• Supplementary Information

Visible-light-mediated multi-component carbene transfer reactions of

a-diazoesters to construct multisubstituted pyrazoles and 1,3-

dicarbonyl derivatives

Hongyu Ding,^a Zhiwei Wang,^a Chengming Qu,^a Yufen Lv,^a Xiaohui Zhao,^b and Wei Wei,^{a,b*}

^a School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China

**E-mail: weiweiqfnu@163.com;*

^b Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, Xining 810008, China.

Table of Content

1. General information	
2.General procedure for the synthesis of multisubstituted p	yrazoles and 1,3-
dicarbonyl compounds	S3-S4
3. The addition of BHT in the model reaction system	S4
4. Characterization data of products 4a-4z'' , 6a-6k	S4-S18
5. Copies of NMR spectra for 4a-4z'', 6a-6k	S19-56

1.General information

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Bidepharm and Energy Chemical Company and used as received without further purification unless otherwise stated. ¹H NMR and ¹³C NMR were recorded in CDCl₃ on a Bruker Avance III spectrometer with TMS as internal standard (500 MHz ¹H, 125 MHz ¹³C or 400 MHz ¹H, 100 MHz ¹³C) at room temperature, the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh). There is 3.0 cm distance between the reactor and LEDs.

Picture of reaction setup

2. General procedure for the synthesis of multisubstituted pyrazoles and 1,3dicarbonyl derivatives.

To a mixture of α -diazoester 1 (0.2 mmol) and pyrazolone 2 (0.1 mmol) was added cyclic ether 3 (2 mL). The reaction mixture was stirred in air under the irradiation of 3W blue LED at room temperature for 4-6 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired multi-substituted pyrazole 4.

To a mixture of α -diazoester 1 (0.2 mmol),1,3-dicarbonyl compound 5 (0.1 mmol) was added cyclic ether 3 (2 mL). The reaction mixture was stirred in air under the irradiation of 3W blue LED at room temperature for 4 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired substituted 1,3-dicarbonyl derivative 6.

Experimental procedure for model reaction (2.5 mmol).

In a tube (25 mL), to a mixture of methyl phenyldiazoacetate 1a (5 mmol, 0.88 g)

and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one 2a (2.5 mmol, 0.435 g) was added THF 3a (8 mL). The reaction mixture was stirred in air under the irradiation of 3W blue LED at room temperature for 24 h. After completion of the reaction, the solution was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 4a in 70% yield (0.69 g).

3. The addition of BHT in the model reaction system.

To a mixture of methyl phenyldiazoacetate 1a (0.2 mmol, 35.2 mg) and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one 2a (0.1 mmol, 17.4 mg) and BHT (0.1 mmol, 22 mg) was added THF (AR, 2 mL). The reaction mixture was stirred in air under the irradiation of 3W blue LED at room temperature for 4 h. After completion of the reaction, the solution was concentrated in vacuum, the desired product 4a was isolated in 85% (33.5 mg) yield.

4. Characterization data of products 4a- 4z", 6a-6j

methyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-phenylace tate (4a). Compound 4a was obtained in 91% yield (36.3 mg) according to th e general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil.¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J = 7.9Hz, 2H), 7.43 - 7.42 (m, 2H), 7.39 - 7.33 (m, 5H), 7.21 (t, J = 7.4 Hz, 1H), 5.46 (s, 1H), 4.84 (s, 1H), 4.12 - 4.09 (m, 2H), 3.70 (s, 3H), 3.60 - 3.57 (m, 1H), 3.51 - 3.46 (m, 1H), 2.26 (s, 3H), 1.96 - 1.90 (m, 2H), 1.82 - 1.77 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 171.3, 154.9, 148.7, 138.9, 136.5, 128.8, 128.7, 128.6, 127.1, 125.7, 121.7, 86.3, 81.1, 71.8, 69.2, 52.2, 26.1, 25.9, 14.6; ESI HRMS: calculated for C₂₃H₂₇N₂O₄ [M+H]⁺ 395.1971, found 395.1995.

methyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-(4-methox yphenyl)acetate (4b). Compound 4b was obtained in 95% yield (40.2 mg) acc ording to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=4/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.28 - 7.26 (m, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.01 - 6.98 (m, 2H), 6.88 - 6.86 (m, 1H), 5.46 (s, 1H), 4.82 (s, 1H), 4.12 - 4.09 (m, 2H), 3.79 (s, 3H), 3.70 (s, 3H), 3.59 - 3.55 (m, 1H), 3.51 - 3.48 (m, 1H), 2.26 (s, 3H), 1.95 - 1.92 (m, 2H), 1.83 - 1.78 (m, 2H).¹ ³CNMR (125 MHz, CDCl₃) δ 171.2, 159.8, 154.9, 148.7, 138.9, 138.0, 129.6, 128.7, 125.7, 121.7, 119.5, 114.4, 112.5, 86.3, 81.0, 71.8, 69.2, 55.3, 52.3, 26. 1, 25.9, 14.6. ESI HRMS: calculated for C₂₄H₂₉N₂O₅ [M+H]⁺ 425.2076, found 425.2077.

methyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-(3-methox yphenyl)acetate (4c). Compound 4c was obtained in 84% yield (35.7 mg) acco rding to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.68 -7.66 (m, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.28 - 7.26 (m, 1H), 7.22 - 7.19 (m, 1H), 7.01 - 6.98 (m, 2H), 6.88 - 6.86 (m, 1H), 5.46 (s, 1H), 4.81 (s, 1H), 4.1 2 - 4.09 (m, 2H), 3.79 (s, 3H), 3.70 (s, 3H), 3.58 - 3.55 (m, 1H), 3.51 - 3.4 8 (m, 1H), 2.26 (s, 3H), 1.95 - 1.90 (m, 2H), 1.82 - 1.78 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 159.8, 154.9, 148.7, 138.9, 138.0, 129.7, 128.8, 1 25.7, 121.7, 119.5, 114.4, 112.5, 86.3, 81.0, 71.8, 69.2, 55.3, 52.3, 26.0, 25.9, 14.6. ESI HRMS: calculated for C₂₄H₂₉N₂O₅ [M+H]⁺ 425.2076, found 425.2085.

Methyl 2-(4-(tert-butyl)phenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)acetate (4d). Compound 4d was obtained in 90% yield (40.5 mg) according to the general procedure for 4h (eluent ratio for column chromatogra phy: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.7 0 (d, J = 8.5 Hz, 2H), 7.42 - 7.36 (m, 7H), 5.49 (s, 1H), 4.85 (s, 1H), 4.15 - 4.11 (m, 2H), 3.73 (s, 3H), 3.61 - 3.57 (m, 1H), 3.54 - 3.50 (m, 1H), 2.29 (s, 3H), 1.98 - 1.93 (m, 2H), 1.84 - 1.80 (m, 2H), 1.33 (s, 9H). ¹³C NMR (1 01 MHz, CDCl₃) δ 171.5, 154.9, 151.7, 148.7, 138.9, 133.4, 128.8, 126.9, 125. 7, 125.6, 121.7, 86.3, 80.9, 71.8, 69.1, 52.2, 34.6, 31.3, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₂₇H₃₅N₂O₄ [M+H]⁺ 451.2597, found 451.2597.

methyl 2-(3-fluorophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)b utoxy)acetate (4e). Compound 4e was obtained in 81% yield (33.4 mg) accord ing to the general procedure for 4h (eluent ratio for column chromatography: p etroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.34 - 7.29 (m, 1H), 7.23 - 7.15 (m, 3H), 7.04 - 7.00 (m, 1H), 5.47 (s, 1H), 4.83 (s, 1H), 4.13 - 4.10 (m, 2H), 3.71 (s, 3H), 3.62 - 3.58 (m, 1H), 3.51 - 3.47 (m, 1H), 2.26 (s, 3H), 1.95 -1.91 (m, 2H), 1.83 - 1.78 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 16 2.9(d, J = 245.3 Hz), 154.9, 148.7, 138.9 (d, J = 7.2 Hz), 138.9, 130.2 (d, J = 8.1 Hz), 128.8, 125.7, 122.7 (d, J = 3.0 Hz), 121.7, 115.6 (d, J = 21.0 Hz), 114.1(d, J = 22.4 Hz), 86.3, 80.4, 71.7, 69.4, 52.4, 26.0, 25.9, 14.6. ESI HR MS: calculated for C₂₃H₂₆FN₂O₄ [M+H]⁺ 413.1877, found 413.1879.

methyl 2-(2-fluorophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)b utoxy)acetate (4f). Compound 4f was obtained in 81% yield (33.4 mg) according to the general procedure for 4h (eluent ratio for column chromatography: p etroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 2H), 7.47 - 7.43 (m, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.34 - 7.30 (m, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 9.4 Hz, 1H), 5.45 (s, 1H), 5.20 (s, 1H), 4.11 - 4.08 (m, 2H), 3.72 (s, 3H), 3.66 - 3.62 (m, 1H), 3.53 - 3.48 (m, 1H), 2.26 (s, 3H), 1.93 - 1.89 (m, 2H), 1.81 - 1.77 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 160.4(d, J = 246.6 Hz), 1 54.9, 148.7, 138.9, 130.4 (d, J = 8.2 Hz), 128.7, 128.6 (d, J = 3.3 Hz) 125.7, 124.5 (d, J = 3.5 Hz), 124.0 (d, J = 14.1 Hz), 121.7, 115.6(d, J = 21.6 Hz), 86.3, 74.0 (d, J = 3.1 Hz), 71.7, 69.5, 52.4, 26.0, 25.8, 14.6. ESI HRMS: calc ulated for C₂₃H₂₆FN₂O₄ [M+H]⁺ 413.1877, found 413.1879.

methyl 2-(4-fluorophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)b utoxy)acetate (4g). Compound 4g was obtained in 78% yield (32.3 mg) accord ing to the general procedure for 4h (eluent ratio for column chromatography: p etroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.69 -7.67 (m, 2H), 7.41 - 7.36 (m, 4H), 7.21 (t, J = 7.4 Hz, 1H), 7.05 - 7.02 (m, 2H), 5.46 (s, 1H), 4.81 (s, 1H), 4.12 - 4.09 (m, 2H), 3.70 (s, 3H), 3.59 - 3.5 6 (m, 1H), 3.49 - 3.46 (m, 1H), 2.26 (s, 3H), 1.94 - 1.91 (m, 2H), 1.81 - 1.7 8 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 162.9 (d, J = 245.9 Hz), 1 54.9, 148.8, 138.8, 132.4 (d, J = 3.2 Hz), 128.9 (d, J = 8.2 Hz), 128.8, 125.7, 121.7, 115.6 (d, J = 21.5 Hz), 86.3, 80.3, 71.7, 69.3, 52.3, 26.1, 25.9, 14.6. E SI HRMS: calculated for C₂₃H₂₆FN₂O₄ [M+H]⁺ 413.1877, found 413.1879.

methyl 2-(2-chlorophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)b utoxy)acetate (4h). Compound 4h was obtained in 84% yield (36.1 mg) accor ding to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.8 Hz, 2H), 7.53 - 7.50 (m, 1H), 7.42 - 7.38 (m, 3H), 7.31 - 7.28 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 5.48 (s, 1H), 5.37 (s, 1H), 4.12 (t, J = 6.3Hz, 2H), 3.74 (s, 3H), 3.71 - 3.65 (m, 1H), 3.57 - 3.51 (m, 1H), 2.29 (s, 3H), 1.96 - 1.91 (m, 2H), 1.85 - 1.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 17 0.7, 154.9, 148.7, 138.9, 134.6, 133.7, 129.9, 129.6, 128.8, 128.7, 127.3, 125.7, 121.7, 86.3, 77.2, 71.7, 69.6, 52.4, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₂₃H₂₆ClN₂O₄ [M+H]⁺ 429.1581, found 429.1589.

methyl 2-(3-chlorophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)b utoxy)acetate (4i). Compound 4i was obtained in 59% yield (25.3 mg) accordi ng to the general procedure for 4h (eluent ratio for column chromatography: p etroleum ether/EtOAc=4/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.46 (s, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.32 - 7.29 (m, 4H), 5.49 (s, 1H), 4.83 (s, 1H), 4.15 - 4.12 (m, 2H), 3.74 (s, 3H), 3.65 - 3.59 (m, 1H), 3.54 - 3.48 (m, 1H), 2.29 (s, 3H), 1.98 - 1.95 (m, 2H), 1.85 - 1.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 154.9, 148.8, 138.9, 138.5, 134.6, 129.9, 128.9, 128.8, 127.2, 125.7, 125.2, 121.7, 86.3, 80.4, 71.7, 69.5, 52.4, 26.1 , 25.9, 14.6. ESI HRMS: calculated for C₂₃H₂₆ClN₂O₄ [M+H]⁺ 429.1581, found 429.1592.

methyl 2-(4-bromophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) butoxy)acetate (4j). Compound 4j was obtained in 88% yield (41.6 mg) accor ding to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.68 -7.67 (m, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.38 (t, J = 7.9 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 5.46 (s, 1H), 4.79 (s, 1H), 4.12 - 4. 09 (m, 2H), 3.70 (s, 3H), 3.61 - 3.57 (m, 1H), 3.49 - 3.45 (m, 1H), 2.26 (s, 3H), 1.94 - 1.90 (m, 2H), 1.82 - 1.78 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 154.9, 148.7, 138.9, 135.6, 131.8, 128.8, 125.7, 122.8, 121.7, 86.3, 80.4 , 71.7, 69.4, 52.4, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₂₃H₂₆BrN₂O₄ [M+H]⁺ 473.1076, found 473.1071.

Ethyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-(4-(trifluor omethyl)phenyl)acetate (4k). Compound **4k** was obtained in 87% yield (40.2 mg) according to the general procedure for 4h (eluent ratio for column chroma tography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2 H), 7.40 (t, J = 7.7 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 5.49 (s, 1H), 4.90 (s, 1H), 4.22 - 4.13 (m, 4H), 3.69 - 3.64 (m, 1H), 3.55 - 3.50 (m, 1H), 2.29 (s, 3H), 2.01 - 1.94 (m, 2H), 1.88 - 1.81 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 154.9, 148.8, 140.5, 138.8, 130.8 (d, J = 37.6 Hz), 128.8, 127.3, 125.7, 125.5 (q, J = 3.8 Hz), 121.7, 86.3, 80.5, 71.7, 6 9.5, 61.5, 26.1, 25.9, 14.6, 14.1. ESI HRMS: calculated for C₂₅H₂₈F₃N₂O₄ [M+ H]⁺ 477.2001, found 477.1996.

ethyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-(4-nitrophe nyl)acetate (4l). Compound 4l was obtained in 58% yield (26.1 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petrol eum ether/EtOAc=4/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 5.49 (s, 1H), 4.94 (s, 1H), 4.22 - 4.14 (m, 4H), 3.72 - 3.67 (m, 1H), 3.57 - 3.52 (m, 1H), 2.29 (s, 3H), 2.00 - 1.95 (m, 2H), 1.89 - 1.84 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 169.8, 154.8, 148.8, 148.0, 143.6, 138.9, 128.8, 127.7, 125.7, 123.7, 121.7, 86.3, 80.2, 71.7, 69.8, 61.8, 26.1, 25.9, 14.6, 14.1. ESI HRMS: c alculated for C₂₄H₂₈N₃O₆ [M+H]⁺ 454.1978, found 454.1997.

methyl 3-(1-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-methox y-2-oxoethyl)benzoate (4m). Compound 4m was obtained in 48% yield (22.2 mg) according to the general procedure for 4h (eluent ratio for column chroma tography: petroleum ether/EtOAc=4/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 2H), 7.68 - 7.67 (m, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.3 8 (t, J = 7.9 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 5.46 (s, 1H), 4.89 (s, 1H), 4.1 3 - 4.10 (m, 2H), 3.91 (s, 3H), 3.70 (s, 3H), 3.64 - 3.60 (m, 1H), 3.51 - 3.4 7 (m, 1H), 2.26 (s, 3H), 1.96 - 1.91 (m, 2H), 1.84 - 1.80 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 166.7, 154.9, 148.7, 141.4, 138.8, 130.5, 129.9, 1 28.8, 127.0, 125.7, 121.7, 86.3, 80.7, 71.7, 69.5, 52.4, 52.2, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₂₅H₂₉N₂O₆ [M+H]⁺ 453.2026, found 453.2024.

methyl 2-(4-cyanophenyl)-2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)b utoxy)acetate (4n). Compound 4n was obtained in 56% yield (23.3 mg) accor ding to the general procedure for 6h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.68 -7.63 (m, 4H), 7.55 (d, J = 8.5 Hz, 2H), 7.38 (t, J = 7.9 Hz, 2H), 7.22 (t, J =7.4 Hz, 1H), 5.47 (s, 1H), 4.88 (s, 1H), 4.12 (t, J = 6.3 Hz, 2H), 3.71 (s, 3H), 3.66 - 3.62 (m, 1H), 3.52 - 3.48 (m, 1H), 2.27 (s, 3H), 1.97 - 1.92 (m, 2H), 1.85 - 1.81 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 154.8, 148.8, 141.6, 138.8, 132.4, 128.8, 127.6, 125.8, 121.7, 118.5, 112.6, 86.3, 80.3, 71.6, 69.8, 52.6, 26.1, 25.8, 14.6. ESI HRMS: calculated for C₂₄H₂₆N₃O₄ [M+H]⁺ 42 0.1923, found 420.1928.

methyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-(naphthal en-1-yl)acetate (40). Compound 40 was obtained in 59% yield (26.8 mg) accor ding to the general procedure for 6h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (

d, J = 8.2 Hz, 1H), 7.85 (t, J = 9.4 Hz, 2H), 7.66 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 7.0 Hz, 1H), 7.52 - 7.44 (m, 3H), 7.36 (t, J = 7.9 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 5.45 (s, 1H), 5.38 (s, 1H), 4.06 - 4.01 (m, 2H), 3.68 - 3.64 (m, 4H), 3.53 - 3.49 (m, 1H), 2.25 (s, 3H), 1.93 - 1.87 (m, 2H), 1.82 - 1.75 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 154.9, 148.7, 138.9, 134.0, 13 2.4, 131.0, 129.5, 128.7, 126.7, 126.6, 126.0, 125.7, 125.3, 124.1, 121.7, 86.3, 79.8, 71.7, 69.2, 52.3, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₂₇H₂₉N₂O₄ [M+H]⁺ 445.2127, found 445.2126.

ethyl 2-(1,3-dihydrobenzo[c][1,2,5]thiadiazol-5-yl)-2-(4-(5-hydroxy-3-methyl-1-p henyl-1H-pyrazol-4-yl)butoxy)acetate (4p). Compound 4p was obtained in 69% yield (32.5 mg) according to the general procedure for 4h (eluent ratio for col umn chromatography: petroleum ether/EtOAc=4/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 0.5 Hz, 1H), 7.99 (d, J = 9.1 Hz, 1H), 7.72 - 7.6 7 (m, 3H), 7.40 - 7.36 (m, 2H), 7.21 (t, J = 7.4 Hz, 1H), 5.47 (s, 1H), 5.00 (s, 1H), 4.24 - 4.16 (m, 2H), 4.14 - 4.12 (m, 2H), 3.71 - 3.67 (m, 1H), 3.59 - 3.54 (m, 1H), 2.26 (s, 3H), 2.00 - 1.95 (m, 2H), 1.88 - 1.82 (m, 2H), 1.24 - 1.21 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 154.8, 154.8, 154.6, 14 8.7, 138.8, 138.4, 128.7, 128.3, 125.7, 121.7, 119.9, 86.3, 80.7, 71.7, 69.6, 61. 6, 26.1, 25.9, 14.6, 14.1. ESI HRMS: calculated for C₂₄H₂₇N₄O₄S [M+H]⁺ 467. 1753, found 467.1748.

isopropyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-phenyl acetate (4q). Compound 4q was obtained in 85% yield (35.9 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleu m ether/EtOAc=6/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.2 Hz, 2H), 7.36 - 7.28 (m, 6H), 7.25 (s, 1H), 7.13 (t, J = 7.3 Hz, 1H), 5.3 8 (s, 1H), 4.97 - 4.94 (m, 1H), 4.72 (s, 1H), 4.04 (t, J = 6.1 Hz, 2H), 3.53 - 3.51 (m, 1H), 3.45 - 3.42 (m, 1H), 2.19 (s, 3H), 1.89 - 1.85 (m, 2H), 1.74 - 1.71 (m, 2H), 1.16 - 1.15 (m, 3H), 1.04 - 1.03 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 154.9, 148.7, 138.9, 136.7, 128.8, 128.5, 127.0, 125.7, 121.7, 86.3, 81.2, 71.8, 69.1, 68.8, 26.1, 26.0, 21.8, 21.5, 14.6. ESI HRMS: calculate d for C₂₅H₃₁N₂O₄ [M+H]⁺ 423.2284, found 423.2289.

isopentyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-phenyla cetate (4r). Compound 4r was obtained in 74% yield (33.1 mg) according to t he general procedure for 4h (eluent ratio for column chromatography: petroleu m ether/EtOAc=7/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.36 - 7.27 (m, 6H), 7.25 - 7.23 (m, 1H), 7.13 (t, J = 7.1 Hz, 1H), 5.38 (s, 1H), 4.75 (s, 1H), 4.07 - 4.02 (m, 4H), 3.55 - 3.50 (m, 1H), 3.4 4 - 3.39 (m, 1H), 2.19 (s, 3H), 1.88 - 1.83 (m, 2H), 1.76 - 1.71 (m, 2H), 1.5 0 - 1.43 (m, 1H), 1.40 - 1.35 (m, 2H), 0.78 - 0.74 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 154.9, 148.7, 138.9, 136.7, 128.8, 128.6, 128.6, 127.1, 125.7, 121.7, 86.3, 81.2, 71.8, 69.1, 63.9, 37.2, 26.1, 25.9, 25.0, 22.4, 22.3, 14.6 . ESI HRMS: calculated for C₂₇H₃₅N₂O₄ [M+H]⁺ 451.2597, found 451.2596.

allyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-phenylacetat e (4s). Compound 4s was obtained in 90% yield (37.9 mg) according to the g eneral procedure for 4h (eluent ratio for column chromatography: petroleum eth er/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 H z, 2H), 7.47 - 7.46 (m, 2H), 7.42 - 7.37 (m, 5H), 7.24 (t, J = 7.4 Hz, 1H), 5.9 1 - 5.81 (m, 1H), 5.49 (s, 1H), 5.23 - 5.18 (m, 2H), 4.89 (s, 1H), 4.64 - 4.6 2 (m, 2H), 4.15 - 4.12 (m, 2H), 3.64 - 3.61 (m, 1H), 3.55 - 3.50 (m, 1H), 2. 29 (s, 3H), 1.99 - 1.93 (m, 2H), 1.86 - 1.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 154.9, 148.7, 138.9, 136.5, 131.6, 128.8, 128.7, 128.6, 127.2, 125.7, 121.7, 118.4, 86.3, 81.1, 71.8, 69.2, 65.6, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₂₅H₂₉N₂O₄ [M+H]⁺ 421.2127, found 421.2129.

benzyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-phenylace tate (4t). Compound 4t was obtained in 82% yield (38.6 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleum et her/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.1Hz, 2H), 7.46 - 7.31 (m, 10H), 7.25 - 7.22 (m, 3H), 5.48 (s, 1H), 5.17 (q, J= 11.0 Hz, 2H), 4.92 (s, 1H), 4.12 (t, J = 6.2 Hz, 2H), 3.65 - 3.59 (m, 1H), 3.55 - 3.50 (m, 1H), 2.30 (s, 3H), 1.97 - 1.92 (m, 2H), 1.85 - 1.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 154.9, 148.7, 138.9, 136.5, 135.5, 128.8, 128.7, 128.6, 128.5, 128.3, 128.0, 127.2, 125.7, 121.7, 86.3, 81.1, 71.8, 69.2, 6 6.8, 26.1, 25.9, 14.6. ESI HRMS: calculated for $C_{29}H_{31}N_2O_4$ [M+H]⁺ 471.2284, found 471.2292.

phenethyl 2-(4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)butoxy)-2-phenyl acetate (4u). Compound 4u was obtained in 92% yield (49.5 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleu m ether/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.43 - 7.36 (m, 8H), 7.26 - 7.24 (m, 3H), 7.11 - 7.10 (m, 2H), 5.49 (s, 1H), 4.83 (s, 1H), 4.39 - 4.34 (m, 2H), 4.13 (t, J = 5.9 Hz, 2H), 3.5 8 - 3.54 (m, 1H), 3.50 - 3.45 (m, 1H), 2.90 (t, J = 6.6 Hz, 2H), 2.30 (s, 3H), 1.96 - 1.91 (m, 2H), 1.84 - 1.79 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 1 70.8, 154.9, 148.7, 138.9, 137.5, 136.5, 128.9, 128.8, 128.6, 128.6, 128.5, 127. 1, 126.6, 125.7, 121.7, 86.3, 81.1, 71.8, 69.1, 65.5, 34.9, 26.1, 25.9, 14.6. ESI HRMS: calculated for C₃₀H₃₃N₂O₄ [M+H]⁺ 485.2440, found 485.2443.

methyl 2-(4-(1-(4-chlorophenyl)-5-hydroxy-3-methyl-1H-pyrazol-4-yl)butoxy)-2phenylacetate(4v). Compound 4v was obtained in 86% yield (36.6 mg) according to the general procedure for 4h (eluent ratio for column chromatography: p etroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 - 7.66 (m, 2H), 7.46 - 7.44 (m, 2H), 7.38 - 7.35 (m, 5H), 5.48 (s, 1H), 4.87 (s, 1H), 4.13 (t, J = 6.2 Hz, 2H), 3.73 (s, 3H), 3.64 - 3.59 (m, 1H), 3.54 - 3.49 (m, 1H), 2.27 (s, 3H), 1.98 - 1.93 (m, 2H), 1.85 - 1.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 154.9, 149.1, 137.5, 136.5, 131.0, 128.8, 128.8, 12 8.7, 127.1, 122.6, 86.5, 81.1, 71.9, 69.2, 52.3, 26.1, 25.9, 14.6. ESI HRMS: ca lculated for C₂₃H₂₆ClN₂O₄ [M+H]⁺ 429.1581, found 429.1583.

methyl 2-(4-(1-(3-chlorophenyl)-5-hydroxy-3-methyl-1H-pyrazol-4-yl)butoxy)-2phenylacetate(4w). Compound 4w was obtained in 96% yield (41.0 mg) accor ding to the general procedure for 6h (eluent ratio for column chromatography: petroleum ether/EtOAc=5/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (t, J = 2.0 Hz, 1H), 7.63 - 7.61 (m, 1H), 7.44 - 7.42 (m, 2H), 7.37 - 7.33 (m, 3H), 7.29 (t, J = 8.1 Hz, 1H), 7.18 - 7.16 (m, 1H), 5.45 (s, 1H), 4.86 (s, 1H), 4.14 - 4.11 (m, 2H), 3.70 (s, 3H), 3.63 - 3.58 (m, 1H), 3.53 - 3.48 (m, 1H), 2.25 (s, 3H), 1.97 - 1.93 (m, 2H), 1.84 - 1.80 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 155.1, 149.3, 139.9, 136.5, 134.4, 129.8, 128.7, 128.6, 127.1, 125.5, 121.5, 119.2, 86.7, 81.1, 72.0, 69.2, 52.2, 26.0, 25.9, 14.6. ESI HRMS: calculated for C₂₃H₂₆ClN₂O₄ [M+H]⁺ 429.1581, found 429.1589.

methyl 2-(4-(1-(2-chlorophenyl)-5-hydroxy-3-methyl-1H-pyrazol-4-yl)butoxy)-2phenylacetate(4x). Compound 4x was obtained in 73% yield (31.3 mg) according to the general procedure for 6h (eluent ratio for column chromatography: p etroleum ether/EtOAc=4/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 - 7.45 (m, 1H), 7.41 - 7.40 (m, 3H), 7.36 - 7.31 (m, 5H), 5.44 (s, 1H), 4.81 (s, 1H), 4.08 - 4.05 (m, 2H), 3.69 (s, 3H), 3.53 - 3.50 (m, 1H), 3.44 - 3.40 (m, 1H), 2.27 (s, 3H), 1.84 - 1.80 (m, 2H), 1.72 - 1.69 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 155.8, 149.4, 136.5, 136.0, 132.2, 130.0, 129.7, 129.6, 128.7, 128.6, 127.3, 127.1, 85.0, 81.0, 71.7, 69.2, 52.2, 25.9, 25.8, 14.7. ESI HRMS: calculated for $C_{23}H_{26}ClN_2O_4$ [M+H]⁺ 429.1581, found 429.1615.

methyl 2-(4-(5-hydroxy-1,3-dimethyl-1H-pyrazol-4-yl)butoxy)-2-phenylacetate(4 y). Compound 4y was obtained in 84% yield (27.8 mg) according to the gener al procedure for 4h (eluent ratio for column chromatography: petroleum ether/E tOAc=2/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 - 7.43 (m, 2H), 7. 38 - 7.34 (m, 3H), 5.27 (s, 1H), 4.87 (s, 1H), 4.03 - 4.00 (m, 2H), 3.71 (s, 3 H), 3.62 - 3.58 (m, 1H), 3.54 (s, 3H), 3.52 - 3.48 (m, 1H), 2.17 (s, 3H), 1.91 - 1.87 (m, 2H), 1.82 - 1.79 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 1 54.8, 136.5, 128.7, 128.7, 127.1, 84.3, 81.1, 71.2, 69.3, 52.3, 33.2, 26.0, 25.9, 14.4. ESI HRMS: calculated for $C_{18}H_{25}N_2O_4$ [M+H]⁺ 333.1814, found 33 3.1803.

methyl 2-(4-(5-hydroxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)butoxy)-2phenylacetate (4z). Compound 4z was obtained in 92% yield (41.1 mg) accord ing to the general procedure for 6h (eluent ratio for column chromatography: p etroleum ether/EtOAc=7/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.69 - 7.67 (m, 2H), 7.45 - 7.40 (m, 4H), 7.37 - 7.32 (m, 4H), 5.91 (s, 1H), 4.84 (s, 1H), 4.21 - 4.17 (m, 2H), 3.70 (s, 3H), 3.61 - 3.57 (m, 1H), 3.51 - 3.47 (m, 1H), 1.98 - 1.94 (m, 2H), 1.82 - 1.78 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 154.8, 141.8 (d, J = 38.2 Hz), 137.9, 136.4, 129.0, 128.8, 128.7, 127. 4, 127.1, 122.7, 84.6, 81.1, 72.5, 69.1, 52.3, 29.7, 25.9. ESI HRMS: calculated for C₂₃H₂₄F₃N₂O₄ [M+H]⁺ 449.1688, found 449.1652.

methyl (E)-2-((4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-yl)o xy)-2-phenylacetate (4z'). Compound 4z' was obtained in 41% yield (16.1 m g) according to the general procedure for 4h (eluent ratio for column chromato graphy: petroleum ether/EtOAc=6/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.67 - 7.66 (m, 2H), 7.43 - 7.39 (m, 4H), 7.37 - 7.35 (m, 3H), 7.23 (t, J =7.4 Hz, 1H), 5.89 - 5.84 (m, 2H), 5.45 (s, 1H), 4.90 (s, 1H), 4.66 - 4.63 (m, 2H), 4.19 - 4.16 (m, 1H), 4.13 - 4.09 (m, 1H), 3.70 (s, 3H), 2.26 (s, 3H). ¹³ C NMR (125 MHz, CDCl₃) δ 171.0, 154.4, 148.7, 138.7, 136.0, 129.4, 128.9, 128.8, 128.8, 127.9, 127.3, 125.9, 121.9, 86.8, 80.3, 67.9, 65.1, 52.4, 14.6. ESI HRMS: calculated for C₂₃H₂₅N₂O₄ [M+H]⁺ 393.1814, found 393.1824.

methyl 2-((5-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)pentyl)oxy)-2-phen ylacetate(4z"). Compound 4z" was obtained in 23% yield (18.0 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petrol eum ether/EtOAc=4/1). Yellow oil. ¹H NMR (500 MHz, CDC13) δ 7.69 - 7.67 (m, 2H), 7.44 - 7.43 (m, 2H), 7.38 - 7.37 (m, 2H), 7.35 - 7.32 (m, 3H), 7.22 - 7.19 (m, 1H), 5.46 (s, 1H), 4.85 (s, 1H), 4.06 (t, J = 6.5 Hz, 2H), 3.70 (s, 3H), 3.57 - 3.52 (m, 1H), 3.46 - 3.42 (m, 1H), 2.27 (s, 3H), 1.85 - 1.79 (m, 2H), 1.73 - 1.68 (m, 2H), 1.58 - 1.53 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 154.9, 148.7, 138.9, 136.6, 128.7, 128.7, 128.6, 127.1, 125.7, 121.7, 8 6.3, 81.1, 71.9, 69.6, 52.2, 29.2, 28.7, 22.6, 14.6. ESI HRMS: calculated for C $_{24}H_{29}N_2O_4$ [M+H]⁺ 409.2127, found 409.2121.

(Z)-methyl2-(1-hydroxyethylidene)-6-(2-methoxy-2-oxo-1-

phenylethoxy)hexanoate (6a), Compound 6a was obtained in 71% yield (23.8 mg) according to the general procedure for 4h (eluent ratio for column chromatography:

petroleum ether/EtOAc=8/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.43 (m, 2H), 7.38 – 7.33 (m, 3H), 4.99 (s, 1H), 4.87 (s, 1H), 3.79 – 3.76 (m, 2H), 3.71 (s, 3H), 3.67 (s, 3H), 3.60 – 3.56 (m, 1H), 3.50 – 3.46 (m, 1H), 2.27 (s, 3H), 1.85 – 1.80 (m, 2H), 1.79 – 1.75 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 171.4, 168.5, 136.5, 128.7, 128.6, 127.1, 90.7, 81.1, 69.3, 67.8, 52.3, 50.7, 26.2, 25.5, 19.1. ESI HRMS: calculated for C₁₈H₂₅O₆ [M+H]⁺ 377.1651, found 377.1657.

(Z)-isopropyl 2-(1-hydroxyethylidene)-6-(2-methoxy-2-oxo-1-phenylethoxy)hexa noate (6b), Compound 6b was obtained in 83% yield (30.3 mg) according to t he general procedure for 4h (eluent ratio for column chromatography: petroleu m ether/EtOAc=8/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.44 (m, 2H), 7.37 – 7.33 (m, 3H), 5.05 – 5.00 (m, 1H), 4.95 (s, 1H), 4.87 (s, 1H), 3.78 – 3.75 (m, 2H), 3.71 (s, 3H), 3.60 – 3.57 (m, 1H), 3.50 – 3.47 (m, 1H), 2.27 (s, 3H), 1.84 – 1.80 (m, 2H), 1.78 – 1.74 (m, 2H), 1.25 (s, 3H), 1.24 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 171.4, 167.6, 136.5, 128.7, 128.6, 127.1, 91.7, 81.1, 69.3, 67.7, 66.2, 52.3, 26.2, 25.5, 22.1, 19.1. ESI HRMS: ca lculated for C₂₀H₂₉O₆ [M+H]⁺ 365.1964, found 365.1969.

(Z)-benzyl 2-(1-hydroxyethylidene)-6-(2-methoxy-2-oxo-1-phenylethoxy)hexano ate (6c), Compound 6c was obtained in 70% yield (28.9 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleum et her/EtOAc=8/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.43 (m, 2 H), 7.37 – 7.29 (m, 8H), 5.12 (s, 2H), 5.05 (s, 1H), 4.86 (s, 1H), 3.79 – 3.75 (m, 2H), 3.70 (s, 3H), 3.59 – 3.55 (m, 1H), 3.49 – 3.45 (m, 1H), 2.29 (s, 3H), 1.84 – 1.80 (m, 2H), 1.78 – 1.74 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 1 73.0, 171.4, 167.8, 136.8, 136.5, 128.7, 128.6, 128.5, 128.2, 128.0, 127.1, 90.9, 81.1, 69.3, 67.9, 65.3, 52.3, 26.1, 25.5, 19.2. ESI HRMS: calculated for C₂₄H₂₉ O₆ [M+H]⁺ 413.1964, found 413.1971.

(Z)-allyl 2-(1-hydroxyethylidene)-6-(2-methoxy-2-oxo-1-phenylethoxy)hexanoate (6d), Compound 6d was obtained in 89% yield (32.1 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=8/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.43 (m, 2H), 7.38 – 7.33 (m, 3H), 5.99 – 5.91 (m, 1H), 5.34 – 5.30 (m, 1H), 5.23 – 5.21 (m, 1H), 5.02 (s, 1H), 4.87 (s, 1H), 4.59 (d, J = 5.7 Hz, 2H), 3.80 – 3.76 (m, 2H), 3.71 (s, 3H), 3.60 – 3.56 (m, 1H), 3.50 – 3.46 (m, 1H), 2.28 (s, 3H), 1.84 – 1.75 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 171.4, 167.6, 136.5, 133.0, 128.7, 128.6, 127.1, 117.6, 90.8, 81.1, 69.3, 67.9, 64.2, 52.3, 26.2, 25.5, 19.1. ESI HRMS: calculated for C₂₀H₂₇O₆ [M+H]⁺ 363.1808, found 363.1813.

(Z)-tert-butyl 2-(1-hydroxyethylidene)-6-(2-methoxy-2-oxo-1-phenylethoxy)hexa noate (6e), Compound 6e was obtained in 47% yield (17.7 mg) according to t he general procedure for 4h (eluent ratio for column chromatography: petroleu m ether/EtOAc=10/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.43 (m, 2H), 7.37 – 7.33 (m, 3H), 4.91 (s, 1H), 4.87 (s, 1H), 3.76 – 3.73 (m, 2H), 3.71 (s, 3H), 3.58 – 3.56 (m, 1H), 3.48 – 3.45 (m, 1H), 2.23 (s, 3H), 1.82 – 1.74 (m, 4H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 171.3, 1 67.6, 136.5, 128.7, 128.6, 127.1, 92.9, 81.1, 79.0, 69.3, 67.6, 52.3, 28.4, 26.2, 25.5, 18.9. ESI HRMS: calculated for C₂₁H₃₁O₆ [M+H]⁺ 379.2121, found 379.2 128.

(Z)-ethyl 2-(hydroxy(phenyl)methylene)-6-(2-methoxy-2-oxo-1-phenylethoxy)he xanoate (6f), Compound 6f was obtained in 87% yield (35.8 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleu m ether/EtOAc=8/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.50 (m, 2H), 7.43 – 7.41 (m, 3H), 7.39 – 7.36 (m, 3H), 7.35 – 7.33 (m, 2H), 5.52 (s, 1H), 4.87 (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 4.01 – 3.98 (m, 2H), 3.69 (s, 3H), 3.60 – 3.57 (m, 1H), 3.51 – 3.48 (m, 1H), 1.87 – 1.82 (m, 4H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 167.8, 165.3, 136.6, 135.3, 130.2, 128.6, 128.6, 128.6, 127.4, 127.1, 100.7, 81.0, 72.6, 69.4, 59.7, 5 2.2, 26.8, 26.0, 14.4. ESI HRMS: calculated for C₂₄H₂₉O₆ [M+H]⁺ 413.1964, f ound 413.1967.

(Z)-ethyl 2-(hydroxy(phenyl)methylene)-7-(2-methoxy-2-oxo-1-phenylethoxy)he ptanoate (6g), Compound 6g was obtained in 53% yield (22.6 mg) according t o the general procedure for 4h (eluent ratio for column chromatography: petrol

eum ether/EtOAc=8/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.44 – 7.41 (m, 3H), 7.40 – 7.36 (m, 3H), 7.35 – 7.33 (m, 2H), 5.5 3 (s, 1H), 4.86 (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.96 (t, J = 6.6 Hz, 2H), 3.70 (s, 3H), 3.56 – 3.53 (m, 1H), 3.46 – 3.43 (m, 1H), 1.78 – 1.74 (m, 2H), 1.72 – 1.68 (m, 2H), 1.54 – 1.50 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NM R (125 MHz, CDCl₃) δ 171.5, 167.8, 165.4, 136.7, 135.3, 130.2, 128.6, 128.6, 128.6, 127.4, 127.1, 100.6, 81.1, 72.8, 69.7, 59.7, 52.2, 29.8, 29.3, 22.4, 14.4. ESI HRMS: calculated for C₂₅H₃₁O₆ [M+H]⁺ 427.2121, found 427.2128.

methyl (Z)-2-((5-acetyl-6-hydroxyhept-5-en-1-yl)oxy)-2-phenylacetate (6h), Compound 6h was obtained in 95% yield (30.3 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=4/1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.35 (m, 3H), 5.44 (s, 1H), 4.87 (s, 1H), 3.83 – 3.78 (m, 2H), 3.71 (s, 3H), 3.61 – 3.58 (m, 1H), 3.51 – 3.48 (m, 1H), 2.26 (s, 3H), 2.14 (s, 3H), 1.86 – 1.82 (m, 2H), 1.80 – 1.76 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 172.2, 171.4, 136.5, 128.7, 128.6, 127.1, 99.8, 81.1, 69.3, 67.8, 52.2, 31.9, 26.1, 25.6, 19.8. ESI HRMS: calculated for C₁₈H₂₅O₅ [M+H]⁺ 321.1702, found 321.1709.

methyl 2-(4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)butoxy)-2-phenylacetate (6i), Compound 6i was obtained in 94% yield (31.2 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=2/1). classless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.38 – 7.33 (m, 3H), 5.34 (s, 1H), 4.87 (s, 1H), 3.86 (t, J = 6.3 Hz, 2H), 3.71 (s, 3H), 3.60 – 3.56 (m, 1H), 3.50 – 3.46 (m, 1H), 2.38 (t, J = 6.3 Hz, 2H), 2.34 (t, J = 6.6 Hz, 2H), 1.99 – 1.94 (m, 2H), 1.87 – 1.84 (m, 2H), 1.80 – 1.76 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 199.9, 178.0, 171.3, 136.5, 128.7, 128.7, 127.1, 102.8, 81.1, 69.2, 68.2, 52.3, 36.7, 29.0, 26.1, 25.4, 21.2. ESI HRMS: calculated for C₁₉H₂₅O₅ [M+H]⁺ 333.1702, found 333.1707.

methyl 2-((5,5-dicyanopentyl)oxy)-2-phenylacetate (6j), Compound **6j** was obtained in 64% yield (18.3 mg) according to the general procedure for 4h (eluent ratio for column chromatography: petroleum ether/EtOAc=3/1). Yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.43 – 7.41 (m, 2H), 7.40 – 7.36 (m, 3H), 4.84 (s, 1H), 3.88 (t, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 3.59 – 3.56 (m, 1H), 3.51 – 3.48 (m, 1H), 2.15 – 2.10 (m, 2H), 1.79 – 1.73 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 136.2, 128.9, 128.8, 127.2, 112.7, 112.7, 81.3, 69.0, 52.3, 30.5, 28.0, 23.8, 22.4. ESI HRMS: calculated for C₁₆H₁₉N₂O₃ [M+H]⁺ 287.1396, found 287.1403.

5 Copies of NMR spectra for products

5.1Copies of NMR spectra for 4a-4z"

4a ¹H NMR (500 MHz, CDCl₃)

4d ¹H NMR (400 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

4p ¹H NMR (500 MHz, CDCl₃)

80777 80777 80768 77.98657 77.98657 77.97858 77.97858 77.97858 77.97858 77.97858 77.97858 77.97858 77.10505 70.10505 70.10

4p ¹³C NMR (125 MHz, CDCl₃)

-170.0736	LI 54.8282 LI 54.7336 LI 54.6400 LI 48.7235	<138.8327 <138.3817	<pre></pre>	86.3042 80.6713 717.3720 76.8235 76.8235 76.8235 76.8235 76.8235 76.8235 76.8235	61.6449	256.1332	<25.8833	~14.5585 ~14.0982
-----------	--	------------------------	-------------	---	---------	----------	----------	----------------------

35

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

4r ¹H NMR (400 MHz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4s ¹H NMR (400 MHz, CDCl₃)

4t ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1(ppm)

4u ¹H NMR (400 MHz, CDCl₃)

4u ¹³C NMR (100 MHz, CDCl₃)

5.2 Copies of NMR spectra for 6a-6j

6a ¹H NMR (500 MHz, CDCl₃)

6b ¹H NMR (500 MHz, CDCl₃)

6b ¹³C NMR (125 MHz, CDCl₃)

~172.1310 ~171.3759 ~167.5930	—136.5364 128.7466 128.6420 127.1435			26.1704 25.5289 22.0846
-------------------------------------	---	--	--	-------------------------------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

110 100 90 f1 (ppm) -1

140 130 120 110 100 90 f1 (ppm) -10

6g ¹H NMR (500 MHz, CDCl₃) 862 ¹H NMR (500 MHz, CDCl₃) 8

7740

6h ¹³C NMR (125 MHz, CDCl₃)

	<172.1669 <171.3685			 ⁷⁷¹.0829 ⁷⁷¹.3015		~31.9394 26.1149 25.5577 19.7929
--	------------------------	--	--	---	--	---

6i¹H NMR (500 MHz, CDCl₃)

