Electronic Supplementary Information

Acetoxymethyl-BODIPYs: A Universal Platform for the Fluorescence Labeling of Nucleophiles

Alberto Blázquez-Moraleja, ${ }^{\mathrm{a}}$ Larissa Maierhofer, ${ }^{\mathrm{a}, \dagger}$ Enrique Mann, ${ }^{\text {a, } \dagger}$ Ruth PrietoMontero, ${ }^{\mathrm{b}, \uparrow}$ Ainhoa Oliden-Sánchez, ${ }^{\mathrm{b}, \uparrow}$ Lucía Celada, ${ }^{\mathrm{c}}{ }^{\mathrm{C}}$ Virginia Martínez-Martínez, ${ }^{\mathrm{b}, *}$ María-Dolores Chiara, ${ }^{\text {c,* }}$ Jose Luis Chiara ${ }^{\text {a, }}{ }^{\text {, }}$
${ }^{\text {a }}$ Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
E-mail: jl.chiara@csic.es
${ }^{\text {b }}$ Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
E-mail: virginia.martinez@ehu.eus
${ }^{\text {c }}$ Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
E-mail: mdchiara.uo@uniovi.es
${ }^{\dagger}$ These authors have contributed equally to this work.

Table of Contents

Synthesis and characterization of compounds S2
Photophysical characterization S69
Live-cell imaging studies S69
X-Ray diffraction S70
Quantum mechanics calculations S71
$\begin{array}{lr}\text { Plausible mechanistic proposal for the acetoxylation of } \\ \text { 3/5-methyl-BODIPYs with } \operatorname{Pb}(\mathbf{O A c})_{4} & \mathbf{S 7 7}\end{array}$
Tables S78
Figures S85
References S91
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\mathrm{S92}$

Synthesis and characterization of compounds

General methods

Proton and carbon-13 nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR or ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker Avance III-400 (400 and 100 MHz , respectively) or a Varian System 500 (500 and 125 MHz , respectively) spectrometers. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual peaks of the deuterated NMR solvent used. Data are presented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and/or multiple resonances, $\mathrm{b}=$ broad), integration, coupling constants in hertz (Hz), and assignment. Proton and carbon-13 assignments are based on gCOSY, gHSQC, and gHMBC correlation experiments. Thin layer chromatography (TLC) was performed with Merck Silica Gel 60 F254 plates. Chromatograms were visualized using UV light (254 nm or 365 nm). Column chromatography was performed on a 971-FP Flash Purification System from Agilent Technologies using SF Si35 silica cartridges. High-resolution mass spectra (HRMS) were recorded on an Agilent 6520 Q-TOF instrument with an ESI source. Anhydrous solvents were prepared according to standard methods by distillation over drying agents or via elution through a PureSolv ${ }^{\mathrm{TM}}$ column drying system from Innovative Technology, Inc. All other solvents were of HPLC grade and were used as provided. Microwave irradiation experiments were performed under magnetic stirring with a singlemode Anton Parr Monowave 300 reactor, using standard Pyrex tubes (10 mL capacity) sealed with a PTFE-lined rubber septum. BODIPYs $\mathbf{2}$ and $\mathbf{4}$ were purchased from Exciton and Merck, respectively, and used as received. BODIPY 3 was synthesized by a previously described method. ${ }^{1}$

Initial qualitative screening of acid catalysts for the substitution reaction

The screening experiments were carried out in parallel, distributing aliquots of a stoichiometric mixture of 3-acetoxymethyl-CN-BODIPY 9 and isobutanol in different reaction vials to which the corresponding acid catalyst ($2.5 \mathrm{~mol} \%$) was added at room temperature. Thin-layer chromatography was used as a rapid naked-eye inspection method for parallel qualitative reaction analysis (UV). This study helped us classify the screened catalysts into three main groups based on their efficiency. The first group comprised the most active catalysts, which achieved $>50 \%$ product formation in $<1 \mathrm{~h}$
reaction time, included the following in decreasing order of activity: $\mathrm{Et}_{3} \mathrm{SiOTf}>$ $\mathrm{Cu}(\mathrm{OTf})_{2}>\mathrm{Sc}(\mathrm{OTf})_{3} \sim \operatorname{In}(\mathrm{OTf})_{3} \sim \mathrm{Ga}(\mathrm{OTf})_{3} \sim \mathrm{Bi}(\mathrm{OTf})_{3}>\mathrm{Hf}(\mathrm{OTf})_{4}$. The second group included the catalysts with medium activity, which required a reaction time of $>4 \mathrm{~h}$ to achieve a 50% product formation, was made up by the only Brønsted acid tested: p toluenesulfonic acid. Finally, the less efficient catalysts, with product yields $\leq 10 \%$ after a 4 h reaction time, included the following: $\mathrm{Zn}(\mathrm{OTf})_{2}>\operatorname{AgOTf}>\mathrm{Yb}(\mathrm{OTf})_{3} \gg \mathrm{Sm}(\mathrm{OTf})_{3}$ (inactive). This fast and very convenient study showed that the most suitable catalyst in terms of reaction rate, total transformation of the starting BODIPY and generation of the substitution product was $\mathrm{Sc}(\mathrm{OTf})_{3}$.

2-Chloro- N -(2-(2-hydroxyethoxy)ethyl)acetamide

To a stirred solution of 2-(2aminoethoxy)ethanol ($473 \mu \mathrm{~L}, 4.66 \mathrm{mmol}$) and triehylamine $(1.3 \mathrm{~mL}, 9.32 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise chloroacetyl chloride ($370 \mu \mathrm{~L}, 4.66 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, under an argon atmosphere. The resulting mixture was stirred 1 h at $0{ }^{\circ} \mathrm{C}$ and 4 h more at room temperature. Then, chloroacetyl chloride $(185 \mu \mathrm{~L}, 2.33 \mathrm{mmol})$ was added to the mixture again, at $0^{\circ} \mathrm{C}$ for 30 min . The mixture reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ solution. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was diluted with $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (small amount) was added. After stirring for 1.5 h at room temperature, the solvent was removed at reduced pressure and the crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90: 10\right.$ to $\left.60: 40\right)$ to afford 2-chloro-N-(2-(2-(2-hydroxyethoxy)ethyl)acetamide ($257 \mathrm{mg}, 30 \%$ yield; non-optimized procedure) as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 3), 4.01(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 3.70(2 \mathrm{H}, \mathrm{t}, J=$ $4.4 \mathrm{~Hz}, \mathrm{H} 8), 3.56(4 \mathrm{H}, \mathrm{q}, J=5.3 \mathrm{~Hz}, \mathrm{H} 5$ and H7), $3.47(2 \mathrm{H}, \mathrm{q}, J=5.3 \mathrm{~Hz}, \mathrm{H} 4), 2.80(1 \mathrm{H}$, br s, OH8). ${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=166.5(\mathrm{C} 2), 72.4(\mathrm{H} 5 / \mathrm{H} 7), 69.5(\mathrm{H} 7 / \mathrm{H} 5)$, 61.7 (C1), 42.7 (C1), 39.7 (C4).

HRMS (API-ES ${ }^{+}$) m/z calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{ClNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 204.0398\left({ }^{35} \mathrm{Cl}\right)$, 206.0370 $\left({ }^{37} \mathrm{Cl}\right)$; found $204.0401\left({ }^{35} \mathrm{Cl}\right)$, $206.0372\left({ }^{37} \mathrm{Cl}\right)$. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 182.0578$ $\left({ }^{35} \mathrm{Cl}\right), 184.0551\left({ }^{37} \mathrm{Cl}\right)$; found $182.0577\left({ }^{35} \mathrm{Cl}\right)$, $184.0551\left({ }^{37} \mathrm{Cl}\right)$.

2-Iodo-N-(2-(2-hydroxyethoxy)ethyl)acetamide

To a stirred solution of 2-chloro- N-(2-(2-(2-hydroxyethoxy)ethyl)acetamide (90 mg , $0.495 \mathrm{mmol})$ in acetone (2 mL) was added $\mathrm{KI}(123.4 \mathrm{mg}, 0.743 \mathrm{mmol})$ at $70^{\circ} \mathrm{C}$, under argon. After stirring for 4 h at $70^{\circ} \mathrm{C}$, the solvent was removed at reduced pressure and the crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0\right.$ to $90: 10$) to afford 2-iodo- N-(2-(2-hydroxyethoxy)ethyl)acetamide ($127 \mathrm{mg}, 88 \%$ yield) as colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 3), 3.75(2 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}, \mathrm{H} 8), 3.71$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$), $3.58(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$ and H7), $3.47(2 \mathrm{H}, \mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{H} 4), 2.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH} 8)$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=168.0(\mathrm{C} 2), 72.4(\mathrm{C} 5), 69.5(\mathrm{C} 7), 61.8(\mathrm{C} 8), 40.3(\mathrm{C} 4)$, -0.46 (C1).
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{INNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$295.9754; found 295.9755. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$273.9934; found 273.9930.

18-Chloro-3,6,9,12-tetraoxaoctadecan-1-ol ${ }^{2}$

Tetraethylene glycol ($1.7 \mathrm{~mL}, 9.88 \mathrm{mmol}$) was added dropwise to a mixture of $\mathrm{NaH} 60 \%$ ($316 \mathrm{mg}, 7.9 \mathrm{mmol}$) in DMF ($2 \mathrm{~mL}, 1 \mathrm{~m}$) and THF ($2 \mathrm{~mL}, 1 \mathrm{~m}$) at $0^{\circ} \mathrm{C}$ under argon. After 50 minutes, 1-chloro-6-iodohexane ($300 \mu \mathrm{~L}, 1.98 \mathrm{mmol}$) was added, and the mixture was warmed to room temperature and stirred for 4 h . The reaction was diluted with MeOH (1 mL), quenched with 1 m HCl , and extracted with chloroform. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $0: 100$) to afford 18-chloro-3,6,9,12-tetraoxaoctadecan-1-ol ($273 \mathrm{mg}, 44 \%$ yield) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=3.67-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.49(\mathrm{~m}, 14 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 4 \mathrm{H})$.

Compound 1

A suspension of $\mathrm{Pb}(\mathrm{OAc})_{4}(48 \mathrm{mg}, 0.102 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}(20: 1,1 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.2 \mathrm{~mL})$ was added dropwise to a stirred solution of F-BODIPY $1(15.5 \mathrm{mg}, 0.048 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}(20: 1,1 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was warmed to room temperature and stirred for an additional 90 minutes. Cold water (20 mL) was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with 0.1 M aq. NaHCO_{3}, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 100:0 to 48:52) to afford compound $2(14 \mathrm{mg}, 66 \%)$ as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.34\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H1}{ }^{\prime}\right.$ and H 1 " $)$, $2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.46$ $\left(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.38\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 2.10(6 \mathrm{H}, \mathrm{s}$, H^{\prime} and $\mathrm{H} 4{ }^{\prime \prime}$), $1.07\left(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta=170.6$ (C3' and C3"), 148.2 (C3 and C5), 145.3 (C8), 138.5 (C1 and C7), 134.6 (C 2 and C 6), 133.3 (C 7 a and C 8 a), 57.2 (C^{\prime} and $\left.\mathrm{C} 1{ }^{\prime \prime}\right), 21.0(\mathrm{C} 4$ and $\mathrm{C} 4 "), 17.9\left(\mathrm{CH}_{3} 8\right)$,
 HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 457.2085$; found 457.2068. calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 452.2531$; found 52.2505.

Compound 5^{3}

To a stirred solution of F-BODIPY $1(300 \mathrm{mg}, 0.94 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added TMSCN $(0.84 \mathrm{~mL}, 6.6 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}(0.056 \mathrm{~mL}, 0.47 \mathrm{mmol})$ at room temperature under an argon atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with 0.1 M aqueous NaHCO_{3} solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure to afford pure compound 5 ($313 \mathrm{mg}, 100 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=2.66(9 \mathrm{H}, \mathrm{s}), 2.46(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.38(6 \mathrm{H}, \mathrm{s})$, $1.07(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$.

Compound 6

To a stirred solution of F-BODIPY 3 ($200 \mathrm{mg}, 0.546 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (16 $\mathrm{mL})$ were added TMSCN $(478 \mu \mathrm{~L}, 3.82 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}(32 \mu \mathrm{~L}, 0.273 \mathrm{mmol})$ at room temperature under an argon atmosphere. After stirring for 40 minutes at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50$ $\mathrm{mL})$. The combined organic phases were washed with 0.1 m aqueous NaHCO_{3} solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $80: 20$) to afford compound $\mathbf{6}$ (199 mg, 96% yield), as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.97(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3$ ' and $\mathrm{H} 5 '), 6.14(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 2$ and H6), $2.73\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 3\right.$ and $\left.\mathrm{CH}_{3} 5\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4\right.$ '), $2.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 2\right.$ and $\mathrm{CH}_{3} 6$ '), 1.42
($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1$ and $\mathrm{CH}_{3} 7$). ${ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta=155.8$ (C 3 and C 5), 143.8 (C7/C1/C7a/C8a), 143.08 (C8), 139.4 (C4'), 134.8 (C^{\prime} 'and C6'), 130.3 (C 1 '), 129.4 (C 3 ' and C5'), $129.03(\mathrm{C} 7 \mathrm{a} / \mathrm{C} 8 \mathrm{a} / \mathrm{C} 7 / \mathrm{C} 1), 126.4\left(\mathrm{q}, J_{C B}=74 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 122.4(\mathrm{C} 2$ and C6), $21.3\left(\mathrm{CH}_{3} 4^{\prime}\right)$, $19.6\left(\mathrm{CH}_{3} 2^{\prime}\right.$ and $\left.\mathrm{CH}_{3} 6^{\prime}\right)$, $15.6\left(\mathrm{CH}_{3} 3\right.$ and $\left.\mathrm{CH}_{3} 5\right)$, $13.8\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BN}_{4}[\mathrm{M}+\mathrm{H}]^{+} 381.2249$; found 381.2250. calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BN} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 403.2069$; found 403.2060 .

Compound 7

To a stirred solution of F-BODIPY $4(204 \mathrm{mg}, 0.563 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added TMSCN $(479.4 \mu \mathrm{~L}, 3.76 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}(31.7 \mu \mathrm{~L}, 0.268 \mathrm{mmol})$ at room temperature under an argon atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with 0.1 M aqueous NaHCO_{3} solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure to afford pure compound 7 ($210 \mathrm{mg}, 99 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.58-7.47(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 ', \mathrm{H} 4$ ' and $\mathrm{H} 5 '), 7.31-7.22(2 \mathrm{H}, \mathrm{m}$, H2' and H6'), $2.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 3\right.$ and $\left.\mathrm{CH}_{3} 5\right), 2.36\left(4 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 1.33\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 1.01\left(6 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=154.0(\mathrm{C} 3$ and C 5$)$, $141.1(\mathrm{C} 8), 139.9(\mathrm{C} 1$ and C7), 134.8 (C_{2} and C6), 134.3 (Cl^{\prime}), 129.4 ($\left.\mathrm{C}^{\prime} / \mathrm{C}^{\prime} / \mathrm{C}^{\prime}{ }^{\prime}\right), 129.4$ ($\left.\mathrm{C}^{\prime} / \mathrm{C}^{\prime} / \mathrm{C} 3^{\prime}\right), 129.3$ (C7a and C8a), $128.1\left(\mathrm{C}^{\prime}\right.$ and $\left.\mathrm{C}^{\prime}\right), 127.0\left(\mathrm{q}, J_{C B}=73.4 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $14.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $13.4\left(\mathrm{CH}_{3} 3\right.$ and $\left.\mathrm{CH}_{3} 5\right)$, $11.9\left(\mathrm{CH}_{3} 1\right.$ and $\mathrm{CH}_{3} 7$).

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$395.2406; found 395.2412. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BN} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 417.2226$; found 417.2221.

Compound 8

A suspension of $\mathrm{Pb}(\mathrm{OAc})_{4}(68 \mathrm{mg}, 0.144 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}(20: 1,0.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added dropwise to a stirred solution of F-BODIPY $3(25.1 \mathrm{mg}$, $0.068 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}(20: 1,1 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 90 minutes, the reaction mixture was warmed to room temperature and stirred for an additional 90 minutes. Cold water (20 mL) was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with 0.1 m aq. NaHCO_{3}, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound $\mathbf{8}(18 \mathrm{mg}, 62 \%)$ as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3\right.$ ' and $\left.{ }^{\prime} 5{ }^{\prime}\right), 6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2), 6.03(1 \mathrm{H}$, s, H6), 5.42 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime \prime}$), 2.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$), 2.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4$ '), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 4$ "), 2.09 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 2^{\prime}$ and $\mathrm{CH}_{3} 6$ '), $1.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\mathrm{CH}_{3} 7$). ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ = 170.7 (C3"), 158.8 (C5), 149.4 (C3), 145.1 (C7/C7a), 143.5 (C8), 140.9 (C1/C8a), 139.0 (C4'), 134.9 (C^{\prime} and C 6 '), 132.1 (C7a/C7), 130.9 (C 1 '), 130.4 (C8a/C1), 129.3 (C 3 ' and C5'), 122.3 (C6), $118.8(\mathrm{C} 2), 59.6\left(\mathrm{Cl}^{\prime \prime}\right), 21.3\left(\mathrm{CH}_{3} 4{ }^{\prime}\right), 21.1\left(\mathrm{C} 4{ }^{\prime \prime}\right), 19.7\left(\mathrm{CH}_{3} 2^{\prime}\right.$ and $\mathrm{CH}_{3} 6$ '), $15.0\left(\mathrm{CH}_{3} 5\right), 13.8\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right)$, $13.5\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 447.2030$; found 447.2048.
Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$442.2476; found 442.2491. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 425.2211$; found 425.2207.

Compound 9

A solution of $\mathrm{Pb}(\mathrm{OAc})_{4}(1.25 \mathrm{~g}, 2.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a stirred solution of $C N$-BODIPY 5 ($390 \mathrm{mg}, 1.17 \mathrm{mmol}$) in an $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ (20:1) mixture $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred at room temperature until completion of the reaction (TLC monitoring, $c a .2 .5 \mathrm{~h}$). Water (50 mL) was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with 0.1 m aq. NaHCO_{3}, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 50:50 to 20:80) to afford compound $\mathbf{9}(330 \mathrm{mg}, 72 \%)$ as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H1}\right.$ '), $2.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.52$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.48\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right)$, $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.09(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.9(\mathrm{C} 3$ '), $157.8(\mathrm{C} 5), 143.7$ (C3), 142.9 (C8), 140.8 (C7), 136.3 (C1), 136.2 (C6), 135.0 (C2), 132.3 (C7a), 130.6 (C8a), $127.1\left(\mathrm{q}, J_{C B}=74 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 56.5(\mathrm{C1}), 21.0\left(\mathrm{C}^{\prime}\right), 17.8\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} \mathbf{6}\right), 17.4$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2 / \mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} 8 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right)$, $15.5\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 15.1\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.7$ $\left(\mathrm{CH}_{3} 7\right)$, $14.6\left(\mathrm{CH}_{3} 1\right), 14.1\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BN}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 413.2123$; found 413.2138 . Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BN}_{5} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 408.2569$; found 408.2587.

Compound 10

A solution of $\mathrm{Pb}(\mathrm{OAc})_{4}(717.3 \mathrm{mg}, 1.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise to a stirred solution of $C N$-BODIPY 5 ($172 \mathrm{mg}, 0.517 \mathrm{mmol}$) in $\mathrm{AcOH}^{2} \mathrm{Ac}_{2} \mathrm{O}(20: 1,5$ mL) at room temperature. After stirring at $50^{\circ} \mathrm{C}$ for 5.5 h , water (40 mL) was added and
the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with 0.1 M aq. NaHCO_{3}, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After the solvent was removed at reduced pressure, the crude solid was recrystalized from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1) to afford compound $\mathbf{1 0}(201 \mathrm{mg}, 87 \%)$ as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.45\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right.$ and $\left.\mathrm{H} 1 "\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.53$ $\left(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.43\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 2.18(6 \mathrm{H}, \mathrm{s}$, H4' and H 4 '), $1.10\left(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta=170.7$ (C3' and C3"), 148.7 (C3 and C5), 146.4 (C8), 139.9 (C1 and C7), 136.4 (C 2 and C 6), 132.3 (C 7 a and C 8 a), 127.4 ($\mathrm{q}, J_{C B}=76.5 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 56.4 (C 1 ' and C1"), 20.9 (C 4 ' and C 4 "), $18.5\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.0\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BN}_{5} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 466.2625$; found 466.2612. calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BN}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 471.2178$; found 471.2165 .

Compounds 11, 12 and 13

A solution of $\mathrm{Pb}(\mathrm{OAc})_{4}(1.92 \mathrm{~g}, 4.34 \mathrm{mmol})$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}(20: 1$, $6 \mathrm{~mL})$ was added dropwise to a stirred solution of compound $7(428 \mathrm{mg}, 1.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at room temperature, under argon. After addition, the reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 6 hours. Water (50 mL) was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with 0.1 M aq. NaHCO_{3}, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/ $\mathrm{AcOEt}, 95: 5$ to $70: 30$) to afford compound 11 ($119 \mathrm{mg}, 24 \%$ yield), compound 12 ($244 \mathrm{mg}, 44 \%$ yield), and compound 13 ($33 \mathrm{mg}, 5 \%$ yield), as orange solids.

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.56-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 ', \mathrm{H} 4 \mathrm{and} \mathrm{H} 5 '), 7.31-7.24(2 \mathrm{H}, \mathrm{m}$, H2' and H6'), $5.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime \prime}\right), 2.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.40\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $2.37\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 4{ }^{\prime \prime}\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 1.32(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 1\right), 1.02\left(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta=170.9(\mathrm{C} 3 "), 159.7(\mathrm{C} 5), 145.2(\mathrm{C} 3), 142.9(\mathrm{C} 7 / \mathrm{C} 8), 142.8(\mathrm{C} 8 / \mathrm{C} 7), 138.9(\mathrm{C} 1), 136.5$ (C6), 135.3 (C2), 134.5 ($\left.\mathrm{C}^{\prime}\right), 131.3$ (C7a), 129.7 ($\mathrm{C}^{\prime} / \mathrm{C}^{\prime} / \mathrm{C}^{\prime}$), 129.7 ($\left.\mathrm{C}^{\prime} / \mathrm{C} 5^{\prime} / \mathrm{C} 4^{\prime}\right)$, $129.5(\mathrm{C} 8 \mathrm{a}), 127.8\left(\mathrm{C} 2 '\right.$ and C 6 '), $127.2\left(\mathrm{q}, J_{C B}=76.4 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 56.4\left(\mathrm{C} 1{ }^{\prime \prime}\right), 21.0$ ($\mathrm{C}^{\prime \prime}$), $17.4 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), \quad 17.3 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $\quad 15.2$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 14.2\left(\mathrm{CH}_{3} 5\right), 12.3\left(\mathrm{CH}_{3} 7\right), 11.8$ $\left(\mathrm{CH}_{3} 1\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{BN}_{5} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$470.2727; found 470.2730. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BN}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 475.2281$; found 475.2279.

12
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.59-7.54\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 ', \mathrm{H} 4{ }^{\prime}\right.$ and H 5 '), $7.31-7.24(2 \mathrm{H}, \mathrm{m}$, H2' and H6'), $5.47\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H} 1\right.$ " and $\mathrm{H} 1{ }^{\prime \prime}$ '), $2.41\left(4 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H} 4\right.$ " and $\left.\mathrm{H} 4{ }^{\prime \prime \prime}\right), 1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 1.02(6 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.6\left(\mathrm{C} 3 "\right.$ and $\left.\mathrm{C} 3{ }^{\prime \prime \prime}\right)$, 150.4 (C3 and C5), 145.8 (C8), 142.4 (C 1 and C7), 136.7 (C2 and C6), 134.2 ($\mathrm{C} 1^{\prime}$), 131.1 (C7a and C8a), 130.0 ($\mathrm{C}^{\prime} / \mathrm{C} 3^{\prime} / \mathrm{C} 5^{\prime}$), 129.9 ($\mathrm{C}^{\prime} / \mathrm{C} 5^{\prime} / 4^{\prime}$), 127.5 (C^{\prime} and $\mathrm{C} 6^{\prime}$), 127.4 ($\mathrm{q}, J_{C B}$ $=76.6 \mathrm{~Hz}, 2 \times \mathrm{CN}), 56.4\left(\mathrm{C} 1 "\right.$ and $\left.\mathrm{C} 1{ }^{\prime \prime \prime}\right), 20.9\left(\mathrm{C} 4 "\right.$ and $\left.\mathrm{C} 4{ }^{\prime \prime}\right), 17.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 12.2\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BN}_{5} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$528.2782; found 528.2766. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{BN}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 533.2336$; found 533.2311.

13
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$ " $), 7.68-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 ', \mathrm{H} 4 '$ and H5'), 7.30-7.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}$ and H6'), 5.51 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1^{\prime \prime}$), 2.58 ($2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.42\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.21\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H} 4\right.$ "), 2.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 4{ }^{\prime \prime \prime}$), $1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.03(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.4(\mathrm{C} 3 " '), 168.2(\mathrm{C} 3 ")$, 152.4 (C5), 146.6 (C3/C8), 146.5 (C8/C3), 143.3 (C7), 142.5 (C1), 137.3 (C6), 135.7 (C2), 134.1 (C^{\prime}), 131.6 (C7a), 130.6 (C8a), 130.0 (C^{\prime}), 129.8 (C^{\prime} and C5'), 127.3 (C2' and C6'), 127.2 ($\mathrm{q}, J_{C B}=76.5 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 83.3 (C1"), 56.5 (C1"'), 20.8 (C4"), 20.7 ($\mathrm{C} 4{ }^{\prime \prime}$), $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.2\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 14.7$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 12.2\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right)$, 12.0 $\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{BN}_{5} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$586.2837; found 586.2843.
Calcd. for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{BN}_{4} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 591.2391$; found 591.2379.

Compound 14

To a stirred solution of compound $\mathbf{8}(9 \mathrm{mg}, 0.021 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and MeOH (0.8 mL) was added magnesium (2 grains) at room temperature. After stirring for 4 h at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10$ mL), the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure to afford pure compound $\mathbf{1 4}$ (7 $\mathrm{mg}, 90 \%$), as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3$ ' and H 5 ' $), 6.19(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2), 6.04(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H} 6), 4.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1\right.$ "), $2.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH} 1 "), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4{ }^{\prime}\right)$, $2.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 2^{\prime}\right.$ and $\left.\mathrm{CH}_{3} 66^{\prime}\right), 1.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta=158.3$ (C5), 154.1 (C3), 145.0 (C7/C7a), 143.6 (C8), 141.5, (C1/C8a) 139.0 (C4'), 134.9 (C2' and C6'), 132.0 (C7a/C7), 130.9 (Cl^{\prime}), 130.8 ($\mathrm{C} 8 \mathrm{a} / \mathrm{C} 1$), 129.3 (C 3 ' and C^{\prime}), 122.2 (C 6$), 119.3(\mathrm{C} 2), 58.1\left(\mathrm{C}^{\prime \prime}\right), 21.3\left(\mathrm{CH}_{3} 4^{\prime}\right), 19.6\left(\mathrm{CH}_{3} 2^{\prime}\right.$ and $\mathrm{CH}_{3} 6$ '), 15.0 $\left(\mathrm{CH}_{3} 5\right), 13.7\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 13.5\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 405.1924$; found 405.1935.

Compound 15

To a stirred solution of compound $9(10 \mathrm{mg}, 0.025 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added isobutyl alcohol ($4.74 \mu \mathrm{~L}, 0.051 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($64 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 3.5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $65: 35$) to afford compound 15 (9 mg , 86% yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.83(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1 '), 3.44\left(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H} 3{ }^{\prime}\right), 2.67$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.46(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.07-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.12(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4^{\prime}\right), 0.95(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} 4{ }^{\prime}\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.3(\mathrm{C} 5), 148.8(\mathrm{C} 3), 142.5(\mathrm{C} 8), 139.5$
(C7), 137.9 (C1), 135.2 (C6), 135.0 (C2), 131.4 (C7a), 130.2 (C8a), 127.3 ($\mathrm{q}, J_{C B}=74.5$ $\mathrm{Hz}, 2 \times \mathrm{CN}), 78.7\left(\mathrm{C}^{\prime}\right), 64.5\left(\mathrm{Cl}^{\prime}\right), 28.6(\mathrm{C} 4 '), 19.6\left(2 \times \mathrm{CH}_{3} 4{ }^{\prime}\right), 17.6\left(\mathrm{CH}_{3} 8\right), 17.5$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} \mathbf{2}\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$, $14.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$422.3090; found 422.3086.
Calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$427.2644; found 427.2633.

Compound 16

To a stirred solution of compound $9(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 1-octanol $(8.15 \mu \mathrm{~L}, 0.051 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(64 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 3.5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 65:35) to afford compound 16 ($10.1 \mathrm{mg}, 85 \%$ yield) as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H1} \mathrm{C}^{\prime}\right), 3.65(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 3$ '), 2.67 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.56\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.46(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.\left.\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.67(2 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{H} 4)^{\prime}\right), 1.43-$ $1.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 '), 1.35-1.20\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime}\right.$ and H 9 '), $1.11(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 1.07\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{10}\right)^{\prime}\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.4(\mathrm{C} 5), 148.7(\mathrm{C} 3), 142.4(\mathrm{C} 8), 139.5(\mathrm{C} 7), 137.5(\mathrm{C} 1), 135.2$ (C6), 135.0 (C2), 131.4 (C7a), 130.2 (C8a), $127.8\left(\mathrm{q}, J_{C B}=74.8 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 71.9(\mathrm{C} 3$ '),
64.2 (Cl^{\prime}), 32.0 (C^{\prime}), 29.8 (C^{\prime}), 29.6 ($\mathrm{C}^{\prime} / \mathrm{C} 7^{\prime}$), 29.4 ($\mathrm{C}^{\prime} / \mathrm{C}^{\prime}$), 26.3 ($\left.\mathrm{C}^{\prime}\right), 22.8$ ($\left.\mathrm{C}^{\prime}\right)$, $17.6\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.8$, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) 14.6\left(\mathrm{CH}_{3} 1\right), 14.3\left(\mathrm{C} 10{ }^{\prime}\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 478.3717$; found 478.3735 . Calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 483.3271$; found 483.3287. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{BN}_{4} \mathrm{O}$ $(\mathrm{M}+\mathrm{H})^{+} 461.3451$; found 461.3477 .

Compound 17

To a stirred solution of compound $9(10.8 \mathrm{mg}, 0.028 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 1-hexadecanol ($17.5 \mathrm{mg}, 0.055 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($64 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (toluene/ $\mathrm{MeOH}, 98: 2$) to afford compound 17 (13 mg, 82% yield) as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.83(2 \mathrm{H}, \mathrm{s}, \mathrm{H1}), 3.65\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} \mathbf{H}^{\prime}\right), 2.67$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.56\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.46(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.67\left(2 \mathrm{H}, \mathrm{p}, J=6.7 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 1.45-$ 1.21 ($26 \mathrm{H}, \mathrm{br}$ m, H5'-H17'), $1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.07(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\underline{C H}_{3} \mathrm{CH}_{2} 6\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 18{ }^{\prime}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.4(\mathrm{C} 5)$, 148.7 (C3), 142.4 (C8), 139.5 (C7), 137.5 (C1), 135.2 (C6), 135.0 (C2), 131.4 (C7a), $130.2(\mathrm{C} 8 \mathrm{a}), 127.4\left(\mathrm{q}, J_{C B}=74.5 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 71.9\left(\mathrm{C}^{\prime}\right), 64.2\left(\mathrm{C} 1^{\prime}\right), 32.1,29.9,29.8$, 29.8, 29.7, 29.5, 26.4, 22.9 (from 32.1 to 22.9: $\left.\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}\right), 17.6\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} 1\right), 14.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.3$ (C18'), $13.9\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{61} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$590.4970; found 590.4969. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{BN}_{4} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 595.4524$; found 595.4517.

Compound 18

To a stirred solution of compound $9(19.8 \mathrm{mg}, 0.051 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added octaethylene glycol monomethyl ether $(15.5 \mu \mathrm{~L}, 0.042 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($506 \mu \mathrm{~L}$ of a 0.01 m solution, 0.1 equiv). After stirring for 24 h at $40^{\circ} \mathrm{C}$, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography ($\mathrm{AcOEt} / \mathrm{MeOH}, 100: 0$ to $85: 15$) to afford compound 18 (10.8 $\mathrm{mg}, 36 \%$ yield, 40% yield considering recovered $9: 2 \mathrm{mg}$), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right), 3.84-3.81(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), 3.75-3.73 (2H, m, H4'), 3.67-3.63 (26, m, H6', H7', H9', H10', H12', H13',H15', H16', H18', H19', H21', H22' and H24'), 3.56-3.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 25$ '), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 27$ '), 2.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8$), $2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.56\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.46(2 \mathrm{H} . \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $1.07\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.7(\mathrm{C} 5), 148.1$ (C3), 142.5 (C8), 139.7 (C7), 137.4 (C1), 135.3 (C6), 135.0 (C2), 131.5 (C7a), 130.2 (C8a), 127.4 (q, $J_{C B}=74.3 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 72.1 (C25'), 70.7 (C6', C7', C9', C10', C12', C13', C15', C16', C18', C19', C21', C22' and C24'), 70.7 (C4'), 70.5 (C3'), 64.4 (C1'), 59.2 (27'), $17.7\left(\mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.2$ $\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), 15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$, 14.8 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, 13.9 $\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{63} \mathrm{BN}_{5} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 732.4720$; found 732.4731.

Compound 19

To a stirred solution of compound $9(15.9 \mathrm{mg}, 0.041 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added propargyl alcohol ($4.8 \mu \mathrm{~L}, 0.081 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in
anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 90 min at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt mixtures, $93: 7$ to $70: 30$) to afford compound 9 ($14.2 \mathrm{mg}, 90 \%$ yield) as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.93\left(2 \mathrm{H}, \mathrm{s} \mathrm{H1}\right.$ '), $4.36\left(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H} \mathbf{'}^{\prime}\right), 2.68$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$ and $\mathrm{CH}_{3} 8$), $2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.52\left(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$, $2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 6}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.13(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, \underline{C H}_{3} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$ $\delta=156.3$ (C5), 146.8 (C3), 142.7 (C8), 140.1 (C7), 137.1 (C1), 135.6 (C6), 135.2 (C2), 131.8 (C7a), 130.7 (C8a), 127.4 ($\mathrm{q}, J_{C B}=74.8 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 79.5 (C4'), 75.4 (C5'), 62.5 (C^{\prime} '), $58.4\left(\mathrm{C}^{\prime}\right)$, $17.7\left(\mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.0$ $\left(\mathrm{CH}_{3} 7\right), 14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 1\right), 14.0\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 404.2620$; found 404.2635. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 409.2174$; found 409.2190. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BN}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 387.2355$; found 387.2352.

Compound 20

To a stirred solution of compound $\mathbf{9}(12 \mathrm{mg}, 0.031 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 6-chlorohexanol $(8.5 \mu \mathrm{~L}, 0.061 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($76 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined
organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (toluene $/ \mathrm{MeOH}, 99: 1$) to afford compound 20 ($12.7 \mathrm{mg}, 88 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1^{\prime}\right), 3.66\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 3.52$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 8\right.$) , $2.67\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.78(2 \mathrm{H}, \mathrm{p}$, $\left.J=6.7 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 1.69\left(2 \mathrm{H}, \mathrm{p}, J=6.7 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 1.52-1.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{and} \mathrm{H}^{\prime}\right), 1.11(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta=155.5(\mathrm{C} 5), 148.4(\mathrm{C} 3), 142.5$ (C8), 139.6 (C7), 137.5 (C1), 135.3 (C6), 134.9 (C2), $131.5(\mathrm{C} 7 \mathrm{a}), 130.2(\mathrm{C} 8 \mathrm{a}), 127.4\left(\mathrm{q}, J_{C B}=74.6 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 71.5(\mathrm{C} 3 '), 64.2\left(\mathrm{C} 1{ }^{\prime}\right)$, 45.3 (C8'), 32.7 (C7'), 29.7 (C^{\prime}), 26.8 ($\left.\mathrm{C}^{\prime}\right), 25.6$ (C^{\prime}), $17.7\left(\mathrm{CH}_{3} 8\right), 17.5$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.6\left(\mathrm{CH}_{3} 1\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{BClN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 484.3014\left({ }^{35} \mathrm{Cl}\right), 486.2995$ $\left({ }^{37} \mathrm{Cl}\right)$; found $484.3015{ }^{35}(\mathrm{Cl}), 486.2995\left({ }^{37} \mathrm{Cl}\right)$. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BClN} 4 \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$ $489.2568\left({ }^{35} \mathrm{Cl}\right), 491.2548\left({ }^{37} \mathrm{Cl}\right)$; found $489.2578\left({ }^{35} \mathrm{Cl}\right), 491.2547\left({ }^{37} \mathrm{Cl}\right)$.

Compound 21

To a stirred solution of compound $9(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 4-(hydroxymethyl)benzonitrile $(5.1 \mathrm{mg}, 0.038 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($64 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 8 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by
silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound 21 ($10 \mathrm{mg}, 88 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.63(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 6$ 'and H 8 ' $), 7.55(2 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}, \mathrm{H}^{\prime}$ and H9'), 4.93 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3^{\prime}$), 4.78 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H1} 1^{\prime}$), $2.69\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right)$, $2.52\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} \mathbf{6}\right), 2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.41(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 1.08(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=156.5(\mathrm{C} 5), 146.6(\mathrm{C} 3)$, 143.5 (C4'), 142.8 (C8), 140.3 (C7a), 137.1 (C8a), 135.7 (C7), 134.9 (C1), 132.3 (C6' and C8'), 131.8 (C6), 130.2 (C2), 128.4 (C5' and C9'), 127.4 ($\mathrm{q}, J_{C B}=74 \mathrm{~Hz}, 2 \times \mathrm{BCN}$), 119.0 (CN7'), 111.5 (C^{\prime}), 72.5 (C^{\prime}), $63.8\left(\mathrm{Cl}^{\prime}\right), 17.7\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \underline{\left.\mathrm{CH}_{2} 6\right)}\right.$), 17.4 $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), \quad 15.3 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{C H}_{3} \mathrm{CH}_{2} 6\right), \quad 15.0 \quad\left(\mathrm{CH}_{3} 7\right), \quad 14.7 \quad\left(\mathrm{CH}_{3} 1\right), \quad 14.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.0\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BN}_{6} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 481.2887$; found 481.2885. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{BN}_{5} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 486.2441$; found 486.2451.

Compound 22

To a stirred solution of compound $9(16 \mathrm{mg}, 0.041 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added 5-norbornene-2-methanol ($6.44 \mu \mathrm{~L}, 0.053 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($102 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound 22 (15.7 $\mathrm{mg}, 84 \%$ yield), as a red-orange solid ($2: 1$ mixture of endolexo-isomers).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.14(\mathrm{dd}, J=5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}$ endo $), 6.10(\mathrm{dd}, J=5.5$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$ exo), 6.04 (dd, $J=5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ exo), $6.00(\mathrm{dd}, J=5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ endo), 4.85 ($\mathrm{s}, 2 \mathrm{H}$ exo), 4.81 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$ endo), 4.76 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$ endo), 3.72 (dd,
$J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$ exo $), 3.60(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ exo $), 3.40(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}$ endo $)$, 3.28 (t, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ endo), 2.98 (br s, 1H endo), 2.81-2.79 (m, 2H exo), 2.79 ($\mathrm{s}, 1 \mathrm{H}$ endo), 2.67 ($\mathrm{s}, 6 \mathrm{H}$ endo + exo), 2.57 ($\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ endo + exo), 2.52-2.44 ($\mathrm{m}, 1 \mathrm{H}$ endo), $2.46(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ endo + exo $), 2.39(\mathrm{~s}, 3 \mathrm{H}$ endo + exo), 2.38 ($\mathrm{s}, 3 \mathrm{H}$ endo + exo), 1.85 ($\mathrm{m}, 1 \mathrm{H}$ endo) 1.80 ($\mathrm{m}, 1 \mathrm{H}$ exo), 1.41 ($\mathrm{m}, 1 \mathrm{H}$ endo), 1.36-1.17 ($\mathrm{m}, 4 \mathrm{H}$ exo +1 H endo), 1.14 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$ endo), $1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$ endo), $1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$ endo + exo), 0.61- 0.53 (m, 1H endo). ${ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta={ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,155.3,148.7,148.5,142.5,139.6,139.5,137.5,137.2,136.8$, $136.7,135.2,135.0,132.8,131.4,130.2,127.3\left(q, J_{C B}=74.5 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 76.4,75.5$, $64.3,49.5,45.3,44.2,44.0,42.4,41.7,38.9,38.8,30.0,29.4,17.6,17.5,17.4,15.2,15.2$, 15.0, 14.8, 14.6, 14.6, 13.8.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{BN}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 472.3248$; found 472.3251.

Compound 23

To a stirred solution of compound $9(20 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 1-adamantanol $(10.1 \mathrm{mg}, 0.067 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(256 \mu \mathrm{~L}$ of a 0.01 m solution, 0.05 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}, 100: 0\right.$ to $\left.92: 8\right)$ to afford compound 23 ($6.8 \mathrm{mg}, 27 \%$ yield; 46% yield considering recovered $9: 8.1 \mathrm{mg}$), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.85(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1 \mathrm{l}), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.66(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 8\right), 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2}\right), 2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.38(3 \mathrm{H}$, s, $\mathrm{CH}_{3} 7$), 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1$), 2.23-2.19 (3 H , br m, H5', H7' and H9'), 1.97 ($6 \mathrm{H}, \mathrm{d}, J=3.1$ $\mathrm{Hz}, \mathrm{H} 4 ', \mathrm{H} 10^{\prime}$ and H11'), 1.67 ($6 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}, \mathrm{H} 6^{\prime}, \mathrm{H}^{\prime}$ and H12'), $1.14(3 \mathrm{H}, \mathrm{t}, J=7.5$
$\left.\mathrm{Hz}, \underline{\mathrm{CH}_{3} \mathrm{CH}_{2} 2}\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)}{ }^{13}{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=\right.$ 154.7 (C5), 150.1 (C3), 142.1 (C8), 139.1 (C7), 137.9 (C1), 135.3 (C2), 134.9 (C6), 131.1 (C7a), $130.2(\mathrm{C} 8 \mathrm{a}), 127.7\left(\mathrm{q}, J_{C B}=74.7 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 73.9\left(\mathrm{C} 3^{\prime}\right), 54.4\left(\mathrm{C} 1{ }^{\prime}\right), 41.3\left(\mathrm{C} 4{ }^{\prime}\right.$, $\mathrm{C} 10^{\prime}$ and $\left.\mathrm{C} 11^{\prime}\right), 36.6$ (C^{\prime} ', $\mathrm{C} 8^{\prime}$ and C12'), 30.9 (C 5 ', C^{\prime} ' and C^{\prime}), $17.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} 8\right)$, $17.6\left(\mathrm{CH}_{3} 8 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 13.8\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 505.3115$; found 505.3120.

Compound 24

To a stirred solution of compound 9 ($23.3 \mathrm{mg}, 0.06 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added farnesol ($5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($150 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 4 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound 24 ($5.7 \mathrm{mg}, 21 \%$ yield, 96% yield considering recovered 24: 18.3 mg), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}\right), 5.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ ' $), 5.09(1 \mathrm{H}, \mathrm{m}$, H12'), $4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right), 4.22(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H} 3 '), 2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.67(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CH}_{3} 8\right), 2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 6}\right), 2.39(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3} 7$), 2.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1$), 2.17-2.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$ '), 2.09-2.02 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H} 6$ ' and $\mathrm{H} 11^{\prime}$), 2.00-1.94 (2H, m, H10'), 1.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5^{\prime}$), $1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 13^{\prime} / \mathrm{H} 14^{\prime}\right), 1.60(6 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} 9^{\prime}$ and $\left.\mathrm{H} 14^{\prime} / \mathrm{CH}_{3} 13^{\prime}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=155.4(\mathrm{C} 5), 148.7(\mathrm{C} 3), 142.4(\mathrm{C} 8), 141.4$ (C5'), 139.5 (C7), 137.5 (C1), 135.3 (C9'), 135.2 (C6), 135.0 (C2), 131.4 (C13'), 130.2 (C7a and C8a), 128.1 ($\mathrm{q}, J_{C B}=74.6 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 124.5 ($\left.\mathrm{C} 122^{\prime}\right), 124.2\left(\mathrm{C} 8\right.$ '), $120.5\left(\mathrm{C} \mathbf{'}^{\prime}\right)$,
 $\left(\mathrm{CH}_{3} 13^{\prime} / \mathrm{H} 14^{\prime}\right), 17.8\left(\mathrm{H}_{1} 4^{\prime} / \mathrm{CH}_{3} 13^{\prime}\right), 17.6\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2}\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} \mathbf{6}\right), 16.7$ $\left(\mathrm{CH}_{3} 5^{\prime}\right), 16.1\left(\mathrm{CH}_{3} 9\right.$ '), $15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 1\right), 13.9$ $\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$575.3898; found 575.3873. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 570.4344$; found 570.4344.

Compound 25

15^{\prime}
To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 12-hydroxydodecanoic acid ($8.6 \mathrm{mg}, 0.038 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 6 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the
solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}, 100: 0\right.$ to $\left.80: 20\right)$ to afford compound $\mathbf{2 5}$ (11.8 $\mathrm{mg}, 56 \%$ yield) as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right), 3.65(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 3$ '), 2.67 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$ and $\mathrm{CH}_{3} 8$), $2.56\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.46(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.34(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H} 13$ '), $1.74-$ 1.53 (4H, m, H4' and H12'), 1.45-1.19 (14H, m, H5', H6', H7', H8', H9', H10' and H11'),
 ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta=178.5$ (C14'), 155.4 (C5), 148.7 (C3), 142.4 (C8), 139.5 (C7), $137.6(\mathrm{C} 1), 135.2(\mathrm{C} 2), 134.9(\mathrm{C} 6), 131.4(\mathrm{C} 7 \mathrm{a}), 130.2(\mathrm{C} 8 \mathrm{a}), 127.4\left(\mathrm{q}, J_{C B}=74.2 \mathrm{~Hz}, 2\right.$
 (C^{\prime} '), 24.8 (C 12 '), $17.6\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.2$ $\left(\mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), 15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$, 14.8 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, 13.9 $\left(\mathrm{CH}_{3} 9\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{BN}_{5} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$564.4085; found 564.4103. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{BN}_{4} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 569.3639$; found 569.3673.

Compound 26

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added N-Cbz-L-serine benzyl ester ($15.1 \mathrm{mg}, 0.038 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($192 \mu \mathrm{~L}$ of a 0.01 m solution, 0.05 equiv). After stirring for 30 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The
combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (cyclohexane/AcOEt, 95:5 to 80:20) to afford compound 26 ($17.12 \mathrm{mg}, 67 \%$ yield; 83% yield considering recovered $\mathbf{9}: 2.8 \mathrm{mg}$), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.38-7.27$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{H} 9$ ', H10', H11', H12', H13', H6", H7", H8", H9" and H10"), 6.18 (1H, d, $\left.J=8.3 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime \prime}\right), 5.20$ ($1 \mathrm{H}, \mathrm{d}, ~ J=12.4 \mathrm{~Hz}, \mathrm{H} 7$ '), $5.16\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H} 7\right.$ '), $5.14\left(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H} 4{ }^{\prime}\right), 5.09(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}$, H4'), 4.83 ($\left.1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H} 1$ '), 4.59 ($1 \mathrm{H}, \mathrm{ddd}, J=$ 8.3, 3.5, $2.8 \mathrm{~Hz}, \mathrm{H} 4$ '), 4.17 ($\left.1 \mathrm{H}, \mathrm{dd}, J=9.2,3.5 \mathrm{~Hz}, \mathrm{H} '^{\prime}\right), 3.97$ ($1 \mathrm{H}, \mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}$, H3'), 2.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8$), $2.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$), $2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.41$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.08(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ = 170.1 (C5'), 156.7 (C5/C2"), 156.5 (C2"/C5), 146.0 (C3), 142.9 (C8), 140.3 (C7), 136.9 (C1/C5"), 136.9 (C5"/C1), 135.7 (C6 and C8"), 135.0 (C2), 131.9 (C7a), 130.2 (C8a), 128.7 - 127.9 (C9'/C10'/C11'/C12'/C13'/C6"/C7"/C8"/C9"/C10"), 70.9 (C3'), 67.3 (C7'), 66.8 ($\mathrm{C}^{\prime \prime}$ '), 63.8 ($\left.\mathrm{Cl}^{\prime}\right), 54.9$ (C^{\prime}), $17.7\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 17.4$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.1\left(\mathrm{CH}_{3} 7\right)$, $14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 1\right)$, $14.0\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{BN}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 660.3358$; found 660.3358 . Calcd. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{BN}_{6} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$677.3624; found 677.3625. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{BN}_{5} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$682.3178; found 682.3176 .

Compounds 27 and 28

To a stirred solution of compound $9(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 5^{\prime} - O-(tert-butyldimethylsilyl)thymidine ($18.3 \mathrm{mg}, 0.051 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(128 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv) at room temperature. The reaction mixture was then heated at $40^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}, 85: 15\right.$ to $\left.50: 50\right)$ to afford compounds $27(6.2 \mathrm{mg}, 17 \%$
yield; 27% yield considering recovered 9: 7.2 mg) and compound $28(5.3 \mathrm{mg}, 18 \%$ yield; 28% yield considering recovered 9), as red-orange solids.

27
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9\right.$ '), $7.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 12{ }^{\prime}\right), 6.33(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.8.6,5.6 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 4.84$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}$), 4.40-4.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}$), 4.30-4.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}$), 3.98$3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H1}{ }^{\prime}\right)$, $2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.63$ (1 H , ddd, $J=14.0,5.6$, $1.2 \mathrm{~Hz}, \mathrm{H} 13 '), 2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right)$, $2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.07(1 \mathrm{H}, \mathrm{ddd}, J=14.0,8.4,5.6 \mathrm{~Hz}, \mathrm{H} 13$ '), 1.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 11^{\prime}$), $1.14\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $0.94\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} 4{ }^{\prime \prime}\right), 0.14\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} 3 "\right), 0.13\left(3 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} 3^{\prime \prime}\right) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta=163.6$ (C10'), 156.6 (C5), 150.1 (C8'), 146.2 (C3), 142.9 (C8), 140.3 (C7), 137.2 (C1), 135.9 (C12'), 135.7 (C6), 134.9 (C2), 131.9 (C7a), 130.3 (C8a), 110.8 (C11'),
 $\left(\left(\mathrm{CH}_{3}\right)_{3} 4 "\right), 18.5(\mathrm{C} 4 "), 17.7\left(\mathrm{CH}_{3} 8\right), 17.6\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2} 2\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 15.4\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right)$, $15.1\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 14.0\left(\mathrm{CH}_{3} 5\right), 12.6\left(\mathrm{CH}_{3} 11\right.$ 1'), 5.2 (($\left.\left.\mathrm{CH}_{3}\right)_{2} 3^{\prime \prime}\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{BN}_{7} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 704.4128$; found 704.4147. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{BN}_{6} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 687.3863$; found 687.3876 .

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9\right.$ '), $7.41\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 12{ }^{\prime}\right), 6.24(1 \mathrm{H}, \mathrm{dd}, J=$ 7.3, 3.3 Hz, H6'), 4.84 (2H, s, H1'), 4.74-4.63 (1H, m, H14'), 4.01-3.92 (2H, m, H3'), 3.93$3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{~s}), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.49(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.41-2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 13$ '), $2.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} 1$), 2.12 ($1 \mathrm{H}, \mathrm{ddd}, J=13.8,7.5,3.4 \mathrm{~Hz}, \mathrm{H} 13$ '), $1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 11^{\prime}\right), 1.09(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6}\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz},{\left.\underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C} \mathbf{N M R}, ~}_{\text {NMR }}\right.$ ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=163.6$ (C10'), 157.4 (C5), 150.1 (C8'), 145.7 (C3), 143.2 (C8), 141.1 (C7), 136.9 (C1), 136.2 (C6/C12'), 136.2 (C12'/C6) 135.0 (C2), 132.3 (C7a), 130.4 (C8a), 110.5 (C11'), 84.6 (C4'), 83.7 (C6'), 68.6 (C3'), 67.6 (C14'), 63.3 (C1'), 39.7 (C13'), $17.8 \quad\left(\mathrm{CH}_{3} 8\right)$, $\quad 17.4 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), \quad 17.4 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), \quad 15.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 15.1\left(\mathrm{CH}_{3} 7\right)$, $14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 14.6\left(\mathrm{CH}_{3} 1\right), 14.1$ $\left(\mathrm{CH}_{3} 5\right), 12.2\left(\mathrm{CH}_{3} 11{ }^{\prime}\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{BN}_{6} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 595.2816$; found 595.2824.

Compound 29

To a stirred solution of compound $9(20.3 \mathrm{mg}, 0.052 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 2',3'-O-isopropylideneuridine ($16.3 \mathrm{mg}, 0.057 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($128 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 23 h at room temperature, a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(128 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv) was added again, followed by stirring the reaction mixture at room temperature for 4 h and at $40^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}, 90: 10\right.$ to $\left.50: 50\right)$ to afford compound 29 ($8.9 \mathrm{mg}, 28 \%$ yield; 48% yield considering recovered 9: 8.5 mg), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH} 10{ }^{\prime}\right), 7.59\left(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H} 13{ }^{\prime}\right)$, $5.97\left(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H} 7^{\prime}\right), 5.25\left(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, \mathrm{H} 12 \mathrm{'}^{\prime}\right), 5.05(1 \mathrm{H}, \mathrm{dd}, J=6.3$, $\left.2.6 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 4.71(1 \mathrm{H}, \mathrm{dd}$, $\left.J=6.3,2.9 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 4.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J=10.3,2.6 \mathrm{~Hz}, \mathrm{H} 3{ }^{\prime}\right), 3.88(1 \mathrm{H}$, dd, $J=10.3,2.6 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $2.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.47\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1^{\prime}\right), 1.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 1^{\prime \prime}\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)} .^{13} \mathbf{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=162.9\left(\mathrm{C} 11^{\prime}\right), 157.2(\mathrm{C} 5), 150.2(\mathrm{C} 9 '), 145.2(\mathrm{C} 3), 143.4(\mathrm{C} 8)$, 141.5 (C13'), 141.0 (C7), 136.8 (C1), 136.1 (C6), 134.6 (C2), 132.1 (C7a), 130.1 (C8a), 114.1 ($\left.\mathrm{C}^{\prime \prime}\right), 101.5$ (C12'), 92.3 (C7'), 85.8 (C4'), 85.2 (C^{\prime}), 81.4 (C5'), 71.3 ($\left.\mathrm{C} 3^{\prime}\right), 63.7$ (C^{\prime}), $27.2\left(\mathrm{CH}_{3} 1^{\prime \prime}\right)$, $25.4\left(\mathrm{CH}_{3} 1^{\prime \prime}\right)$, $17.8\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.4$ $\left(\mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), \quad 15.1 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), \quad 14.7$ $\left(\underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), \quad 14.6 \quad\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6\right), \quad 14.0$ $\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BN}_{6} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$637.2922; found 637.2912. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{BN}_{7} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 632.3368$; found 632.3348 .

Compound 30

To a stirred solution of compound $9(16 \mathrm{mg}, 0.041 \mathrm{mmol})$ in chloroform $(1 \mathrm{~mL})$ was added $1,2: 3,4$-di- O-isopropylidene- α-D-galactopyranose ($16.5 \mathrm{mg}, 0.061 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($409 \mu \mathrm{~L}$ of a 0.01 m solution, 0.1 equiv). After stirring for 1 day at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ (10 mL), the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by
silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound $\mathbf{3 0}$ ($12.6 \mathrm{mg}, 52 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.55(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H} 8$ ' $), 4.95(1 \mathrm{H}, \mathrm{d}, J=12.8$ Hz, H1'), 4.90 ($1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 1^{\prime}$), 4.59 ($\left.1 \mathrm{H}, \mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 4.34$ (dd, J $\left.=8.0,1.2 \mathrm{~Hz}, \mathrm{H} \mathrm{S}^{\prime}\right), 4.30\left(1 \mathrm{H}, \mathrm{ddd}, J=5.0,2.1,0.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 4.15-4.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4^{\prime}\right)$, 3.88 ($1 \mathrm{H}, \mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, \mathrm{H} 3$ '), 3.83 ($1 \mathrm{H}, \mathrm{dd}, J=10.1,6.9 \mathrm{~Hz}, \mathrm{H} 3$ '), 2.67 ($6 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} 5$ and $\left.\mathrm{CH}_{3} 8\right), 2.56\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.45(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 2 \mathrm{l}\right), 1.47(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 1^{\prime \prime}\right), 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1^{\prime \prime}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 2^{\prime \prime}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $1.06\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)}{ }^{13} \mathbf{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.7(\mathrm{C} 5), 148.1$ (C3), 142.5 (C8), 139.6 (C7), 137.3 (C1), 135.3 (C2/C6), 135.2 (C6/C2), 131.5 (C7a), 130.3 (C8a), 127.3 (q, $J_{C B}=76.9 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 109.3 (C1"), 108.7 (C2"), 96.5 (C8'), 71.2 (C5'), 70.8 (C^{\prime} and C7'), 70.0 (C^{\prime} '), 67.0 (C 4 '), 64.4 ($\left.\mathrm{Cl}^{\prime}\right), 26.2$ ($\left.\mathrm{CH}_{3} 1^{\prime \prime} / \mathrm{CH}_{3} 2^{\prime \prime}\right)$, $26.2\left(\mathrm{CH}_{3} 2\right.$ "/CH31"), $25.1\left(\mathrm{CH}_{3} 2 \mathrm{C}\right), 24.5\left(\mathrm{CH}_{3} 1\right.$ " $), 17.7\left(\mathrm{CH}_{3} 8\right), 17.4$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.4$
$\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), 15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$, 14.8 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, 13.9 $\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{BN}_{5} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$608.3620; found 608.3606. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{BN}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$613.3174; found 613.3157 .

Compound 31

To a stirred solution of compound $9(11 \mathrm{mg}, 0.028 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added cholesterol $(16.5 \mathrm{mg}, 0.042 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 90 min at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound 31 ($12.5 \mathrm{mg}, 80 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1\right.$ '), $3.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right)$, $2.67\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.56\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.55-2.52(\mathrm{~m}, 1 \mathrm{H})$, $2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.36-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.06(\mathrm{~m}, 20 \mathrm{H}), 1.13(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{dd}, J=6.6,1.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.3(\mathrm{C} 5)$, 148.9 (C3), 142.4 (C8), 140.9, 139.4 (C7), 137.6 (C1), 135.1 (C2/C6), 135.1 (C6/C2), 131.4 (C7a), 130.2 (C8a), 127.4 (q, $J_{C B}=74.5 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 121.9, 80.2 (C3'), 61.5 (C1'), $56.9,56.3,50.3,42.5,40.0,39.7,39.0,37.4,37.0,36.4,35.9,32.1,32.1,28.4,28.3,28.2$, 24.5, 24.0, 23.0, 22.7, 21.2, 19.6, 18.9, $17.6\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} 8\right), 17.6\left(\mathrm{CH}_{3} 8 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 1\right), 13.9$ $\left(\mathrm{CH}_{3} 5\right), 12.0$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{73} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 734.5911$; found 734.5908. Calcd. for $\mathrm{C}_{47} \mathrm{H}_{69} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 739.5465$; found 739.5457.

Compound 32

To a stirred solution of compound $9(25 \mathrm{mg}, 0.064 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added 2-chloro- N-(2-(2-hydroxyethoxy)ethyl)acetamide ($17.5 \mathrm{mg}, 0.096 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(320 \mu \mathrm{~L}$ of a 0.01 m solution, 0.05 equiv). After stirring for 24 h at $45^{\circ} \mathrm{C}$, a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}(160 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv) was added to the mixture again. After stirring for an additional 6 h at $50^{\circ} \mathrm{C}$, the reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 80:20 to 25:75) to afford compound 32 ($23.4 \mathrm{mg}, 71 \%$ yield; 95% yield considering recovered 9: 6.3 mg), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.09\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 8\right.$ '), $4.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right), 3.97(2 \mathrm{H}, \mathrm{s}$, H10'), 3.83 ($\left.2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 3.74\left(2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{H} 4{ }^{\prime}\right), 3.60(2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}$, H^{\prime}), $3.49\left(2 \mathrm{H}, \mathrm{q}, J=5.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$, $2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5 / \mathrm{CH}_{3} 8\right)$, $2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8 / \mathrm{CH}_{3} 5\right)$, $2.54\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.40(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=166.3(\mathrm{C} 9$ '), $156.0(\mathrm{C} 5), 147.4(\mathrm{C} 3), 142.7$ (C8), 140.0 (C7), 137.3 (C1), 135.5 (C6), 134.8 (C2), 131.7 (C7a), 130.3 (C8a), 127.4 (q, $J_{C B}=74.7 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 70.6 ($\left.\mathrm{C}^{\prime} / \mathrm{C} 4{ }^{\prime}\right), 70.5\left(\mathrm{C}^{\prime} / \mathrm{C} 3^{\prime}\right), 69.5\left(\mathrm{C}^{\prime}\right), 64.2\left(\mathrm{C} 1^{\prime}\right), 42.8(\mathrm{C10})$, 39.8 (C7'), $17.7 \quad\left(\mathrm{CH}_{3} 8\right), \quad 17.5 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 6}\right), \quad 17.4 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), \quad 15.3$ $\left(\mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), \quad 15.0 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), \quad 14.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), \quad 14.6 \quad\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), \quad 13.9$ $\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BClN}_{5} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 534.2418\left({ }^{35} \mathrm{Cl}\right)$, 536.2400 $\left({ }^{37} \mathrm{Cl}\right)$; found $534.2440\left({ }^{35} \mathrm{Cl}\right), 536.2414\left({ }^{37} \mathrm{Cl}\right)$.

Compound 33

To a stirred solution of compound $9(25 \mathrm{mg}, 0.064 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added 2-iodo- N -(2-(2-hydroxyethoxy)ethyl)acetamide ($26.2 \mathrm{mg}, 0.096 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(320 \mu \mathrm{~L}$ of a 0.01 m solution, 0.05 equiv). After stirring for 8 h at $60^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and stirred for an additional 22 h . The reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 80:20 to 30:70) to afford compound 33 ($34 \mathrm{mg}, 88 \%$ yield; 95% yield considering recovered 9: 2 mg), as a redorange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.03\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 8\right.$ '), $4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Hl}{ }^{\prime}\right), 3.86-3.83(2 \mathrm{H}, \mathrm{m}$, H3'), 3.76-3.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}$), 3.58 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 10^{\prime}$), 3.56 ($2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{H} 6$ '), 3.43 (2 H , $\left.\mathrm{q}, J=5.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5 / \mathrm{CH}_{3} 8\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8 / \mathrm{CH}_{3} 5\right), 2.53(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.39(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 1\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=167.8(\mathrm{C} 9 '), 156.1(\mathrm{C} 5), 147.2(\mathrm{C} 3), 142.8(\mathrm{C} 8), 140.2(\mathrm{C} 7), 137.2$ (C1), 135.6 (C6), 134.8 (C2), 131.8 (C7a), 130.3 (C8a), 127.4 (q, $J_{C B}=74.8 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 70.9 (C3'), 70.5 (C4'), 69.6 (C6'), 64.1 ($\mathrm{C} 1 '), 40.2$ (C7'), 17.7 ($\left.\mathrm{CH}_{3} 8\right), 17.5$
$\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 15.0$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.7\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right)$, $14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 14.0\left(\mathrm{CH}_{3} 5\right)$, $-0.2\left(\mathrm{C10} 0^{\prime}\right)$. HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BIN}_{5} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 626.1775$; found 626.1797. calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BIN}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 604.1955$; found 604.1946. calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{BIN}_{6} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 621.2221$; found 621.2209 .

Compound 34

To a stirred solution of compound $\mathbf{9}(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)methanol ($7.7 \mathrm{mg}, 0.038 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($64 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1 day at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 65:35) to afford compound $\mathbf{3 4}(7 \mathrm{mg}, 51 \%$ yield) , as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.58\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 6 '\right.$ and $\left.\mathrm{H} 14{ }^{\prime}\right), 7.66(2 \mathrm{H}, \mathrm{d}, J$ $=8.2 \mathrm{~Hz}, \mathrm{H} 5{ }^{\prime}$ and $\left.\mathrm{H} 15^{\prime}\right), 4.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3^{\prime}\right), 4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1^{\prime}\right), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 11^{\prime}\right), 2.70$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.54\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.47(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.10(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta=167.3$ (C11'), 164.2 (C8'), 156.2 (C5), 147.2 (C3), 143.0 (C4'), 142.7 (C8), 140.0 (C7a), 137.2 (C8a), 135.6 (C7), 135.0 (C1), 131.7 (C6), 131.2 (C7'), 130.3 (C2), 128.8 (C5' and C15'), 128.1 (C^{\prime} and C14'), 127.4 ($\mathrm{q}, J_{C B}=74 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 73.0 ($\left.\mathrm{C} 3^{\prime}\right)$, $63.7\left(\mathrm{Cl}^{\prime}\right)$, $21.3\left(\mathrm{CH}_{3} 11^{\prime}\right)$, $17.7\left(\mathrm{CH}_{3} 8\right)$, $17.5\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 15.3$ $\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.7\left(\mathrm{CH}_{3} 1\right), 14.6\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 14.0$ $\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{BN}_{8} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$555.2768; found 555.2753. Calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{BN}_{9} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 550.3214$; found 550.3203.

Compound 35

To a stirred solution of $(1 R, 8 S, 9 s)$-bicyclo[6.1.0]non-4-yn-9-ylmethanol ($5.7 \mathrm{mg}, 0.038$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added tetrakis(acetonitrile)copper(I) tetrafluoroborate ($12.3 \mathrm{mg}, 0.038 \mathrm{mmol}$) at room temperature. After stirring the mixture for 1 h at the room temperature, complexation of the alkyne with copper was completed (as judged from TLC analysis). To this mixture was added compound 9 ($14 \mathrm{mg}, 0.036$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($90 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv) at room temperature. After stirring for 22 h at room temperature, an aqueous ammonia solution $(30 \%, 0.3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were added at room temperature. After stirring for 5 minutes at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the mixture was extracted with water $(15 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound $\mathbf{3 5}(9.1 \mathrm{mg}, 53 \%$ yield; 60% yield considering recovered 9: 1.8 mg), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.84(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1 '), 3.75(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H} 3$ '), 2.68 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.46(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.37-2.15\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 ', \mathrm{H}^{\prime}, \mathrm{H}^{\prime} 0^{\prime}\right.$ and $\left.\mathrm{H}_{1} 1^{\prime}\right), 1.70-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right.$ and H11'), $1.51-1.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}\right), 1.13(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 0.99-0.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5\right.$ ' and H12'). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.6$ (C5), 148.3 (C3), 142.5 (C8), 139.7 (C7), 137.5 (C1), 135.3 (C6), 135.0 (C2), 131.5 (C7a), 130.2 (C8a), 127.5 ($\mathrm{q}, J_{C B}=74.5 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 99.1 (C^{\prime} and C 9 '), 68.6 ($\left.\mathrm{C} 3^{\prime}\right), 63.9\left(\mathrm{Cl}^{\prime}\right), 29.3$ (C^{\prime} and $\mathrm{C} 11^{\prime}$), 21.7 (C 7 ' and $\mathrm{C} 10^{\prime}$), 20.1 ($\mathrm{C} 5 '$
and $\left.\mathrm{C} 12{ }^{\prime}\right)$, $18.8\left(\mathrm{C}^{\prime}\right)$, $17.6\left(\mathrm{CH}_{3} 8\right)$, $17.5\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.2$ $\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), \quad 15.0 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), \quad 14.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \underline{C H}_{2} 2\right), \quad 14.6 \quad\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{C H}_{3} \mathrm{CH}_{2} 6\right), \quad 13.9$ $\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$498.3404; found 498.3403. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 503.2958$; found 503.2954. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BN}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 481.3139$; found 481.3128 .

Compound 36

To a stirred solution of compound $9(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added oleic acid $(16.77 \mu \mathrm{~L}, 0.051 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($64 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 93:7 to 70:30) to afford compound 36 ($12.5 \mathrm{mg}, 80 \%$ yield; 86% considering recoverd $9: 1.8 \mathrm{mg}$), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.36(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1 '), 5.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 11 \mathrm{l}$ and H 12 '), 2.63 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.34(3 \mathrm{H}, \mathrm{s}$,
$\mathrm{CH}_{3} 7$), $2.33\left(\mathrm{~s}, \mathrm{CH}_{3} 1\right), 2.28\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 1.98-1.89$ ($4 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 10$ ' and $\mathrm{H} 13^{\prime}$), 1.58 (2H, m, H5'), 1.30-1.16 (20H, br m, H6', H7',H8', H9'and H14', H15', H16', H17', $\mathrm{H}_{18 \prime}$ and H19'), $1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, $0.81\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 20^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=173.6\left(\mathrm{C} 3^{\prime}\right), 157.6(\mathrm{C} 5)$, 143.9 (C3), 142.9 (C8), 140.7 (C7), 136.4 (C1), 136.1 (C6), 135.0 (C2), 132.3 (C7a), 130.6 (C8a), 130.2, 130.0, 130.0, 129.9 (from 130.2 to 129.9: C11' and C12'), 127.1 (q, $\left.J_{C B}=74.2 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 56.3\left(\mathrm{Cl}^{\prime}\right), 34.2\left(\mathrm{C}^{\prime}\right), 32.0,29.9,29.9,29.8,29.7,29.5,29.5$, 29.3, 29.3, 29.2, 29.2 (from 32.0 to 29.2: C6'-C9'/C14'-C19'), 27.4 (C10' and C13'), 24.9 (C5'), 22.8 ($\left.\mathrm{C} 14{ }^{\prime}-\mathrm{C}_{1} 9^{\prime} / \mathrm{C}^{\prime}-\mathrm{C} 9 '\right), 17.8\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.7\left(\mathrm{CH}_{3} 7\right)$, $14.6\left(\mathrm{CH}_{3} 1\right)$, $14.3\left(\mathrm{C}_{2} 0^{\prime}\right), 14.1\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{BN}_{5} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$630.4920; found 630.4931. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{BN}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 635.4473$; found 635.4492 .

Compound 37

To a stirred solution of compound $9(20.3 \mathrm{mg}, 0.052 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added methacrylic acid ($4.41 \mu \mathrm{~L}, 0.052 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($192 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 3.5 h at room temperature, additional methacrylic acid $(4.41 \mu \mathrm{~L}, 0.052 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}(192 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv) were added to the mixture again. After stirring for an additional 2 h at room temperature, the reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $80: 20$) to afford compound $\mathbf{3 7}(7.2 \mathrm{mg}, 33 \%$ yield; 46% yield considering recoverd $\mathbf{9}$: 5.7 mg), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.23(1 \mathrm{H}, \mathrm{br}$ s, H5'), $5.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 5$ '), $5.53(2 \mathrm{H}, \mathrm{s}$, H1'), $2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.55-2.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $\left.2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4\right)^{\prime}\right), 1.08(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=167.1\left(\mathrm{C}^{\prime}\right), 157.7(\mathrm{C} 5)$, 143.8 (C3), 143.0 (C8), 140.7 (C7), 136.5 (C1), 136.2 (C6), 135.9 (C4'), 135.3 (C2), 132.3 (C7a), 130.5 (C8a), 127.1 (q, $J_{C B}=74.9 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 126.7 (C5'), 56.55 (C1'), 18.6 $\left(\mathrm{CH}_{3} 4\right)$, $17.8\left(\mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2} / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.5$ $\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), \quad 15.1 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), \quad 14.7$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), \quad 14.7 \quad\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), \quad 14.1$ $\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BN}_{5} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$434.2727; found 434.2730.

Compound 38

To a stirred solution of compound $9(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DL- α-lipoic acid ($53.4 \mathrm{mg}, 0.256 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($130 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}, 100: 0\right.$ to $\left.94: 6\right)$ to afford compound 38 (15.6 $\mathrm{mg}, 57 \%$ yield, 98% yield considering recovered 9: 8.4 mg), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.43(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1 '), 3.55\left(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{H} 8{ }^{\prime}\right), 3.24-$ $3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 10\right.$ '), $2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.54-2.42(7 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} 2, \mathrm{CH}_{3} \mathrm{CH}_{2} 6, \mathrm{H}^{\prime}$ 'and H^{\prime} '), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7$), $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$), 1.95-1.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 9$ '), 1.76-1.60 (4H, m, H5' and H7'), 1.54-1.41 (2H, m, H6'), 1.09 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$
$\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 3\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $=173.3$ (C3'), 157.7 (C5), 143.7 (C3), 142.9 (C8), 140.8 (C7), 136.4 (C1), 136.2 (C6), $135.0(\mathrm{C} 2), 132.3(\mathrm{C} 7 \mathrm{a}), 130.6(\mathrm{C} 8 \mathrm{a}), 127.1\left(\mathrm{q}, J_{C B}=74.4 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 56.5(\mathrm{C} 8$ '), 56.3 (C^{\prime}), 40.3 (C^{\prime}), 38.6 ($\left.\mathrm{C} 10^{\prime}\right), 34.7$ ($\left.\mathrm{C}^{\prime}\right), 33.9$ (C^{\prime}), 28.8 ($\left.\mathrm{C}^{\prime}\right), 24.6$ ($\left.\mathrm{C}^{\prime}\right), 17.8\left(\mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.6$
$\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), 15.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 14.7}\right.$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), 14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.1$ $\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{BN}_{5} \mathrm{O}_{2} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$554.2794; found 554.2798. calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{BN}_{4} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 559.2348$; found 559.2343.

Compound 39

Chloride to tetrafluorborate exchange

To a stirred solution of L-carnitine chloride ($25 \mathrm{mg}, 0.126 \mathrm{mmol}$) in EtOH (2 mL) was added $\mathrm{AgBF}_{4}(24.6 \mathrm{mg}, 0.126 \mathrm{mmol})$ at room temperature in the dark. After stirring the mixture at room temperature in the dark for 1 h , it was filtered through cotton. The filtrate was evaporated under vacuum to afford L-carnitine tetrafluoroborate ($30.5 \mathrm{mg}, 97 \%$ yield), as a white solid.

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ was added L-carnitine tetrafluoroborate ($19.1 \mathrm{mg}, 0.077 \mathrm{mmol}$) (the mixture was treated in an ultrasound bath to dissolve the carnitine salt). A solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{MeCN}(192 \mu \mathrm{~L}$ of a 0.01 m solution, 0.05 equiv) was then added dropwise at room temperature. The stirred reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ under microwave irradiation for 8 h . Aqueous $\mathrm{HCl}(4 \mathrm{~mL}, 0.01 \mathrm{~m})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ were added to the reaction mixture and stirred for 5 minutes at room temperature (BF_{4}^{-}to Cl^{-}exchange). The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$

20 mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0\right.$ to $\left.70: 30\right)$ to afford compound 39 ($3.8 \mathrm{mg}, 20 \%$ yield; 38% yield considering recovered $9: 7.1 \mathrm{mg}$), as a redorange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.48-5.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H1}{ }^{\prime}\right), 4.71-4.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} \mathbf{S}^{\prime}\right)$, 4.25 ($\left.1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{OH} 5^{\prime}\right), 3.54\left(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 3.39(1 \mathrm{H}, \mathrm{dd}, J=13.5$, $\left.10.2 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 3.22\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} 6^{\prime}\right), 2.73$ (3H, s, $\left.\mathrm{CH}_{3} 8\right)$, 2.71-2.60 (2H, m, H4'), 2.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$), 2.55-2.45 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} 6$), $2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right.$), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1$), 1.13-1.05 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} 6$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ MHz): $\delta=170.0$ (C3'), 157.9 (C5), 143.6 (C8), 142.2 (C3), 141.5 (C7), 136.9 (C1), 136.4 (C6), 135.9 (C2), 132.5 (C7a), 130.7 (C8a), 126.1 (q, $J_{C B}=76.4 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 69.6 (C6'), 63.5 (C5'), 56.9 ($\left.\mathrm{Cl}^{\prime}\right), 54.8\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}^{\prime}\right)$, 40.3 ($\left.\mathrm{C}^{\prime}\right), 17.9\left(\mathrm{CH}_{3} 8\right), 17.4$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 15.5$ $\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right)$, $15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$, 14.7 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), 14.7\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.1$ $\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{BN}_{5} \mathrm{O}_{3}[\mathrm{M}]^{+} 492.3145$; found 492.3144 .

Compound 41

To a stirred solution of compound $9(15.1 \mathrm{mg}, 0.039 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2$ mL) was added 1-octadecanethiol ($13.6 \mathrm{mg}, 0.046 \mathrm{mmol}$) at room temperature. A solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv) was then added dropwise. After stirring for 20 min at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $97: 3$) to afford compound 41 ($22.1 \mathrm{mg}, 93 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H1}{ }^{\prime}\right), 2.78(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H} 3$ '), 2.68 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.58\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.46(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.68(2 \mathrm{H}, \mathrm{p}, J=7.4 \mathrm{~Hz}$, H4'), 1.45-1.37 (2H, m, H5'), 1.26 (28H, br s, H6', H7', H8', H9', H10', H11', H12', H13', H14', H15', H16', H17', H18' and H19'), $1.16\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.07(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{2} 0^{\prime}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=$ 154.6 (C5), 149.5 (C3), 141.7 (C8), 139.1 (C7), 138.1 (C1), 135.0 (C6), 134.7 (C2), $131.1(\mathrm{C} 7 \mathrm{a}), 130.3(\mathrm{C} 8 \mathrm{a}), 127.4\left(\mathrm{q}, J_{C B}=74.3 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 34.3(\mathrm{C} 3$ '), 32.1
(C18'/C19'), 29.9-29.8 (C6'-C17'), 29.7 (C4'), 29.1 (C5'), 28.4 (C1'), 22.4 (C19'/C18'), $17.6\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 17.5\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $14.8\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 14.3\left(\mathrm{C}_{2} 0^{\prime}\right), 13.8\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{65} \mathrm{BN}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 634.5055$; found 634.5069. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{BN}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 639.4609$ found; 639.4622 .

Compound 42

To a stirred solution of compound $9(12.4 \mathrm{mg}, 0.032 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2$ mL) was added $3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10$-heptadecafluoro-1-decanethiol (11.1 $\mu \mathrm{L}, 0.038 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 30 min at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $80: 20$) to afford compound $\mathbf{4 2}$ ($24.8 \mathrm{mg}, 96 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.20(2 \mathrm{H}, \mathrm{s}, \mathrm{H1}), 3.00\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{H} \mathbf{H}^{\prime}\right), 2.69$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.53-2.50(2 \mathrm{H}, \mathrm{m}$, H4'), $2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.16$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): ~ \delta=155.8(\mathrm{C} 5), 147.0(\mathrm{C} 3), 142.1(\mathrm{C} 8), 139.8(\mathrm{C} 6), 137.8(\mathrm{C} 1), 135.5(\mathrm{C} 7), 134.5$ (C2), 131.5 (C7a), 130.3 (C8a), $127.4\left(\mathrm{q}, J_{C B}=74.2 \mathrm{~Hz}, 2 \times \mathrm{CN}\right.$), 118.7-108.3 (m, $8 \mathrm{CF}_{\mathrm{n}}$
$\mathrm{n}=2,3$; C5', C6', C7', C8', C9', C10', C11' C12'), 32.0 (t, $\left.J_{C F}=22.1 \mathrm{~Hz}, \mathrm{C} 4{ }^{\prime}\right), 28.5(\mathrm{C1}$ '), $24.5\left(\mathrm{t}, J_{C F}=4.1 \mathrm{~Hz}, \mathrm{C} 3\right.$ '), $17.6\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 17.4\left(\mathrm{CH}_{3} 8\right), 15.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.7\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{BF}_{17} \mathrm{~N}_{5} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 828.2200$; found 828.2239.

Compound 43

To a stirred solution of compound $9(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 4-methylbenzenethiol $(6.49 \mathrm{mg}, 0.051 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(128 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv. After stirring for 1 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The resultant crude was washed with hexane to afford compound $\mathbf{4 3}$ ($23 \mathrm{mg}, 98 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.49(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H} 4$ ' and H 8 '), $7.15(2 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}, \mathrm{H}^{\prime}$ and H 7 '), $4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1\right.$ '), $2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.51(2 \mathrm{H}$, $\left.\mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.49\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 6\right.$ '), $1.12\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.08(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=155.3(\mathrm{C} 5), 147.4(\mathrm{C} 3), 141.9(\mathrm{C} 8)$, 139.5 (C7), 137.8 (C1), 137.5 (C6'), 135.2 (C6), 134.9 (C2), 132.4 (C3'), 132.0 (C4' and C8'), 131.4 (C7a), 130.4 (C8a), 130.0 (C5' and C7'), 127.4 ($\mathrm{q}, J_{C B}=74.2 \mathrm{~Hz}, 2 \times \mathrm{CN}$), $32.5\left(\mathrm{Cl}^{\prime}\right), 21.3\left(\mathrm{CH}_{3} 6\right.$ '), $17.6\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.8\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right) 14.8\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BN}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$472.2706; found 472.2734.

Compound 44

To a stirred solution of compound $9(14.9 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2$ mL) was added 2,3,4,5,6-pentafluorothiophenol ($6.3 \mu \mathrm{~L}, 0.046 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 68:32) to afford compound 44 ($14.8 \mathrm{mg}, 73 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 5\right), 2.58\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}_{2} \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.41(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} 7\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.19\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 1.08(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=157.0(\mathrm{C} 5), 147.5$ ($\left.\mathrm{m}, \mathrm{C}^{\prime} / \mathrm{C}^{\prime} / \mathrm{C}^{\prime} / \mathrm{C} 7^{\prime} / \mathrm{C}^{\prime}\right)$, 144.4 (C3), 142.4 (C8), 141.9 (m, C5'/C6'/C7'/C8'/C4'), 140.4 (C7), 138.0 (m, C6'/C7'/C8'/C4'/C5') 137.3 (C1), 136.0 (C6), 134.9 (C2), 132.0 (C7a), 130.5 (C8a), 127.2 $\left(\mathrm{q}, J_{C B}=74.1 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 109.1\left(\mathrm{~m}, \mathrm{C} 3^{\prime}\right), 31.0\left(\mathrm{Cl}^{\prime}\right), 17.7\left(\mathrm{CH}_{3} 8\right), 17.6\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right)$, $17.4 \quad\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 6}\right), \quad 15.1 \quad\left(\mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), \quad 15.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), \quad 14.7 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), \quad 14.7$ $\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.0\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BF}_{5} \mathrm{~N}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 548.2078$; found 548.2061.

Compound 45

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added N-acetyl-L-cysteine ($7.53 \mathrm{mg}, 0.046 \mathrm{mmol}$) (treated in an ultrasounds bath to dissolve the amino acid) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(192 \mu \mathrm{~L}$ of a 0.01 m solution, 0.05 equiv). After stirring for 2.5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound $\mathbf{4 5}$ ($18 \mathrm{mg}, 94 \%$ yield), as a redorange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CONH}^{\prime} / \mathrm{COOH} 4 '\right), 5.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{COOH}^{\prime} / \mathrm{CH}_{3} \mathrm{CONH} 4{ }^{\prime}\right)$, 4.76-4.67 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}^{\prime}$), $4.22\left(1 \mathrm{H}, \mathrm{d}, J_{A B}=12.5 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 4.14$ $\left(1 \mathrm{H}, \mathrm{d}, J_{A B}=12.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J_{A B}=13.2,6.4 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J_{A B} 13.2\right.$, $\left.3.3 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 2.67\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5 / \mathrm{CH}_{3} 8\right), 2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2}\right.$), $2.47(2 \mathrm{H}, \mathrm{q}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{C H}_{2} 6\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CONH} 4\right)$, $1.14\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)}\right.$), $1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta=172.6\left(\mathrm{CH}_{3} \mathrm{CONH} 4{ }^{\prime} / \mathrm{COOH} 4 '\right)$, $172.4\left(\mathrm{COOH}^{\prime} / \mathrm{CH}_{3} \underline{\mathrm{CONH}} 4^{\prime}\right)$, 155.5 (C5), 146.9 (C3), 142.3 (C8), 140.0 (C7), 138.1 (C1), 135.5 (C6), 134.9 (C2), 131.5 (C7a), $130.4(\mathrm{C} 8 \mathrm{a}), 127.5\left(\mathrm{q}, J_{C B}=72.5 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 52.7(\mathrm{C} 4 '), 34.9\left(\mathrm{C} 3^{\prime}\right), 28.8\left(\mathrm{C} 1^{\prime}\right)$, $22.7\left(\mathrm{CH}_{3} \mathrm{CONH} 4 '\right), 17.6\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $15.0\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.7\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BN}_{5} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 516.2216$; found 516.2229. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{BN}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 494.2396$; found 494.2415 .

Compound 46

To a stirred solution of compound $9(14.6 \mathrm{mg}, 0.037 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added trimethylsilyl azide $(10.5 \mu \mathrm{~L}, 0.075 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 90:10 to 50:50) to afford compound 46 ($11.5 \mathrm{mg}, 82 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1^{\prime}\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5 / \mathrm{CH}_{3} 8\right), 2.70(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3} 8 / \mathrm{CH}_{3} 5\right), 2.55\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.48\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right)$, $2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 1.15\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)}\right.$), $1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=157.5(\mathrm{C} 5), 143.5$ (C3), 143.0 (C8), 140.9 (C1), 136.9 (C7), 136.1 (C6), 134.7 (C2), 132.2 (C7a), 130.2 (C8a), $127.2\left(\mathrm{q}, J_{C B}=74.4 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 45.2\left(\mathrm{C}^{\prime}\right), 17.8\left(\mathrm{CH}_{3} 8\right), 17.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 17.4$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.7\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$, $14.1\left(\mathrm{CH}_{3} 5\right)$. HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BN}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$396.2084; found 396.2073.

Compound 47

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added naphthalene-2-sulfonamide ($9.9 \mathrm{mg}, 0.046 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(96 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic
layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, $95: 5$ to $84: 16$) to afford compound 47 (15.3 mg , 74% yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 11)^{\prime}\right), 8.02(2 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}$, H7'/H10'/H6'), 7.95-7.87 (2H, m, H5' and H6'/H7'/H10'), 7.70-7.56 (2H, m, H8' and H9'), $5.55\left(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 4.46\left(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.64(2 \mathrm{H}$, q, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.44\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7$), $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.17\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.05(3 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) . ~}{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=156.3(\mathrm{C} 5), 144.7(\mathrm{C} 3), 142.3(\mathrm{C} 8)$, 140.7 (C7), 137.7 (C1), 136.4 (C4'), 135.7 (C6), 135.4 (C2), 135.2 (C6'a/C10'a), 132.4 (C10'a/C6'a), 131.7 (C7a), 130.2 (C8a), 129.9 (C7'/10'/C6'), 129.5 (C10'/C7'/C6'), 128.9 (C11'/C8'/C9'), 128.7 (C8'/C11'/C9'), 128.4 ($\mathrm{q}, J_{C B}=74.1 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 128.1 ($\left.\mathrm{C}^{\prime} / \mathrm{C} 77^{\prime} / \mathrm{C} 100^{\prime}\right), 127.6$ ($\mathrm{C}^{\prime} / \mathrm{C} 8$ '), 122.4 (C^{\prime}) 38.2 (C^{\prime}), $17.7\left(\mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $17.0\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.2\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.7\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 1\right), 13.8$ $\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$555.2713; found 555.2739.

Compound 48

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added N-benzyl-p-toluenesulfonamide ($12.1 \mathrm{mg}, 0.046 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($192 \mu \mathrm{~L}$ of a 0.01 M solution, 0.05 equiv). After stirring for 7 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\mathrm{mL})$. The combined organic phases were washed with brine, dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound $\mathbf{4 8}$ ($11.1 \mathrm{mg}, 49 \%$ yield; 68% yield considering recovered $9: 4.3 \mathrm{mg}$), as a redorange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.82\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right.$ and $\left.\mathrm{H} 9 '\right), 7.42(2 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}, \mathrm{H}^{\prime}$ and $\mathrm{H} 8^{\prime}$), 7.23-7.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime \prime}$ and H7"), 7.09-6.96 (3H, m, H4", H5" and H6"), 4.83 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime}$), 4.41 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime \prime}$), 2.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$), 2.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8$), 2.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7^{\prime}$), $2.46\left(2 \mathrm{H}, \mathrm{q}, ~ J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.34(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J$ $\left.=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.07\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.93(3 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .}{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=154.9(\mathrm{C} 5), 145.4(\mathrm{C} 3), 144.1$ (C7'), 142.2 (C8), 139.6 (C7), 138.1 (C1), 136.7 (C2), 136.5 (C2"), 135.2 (C6), 135.0 (C4'), 131.0 (C7a), 130.3 (C6' and C8'), 130.2 (C8a), 128.9 (C3" and C7"), 127.8 (q, $J_{C B}$ $=74.1 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 127.5 (C5'/C9'/C4"/C5"/C6"), 127.4 (C9'/C4"/C5"/C6"/C5'), 127.0 (C4"/C5"/C6"/C5'/C9'), 52.9 (C1"), 46.8 (C1'), $21.8\left(\mathrm{CH}_{3} 7{ }^{\prime}\right), 17.6\left(\mathrm{CH}_{3} 8\right), 17.4$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.0\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.0\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.0$ $\left(\mathrm{CH}_{3} 1\right), 13.8\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$609.3184; found 609.3166.

Compound 49

To a solution of compound $9(25.0 \mathrm{mg}, 0.064 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$, 2nitroimidazole ($7.2 \mathrm{mg}, 0.064 \mathrm{mmol}$) and $\mathrm{Sc}(\mathrm{OTf})_{3}(3.1 \mathrm{mg}, 0.0064 \mathrm{mmol})$ were added and the mixture was stirred at room temperature. After stirring for 25 hours at room temperature, another equal portion of $\mathrm{Sc}(\mathrm{OTf})_{3}$ was added and the reaction was stirred for another 28 hours before quenching with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure. The resulting crude was purified by flash chromatography (hexane/AcOEt, 100:0 to 30:70), to afford compound 49 (20.1 mg , 71%), as a red solid.
${ }^{1} \mathbf{H} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=7.09\left(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{H} 5{ }^{\prime}\right), 6.90(1 \mathrm{H}, \mathrm{d}, J=$ $\left.1.1 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 6.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Hl}^{\prime}\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.49(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.31(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$. ${ }^{13} \mathbf{C}$ RMN $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=159.8(\mathrm{C} 5), 145.1(\mathrm{C} 3$ '), $143.2(\mathrm{C} 8), 142.1$ (C7), 139.5 (C2), 137.2 (C6), 136.5 (C1), 134.4 (C3), 132.9 (C7a), 130.3 (C8a), 128.4 (C5'), 126.6 ($2 \times \mathrm{CN} \mathrm{q}, J=74.0 \mathrm{~Hz}$), 125.1 (C^{\prime}), 44.6 (C 10$), 17.9\left(\mathrm{CH}_{3} 8\right), 17.4$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.3\left(\mathrm{CH}_{3} 7\right)$, $14.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, 14.6 $\left(\mathrm{CH}_{3} 1\right), 14.3\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BN}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}] 466.2137$; found 466.2139 .

Compound 50

To a stirred solution of compound 9 (23. mg, 0.059 mmol$)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added chlorotrimethylsilane ($150 \mu \mathrm{~L}, 1.18 \mathrm{mmol}$) at room temperature. After stirring for 24 h at room temperature, the solvent was removed at reduced pressure to afford compound $\mathbf{5 0}$ ($21.6 \mathrm{mg}, 100 \%$ yield), as an orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime}\right), 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 8\right), 2.57\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 2.48\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.42(3 \mathrm{H}$, s, $\mathrm{CH}_{3} 7$), $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.17\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.09(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=157.7(\mathrm{C} 5), 144.8(\mathrm{C} 3), 142.9(\mathrm{C} 8), 140.8$ (C7), 136.9 (C1), 136.2 (C6), 134.9 (C2), 132.2 (C7a), 130.3 (C8a), 127.0 ($\mathrm{q}, J_{C B}=74.3$ $\mathrm{Hz}, 2 \times \mathrm{CN}), 35.6\left(\mathrm{Cl}^{\prime}\right), 17.8(\mathrm{C} 8), 17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 15.1\left(\mathrm{CH}_{3} 7\right), 15.0$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.7\left(\mathrm{CH}_{3} 1\right.$ and $\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.1\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BN}_{4}[\mathrm{M}-\mathrm{Cl}]^{+}$331.2092; found 331.2101.

Compound 51

To a stirred solution of compound $\mathbf{5 0}(9.4 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added triethylphosphite ($5.9 \mu \mathrm{~L}, 0.033 \mathrm{mmol}$) at room temperature. The stirred reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 30 min and at $120^{\circ} \mathrm{C}$ for 4.5 h , under microwave irradiation. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 70:30 to 30:70) to afford compound 51 ($10.2 \mathrm{mg}, 85 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.19-4.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{and} \mathrm{H} 7\right.$ '), $3.70\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HP}}=27.8\right.$ $\left.\mathrm{Hz}, \mathrm{H} 1^{\prime}\right), 2.73\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.68\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.46(2 \mathrm{H}$, $\left.\mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 1.30\left(6 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}^{\prime}\right.$ and $\left.\mathrm{H}^{\prime}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.06\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=154.8(\mathrm{C} 5), 144.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}, \mathrm{C} 3\right), 141.8(\mathrm{C} 8), 139.1(\mathrm{C} 1)$, 138.3 (C7), 135.1 (C2 and C6), $131.2(\mathrm{C} 7 \mathrm{a} / \mathrm{C} 8 \mathrm{a}), 130.9$ (C8a/C7a), 127.1 ($\mathrm{q}, J_{C B}=74.1$ $\mathrm{Hz}, 2 \times \mathrm{CN}), 62.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}, \mathrm{C} 4^{\prime}\right.$ and C7'), $27.7\left(\mathrm{~d}, J_{\mathrm{CP}}=140.8 \mathrm{~Hz}, \mathrm{C} 1 '\right), 17.7$ $\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 16.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{C} 5 '\right.$ and $\left.\mathrm{C} 8{ }^{\prime}\right) 15.0$ $\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right), \quad 14.9 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), \quad 14.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 14.6\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, 13.9 (C5). ${ }^{31} \mathbf{P}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=22.1$
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{BN}_{4} \mathrm{NaO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$491.2358; found 491.2357.

Compound 52

To a stirred solution of compound $9(16 \mathrm{mg}, 0.041 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added diethylzinc ($140 \mu \mathrm{~L}, 15 \% \mathrm{w} / \mathrm{w}$ in hexane, 0.129 mmol) and TMSOTf (11.1 $\mu \mathrm{L}, 0.062 \mathrm{mmol}$) at room temperature and under argon (glovebox). After stirring for 90 min at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 95:5 to 60:40) to afford compound 52 ($7.3 \mathrm{mg}, 49 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.00-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}\right), 2.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.65(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3} 8\right), 2.45\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.38$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1$ and $\mathrm{CH}_{3} 7$), 1.86-1.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), $1.16(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H} 3$ '), $1.11(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.07\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta=156.3(\mathrm{C} 3), 152.5(\mathrm{C} 5), 141.0(\mathrm{C} 8), 138.7(\mathrm{C} 1 / \mathrm{C} 7), 137.8$ (C7/C1), 134.1 (C6), $133.8(\mathrm{C} 2), 130.4(\mathrm{C} 7 \mathrm{a} / \mathrm{C} 8 \mathrm{a}), 130.2(\mathrm{C} 8 \mathrm{a} / \mathrm{C} 7 \mathrm{a}), 127.8\left(\mathrm{q}, J_{C B}=74.8 \mathrm{~Hz}, 2 \times \mathrm{CN}\right)$, 29.8 (C^{\prime} '), 22.3 (C 2 '), $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} 8 /\right.$
$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{C}^{\prime}\right), 14.9$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{C}^{\prime} / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1 / \mathrm{C}_{3} / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, $14.8\left(\mathrm{CH}_{3} 1 / \mathrm{C}^{\prime} / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 7\right)$, $13.6\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BN}_{4}[\mathrm{M}+\mathrm{H}]^{+} 361.2562$; found 361.2573. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BN} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$383.2382; found 383.2391.

Compound 53

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added allyltrimethylsilane $(9.2 \mu \mathrm{~L}, 0.058 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 2 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined
organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound 53 ($12 \mathrm{mg}, 84 \%$ yield), as a red solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.07-5.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3{ }^{\prime}\right), 5.22(1 \mathrm{H}, \mathrm{dd}, J=1.2,17.2$ $\mathrm{Hz}, \mathrm{H}^{\prime}{ }_{\text {trans }}{ }^{\prime}$), $5.09\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }_{\text {cis }}\right), 3.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}\right), 2.66\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$ and $\left.\mathrm{CH}_{3} 8\right), 2.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2\right.$ '), $2.46\left(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.39(6 \mathrm{H}$, s, $\mathrm{CH}_{3} 1$ and $\left.\mathrm{CH}_{3} 7\right), 1.12\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.07(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=154.9(\mathrm{C} 5), 153.0(\mathrm{C} 3), 141.2(\mathrm{C} 8), 138.5$ (C7a), 138.2 (C8a), 137.2 (C3'), 134.3 (C7), 133.7 (C1), 130.5 (C6), 130.2 (C2), 127.7 ($\mathrm{q}, J_{C B}=74 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 115.9 ($\left.\mathrm{C} 4{ }^{\prime}\right), 32.5\left(\mathrm{C}^{\prime}\right), 27.1\left(\mathrm{Cl}^{\prime}\right), 17.4$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} 8 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.2$ $\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.9\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} 1\right)$, 13.7 $\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$373.2562; found 373.2556. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{BN}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 390.2828$; found 390.2826. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BN} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 395.2382; found 395.2367.

Compound 54

To a stirred solution of compound $9(20 \mathrm{mg}, 0.051 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TMSCN $(9.6 \mu \mathrm{~L}, 0.077 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(128 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 3 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound 54 ($17 \mathrm{mg}, 92 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.14(2 \mathrm{H}, \mathrm{s}, \mathrm{H1}), 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} 8\right), 2.60\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.48\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.42(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3} 7$), $2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 1.19\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.09(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=157.8(\mathrm{C} 5), 142.9(\mathrm{C} 3), 141.2(\mathrm{C} 8), 137.3$ (C7a), 136.9 (C8a), 136.3 (C7), 133.5 (C1), 132.0 (C6), 129.9 (C2), 126.3 ($\mathrm{q}, J_{C B}=74$ $\mathrm{Hz}, 2 \mathrm{x} \mathrm{BCN})$, $114.5\left(\mathrm{CN} 1^{\prime}\right)$, $17.6\left(\mathrm{CH}_{3} 8\right)$, $17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.3$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), \quad 16.3 \quad\left(\mathrm{Cl}^{\prime}\right), \quad 15.0 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, 14.5 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.4\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.4\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BN}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 375.2467$; found 375.2479.

Compound 55

To a stirred solution of compound $9(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added acetylacetone ($3.8 \mathrm{mg}, 0.038 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(64 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1 day at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound 55 ($10 \mathrm{mg}, 90 \%$ yield), as a red-orange solid, almost equimolar mixture of the two tautomers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.82(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}), 4.20(2 \mathrm{H}, \mathrm{s}, \mathrm{Hl} \mathrm{b}), 3.56$ ($2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}$), $2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5^{\prime} / \mathrm{CH}_{3} 8^{\prime}\right)$, $2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8^{8} / \mathrm{CH}_{3} 5^{\prime}\right)$, $2.68(6 \mathrm{H}$, s, $\mathrm{CH}_{3} 5$ and $\left.\mathrm{CH}_{3} 8\right), 2.47\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right.$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} 6$ '), $2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 1^{\prime}\right)$, $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1^{\prime} / \mathrm{CH}_{3} 1\right)$, $2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 7^{\prime}\right), 2.36(3 \mathrm{H}$, s, $\mathrm{CH}_{3} 7^{\prime} / \mathrm{CH}_{3} 7$), $2.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2^{\prime}\right), 2.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4 \mathrm{~b}\right.$ and $\left.\mathrm{CH}_{3} 6 \mathrm{~b}\right), 2.19(6 \mathrm{H}, \mathrm{s}$, $6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4^{\prime} \mathrm{b}$ and $\left.\mathrm{CH}_{3} \mathrm{G}^{\prime} \mathrm{b}\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6^{\prime}\right), 1.06(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$) , $0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta=202.9$ (C3b and C5b), 192.1 (C3'b and C5'b), 155.0 (C5), 154.6 (C5'), 150.2 (C3'), 149.9 (C3), 141.9 (C8), 141.6 (C8'), 139.5 (C1'b), 139.2 (C7), 139.1 (C7'), 138.0 (C1), 135.4 (C6), 135.2 (C6'), 134.9 (C2), 133.3 (C2'), 131.3 (C8a), 131.1 (C7a), 131.0 (C7'a), 130.2 (C8'a), 128.3 (q, $\left.J_{C B}=73.9 \mathrm{~Hz}, 2 \times \mathrm{CN}\right), 126.8\left(\mathrm{q}, J_{C B}=\right.$ $73.9 \mathrm{~Hz}, 2 \times \mathrm{CN}$ '), 106.3 (C2'b), 65.1 (C2b), 30.7 (C4b and C6b), 28.6 (C1'b), 24.7 (C1b), 24.2 ($\mathrm{C}^{\prime} \mathrm{b}$ and $\mathrm{C}^{\prime} \mathrm{b}$), $17.8\left(\mathrm{CH}_{3} 8\right), 17.7\left(\mathrm{CH}_{3} 8^{\prime}\right)$, $17.7\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2^{\prime}\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6^{\prime}\right)$, $17.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 15.1\left(\mathrm{CH}_{3} 7\right), 15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 1^{\prime}\right), 14.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2^{\prime}\right), 14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6{ }^{\prime}\right), 14.5\left(\mathrm{CH}_{3} 7^{\prime}\right), 13.9\left(\mathrm{CH}_{3} 5\right)$, $13.7\left(\mathrm{CH}_{3} 5^{\prime}\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{BN}_{5} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 448.2883$; found 448.2868 . Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BN}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 453.2437$; found 453.2418. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BN}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 431.2617$; found 431.2621.

Compound 56

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added phenol ($5.4 \mathrm{mg}, 0.058 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 3 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound $\mathbf{5 6}$ ($11 \mathrm{mg}, 80 \%$ yield), as a redorange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.09(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H} 5$ ' $), 6.97(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, H7'), $6.82\left(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.78\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 5.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH} 3^{\prime}\right), 4.46$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$ '), $2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.20\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 1.07(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.73\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \underline{\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)}{ }^{13}{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)\right.$:
$\delta=153.6$ (C3'), 153.3 (C3 and C5), 141.3 (C8), 138.7 (C7a), 138.3 (C8a), 134.7 (C7), 134.4 (C1), 130.7 (C6), 130.5 (C7'), 130.3 (C2), 128.5 (C5'), 127.3 ($\mathrm{q}, J_{C B}=74 \mathrm{~Hz}, 2$ x $\mathrm{CN}), 123.8\left(\mathrm{C}^{\prime}\right), 121.0\left(\mathrm{C}^{\prime}\right), 115.7\left(\mathrm{C} 4{ }^{\prime}\right), 28.0\left(\mathrm{Cl}^{\prime}\right), 17.5\left(\mathrm{CH}_{3} 8\right), 17.48$ $\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right)$, $17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $14.9\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.9$ $\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 1\right)$, $14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right)$, $14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.7\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{BN}_{5} \mathrm{O}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 442.2777$; found 442.2768 . Calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BN}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 447.2331$; found 447.2322

Compound 57

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added N-benzyloxycarbonyl-L-tyrosine methyl ester ($15.5 \mathrm{mg}, 0.046 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0\right.$ to $\left.90: 10\right)$ to afford compound 57 ($19 \mathrm{mg}, 75 \%$ yield), as a red-orange solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.34-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 ", \mathrm{H} 7$ ", H 8 ", H9" and H10"), $6.82\left(1 \mathrm{H}, \mathrm{br}\right.$ d, H5'), $6.68\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}^{\prime}\right), 6.67\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 7^{\prime}\right), 5.38(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}$, H1"), 5.05 ($1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H} 4$ "), 4.97 ($1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H} 4$ "), $4.53-4.46$ ($1 \mathrm{H}, \mathrm{m}$, H9'), 4.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H1} 1^{\prime}$), $3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} 10{ }^{\prime}\right), 2.95\left(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H} 8^{\prime}\right), 2.67(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} 8\right), 2.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.45\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7$), $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 2.18\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$, $1.06\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.74(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=172.3$ (C 10 '), 156.1 ($\left.\mathrm{C} 2 "\right)$, 153.4 (C3/C5), 152.9 (C5/C3), 152.8 (C3'), 141.3 (C8), 138.6 (C1/C7), 138.5 (C7/C1), 136.7 (C5"), 134.7 (C2/C6), 134.5 (C6/C2), 131.1 (C7'), 130.7 (C7a/C8a), 130.4
(C8a/C7a), 128.8 (C5'), 128.5 (C6'/C6"/C7"/C8"/C9"/C10"), 128.0
(С6"/C7"/C8"/C9"/C10"/C6'), 127.8 (C7"/C8"/C9"/C10"/C6'/C6"), 123.9 (C2'), 115.9
(C^{\prime}), 66.7 ($\left.\mathrm{C}^{\prime \prime}\right), 55.1$ (C^{\prime}), $52.3\left(\mathrm{OCH}_{3} 10{ }^{\prime}\right), 37.1$ ($\left.\mathrm{C}^{\prime}\right), 27.6\left(\mathrm{C}^{\prime}\right), 17.5\left(\mathrm{CH}_{3} 8\right), 17.4$
$\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 14.9$
$\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} 1\right)$, 14.8
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), 14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.7\left(\mathrm{CH}_{3} 5\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{BN}_{5} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$682.3178; found 682.3175.
Calcd. for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{BN}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 660.3350$; found 660.3358 .

Compound 58

To a stirred solution of compound 9 ($15 \mathrm{mg}, 0.038 \mathrm{mmol}$) in anhydrous $\mathrm{MeCN}(1 \mathrm{~mL})$ was added resveratrol ($8.8 \mathrm{mg}, 0.038 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{MeCN}(96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 2 h at room temperature, a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{MeCN}(96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv) was added again. After stirring for 3 h at $50{ }^{\circ} \mathrm{C}$ and for 12 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 100: 0\right.$ to $\left.94: 6\right)$ to afford a mixture of 3 regioisomers ($12.5 \mathrm{mg}, 58 \%$ yield), as a red-orange solid. The major regioisomer 58 was isolated by crystallization from hexane/AcOEt.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$ mixtures, $\left.6: 1,500 \mathrm{MHz}\right): \delta=8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH} 3$ '), 7.76 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH} 13^{\prime}$), 7.67 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH} 5^{\prime}$), $7.20\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H} 11^{\prime}\right.$ and H15'), $6.99(1 \mathrm{H}, \mathrm{d}$, $\left.J=16.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 6.76(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H} 9$ '), 6.63 ($1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H} 6$ '), 6.61 (2H, d, $J=8.6 \mathrm{~Hz}, \mathrm{H} 12 \mathrm{a}$ and H14'), $6.38(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H} 4 '), 4.57$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 1$ '), 2.67
($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$), $2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.23(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} 1\right), 1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) 1.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.64(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$ mixtures, $\left.6: 1,125 \mathrm{MHz}\right): \delta=158.1\left(\mathrm{C} 13^{\prime}\right)$, 158.0 (C5'), 157.3 (C3'), 155.2 (C3), 152.8 (C5), 143.4 (C8), 141.4 (C1), 141.2 (C7'), 139.9 (C7), 135.5 (C2), 135.3 (C6), 131.6 (C9'), 131.3 (C7a and C8a), 130.4 (C10'), 129.2
 $26.8\left(\mathrm{Cl}^{\prime}\right), 18.2\left(\mathrm{CH}_{3} 8\right), 17.9\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.7\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 15.0$ $\left(\mathrm{CH}_{3} 7\right), 14.7\left(\mathrm{CH}_{3} 1\right), 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.9\left(\mathrm{CH}_{3} 5\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{BN}_{4} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 581.2700$; found 581.2701.

Compound 59

To a stirred solution of compound $\mathbf{9}(16 \mathrm{mg}, 0.041 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added guaiazulene ($8.9 \mathrm{mg}, 0.057 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($103 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1 day at room temperature, a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(103 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv) was added again, following by stirring the reaction mixture at room temperature for 3 days. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound 59 ($16.2 \mathrm{mg}, 75 \%$ yield), as a purple solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.03(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H} 5 '), 7.26(1 \mathrm{H}, \mathrm{dd}, J=10.7$, $2.0 \mathrm{~Hz}, \mathrm{H} 7$ '), 7.11 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 3$ '), 6.87 ($\left.1 \mathrm{H}, \mathrm{d}, ~ J=10.7 \mathrm{~Hz}, \mathrm{H} 8^{\prime}\right), 5.14$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$ '), 3.11 (3H, s, $\left.\mathrm{CH}_{3} 9^{\prime}\right)$, , 3.06-2.94 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CH} 6^{\prime}\right), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right), 2.51$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 4$ '), $2.46\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\mathrm{CH}_{3} 7$), 2.09
$\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 1.34\left(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \underline{\mathrm{C}}_{2} \underline{H}_{6} \mathrm{CH} 6^{\prime}\right), 1.07(3 \mathrm{H}, \mathrm{t}, J=7.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.76\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=$ 155.3 (C3), 152.9 (C5), 145.2 (C9'), 141.1 (C8), 139.2 (C3'), 139.1 (C6'), 138.8 (C1), 138.0 (C4'), 137.9 (C7), 134.9 (C7'), 134.7 (C2), 134.2 (C6), 133.7 (C5'), 133.3 (C9'a), 130.6 (C7a/C8a), 130.4 (C8a/C7a), 126.7 (C8'), 124.0 (C4'a), 121.3 (C2'), 37.8 ($\left.\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{CH} 6^{\prime}\right), 30.7\left(\mathrm{Cl}^{\prime}\right), 27.8\left(\mathrm{CH}_{3} 9{ }^{\prime}\right), 24.7$ ($\left.\underline{\mathrm{C}}_{2} \underline{\mathrm{H}_{6}} \mathbf{C H} 6{ }^{\prime}\right), 17.5\left(\mathrm{CH}_{3} 8\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right)$, $17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.7\left(\mathrm{CH}_{3} 5\right)$, $13.0\left(\mathrm{CH}_{3} 4{ }^{\prime}\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{BN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$529.3503; found 529.3506. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{BN}_{4} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 581.2700$; found 581.2701.

Compound 60

To a stirred solution of compound $9(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added pyrrole ($2.6 \mathrm{mg}, 0.038 \mathrm{mmol}$) and asolution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1.5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to $75: 25$) to afford compound $\mathbf{6 0}(7 \mathrm{mg}, 69 \%$ yield), as a red solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 3$ ' $\left.), 6.69(1 \mathrm{H}, \mathrm{s}, 1 \mathrm{H}, \mathrm{H} 4)^{\prime}\right), 6.13(2 \mathrm{H}$, m, H5' and H6'), 4.45 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H1}^{\prime}$), $2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right.$), $2.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.48(2 \mathrm{H}, \mathrm{q}, J$ $\left.=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 2.42\left(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.36(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3} 1\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}_{3}} \mathrm{CH}_{2} 6\right), 0.73\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=153.3$ (C5), 151.4 (C3), 141.7 (C8), 138.9 (C7a), 138.7 (C8a), 135.0 (C7), 134.6 (C1), 130.6 (C6), $130.0(\mathrm{C} 2), 127.6\left(\mathrm{q}, J_{C B}=73.9 \mathrm{~Hz}, 2 \times \mathrm{CN}\right.$), 125.8 (C2'), 118.2 (C4'), 108.6 (C5'), 108.3 (C^{\prime}), $26.7\left(\mathrm{C}^{\prime}\right), 17.5\left(\mathrm{CH}_{3} 5\right), 17.4$
$\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right)$, $17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $14.9\left(\mathrm{CH}_{3} \mathrm{C} 7\right.$ and $\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right)$, $14.6\left(\mathrm{CH}_{3} 1\right)$, 14.1 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.7\left(\mathrm{CH}_{3} 8\right)$.

HRMS (API-ES ${ }^{+}$) m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BN}_{6} \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BN}_{5}[\mathrm{M}+\mathrm{H}]^{+}$398.2515; found 398.2526. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BN}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 420.2334$; found 420.2353 .

Compound 61

To a stirred solution of compound $9(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added indole ($6.7 \mathrm{mg}, 0.058 \mathrm{mmol}$) and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($96 \mu \mathrm{~L}$ of a 0.01 m solution, 0.025 equiv). After stirring for 1.5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound $\mathbf{6 1}$ ($15 \mathrm{mg}, 88 \%$ yield), as a red solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 4 '), 7.66(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H} 9$ '), 7.32 ($1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $7.18\left(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$,), 7.14 ($\left.1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H} 8^{\prime}\right), 6.97$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime}$) , $4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H1}^{\prime}\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5\right)$, $2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8\right), 2.47(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.20(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.70\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=154.4$ (C5), 152.8 (C3), 141.2 (C8), 138.6 (C8a), 138.0 (C7a), 134.6 (C7), 134.3 (C1), 130.5 (C6), 130.2 (C2), 127.6 ($\mathrm{q}, \mathrm{J}_{\mathrm{CB}}=74 \mathrm{~Hz}, 2 \times \mathrm{CN}$), 127.5 (C 10 '), 123.3 (C^{\prime}), 122.1 (C7'), 119.7 (C8'), 118.7 (C9'), 111.3 (C6'), 111.1 (C2'), $24.1\left(\mathrm{Cl}^{\prime}\right), 17.5\left(\mathrm{CH}_{3} 5\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 17.3\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right), 14.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.8$ $\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} 1\right), 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.7\left(\mathrm{CH}_{3} 8\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BN}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$465.2938; found 465.2953. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{BN}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 470.2491$; found 470.2494.

Compounds 62 and 63

To a stirred solution of compound $9(11 \mathrm{mg}, 0.028 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added compound $6(10.7 \mathrm{mg}, 0.028 \mathrm{mmol})$ and a solution of $\mathrm{Sc}(\mathrm{OTf})_{3}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(64 \mu \mathrm{~L}$ of a 0.01 M solution, 0.025 equiv). After stirring for 5.5 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:20) to afford $\mathbf{6 2}$ ($9.3 \mathrm{mg}, 47 \%$ yield) and $63(4.5 \mathrm{mg}, 15 \%)$, as red solids. Compound $\mathbf{6}(4.0 \mathrm{mg}, 37 \%)$ was also recovered.

62
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=6.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3{ }^{\prime}\right.$ and $\left.\mathrm{H} 5{ }^{\prime \prime}\right), 6.14(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6$ ' $), 4.23(2 \mathrm{H}$, br d, H9), 2.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5$ '), 2.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 5 / \mathrm{CH}_{3} 8$), $2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 8 / \mathrm{CH}_{3} 5\right.$), 2.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 3$ '), $2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 7\right), 2.33(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} 4$ '), $2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right), 2.06\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2, \mathrm{CH}_{3} 2\right.$ " and $\mathrm{CH}_{3} 6$ "), $1.42(6 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} 1^{\prime}$ and $\mathrm{CH}_{3} 7^{\prime}$), $1.08\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 0.69\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$. ${ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=156.0$ (C5'), 155.1 (C3'), 154.5 (C5), 150.0 (C3), 144.0 (C7'/C7a'), 142.9 (C8'), 141.6 (C8), 141.0 (C1'/C8a'), 139.4 (C4"), 139.1 (C7), 138.9 (C1), 135.0 (C6), 134.4(C2" and C6"), 133.6 (C2), 131.0 (C7a), 130.4 (C1"), 130.0 (C8a), 129.6 ($\mathrm{C} 3^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$), 129.3 ($\mathrm{C} 7 \mathrm{a}^{\prime} / \mathrm{C}^{\prime}$), 128.4 ($\mathrm{CBa}^{\prime} / \mathrm{Cl}^{\prime}$), 127.5 (C^{\prime}), 126.9 ($\mathrm{q}, J_{C B}=74.0 \mathrm{~Hz}$, $4 \times \mathrm{CN}), 122.5\left(\mathrm{C}^{\prime}\right), 24.7(\mathrm{C} 9), 21.3\left(\mathrm{CH}_{3} 8{ }^{\prime \prime}\right), 19.7\left(\mathrm{CH}_{3} 2^{\prime \prime} / \mathrm{CH}_{3} 6\right.$ " $), 19.5\left(\mathrm{CH}_{3} 6 " / \mathrm{CH}_{3} 2^{\prime \prime}\right)$, $17.7\left(\mathrm{CH}_{3} 8\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right), 17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6 / \mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 2\right), 15.6\left(\mathrm{CH}_{3} 5{ }^{5}\right), 15.0$ $\left(\mathrm{CH}_{3} 7\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 14.6\left(\mathrm{CH}_{3} 1\right), 14.4\left(\mathrm{CH}_{3} 3\right.$ '), $14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right), 13.9\left(\mathrm{CH}_{3} 7^{\prime}\right), 13.8$ $\left(\mathrm{CH}_{3} 5\right), 11.8\left(\mathrm{CH}_{3} 1^{\prime}\right)$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~N}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 728.4541$; found 728.4512 . calcd. for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{~N}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 733.4095$; found 733.4052.

63
 $2.68(9 \mathrm{H}, \mathrm{s}), 2.68(3 \mathrm{H}, \mathrm{s}), 2.66(6 \mathrm{H}, \mathrm{s}), 2.47(4 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 2.41(6 \mathrm{H}, \mathrm{s}), 2.32(9 \mathrm{H}$, s, $\mathrm{CH}_{3} 2^{\prime \prime}, \mathrm{CH}_{3} 6$ " $), 2.15-2.01(10 \mathrm{H}, \mathrm{m}), 1.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1^{\prime}\right.$ and $\mathrm{CH}_{3} 7$ '), $1.08(6 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}), 0.69(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=155.4,154.4,150.0,142.8$, 141.6, 141.1, 139.5, 139.1, 135.1, 133.7, 131.1, 130.6, 130.0, 129.6, 128.7, 127.7, 29.9, $24.7,21.4,19.5,17.7,17.4,14.9,14.8,14.6,14.5,14.2,13.8,11.9$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{64} \mathrm{H}_{75} \mathrm{~B}_{3} \mathrm{~N}_{13}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 1058.6569$; found 1058.6567 .
Calcd. for $\mathrm{C}_{64} \mathrm{H}_{71} \mathrm{~B}_{3} \mathrm{~N}_{12} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1063.6123$; found 1063.6106.

Compound 64

To a solution of compound $\mathbf{1 2}$ ($10.2 \mathrm{mg}, 0.020 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, tetraethyleneglycol monomethyl ether ($0.013 \mathrm{~mL}, 0.067 \mathrm{mmol}$), and a solution of bis(trifluoromethane)sulfonimide (bistriflimide) in $\mathrm{CH}_{3} \mathrm{CN}(0.01 \mathrm{M}, 0.33 \mathrm{~mL}, 0.0033$
mmol) were added and the mixture was heated to $60^{\circ} \mathrm{C}$. After 5 hours, an equal portion of the bistriflimide solution was added and the mixture was heated for 2 more hours before being concentrated at reduced pressure. The crude product was submitted to flash chromatography (hexane/AcOEt, 100:0 to 10:90) to afford compound $\mathbf{6 4}$ ($5.31 \mathrm{mg}, 39 \%$), as a red oil.
${ }^{1} \mathbf{H} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=7.54-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 11, \mathrm{H} 12$ and H 13$), 7.26-$ $7.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 10\right.$ and H14), $4.95\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H} 1^{\prime}\right.$ and $\left.\mathrm{H} 11^{\prime}\right), 3.86-3.84\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime}\right.$ and H12'), 3.76-3.63 (24H, m, C3' - C8' and C13' - C18'), $3.55-3.53$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H} 9$ ' and H19'), 3.37 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H} 10^{\prime}$ and H20'), 2.46 ($4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} 6$), $1.31\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 1.03\left(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$.
${ }^{13} \mathbf{C} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=153.0(\mathrm{C} 3$ and C 5$), 144.4(\mathrm{C} 8), 141.9(\mathrm{C} 1$ and C7), 136.4 (C2 and C6), 134.6 (C9), 130.2 (C7a and C8a), 129.7 ($\mathrm{C} 11, \mathrm{C} 12$ and C 13), 127.7 (C 10 and C14), 72.1 (C^{\prime} and $\mathrm{C}^{\prime} 9^{\prime}$), $70.8-70.6$ ($\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{C} 8^{\prime}$ and $\mathrm{C} 12^{\prime}-\mathrm{C} 18^{\prime}$), 64.6 (C^{\prime} ' and $\mathrm{C} 11^{\prime}$), 59.2 ($\mathrm{C} 10^{\prime}$ and $\mathrm{C} 20^{\prime}$), $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 14.8\left(\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 12.0\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.
HRMS (API-ES+) m / z calcd. for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{BN}_{4} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}] 829.4537$; found 829.4550 . Calcd. for $\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{BN}_{5} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$824.4983; found 824.4972.

Compound 65

To a solution of compound $12(19.6 \mathrm{mg}, 0.039 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, pentafluorothiophenol $(0.015 \mathrm{~mL}, 0.12 \mathrm{mmol})$ and a solution bistriflimide in $\mathrm{CH}_{3} \mathrm{CN}$ $(0.01 \mathrm{~m}, 0.58 \mathrm{~mL}, 0.0058 \mathrm{mmol})$ were added and the mixture was heated to $60^{\circ} \mathrm{C}$ for 1.5 hours before being concentrated at reduced pressure. The crude product was submitted to flash chromatography (hexane/AcOEt, 100:0 to 10:90) to afford compound $\mathbf{6 5}(16.4 \mathrm{mg}$, 54%), as a pink solid.
${ }^{1} \mathbf{H} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=7.59-7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 11, \mathrm{H} 12$ and H 13$), 7.32-$ $7.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 10\right.$ and H14), $4.53\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\prime}{ }^{\prime}\right.$ and $\left.\mathrm{H}{ }^{\prime}\right)$), $2.46\left(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 1.10\left(6 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \underline{\mathrm{CH}_{3} \mathrm{CH}_{2} 2}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=150.7(\mathrm{C} 3$ and C 5$), 144.5(\mathrm{C} 8)$, 142.7 (C 1 and C 7), 136.6 (C 2 and C 6), 134.2 (C9), 130.8 (C 7 a and C 8 a), 130.0 (C12), $129.8(\mathrm{C} 11$ and C 13$)$, 127.7 (C 10 and C 14), $108.5\left(\mathrm{t}, J_{\mathrm{S}, \mathrm{C}}=21.7 \mathrm{~Hz}, \mathrm{C} 2{ }^{\prime}\right.$ and $\left.\mathrm{C} 9{ }^{\prime}\right), 31.1$ (Cl^{\prime} 'and C^{\prime}), $17.6\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2}\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}_{2}} 6\right)$, $14.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 12.3$ $\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.
HRMS (API-ES+ $+m / z$ calcd. for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{BF}_{10} \mathrm{~N}_{4} \mathrm{NaS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$813.1353; found 813.1360. Calcd. for $\mathrm{C}_{3} 7 \mathrm{H}_{29} \mathrm{BF}_{10} \mathrm{~N}_{5} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$808.1799; found 808.1806.

Compound 66

To a solution of compound 12 ($20.7 \mathrm{mg}, 0.041 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, allyltrimethylsilane $(0.033 \mathrm{~mL}, 0.20 \mathrm{mmol})$ and a $\mathrm{Sc}(\mathrm{OTf})_{3}$ solution in $\mathrm{CH}_{3} \mathrm{CN}(0.01 \mathrm{~m}$, $0.406 \mathrm{~mL}, 0.0041 \mathrm{mmol}$) were added. After stirring at $60^{\circ} \mathrm{C}$ for 2 hours, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed at reduced pressure. The resulting crude product was submitted to flash chromatography (hexane/AcOEt, 100:0 to $30: 70$) to afford $\mathbf{6 6}(10.5 \mathrm{mg}, 55 \%)$, as an orange powder.
${ }^{1} \mathbf{H} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=7.54-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 11, \mathrm{H} 12$ and H 13$), 7.31-$ $7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 10$ and H14), $6.02(2 \mathrm{H}$, ddt, $J=6.5,10.2,16.8 \mathrm{~Hz}, \mathrm{H} 3 '$ and H 7 '), 5.24 ($2 \mathrm{H}, \mathrm{dq}, J=1.6,17.1 \mathrm{~Hz}, \mathrm{H} 4{ }^{\prime}$ and H8’), 5.11 ($2 \mathrm{H}, \mathrm{dd}, J=1.6,10.2 \mathrm{~Hz}, \mathrm{H} 4$ ' and H8'), $3.14-3.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}\right.$ and $\left.\mathrm{H} 5^{\prime}\right), 2.59-2.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right.$ and $\left.\mathrm{H} 6^{\prime}\right), 2.36(4 \mathrm{H}, \mathrm{q}, J=7.6$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 1.31\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right), 1.04(6 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} 2$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} 6$).
${ }^{13} \mathbf{C} \mathbf{R M N}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) ; \delta(\mathrm{ppm})=157.3(\mathrm{C} 3$ and C 5$), 141.7(\mathrm{C} 8), 141.1(\mathrm{C} 1$ and C7), 137.2 (C 3 ' and C7’), 135.0 (C9), 134.4 (C2 and C6), 129.5 (C 11 and C13), 129.4 (C12), 129.3 (C7a and C8a), 128.5 ($\mathrm{q}, J_{\mathrm{B}, \mathrm{C}}=74.0 \mathrm{~Hz}, 2 \mathrm{xCN}$), $128.1(\mathrm{C} 10$ and C14), 116.0 (C 4 ' and C^{\prime}), 32.1 (C^{\prime} ' and C^{\prime}), 27.4 (Cl^{\prime} and C^{\prime} '), $17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} 6$), $14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $12.2\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.

HRMS (ESI ${ }^{+}$: m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{BN}_{4}[\mathrm{M}+\mathrm{H}]^{+} 475.3033$; found 475.3053.

Compounds 67 and 69

To a stirred solution of compound $\mathbf{1 2}(52.5 \mathrm{mg}, 0.103 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ mL) were added 2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethanol ($16.1 \mathrm{mg}, 0.051$ $\mathrm{mmol})$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(7.1 \mathrm{mg}, 0.014 \mathrm{mmol})$ at room temperature. After stirring for 1 day at $50{ }^{\circ} \mathrm{C}$ in a closed vial, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 85:15 to 30:70) to afford $\mathbf{6 7}$ ($16.4 \mathrm{mg}, 42 \%$ yield, based on starting limiting alcohol) and 69 ($3.1 \mathrm{mg}, 6 \%$ yield), as red-orange solids, and unreacted compound 12 ($21 \mathrm{mg}, 40 \%$ recovery).

67
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.58-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 ', \mathrm{H} 4$ ' and $\mathrm{H} 5 '), 7.29-7.26(2 \mathrm{H}, \mathrm{m}$, H2' and H6'), 5.45 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime \prime}$), 4.97 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$ "), 3.86 ($2 \mathrm{H}, \mathrm{dd}, J=5.6,3.9 \mathrm{~Hz}, \mathrm{H} 3^{\prime \prime}$), 3.75 ($2 \mathrm{H}, \mathrm{dd}, J=5.6,3.9 \mathrm{~Hz}, \mathrm{H} 4 "), 3.69-3.65$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{H} 6$ '", H7'", H9'" and H10'"), 3.653.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 122^{\prime \prime}$) 3.57 ($2 \mathrm{H}, \mathrm{dd}, J=6.1,3.9 \mathrm{~Hz}, \mathrm{H} 13{ }^{\prime \prime \prime}$), 3.53 ($2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 20^{\prime \prime}$), $3.45\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 15^{\prime \prime}\right)$), $2.47\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 2.40(2 \mathrm{H}, \mathrm{q}, J=7.6$ $\mathrm{Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 2}$), 2.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 4$ "), 1.77 ($2 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{H} 19{ }^{\prime \prime}$), 1.62-1-56 (2H.s, H16'"), 1.50-1.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 18{ }^{\prime \prime}$ '), 1.40-1.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 17^{\prime \prime}$), $1.34\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right.$), 1.33 $\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right), 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right) 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=170.7$ (C3"), 155.2 (C5), 148.2 (C3), 145.0 (C8), 143.2 (C7), 141.0 (C1), 137.2 (C6), 136.1 (C2), 134.4 (C1'), 131.0 (C7a/C8a), 130.4 (C8a/C7a), 129.9 (C4'), 129.8 (C^{\prime} and C5'), 127.6 (C^{\prime} and $\mathrm{C} 6^{\prime}$), 71.4 ($\left.\mathrm{C} 15^{\prime \prime}\right)$), 70.9 ($\mathrm{C} 3^{\prime \prime}$), 70.7 (C4'"), 70.8, 70.7 (from 70.7 to 70.7: C6'", C7"', C9"', C10"' and C12'"), 70.3 (C13"'), 64.7 (C1'"), 56.5 (C1"), 45.2 (C20"'), 32.7 (C19'"), 29.6 (C16"'), 26.9 (C18"'), 25.6 (C17"'),
 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), \quad 14.7 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right), \quad 12.2 \quad\left(\mathrm{CH}_{3} 1 / \mathrm{CH}_{3} 7\right), \quad 12.1$ $\left(\mathrm{CH}_{3} 7 / \mathrm{CH}_{3} 1\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{BClN}_{5} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 780.4276\left({ }^{35} \mathrm{Cl}\right)$, 782.4269 ($3^{7} \mathrm{Cl}$); found $780.4294\left({ }^{35} \mathrm{Cl}\right)$, $782.4286\left({ }^{37} \mathrm{Cl}\right)$. Calcd for $\mathrm{C}_{41} \mathrm{H}_{56} \mathrm{BClN}_{4} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ $785.3830\left({ }^{35} \mathrm{Cl}\right)$, $787.3823\left({ }^{37} \mathrm{Cl}\right)$; found $785.3859\left({ }^{35} \mathrm{Cl}\right)$, $787.3820\left({ }^{37} \mathrm{Cl}\right)$.

69
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.54(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ', H 4 and H 5 '), $7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{l}$ and H6'), $4.95(4 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$ " and H1"'), $3.85(4 \mathrm{H}, \mathrm{dd}, J=5.8,3.7 \mathrm{~Hz}, \mathrm{H} 3$ " and H3'"), $3.75(4 \mathrm{H}$, dd, $J=5.8,3.7 \mathrm{~Hz}, \mathrm{H} 4$ " and H4"'), 3.68-3.64 (16H, m, H6", H6'", H7", H7"', H9", H9'" H 10 " and H10"'), 3.63 ($4 \mathrm{H}, \mathrm{dd}, J=4.7,1.8 \mathrm{~Hz}, \mathrm{H} 12{ }^{\prime \prime}$ and H12'"), $3.58(4 \mathrm{H}, \mathrm{dd}, J=4.7$, $1.8 \mathrm{~Hz}, \mathrm{H} 13$ " and H13"'), $3.53(4 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 20$ " and $\mathrm{H} 20 \mathrm{C'}), 3.45(4 \mathrm{H}, \mathrm{t}, J=6.7$ $\mathrm{Hz}, \mathrm{H} 15$ " and $\mathrm{H} 15^{\prime \prime}$ "), $2.46\left(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 1.83-1.71(4 \mathrm{H}$, m, H19" and H19"'), 1.63-1.55 (4H, m, H16" and H16"'), 1.48-1.40 (4H, m, H18" and H18'"), 1.39-1.32 (4H, m, H17" and H17"'), 1.31 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} 1$ and $\mathrm{CH}_{3} 7$), 1.03 ($6 \mathrm{H}, \mathrm{t}, J$ $=7.5 \mathrm{~Hz}, \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2$ and $\left.\underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=153.0(\mathrm{C} 3$ and C5), 144.4 (C8), 141.9 (C 1 and C7), 136.4 (C2 and C6), 134.6 (C 1 '), 130.2 (C7a and C8a), 129.7 ($\mathrm{C}^{\prime} / \mathrm{C} 4{ }^{\prime} / \mathrm{C} 5^{\prime}$), 129.7 ($\mathrm{C}^{\prime} / \mathrm{C}^{\prime} / \mathrm{C} 3^{\prime}$), 127.7 (C^{\prime} and $\mathrm{C} 6^{\prime}$), 71.4 ($\mathrm{C} 15{ }^{\prime \prime}$ and

C15"'), 70.8, 70.7, 70.7, 70.7 (from 70.8 to 70.7: C3", C3'", C4", C4"', C6", C6"', C7", C7"", C9", C9"', C10", C10"', C12" and C12"'), 70.3 (C13" and C13'"), 64.7 (C1" and C1"'), 45.2 (C 20 " and $\mathrm{C} 20{ }^{\prime \prime}$), 32.7 ($\mathrm{C} 19{ }^{\prime \prime}$ and $\mathrm{C} 19{ }^{\prime \prime \prime}$), 29.6 ($\mathrm{C} 16^{\prime \prime}$ and $\mathrm{C} 166^{\prime \prime}$), 26.9 ($\mathrm{C} 18{ }^{\prime \prime}$ and $\left.\mathrm{C} 18^{\prime \prime}\right)$, 25.6 ($\mathrm{C} 17{ }^{\prime \prime}$ and $\left.\mathrm{C} 17{ }^{\prime \prime \prime}\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right), 12.0\left(\mathrm{CH}_{3} 1\right.$ and $\left.\mathrm{CH}_{3} 7\right)$.

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{53} \mathrm{H}_{85} \mathrm{BCl}_{2} \mathrm{~N}_{5} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 1032.5770\left({ }^{35} \mathrm{Cl}\right)$; found $1032.5790\left({ }^{35} \mathrm{Cl}\right)$.

Compound 68

To a stirred solution of compound $\mathbf{6 7}(15 \mathrm{mg}, 0.019 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ mL) were added trimethylsilyl azide ($4.1 \mu \mathrm{l}, 0.029 \mathrm{mmol}$) and $\mathrm{Sc}(\mathrm{OTf})_{3}(1.1 \mathrm{mg}, 0.002$ mmol) at room temperature. After stirring for 6 h at $50^{\circ} \mathrm{C}$ in a closed vial and for 18 h at room temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 80:20 to $10: 90$) to afford 68 ($3.8 \mathrm{mg}, 25 \%$ yield), as a red-orange solid. Compound 68 was accompanied by a small impurity that was tentatively assigned, from ${ }^{1} \mathrm{H}$ NMR and HRMS data, to 18 -chloro-3,6,9,12tetraoxaoctadecyl acetate, formed by trans-esterification with 67 under the reaction conditions (see copies of NMR spectra in the accompanying Supporting Information document).

68

Impurity
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.58-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ', H 4 and H 5 '), $7.29-7.26(2 \mathrm{H}, \mathrm{m}$, H2' and H6'), 4.97 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1{ }^{\prime \prime}$), 4.86 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1$ "), 4.24-4.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~b}$: impurity), $3.87(4 \mathrm{H}, \mathrm{dd}, J=5.6,3.9 \mathrm{~Hz}), 3.76(4 \mathrm{H}, \mathrm{dd}, J=5.6,3.9 \mathrm{~Hz}), 3.71-3.67(20 \mathrm{H}, \mathrm{m}), 3.64-$ $3.62(4 \mathrm{H}, \mathrm{m}), 3.59-3.56(4 \mathrm{H}, \mathrm{m}), 3.53(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.54(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.46$ $(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz})$,), $3.47(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.50-2.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{a}\right.$: impurity), $1.80-1.73(4 \mathrm{H}, \mathrm{m}), 1.62-1.56(4 \mathrm{H}, \mathrm{m}), 1.50-1.41(4 \mathrm{H}, \mathrm{m})$, $1.40-1.36(4 \mathrm{H}, \mathrm{m}), 1.07\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2 / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 6\right), 1.03(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \mathrm{CH}_{3} \mathrm{CH}_{2} 2\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=171.2$ (COO), 154.9 (C5), 148.3 (C8), $145.0(\mathrm{C} 3)$, 143.1(C1/C7), 141.6 (C7/C1), 137.0 (C2/C6), 135.9 (C6/C2), 134.3(C1'), 130.8 ($\mathrm{C} 7 \mathrm{a} / \mathrm{C} 8 \mathrm{a}$), 130.0 ($\mathrm{C} 8 \mathrm{a} / \mathrm{C} 7 \mathrm{a}$), 129.9 (C^{\prime}), 129.8 (C^{\prime} and C^{\prime}), 127.6 (C^{\prime} and C^{\prime} '), 71.4, 70.4, 70.8, 70.8, 70.8, 70.7, 70.7, 70.6, 70.3, 69.3 (C1"'), 64.7(Cb: impurity), 45.4 (C1"), 45.2, 45.2, 32.7, 29.9, 29.6, 26.9, 25.6, 21.1 (Ca: impurity) $17.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \mathrm{CH}_{3} \mathrm{CH}_{2} 6\right)$, $17.4\left(\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} 6} / \mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} 2\right)$, $14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 2 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 6\right), 14.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} 6 / \underline{\mathrm{CH}}_{3} \mathrm{CH}_{2} 2\right)$, 12.2, 12.1 .

HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{BClN}_{8} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 763.4235\left({ }^{35} \mathrm{Cl}\right)$, 765.4226 $\left({ }^{37} \mathrm{Cl}\right)$; found $763.4214\left({ }^{35} \mathrm{Cl}\right)$, $765.4208\left({ }^{37} \mathrm{Cl}\right)$. Calcd for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{BClN}_{7} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ $768.3789\left({ }^{35} \mathrm{Cl}\right), 770.3780\left({ }^{37} \mathrm{Cl}\right)$; found $768.3766\left({ }^{35} \mathrm{Cl}\right), 770.3817\left({ }^{37} \mathrm{Cl}\right)$.
HRMS (API-ES ${ }^{+}$) impurity m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{ClNO}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 372.2153$; found 372.2152.

Compound 70

To a stirred solution of tetrazine $\mathbf{3 4}(1.0 \mathrm{mg}, 0.0018 \mathrm{mmol})$ in $\mathrm{AcOEt}(0.5 \mathrm{~mL})$, was added cyclooctyne $40(4.0 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $\mathrm{AcOEt}(1.0 \mathrm{~mL})$. After stirring for 5 min at room temperature, the reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (AcOEt) to afford compound 70 ($1.1 \mathrm{mg}, 94 \%$), as a red solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta=7.56(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H})$, $3.72(\mathrm{~m}, 2 \mathrm{H}), 3^{\prime} 02(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2,52$ $(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta=161.1,157.5,155.9,147.6,142.7,139.9,138.4,137.5,137.4,135.5$, $135.1,131.6,130.3,129.5,128.3,73.3,63.5,59.5,32.1,29.8,28.2,27.3,22.8,22.5,20.5$, $17.7,17.5,17.4,15.3,15.0,14.8,14.6,14.3,13.9$.
HRMS (API-ES ${ }^{+}$) m / z calcd. for $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{BN}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 655.3926$; found 655.3917 .

Photophysical characterization

The UV/Vis absorption spectra were recorded by UV-Vis-NIR Spectroscopy (Cary 7000) equipped with two lamps (halogen lamp for Vis-IR region and deuterium lamp for UV region), a double monochromator (Littrow) and double diffraction grating of 1200 lines $/ \mathrm{mm}$. The fluorescence measurements were recorded with an Edinburgh Instruments Spectrofluorimeter (FLSP920 model) equipped with a xenon flash lamp 450 W as the excitation source. The fluorescence spectra were corrected from the wavelength dependence on the detector sensibility. The fluorescence quantum yield (Φ_{fl}) was calculated using as reference commercial BODIPY $\mathbf{3}$ in $\mathrm{MeOH}\left(\Phi_{\mathrm{fl}}{ }^{\text {ref }}=0.91\right),{ }^{4}$ using an excitation wavelength of 490 nm for all measurements.

Radiative decay curves were recorded with a time-correlated single-photon counting technique (Edinburgh Instruments, model FL920) using a microchannel plate detector (Hamamatsu C4878) with picosecond time resolution. The fluorescence lifetimes (τ_{f}) were obtained after deconvolution of the instrumental response signal from the recorded decay curves by means of an iterative method. The goodness of the exponential fit was controlled by statistical parameters (chi-square, χ^{2}, and analysis of the residuals). The estimated errors in the photophysical parameters are estimated to be around 10%. Fluorescence emission curves were monitored upon excitation by means of a continuous laser (Fianium) with 150 ps full-width at half maximum (FWHM) pulses.

Live-cell imaging studies

Cell culture. The established human squamous cell carcinoma (SCC38)-derived cell line was kindly provided by Dr R Grenman (University Central Hospital, Turku, Finland). SCC38 and HeLa cells were grown in DMEM supplemented with 10% fetal bovine serum, 100 units per mL penicillin, $200 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ streptomycin, $2 \mathrm{mmol} \mathrm{L}^{-1}$-glutamine and $100 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ nonessential amino acids. Cell lines were periodically tested for human pathogens and mycoplasma infection. All methods were carried out in accordance with the approved guidelines of our institution.

Fluorescent cell labeling. Cells $\left(50 \times 10^{3}\right)$ were plated on black 24 well plates with flat and clear bottom suitable for fluorescence-based imaging of living cells (Ibidi GmbH) 24 hours before labeling. BODIPY probes were diluted in $\mathrm{H}_{2} \mathrm{O}$ or DMSO to a stock
concentration of $500 \mu \mathrm{M}, 50 \mu \mathrm{M}$ or $20 \mu \mathrm{M}$. Adhered living cells were incubated with probes at $500 \mathrm{nM}, 100 \mathrm{nM}$, or 50 nM , as indicated in figure legends, in DMEM without supplements for 30 minutes at $37^{\circ} \mathrm{C}$. Subsequently, the probes were removed and the cells were washed with PBS ($3 \times 5 \mathrm{~min}$). Supplemented DMEM was then added to cells prior to microscopy analysis.

Live-cell microscopy. Microscopy imaging was performed on a Cell Observer equipment composed of a Zeiss AxioObserver Z1 wide field inverted fluorescence microscope (Carl Zeiss, Germany) with a Plan-Apochromat 40X/1.3 (NA =1.3, working distance $=0.21$ $\mathrm{mm})$ or Plan-Apochromat $63 \mathrm{X} / 1.4(\mathrm{NA}=1.4$, working distance $=0.19 \mathrm{~mm})$ oil lens objective, a camera (AxioCam MRm; Carl Zeiss), a CO_{2} incubator, and a ZEISS ApoTome. 2 structured illumination system. ApoTome. 2 allows acquisition of optical sections of the fluorescent sample by moving the appropriate grid into the beam path and calculating the optical section from three images with different grid positions without time lag. Acquisition and processing of images were conducted using the Zen (Carl Zeiss) software.

X-Ray diffraction

Experimental

Single crystals of compound $9 \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BN}_{4} \mathrm{O}_{2}$ [CCDC 2177585]. A suitable crystal was selected and mounted on a SuperNova, Single source at offset/far, Atlas diffractometer. The crystal was kept at 150.00 (10) K during data collection. Using Olex 2,5 the structure was solved with the ShelXS ${ }^{6}$ structure solution program using Direct Methods and refined with the ShelXL ${ }^{7}$ refinement package using Least Squares minimization.

Crystal structure determination of $\mathbf{9}$ [CCDC 2177585]
Crystal Data for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BN}_{4} \mathrm{O}_{2}$ ($M=390.28 \mathrm{~g} / \mathrm{mol}$): triclinic, space group P-1 (no. 2), $a=$ $9.5191(6) \AA, b=10.8959(7) \AA, c=11.6708(6) \AA, \alpha=114.490(5)^{\circ}, \beta=96.844(5)^{\circ}, \gamma=$ $101.099(5)^{\circ}, V=1053.80(10) \AA^{3}, Z=2, T=150.00(10) \mathrm{K}, \mu(\mathrm{CuK} \alpha)=0.634 \mathrm{~mm}^{-1}$, Dcalc $=1.230 \mathrm{~g} / \mathrm{cm}^{3}, 6898$ reflections measured $\left(8.54^{\circ} \leq 2 \Theta \leq 137.94^{\circ}\right), 3908$ unique $\left(R_{\text {int }}=0.0396, \mathrm{R}_{\text {sigma }}=0.0664\right)$ which were used in all calculations. The final R_{1} was $0.0490\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1292 (all data).

Table 1 Crystal data and structure refinement for 9 (CCDC 2177585).

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
a20190212_BODIPV
$\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{BN}_{4} \mathrm{O}_{2}$
390.28
150.00(10)
triclinic
P-1
9.5191(6)
10.8959(7)
11.6708(6)
$114.490(5)$
96.844(5)
101.099(5)
1053.80(10)

2
1.230
0.634
416.0
$0.299 \times 0.053 \times 0.043$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
8.54 to 137.94
$-11 \leq \mathrm{h} \leq 11,-13 \leq \mathrm{k} \leq 11,-11 \leq 1 \leq 14$
6898
$3908\left[\mathrm{R}_{\text {int }}=0.0396, \mathrm{R}_{\text {sigma }}=0.0664\right]$
3908/0/269
1.002
$\mathrm{R}_{1}=0.0490, \mathrm{wR}_{2}=0.1179$
$\mathrm{R}_{1}=0.0702, \mathrm{wR}_{2}=0.1292$
0.31/-0.22
[a] Weighting scheme: $1 /\left[\sigma^{2}\left(\mathrm{~F}^{2}\right)_{+}(0.0586 \mathrm{P})^{2}\right]$ donde $\mathrm{P}=\left[\mathrm{Max}\left(\mathrm{F}^{2}, \mathrm{Q}\right)+2 \mathrm{~F}^{2}\right] / 3$.
[b] Secondary extinction expression type SHELXL: $\mathrm{F}_{\mathrm{c}}{ }^{*}=k \mathrm{FF}_{\mathrm{c}}\left[1+0.001 \mathrm{~F}^{2}{ }^{2} \lambda^{3} / \operatorname{sen}(2 \theta)\right]^{-1 / 4}$

Quantum mechanics calculations

Ground state geometries of compounds 59-61 were optimized at Density Functional Theory (DFT) using the hybrid B3LYP method and the basis set function $6-311+\mathrm{G}^{*}$. The energy minimization was carried out without any geometrical constraints and an energy minimum was reached when the corresponding frequency analysis did not give any negative value. Absorption energies and probability were simulated with the timedependent (TD DFT) method using the same basis set. All calculations were performed
using the Gaussian 16 program suite, implemented in the computational cluster provided by the SGIker resources of UPV-EHU.

Atom coordinates and total energy (in Hartrees) of the ground state (B3LYP/6311+G*) of compounds 59-61.

Compound 59

C	-3.12573800	-2.35132700	0.57073000
N	-2.80219900	-1.07094200	0.28786600
C	-3.78965500	-0.53174400	-0.54429900
C	-4.78803600	-1.53832400	-0.73549300
C	-4.36795400	-2.66599600	-0.02944900
B	-1.47152300	-0.34331600	0.64547500
N	-1.63649600	1.15994700	0.27743400
C	-2.66103600	1.63452400	-0.55530800
C	-3.68529200	0.78548700	-1.01111200
C	-0.83896300	2.20349100	0.61500700
C	-1.34347600	3.38680300	0.02563800
C	-2.47612300	3.04104500	-0.71206100
C	-1.21549400	-0.48664900	2.21606900
C	-0.31200200	-1.03089100	-0.21401800
C	-4.68207600	1.29735900	-2.01987000
C	-5.07143000	-3.99202600	0.07403000
C	-4.73953900	-4.95702700	-1.07718500
C	-0.78103900	4.77125300	0.21326400
C	-1.36077200	5.51370800	1.42967500
C	0.35241900	2.12951700	1.53293100
C	-3.33312900	4.02610800	-1.45429700
C	-2.25525500	-3.26306300	1.36974000
C	-6.08396600	-1.44276900	-1.48658100
N	-1.07397800	-0.58661800	3.35783800
N	0.43845500	-1.58727200	-0.89349500
C	2.28437500	1.36192300	-0.07315400
C	1.99020900	2.20946900	-1.27678000
C	1.54826300	1.29322500	1.12441400
C	2.13939000	0.35431200	1.99321500
C	3.25966800	-0.20505300	1.37377600
C	4.10473400	-1.18030400	1.91885000
C	3.78532100	-1.68316100	3.31082300
C	5.22232600	-1.73671500	1.28429900
C	5.76804400	-1.50878700	0.02076900
C	5.38453700	-0.65523000	-1.01720600
C	6.21830000	-0.67329200	-2.30284900
C	7.67292600	-0.23130200	-2.06584500
C	6.15994500	-2.03690200	-3.01356600
C	4.28569000	0.21261800	-0.97350300
C	3.35497100	0.44207900	0.03011100

H	-4.23639600	2.04183100	-2.67271800
H	-5.04983900	0.49434800	-2.65134700
H	-5.54914300	1.75898900	-1.53487100
H	-4.82308400	-4.46741000	1.02737500
H	-6.15408900	-3.83340600	0.10849000
H	-5.26860300	-5.90699800	-0.95833800
H	-5.02407800	-4.53274400	-2.04374500
H	-3.66851300	-5.17144800	-1.11899400
H	0.30737000	4.72198000	0.31037000
H	-0.95704500	5.36349100	-0.68969900
H	-0.92749700	6.51374900	1.52227800
H	-2.44556600	5.62336900	1.34858300
H	-1.15782300	4.97336500	2.35796400
H	0.68972900	3.15739600	1.69538800
H	0.01343400	1.77795200	2.51128300
H	-3.05165800	5.04706400	-1.19658500
H	-3.23018800	3.93401400	-2.54084300
H	-4.39397700	3.91786000	-1.21984000
H	-2.19932300	-2.95559500	2.41700000
H	-2.63650700	-4.28288300	1.33339700
H	-1.23265900	-3.27276500	0.98399200
H	-6.63544300	-0.52904400	-1.25636700
H	-5.94003600	-1.47098500	-2.57221500
H	-6.73218000	-2.28321800	-1.23558600
H	2.86873600	2.77221200	-1.61031800
H	1.65306800	1.60363200	-2.12590600
H	1.20282300	2.93657900	-1.07682500
H	1.75620100	0.10298400	2.97141500
H	4.49463200	-2.44508300	3.63628900
H	3.80830300	-0.86767100	4.03982900
H	2.78159800	-2.11537900	3.35134500
H	5.75687500	-2.48047700	1.87005100
H	6.64842800	-2.11445800	-0.18333100
H	5.76868300	0.05975400	-2.98193300
H	8.22018800	-0.17788900	-3.01215600
H	7.71632900	0.75410800	-1.59468300
H	8.20907800	-0.93106300	-1.41788000
H	6.69354900	-1.99913600	-3.96849500
H	5.12768500	-2.33448300	-3.21332400
H	6.62069500	-2.82616700	-2.41200300
	4.13253200	0.80024600	-1.87652200

TOTAL ENERGY $($ Hartrees $)=-1602.677713$

Compound 60

C	-2.333372	0.846136	-0.116749
N	-1.976620	-0.458180	0.247894

B	-0.522531	-0.956154	0.431950
N	0.433132	0.248862	0.221690
C	0.010020	1.543486	-0.109158
C	-1.349041	1.826235	-0.326533
C	1.778092	0.254286	0.361792
C	2.269379	1.564287	0.155096
C	1.173668	2.376191	-0.140168
C	-3.761491	0.894799	-0.181940
C	-4.229814	-0.383210	0.135595
C	-3.101720	-1.196681	0.385273
C	-0.208776	-2.102673	-0.641525
C	-0.336971	-1.519532	1.922175
C	1.266232	3.855333	-0.383745
C	3.706606	1.990936	0.289509
C	-1.755908	3.196777	-0.804297
C	2.576259	-0.974035	0.708750
C	4.096505	2.389041	1.725436
C	-4.650535	2.066810	-0.481898
C	-5.661206	-0.843835	0.188493
C	-3.086966	-2.644625	0.743457
C	-6.203460	-1.335021	-1.166110
C	3.694998	-1.276813	-0.250961
N	4.961486	-1.582394	0.199796
C	5.789981	-1.857344	-0.864591
C	5.045683	-1.719692	-2.013704
C	3.724159	-1.355920	-1.627403
N	-0.200118	-1.894708	3.006644
N	-0.003882	-2.912879	-1.439590
H	0.547807	4.419049	0.214946
H	2.260909	4.217659	-0.123736
H	1.096378	4.115063	-1.434179
H	3.902502	2.831551	-0.382126
H	4.354981	1.182645	-0.054687
H	-0.969462	3.659508	-1.391704
H	-2.642982	3.146948	-1.428145
H	-1.978544	3.860619	0.038489
H	2.992672	-0.835384	1.714648
H	1.917828	-1.839679	0.787823
H	5.149256	2.681572	1.774941
H	3.944539	1.560797	2.423221
H	3.494662	3.229082	2.083046
H	-5.687997	1.819973	-0.253988
H	-4.387763	2.949394	0.104917
H	-4.617256	2.352470	-1.538799
H	-6.294618	-0.030853	0.555920
H	-5.759843	-1.644259	0.927223
H	-2.511070	-3.225508	0.017610
H	-2.629952	-2.808986	1.723466
H	-4.101039	-3.041159	0.767887
H	-7.242810	-1.663143	-1.074476

H	-5.615042	-2.175059	-1.544237
H	-6.163917	-0.541559	-1.917250
H	5.230748	-1.629853	1.169006
H	6.822791	-2.126251	-0.714443
H	5.405413	-1.869932	-3.019660
H	2.882542	-1.188457	-2.281262

TOTAL ENERGY $($ Hartrees $)=-1230.422291$

Compound 61

C	-2.970182	0.736849	-0.300398
N	-2.571315	-0.441142	0.342732
B	-1.109540	-0.785633	0.720535
N	-0.220996	0.447151	0.405651
C	-0.694855	1.622282	-0.192463
C	-2.034675	1.741731	-0.597506
C	1.098110	0.595539	0.681799
C	1.511237	1.896182	0.298896
C	0.399186	2.540184	-0.248815
C	-4.382636	0.652678	-0.508031
C	-4.799213	-0.578091	0.007250
C	-3.654466	-1.233364	0.513732
C	-0.630522	-2.049349	-0.142751
C	-1.026911	-1.111015	2.287677
C	0.401928	3.961534	-0.734615
C	2.874179	2.503395	0.503277
C	-2.472395	2.955408	-1.377294
C	1.894677	-0.505093	1.340423
C	3.073066	3.098114	1.908883
C	-5.307044	1.669541	-1.112504
C	-6.194957	-1.140032	0.015448
C	-3.587614	-2.584927	1.142226
C	-6.545639	-1.941980	-1.251223
C	3.321390	-0.670314	0.893618
C	4.425286	-0.610210	1.702882
N	5.568138	-0.847864	0.961854
C	5.214616	-1.085915	-0.351186
C	3.800031	-0.986179	-0.430991
N	-0.971327	-1.311774	3.424221
N	-0.308352	-2.944875	-0.798459
H	-0.445169	4.531881	-0.349020
H	1.309192	4.470641	-0.410024
H	0.373177	4.026377	-1.827869
H	3.037436	3.283911	-0.244607
H	3.641044	1.750774	0.321290
H	-1.654676	3.362603	-1.963338
H	-3.275452	2.708296	-2.064957

H	-2.835420	3.747417	-0.712931
H	1.876256	-0.337927	2.424311
H	1.373515	-1.452907	1.190043
H	4.071791	3.533322	2.008006
H	2.963226	2.331289	2.680315
H	2.339338	3.881750	2.117883
H	-6.345017	1.380684	-0.944238
H	-5.170589	2.664120	-0.682729
H	-5.173920	1.758036	-2.196015
H	-6.916864	-0.326807	0.137197
H	-6.326446	-1.778428	0.893834
H	-2.875715	-3.230251	0.620280
H	-3.263949	-2.524099	2.185064
H	-4.564650	-3.065224	1.113136
H	-7.566970	-2.329719	-1.197403
H	-5.867846	-2.789804	-1.380619
H	-6.466317	-1.318859	-2.146076
H	4.488708	-0.411358	2.761945
H	6.501804	-0.890725	1.333550
C	6.006366	-1.383270	-1.463201
H	7.085759	-1.456694	-1.385774
C	5.358728	-1.587769	-2.673575
C	3.956257	-1.503769	-2.774259
C	3.173283	-1.206173	-1.669040
H	5.942598	-1.823763	-3.556060
H	3.482454	-1.684814	-3.732203
H	2.093990	-1.167956	-1.757212

TOTAL ENERGY $($ Hartrees $)=-1384.104609$

Plausible mechanistic proposal for the acetoxylation of $3 / 5$-methylBODIPYs with $\mathbf{P b}(\mathbf{O A c})_{4}$

As explained in the main text, in the absence of conclusive mechanistic studies on the $\mathrm{C}-\mathrm{H}$ acyloxylation reaction of alkyl-substituted aromatic and heteroaromatic compounds with $\mathrm{Pb}(\mathrm{OAc})_{4},{ }^{8}$ the substituents effects observed in this work for the reaction of BODIPYs point to a rate determining step with partial development of positive charge. A plausible mechanistic proposal is the following. Single-electron oxidation of the BODIPY π-system by the Pb^{+4} reagent leads to a delocalized radical-cation \mathbf{A}, which evolves via deprotonation and reoxidation of the resulting radical to the corresponding carbocation \mathbf{B} by the unstable Pb^{+3}-radical intermediate. ${ }^{9}$ Subsequent nucleophilic attack by acetate anion affords the final acetoxylated product (Scheme 1). Methyl groups at C3/5 in the intermediate radical-cation A should have a considerably higher acidity than on the neutral molecule, thus facilitating their ionization and the ensuing second single-electron oxidation step.

Scheme 1. Plausive mechanism of the acetoxylation reaction of 3/5-methyl-BODIPYs with $\mathrm{Pb}(\mathrm{OAc})_{4}$

Table S1. Photophysical properties of starting 3-acetoxymethyl-CN-BODIPY 9 and the resultant BODIPY-derivatives from the reaction with oxygen nucleophiles, in diluted solutions in different solvents. Absorption (λ_{ab}) and fluorescence $\left(\lambda_{\mathrm{f}}\right)$ wavelengths $(\pm 1$ nm), molar absorption coefficients $\left(\varepsilon_{\max }\right)$, fluorescence quantum yields (φ) and excitedstate lifetimes (τ) at room temperature.

Compound	Solvent	$\begin{gathered} \lambda_{\mathrm{ab}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \boldsymbol{\varepsilon}_{\max } \\ \left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	$\lambda_{\mathrm{fl}}(\mathrm{nm})$	ϕ	$\underset{(\mathrm{ns})}{\boldsymbol{\tau}}$
9	AcOEt	515.0	4.3	538.0	0.64	6.7
	MeOH	514.0	4.4	534.0	0.61	6.9
	PBS	538.0	1.1	538.0	0.01	3.0 (43\%), 6.2(57\%)
15	AcOEt	516.0	5.8	536.0	0.85	6.6
	MeOH	516.0	5.5	537.0	0.79	7.0
	PBS	522.0	1.4	554.0	0.10	6.4
16	AcOEt	517.0	4.7	537.5	0.99	6.6
	MeOH	516.0	4.1	536.0	0.98	6.9
	PBS	523.0	1.3	-	-	-
17	AcOEt	523.0	2.9	535.0	0.39	2.8(48\%),6.2(52\%)
	MeOH	522.0	2.8	538.0	0.28	$6.8{ }^{\text {b }}$
	PBS	535.0	0.7	543.0	0.01	2.8 (31\%), 6.6(69\%)
18	AcOEt	516.5	6.1	537.0	0.83	6.8
	MeOH	515.5	6.1	536.5	0.81	7.1
	PBS	513.5	3.4	534.5	0.78	7.1
19	AcOEt	516.0	5.6	535.0	0.98	6.6
	MeOH	515.0	4.9	535.0	0.99	6.9
	PBS	514.0	1.8	535.0	0.34	6.7
20	AcOEt	516.0	8.8	537.5	0.99	6.7
	MeOH	516.0	7.7	535.0	0.98	7.1
	PBS	522.0	3.1	537.0	0.01	-
21	AcOEt	516.0	5.0	538.0	0.89	6.5
	MeOH	516.0	5.0	534.0	0.79	6.8
	PBS	527.0	1.3	544.0	0.06	6.5^{b}
22	AcOEt	517.5	6.5	535.5	0.87	6.5

	MeOH	517.0	6.0	535.0	0.86	6.9
23	PBS	521.5	1.8	546.5	0.01	-
	AcOEt	516.0	6.4	535.5	0.99	6.6
	MeOH	516.0	5.8	536.5	0.93	7.0
24	PBS	521.0	1.3	542.0	0.03	$6.5{ }^{\text {b }}$
	AcOEt	518.0	9.2	537.0	0.83	6.6
	MeOH	515.0	5.3	538.0	0.70	7.0
25	PBS	521.0	1.4	536.0	0.02	0.5 (24\%), 6.2(76\%)
	AcOEt	516.5	6.8	535.0	0.83	6.7
	MeOH	515.5	6.0	535.5	0.83	7.0
26	PBS	517.5	0.9	536.5	0.15	6.7
	AcOEt	516.0	7.6	536.0	0.85	6.8
	MeOH	515.0	7.2	536.5	0.83	7.2
27	PBS	525.0	3.0	547.0	0.01	-
	AcOEt	516.0	4.8	534.5	0.87	6.7
	MeOH	515.0	4.6	535.5	0.82	7.0
28	PBS	525.0	1.9	544.0	0.01	-
	AcOEt	515.5	3.3	534.0	0.84	6.6
	MeOH	515.0	3.1	535.0	0.81	6.7
29	PBS	514.0	1.9	534.0	0.67	6.9
	AcOEt	515.5	4.5	534.5	0.85	6.6
	MeOH	514.5	4.7	534.0	0.82	6.9
30	PBS	514.0	1.9	532.5	0.67	6.9
	AcOEt	516.0	5.9	535.0	0.83	6.6
	MeOH	515.5	5.7	535.0	0.84	7.0
31	PBS	515.5	1.8	534.5	0.26	6.7
	AcOEt	517.0	6.5	535.0	0.84	6.5
	MeOH	516.0	5.6	536.0	0.78	6.9
32	PBS	524.0	1.4	-	-	-
	AcOEt	516.0	6.3	536.5	0.90	6.7
	MeOH	516.0	5.5	535.0	0.76	6.2

$\mathbf{3 4}$	PBS	513.0	1.8	534.0	0.71	6.8
	AcOEt	516.0	7.5	535.5	0.04	0.1^{b}
	MeOH	516.0	3.8	533.0	0.05	0.1^{b}
$\mathbf{3 5}$	PBS	522.0	1.8	539.5	0.01	-
	AcOEt	517.0	3.3	534.5	0.94	6.4
	MeOH	516.0	2.8	535.0	0.76	6.8^{b}
	36	AcOEt	520.0	0.6	536.5	0.18
	MeOH	514.0	3.9	534.0	0.93	6.6^{b}
	PBS	521.0	1.4	535.0	0.01	6.9
	AcOEt	515.0	3.8	539.0	0.75	-
	MeOH	514.0	3.5	533.5	0.68	6.3
	PBS ${ }^{a}$	-	-	-	-	-8
$\mathbf{3 8}$	AcOEt	514.0	3.1	533.5	0.80	6.5
	MeOH	513.0	1.7	534.0	0.74	6.8
	PBS	514.0	1.6	534.0	0.17	6.8
$\mathbf{3 9}$	AcOEt	538.0	2.0	557.0	0.35	$2.2(43 \%), 5.1(57 \%)$
	MeOH	537.0	2.9	550.0	0.06	$0.1(74 \%), 0.6(26 \%)$
	PBS	541.0	0.3	534.0	0.01	-

[^0]Table S2. Photophysical properties of the new BODIPYs from the reaction with sulfur (41-45), nitrogen $(\mathbf{4 6}, 49)$, halogen (50), and phosphorous (51) nucleophiles, in diluted solutions different solvents. Absorption (λ_{ab}) and fluorescence $\left(\lambda_{\mathrm{f}}\right)$ wavelengths (± 1 nm), molar absorption coefficients ($\varepsilon_{\max }$), fluorescence quantum yields (φ) and excitedstate lifetimes (τ) at room temperature.

Compound	Solvent	λ_{ab} (nm)	ε $\left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	λ_{fl} (nm)	$\boldsymbol{\phi}$	$\boldsymbol{\tau}$
					(ns)	

	MeOH	522.0	6.3	540.5	0.94	6.6
	PBS	520.0	1.9	535.0	0.04	6.7^{a}
42	AcOEt	521.0	6.8	541.5	0.94	6.4
	MeOH	520.0	6.7	542.0	0.82	6.7
	PBS	520.0	1.6	536.5	0.03	6.6^{a}
43	AcOEt	517.0	2.9	539.0	0.68	3.5 (35\%), 6.2 (65\%)
	MeOH	516.0	2.6	538.0	0.51	1.1 (31\%), 6.6 (69\%)
	PBS	515.0	0.8	531.0	0.34	6.7
44	AcOEt	518.0	3.5	539.0	0.86	$6.2{ }^{a}$
	MeOH	516.0	2.5	535.5	0.53	0.9 (17\%), 6.6 (83\%)
	PBS	516.0	0.6	-	-	-
45	AcOEt	522.0	4.0	539.5	0.86	6.2
	MeOH	522.0	4.3	540.0	0.77	6.4
	PBS	520.0	1.3	540.5	0.44	6.3
46	AcOEt	517.0	5.0	535.0	0.95	6.6
	MeOH	516.0	4.7	536.0	0.88	6.9
	PBS	521.0	1.6	539.0	-	-
47	AcOEt	517.5	5.3	537.0	0.84	6.8
	MeOH	516.5	5.2	537.5	0.84	7.2
	PBS	528.0	0.6	-	-	-
48	AcOEt	523.0	5.5	544.5	0.84	6.9
	MeOH	521.5	5.2	544.5	0.84	7.3
	PBS	530.5	0.7	-	-	-
49	AcOEt	512.0	4.0	536.0	0.33	$2.4{ }^{\text {a }}$
	MeOH	509.0	3.5	534.0	0.15	0.06 (83\%), 6.6(17\%)
	PBS	510.0	1.4	530.0	0.03	1.0^{a}
50	AcOEt	517.0	4.8	538.0	0.78	6.7
	MeOH	515.0	5.1	534.0	0.73	6.8

	PBS	516.0	0.8	534.0	0.41	6.7
$\mathbf{5 1}$	AcOEt	519.5	6.1	538.0	0.82	6.3
	MeOH	518.0	5.8	537.0	0.82	6.5
	PBS	516.0	3.3	537.0	0.28	5.7

[^1]Table S3. Photophysical properties of the new BODIPYs from the reaction with carbon nucleophiles, in diluted solutions different solvents. Absorption (λ_{ab}) and fluorescence $\left(\lambda_{\mathrm{fl}}\right)$ wavelengths $(\pm 1 \mathrm{~nm})$, molar absorption coefficients $\left(\varepsilon_{\mathrm{max}}\right)$, fluorescence quantum yields (φ) and excited-state lifetimes (τ) at room temperature.

Compound	Solvent	$\begin{gathered} \lambda_{\mathrm{ab}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \varepsilon \\ \left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{nl}} \\ (\mathrm{~nm}) \end{gathered}$	ϕ	$\begin{gathered} \boldsymbol{\tau} \\ (\mathrm{ns}) \end{gathered}$
52	AcOEt	517.5	6.6	536.0	0.83	6.4
	MeOH	517.5	6.5	535.5	0.84	6.8
	PBS	521.0	0.3	534.5	0.01	-
53	AcOEt	518.0	7.6	536.0	0.89	6.4
	MeOH	518.0	7.4	536.0	0.91	6.7
	PBS	524.0	1.5	546.0	0.06	6.3
$54{ }^{a}$	AcOEt	511.0	5.3	532.0	0.84	6.4
	MeOH	510.0	4.9	529.0	0.79	6.5
	PBS	-	-	-	-	-
55	AcOEt	518.0	6.9	538.0	0.84	6.5
	MeOH	517.0	6.8	538.0	0.83	6.8
	PBS	-	-	-	-	-
56	AcOEt	520.0	7.4	538.0	0.87	6.1
	MeOH	520.0	7.3	538.0	0.87	6.4
	PBS	532.0	1.3	540.0	0.01	1.3 (42\%), 5.0 (58\%)

57	AcOEt	520.5	4.5	538.0	0.83	6.2
	MeOH	520.0	4.3	538.0	0.67	5.4
	PBS	528.5	1.4	542.0	-	-
59	AcOEt	522.0	5.1	537.0	0.02	5.9
	MeOH	521.0	4.9	533.0	0.02	6.2
	PBS	527.0	1.8	529.5	-	-
60	AcOEt	521.0	3.6	537.0	0.16	0.4 (37\%), 5.2 (63\%)
	MeOH	520.0	3.4	536.0	0.19	1.8 (27\%), 5.6 (73\%)
	PBS	520.0	1.0	$535.0^{\text {b }}$	0.12	1.8 (37\%), 5.6 (63\%)
61	AcOEt	523.0	7.3	549.0	0.01	-
	MeOH	522.0	7.2	540.0	0.01	-
	PBS	532.0	1.7	538.0	0.01	-
62	AcOEt	533.0	14.53	547.7	0.69	3.9
	MeOH	532.0	12.9	545.5	0.05	0.06 (89\%), $0.3(8 \%), 6.2(3 \%)$
	PBS	536.6	3.8	-	-	-
63	AcOEt	549.5	18.8	562.0	0.67	3.0
	MeOH	549.0	18.1	560.5	0.03	0.1 (93\%), 0.7 (6\%),5.8(1\%)
	PBS	552.5	5.2	-	-	-

Table S4. Photophysical properties of the homo- and heterobifunctional BODIPYs. Absorption $\left(\lambda_{\mathrm{ab}}\right)$ and fluorescence $\left(\lambda_{\mathrm{fl}}\right)$ wavelengths $(\pm 1 \mathrm{~nm})$, molar absorption coefficients $\left(\varepsilon_{\max }\right)$, fluorescence quantum yields (φ) and excited-state lifetimes (τ) at room temperature.

Comp.	Disolv.	λ_{ab} (nm)	ε $\left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	λ_{fl} (nm)	$\boldsymbol{\phi}$	$\boldsymbol{\tau}$
			4.8	539.0	0.62	$(\mathrm{~ns})$
$\mathbf{1 2}$	AcOEt	525.0	3.9	540.0	0.57	4.75
	MeOH	550.0		5.12		

$\mathbf{6 4}$	PBS	554.0	1.5	541.0	0.11	$1.0(7 \%), 4.2(93 \%)$
		AcOEt	527.0	5.8	541.0	0.79
	MeOH	526.0	7.8	541.0	0.61	5.9
	PBS	531.0	4.4	541.0	0.45	5.5
	MeOH	527.0	7.8	540.0	0.88	5.0
	PBS	531.0	0.7	540.0	0.05	$0.02(99 \%)$

Figure S1. Normalized fluorescence absorption and emission spectrum of starting acetoximethyl-BODIPY 9 in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S2. Normalized fluorescence absorption and emission spectra for compounds derived from O-nucleophiles with a lipophilic chain of C16 (17) and octaethylene glycol (18) in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S3. Normalized fluorescence absorption and emission spectra of the S-
derivatives 44 (pentafluoreophenyl substituent) and $\mathbf{4 3}$ (p-tolyl substituent), the N derivative with azide substituent $\mathbf{4 6}$ and the chlorine-derivative $\mathbf{5 0}$ in different solvents: AcOEt (black), MeOH (red), and PBS (blue).

Figure S4. Normalized fluorescence absorption and emission spectra of the Cnucleophilic derivatives 53 (allyl substituent) and 59 (guaiazulene substituent) in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S5. Frontier orbitals of $\mathbf{6 0}$ and $\mathbf{6 1}$ computed at B3LYP/6-311+G* level. The simulation of the absorption probabilities indicates that the first transition involves HOMO-1/LUMO molecular orbitals.

Figure S6. Normalized fluorescence absorption and emission spectra of homodisubstituted compounds $\mathbf{1 2}$ (with acetate groups) and $\mathbf{6 4}$ (with O-methyltetraethylene groups) in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S7. Representative fluorescence microscopy images of Hela (A/B) and SCC38 (C/D) cells stained with $50 \mathrm{nM}(\mathrm{A} / \mathrm{C})$ or $100 \mathrm{nM}(\mathrm{B}, \mathrm{D}, \mathrm{E})$ of dye 33 after $30 \mathrm{~min}(\mathrm{~A}-\mathrm{D})$ or $24 \mathrm{~h}(\mathrm{E})$ incubation. As shown, only partial loss of fluorescent emission was observed after 24 h , while retaining the same initial subcellular specificity. Scale bars: $10 \mu \mathrm{~m}$.

Figure S8. Representative examples of compounds that presumably exhibit specific subcellular staining. HeLa cells were stained with 100 nM of: A) $\mathbf{2 6}$ (serine); B) 22 (norbornene); and C) 52 (prepared from diethylzinc). Scale bars: $10 \mu \mathrm{~m}$.

References

1. Nepomnyashchii, A. B.; Broering, M.; Ahrens, J.; Bard, A. J., Synthesis, Photophysical, Electrochemical, and Electrogenerated Chemiluminescence Studies. Multiple Sequential Electron Transfers in BODIPY Monomers, Dimers, Trimers, and Polymer. J. Am. Chem. Soc. 2011, 133 (22), 8633-8645.
2. Buckley, D. L.; Raina, K.; Darricarrere, N.; Hines, J.; Gustafson, J. L.; Smith, I. E.; Miah, A. H.; Harling, J. D.; Crews, C. M., HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 2015, 10 (8), 1831-1837.
3. Duran-Sampedro, G.; Esnal, I.; Agarrabeitia, A. R.; Banuelos Prieto, J.; Cerdan, L.; Garcia-Moreno, I.; Costela, A.; Lopez-Arbeloa, I.; Ortiz, M. J., First Highly Efficient and Photostable E and C Derivatives of 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin Films, and Solid-State Rods. Chem. - Eur. J. 2014, 20 (9), 26462653.
4. Lopez Arbeloa, F.; Lopez Arbeloa, T.; Lopez Arbeloa, I.; Garcia-Moreno, I.; Costela, A.; Sastre, R.; Amat-Guerri, F., Photophysical and lasing properties of pyrromethene 567 dye in liquid solution. Environment effects. Chem. Phys. 1998, 236 (1-3), 331-341.
5. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
6. Sheldrick, G. M., A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64 (1), 112-122.
7. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71 (1), 3-8.
8. Harvey, D. R.; Norman, R. O. C., Reactions of lead tetraacetate. I. Reactions with some benzenoid compounds. J. Chem. Soc. 1964, (Dec.), 4860-8.
9. Mosseri, S.; Henglein, A.; Janata, E., Trivalent lead as an intermediate in the oxidation of lead(II) and the reduction of lead(IV) species. J. Phys. Chem. 1990, 94 (6), 2722-6.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the new compounds

Compound 1

Compound 1

Compound 14

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16

Compound 16

Compound 17

Compound 18

Compound 20

Compound 22

Compound 23

Compound 24
登

Compound 27

:00	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{2 8}$

Compound 38
合

Compound 44
 $-7.26 \mathrm{CDCl} 3$

Compound 47


```
\(1 \underbrace{-2=1}\)
```


(

 (ir

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 49

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 49

Compound 51

Compound 53

${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 3}$

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 (} \mathrm{DDm} \text {) } \end{gathered}$	90	80	70	60	50	40	30	20	10	0
						${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectrum of compound 57														

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 64

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 65

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 66

Compound 68 and impurity

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 68 and impurity

Compound 70

${ }^{13} \mathbf{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{7 0}$

[^0]: ${ }^{a}$ Not soluble in PBS. ${ }^{b}$ Contribution $\geq 90 \%$

[^1]: ${ }^{a}$ Contribution $\geq 90 \%$.

