456, 1447, 1264. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₉O 313.1927; found 313.1918.

Following Typical Procedure 4, the reaction of MgCl₂ (4.0 mg, 0.04 mmol), **1c** (76.3 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **3ca** (36.5 mg, 57%) (eluent: PE/EA = 100/1 to 50/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.06 (m, 4 H, Ar-H), 6.92-6.87 (m, 2 H, Ar-H), 6.82-6.75 (m, 2 H, Ar-H), 5.75 (d, *J* = 10.0 Hz, 1 H, CH=), 3.84 (s, 3 H, CH₃), 3.78 (s, 3 H, CH₃), 2.20-2.05 (m, 1 H, CH), 1.74-1.57 (m, 5 H), 1.24-1.09 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 158.3, 138.5, 136.0, 134.2, 133.1, 130.8, 128.3, 113.4, 113.3, 55.24, 55.16, 38.2, 33.5, 26.0, 25.7. IR (neat, cm⁻¹) 2922, 2847, 1606, 1508, 1457, 1172, 1036. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₆O₂Na 345.1825; found 345.1815.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1d** (95.1 mg, 0.20 mmol), and **2a** (216 μ L, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **3da** (41.9 mg, 50%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.45 (m, 2 H, Ar-H), 7.42-7.31 (m, 2 H, Ar-H), 7.09-6.76 (m, 4 H, Ar-H), 5.89 (d, J = 10.1 Hz, 1 H, CH=), 2.14-2.00 (m, 1 H, CH), 1.73-1.59 (m, 5 H), 1.24-1.10 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 138.9, 137.5, 137.0, 131.5, 131.4, 131.2, 128.8, 121.1, 120.9, 38.4, 33.1, 25.9, 25.5. IR (neat, cm⁻¹) 2956, 2923, 2853, 1661, 1622, 1586, 1463. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁Br₂ 419.0005; found 419.0009.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1e** (48.7 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **3ea** (18.3 mg, 49%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.33 (m, 2 H, Ar-H), 7.29 (t, *J* = 7.6 Hz, 2 H, Ar-H), 7.18 (t, *J* = 7.2 Hz, 1 H, Ar-H), 6.35 (d, *J* = 16.0 Hz, 1 H, CH=), 6.18 (dd, *J*₁ = 16.0 Hz, *J*₂ = 6.9 Hz, 1 H, CH=), 2.17-2.09 (m, 1 H, CH), 1.87-1.64 (m, 5 H), 1.41-1.09 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 136.9, 128.4, 127.2, 126.7, 125.9, 41.2, 32.9, 26.2, 26.0. IR (neat, cm⁻¹) 2923, 2851, 1558, 1540, 1506, 1456, 1448, 1375. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₈Na 209.1301; found 209.1305.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), 1f (64.4 mg, 0.20 mmol), and 2a (216 μ L, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL)

afforded **3fa** (23.6 mg, 45%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.36 (m, 2 H, Ar-H), 7.23-7.09 (m, 2 H, Ar-H), 6.32-6.20 (m, 1 H, CH=), 6.16 (dd, $J_1 = 15.9$ Hz, $J_2 = 6.8$ Hz, 0.45 H, CH=, *E*-isomer) and 5.51 (dd, $J_1 = 11.7$ Hz, $J_2 = 10.2$ Hz, 0.54 H, CH=, *Z*-isomer), 2.55-2.40 (m, 0.54 H, Cy, *Z*-isomer) and 2.18-2.03 (m, 0.46 H, Cy, *E*-isomer), 1.86-1.61 (m, 5 H), 1.40-1.09 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 137.7, 137.0, 136.8, 131.5, 131.2, 130.2, 128.5, 127.5, 127.1, 126.1, 125.7, 120.3, 120.2, 41.1, 36.9, 33.1, 32.8, 26.1, 26.0, 25.9, 25.6. IR (neat, cm⁻¹) 2922, 2849, 1559, 1507, 1486, 1457, 1448. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₇BrNa 287.0406; found 287.0410.

Following Typical Procedure 4, the reaction of MgCl₂ (3.8 mg, 0.04 mmol), **1g** (62.5 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **3ga** (24.5 mg, 48%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.2 Hz, 2 H, Ar-H), 7.42 (d, *J* = 8.2 Hz, 2 H, Ar-H), 6.37 (d, *J* = 16.0 Hz, 1 H, CH=) and 6.27 (dd, *J*₁ = 16.0 Hz, *J*₂ = 6.6 Hz, 1 H, CH=), 2.22-2.08 (m, 1 H, CH), 1.96-1.62 (m, 5 H), 1.40-1.10 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 139.6, 128.5 (C-F, q, ²*J*_{C-F} = 31.9 Hz), 126.1, 126.0, 125.4 (C-F, q, ³*J*_{C-F} = 3.9 Hz), 124.3 (C-F, q, ¹*J*_{C-F} = 272.8 Hz), 41.2, 32.8, 26.1, 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.2. IR (neat, cm⁻¹) 2923, 2852, 1615, 1449, 1324, 1125, 1067. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₈F₃ 255.1355; found 255.1371.

3ha, *E/Z* = 13:1

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **1h** (51.6 mg, 0.20 mmol), and **2a** (216 μ L, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **3ha** (10.1 mg, 25%) (eluent: PE): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.3$ Hz, 1 H, Ar-H), 7.18-7.14 (m, 1 H, Ar-H), 7.13-7.09

(m, 2 H, Ar-H), 6.53 (d, J = 15.9 Hz, 0.95 H, CH=, *E*-isomer) and 6.30 (d, J = 11.6 Hz, 0.08 H, CH=, *Z*-isomer), 6.04 (dd, $J_1 = 15.7$ Hz, $J_2 = 7.1$ Hz, 0.95 H, CH=, *E*-isomer) and 5.52 (dd, $J_1 = 11.5$ Hz, $J_2 = 10.2$ Hz, 0.07 H, CH=, *Z*-isomer), 2.33 (s, 3 H, CH₃), 2.20-2.09 (m, 1 H, CH), 1.87-1.73 (m, 4 H), 1.72-1.65 (m, 1 H), 1.36-1.27 (m, 2 H), 1.25-1.16 (m, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 138.3, 137.1, 134.9, 130.1, 129.7, 128.8, 126.7, 126.0, 125.4, 125.3, 125.0, 41.5, 36.7, 33.3, 33.1, 26.2, 26.0, 25.6, 19.8. IR (neat, cm⁻¹) 2922, 2851, 1558, 1506, 1457, 1375. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₁ 201.1638; found 201.1628.

5aa, E/Z = 3.5:1

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **4a** (60.1 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5aa** (40.7 mg, 84%) (eluent: PE/EA = 30/1 to 20/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.29 (m, 5 H, Ar-H), 5.23 (s, 2 H, CH₂), 3.05 (tt, *J*₁ = 11.6 Hz, *J*₂ = 3.5 Hz, 0.75 H, *E*-isomer) and 2.43 (tt, *J*₁ = 11.6 Hz, *J*₂ = 3.5 Hz, 0.21 H, *Z*-isomer), 1.90-1.65 (m, 5 H), 1.48-1.15 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 137.6, 136.1, 136.0, 128.6, 128.5, 128.5, 128.4, 128.3, 128.3, 113.6, 109.8, 78.1, 77.6, 40.7, 35.8, 29.8, 28.7, 25.32, 25.29, 25.26, 25.2. IR (neat, cm⁻¹) 2930, 2855, 2226, 1449, 1017. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₉N₂O 243.1492; found 243.1499.

Following Typical Procedure 4, the reaction of MgCl₂ (3.8 mg, 0.04 mmol), **4b** (68.9 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5ba** (29.9 mg, 52%) (eluent: PE/EA = 30/1 to 15/1): yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.35-8.10 (m, 2 H, Ar-H), 7.56-7.45 (m, 2 H, Ar-H), 5.31 (s, 2 H, CH₂), 3.06 (tt, *J*₁ = 11.8 Hz, *J*₂ = 3.6 Hz, 0.11 H, *E*-isomer) and 2.43 (tt, *J*₁ = 11.6 Hz, *J*₂ = 3.5 Hz, 0.87 H, *Z*-isomer), 1.92-1.62 (m, 5 H), 1.48-1.16 (m, 5 H). ¹³C NMR (101 MHz,

CDCl₃) δ 147.8, 143.5, 138.5, 128.7, 128.6, 123.9, 123.8, 109.5, 75.9, 40.8, 36.0, 29.8, 28.7, 25.3, 25.24, 25.20. IR (neat, cm⁻¹) 2930, 2854, 2228, 1522, 1449, 1346. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₇N₃O₃Na 310.1162; found 310.1165.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **4c** (73.8 mg, 0.20 mmol), and **2a** (216 µL, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5ca** (37.3 mg, 60%) (eluent: PE/EA = 80/1 to 65/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, $J_1 = 8.1$ Hz, $J_2 = 6.0$ Hz, 2 H, Ar-H), 7.46 (t, J = 8.4 Hz, 2 H, Ar-H), 5.27 (s, 2 H, CH₂), 3.05 (tt, $J_1 = 11.7$ Hz, $J_2 = 3.4$ Hz, 0.71 H, *E*-isomer) and 2.43 (tt, $J_1 = 11.6$ Hz, $J_2 = 3.5$ Hz, 0.30 H, *Z*-isomer), 1.90-1.73 (m, 4 H), 1.73-1.66 (m, 1 H), 1.47-1.26 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 140.2, 140.0, 138.0, 130.6 (C-F, q, ² $J_{C-F} = 32.1$ Hz), 129.3, 128.4, 128.3, 125.6 (q, ³J = 4.0 Hz), 124.0 (q, ¹J = 271.7 Hz), 113.4, 109.7, 76.5, 40.8, 35.9, 29.8, 29.7, 28.7, 25.29, 25.26, 25.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.48, -62.51. IR (neat, cm⁻¹) 2930, 2856, 2228, 1450, 1418, 1326, 1129. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₈F₃N₂O 311.1366; found 311.1369.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **4d** (75.9 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5da** (43.7 mg, 68%) (eluent: PE/EA = 100/1 to 80/1): yellow solid. mp. 68.4-70.5 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J*₁ = 8.4 Hz, *J*₂ = 6.2 Hz, 2 H, Ar-H), 7.22 (dd, *J*₁ = 8.5 Hz, *J*₂ = 7.1 Hz, 2 H, Ar-H), 5.16 (s, 2 H, CH₂), 3.02 (tt, *J*₁ = 11.7 Hz, *J*₂ = 3.5 Hz, 0.67 H, *E*-isomer) and 2.42 (tt, *J*₁ = 11.6 Hz, *J*₂ = 3.6 Hz, 0.31 H, *Z*-isomer), 1.91-1.63 (m, 5 H), 1.45-1.23 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 137.7, 135.2, 135.0, 131.8, 131.7, 130.2, 130.0, 122.7, 122.4, 113.5, 109.7,

77.3, 40.8, 35.9, 29.8, 29.7, 28.7, 25.32, 25.25, 25.2. IR (neat, cm⁻¹) 2930, 2854, 2227, 1488, 1449, 1404, 1361, 1009. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₈BrN₂O 321.0597; found 321.0594.

Following Typical Procedure 4, the reaction of MgCl₂ (4.0 mg, 0.04 mmol), **4e** (67.0 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5ea** (40.0 mg, 72%) (eluent: PE/EA = 100/1 to 50/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 2 H, Ar-H), 7.31-7.26 (m, 2 H, Ar-H), 5.18 (s, 2 H, CH₂), 3.02 (tt, *J*₁ = 11.6 Hz, *J*₂ = 3.5 Hz, 0.75 H, *E*-isomer) and 2.42 (tt, *J*₁ = 11.6 Hz, *J*₂ = 3.5 Hz, 0.27 H, *Z*-isomer), 1.89-1.65 (m, 5 H), 1.45-1.15 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 137.6, 134.6, 134.5, 134.4, 134.2, 129.9, 129.7, 128.8, 128.7, 113.5, 109.7, 77.3, 76.6, 40.8, 35.8, 29.8, 28.6, 25.30, 25.26, 25.23, 25.19. IR (neat, cm⁻¹) 2930, 2854, 2228, 1491, 1449, 1264, 1090, 1013. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₇ClN₂ONa 299.0922; found 299.0927.

Following Typical Procedure 4, the reaction of MgCl₂ (4.0 mg, 0.04 mmol), **4f** (63.5 mg, 0.20 mmol), and **2a** (216 µL, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5fa** (29.3 mg, 57%) (eluent: PE/EA = 100/1 to 70/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.22 (m, 2 H, Ar-H), 7.18 (dd, $J_1 = 8.0$ Hz, $J_2 = 6.4$ Hz, 2 H, Ar-H), 5.18 (s, 2 H, CH₂), 3.03 (tt, $J_1 = 11.8$ Hz, $J_2 = 3.4$ Hz, 0.53 H, *E*-isomer) and 2.42 (tt, $J_1 = 11.6$ Hz, $J_2 = 3.6$ Hz, 0.53 H, *Z*-isomer), 2.36 (d, J = 4.4 Hz, 3 H), 1.92-1.72 (m, 4 H), 1.71-1.65 (m, 1 H), 1.46-1.27 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 138.4, 138.1, 137.1, 133.2, 133.0, 129.3, 129.2, 128.6, 128.5, 113.7, 109.9, 78.1, 77.5, 40.8, 35.8, 29.9, 29.7, 28.7, 25.4, 25.32, 25.30, 25.2, 21.2. IR (neat, cm⁻¹) 2924, 2852, 2227, 1457, 1448, 1264, 1015. HRMS (ESI) m/z: [M+Na]⁺ Calcd for

C₁₆H₂₀N₂ONa 279.1468; found 279.1455.

Following Typical Procedure 4, the reaction of MgCl₂ (4.0 mg, 0.04 mmol), **4g** (68.4 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5ga** (34.1 mg, 60%) (eluent: PE): yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.27 (m, 5 H, Ar-H), 5.20 (s, 2 H, CH₂), 3.16-3.05 (m, 0.23 H, *E*-isomer) and 2.91 (tt, *J*₁ = 12.1 Hz, *J*₂ = 3.4 Hz, 0.75 H, *Z*-isomer), 1.82-1.56 (m, 6 H), 1.44-1.15 (m, 4 H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0 (C-F, q, ²*J*_{C-F} = 29.8Hz), 136.6, 135.1, 131.8, 128.7, 128.5, 128.3, 128.2, 127.9, 126.6, 121.2 (C-F, q, ¹*J*_{C-F} = 275.6 Hz), 77.5, 46.5, 36.7, 33.3, 27.8, 26.2, 26.0, 25.7, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.5. IR (neat, cm⁻¹) 2930, 2855, 1455, 1302, 1191. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₈F₃NONa 308.1233; found 308.1232.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **4h** (69.3 mg, 0.20 mmol), and **2a** (216 µL, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5ha** (32.3 mg, 56%) (eluent: PE/EA = 100/1 to 50/1 to 30/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.27 (m, 5 H, Ar-H), 5.23 (s, 1.1 H, CH₂, *Z*-isomer) and 5.10 (s, 0.8 H, CH₂, *E*-isomer), 4.35-4.23 (m, 2 H), 3.19-3.06 (m, 0.53 H, *Z*-isomer) and 2.45-2.33 (m, 0.39 H, *E*-isomer), 1.89-1.62 (m, 6 H), 1.34 (t, *J* = 7.1 Hz, 2 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 1.27-1.18 (m, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 163.7, 156.7, 156.6, 137.6, 137.0, 128.4, 127.98, 127.96, 128.0, 127.64, 127.57, 77.1, 76.0, 61.4, 61.2, 40.2, 36.8, 29.7, 28.1, 26.1, 25.8, 25.7, 14.2, 14.1. IR (neat, cm⁻¹) 2926, 2853, 1733, 1451, 1368, 1154, 1019. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₄NO₃ 290.1751; found 290.1745.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), 4i (47.2 mg, 0.20 mmol), and 2a (216 μ L, d = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded 5ia (18.3 mg, 51%) (eluent: PE/EA = 100/1 to 50/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.26 (qd, $J_1 = 7.1$ Hz, $J_2 = 1.9$ Hz, 2 H, CH₂), 3.01 (tt, $J_1 = 11.8$ Hz, $J_2 = 3.4$ Hz, 0.37 H, *E*-isomer), 2.43 (tt, $J_1 = 11.6$ Hz, $J_2 = 3.6$ Hz, 0.59 H, *Z*-isomer), 1.97-1.65 (m, 5 H), 1.48-1.34 (m, 2 H, CH₂), 1.34-1.19 (m, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 136.3, 113.9, 110.0, 72.0, 71.5, 40.7, 35.6, 29.9, 28.7, 25.4, 25.3, 14.4, 14.3. IR (neat, cm⁻¹) 2928, 2855, 2224, 1449, 1064. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₁₆N₂ONa 203.1155; found 203.1147.

Following Typical Procedure 4, the reaction of MgCl₂ (3.9 mg, 0.04 mmol), **4j** (59.0 mg, 0.20 mmol), and **2a** (216 μ L, *d* = 0.779 g/mL, 168.0 mg) in MeCN (0.5 mL) afforded **5ja** (25.2 mg, 53%) (eluent: PE/EA = 100/1 to 40/1): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.73 (d, *J* = 7.6 Hz, 2 H, CH₂), 4.24 (q, *J* = 7.2 Hz, 2 H, CH₂), 3.12 (tt, *J*₁ = 11.9 Hz, *J*₂ =3.5 Hz, 0.56 H, *E*-isomer) and 2.46 (tt, *J*₁ = 11.6 Hz, *J*₂ =3.6 Hz, 0.42 H, *Z*-isomer), 1.94-1.78 (m, 4 H), 1.76-1.65 (m, 1 H), 1.49-1.32 (m, 3 H), 1.32-1.21 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 168.5, 145.6, 138.7, 113.1, 109.4, 71.7, 71.4, 61.4, 61.2, 40.8, 36.1, 29.7, 28.6, 25.30, 25.25, 25.2, 14.1. IR (neat, cm⁻¹) 2932, 2856, 2229, 1759, 1449, 1266, 1210, 1027. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₁₈N₂O₃Na 261.1210; found 261.1204.

Mechanistic studies

1. The light on/off experiment

The light on/off experiments were conducted by monitoring the product formation using (E)-1-(2-(phenylsulfonyl)vinyl)-4-(trifluoromethyl)benzene (1g) as a substrate. The reaction was proceeded smoothly under irradiation of blue LED and ceased when the light was turned off, indicating that the light plays a crucial role for the transformation.

Table S1 The light on/off experiment

F ₃ C SO ₂ 1g 0.5 mmol	+ MgCl ₂ (20 mol%) Ph 2a Ar, rt, 3 d 5 mmol	F ₃ C 3ga, 49%
Time scale	Light on/off	Yield ^a /%
0-12 h	On	7
12-24 h	Off	8
24-36 h	On	30
36-48 h	Off	31
48-60 h	On	42
60-72 h	Off	42

^{*a*} All yields were based on crude ¹⁹F NMR.

2. The UV/Vis absorption spectra

The UV-Vis absorption spectra of MgCl₂, the sulfone **1a**, and MgCl₂/**1a** in MeCN were tested. While the MgCl₂ or **1a** solution barely absorb the light over 330 nm, the mixture of MgCl₂ and **1a** presented a weak absorption even the light wavelength reached 400 nm. These results indicated that the weak interaction between the unsaturated compound with chloride ion might be responsible and crucial to the photoinduced transformation. This is also consistent with the absorption of EDA complexes reported in the literature.¹⁰ It is reasonable to propose that the Cl radical was derived from photoinduced electron transfer of the electron donor–acceptor complex of sulfone/Cl⁻ when the sulfones were used.

3. Alkyl radical capture experiment

Treating **2a** with TEMPO under N₂, the radical captured product **2a**-TEMPO could be also detected by high resolution mass spectroscopy (HRMS) (ESI⁺, m/z: Calcd for $C_{15}H_{30}NO^{+}$ [M + H]⁺ 240.2322; found 240.2319.).

Treating **1a** and **2a** with TEMPO under N₂, the radical captured product **2a**-TEMPO could be also detected by high resolution mass spectroscopy (HRMS) (ESI⁺, m/z: Calcd for $C_{15}H_{30}NO^+$ [M + H]⁺ 240.2322; found 240.2320.), confirming that the cyclohexyl radical was generated via HAT process. The yield was determined by ¹H NMR with 1,3,5-trimethoxybenzene as the internal standard by comparison with standard spectra reported in the literature.¹¹

4. Chlorine radical capture experiment

To a 4 mL vial were added MgCl₂ (3.9 mg, 0.04 mmol), **1a** (63.9 mg, 0.20 mmol) and MeCN (0.5 mL) in an Ar glovebox. The reaction tube was transferred out of glovebox. Under irradiation at 390 nm LEDs, the resulting mixture was stirred for 72 hours at rt. Evaporation and flash chromatography on silica gel afforded **6** (5.6 mg, 32%) (eluent: PE). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 2 H, Ar-H), 7.38-7.28 (m, 6 H, Ar-H), 7.23-7.19 (m, 2 H, Ar-H), 6.60 (s, 1 H, CH=). NMR spectra are matching with the literature.¹²

To a Schlenk tube were added MgCl₂ (7.5 mg, 0.08 mmol), A 12 M HCl aqueous (33 µL), diisopropyl azodicarboxylate (DIAD) (79 µL, d = 1.027 g/mL, 81.1 mg, 0.4 mmol) and styrene (69 µL, d = 0.906 g/mL, 62.5 mg, 0.6 mmol) in MeCN (4.0 mL) in an Ar glovebox. The vial was then sealed and transferred out of glovebox. Under irradiation at 390 nm LEDs, the resulting mixture was stirred at rt for 24 hours. Filtered with silica gel, and the filtrate was evaporated to afford the crude product. The structure of compound 7 could be confirmed by HRMS. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₃ClN₂O₄Na 365.1236; found 365.1239.

5. KIE experiment

To a 4 mL reaction tube were added MgCl₂ (3.9 mg, 0.04 mmol), **1a** (64.5 mg, 0.20 mmol), MeCN (0.5 mL), **THF** (250 µL) and **THF-D**₈ (250 µL) in an Ar glovebox. The reaction tube was transferred out of glovebox. Under irradiation at 390 nm LEDs, the resulting mixture was stirred for 72 hours at rt. Evaporation and flash chromatography on silica gel afforded **3ai-HD** (32.4 mg, 63%) (eluent: PE). The KIE was determined to be $k_{\rm H}/k_{\rm D} = 1/1$ by the analysis of the ¹H NMR spectrum.

Synthetic potentials

To a dried Schlenk tube were added **3aa** (0.1330 g, 0.51 mmol), NaHCO₃ (0.0545 g, 0.65 mmol), and CH₂Cl₂ (3 mL) under N₂. Then a solution of 3-chloroperoxybenzoic acid (0.1219 g, 0.60 mmol, 85% purity) in CH₂Cl₂ (3 mL) was added dropwise over 10 minutes at 0 °C. The resulting mixture was then stirred for an additional 1 h and warmed to rt for 22 h. The reaction mixture is quenched with aqueous Na₂S₂O₄ (5 mL), and the aqueous phase is extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers are dried over Na₂SO₄. Evaporation and flash chromatography on silica gel afforded the product **8** (0.0751 g, 53%) (petroleum ether/ethyl acetate = 20/1 with 1% Et₃N): white solid. mp. 62.2-63.0 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.26 (m, 10 H, Ar-H), 3.13 (d, *J* = 9.2 Hz, 1 H, CH), 2.01-1.84 (m, 1 H), 1.73-1.58 (m, 4 H), 1.30-0.75 (m, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 137.9, 128.9, 128.2, 128.0, 127.72, 127.65, 127.4, 127.1, 70.8, 66.6, 36.9, 30.0, 28.5, 26.2, 25.2. IR (neat, cm⁻¹) 2925 2850, 1661, 1447. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃O 279.1743; found 279.1748.

To a dried Schlenk tube were added **3aa** (0.2905 g, 1.11 mmol), HOAc (5 mL), Iodine (0.2033 g, 0.8 mmol), and hypophosphorous acid (50% aq., 0.4 mL, 3.86 mmol) under N₂. The resulting mixture was heated at 120 °C for 24 h and then cooled to rt. The reaction mixture is quenched with H₂O (5 mL), and the aqueous phase is extracted with CH₂Cl₂ (5 mL × 3). The combined organic layers are dried over Na₂SO₄. Evaporation and flash chromatography on silica gel afforded the product **9** (0.2639 g, 90%) (petroleum ether): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.14 (m, 10 H, Ar-H), 4.08 (t, *J* = 8.0 Hz, 1 H, CH), 1.93 (dd, *J*₁ = 8.0, *J*₂ = 6.8 Hz, 2 H, CH₂), 1.831.73 (m, 2 H), 1.71-1.57 (m, 3 H), 1.24-1.09 (m, 4 H), 1.07-0.90 (m, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 128.3, 127.9, 125.9, 47.9, 43.6, 34.8, 33.4, 26.6, 26.1. IR (neat, cm⁻¹) 2920, 2849, 1599, 1493, 1448. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅ 265.1951; found 265.1943.

To a 4 mL vial were added **3fa** (0.0394 g, 0.15 mmol), indole (0.0117 g, 0.10 mmol), 'BuONa (0.0147 g, 0.15 mmol), Pd(OAc)₂ (0.0013 g, 0.005 mmol), DPPF (0.0034 g, 0.006 mmol), and toluene (0.5 mL) under N₂. The resulting mixture was heated at 120 °C for 48 h and then cooled to rt. Evaporation and flash chromatography on silica gel afforded the product **10** (0.0202 g, 45%, E/Z = 18:1) (petroleum ether): white solid. mp: 86.0-87.1 °C (DCM/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.4 Hz, 1 H, Ar-H), 7.56 (d, J = 8.4 Hz, 1 H, CH of indole), 7.51-7.41 (m, 4 H, Ar-H), 7.33 (d, J = 3.3 Hz, 1 H, Ar-H), 7.25-7.14 (m, 2 H, Ar-H), 6.68 (d, J = 3.2 Hz, 1 H, CH of indole), 6.41 (d, J = 16.1 Hz, 1 H, CH=), 6.24 (dd, $J_1 = 16.0$ Hz, $J_2 = 6.9$ Hz, 0.90 H, CH=, *E*-isomer) and 5.57 (dd, $J_1 = 11.6$ Hz, $J_2 = 10.3$ Hz, 0.04 H, CH=, *Z*-isomer), 2.71-2.59 (m, 0.05 H, *Z*-isomer) and 2.25-2.11 (m, 0.92 H, *E*-isomer), 1.89-1.61 (m, 5 H), 1.44-1.12 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 137.5, 136.4, 135.8, 129.7, 129.2, 127.9, 127.0, 126.3, 125.9, 124.3, 123.9, 122.3, 121.1, 120.3, 110.5, 103.4, 41.2, 32.9, 26.1, 26.0. IR (neat, cm⁻¹) 2921, 2848, 1604, 1518, 1474, 1456, 1333, 1233. The spectra are matching with the literature.¹³

To a 4 mL vial were added CuI (0.0009 g, 0.004 mmol), Fe(acac)₃ (0.0024 g, 0.008 mmol), K₂CO₃ (0.1112 g, 0.81 mmol), phenol (0.0374 g, 0.40 mmol), **3fa** (0.1587 g, 0.60 mmol), and DMF (0.8 mL) under N₂. The resulting mixture was heated at 135 °C

for 12 h and then cooled to rt. The resulting suspension was directly filtered through a pad of celite and filtrate was washed with DCM (10 mL) saturated NaCl (5 mL × 3) and dried over Na₂SO₄. Evaporation and flash chromatography on silica gel afforded the product **11** (0.0605 g, 54%, E/Z = 3/2) (petroleum ether): colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 3 H, Ar-H), 7.23 (d, J = 8.6 Hz, 1 H, Ar-H), 7.14-6.91 (m, 5 H, Ar-H), 6.32 (d, J = 15.9 Hz, 0.6 H, CH=, *E*-isomer) and 6.27 (d, J = 11.7 Hz, 0.4 H, CH=, *Z*-isomer), 6.10 (dd, $J_1 = 16.0$ Hz, $J_2 = 6.9$ Hz, 0.6 H, CH=, *E*-isomer) and 5.45 (dd, $J_1 = 11.7$ Hz, $J_2 = 10.1$ Hz, 0.4 H, CH=, *Z*-isomer), 2.67-2.48 (m, 0.4 H, Cy, *Z*-isomer) and 2.19-2.05 (m, 0.6 H, Cy, *E*-isomer), 1.87-1.62 (m, 5 H), 1.39-1.12 (m, 5 H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 157.1, 155.9, 155.8, 138.4, 136.1, 133.4, 133.0, 129.9, 129.7, 129.6, 127.2, 126.3, 126.0, 123.2, 123.0, 119.1, 118.9, 118.54, 118.46, 41.1, 36.9, 33.2, 33.0, 26.1, 26.02, 25.99, 25.7. IR (neat, cm⁻¹) 2923, 2851, 1487, 1447, 1307, 1240, 1147. The spectra are matching with the literature.¹³

References

- Noble, A.; MacMillan, D. W. C. Photoredox α-Vinylation of α-Amino Acids and N-Aryl Amines. J. Am. Chem. Soc. 2014, 136, 11602-11605.
- Guo, Y.-Q.; Wang, K.; Wang, R.; Song, H.; Liu, Y.; Wang, Q. Visible-Light-Induced Three-Component Intermolecular Trifluoromethyl-Alkenylation Reactions of Unactivated Alkenes. *Adv. Synth. Catal.* 2021, 363, 1651–1655.
- 3. Wang, X.; Yu, M.; Song, H.; Liu, Y.; Wang, Q. Radical Transformation of Alphatic C–H Bonds to Oxime Ethers *via* Hydrogen Atom Transfer. *Org. Lett.* **2021**, *23*, 8353-8358.
- 4. R, Pratap.; U, Kazmaier. Synthesis of 1-Stannylated and 1-Iodinated 1-Chloroalkenes as Versatile Synthetic Intermediates. *Synlett* **2010**, *20*, 3073-3077.
- 5. J, Norinder.; J, Bäckvall. Dynamic Processes in the Copper-Catalyzed Substitution of Chiral Allylic Acetates Leading to Loss of Chiral Information. *Chem. -Eur. J.* **2007**, *13*, 4094-4102.
- 6. Zhou, H.; Ge, L.; Song, J.; Jian, W.; Li, Y.; Li, C.; Bao, H. HOTf-Catalyzed Alkyl-Heck-type Reaction. *iscience* **2018**, *3*, 255-263.
- Kong, D.-L.; Cheng, L.; Wu, H.-R.; Li, Y.-X.; Wang, D.; Liu, L. A Metal-free Yne-addition/1,4-Aryl Migration/Decarboxylation Cascade Reaction of Alkynoates with C_{sp3}–H Centers. *Org. Biomol. Chem.*, 2016, *14*, 2210-2217.
- 8. Guo, Y.; Cao, Y.; Song, H.; Liu, Y.; Wang, Q. Photoredox Relay-Catalyzed gem-Difluoroallylation of Alkyl Iodides. *Chem. Commun.*, 2021, 57, 9768-9771.
- 9. Kosso, A. R. O.; Sellet, N.; Baralle, A.; Cormier, M.; Goddard, J.-P. Cyanine-based near Infrared Organic Photoredox Catalysis. *Chem. Sci.* 2021, *12*, 6964-6968.
- Kandukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.; Escudero-Adán, E. C.; Melchiorre, P. X-Ray Characterization of an Electron Donor-Acceptor Complex that Drives the Photochemical Alkylation of Indoles. *Angew. Chem., Int. Ed.* 2015, *54*, 1485-1489.
- Wei, D.; Li, X.; Shen, L.; Ding, Y.; Liang, K.; Xia, C. Phenolate Anion-Catalyzed Activation of Inert Alkyl Chlorides Driven by Visible Light. *Org. Chem. Front.* 2021, *8*, 6364-6370.
- Iakovenko, R.; Hlaváč, J. Visible Light-mediated Metal-free Double Bond Deuteration of Substituted Phenylalkenes. *Green Chem.* 2021, 23, 440-446.
- Wang, C.; Lei, Y.; Guo, M.; Shang, Q.; Liu, H.; Xu, Z.; Wang, R. Photoinduced, Copper-Promoted Regio- and Stereoselective Decarboxylative Alkylation of *alpha, beta*-Unsaturated Acids with Alkyl Iodides. *Org. Lett.* 2017, *19*, 6412-6415.

¹H NMR (400 MHz, CDCl₃) of **1b**

¹³C NMR (101 MHz, CDCl₃) of **1b**

 1 H NMR (400 MHz, CDCl₃) of **1c**

¹³C NMR (101 MHz, CDCl₃) of **1c**

 1 H NMR (400 MHz, CDCl₃) of **1d**

^{13}C NMR (101 MHz, CDCl₃) of 1d

 1 H NMR (400 MHz, CDCl₃) of **1**j

¹³C NMR (101 MHz, CDCl₃) of **1j**

¹H NMR (400 MHz, CDCl₃) of 1k

¹³C NMR (101 MHz, CDCl₃) of **1k**

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of 1k

1 H NMR (400 MHz, CDCl₃) of 1n

¹³C NMR (101 MHz, CDCl₃) of **1n**

3aa

¹H NMR (400 MHz, CDCl₃) of 3aa

¹³C NMR (101 MHz, CDCl₃) of **3aa**

¹H NMR (400 MHz, CDCl₃) of **3ab**

^{13}C NMR (101 MHz, CDCl₃) of **3ab**

¹H NMR (400 MHz, CDCl₃) of **3ac**

$^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of **3ac**

¹H NMR (400 MHz, CDCl₃) of 3ad

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **3ae**

¹³C NMR (101 MHz, CDCl₃) of **3ae**

¹³C NMR (101 MHz, CDCl₃) of **3af**

Ph Ph 3ag

 $^1\mathrm{H}$ NMR (400 MHz, CDCl_3) of 3ag

S46

¹H NMR (400 MHz, CDCl₃) of **3ai**

¹H NMR (400 MHz, CDCl₃) of **3ai-D**

¹H NMR (400 MHz, CDCl₃) of 3aj

¹H NMR (400 MHz, CDCl₃) of 3ak

¹H NMR (400 MHz, CDCl₃) of **3al**

3am

1

¹³C NMR (101 MHz, CDCl₃) of **3ba**

¹³C NMR (101 MHz, CDCl₃) of **3ca**

¹³C NMR (101 MHz, CDCl₃) of **3da**

S56

¹³C NMR (101 MHz, CDCl₃) of **3fa**

¹³C NMR (101 MHz, CDCl₃) of 3ga

¹H NMR (400 MHz, CDCl₃) of **3ha**

¹H NMR (400 MHz, CDCl₃) of 5aa

¹H NMR (400 MHz, CDCl₃) of **5ba**

¹³C NMR (101 MHz, CDCl₃) of **5ba**

¹H NMR (400 MHz, CDCl₃) of 5ca

¹⁹F NMR (376 MHz, CDCl₃) of 5ca

¹³C NMR (101 MHz, CDCl₃) of 5da

¹H NMR (400 MHz, CDCl₃) of 5ea

¹H NMR (400 MHz, CDCl₃) of **5fa**

¹³C NMR (101 MHz, CDCl₃) of **5fa**

CF₃ 5ga

¹H NMR (400 MHz, CDCl₃) of 5ga

¹³C NMR (101 MHz, CDCl₃) of 5ga

S67

¹H NMR (400 MHz, CDCl₃) of **5ha**

110 100 f1 (ppm)

90 80 70 60 50 40 30 20

10 0 -10 -20

220 210 200 190 180 170 160 150 140 130 120

¹H NMR (400 MHz, CDCl₃) of **5ia**

¹H NMR (400 MHz, CDCl₃) of 8

¹³C NMR (101 MHz, CDCl₃) of **8**

¹H NMR (400 MHz, CDCl₃) of 9

¹H NMR (400 MHz, CDCl₃) of **11**

