Electronic Supplementary Information

Acetoxymethyl-BODIPYs: A Universal Platform for the Fluorescence Labeling of Nucleophiles

Alberto Blázquez-Moraleja,^a Larissa Maierhofer,^{a,†} Enrique Mann,^{a,†} Ruth Prieto-Montero,^{b,†} Ainhoa Oliden-Sánchez,^{b,†} Lucía Celada,^c Virginia Martínez-Martínez,^{b,*} María-Dolores Chiara,^{c,*} Jose Luis Chiara^{a,*}

^a Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain E-mail: jl.chiara@csic.es

^b Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain E-mail: virginia.martinez@ehu.eus

^c Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain E-mail: mdchiara.uo@uniovi.es

[†] These authors have contributed equally to this work.

Table of Contents

Synthesis and characterization of compounds	S2
Photophysical characterization	S69
Live-cell imaging studies	S69
X-Ray diffraction	S70
Quantum mechanics calculations	S71
Plausible mechanistic proposal for the acetoxylation of	
3/5-methyl-BODIPYs with Pb(OAc) ₄	S77
Tables	S78
Figures	S85
References	S91
Copies of ¹ H and ¹³ C NMR spectra	S92

Synthesis and characterization of compounds

General methods

Proton and carbon-13 nuclear magnetic resonance (¹H NMR or ¹³C NMR) spectra were recorded on a Bruker Avance III-400 (400 and 100 MHz, respectively) or a Varian System 500 (500 and 125 MHz, respectively) spectrometers. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual peaks of the deuterated NMR solvent used. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m= multiplet and/or multiple resonances, b = broad), integration, coupling constants in hertz (Hz), and assignment. Proton and carbon-13 assignments are based on gCOSY, gHSQC, and gHMBC correlation experiments. Thin layer chromatography (TLC) was performed with Merck Silica Gel 60 F254 plates. Chromatograms were visualized using UV light (254 nm or 365 nm). Column chromatography was performed on a 971-FP Flash Purification System from Agilent Technologies using SF Si35 silica cartridges. High-resolution mass spectra (HRMS) were recorded on an Agilent 6520 Q-TOF instrument with an ESI source. Anhydrous solvents were prepared according to standard methods by distillation over drying agents or via elution through a PureSolvTM column drying system from Innovative Technology, Inc. All other solvents were of HPLC grade and were used as provided. Microwave irradiation experiments were performed under magnetic stirring with a singlemode Anton Parr Monowave 300 reactor, using standard Pyrex tubes (10 mL capacity) sealed with a PTFE-lined rubber septum. BODIPYs 2 and 4 were purchased from Exciton and Merck, respectively, and used as received. BODIPY 3 was synthesized by a previously described method.¹

Initial qualitative screening of acid catalysts for the substitution reaction

The screening experiments were carried out in parallel, distributing aliquots of a stoichiometric mixture of 3-acetoxymethyl-CN-BODIPY **9** and isobutanol in different reaction vials to which the corresponding acid catalyst (2.5 mol%) was added at room temperature. Thin-layer chromatography was used as a rapid naked-eye inspection method for parallel qualitative reaction analysis (UV). This study helped us classify the screened catalysts into three main groups based on their efficiency. The first group comprised the most active catalysts, which achieved >50% product formation in <1 h

reaction time, included the following in decreasing order of activity: $Et_3SiOTf > Cu(OTf)_2 > Sc(OTf)_3 ~ In(OTf)_3 ~ Ga(OTf)_3 ~ Bi(OTf)_3 > Hf(OTf)_4$. The second group included the catalysts with medium activity, which required a reaction time of >4 h to achieve a 50% product formation, was made up by the only Brønsted acid tested: *p*-toluenesulfonic acid. Finally, the less efficient catalysts, with product yields $\leq 10\%$ after a 4 h reaction time, included the following: $Zn(OTf)_2 > AgOTf > Yb(OTf)_3 >> Sm(OTf)_3$ (inactive). This fast and very convenient study showed that the most suitable catalyst in terms of reaction rate, total transformation of the starting BODIPY and generation of the substitution product was Sc(OTf)_3.

2-Chloro-N-(2-(2-hydroxyethoxy)ethyl)acetamide

To a stirred solution of 2-(2aminoethoxy)ethanol (473 μ L, 4.66 mmol) and triehylamine (1.3 mL, 9.32 mmol) in anhydrous CH₂Cl₂ (5 mL) was added dropwise chloroacetyl chloride (370 μ L, 4.66 mmol) at 0 °C, under an argon atmosphere. The resulting mixture was stirred 1 h at 0 °C and 4 h more at room temperature. Then, chloroacetyl chloride (185 μ L, 2.33 mmol) was added to the mixture again, at 0 °C for 30 min. The mixture reaction was diluted with CH₂Cl₂ (20 mL) and saturated NaHCO₃ (20 mL) solution. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was diluted with MeOH (3 mL) and K₂CO₃ (small amount) was added. After stirring for 1.5 h at room temperature, the solvent was removed at reduced pressure and the crude was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH, 90:10 to 60:40) to afford 2-chloro-*N*-(2-(2-(2-hydroxyethoxy)ethyl)acetamide (257 mg, 30% yield; non-optimized procedure) as a yellow oil.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.14$ (1H, br s, H3), 4.01 (2H, s, H1), 3.70 (2H, t, J = 4.4 Hz, H8), 3.56 (4H, q, J = 5.3 Hz, H5 and H7), 3.47 (2H, q, J = 5.3 Hz, H4), 2.80 (1H, br s, OH8). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 166.5$ (C2), 72.4 (H5/H7), 69.5 (H7/H5), 61.7 (C1), 42.7 (C1), 39.7 (C4).

HRMS (API-ES⁺) m/z calcd. for C₆H₁₂ClNNaO₃ [M+Na]⁺ 204.0398 (³⁵Cl), 206.0370 (³⁷Cl); found 204.0401 (³⁵Cl), 206.0372 (³⁷Cl). Calcd. for C₆H₁₃ClNO₃ [M+H]⁺ 182.0578 (³⁵Cl), 184.0551 (³⁷Cl); found 182.0577 (³⁵Cl), 184.0551 (³⁷Cl).

2-Iodo-N-(2-(2-hydroxyethoxy)ethyl)acetamide

To a stirred solution of 2-chloro-*N*-(2-(2-(2-hydroxyethoxy)ethyl)acetamide (90 mg, 0.495 mmol) in acetone (2 mL) was added KI (123.4 mg, 0.743 mmol) at 70 °C, under argon. After stirring for 4 h at 70 °C, the solvent was removed at reduced pressure and the crude was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH, 100:0 to 90:10) to afford 2-iodo-*N*-(2-(2-hydroxyethoxy)ethyl)acetamide (127 mg, 88% yield) as colorless oil.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.05$ (1H, br s, H3), 3.75 (2H, t, J = 4.7 Hz, H8), 3.71 (2H, s, H1), 3.58 (4H, m, H5 and H7), 3.47 (2H, q, J = 5.0 Hz, H4), 2.83 (1H, br s, OH8). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 168.0$ (C2), 72.4 (C5), 69.5 (C7), 61.8 (C8), 40.3 (C4), -0.46 (C1).

HRMS (API-ES⁺) m/z calcd. for C₆H₁₂INNaO₃ [M+Na]⁺ 295.9754; found 295.9755. Calcd. for C₆H₁₃INO₃ [M+H]⁺ 273.9934; found 273.9930.

18-Chloro-3,6,9,12-tetraoxaoctadecan-1-ol²

Tetraethylene glycol (1.7 mL, 9.88 mmol) was added dropwise to a mixture of NaH 60% (316 mg, 7.9 mmol) in DMF (2 mL, 1 M) and THF (2 mL, 1 M) at 0 °C under argon. After 50 minutes, 1-chloro-6-iodohexane (300 μ L, 1.98 mmol) was added, and the mixture was warmed to room temperature and stirred for 4 h. The reaction was diluted with MeOH (1 mL), quenched with 1 M HCl, and extracted with chloroform. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 0:100) to afford 18-chloro-3,6,9,12-tetraoxaoctadecan-1-ol (273 mg, 44% yield) as a colorless oil.

¹**H** NMR (CDCl₃, 300 MHz): $\delta = 3.67 - 3.62$ (m, 2H), 3.59 - 3.49 (m, 14H), 3.46 (t, J = 6.7 Hz, 2H), 3.38 (t, J = 6.6 Hz, 2H), 2.96 (br s, 1H), 1.74 - 1.65 (m, 2H), 1.57 - 1.47 (m, 2H), 1.41 - 1.27 (m, 4H).

Compound 1

A suspension of Pb(OAc)₄ (48 mg, 0.102 mmol) in AcOH/Ac₂O (20:1, 1 mL) and CH₂Cl₂ (0.2 mL) was added dropwise to a stirred solution of *F*-BODIPY **1** (15.5 mg, 0.048 mmol) in AcOH/Ac₂O (20:1, 1 mL) and CH₂Cl₂ (0.3 mL) at 0 °C under argon atmosphere. After stirring at 0 °C for 3 h, the reaction mixture was warmed to room temperature and stirred for an additional 90 minutes. Cold water (20 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (3 × 40 mL). The combined organic layers were washed with 0.1 M aq. NaHCO₃, brine and dried (Na₂SO₄). After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 100:0 to 48:52) to afford compound **2** (14 mg, 66%) as an orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 5.34$ (4H, s, H1' and H1"), 2.70 (3H, s, CH₃8), 2.46 (4H, q, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6), 2.38 (6H, s, CH₃1 and CH₃7), 2.10 (6H, s, H4' and H4"), 1.07 (6H, t, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 170.6$ (C3' and C3"), 148.2 (C3 and C5), 145.3 (C8), 138.5 (C1 and C7), 134.6 (C2 and C6), 133.3 (C7a and C8a), 57.2 (C1' and C1"), 21.0 (C4' and C4"), 17.9 (CH₃8), 17.2 (CH₃CH₂2 and CH₃CH₂6), 15.3 (CH₃CH₂2 and CH₃CH₂6), 14.7 (CH₃1 and CH₃7). **HRMS** (API-ES⁺) *m/z* calcd. for C₂₂H₂₉BF₂N₂NaO₄ [M+Na]⁺ 457.2085; found 457.2068. calcd. for C₂₂H₃₃BF₂N₃O₄ [M+NH₄]⁺ 452.2531; found 52.2505.

Compound 5³

To a stirred solution of *F*-BODIPY **1** (300 mg, 0.94 mmol) in anhydrous CH_2Cl_2 (3 mL) was added TMSCN (0.84 mL, 6.6 mmol) and $SnCl_4$ (0.056 mL, 0.47 mmol) at room temperature under an argon atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was diluted with H₂O (30 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic phases were washed with 0.1 M aqueous NaHCO₃ solution, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure to afford pure compound **5** (313 mg, 100% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 300 MHz): δ = 2.66 (9H, s), 2.46 (4H, q, *J* = 7.5 Hz), 2.38 (6H, s), 1.07 (6H, t, *J* = 7.5 Hz).

Compound 6

To a stirred solution of *F*-BODIPY **3** (200 mg, 0.546 mmol) in anhydrous CH₂Cl₂ (16 mL) were added TMSCN (478 μ L, 3.82 mmol) and SnCl₄ (32 μ L, 0.273 mmol) at room temperature under an argon atmosphere. After stirring for 40 minutes at room temperature, the reaction mixture was diluted with CH₂Cl₂ (20 mL) and H₂O (30 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic phases were washed with 0.1 M aqueous NaHCO₃ solution, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **6** (199 mg, 96% yield), as an orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 6.97 (2H, s, H3' and H5'), 6.14 (2H, s, H2 and H6), 2.73 (6H, s, CH₃3 and CH₃5), 2.34 (3H, s, CH₃4'), 2.07 (6H, s, CH₃2' and CH₃6'), 1.42

(6H, s, CH₃1 and CH₃7). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 155.8$ (C3 and C5), 143.8 (C7/C1/C7a/C8a), 143.0 8 (C8), 139.4 (C4'), 134.8 (C2' and C6'), 130.3 (C1'), 129.4 (C3' and C5'), 129.03 (C7a/C8a/C7/C1), 126.4 (q, $J_{CB} = 74$ Hz, 2 x CN), 122.4 (C2 and C6), 21.3 (CH₃4'), 19.6 (CH₃2' and CH₃6'), 15.6 (CH₃3 and CH₃5), 13.8 (CH₃1 and CH₃7). HRMS (API-ES⁺) *m/z* calcd. for C₂₄H₂₆BN₄ [M+H]⁺ 381.2249; found 381.2250. calcd. for C₂₄H₂₅BN₄Na [M+Na]⁺ 403.2069; found 403.2060.

Compound 7

To a stirred solution of *F*-BODIPY 4 (204 mg, 0.563 mmol) in anhydrous CH₂Cl₂ (2 mL) were added TMSCN (479.4 μ L, 3.76 mmol) and SnCl₄ (31.7 μ L, 0.268 mmol) at room temperature under an argon atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was diluted with H₂O (30 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic phases were washed with 0.1 M aqueous NaHCO₃ solution, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure to afford pure compound 7 (210 mg, 99% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.58-7.47$ (3H, m, H3', H4' and H5'), 7.31-7.22 (2H, m, H2' and H6'), 2.70 (6H, s, CH₃3 and CH₃5), 2.36 (4H, q, J = 7.6 Hz, CH₃CH₂2 and CH₃CH₂6), 1.33 (6H, s, CH₃1 and CH₃7), 1.01 (6H, t, J = 7.6 Hz, CH₃CH₂2 and CH₃CH₂6). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 154.0$ (C3 and C5), 141.1 (C8), 139.9 (C1 and C7), 134.8 (C2 and C6), 134.3 (C1'), 129.4 (C3'/C5'/C4'), 129.4 (C4'/C5'/C3'), 129.3 (C7a and C8a), 128.1 (C2' and C6'), 127.0 (q, $J_{CB} = 73.4$ Hz, 2 × CN), 17.3 (CH₃CH₂2 and CH₃CH₂6), 14.6 (CH₃CH₂2 and CH₃CH₂6), 13.4 (CH₃3 and CH₃5), 11.9 (CH₃1 and CH₃7).

HRMS (API-ES⁺) m/z calcd. for C₂₅H₂₈BN₄ [M+H]⁺ 395.2406; found 395.2412. Calcd. for C₂₅H₂₇BN₄Na [M+Na]⁺ 417.2226; found 417.2221.

Compound 8

A suspension of Pb(OAc)₄ (68 mg, 0.144mmol) in AcOH/Ac₂O (20:1, 0.5 mL) and CH₂Cl₂ (0.2 mL) was added dropwise to a stirred solution of *F*-BODIPY **3** (25.1 mg, 0.068 mmol) in AcOH/Ac₂O (20:1, 1 mL) and CH₂Cl₂ (0.3mL) at 0 °C under argon atmosphere. After stirring at 0 °C for 90 minutes, the reaction mixture was warmed to room temperature and stirred for an additional 90 minutes. Cold water (20 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (3 × 40 mL). The combined organic layers were washed with 0.1 M aq. NaHCO₃, brine and dried (Na₂SO₄). After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound **8** (18 mg, 62%) as an orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 6.96$ (2H, s, H3' and H5'), 6.16 (1H, s, H2), 6.03 (1H, s, H6), 5.42 (2H, s, H1"), 2.57 (3H, s, CH₃5), 2.34 (3H, s, CH₃4'), 2.15 (3H, s, H4"), 2.09 (6H, s, CH₃2' and CH₃6'), 1.41 (6H, s, CH₃1 and CH₃7). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 170.7$ (C3"), 158.8 (C5), 149.4 (C3), 145.1 (C7/C7a), 143.5 (C8), 140.9 (C1/C8a), 139.0 (C4'), 134.9 (C2' and C6'), 132.1 (C7a/C7), 130.9 (C1'), 130.4 (C8a/C1), 129.3 (C3' and C5'), 122.3 (C6), 118.8 (C2), 59.6 (C1"), 21.3 (CH₃4'), 21.1 (C4"), 19.7 (CH₃2' and CH₃6'), 15.0 (CH₃5), 13.8 (CH₃1/CH₃7), 13.5 (CH₃7/CH₃1).

HRMS (API-ES⁺) m/z calcd. for C₂₄H₂₇BF₂N₂NaO₂ [M+Na]⁺ 447.2030; found 447.2048. Calcd. for C₂₄H₃₁BF₂N₃O₂ [M+NH₄]⁺ 442.2476; found 442.2491. Calcd. for C₂₄H₂₈BF₂N₂O₂ [M+H]⁺ 425.2211; found 425.2207.

Compound 9

A solution of Pb(OAc)₄ (1.25 g, 2.81 mmol) in CH₂Cl₂ (5 mL) was added dropwise to a stirred solution of *CN*-BODIPY **5** (390 mg, 1.17 mmol) in an AcOH/Ac₂O (20:1) mixture (20 mL) at 0 °C. After addition, the reaction mixture was stirred at room temperature until completion of the reaction (TLC monitoring, *ca*. 2.5h). Water (50 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers were washed with 0.1 M aq. NaHCO₃, brine and dried (Na₂SO₄). After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 50:50 to 20:80) to afford compound **9** (330 mg, 72%) as an orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 5.43$ (2H, s, H1'), 2.70 (6H, s, CH₃5 and CH₃8), 2.52 (2H, q, J = 7.4 Hz, CH₃<u>CH₂2</u>), 2.48 (2H, q, J = 7.4 Hz, CH₃<u>CH₂6</u>), 2.41 (3H, s, CH₃1), 2.40 (3H, s, CH₃7), 2.16 (3H, s, H4'), 1.10 (3H, t, J = 7.4 Hz, <u>CH₃</u>CH₂2), 1.09 (3H, t, J = 7.4 Hz, <u>CH₃</u>CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 170.9$ (C3'), 157.8 (C5), 143.7 (C3), 142.9 (C8), 140.8 (C7), 136.3 (C1), 136.2 (C6), 135.0 (C2), 132.3 (C7a), 130.6 (C8a), 127.1 (q, $J_{CB} = 74$ Hz, 2 x CN), 56.5 (C1'), 21.0 (C4'), 17.8 (CH₃<u>CH₂6</u>), 17.4 (CH₃<u>CH₂2/CH₃8), 17.4 (CH₃8/CH₃<u>CH₂2), 15.5 (CH₃CH₂2), 15.1 (CH₃CH₂6), 14.7 (CH₃7), 14.6 (CH₃1), 14.1 (CH₃5).</u></u>

HRMS (API-ES⁺) m/z calcd. for C₂₂H₂₇BN₄NaO₂ [M+Na]⁺ 413.2123; found 413.2138. Calcd. for C₂₂H₃₁BN₅O₂ [M+NH₄]⁺ 408.2569; found 408.2587.

Compound 10

A solution of Pb(OAc)₄ (717.3 mg, 1.55 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a stirred solution of *CN*-BODIPY **5** (172 mg, 0.517 mmol) in AcOH/Ac₂O (20:1, 5 mL) at room temperature. After stirring at 50 °C for 5.5 h, water (40 mL) was added and

the aqueous phase was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were washed with 0.1 M aq. NaHCO₃, brine and dried (Na₂SO₄). After the solvent was removed at reduced pressure, the crude solid was recrystalized from hexane/CH₂Cl₂ (5:1) to afford compound **10** (201 mg, 87%) as an orange solid.

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 5.45$ (4H, s, H1' and H1"), 2.76 (3H, s, CH₃8), 2.53 (4H, q, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6), 2.43 (6H, s, CH₃1 and CH₃7), 2.18 (6H, s, H4' and H4"), 1.10 (6H, t, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6). ¹³C **NMR** (CDCl₃, 125 MHz): $\delta = 170.7$ (C3' and C3"), 148.7 (C3 and C5), 146.4 (C8), 139.9 (C1 and C7), 136.4 (C2 and C6), 132.3 (C7a and C8a), 127.4 (q, $J_{CB} = 76.5$ Hz, $2 \times$ CN), 56.4 (C1' and C1"), 20.9 (C4' and C4"), 18.5 (CH₃8), 17.4 (CH₃CH₂2 and CH₃CH₂6), 15.3 (CH₃CH₂2 and CH₃CH₂6), 15.0 (CH₃1 and CH₃7).

HRMS (API-ES⁺) m/z calcd. for C₂₄H₃₃BN₅O₄ [M+NH₄]⁺ 466.2625; found 466.2612. calcd. for C₂₄H₂₉BN₄NaO₄ [M+Na]⁺ 471.2178; found 471.2165.

Compounds 11, 12 and 13

A solution of Pb(OAc)₄ (1.92 g, 4.34 mmol) in a CH₂Cl₂ (6 mL) and AcOH/Ac₂O (20:1, 6 mL) was added dropwise to a stirred solution of compound 7 (428 mg, 1.09 mmol) in CH₂Cl₂ (6 mL) at room temperature, under argon. After addition, the reaction mixture was heated at 40 °C for 6 hours. Water (50 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers were washed with 0.1 M aq. NaHCO₃, brine and dried (Na₂SO₄). After solvent evaporation at reduced pressure, the residue was purified by column chromatography (hexane/AcOEt, 95:5 to 70:30) to afford compound **11** (119 mg, 24% yield), compound **12** (244 mg, 44% yield), and compound **13** (33 mg, 5% yield), as orange solids.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.56-7.51 (3H, m, H3', H4' and H5'), 7.31-7.24 (2H, m, H2' and H6'), 5.45 (2H, s, H1"), 2.73 (3H, s, CH₃5), 2.40 (2H, q, J = 7.5 Hz, CH₃<u>CH</u>₂2), 2.37 (2H, q, J = 7.5 Hz, CH₃<u>CH</u>₂6), 2.19 (3H, s, H4"), 1.35 (3H, s, CH₃7), 1.32 (3H, s, CH₃1), 1.02 (6H, t, J = 7.5Hz, <u>CH</u>₃CH₂2 and <u>CH</u>₃CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): δ = 170.9 (C3"), 159.7 (C5), 145.2 (C3), 142.9 (C7/C8), 142.8 (C8/C7), 138.9 (C1), 136.5 (C6), 135.3 (C2), 134.5 (C1'), 131.3 (C7a), 129.7 (C4'/C3'/C5'), 129.7 (C3'/C5'/C4'), 129.5 (C8a), 127.8 (C2' and C6'), 127.2 (q, J_{CB} = 76.4 Hz, 2 × CN), 56.4 (C1"), 21.0 (C4"), 17.4 (CH₃CH₂2/CH₃CH₂6), 17.3 (CH₃CH₂6/CH₃CH₂2), 15.2 (<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6), 14.4 (<u>CH</u>₃CH₂6/<u>CH</u>₃CH₂2), 14.2 (CH₃5), 12.3 (CH₃7), 11.8 (CH₃1).

HRMS (API-ES⁺) m/z calcd. for C₂₇H₃₃BN₅O₂ [M+NH₄]⁺ 470.2727; found 470.2730. Calcd. for C₂₇H₂₉BN₄NaO₂ [M+Na]⁺ 475.2281; found 475.2279.

12

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.59-7.54$ (3H, m, H3', H4' and H5'), 7.31-7.24 (2H, m, H2' and H6'), 5.47 (4H, s, H1" and H1""), 2.41 (4H, q, J = 7.6 Hz, CH₃CH₂2 and CH₃CH₂6), 2.19 (6H, s, H4" and H4""), 1.35 (6H, s, CH₃1 and CH₃7), 1.02 (6H, t, J = 7.6 Hz, CH₃CH₂2 and CH₃CH₂6). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 170.6$ (C3" and C3""), 150.4 (C3 and C5), 145.8 (C8), 142.4 (C1 and C7), 136.7 (C2 and C6), 134.2 (C1'), 131.1 (C7a and C8a), 130.0 (C4'/C3'/C5'), 129.9 (C3'/C5'/4'), 127.5 (C2' and C6'), 127.4 (q, $J_{CB} = 76.6$ Hz, 2 × CN), 56.4 (C1" and C1""), 20.9 (C4" and C4""), 17.3 (CH₃CH₂2 and CH₃CH₂6), 15.0 (CH₃CH₂2 and CH₃CH₂6), 12.2 (CH₃1 and CH₃7).

HRMS (API-ES⁺) m/z calcd. for C₂₉H₃₅BN₅O₄ [M+NH₄]⁺ 528.2782; found 528.2766. Calcd. for C₂₉H₃₁BN₄NaO₄ [M+Na]⁺ 533.2336; found 533.2311.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 8.17$ (1H, s, H1"), 7.68-7.42 (3H, m, H3', H4' and H5'), 7.30-7.27 (2H, m, H2' and H6'), 5.51 (2H, s, H1"'), 2.58 (2H, q, *J* = 7.5 Hz, CH₃CH₂2), 2.42 (2H, q, *J* = 7.5 Hz, CH₃CH₂6), 2.21 (6H, s, H4"), 2.19 (3H, s, H4"'), 1.37 (3H, s, CH₃7), 1.35 (3H, s, CH₃1), 1.05 (3H, t, *J* = 7.5 Hz, CH₃CH₂2), 1.03 (3H, t, *J* = 7.5 Hz, CH₃CH₂6). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 170.4$ (C3"'), 168.2 (C3"), 152.4 (C5), 146.6 (C3/C8), 146.5 (C8/C3), 143.3 (C7), 142.5 (C1), 137.3 (C6), 135.7 (C2), 134.1 (C1'), 131.6 (C7a), 130.6 (C8a), 130.0 (C4'), 129.8 (C3' and C5'), 127.3 (C2' and C6'), 127.2 (q, *J*_{CB} = 76.5 Hz, 2 × CN), 83.3 (C1"), 56.5 (C1"'), 20.8 (C4"'), 20.7 (C4"''), 17.4 (CH₃CH₂2/CH₃CH₂6), 17.2 (CH₃CH₂6/CH₃CH₂2), 14.7 (CH₃CH₂2/CH₃CH₂6), 14.6 (CH₃CH₂6/CH₃CH₂2), 12.2 (CH₃1/CH₃7), 12.0 (CH₃7/CH₃1).

HRMS (API-ES⁺) m/z calcd. for C₃₁H₃₇BN₅O₆ [M+NH₄]⁺ 586.2837; found 586.2843. Calcd. for C₃₁H₃₃BN₄NaO₆ [M+Na]⁺ 591.2391; found 591.2379.

Compound 14

To a stirred solution of compound **8** (9 mg, 0.021 mmol) in CH_2Cl_2 (0.3 mL) and MeOH (0.8 mL) was added magnesium (2 grains) at room temperature. After stirring for 4 h at room temperature, the reaction mixture was diluted with CH_2Cl_2 (10 mL) and H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous

 Na_2SO_4 , and the solvent was removed at reduced pressure to afford pure compound 14 (7 mg, 90%), as an orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 6.96$ (2H, s, H3' and H5'), 6.19 (1H, s, H2), 6.04 (1H, s, H6), 4.82 (2H, s, H1"), 2.69 (1H, br s, OH1"), 2.57 (3H, s, CH₃5), 2.34 (3H, s, CH₃4'), 2.09 (6H, s, CH₃2' and CH₃6'), 1.42 (6H, s, CH₃1 and CH₃7). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 158.3$ (C5), 154.1 (C3), 145.0 (C7/C7a), 143.6 (C8), 141.5, (C1/C8a) 139.0 (C4'), 134.9 (C2' and C6'), 132.0 (C7a/C7), 130.9 (C1'), 130.8 (C8a/C1), 129.3 (C3' and C5'), 122.2 (C6), 119.3 (C2), 58.1 (C1"), 21.3 (CH₃4'), 19.6 (CH₃2' and CH₃6'), 15.0 (CH₃5), 13.7 (CH₃1/CH₃7), 13.5 (CH₃7/CH₃1).

HRMS (API-ES⁺) *m/z* calcd. for C₂₂H₂₅BF₂N₂NaO [M+Na]⁺ 405.1924; found 405.1935.

Compound 15

To a stirred solution of compound **9** (10 mg, 0.025 mmol) in anhydrous CH_2Cl_2 (1 mL) was added isobutyl alcohol (4.74 µL, 0.051 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (64 µL of a 0.01 M solution, 0.025 equiv). After stirring for 3.5 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 65:35) to afford compound **15** (9 mg, 86% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.83$ (2H, s, H1'), 3.44 (2H, d, J = 6.6 Hz, H3'), 2.67 (6H, s, CH₃5 and CH₃8), 2.57 (2H, q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 2.46 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.07-1.88 (1H, m, H4'), 1.12 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>), 1.08 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>), 0.97 (3H, s, CH₃4'), 0.95 (3H, s, CH₃4'). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 155.3$ (C5), 148.8 (C3), 142.5 (C8), 139.5

(C7), 137.9 (C1), 135.2 (C6), 135.0 (C2), 131.4 (C7a), 130.2 (C8a), 127.3 (q, $J_{CB} = 74.5$ Hz, 2 × CN), 78.7 (C3'), 64.5 (C1'), 28.6 (C4'), 19.6 (2 × CH₃4'), 17.6 (CH₃8), 17.5 (CH₃<u>CH₂</u>2), 17.4 (CH₃<u>CH₂</u>6), 15.2 (<u>CH₃</u>CH₂2), 15.0 (CH₃1/CH₃7), 14.8 (CH₃7/CH₃1), 14.6 (<u>CH₃</u>CH₂6), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₄H₃₇BN₅O [M+NH₄]⁺ 422.3090; found 422.3086. Calcd. for C₂₄H₃₃BN₄NaO [M+Na]⁺ 427.2644; found 427.2633.

Compound 16

To a stirred solution of compound **9** (10 mg, 0.026 mmol) in anhydrous CH_2Cl_2 (1 mL) was added 1-octanol (8.15 µL, 0.051 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (64 µL of a 0.01 M solution, 0.025 equiv). After stirring for 3.5 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 65:35) to afford compound **16** (10.1 mg, 85% yield) as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 4.83 (2H, s, H1'), 3.65 (2H, t, J = 6.7 Hz, H3'), 2.67 (6H, s, CH₃5 and CH₃8), 2.56 (2H, q, J = 7.6 Hz, CH₃<u>CH₂</u>2), 2.46 (2H, q, J = 7.6 Hz, CH₃<u>CH₂</u>6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.67 (2H, q, J = 6.7 Hz, H4'), 1.43-1.35 (2H, m, H5'), 1.35-1.20 (8H, m, H6', H7', H8' and H9'), 1.11 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>), 1.07 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>), 0.87 (3H, t, J = 6.7 Hz, H10'). ¹³**C NMR** (CDCl₃, 100 MHz): δ = 155.4 (C5), 148.7 (C3), 142.4 (C8), 139.5 (C7), 137.5 (C1), 135.2 (C6), 135.0 (C2), 131.4 (C7a), 130.2 (C8a), 127.8 (q, $J_{CB} = 74.8$ Hz, 2 × CN), 71.9 (C3'),

64.2 (C1'), 32.0 (C8'), 29.8 (C4'), 29.6 (C6'/C7'), 29.4 (C7'/C6'), 26.3 (C5'), 22.8 (C9'), 17.6 (CH₃8), 17.5 (CH₃<u>CH₂</u>2), 17.4 (CH₃<u>CH₂6</u>), 15.2 (<u>CH₃</u>CH₂2), 15.0 (CH₃7), 14.8, (<u>CH₃</u>CH₂6) 14.6 (CH₃1), 14.3 (C10'), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₈H₄₅BN₅O [M+NH₄]⁺ 478.3717; found 478.3735. Calcd. for C₂₈H₄₁BN₄NaO [M+Na]⁺ 483.3271; found 483.3287. Calcd. for C₂₈H₄₂BN₄O (M+H)⁺ 461.3451; found 461.3477.

Compound 17

To a stirred solution of compound **9** (10.8 mg, 0.028 mmol) in anhydrous CH_2Cl_2 (1 mL) was added 1-hexadecanol (17.5 mg, 0.055 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (64 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (toluene/MeOH, 98:2) to afford compound **17** (13 mg, 82% yield) as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 4.83 (2H, s, H1'), 3.65 (2H, t, *J* = 6.7 Hz, H3'), 2.67 (6H, s, CH₃5 and CH₃8), 2.56 (2H, q, *J* = 7.6 Hz, CH₃<u>CH₂</u>2), 2.46 (2H, q, *J* = 7.6 Hz,

CH₃<u>CH</u>₂6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.67 (2H, p, J = 6.7 Hz, H4'), 1.45-1.21 (26 H, br m, H5'-H17'), 1.11 (3H, t, J = 7.6 Hz, <u>CH</u>₃CH₂2), 1.07 (3H, t, J = 7.6 Hz, <u>CH</u>₃CH₂6), 0.88 (3H, t, J = 6.7 Hz, H18'). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 155.4$ (C5), 148.7 (C3), 142.4 (C8), 139.5 (C7), 137.5 (C1), 135.2 (C6), 135.0 (C2), 131.4 (C7a), 130.2 (C8a), 127.4 (q, $J_{CB} = 74.5$ Hz, 2 × CN), 71.9 (C3'), 64.2 (C1'), 32.1, 29.9, 29.8, 29.8, 29.7, 29.5, 26.4, 22.9 (from 32.1 to 22.9: C4'-C17'), 17.6 (CH₃8), 17.5 (CH₃<u>CH</u>₂2), 17.4 (CH₃<u>CH</u>₂6), 15.2 (<u>CH</u>₃CH₂2), 15.0 (CH₃7), 14.8 (CH₃1), 14.6 (<u>CH</u>₃CH₂6), 14.3 (C18'), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₆H₆₁BN₅O [M+NH₄]⁺ 590.4970; found 590.4969. Calcd. for C₃₆H₅₇BN₄NaO (M+Na)⁺ 595.4524; found 595.4517.

Compound 18

To a stirred solution of compound **9** (19.8 mg, 0.051 mmol) in anhydrous CH₂Cl₂ (1 mL) was added octaethylene glycol monomethyl ether (15.5 μ L, 0.042 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (506 μ L of a 0.01 M solution, 0.1 equiv). After stirring for 24 h at 40 °C, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (AcOEt/MeOH, 100:0 to 85:15) to afford compound **18** (10.8 mg, 36% yield, 40% yield considering recovered **9**: 2 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 4.91 (2H, s, H1'), 3.84-3.81 (2H, m, H3'), 3.75-3.73 (2H, m, H4'), 3.67-3.63 (26, m, H6', H7', H9', H10', H12', H13',H15', H16', H18', H19', H21', H22' and H24'), 3.56-3.53 (2H, m, H25'), 3.37 (3H, s, H27'), 2.68 (3H, s, CH₃8), 2.67 (3H, s, CH₃5), 2.56 (2H, q, *J* = 7.5 Hz, CH₃CH₂2), 2.46 (2H. q, *J* = 7.5 Hz, CH₃CH₂6), 2.40 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.11 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2</u>), 1.07 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂6). ¹³C NMR</u> (CDCl₃, 100 MHz): δ = 155.7 (C5), 148.1 (C3), 142.5 (C8), 139.7 (C7), 137.4 (C1), 135.3 (C6), 135.0 (C2), 131.5 (C7a), 130.2 (C8a), 127.4 (q, *J_{CB}* = 74.3 Hz, 2 × CN), 72.1 (C25'), 70.7 (C6', C7', C9', C10', C12', C13', C15', C16', C18', C19', C21', C22' and C24'), 70.7 (C4'), 70.5 (C3'), 64.4 (C1'), 59.2 (27'), 17.7 (CH₃8), 17.4 (CH₃<u>CH₂2</u>/CH₃<u>CH₂6</u>), 17.4 (CH₃<u>CH₂6</u>/CH₃<u>CH₂6</u>), 15.2 (CH₃1/<u>CH₃CH₂2/CH₃CH₂6/CH₃7/CH₃1), 14.8 (<u>CH₃CH₂6/CH₃7/CH₃1/<u>CH₃CH₂2</u>), 14.6 (CH₃7/CH₃1/<u>CH₃CH₂2/CH₃CH₂6), 13.9 (CH₃5).</u></u></u>

HRMS (API-ES⁺) *m/z* calcd. for C₃₇H₆₃BN₅O₉ [M+NH₄]⁺ 732.4720; found 732.4731.

Compound 19

To a stirred solution of compound 9 (15.9 mg, 0.041 mmol) in anhydrous CH_2Cl_2 (1 mL) was added propargyl alcohol (4.8 μ L, 0.081 mmol) and a solution of Sc(OTf)₃ in

anhydrous CH₂Cl₂ (96 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 90 min at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt mixtures, 93:7 to 70:30) to afford compound **9** (14.2 mg, 90% yield) as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 4.93 (2H, s H1'), 4.36 (2H, d, *J* = 2.3 Hz, H3'), 2.68 (6H, s, CH₃5 and CH₃8), 2.55 (2H, q, *J* = 7.6 Hz, CH₃<u>CH₂</u>2), 2.52 (1H, t, *J* = 2.3 Hz, H5'), 2.47 (2H, q, *J* = 7.6 Hz, CH₃<u>CH₂6</u>), 2.40 (3H, s, CH₃7), 2.39 (3H, s, CH₃1), 1.13 (3H, t, *J* = 7.6 Hz, <u>CH₃</u>CH₂2), 1.08 (3H, t, *J* = 7.6 Hz, <u>CH₃</u>CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): δ = 156.3 (C5), 146.8 (C3), 142.7 (C8), 140.1 (C7), 137.1 (C1), 135.6 (C6), 135.2 (C2), 131.8 (C7a), 130.7 (C8a), 127.4 (q, *J_{CB}* = 74.8 Hz, 2 × CN), 79.5 (C4'), 75.4 (C5'), 62.5 (C1'), 58.4 (C3'), 17.7 (CH₃8), 17.4 (CH₃<u>CH₂</u>2 and CH₃<u>CH₂6), 15.3 (CH₃CH₂2), 15.0 (CH₃7), 14.7 (<u>CH₃</u>CH₂6), 14.6 (CH₃1), 14.0 (CH₃5).</u>

HRMS (API-ES⁺) m/z calcd. for C₂₃H₃₁BN₅O [M+NH₄]⁺ 404.2620; found 404.2635. Calcd. for C₂₃H₂₇BN₄NaO [M+Na]⁺ 409.2174; found 409.2190. Calcd. for C₂₃H₂₈BN₄O [M+H]⁺ 387.2355; found 387.2352.

Compound 20

To a stirred solution of compound **9** (12 mg, 0.031 mmol) in anhydrous CH_2Cl_2 (1 mL) was added 6-chlorohexanol (8.5 μ L, 0.061 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (76 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined

organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (toluene/MeOH, 99:1) to afford compound **20** (12.7 mg, 88% yield), as a red-orange solid.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 4.83$ (2H, s, H1'), 3.66 (2H, t, J = 6.7 Hz, H3'), 3.52 (2H, t, J = 6.7 Hz, H8'), 2.67 (6H, s, CH₃5 and CH₃8), 2.55 (2H, q, J = 7.6 Hz, CH₃<u>CH₂</u>2), 2.46 (2H, q, J = 7.6 Hz, CH₃<u>CH₂</u>6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.78 (2H, p, J = 6.7 Hz, H7'), 1.69 (2H, p, J = 6.7 Hz, H4'), 1.52-1.38 (4H, m, H5' and H6'), 1.11 (3H, t, J = 7.6 Hz, <u>CH₃</u>CH₂2), 1.08 (3H, t, J = 7.6 Hz, <u>CH₃</u>CH₂6). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 155.5$ (C5), 148.4 (C3), 142.5 (C8), 139.6 (C7), 137.5 (C1), 135.3 (C6), 134.9 (C2), 131.5 (C7a), 130.2 (C8a), 127.4 (q, $J_{CB} = 74.6$ Hz, $2 \times$ CN), 71.5 (C3'), 64.2 (C1'), 45.3 (C8'), 32.7 (C7'), 29.7 (C4'), 26.8 (C6'), 25.6 (C5'), 17.7 (CH₃8), 17.5 (CH₃<u>CH₂</u>2/CH₃<u>CH₂6), 17.4 (CH₃<u>CH₂6/CH₃<u>CH₂</u>2), 15.3 (<u>CH₃CH₂6), 15.0 (CH₃7), 14.8 (<u>CH₃CH₂2), 14.6 (CH₃1), 13.9 (CH₃5).</u></u></u></u>

HRMS (API-ES⁺) m/z calcd. for C₂₆H₄₀BClN₅O [M+NH₄]⁺ 484.3014 (³⁵Cl), 486.2995 (³⁷Cl); found 484.3015 ³⁵(Cl), 486.2995 (³⁷Cl). Calcd. for C₂₆H₃₆BClN₄NaO [M+Na]⁺ 489.2568 (³⁵Cl), 491.2548 (³⁷Cl); found 489.2578 (³⁵Cl), 491.2547 (³⁷Cl).

Compound 21

To a stirred solution of compound **9** (10 mg, 0.026 mmol) in anhydrous CH₂Cl₂ (5 mL) was added 4-(hydroxymethyl)benzonitrile (5.1 mg, 0.038 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (64 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 8 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by

silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound **21** (10 mg, 88% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 7.63 (2H, d, J = 8.2 Hz, H6' and H8'), 7.55 (2H, d, J = 8.2 Hz, H5' and H9'), 4.93 (2H, s, H3'), 4.78 (2H, s, H1'), 2.69 (6H, s, CH₃5 and CH₃8), 2.52 (2H, q, J = 7.5 Hz, CH₃CH₂6), 2.47 (2H, q, J = 7.5 Hz, CH₃CH₂2), 2.41 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.08 (3H, t, J = 7.5 Hz, CH₃CH₂2/CH₃CH₂6), 1.08 (3H, t, J = 7.5 Hz, CH₃CH₂6/CH₃CH₂2). ¹³C **NMR** (CDCl₃, 100 MHz): δ = 156.5 (C5), 146.6 (C3), 143.5 (C4'), 142.8 (C8), 140.3 (C7a), 137.1 (C8a), 135.7 (C7), 134.9 (C1), 132.3 (C6' and C8'), 131.8 (C6), 130.2 (C2), 128.4 (C5' and C9'), 127.4 (q, J_{CB} = 74 Hz, 2 x BCN), 119.0 (CN7'), 111.5 (C7'), 72.5 (C3'), 63.8 (C1'), 17.7 (CH₃8) , 17.5 (CH₃CH₂6), 17.4 (CH₃CH₂2), 15.3 (CH₃CH₂2/CH₃CH₂6), 15.0 (CH₃7), 14.7 (CH₃1), 14.6 (CH₃CH₂6/CH₃CH₂2), 14.0 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₈H₃₄BN₆O [M+NH₄]⁺ 481.2887; found 481.2885. Calcd. for C₂₈H₃₀BN₅NaO [M+Na]⁺ 486.2441; found 486.2451.

Compound 22

To a stirred solution of compound **9** (16 mg, 0.041 mmol) in anhydrous CH_2Cl_2 (1.5 mL) was added 5-norbornene-2-methanol (6.44 µL, 0.053 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (102 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound **22** (15.7 mg, 84% yield), as a red-orange solid (2:1 mixture of *endo/exo*-isomers).

¹H NMR (CDCl₃, 400 MHz): δ = 6.14 (dd, J = 5.5, 2.9 Hz, 1H endo), 6.10 (dd, J = 5.5, 3.0 Hz, 1H exo), 6.04 (dd, J = 5.5, 2.8 Hz, 1H exo), 6.00 (dd, J = 5.5, 2.8 Hz, 1H endo), 4.85 (s, 2H exo), 4.81 (d, J = 12.7 Hz, 1H endo), 4.76 (d, J = 12.7 Hz, 1H endo), 3.72 (dd,

J = 9.0, 6.5 Hz, 1H *exo*), 3.60 (t, *J* = 9.0 Hz, 1H *exo*), 3.40 (dd, *J* = 9.0, 6.7 Hz, 1H *endo*), 3.28 (t, *J* = 9.0 Hz, 1H *endo*), 2.98 (br s, 1H *endo*), 2.81-2.79 (m, 2H *exo*), 2.79 (s, 1H *endo*), 2.67 (s, 6H *endo*+*exo*), 2.57 (q, *J* = 7.5 Hz, 2H *endo*+*exo*), 2.52-2.44 (m, 1H *endo*), 2.46 (q, *J* = 7.5 Hz, 2H *endo*+*exo*), 2.39 (s, 3H *endo*+*exo*), 2.38 (s, 3H *endo*+*exo*), 1.85 (m, 1H *endo*) 1.80 (m, 1H *exo*), 1.41 (m, 1H *endo*), 1.36-1.17 (m, 4H *exo* + 1H *endo*), 1.14 (t, *J* = 7.5 Hz, 3H *endo*), 1.13 (t, *J* = 7.5 Hz, 3H *endo*), 1.07 (t, *J* = 7.5 Hz, 3H *endo*+*exo*), 0.61- 0.53 (m, 1H *endo*). ¹³**C NMR** (CDCl₃, 100 MHz): δ = ¹³**C** NMR (101 MHz, CDCl₃) δ 155.5, 155.3, 148.7, 148.5, 142.5, 139.6, 139.5, 137.5, 137.2, 136.8, 136.7, 135.2, 135.0, 132.8, 131.4, 130.2, 127.3 (q, *J*_{CB} = 74.5 Hz, 2 × CN), 76.4, 75.5, 64.3, 49.5, 45.3, 44.2, 44.0, 42.4, 41.7, 38.9, 38.8, 30.0, 29.4, 17.6, 17.5, 17.4, 15.2, 15.2, 15.0, 14.8, 14.6, 14.6, 13.8.

HRMS (API-ES⁺) m/z calcd. for C₂₈H₃₉BN₅ [M+NH₄]⁺ 472.3248; found 472.3251.

Compound 23

To a stirred solution of compound **9** (20 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (1 mL) was added 1-adamantanol (10.1 mg, 0.067 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (256 μ L of a 0.01 M solution, 0.05 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/AcOEt, 100:0 to 92:8) to afford compound **23** (6.8 mg, 27% yield; 46% yield considering recovered **9**: 8.1 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.85$ (2H, s, H1'), 2.67 (3H, s, CH₃5), 2.66 (3H, s, CH₃8), 2.57 (2H, q, J = 7.5 Hz, CH₃<u>CH₂2</u>), 2.46 (2H, q, J = 7.5 Hz, CH₃<u>CH₂6</u>), 2.38 (3H, s, CH₃7), 2.37 (3H, s, CH₃1), 2.23-2.19 (3H, br m, H5', H7' and H9'), 1.97 (6H, d, J = 3.1 Hz, H4', H10' and H11'), 1.67 (6H, t, J = 2.1 Hz, H6', H8' and H12'), 1.14 (3H, t, J = 7.5

Hz, <u>CH₃</u>CH₂2), 1.08 (3H, t, J = 7.5 Hz, <u>CH₃</u>CH₂6). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.7$ (C5), 150.1 (C3), 142.1 (C8), 139.1 (C7), 137.9 (C1), 135.3 (C2), 134.9 (C6), 131.1 (C7a), 130.2 (C8a), 127.7 (q, $J_{CB} = 74.7$ Hz, 2 × CN), 73.9 (C3'), 54.4 (C1'), 41.3 (C4', C10' and C11'), 36.6 (C6', C8' and C12'), 30.9 (C5', C7' and C9'), 17.6 (CH₃<u>CH₂</u>2/CH₃8), 17.6 (CH₃8/CH₃<u>CH₂</u>2), 17.4 (CH₃<u>CH₂</u>6), 15.2 (<u>CH₃</u>CH₂2), 14.9 (CH₃1/CH₃7), 14.8 (<u>CH₃</u>CH₂6), 14.6 (CH₃7/CH₃1), 13.8 (CH₃5).

HRMS (API-ES⁺) *m/z* calcd. for C₃₀H₃₉BN₄NaO [M+Na]⁺ 505.3115; found 505.3120.

Compound 24

To a stirred solution of compound **9** (23.3 mg, 0.06 mmol) in anhydrous CH_2Cl_2 (1.5 mL) was added farnesol (5 µL, 0.05 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (150 µL of a 0.01 M solution, 0.025 equiv). After stirring for 4 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound **24** (5.7 mg, 21% yield, 96% yield considering recovered **24**: 18.3 mg), as a red-orange solid.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 5.48$ (1H, m, H4'), 5.13 (1H, m, H8'), 5.09 (1H, m, H12'), 4.83 (2H, s, H1'), 4.22 (2H, d, J = 6.9 Hz, H3'), 2.68 (3H, s, CH₃5), 2.67 (3H, s,

CH₃8), 2.55 (2H, q, J = 7.6 Hz, CH₃CH₂2), 2.46 (2H, q, J = 7.6 Hz, CH₃CH₂6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.17-2.10 (2H, m, H7'), 2.09-2.02 (4H, m, H6' and H11'), 2.00-1.94 (2H, m, H10'), 1.73 (3H, s, CH₃5'), 1.68 (3H, s, CH₃13'/H14'), 1.60 (6H, s, CH₃9' and H14'/CH₃13'), 1.11 (3H, t, J = 7.6 Hz, CH₃CH₂2), 1.08 (3H, t, J = 7.6 Hz, CH₃CH₂6). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 155.4$ (C5), 148.7 (C3), 142.4 (C8), 141.4 (C5'), 139.5 (C7), 137.5 (C1), 135.3 (C9'), 135.2 (C6), 135.0 (C2), 131.4 (C13'), 130.2 (C7a and C8a), 128.1 (q, $J_{CB} = 74.6$ Hz, $2 \times$ CN), 124.5 (C12'), 124.2 (C8'), 120.5 (C4'), 67.8 (C3'), 63.1 (C1'), 39.9 (C6'/C10'), 39.8 (C10'/C6'), 26.9 (C11'), 26.6 (C7'), 25.8 (CH₃13'/H14'), 17.8 (H14'/CH₃13'), 17.6 (CH₃8), 17.5 (CH₃CH₂2), 17.4 (CH₃CH₂6), 16.7 (CH₃5'), 16.1 (CH₃9'), 15.2 (CH₃CH₂2), 15.0 (CH₃7), 14.8 (CH₃CH₂6), 14.6 (CH₃1), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₅H₄₉BN₄NaO [M+Na]⁺ 575.3898; found 575.3873. Calcd. for C₃₅H₅₃BN₅O [M+NH₄]⁺ 570.4344; found 570.4344.

Compound 25

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH_2Cl_2 (1 mL) was added 12-hydroxydodecanoic acid (8.6 mg, 0.038 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (96 µL of a 0.01 M solution, 0.025 equiv). After stirring for 6 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the

solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/AcOEt, 100:0 to 80:20) to afford compound **25** (11.8 mg, 56% yield) as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 4.83 (2H, s, H1'), 3.65 (2H, t, *J* = 6.7 Hz, H3'), 2.67 (6H, s, CH₃5 and CH₃8), 2.56 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂</u>2), 2.46 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂</u>6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.34 (2H, t, *J* = 7.5 Hz, H13'), 1.74 - 1.53 (4H, m, H4' and H12'), 1.45-1.19 (14H, m, H5', H6', H7', H8', H9', H10' and H11'), 1.11 (3H, t, *J* = 7.5 Hz, <u>CH₃</u>CH₂2), 1.07 (3H, t, *J* = 7.5 Hz, <u>CH₃</u>CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): δ = 178.5 (C14'), 155.4 (C5), 148.7 (C3), 142.4 (C8), 139.5 (C7), 137.6 (C1), 135.2 (C2), 134.9 (C6), 131.4 (C7a), 130.2 (C8a), 127.4 (q, *J_{CB}* = 74.2 Hz, 2 × CN), 71.8 (C3'), 64.2 (C1'), 33.9 (C13'), 29.8 (C4'), 29.7 – 29.2 (C6' - C11'), 26.3 (C5'), 24.8 (C12'), 17.6 (CH₃8), 17.5 (CH₃CH₂2), 17.4 (CH₃CH₂6), 15.2 (CH₃1/<u>CH₃CH₂2/<u>CH₃CH₂6/CH₃7/CH₃1), 14.8 (CH₃CH₂6/CH₃7/CH₃1/<u>CH₃CH₂2</u>), 14.6 (CH₃7/CH₃1/<u>CH₃CH₂2/<u>CH₃CH₂6</u>), 13.9 (CH₃9).</u></u></u>

HRMS (API-ES⁺) m/z calcd. for C₃₂H₅₁BN₅O₃ [M+NH₄]⁺ 564.4085; found 564.4103. Calcd. for C₃₂H₄₇BN₄NaO₃ [M+Na]⁺ 569.3639; found 569.3673.

Compound 26

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH_2Cl_2 (1 mL) was added *N*-Cbz-L-serine benzyl ester (15.1 mg, 0.038 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (192 µL of a 0.01 M solution, 0.05 equiv). After stirring for 30 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The

combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (cyclohexane/AcOEt, 95:5 to 80:20) to afford compound **26** (17.12 mg, 67% yield; 83% yield considering recovered **9**: 2.8 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 500 MHz): δ = 7.38-7.27 (10H, m, H9', H10', H11', H12', H13', H6", H7", H8", H9" and H10"), 6.18 (1H, d, J = 8.3 Hz, H1"), 5.20 (1H, d, J = 12.4 Hz, H7'), 5.16 (1H, d, J = 12.4 Hz, H7'), 5.14 (1H, d, J = 12.6 Hz, H4"), 5.09 (1H, d, J = 12.6 Hz, H4"), 4.83(1H, d, J = 12.1 Hz, H1'), 4.73(1H, d, J = 12.1 Hz, H1'), 4.59 (1H, ddd, J = 8.3, 3.5, 2.8 Hz, H4'), 4.17 (1H, dd, J = 9.2, 3.5 Hz, H3'), 3.97 (1H, dd, J = 9.2, 2.8 Hz, H3'), 2.68 (3H, s, CH₃8), 2.66 (3H, s, CH₃5), 2.46 (2H, q, J = 7.5 Hz, CH₃CH₂6), 2.41 (2H, q, J = 7.5 Hz, CH₃CH₂2), 2.40 (3H, s, CH₃7), 2.36 (3H, s, CH₃1), 1.08 (3H, t, J = 7.5 Hz, <u>CH₃CH₂6), 1.02 (3H, t, J = 7.5 Hz, <u>CH₃CH₂2)</u>. ¹³C **NMR** (CDCl₃, 125 MHz): δ = 170.1 (C5'), 156.7 (C5/C2"), 156.5 (C2"/C5), 146.0 (C3), 142.9 (C8), 140.3 (C7), 136.9 (C1/C5"), 136.9 (C5"/C1), 135.7 (C6 and C8"), 135.0 (C2), 131.9 (C7a), 130.2 (C8a), 128.7 – 127.9 (C9'/C10'/C11'/C12'/C13'/C6"/C7"/C8"/C9"/C10"), 70.9 (C3'), 67.3 (C7'), 66.8 (C4"), 63.8 (C1'), 54.9 (C4'), 17.7 (CH₃8), 17.4 (CH₃<u>CH₂2/CH₃<u>CH₂6</u>), 17.4 (CH₃<u>CH₂6/CH₃<u>CH₂2</u>), 15.4 (<u>CH₃CH₂2</u>), 15.1 (CH₃7), 14.7 (<u>CH₃₃CH₂6</u>), 14.6 (CH₃1), 14.0 (CH₃5).</u></u></u>

HRMS (API-ES⁺) m/z calcd. for C₃₈H₄₃BN₅O₅ [M+H]⁺ 660.3358; found 660.3358. Calcd. for C₃₈H₄₆BN₆O₅ [M+NH₄]⁺ 677.3624; found 677.3625. Calcd. for C₃₈H₄₂BN₅NaO₅ [M+Na]⁺ 682.3178; found 682.3176.

Compounds 27 and 28

To a stirred solution of compound **9** (20 mg, 0.051 mmol) in anhydrous CH₂Cl₂ (1 mL) was added 5'-*O*-(*tert*-butyldimethylsilyl)thymidine (18.3 mg, 0.051 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (128 μ L of a 0.01 M solution, 0.025 equiv) at room temperature. The reaction mixture was then heated at 40 °C for 5 h. After cooling to room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/AcOEt, 85:15 to 50:50) to afford compounds **27** (6.2 mg, 17%)

yield; 27% yield considering recovered **9**: 7.2 mg) and compound **28** (5.3 mg, 18% yield; 28% yield considering recovered **9**), as red-orange solids.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 8.05$ (1H, s, H9'), 7.55 (1H, s, H12'), 6.33 (1H, dd, J = 8.6, 5.6 Hz, H6'), 4.84 (2H, m, H1'), 4.40-4.35 (1H, m, H3'), 4.30-4.25 (1H, m, H4'), 3.98-3.84 (2H, m, H1"), 2.70 (3H, s, CH₃8), 2.68 (3H, s, CH₃5), 2.63 (1H, ddd, J = 14.0, 5.6, 1.2 Hz, H13'), 2.55 (2H, q, J = 7.6 Hz, CH₃<u>CH2</u>2), 2.47 (2H, q, J = 7.6 Hz, CH₃<u>CH2</u>6), 2.41 (3H, s, CH₃7), 2.40 (3H, s, CH₃1), 2.07 (1H, ddd, J = 14.0, 8.4, 5.6 Hz, H13'), 1.91 (3H, s, CH₃11'), 1.14 (3H, t, J = 7.6 Hz, <u>CH3</u>CH22), 1.08 (3H, t, J = 7.6 Hz, <u>CH3</u>CH26), 0.94 (9H, s, (CH₃)₃4"), 0.14 (3H, s, (CH₃)₂3"), 0.13 (3H, s, (CH₃)₂3"). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 163.6$ (C10'), 156.6 (C5), 150.1 (C8'), 146.2 (C3), 142.9 (C8), 140.3 (C7), 137.2 (C1), 135.9 (C12'), 135.7 (C6), 134.9 (C2), 131.9 (C7a), 130.3 (C8a), 110.8 (C11'), 85.3 (C4'/C6'), 85.3 (C6'/C4'), 81.0 (C3'), 63.9 (C1"), 62.4 (C1'), 37.7 (C13'), 26.1 ((CH₃)₃4"), 18.5 (C4"), 17.7 (CH₃8), 17.6 (CH₃<u>CH2</u>2), 17.4 (CH₃<u>CH2</u>6), 15.4 (<u>CH3</u><u>CH2</u>2), 15.1 (CH₃1/CH₃7), 14.7 (<u>CH3</u><u>CH2</u>6), 14.6 (CH₃7/CH₃1), 14.0 (CH₃5), 12.6 (CH₃11'), - 5.2 ((CH₃)₂3").

HRMS (API-ES⁺) m/z calcd. for C₃₆H₅₅BN₇O₅Si [M+NH₄]⁺ 704.4128; found 704.4147. Calcd. for C₃₆H₅₂BN₆O₅Si [M+H]⁺ 687.3863; found 687.3876.

28

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 8.11$ (1H, s, H9'), 7.41 (1H, s, H12'), 6.24 (1H, dd, J = 7.3, 3.3 Hz, H6'), 4.84 (2H, s, H1'), 4.74-4.63 (1H, m, H14'), 4.01-3.92 (2H, m, H3'), 3.93-3.86 (1H, m, H4'), 2.72 (3H, s, CH₃8), 2.69 (3H, s, CH₃5), 2.49 (4H, q, <math>J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6), 2.43 (3H, s, CH₃7), 2.41-2.36 (1H, m, H13'), 2.39 (3H, s, CH₃1), 2.12 (1H, ddd, $J = 13.8, 7.5, 3.4 \text{ Hz}, \text{H13'}), 1.64 (3H, s, CH₃11'), 1.09 (3H, t, <math>J = 7.5 \text{ Hz}, \text{CH}_3\text{CH}_22/\text{CH}_3\text{CH}_26$), 1.08 (3H, t, $J = 7.5 \text{ Hz}, \text{CH}_3\text{CH}_26/\text{CH}_3\text{CH}_22$). ¹³C **NMR** (CDCl₃, 125 MHz): $\delta = 163.6$ (C10'), 157.4 (C5), 150.1 (C8'), 145.7 (C3), 143.2 (C8), 141.1 (C7), 136.9 (C1), 136.2 (C6/C12'), 136.2 (C12'/C6) 135.0 (C2), 132.3 (C7a), 130.4 (C8a), 110.5 (C11'), 84.6 (C4'), 83.7 (C6'), 68.6 (C3'), 67.6 (C14'), 63.3 (C1'), 39.7 (C13'), 17.8 (CH₃8), 17.4 (CH₃CH₂2/CH₃CH₂6), 17.4 (CH₃CH₂6/CH₃CH₂2), 15.6 (CH₃CH₂2/CH₃CH₂6), 15.1 (CH₃7), 14.7 (CH₃CH₂6/CH₃CH₂2), 14.6 (CH₃1), 14.1 (CH₃5), 12.2 (CH₃11').

HRMS (API-ES⁺) *m/z* calcd. for C₃₀H₃₇BN₆NaO₅ [M+Na]⁺ 595.2816; found 595.2824.

Compound 29

To a stirred solution of compound **9** (20.3 mg, 0.052 mmol) in anhydrous CH₂Cl₂ (1 mL) was added 2',3'-*O*-isopropylideneuridine (16.3 mg, 0.057 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (128 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 23 h at room temperature, a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (128 μ L of a 0.01 M solution, 0.025 equiv) was added again, followed by stirring the reaction mixture at room temperature for 4 h and at 40 °C for 3 h. The reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/AcOEt, 90:10 to 50:50) to afford compound **29** (8.9 mg, 28% yield; 48% yield considering recovered **9**: 8.5 mg), as a red-orange solid.

¹**H** NMR (CDCl₃, 400 MHz): $\delta = 8.16$ (1H, s, NH10'), 7.59 (1H, d, J = 8.1 Hz, H13'), 5.97 (1H, d, *J* = 2.9 Hz, H7'), 5.25 (1H, dd, *J* = 8.1, 2.2 Hz, H12'), 5.05 (1H, dd, *J* = 6.3, 2.6 Hz, H5'), 4.94 (1H, d, J = 12.1 Hz, H1'), 4.76 (1H, d, J = 12.1 Hz, H1'), 4.71 (1H, dd, J = 6.3, 2.9 Hz, H6'), 4.46 (1H, m, H4'), 4.02 (1H, dd, J = 10.3, 2.6 Hz, H3'), 3.88 (1H, dd, J = 10.3, 2.6 Hz, H3'), 2.73 (3H, s, CH₃8), 2.69 (3H, s, CH₃5), 2.47 (4H, m, CH₃CH₂2) and CH₃CH₂6), 2.43 (3H, s, CH₃7), 2.39 (3H, s, CH₃1), 1.56 (3H, s, CH₃1"), 1.33 (3H, s, CH₃1"), 1.09 (3H, t, *J* = 7.6 Hz, <u>CH₃</u>CH₂2), 1.09 (3H, t, *J* = 7.6 Hz, <u>CH₃</u>CH₂6). ¹³C NMR $(CDCl_3, 100 \text{ MHz}): \delta = 162.9 (C11'), 157.2 (C5), 150.2 (C9'), 145.2 (C3), 143.4 (C8),$ 141.5 (C13'), 141.0 (C7), 136.8 (C1), 136.1 (C6), 134.6 (C2), 132.1 (C7a), 130.1 (C8a), 114.1 (C1"), 101.5 (C12'), 92.3 (C7'), 85.8 (C4'), 85.2 (C6'), 81.4 (C5'), 71.3 (C3'), 63.7 (C1'), 27.2 (CH₃1"), 25.4 (CH₃1"), 17.8 (CH₃8), 17.4 (CH₃CH₂2 and CH₃CH₂6), 15.4 $(CH_31/\underline{CH}_3CH_22/\underline{CH}_3CH_26/CH_37),$ 15.1 (<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6/CH₃7/CH₃1), 14.7 (<u>CH</u>₃CH₂6/CH₃7/CH₃1/<u>CH</u>₃CH₂2), 14.6 (CH₃7/CH₃1/<u>CH₃CH₂2/CH₃CH₂6)</u>, 14.0 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₂H₃₉BN₆NaO₆ [M+Na]⁺ 637.2922; found 637.2912. Calcd. for C₃₂H₄₃BN₇O₆ [M+NH₄]⁺ 632.3368; found 632.3348.

Compound 30

To a stirred solution of compound **9** (16 mg, 0.041 mmol) in chloroform (1 mL) was added 1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose (16.5 mg, 0.061 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (409 µL of a 0.01 M solution, 0.1 equiv). After stirring for 1 day at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by

silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **30** (12.6 mg, 52% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 5.55$ (1H, d, J = 5.0 Hz, H8'), 4.95 (1H, d, J = 12.8Hz, H1'), 4.90 (1H, d, J = 12.8 Hz, H1'), 4.59 (1H, dd, J = 8.0, 2.1 Hz, H6'), 4.34 (dd, J = 8.0, 1.2 Hz, H5'), 4.30 (1H, ddd, J = 5.0, 2.1, 0.5 Hz, H7'), 4.15-4.10 (1H, m, H4'), 3.88 (1H, dd, J = 10.1, 5.6 Hz, H3'), 3.83 (1H, dd, J = 10.1, 6.9 Hz, H3'), 2.67 (6H, s, CH₃5 and CH₃8), 2.56 (2H, q, J = 7.5 Hz, CH₃CH₂2), 2.45 (2H, q, J = 7.5 Hz, CH₃CH₂6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.54 (3H, s, CH₃2"), 1.47 (3H, s, CH₃1"), 1.33 (3H, s, CH₃1"), 1.32 (3H, s, CH₃2"), 1.11 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2)</u>, 1.06 (3H, t, J = 7.5 Hz, <u>CH</u>₃CH₂6). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 155.7$ (C5), 148.1 (C3), 142.5 (C8), 139.6 (C7), 137.3 (C1), 135.3 (C2/C6), 135.2 (C6/C2), 131.5 (C7a), 130.3 (C8a), 127.3 (q, J_{CB} = 76.9 Hz, 2 × CN), 109.3 (C1"), 108.7 (C2"), 96.5 (C8'), 71.2 (C5'), 70.8 (C6' and C7'), 70.0 (C3'), 67.0 (C4'), 64.4 (C1'), 26.2 (CH₃1"/CH₃2"), 26.2 (CH₃2"/CH₃1"), 25.1 (CH₃2"), 24.5 (CH₃1"), 17.7 (CH₃8), 17.4 (CH₃CH₂2/CH₃CH₂6), 17.4 (CH₃CH₂6/CH₃CH₂2), 15.4 (CH₃1/<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6/CH₃7), 15.0 (<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6/CH₃7/CH₃1), 14.8 (<u>CH</u>₃CH₂6/CH₃7/CH₃1/<u>CH</u>₃CH₂2), 14.6 (CH₃7/CH₃1/<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₂H₄₇BN₅O₆ [M+NH₄]⁺ 608.3620; found 608.3606. Calcd. for C₃₂H₄₃BN₄O₆ [M+Na]⁺ 613.3174; found 613.3157.

Compound 31

To a stirred solution of compound **9** (11 mg, 0.028 mmol) in anhydrous CH₂Cl₂ (1 mL) was added cholesterol (16.5 mg, 0.042 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (70 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 90 min at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound **31** (12.5 mg, 80% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 5.40$ (br s, 1H), 4.87 (2H, s, H1'), 3.48 (1H, m, H3'), 2.67 (6H, s, CH₃5 and CH₃8), 2.56 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂</u>2), 2.55-2.52 (m, 1H), 2.46 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂</u>6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.36-2.30 (m, 1H), 2.16-2.08 (m, 1H), 2.07-1.73 (m, 5H), 1.64-1.06 (m, 20H), 1.13 (3H, t, *J* = 7.5 Hz, <u>CH₃</u>CH₂2), 1.08 (3H, t, *J* = 7.5 Hz, <u>CH₃</u>CH₂2), 1.02 (s, 3H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.87 (dd, *J* = 6.6, 1.5 Hz, 6H), 0.68 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 155.3$ (C5), 148.9 (C3), 142.4 (C8), 140.9, 139.4 (C7), 137.6 (C1), 135.1 (C2/C6), 135.1 (C6/C2), 131.4 (C7a), 130.2 (C8a), 127.4 (q, *J_{CB}* = 74.5 Hz, 2 × CN), 121.9, 80.2 (C3'), 61.5 (C1'), 56.9, 56.3, 50.3, 42.5, 40.0, 39.7, 39.0, 37.4, 37.0, 36.4, 35.9, 32.1, 32.1, 28.4, 28.3, 28.2, 24.5, 24.0, 23.0, 22.7, 21.2, 19.6, 18.9, 17.6 (CH₃<u>CH₂</u>2/CH₃8), 17.6 (CH₃8/CH₃<u>CH₂2), 17.4 (CH₃<u>CH₂6), 15.2 (CH₃CH₂2), 15.0 (CH₃7), 14.8 (CH₃CH₂6), 14.6 (CH₃1), 13.9 (CH₃5), 12.0.</u></u>

HRMS (API-ES⁺) m/z calcd. for C₄₇H₇₃BN₅O [M+NH₄]⁺ 734.5911; found 734.5908. Calcd. for C₄₇H₆₉BN₄NaO [M+Na]⁺ 739.5465; found 739.5457.

Compound 32

To a stirred solution of compound **9** (25 mg, 0.064 mmol) in anhydrous CH₂Cl₂ (1.2 mL) was added 2-chloro-*N*-(2-(2-hydroxyethoxy)ethyl)acetamide (17.5 mg, 0.096 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (320 μ L of a 0.01 M solution, 0.05 equiv). After stirring for 24 h at 45 °C, a solution of Sc(OTf)₃ (160 μ L of a 0.01 M solution, 0.025 equiv) was added to the mixture again. After stirring for an additional 6 h at 50 °C, the reaction mixture was then quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 80:20 to 25:75) to afford compound **32** (23.4 mg, 71% yield; 95% yield considering recovered **9**: 6.3 mg), as a red-orange solid.

¹**H** NMR (CDCl₃, 500 MHz): $\delta = 7.09$ (1H, br s, H8'), 4.89 (2H, s, H1'), 3.97 (2H, s, H10'), 3.83 (2H, t, *J* = 5.1 Hz, H3'), 3.74 (2H, t, *J* = 5.1 Hz, H4'), 3.60 (2H, t, *J* = 5.1 Hz, H6'), 3.49 (2H, q, J = 5.1 Hz, H7'), 2.68 (3H, s, CH₃5/CH₃8), 2.68 (3H, s, CH₃8/CH₃5), 2.54 (2H, q, J = 7.5 Hz, CH₃CH₂2), 2.47 (2H, q, J = 7.5 Hz, CH₃CH₂6), 2.40 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.11 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2</u>), 1.08 (3H, t, *J* = 7.5 Hz, <u>CH</u>₃CH₂6). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 166.3$ (C9'), 156.0 (C5), 147.4 (C3), 142.7 (C8), 140.0 (C7), 137.3 (C1), 135.5 (C6), 134.8 (C2), 131.7 (C7a), 130.3 (C8a), 127.4 (q, $J_{CB} = 74.7 \text{ Hz}, 2 \times \text{CN}$, 70.6 (C3'/C4'), 70.5 (C4'/C3'), 69.5 (C6'), 64.2 (C1'), 42.8 (C10'), 39.8 17.5 17.4 (C7'), 17.7 $(CH_{3}8),$ $(CH_3\underline{CH}_26),$ $(CH_3CH_22),$ 15.3 (CH₃1/<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6/CH₃7), (CH₃CH₂2/CH₃CH₂6/CH₃7/CH₃1), 15.0 14.8 (CH₃CH₂6/CH₃7/CH₃1/CH₃CH₂2), (CH₃7/CH₃1/CH₃CH₂2/CH₃CH₂6), 14.6 13.9 (CH₃5).

HRMS (API-ES⁺) *m/z* calcd. for C₂₆H₃₅BClN₅NaO₃ [M+Na]⁺ 534.2418 (³⁵Cl), 536.2400 (³⁷Cl); found 534.2440 (³⁵Cl), 536.2414 (³⁷Cl).

Compound 33

To a stirred solution of compound **9** (25 mg, 0.064 mmol) in anhydrous CH_2Cl_2 (1.2 mL) was added 2-iodo-*N*-(2-(2-hydroxyethoxy)ethyl)acetamide (26.2 mg, 0.096 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (320 µL of a 0.01 M solution, 0.05 equiv). After stirring for 8 h at 60 °C, the reaction mixture was cooled to room temperature and stirred for an additional 22 h. The reaction mixture was then quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 80:20 to 30:70) to afford compound **33** (34 mg, 88% yield; 95% yield considering recovered **9**: 2 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): 7.03 (1H, br s, H8'), 4.86 (2H, s, H1'), 3.86-3.83 (2H, m, H3'), 3.76-3.72 (2H, m, H4'), 3.58 (2H, s, H10'), 3.56 (2H, t, J = 5.1 Hz, H6'), 3.43 (2H, q, J = 5.1 Hz, H7'), 2.69 (3H, s, CH₃5/CH₃8), 2.69 (3H, s, CH₃8/CH₃5), 2.53 (2H, q, J = 7.4 Hz, CH₃<u>CH₂2</u>), 2.47 (2H, q, J = 7.4 Hz, CH₃<u>CH₂6</u>), 2.41 (3H, s, CH₃7), 2.39 (3H, s, CH₃1), 1.11 (3H, t, J = 7.4 Hz, <u>CH₃CH₂2</u>), 1.09 (3H, t, J = 7.4 Hz, <u>CH₃CH₂6</u>). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 167.8$ (C9'), 156.1 (C5), 147.2 (C3), 142.8 (C8), 140.2 (C7), 137.2 (C1), 135.6 (C6), 134.8 (C2), 131.8 (C7a), 130.3 (C8a), 127.4 (q, $J_{CB} = 74.8$ Hz, $2 \times$ CN), 70.9 (C3'), 70.5 (C4'), 69.6 (C6'), 64.1 (C1'), 40.2 (C7'), 17.7 (CH₃8), 17.5

 (CH_3CH_22/CH_3CH_26) , 17.4 (CH_3CH_26/CH_3CH_22) , 15.3 (CH_3CH_22/CH_3CH_26) , 15.0 (CH_3CH_26/CH_3CH_22) , 14.7 (CH_31/CH_37) , 14.6 (CH_37/CH_31) , 14.0 (CH_35) , -0.2 (C10'). **HRMS** (API-ES⁺) *m/z* calcd. for C₂₆H₃₅BIN₅NaO₃ [M+Na]⁺ 626.1775; found 626.1797. calcd. for C₂₆H₃₆BIN₅O₃ [M+H]⁺ 604.1955; found 604.1946. calcd. for C₂₆H₃₉BIN₆O₃ [M+NH₄]⁺ 621.2221; found 621.2209.

Compound 34

To a stirred solution of compound **9** (10 mg, 0.026 mmol) in anhydrous CH₂Cl₂ (4 mL) was added (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)methanol (7.7 mg, 0.038 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (64 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 1 day at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 65:35) to afford compound **34** (7 mg, 51% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 8.58$ (2H, d, J = 8.2 Hz, H6' and H14'), 7.66 (2H, d, J = 8.2 Hz, H5' and H15'), 4.96 (2H, s, H3'), 4.86 (2H, s, H1'), 3.09 (3H, s, CH₃11'), 2.70 (3H, s, CH₃5), 2.69 (3H, s, CH₃8), 2.54 (2H, q, J = 7.5 Hz, CH₃CH₂6), 2.47 (2H, q, J = 7.5 Hz, CH₃CH₂2), 2.41 (3H, s, CH₃7), 2.39 (3H, s, CH₃1), 1.10 (3H, t, J = 7.5 Hz, CH₃CH₂2/CH₃CH₂6), 1.09 (3H, t, J = 7.5 Hz, CH₃CH₂6/CH₃CH₂2). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 167.3$ (C11'), 164.2 (C8'), 156.2 (C5), 147.2 (C3), 143.0 (C4'), 142.7 (C8), 140.0 (C7a), 137.2 (C8a), 135.6 (C7), 135.0 (C1), 131.7 (C6), 131.2 (C7'), 130.3 (C2), 128.8 (C5' and C15'), 128.1 (C6' and C14'), 127.4 (q, $J_{CB} = 74$ Hz, 2 x CN), 73.0 (C3'), 63.7 (C1'), 21.3 (CH₃11'), 17.7 (CH₃8), 17.5 (CH₃CH₂6), 17.4 (CH₃CH₂2), 15.3 (CH₃CH₂2/CH₃CH₂6), 15.0 (CH₃7), 14.7 (CH₃1), 14.6 (CH₃CH₂6/CH₃CH₂2), 14.0 (CH₃5).

HRMS (API-ES⁺) m/z calcd for C₃₀H₃₃BN₈NaO [M+Na]⁺ 555.2768; found 555.2753. Calcd for C₃₀H₃₇BN₉O [M+NH₄]⁺ 550.3214; found 550.3203.

Compound 35

To a stirred solution of (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (5.7 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (0.5 mL) was added tetrakis(acetonitrile)copper(I) tetrafluoroborate (12.3 mg, 0.038 mmol) at room temperature. After stirring the mixture for 1 h at the room temperature, complexation of the alkyne with copper was completed (as judged from TLC analysis). To this mixture was added compound **9** (14 mg, 0.036 mmol) in anhydrous CH₂Cl₂ (0.5 mL) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (90 μ L of a 0.01 M solution, 0.025 equiv) at room temperature. After stirring for 22 h at room temperature, an aqueous ammonia solution (30%, 0.3 mL) and H₂O (0.1 mL) were added at room temperature. After stirring for 5 minutes at room temperature, the mixture was diluted with CH₂Cl₂ (15 mL) and the mixture was extracted with water (15 mL) and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound **35** (9.1 mg, 53% yield; 60% yield considering recovered **9**: 1.8 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.84$ (2H, s, H1'), 3.75 (2H, d, J = 7.5 Hz, H3'), 2.68 (6H, s, CH₃5 and CH₃8), 2.57 (2H, q, J = 7.5 Hz, CH₃<u>CH₂2</u>), 2.46 (2H, q, J = 7.5 Hz, CH₃<u>CH₂6</u>), 2.40 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.37-2.15 (6H, m, H6', H7', H10' and H11'), 1.70-1.58 (2H, m, H6' and H11'), 1.51-1.41 (1H, m, H4'), 1.13 (3H, t, J = 7.5 Hz, <u>CH₃CH₂2</u>), 1.08 (3H, t, J = 7.5 Hz, <u>CH₃CH₂6</u>), 0.99-0.90 (2H, m, H5' and H12'). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 155.6$ (C5), 148.3 (C3), 142.5 (C8), 139.7 (C7), 137.5 (C1), 135.3 (C6), 135.0 (C2), 131.5 (C7a), 130.2 (C8a), 127.5 (q, $J_{CB} = 74.5$ Hz, 2 × CN), 99.1 (C8' and C9'), 68.6 (C3'), 63.9 (C1'), 29.3 (C6' and C11'), 21.7 (C7' and C10'), 20.1 (C5'

and C12'), 18.8 (C4'), 17.6 (CH₃8), 17.5 (CH₃<u>CH₂</u>2), 17.4 (CH₃<u>CH₂</u>6), 15.2 (CH₃1/<u>CH₃</u>CH₂2/<u>CH₃</u>CH₂6/CH₃7), 15.0 (<u>CH₃</u>CH₂2/<u>CH₃</u>CH₂6/CH₃7/CH₃1), 14.8 (<u>CH₃</u>CH₂6/CH₃7/CH₃1/<u>CH₃</u>CH₂2), 14.6 (CH₃7/CH₃1/<u>CH₃</u>CH₂2/<u>CH₃</u>CH₂6), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₀H₄₁BN₅O [M+NH₄]⁺ 498.3404; found 498.3403. Calcd. for C₃₀H₃₇BN₄NaO [M+Na]⁺ 503.2958; found 503.2954. Calcd. for C₃₀H₃₈BN₄O [M+H]⁺ 481.3139; found 481.3128.

Compound 36

To a stirred solution of compound **9** (10 mg, 0.026 mmol) in anhydrous CH_2Cl_2 (1 mL) was added oleic acid (16.77 µL, 0.051 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (64 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 93:7 to 70:30) to afford compound **36** (12.5 mg, 80% yield; 86% considering recoverd **9**: 1.8 mg), as a red-orange solid.

¹**H** NMR (CDCl₃, 400 MHz): $\delta = 5.36$ (2H, s, H1'), 5.27 (2H, m, H11' and H12'), 2.63 (3H, s, CH₃8), 2.62 (3H, s, CH₃5), 2.41 (4H, m, CH₃<u>CH₂</u>2 and CH₃<u>CH₂6</u>), 2.34 (3H, s,

CH₃7), 2.33 (s, CH₃1), 2.28 (2H, t, J = 7.2 Hz, H4'), 1.98-1.89 (4H, br m, H10' and H13'), 1.58 (2H, m, H5'), 1.30-1.16 (20H, br m, H6', H7',H8', H9'and H14', H15', H16', H17', H18' and H19'), 1.02 (3H, t, J = 7.5 Hz, <u>CH₃CH₂2</u>), 1.01 (3H, t, J = 7.5 Hz, <u>CH₃CH₂6</u>), 0.81 (3H, t, J = 6.7 Hz, H20'). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 173.6$ (C3'), 157.6 (C5), 143.9 (C3), 142.9 (C8), 140.7 (C7), 136.4 (C1), 136.1 (C6), 135.0 (C2), 132.3 (C7a), 130.6 (C8a), 130.2, 130.0, 130.0, 129.9 (from 130.2 to 129.9: C11' and C12'), 127.1 (q, $J_{CB} = 74.2$ Hz, 2 × CN), 56.3 (C1'), 34.2 (C4'), 32.0, 29.9, 29.9, 29.8, 29.7, 29.5, 29.5, 29.3, 29.3, 29.2, 29.2 (from 32.0 to 29.2: C6'-C9'/C14'-C19'), 27.4 (C10' and C13'), 24.9 (C5'), 22.8 (C14'-C19'/C6'-C9'), 17.8 (CH₃8), 17.4 (CH₃<u>CH₂2/CH₃<u>CH</u>₂6), 17.4 (CH₃<u>CH₂6/CH₃<u>CH</u>₂2), 15.5(<u>CH₃CH</u>₂6), 15.1 (<u>CH₃CH</u>₂2), 14.7 (CH₃7), 14.6 (CH₃1), 14.3 (C20'), 14.1 (CH₃5).</u></u>

HRMS (API-ES⁺) m/z calcd. for C₃₈H₆₁BN₅O₂ [M+NH₄]⁺ 630.4920; found 630.4931. Calcd. for C₃₈H₅₇BN₄NaO₂ [M+Na]⁺ 635.4473; found 635.4492.

Compound 37

To a stirred solution of compound **9** (20.3 mg, 0.052 mmol) in anhydrous CH_2Cl_2 (1 mL) was added methacrylic acid (4.41 µL, 0.052 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (192 µL of a 0.01 M solution, 0.025 equiv). After stirring for 3.5 h at room temperature, additional methacrylic acid (4.41 µL, 0.052 mmol) and a solution of Sc(OTf)₃ (192 µL of a 0.01 M solution, 0.025 equiv) were added to the mixture again. After stirring for an additional 2 h at room temperature, the reaction mixture was then quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **37** (7.2 mg, 33% yield; 46% yield considering recoverd **9**: 5.7 mg), as a red-orange solid.
¹**H** NMR (CDCl₃, 400 MHz): $\delta = 6.23$ (1H, br s, H5'), 5.59 (1H, br s, H5'), 5.53 (2H, s, H1'), 2.71 (3H, s, CH₃8), 2.69 (3H, s, CH₃5), 2.55-2.45 (4H, m, CH₃CH₂2 and CH₃CH₂6), 2.42 (3H, s, CH₃7), 2.41 (3H, s, CH₃1), 1.97 (3H, s, CH₃4'), 1.08 (6H, t, J = 7.5 Hz, <u>CH</u>₃CH₂2 and <u>CH</u>₃CH₂6). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 167.1$ (C3'), 157.7 (C5), 143.8 (C3), 143.0 (C8), 140.7 (C7), 136.5 (C1), 136.2 (C6), 135.9 (C4'), 135.3 (C2), 132.3 (C7a), 130.5 (C8a), 127.1 (q, $J_{CB} = 74.9$ Hz, 2 × CN), 126.7 (C5'), 56.55 (C1'), 18.6 (CH₃4'), 17.8 (CH₃8), 17.4 (CH₃CH₂2/CH₃CH₂6), 17.3 (CH₃CH₂6/CH₃CH₂2), 15.5 $(CH_31/\underline{CH}_3CH_22/\underline{CH}_3CH_26/CH_37),$ 15.1 $(\underline{CH}_{3}CH_{2}2/\underline{CH}_{3}CH_{2}6/CH_{3}7/CH_{3}1),$ 14.7 (<u>CH</u>₃CH₂6/CH₃7/CH₃1/<u>CH</u>₃CH₂2), 14.7 $(CH_37/CH_31/\underline{CH}_3CH_22/\underline{CH}_3CH_26),$ 14.1 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₄H₃₃BN₅O₂ [M+NH₄]⁺ 434.2727; found 434.2730.

Compound 38

To a stirred solution of compound 9 (20 mg, 0.051 mmol) in anhydrous CH₂Cl₂ (2 mL) was added DL- α -lipoic acid (53.4 mg, 0.256 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (130 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/AcOEt, 100:0 to 94:6) to afford compound **38** (15.6 mg, 57% yield, 98% yield considering recovered **9**: 8.4 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 5.43 (2H, s, H1'), 3.55 (1H, q, *J* = 6.5 Hz, H8'), 3.24-3.00 (2H, m, H10'), 2.70 (3H, s, CH₃8), 2.69 (3H, s, CH₃5), 2.54-2.42 (7H, m, CH₃<u>CH₂2</u>, CH₃<u>CH₂6</u>, H4' and H9'), 2.41 (3H, s, CH₃7), 2.40 (3H, s, CH₃1), 1.95-1.83 (1H, m, H9'), 1.76-1.60 (4H, m, H5' and H7'), 1.54-1.41 (2H, m, H6'), 1.09 (3H, t, *J* = 7.5 Hz, <u>CH₃</u>CH₂3), 1.08 (3H, t, J = 7.5 Hz, <u>CH₃</u>CH₂6). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 173.3$ (C3'), 157.7 (C5), 143.7 (C3), 142.9 (C8), 140.8 (C7), 136.4 (C1), 136.2 (C6), 135.0 (C2), 132.3 (C7a), 130.6 (C8a), 127.1 (q, $J_{CB} = 74.4$ Hz, 2 × CN), 56.5 (C8'), 56.3 (C1'), 40.3 (C9'), 38.6 (C10'), 34.7 (C7'), 33.9 (C4'), 28.8 (C6'), 24.6 (C5'), 17.8 (CH₃8), 17.4 (CH₃<u>CH₂</u>2/CH₃<u>CH₂6), 17.4 (CH₃<u>CH₂6/CH₃CH₂2), 15.6 (CH₃1/<u>CH₃CH₂2/CH₃CH₂6/CH₃7), 15.1 (CH₃CH₂2/<u>CH₃CH₂6/CH₃7/CH₃1), 14.7 (CH₃CH₂6/CH₃7/CH₃1/<u>CH₃CH₂2), 14.6 (CH₃7/CH₃1/<u>CH₃CH₂2/CH₃CH₂6), 14.1 (CH₃5).</u></u></u></u></u></u>

HRMS (API-ES⁺) m/z calcd. for C₂₈H₄₁BN₅O₂S₂ [M+NH₄]⁺ 554.2794; found 554.2798. calcd. for C₂₈H₃₇BN₄NaO₂S₂ [M+Na]⁺ 559.2348; found 559.2343.

Compound 39

Chloride to tetrafluorborate exchange

To a stirred solution of L-carnitine chloride (25 mg, 0.126 mmol) in EtOH (2 mL) was added $AgBF_4$ (24.6 mg, 0.126 mmol) at room temperature in the dark. After stirring the mixture at room temperature in the dark for 1 h, it was filtered through cotton. The filtrate was evaporated under vacuum to afford L-carnitine tetrafluoroborate (30.5 mg, 97% yield), as a white solid.

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous MeCN (2 mL) was added L-carnitine tetrafluoroborate (19.1 mg, 0.077 mmol) (the mixture was treated in an ultrasound bath to dissolve the carnitine salt). A solution of Sc(OTf)₃ in anhydrous MeCN (192 μ L of a 0.01 M solution, 0.05 equiv) was then added dropwise at room temperature. The stirred reaction mixture was heated at 60 °C under microwave irradiation for 8 h. Aqueous HCl (4 mL, 0.01 M) and H₂O (4 mL) were added to the reaction mixture and stirred for 5 minutes at room temperature (BF₄⁻ to Cl⁻ exchange). The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 ×

20 mL). The combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 , and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH, 100:0 to 70:30) to afford compound **39** (3.8 mg, 20% yield; 38% yield considering recovered **9**:7.1 mg), as a red-orange solid.

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 5.48-5.36$ (2H, m, H1'), 4.71-4.61 (1H, br m, H5'), 4.25 (1H, d, *J* = 5.3 Hz, OH5'), 3.54 (1H, d, *J* = 13.5 Hz, H6'), 3.39 (1H, dd, *J* = 13.5, 10.2 Hz, H6'), 3.22 (9H, s, (CH₃)₃N6'), 2.73 (3H, s, CH₃8), 2.71-2.60 (2H, m, H4'), 2.66 (3H, s, CH₃5), 2.55-2.45 (4H, m, CH₃<u>CH₂2</u> and CH₃<u>CH₂6</u>), 2.43 (3H, s, CH₃7), 2.42 (3H, s, CH₃1), 1.13-1.05 (6H, m, <u>CH₃</u>CH₂2 and <u>CH₃</u>CH₂6). ¹³C NMR (CDCl₃, 125 MHz): $\delta = 170.0$ (C3'), 157.9 (C5), 143.6 (C8), 142.2 (C3), 141.5 (C7), 136.9 (C1), 136.4 (C6), 135.9 (C2), 132.5 (C7a), 130.7 (C8a), 126.1 (q, *J_{CB}* = 76.4 Hz, 2 × CN), 69.6 (C6'), 63.5 (C5'), 56.9 (C1'), 54.8 ((CH₃)₃N6'), 40.3 (C4'), 17.9 (CH₃8), 17.4 (CH₃<u>CH₂2/CH₃<u>CH₂6</u>), 17.4 (CH₃<u>CH₂6/CH₃<u>CH₂2</u>), 15.5 (CH₃1/<u>CH₃CH₂2/<u>CH₃</u>CH₂6/CH₃7), 15.2 (<u>CH₃CH₂2/<u>CH₃</u>CH₂6/CH₃7/CH₃1), 14.7 (<u>CH₃CH₂6/CH₃7/CH₃1/<u>CH₃</u>CH₂2), 14.7 (CH₃7/CH₃1)<u>CH₃CH₂2/<u>CH₃</u>CH₂6), 14.1</u></u></u></u></u></u>

(CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₇H₃₉BN₅O₃ [M]⁺ 492.3145; found 492.3144.

To a stirred solution of compound **9** (15.1 mg, 0.039 mmol) in anhydrous CH₂Cl₂ (1.2 mL) was added 1-octadecanethiol (13.6 mg, 0.046 mmol) at room temperature. A solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (96 μ L of a 0.01 M solution, 0.025 equiv) was then added dropwise. After stirring for 20 min at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 97:3) to afford compound **41** (22.1 mg, 93% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.13$ (2H, s, H1'), 2.78 (2H, t, J = 7.4 Hz, H3'), 2.68 (3H, s, CH₃5), 2.66 (3H, s, CH₃8), 2.58 (2H, q, J = 7.5 Hz, CH₃<u>CH₂</u>2), 2.46 (2H, q, J = 7.5 Hz, CH₃<u>CH₂</u>6), 2.39 (3H, s, CH₃7), 2.37 (3H, s, CH₃1), 1.68 (2H, p, J = 7.4 Hz, H4'), 1.45-1.37 (2H, m, H5'), 1.26 (28H, br s, H6', H7', H8', H9', H10', H11', H12', H13', H14', H15', H16', H17', H18' and H19'), 1.16 (3H, t, J = 7.5 Hz, <u>CH₃CH₂2), 1.07 (3H, t, J = 7.5 Hz, <u>CH₃CH₂6), 0.88 (3H, t, J = 6.7 Hz, H20'). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 154.6$ (C5), 149.5 (C3), 141.7 (C8), 139.1 (C7), 138.1 (C1), 135.0 (C6), 134.7 (C2), 131.1 (C7a), 130.3 (C8a), 127.4 (q, $J_{CB} = 74.3$ Hz, 2 × CN), 34.3 (C3'), 32.1</u></u>

(C18'/C19'), 29.9 - 29.8 (C6'-C17'), 29.7 (C4'), 29.1 (C5'), 28.4 (C1'), 22.4 (C19'/C18'), 17.6 (CH₃<u>CH₂</u>2), 17.5 (CH₃8), 17.4 (CH₃<u>CH₂6</u>), 15.1 (<u>CH₃</u>CH₂2), 14.9 (<u>CH₃</u>CH₂6), 14.8 (CH₃1/CH₃7), 14.8 (CH₃7/CH₃1), 14.3 (C20'), 13.8 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₈H₆₅BN₅S [M+NH₄]⁺ 634.5055; found 634.5069. Calcd. for C₃₈H₆₁BN₄NaS [M+Na]⁺ 639.4609 found; 639.4622.

Compound 42

To a stirred solution of compound **9** (12.4 mg, 0.032 mmol) in anhydrous CH₂Cl₂ (1.2 mL) was added 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol (11.1 μ L, 0.038 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (70 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 30 min at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **42** (24.8 mg, 96% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.20$ (2H, s, H1'), 3.00 (2H, t, *J* = 7.9 Hz, H3'), 2.69 (3H, s, CH₃5), 2.67 (3H, s, CH₃8), 2.57 (2H, q, *J* = 7.5 Hz, CH₃CH₂2), 2.53-2.50 (2H, m, H4'), 2.47 (2H, q, *J* = 7.5 Hz, CH₃CH₂6), 2.40 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 1.16 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2</u>), 1.08 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂6</u>). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 155.8$ (C5), 147.0 (C3), 142.1 (C8), 139.8 (C6), 137.8 (C1), 135.5 (C7), 134.5 (C2), 131.5 (C7a), 130.3 (C8a), 127.4 (q, *J*_{CB} = 74.2 Hz, 2 × CN), 118.7-108.3 (m, 8CF_n)

n = 2, 3; C5', C6', C7', C8', C9', C10', C11' C12'), 32.0 (t, J_{CF} = 22.1 Hz, C4'), 28.5 (C1'), 24.5 (t, J_{CF} = 4.1 Hz, C3'), 17.6 (CH₃CH₂2 and CH₃CH₂6), 17.4 (CH₃8), 15.1 (CH₃CH₂6), 15.0 (CH₃CH₂2), 14.7 (CH₃1 and CH₃7), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₀H₃₂BF₁₇N₅S (M+NH₄)⁺ 828.2200; found 828.2239.

Compound 43

To a stirred solution of compound **9** (20 mg, 0.051 mmol) in anhydrous CH_2Cl_2 (1 mL) was added 4-methylbenzenethiol (6.49 mg, 0.051 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (128 µL of a 0.01 M solution, 0.025 equiv. After stirring for 1 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 , and the solvent was removed at reduced pressure. The resultant crude was washed with hexane to afford compound **43** (23 mg, 98% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.49$ (2H, d, J = 8.0 Hz, H4' and H8'), 7.15 (2H, d, J = 8.0 Hz, H5' and H7'), 4.50 (2H, s, H1'), 2.69 (3H, s, CH₃5), 2.67 (3H, s, CH₃8), 2.51 (2H, q, J = 7.6 Hz, CH₃CH₂2), 2.49 (2H, q, J = 7.6 Hz, CH₃CH₂6), 2.39 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.35 (3H, s, CH₃6'), 1.12 (3H, t, J = 7.6 Hz, CH₃CH₂2), 1.08 (3H, t, J = 7.6 Hz, CH₃CH₂6). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 155.3$ (C5), 147.4 (C3), 141.9 (C8), 139.5 (C7), 137.8 (C1), 137.5 (C6'), 135.2 (C6), 134.9 (C2), 132.4 (C3'), 132.0 (C4' and C8'), 131.4 (C7a), 130.4 (C8a), 130.0 (C5' and C7'), 127.4 (q, $J_{CB} = 74.2$ Hz, 2 × CN), 32.5 (C1'), 21.3 (CH₃6'), 17.6 (CH₃8), 17.5 (CH₃CH₂2), 17.4 (CH₃CH₂6), 15.1 (CH₃CH₂2), 14.9 (CH₃CH₂6), 14.8 (CH₃1/CH₃7) 14.8 (CH₃7/CH₃1), 13.9 (CH₃5). **HRMS** (API-ES⁺) *m/z* calcd. for C₂₇H₃₅BN₅S [M+NH₄]⁺ 472.2706; found 472.2734.

To a stirred solution of compound **9** (14.9 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (1.2 mL) was added 2,3,4,5,6-pentafluorothiophenol (6.3 μ L, 0.046 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (96 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 68:32) to afford compound **44** (14.8 mg, 73% yield), as a red-orange solid.

¹**H** NMR (CDCl₃, 400 MHz): $\delta = 4.53$ (2H, s, H1'), 2.69 (3H, s, CH₃8), 2.68 (3H, s, CH₃5), 2.58 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂</u>2), 2.47 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂</u>6), 2.41 (3H, s, CH₃7), 2.40 (3H, s, CH₃1), 1.19 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2), 1.08 (3H, t, *J* = 7.5 Hz, CH₃CH₂2), 1.</u> <u>CH</u>₃CH₂6). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 157.0$ (C5), 147.5 (m, C4'/C5'/C6'/C7'/C8'), 144.4 (C3), 142.4 (C8), 141.9 (m, C5'/C6'/C7'/C8'/C4'), 140.4 (C7), 138.0 (m, C6'/C7'/C8'/C4'/C5') 137.3 (C1), 136.0 (C6), 134.9 (C2), 132.0 (C7a), 130.5 (C8a), 127.2 $(q, J_{CB} = 74.1 \text{ Hz}, 2 \times \text{CN}), 109.1 \text{ (m, C3')}, 31.0 \text{ (C1')}, 17.7 \text{ (CH}_{3}8), 17.6 \text{ (CH}_{3}\text{CH}_{2}2),$ 17.4 (CH₃CH₂6), 15.1 (CH₃1/<u>CH</u>₃CH₂2/<u>CH</u>₃CH₂6/CH₃7), 15.1(CH₃CH₂2/CH₃CH₂6/CH₃7/CH₃1), (<u>CH</u>₃CH₂6/CH₃7/CH₃1/<u>CH</u>₃CH₂2), 14.7 14.7 (CH₃7/CH₃1/<u>CH₃CH₂2/CH₃CH₂6), 14.0 (CH₃5).</u>

HRMS (API-ES⁺) *m/z* calcd. for C₂₆H₂₈BF₅N₅S [M+NH₄]⁺ 548.2078; found 548.2061.

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (1.5 mL) was added *N*-acetyl-L-cysteine (7.53 mg, 0.046 mmol) (treated in an ultrasounds bath to dissolve the amino acid) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (192 μ L of a 0.01 M solution, 0.05 equiv). After stirring for 2.5 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound **45** (18 mg, 94% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.31$ (1H, s, CH₃CO<u>NH</u>4¹/COOH4¹), 5.70 (1H, br s, COOH4¹/CH₃CO<u>NH</u>4¹), 4.76-4.67 (1H, br m, H4¹), 4.22 (1H, d, *J*_{AB}= 12.5 Hz, H1¹), 4.14 (1H, d, *J*_{AB} = 12.5 Hz, H1¹), 3.32 (1H, dd, *J*_{AB} = 13.2, 6.4 Hz, H3¹), 3.22 (1H, dd, *J*_{AB} 13.2, 3.3 Hz, H3¹), 2.67 (6H, s, CH₃5/CH₃8), 2.55 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂2</u>), 2.47 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂6</u>), 2.40 (3H, s, CH₃7), 2.37 (3H, s, CH₃1), 2.05 (3H, s, <u>CH₃CONH4</u>), 1.14 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2</u>), 1.08 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂6</u>). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 172.6$ (CH₃<u>CO</u>NH4¹/COOH4¹), 172.4 (COOH4¹/CH₃<u>CO</u>NH4¹), 155.5 (C5), 146.9 (C3), 142.3 (C8), 140.0 (C7), 138.1 (C1), 135.5 (C6), 134.9 (C2), 131.5 (C7a), 130.4 (C8a), 127.5 (q, *J*_{CB} = 72.5 Hz, 2 × CN), 52.7 (C4¹), 34.9 (C3¹), 28.8 (C1¹), 22.7 (<u>CH₃CONH4¹</u>), 17.6 (CH₃8), 17.5 (CH₃<u>CH₂2</u>), 17.4 (CH₃<u>CH₂6</u>), 15.3 (<u>CH₃CH₂2</u>), 15.0 (CH₃1/CH₃7), 14.8 (<u>CH₃CH₂6</u>), 14.7 (CH₃7/CH₃1), 13.9 (CH₃5).

HRMS (API-ES⁺) *m/z* calcd. for C₂₅H₃₂BN₅NaO₃S [M+Na]⁺ 516.2216; found 516.2229. Calcd. for C₂₅H₃₃BN₅O₃S [M+H]⁺ 494.2396; found 494.2415.

To a stirred solution of compound **9** (14.6 mg, 0.037 mmol) in anhydrous CH_2Cl_2 (1 mL) was added trimethylsilyl azide (10.5 µL, 0.075 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (96 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 , and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 90:10 to 50:50) to afford compound **46** (11.5 mg, 82% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.81$ (2H, s, H1'), 2.70 (3H, s, CH₃5/CH₃8), 2.70 (3H, s, CH₃8/CH₃5), 2.55 (2H, q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 2.48 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.42 (3H, s, CH₃1/CH₃7), 2.41 (3H, s, CH₃7/CH₃1), 1.15 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>), 1.09 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 157.5$ (C5), 143.5 (C3), 143.0 (C8), 140.9 (C1), 136.9 (C7), 136.1 (C6), 134.7 (C2), 132.2 (C7a), 130.2 (C8a), 127.2 (q, $J_{CB} = 74.4$ Hz, 2 × CN), 45.2 (C1'), 17.8 (CH₃8), 17.5 (CH₃<u>CH₂2</u>), 17.4 (CH₃<u>CH₂6</u>), 15.2 (<u>CH₃CH₂6</u>), 15.1 (<u>CH₃CH₂2</u>), 14.7 (CH₃1 and CH₃7), 14.1 (CH₃5). **HRMS** (API-ES⁺) *m/z* calcd. for C₂₀H₂₄BN₇Na [M+Na]⁺ 396.2084; found 396.2073.

Compound 47

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH_2Cl_2 (1 mL) was added naphthalene-2-sulfonamide (9.9 mg, 0.046 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (96 µL of a 0.01 M solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic

layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 95:5 to 84:16) to afford compound **47** (15.3 mg, 74% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 8.52$ (1H, s, H11'), 8.02 (2H, t, J = 9.3 Hz, H7'/H10'/H6'), 7.95-7.87 (2H, m, H5' and H6'/H7'/H10'), 7.70-7.56 (2H, m, H8' and H9'), 5.55 (1H, t, J = 7.1 Hz, H2'), 4.46 (2H, d, J = 7.1 Hz, H1'), 2.65 (3H, s, CH₃8), 2.64 (2H, q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 2.53 (3H, s, CH₃5), 2.44 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.39 (3H, s, CH₃7), 2.34 (3H, s, CH₃1), 1.17 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>), 1.05 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6). ¹³C NMR</u> (CDCl₃, 100 MHz): $\delta = 156.3$ (C5), 144.7 (C3), 142.3 (C8), 140.7 (C7), 137.7 (C1), 136.4 (C4'), 135.7 (C6), 135.4 (C2), 135.2 (C6'a/C10'a), 132.4 (C10'a/C6'a), 131.7 (C7a), 130.2 (C8a), 129.9 (C7'/10'/C6'), 129.5 (C10'/C7'/C6'), 128.9 (C11'/C8'/C9'), 128.7 (C8'/C11'/C9'), 128.4 (q, $J_{CB} = 74.1$ Hz, 2 × CN), 128.1 (C6'/C7'/C10'), 127.6 (C9'/C8'), 122.4 (C5') 38.2 (C1'), 17.7 (CH₃8), 17.4 (CH₃<u>CH₂6), 17.0 (CH₃<u>CH₂2), 15.2 (CH₃CH₂2), 15.0 (CH₃7), 14.7 (CH₃CH₂6), 14.6 (CH₃1), 13.8 (CH₃5).</u></u>

HRMS (API-ES⁺) m/z calcd. for C₃₀H₃₆BN₆O₂S [M+NH₄]⁺ 555.2713; found 555.2739.

Compound 48

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH_2Cl_2 (1 mL) was added *N*-benzyl-p-toluenesulfonamide (12.1 mg, 0.046 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (192 µL of a 0.01 M solution, 0.05 equiv). After stirring for 7 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous

Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound **48** (11.1 mg, 49% yield; 68% yield considering recovered **9**: 4.3 mg), as a red-orange solid.

¹**H** NMR (CDCl₃, 400 MHz): δ = 7.82 (2H, d, J = 8.2 Hz, H5' and H9'), 7.42 (2H, d, J = 8.2 Hz, H6' and H8'), 7.23-7.16 (2H, m, H3" and H7"), 7.09-6.96 (3H, m, H4", H5" and H6"), 4.83 (2H, s, H1'), 4.41 (2H, s, H1"), 2.61 (3H, s, CH₃5), 2.59 (3H, s, CH₃8), 2.49 (3H, s, CH₃7'), 2.46 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.40 (3H, s, CH₃7), 2.34 (2H, br q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 1.97 (3H, s, CH₃1), 1.07 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>), 0.93 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>). ¹³**C** NMR (CDCl₃, 100 MHz): δ = 154.9 (C5), 145.4 (C3), 144.1 (C7'), 142.2 (C8), 139.6 (C7), 138.1 (C1), 136.7 (C2), 136.5 (C2"), 135.2 (C6), 135.0 (C4'), 131.0 (C7a), 130.3 (C6' and C8'), 130.2 (C8a), 128.9 (C3" and C7"), 127.8 (q, J_{CB} = 74.1 Hz, 2 × CN), 127.5 (C5'/C9'/C4"/C5"/C6"), 127.4 (C9'/C4"/C5"/C6"/C5'), 127.0 (C4"/C5"/C6"/C5'/C9'), 52.9 (C1"), 46.8 (C1'), 21.8 (CH₃7'), 17.6 (CH₃8), 17.4 (CH₃<u>CH₂6</u>), 17.0 (CH₃<u>CH₂2</u>), 15.0 (CH₃7), 14.8 (<u>CH₃CH₂6</u>), 14.7 (<u>CH₃CH₂2</u>), 14.0 (CH₃1), 13.8 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₄H₄₂BN₆O₂S [M+NH₄]⁺ 609.3184; found 609.3166.

Compound 49

To a solution of compound **9** (25.0 mg, 0.064 mmol) in CH_2Cl_2 (2.0 mL), 2nitroimidazole (7.2 mg, 0.064 mmol) and $Sc(OTf)_3$ (3.1 mg, 0.0064 mmol) were added and the mixture was stirred at room temperature. After stirring for 25 hours at room temperature, another equal portion of $Sc(OTf)_3$ was added and the reaction was stirred for another 28 hours before quenching with H_2O (10 mL) followed by extraction with CH_2Cl_2 (4 x 15 mL). The combined organic phases were dried over Na₂SO₄ and concentrated at reduced pressure. The resulting crude was purified by flash chromatography (hexane/AcOEt, 100:0 to 30:70), to afford compound **49** (20.1 mg, 71%), as a red solid. ¹**H RMN** (CDCl₃, 400 MHz); δ (ppm) = 7.09 (1H, d, J = 1.1 Hz, H5'), 6.90 (1H, d, J = 1.1 Hz, H6'), 6.05 (2H, s, H1'), 2.76 (3H, s, CH₃8), 2.68 (3H, s, CH₃5), 2.49 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.45 (3H, s, CH₃7), 2.42 (3H, s, CH₃1), 2.31 (2H, q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 1.09 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>), 0.88 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>). ¹³**C RMN** (CDCl₃, 100 MHz); δ (ppm) = 159.8 (C5), 145.1 (C3'), 143.2 (C8), 142.1 (C7), 139.5 (C2), 137.2 (C6), 136.5 (C1), 134.4 (C3), 132.9 (C7a), 130.3 (C8a), 128.4 (C5'), 126.6 (2 x CN q, J = 74.0 Hz), 125.1 (C6'), 44.6 (C10), 17.9 (CH₃8), 17.4 (CH₃<u>CH₂6</u>), 17.3 (CH₃<u>CH₂2</u>), 15.3 (CH₃7), 14.6 (<u>CH₃CH₂2</u> and <u>CH₃</u>CH₂6), 14.6 (CH₃1), 14.3 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₃H₂₆BN₇O₂ [M+Na] 466.2137; found 466.2139.

Compound 50

To a stirred solution of compound 9 (23. mg, 0.059 mmol) in anhydrous CH_2Cl_2 (1 mL) was added chlorotrimethylsilane (150 μ L, 1.18 mmol) at room temperature. After stirring for 24 h at room temperature, the solvent was removed at reduced pressure to afford compound **50** (21.6 mg, 100% yield), as an orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.95$ (2H, s, H1'), 2.71 (3H, s, CH₃5), 2.70 (3H, s, CH₃8), 2.57 (2H, q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 2.48 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.42 (3H, s, CH₃7), 2.40 (3H, s, CH₃1), 1.17 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>), 1.09 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 157.7$ (C5), 144.8 (C3), 142.9 (C8), 140.8 (C7), 136.9 (C1), 136.2 (C6), 134.9 (C2), 132.2 (C7a), 130.3 (C8a), 127.0 (q, $J_{CB} = 74.3$ Hz, 2 × CN), 35.6 (C1'), 17.8 (C8), 17.4 (CH₃<u>CH₂2</u> and CH₃<u>CH₂6</u>), 15.1 (CH₃7), 15.0 (<u>CH₃CH₂2</u>), 14.7 (CH₃1 and <u>CH₃CH₂6</u>), 14.1 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₀H₂₄BN₄ [M–C1]⁺ 331.2092; found 331.2101.

To a stirred solution of compound **50** (9.4 mg, 0.026 mmol) in anhydrous CH_2Cl_2 (2 mL) were added triethylphosphite (5.9 µL, 0.033 mmol) at room temperature. The stirred reaction mixture was heated at 80 °C for 30 min and at 120 °C for 4.5 h, under microwave irradiation. The reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 70:30 to 30:70) to afford compound **51** (10.2 mg, 85% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.19-4.10$ (4H, m, H4' and H7'), 3.70 (2H, d, *J*_{HP} = 27.8 Hz, H1'), 2.73 (2H, q, *J* = 7.6 Hz, CH₃CH₂2), 2.68 (6H, br s, CH₃5 and CH₃8), 2.46 (2H, q, *J* = 7.6 Hz, CH₃CH₂6), 2.40 (6H, s, CH₃1 and CH₃7), 1.30 (6H, t, *J* = 7.1 Hz, H5' and H8'), 1.11 (3H, t, *J* = 7.6 Hz, CH₃CH₂2), 1.06 (3H, t, *J* = 7.6 Hz, CH₃CH₂6). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 154.8$ (C5), 144.1 (d, *J*_{CP} = 10.0 Hz, C3), 141.8 (C8), 139.1 (C1), 138.3 (C7), 135.1 (C2 and C6), 131.2 (C7a/C8a), 130.9 (C8a/C7a), 127.1 (q, *J*_{CB} = 74.1 Hz, 2 × CN), 62.7 (d, *J*_{CP} = 7.0 Hz, C4' and C7'), 27.7 (d, *J*_{CP} = 140.8 Hz, C1'), 17.7 (CH₃8), 17.4 (CH₃CH₂6), 17.3 (CH₃CH₂2), 16.5 (d, *J*_{CP} = 6.0 Hz, C5' and C8') 15.0 (CH₃1/<u>CH₃CH₂2/CH₃CH₂6/CH₃7/CH₃1), 14.8 (CH₃CH₂6/CH₃7/CH₃1/<u>CH₃CH₂2</u>), 14.6 (CH₃7/CH₃1/<u>CH₃CH₂2/CH₃CH₂6), 13.9 (C5). ³¹P-**NMR** (CDCl₃, 162 MHz): $\delta = 22.1$ </u></u>

HRMS (API-ES⁺) *m/z* calcd. for C₂₄H₃₄BN₄NaO₃P [M+Na]⁺ 491.2358; found 491.2357.

To a stirred solution of compound **9** (16 mg, 0.041 mmol) in anhydrous CH₂Cl₂ (1 mL) was added diethylzinc (140 μ L, 15% w/w in hexane, 0.129 mmol) and TMSOTf (11.1 μ L, 0.062 mmol) at room temperature and under argon (glovebox). After stirring for 90 min at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 95:5 to 60:40) to afford compound **52** (7.3 mg, 49% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 3.00-2.90 (2H, m, H1'), 2.66 (3H, s, CH₃5), 2.65 (3H, s, CH₃8), 2.45 (2H, q, J = 7.5 Hz, CH₃<u>CH₂6</u>), 2.46 (2H, q, J = 7.5 Hz, CH₃<u>CH₂2</u>), 2.38 (6H, s, CH₃1 and CH₃7), 1.86-1.72 (2H, m, H2'), 1.16 (3H, t, J = 7.3 Hz, H3'), 1.11 (3H, t, J = 7.5 Hz, <u>CH₃</u>CH₂2), 1.07 (3H, t, J = 7.5 Hz, <u>CH₃</u>CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): δ = 156.3 (C3), 152.5 (C5), 141.0 (C8), 138.7 (C1/C7), 137.8 (C7/C1), 134.1 (C6), 133.8 (C2), 130.4 (C7a/C8a), 130.2 (C8a/C7a), 127.8 (q, J_{CB} = 74.8 Hz, 2 × CN), 29.8 (C1'), 22.3 (C2'), 17.4 (CH₃<u>CH₂2/CH₃CH₂6/CH₃8), 17.4 (CH₃<u>CH₂6/CH₃8/</u>CH₃<u>CH₂2), 15.2 (CH₃CH₂2/<u>CH₃CH₂6/CH₃7/CH₃1/C3'), 14.9 (CH₃CH₂6/CH₃7/CH₃1/C3'/<u>CH₃CH₂2/CH₃CH₂6/CH₃7), 13.6 (CH₃5). **HRMS** (API-ES⁺) *m/z* calcd. for C₂₂H₃₀BN₄ [M+H]⁺ 361.2562; found 361.2573. Calcd. for C₂₂H₂₉BN₄Na [M+Na]⁺ 383.2382; found 383.2391.</u></u></u></u>

Compound 53

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH_2Cl_2 (2 mL) was added allyltrimethylsilane (9.2 μ L, 0.058 mmol) and a solution of Sc(OTf)₃ in anhydrous CH_2Cl_2 (96 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 2 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined

organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **53** (12 mg, 84% yield), as a red solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 6.07$ -5.91 (1H, m, H3'), 5.22 (1H, dd, J = 1.2, 17.2 Hz, H4'*trans*), 5.09 (1H, d, J = 10.2 Hz, H4'*cis*), 3.09 (2H, m, H1'), 2.66 (6H, s, CH₃5 and CH₃8), 2.52 (2H, m, H2'), 2.46 (4H, q, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6), 2.39 (6H, s, CH₃1 and CH₃7), 1.12 (3H, t, J = 7.5 Hz, CH₃CH₂2), 1.07 (3H, t, J = 7.5 Hz, CH₃CH₂6). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 154.9$ (C5), 153.0 (C3), 141.2 (C8), 138.5 (C7a), 138.2 (C8a), 137.2 (C3'), 134.3 (C7), 133.7 (C1), 130.5 (C6), 130.2 (C2), 127.7 (q, $J_{CB} = 74$ Hz, 2 x CN), 115.9 (C4'), 32.5 (C2'), 27.1 (C1'), 17.4 (CH₃CH₂2/CH₃CH₂6/CH₃8), 17.4 (CH₃8/CH₃CH₂2/CH₃CH₂6), 15.2 (CH₃CH₂2/CH₃CH₂6), 14.9 (CH₃CH₂6/CH₃CH₂2), 14.9 (CH₃7), 14.8 (CH₃1), 13.7 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₂₃H₃₀BN₄ [M+H]⁺ 373.2562; found 373.2556. Calcd. for C₂₃H₃₃BN₅ [M+NH₄]⁺ 390.2828; found 390.2826. Calcd. for C₂₃H₂₉BN₄Na [M+Na]⁺ 395.2382; found 395.2367.

Compound 54

To a stirred solution of compound **9** (20 mg, 0.051 mmol) in anhydrous CH_2Cl_2 (2 mL) was added TMSCN (9.6 µL, 0.077 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (128 µL of a 0.01 M solution, 0.025 equiv). After stirring for 3 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 , and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **54** (17 mg, 92% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.14$ (2H, s, H1'), 2.71 (3H, s, CH₃5), 2.69 (3H, s, CH₃8), 2.60 (2H, q, *J* = 7.6 Hz, CH₃<u>CH₂</u>2), 2.48 (2H, q, *J* = 7.6 Hz, CH₃<u>CH₂</u>6), 2.42 (3H, s, CH₃7), 2.41 (3H, s, CH₃1), 1.19 (3H, t, *J* = 7.6 Hz, <u>CH₃</u>CH₂2), 1.09 (3H, t, *J* = 7.6 Hz, <u>CH₃</u>CH₂6). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 157.8$ (C5), 142.9 (C3), 141.2 (C8), 137.3 (C7a), 136.9 (C8a), 136.3 (C7), 133.5 (C1), 132.0 (C6), 129.9 (C2), 126.3 (q, *J_{CB}* = 74 Hz, 2 x BCN), 114.5 (CN1'), 17.6 (CH₃8), 17.3 (CH₃<u>CH₂</u>2/CH₃<u>CH₂6), 17.3 (CH₃<u>CH₂</u>6/CH₃<u>CH₂</u>2), 16.3 (C1'), 15.0 (<u>CH₃CH₂2/CH₃CH₂6), 14.5 (<u>CH₃CH₂6/CH₃CH₂2), 14.4 (CH₃1/CH₃7), 14.4 (CH₃7/CH₃1), 13.9 (CH₃5). **HRMS** (API-ES⁺) *m/z* calcd. for C₂₁H₂₈BN₆ [M+NH₄]⁺ 375.2467; found 375.2479.</u></u></u>

Compound 55

To a stirred solution of compound **9** (10 mg, 0.026 mmol) in anhydrous CH_2Cl_2 (2 mL) was added acetylacetone (3.8 mg, 0.038 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (64 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1 day at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **55** (10 mg, 90% yield), as a red-orange solid, almost equimolar mixture of the two tautomers in CDCl₃ at 25 °C.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 4.82$ (1H, t, J = 7.2 Hz, H2b), 4.20 (2H, s, H1'b), 3.56 (2H, d, J = 7.2 Hz, H1b), 2.70 (3H, s, CH₃5'/CH₃8'), 2.70 (3H, s, CH₃8'/CH₃5'), 2.68 (6H, s, CH₃5 and CH₃8), 2.47 (4H, m, CH₃<u>CH₂6</u> and CH₃<u>CH₂6'), 2.41 (3H, s, CH₃1/CH₃1'), 2.40 (3H, s, CH₃1'/CH₃1), 2.38 (2H, m, CH₃<u>CH₂2</u>), 2.37 (3H, s, CH₃7/CH₃7'), 2.36 (3H, s, CH₃7'/CH₃7), 2.33 (2H, m, CH₃<u>CH₂2</u>'), 2.25 (6H, s, CH₃4b and CH₃6b), 2.19 (6H, s, 6H, s, CH₃4'b and CH₃6'b), 1.08 (3H, t, J = 7.5 Hz, <u>CH₃</u>CH₂6'), 1.06 (3H, t, J = 7.5 Hz,</u>

<u>CH</u>₃CH₂6), 1.01 (3H, t, J = 7.5 Hz, <u>CH</u>₃CH₂2'), 0.91 (3H, t, J = 7.5 Hz, <u>CH</u>₃CH₂2). ¹³C **NMR** (CDCl₃, 100 MHz): $\delta = 202.9$ (C3b and C5b), 192.1 (C3'b and C5'b), 155.0 (C5), 154.6 (C5'), 150.2 (C3'), 149.9 (C3), 141.9 (C8), 141.6 (C8'), 139.5 (C1'b), 139.2 (C7), 139.1 (C7'), 138.0 (C1), 135.4 (C6), 135.2 (C6'), 134.9 (C2), 133.3 (C2'), 131.3 (C8a), 131.1 (C7a), 131.0 (C7'a), 130.2 (C8'a), 128.3 (q, $J_{CB} = 73.9$ Hz, 2 x CN), 126.8 (q, $J_{CB} = 73.9$ Hz, 2 x CN'), 106.3 (C2'b), 65.1 (C2b), 30.7 (C4b and C6b), 28.6 (C1'b), 24.7 (C1b), 24.2 (C4'b and C6'b), 17.8 (CH₃8), 17.7 (CH₃8'), 17.7 (CH₃<u>CH</u>₂2'), 17.4 (CH₃<u>CH</u>₂6 and CH₃<u>CH</u>₂6'), 17.2 (CH₃<u>CH</u>₂2), 15.1 (CH₃7), 15.0 (<u>CH</u>₃CH₂2), 14.9 (CH₃1 and CH₃1'), 14.8 (<u>CH</u>₃<u>CH</u>₂2'), 14.7 (<u>CH</u>₃<u>CH</u>₂6 and <u>CH</u>₃<u>CH</u>₂6'), 14.5 (CH₃7'), 13.9 (CH₃5), 13.7 (CH₃5'). **HRMS** (API-ES⁺) m/z calcd for C₂₅H₃₅BN₅O₂ [M+NH₄]⁺ 448.2883; found 448.2868. Calcd for C₂₅H₃₁BN₄NaO₂ [M+Na]⁺ 453.2437; found 453.2418. Calcd for C₂₅H₃₂BN₄O₂ [M+H]⁺ 431.2617; found 431.2621.

Compound 56

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (2 mL) was added phenol (5.4 mg, 0.058 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (96 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 3 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound **56** (11 mg, 80% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.09$ (1H, br t, J = 7.5 Hz, H5'), 6.97 (1H, d, J = 7.5 Hz, H7'), 6.82 (1H, t, J = 7.5 Hz, H6'), 6.78 (1H, d, J = 7.5 Hz, H4'), 5.20 (1H, s, OH3'), 4.46 (2H, s, H1'), 2.69 (3H, s, CH₃8), 2.65 (3H, s, CH₃5), 2.46 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.40 (3H, s, CH₃7), 2.38 (3H, s, CH₃1), 2.20 (2H, q, J = 7.6 Hz, CH₃<u>CH₂2</u>), 1.07 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>), 0.73 (3H, t, J = 7.6 Hz, <u>CH₃CH₂2</u>). ¹³**C NMR** (CDCl₃, 100 MHz):

δ = 153.6 (C3'), 153.3 (C3 and C5), 141.3 (C8), 138.7 (C7a), 138.3 (C8a), 134.7 (C7), 134.4 (C1), 130.7 (C6), 130.5 (C7'), 130.3 (C2), 128.5 (C5'), 127.3 (q, $J_{CB} = 74$ Hz, 2 x CN), 123.8 (C2'), 121.0 (C6'), 115.7 (C4'), 28.0 (C1'), 17.5 (CH₃8), 17.4 8 (CH₃<u>CH₂</u>2/CH₃<u>CH₂6</u>), 17.3 (CH₃<u>CH₂6/CH₃<u>CH</u>₂2), 14.9 (CH₃1/CH₃7/<u>CH₃</u>CH₂6), 14.9 (CH₃7/<u>CH₃</u>CH₂6/CH₃1), 14.8 (<u>CH₃CH₂6/CH₃1/CH₃7), 14.1 (<u>CH₃CH₂2</u>), 13.7 (CH₃5). **HRMS** (API-ES⁺) *m/z* calcd for C₂₆H₃₃BN₅O [M+NH₄]⁺ 442.2777; found 442.2768. Calcd. for C₂₆H₂₉BN₄NaO [M+Na]⁺ 447.2331; found 447.2322</u></u>

Compound 57

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH₂Cl₂ (1 mL) was added *N*-benzyloxycarbonyl-L-tyrosine methyl ester (15.5 mg, 0.046 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (96 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 5 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH, 100:0 to 90:10) to afford compound **57** (19 mg, 75% yield), as a red-orange solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.34-7.24$ (5H, m, H6", H7", H8", H9" and H10"), 6.82 (1H, br d, H5'), 6.68 (1H, br d, H4'), 6.67 (1H, br s, H7'), 5.38 (1H, d, J = 9.2 Hz, H1"), 5.05 (1H, d, J = 12.4 Hz, H4"), 4.97 (1H, d, J = 12.4 Hz, H4"), 4.53-4.46 (1H, m, H9'), 4.40 (2H, m, H1'), 3.62 (3H, s, OCH₃10'), 2.95 (2H, d, J = 4.8 Hz, H8'), 2.67 (3H, s, CH₃8), 2.63 (3H, s, CH₃5), 2.45 (2H, q, J = 7.5 Hz, CH₃<u>CH₂</u>2/CH₃<u>CH₂</u>6), 2.39 (3H, s, CH₃1/CH₃7), 2.35 (3H, s, CH₃7/CH₃1), 2.18 (2H, q, J = 7.5 Hz, CH₃<u>CH₂</u>6/CH₃<u>CH₂</u>6/CH₃<u>CH₂</u>2), 1.06 (3H, t, J = 7.5 Hz, <u>CH₃CH₂2/CH₃CH₂6), 0.74 (3H, t, J = 7.5 Hz, <u>CH₃CH₂6/CH₃CH₂2). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 172.3$ (C10'), 156.1 (C2"), 153.4 (C3/C5), 152.9 (C5/C3), 152.8 (C3'), 141.3 (C8), 138.6 (C1/C7), 138.5 (C7/C1), 136.7 (C5"), 134.7 (C2/C6), 134.5 (C6/C2), 131.1 (C7'), 130.7 (C7a/C8a), 130.4</u></u> (C8a/C7a), 128.8 (C5'), 128.5 (C6'/C6"/C7"/C8"/C9"/C10"), 128.0 (C6"/C7"/C8"/C9"/C10"/C6'), 127.8 (C7"/C8"/C9"/C10"/C6'/C6"), 123.9 (C2'), 115.9 (C4'), 66.7 (C4"), 55.1 (C9'), 52.3 (OCH₃10'), 37.1 (C8'), 27.6 (C1'), 17.5 (CH₃8), 17.4 (CH₃<u>CH₂2/CH₃<u>CH₂6</u>), 17.3 (CH₃<u>CH₂6/CH₃<u>CH₂2</u>), 14.9 (CH₃1/CH₃7/<u>CH₃CH₂6/CH₃CH₂2</u>), 14.9 (CH₃7/<u>CH₃CH₂6/CH₃<u>CH₂2</u>/CH₃1), 14.8 (<u>CH₃CH₂6/<u>CH₃</u>CH₂2/CH₃1/CH₃7), 14.2 (<u>CH₃CH₂6/<u>CH₃</u>CH₂2), 13.7 (CH₃5). **HRMS** (API-ES⁺) m/z calcd. for C₃₈H₄₂BN₅NaO₅ [M+Na]⁺ 682.3178; found 682.3175. Calcd. for C₃₈H₄₃BN₅O₅ [M+H]⁺ 660.3350; found 660.3358.</u></u></u></u></u>

Compound 58

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous MeCN (1 mL) was added resveratrol (8.8 mg, 0.038 mmol) and a solution of Sc(OTf)₃ in anhydrous MeCN (96 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 2 h at room temperature, a solution of Sc(OTf)₃ in anhydrous MeCN (96 μ L of a 0.01 M solution, 0.025 equiv) was added again. After stirring for 3 h at 50 °C and for 12 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (CHCl₃/MeOH, 100:0 to 94:6) to afford a mixture of 3 regioisomers (12.5 mg, 58% yield), as a red-orange solid. The major regioisomer **58** was isolated by crystallization from hexane/AcOEt.

¹**H NMR** (CD₃CN/CD₃COCD₃ mixtures, 6:1, 500 MHz): δ = 8.04 (1H, s, OH3'), 7.76 (1H, s, OH13'), 7.67 (1H, s, OH5'), 7.20 (2H, d, *J* = 8.6 Hz, H11' and H15'), 6.99 (1H, d, *J* = 16.0 Hz, H8'), 6.76 (1H, d, *J* = 16.0 Hz, H9'), 6.63 (1H, d, *J* = 2.4 Hz, H6'), 6.61 (2H, d, *J* = 8.6 Hz, H12' and H14'), 6.38 (1H, d, *J* = 2.4 Hz, H4'), 4.57 (2H, br s, H1'), 2.67

(3H, s, CH₃5), 2.62 (3H, s, CH₃8), 2.54 (2H, m, CH₃<u>CH</u>₂2) 2.44 (3H, s, CH₃7), 2.23 (3H, s, CH₃1), 1.96 (2H, m, CH₃<u>CH</u>₂6)1.09 (3H, m, <u>CH</u>₃CH₂6), 0.64 (3H, t, J = 7.5 Hz, <u>CH</u>₃CH₂2). ¹³C NMR (CD₃CN/CD₃COCD₃ mixtures, 6:1, 125 MHz): $\delta = 158.1$ (C13'), 158.0 (C5'), 157.3 (C3'), 155.2 (C3), 152.8 (C5), 143.4 (C8), 141.4 (C1), 141.2 (C7'), 139.9 (C7), 135.5 (C2), 135.3 (C6), 131.6 (C9'), 131.3 (C7a and C8a), 130.4 (C10'), 129.2 (C11' and C15'), 124.8 (C8'), 116.3 (C12' and C14'), 113.6 (C2'), 105.3 (C6'), 102.6 (C4'), 26.8 (C1'), 18.2 (CH₃8), 17.9 (CH₃<u>CH</u>₂6), 17.7 (CH₃<u>CH</u>₂2), 15.3 (<u>CH</u>₃CH₂6), 15.0 (CH₃7), 14.7 (CH₃1), 14.3 (<u>CH</u>₃CH₂2), 13.9 (CH₃5).

HRMS (API-ES⁺) m/z calcd. for C₃₄H₃₅BN₄NaO₃ [M+Na]⁺ 581.2700; found 581.2701.

Compound 59

To a stirred solution of compound **9** (16 mg, 0.041 mmol) in anhydrous CH₂Cl₂ (1 mL) was added guaiazulene (8.9 mg, 0.057 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (103 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 1 day at room temperature, a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (103 μ L of a 0.01 M solution, 0.025 equiv) was added again, following by stirring the reaction mixture at room temperature for 3 days. The reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:30) to afford compound **59** (16.2 mg, 75% yield), as a purple solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 8.03 (1H, d, *J* = 2.0 Hz, H5'), 7.26 (1H, dd, *J* = 10.7, 2.0 Hz, H7'), 7.11 (1H, s, H3'), 6.87 (1H, d, *J* = 10.7 Hz, H8'), 5.14 (2H, s, H1'), 3.11 (3H, s, CH₃9'), 3.06-2.94 (1H, m, C₂H₆<u>CH</u>6'), 2.72 (3H, s, CH₃8), 2.64 (3H, s, CH₃5), 2.51 (3H, s, CH₃4'), 2.46 (2H, q, *J* = 7.6 Hz, CH₃<u>CH₂6</u>), 2.41 (6H, s, CH₃1 and CH₃7), 2.09

(2H, q, J = 7.6 Hz, CH₃CH₂2), 1.34 (6H, d, J = 6.9 Hz, <u>C₂H₆</u>CH6'), 1.07 (3H, t, J = 7.6 Hz, <u>CH₃</u>CH₂6), 0.76 (3H, t, J = 7.6 Hz, <u>CH₃</u>CH₂2). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 155.3$ (C3), 152.9 (C5), 145.2 (C9'), 141.1 (C8), 139.2 (C3'), 139.1 (C6'), 138.8 (C1), 138.0 (C4'), 137.9 (C7), 134.9 (C7'), 134.7 (C2), 134.2 (C6), 133.7 (C5'), 133.3 (C9'a), 130.6 (C7a/C8a), 130.4 (C8a/C7a), 126.7 (C8'), 124.0 (C4'a), 121.3 (C2'), 37.8 (C₂H₆CH6'), 30.7 (C1'), 27.8 (CH₃9'), 24.7 (<u>C₂H₆CH6'</u>), 17.5 (CH₃8), 17.4 (CH₃<u>CH₂6</u>), 17.3 (CH₃<u>CH₂2), 14.9 (CH₃1 and CH₃7), 14.8 (CH₃CH₂6), 14.5 (<u>CH₃CH₂2), 13.7 (CH₃5), 13.0 (CH₃4').</u></u>

HRMS (API-ES⁺) *m/z* calcd. for C₃₅H₄₂BN₄ [M+H]⁺ 529.3503; found 529.3506. Calcd. for C₃₄H₃₅BN₄NaO₃ [M+Na]⁺ 581.2700; found 581.2701.

Compound 60

To a stirred solution of compound **9** (10 mg, 0.026 mmol) in anhydrous CH_2Cl_2 (2 mL) was added pyrrole (2.6 mg, 0.038 mmol) and asolution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (96 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1.5 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 75:25) to afford compound **60** (7 mg, 69% yield), as a red solid.

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 8.78$ (1H, br s, H3'), 6.69 (1H, s, 1H, H4'), 6.13 (2H, m, H5' and H6'), 4.45 (2H, s, H1'), 2.68 (3H, s, CH₃5), 2.66 (3H, s, CH₃8), 2.48 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂6</u>), 2.42 (2H, q, *J* = 7.5 Hz, CH₃<u>CH₂2</u>), 2.41 (3H, s, CH₃7), 2.36 (3H, s, CH₃1), 1.09 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂6</u>), 0.73 (3H, t, *J* = 7.5 Hz, <u>CH₃CH₂2</u>). ¹³**C NMR** (CDCl₃, 100 MHz): $\delta = 153.3$ (C5), 151.4 (C3), 141.7 (C8), 138.9 (C7a), 138.7 (C8a), 135.0 (C7), 134.6 (C1), 130.6 (C6), 130.0 (C2), 127.6 (q, *J_{CB}* = 73.9 Hz, 2 × CN), 125.8 (C2'), 118.2 (C4'), 108.6 (C5'), 108.3 (C6'), 26.7 (C1'), 17.5 (CH₃5), 17.4

(CH₃<u>CH₂6</u>), 17.3 (CH₃<u>CH₂2</u>), 14.9 (CH₃C7 and <u>CH₃</u>CH₂6), 14.6 (CH₃1), 14.1 (<u>CH₃</u>CH₂2), 13.7 (CH₃8).

HRMS (API-ES⁺) m/z calcd. for C₂₈H₃₄BN₆ C₂₄H₂₉BN₅ [M+H]⁺ 398.2515; found 398.2526. Calcd. for C₂₄H₂₈BN₅Na [M+Na]⁺ 420.2334; found 420.2353.

Compound 61

To a stirred solution of compound **9** (15 mg, 0.038 mmol) in anhydrous CH_2Cl_2 (2 mL) was added indole (6.7 mg, 0.058 mmol) and a solution of $Sc(OTf)_3$ in anhydrous CH_2Cl_2 (96 µL of a 0.01 M solution, 0.025 equiv). After stirring for 1.5 h at room temperature, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 80:20) to afford compound **61** (15 mg, 88% yield), as a red solid.

¹**H NMR** (CDCl₃, 400 MHz): δ = 8.08 (1H, s, H4'), 7.66 (1H, d, *J* = 7.3 Hz, H9'), 7.32 (1H, d, *J* = 7.3 Hz, H6'), 7.18 (1H, t, *J* = 7.3 Hz, H7'),), 7.14 (1H, t, *J* = 7.3 Hz, H8'), 6.97 (1H, s, H3'), 4.55 (2H, s, H1'), 2.70 (3H, s, CH₃5), 2.65 (3H, s, CH₃8), 2.47 (2H, q, *J* = 7.5 Hz, CH₃CH₂6), 2.41 (3H, s, CH₃7), 2.36 (3H, s, CH₃1), 2.20 (2H, q, *J* = 7.5 Hz, CH₃CH₂2), 1.08 (3H, t, *J* = 7.5 Hz, CH₃CH₂6), 0.70 (3H, t, *J* = 7.5 Hz, 3H, CH₃CH₂2). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.4 (C5), 152.8 (C3), 141.2 (C8), 138.6 (C8a), 138.0 (C7a), 134.6 (C7), 134.3 (C1), 130.5 (C6), 130.2 (C2), 127.6 (q, J_{CB} = 74 Hz, 2 × CN), 127.5 (C10'), 123.3 (C3'), 122.1 (C7'), 119.7 (C8'), 118.7 (C9'), 111.3 (C6'), 111.1 (C2'), 24.1 (C1'), 17.5 (CH₃5), 17.4 (CH₃CH₂6), 17.3 (CH₃CH₂2), 14.9 (CH₃CH₂6), 14.8 (CH₃7), 14.8 (CH₃1), 14.3 (CH₃CH₂2), 13.7 (CH₃8).

HRMS (API-ES⁺) m/z calcd. for C₂₈H₃₄BN₆ [M+NH₄]⁺ 465.2938; found 465.2953. Calcd. for C₂₈H₃₀BN₅Na [M+Na]⁺ 470.2491; found 470.2494.

Compounds 62 and 63

To a stirred solution of compound **9** (11 mg, 0.028 mmol) in anhydrous CH₂Cl₂ (2 mL) was added compound **6** (10.7 mg, 0.028 mmol) and a solution of Sc(OTf)₃ in anhydrous CH₂Cl₂ (64 μ L of a 0.01 M solution, 0.025 equiv). After stirring for 5.5 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 100:0 to 70:20) to afford **62** (9.3 mg, 47% yield) and **63** (4.5 mg, 15%), as red solids. Compound **6** (4.0 mg, 37%) was also recovered.

62

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 6.97$ (2H, s, H3" and H5"), 6.14 (1H, s, H6'), 4.23 (2H, br d, H9), 2.72 (3H, s, CH₃5'), 2.68 (3H, s, CH₃5/CH₃8), 2.68 (3H, s, CH₃8/CH₃5), 2.66 (3H, s, CH₃3'), 2.47 (2H, q, J = 7.6 Hz, CH₃<u>CH₂6</u>), 2.41 (3H, s, CH₃7), 2.33 (3H, s, CH₃4"), 2.32 (3H, s, CH₃1), 2.06 (8H, m, CH₃<u>CH₂2</u>, CH₃2" and CH₃6"), 1.42 (6H, s, CH₃1' and CH₃7'), 1.08 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>), 0.69 (3H, t, J = 7.6 Hz, <u>CH₃CH₂6</u>). ¹³**C NMR** (CDCl₃, 125 MHz): $\delta = 156.0$ (C5'), 155.1 (C3'), 154.5 (C5), 150.0 (C3), 144.0 (C7'/C7a'), 142.9 (C8'), 141.6 (C8), 141.0 (C1'/C8a'), 139.4 (C4"), 139.1 (C7), 138.9 (C1), 135.0 (C6), 134.4(C2" and C6"), 133.6 (C2), 131.0 (C7a), 130.4 (C1"), 130.0 (C8a), 129.6 (C3" and C5"), 129.3 (C7a'/C7'), 128.4 (C8a'/C1'), 127.5 (C2'), 126.9 (q, $J_{CB} = 74.0$ Hz, $4 \times$ CN), 122.5 (C6'), 24.7 (C9), 21.3 (CH₃8"), 19.7 (CH₃2"/CH₃6"), 19.5 (CH₃6"/CH₃2"), 17.7 (CH₃8), 17.4 (CH₃<u>CH₂2</u>/CH₃<u>CH₂6</u>), 17.4 (CH₃<u>CH₂2</u>, 13.9 (CH₃7'), 13.8 (CH₃7), 14.8 (<u>CH₃</u>CH₂6), 14.6 (CH₃1), 14.4 (CH₃3'), 14.2 (<u>CH₃</u>CH₂2), 13.9 (CH₃7'), 13.8 (CH₃5), 11.8 (CH₃1').

HRMS (API-ES⁺) m/z calcd. for C₄₄H₅₂B₂N₉ [M+NH₄]⁺ 728.4541; found 728.4512. calcd. for C₄₄H₄₈B₂N₈Na [M+Na]⁺ 733.4095; found 733.4052.

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 6.97$ (2H, s, H3" and H5"), 4.23 (4H, br d, H9 and H9""), 2.68 (9H, s), 2.68 (3H, s), 2.66 (6H, s), 2.47 (4H, q, J = 7.6 Hz), 2.41 (6H, s), 2.32 (9H, s, CH₃2", CH₃6"), 2.15–2.01 (10H, m), 1.41 (6H, s, CH₃1' and CH₃7'), 1.08 (6H, t, J = 7.6Hz), 0.69 (6H, t, J = 7.5 Hz).¹³**C NMR** (CDCl₃, 125 MHz): $\delta = 155.4$, 154.4, 150.0, 142.8, 141.6, 141.1, 139.5, 139.1, 135.1, 133.7, 131.1, 130.6, 130.0, 129.6, 128.7, 127.7, 29.9, 24.7, 21.4, 19.5, 17.7, 17.4, 14.9, 14.8, 14.6, 14.5, 14.2, 13.8, 11.9.

HRMS (API-ES⁺) m/z calcd. for C₆₄H₇₅B₃N₁₃ [M+NH₄]⁺ 1058.6569; found 1058.6567. Calcd. for C₆₄H₇₁B₃N₁₂Na [M+Na]⁺ 1063.6123; found 1063.6106.

To a solution of compound 12 (10.2 mg, 0.020 mmol) in CH_2Cl_2 (1.0 mL), tetraethyleneglycol monomethyl ether (0.013 mL, 0.067 mmol), and a solution of bis(trifluoromethane)sulfonimide (bistriflimide) in CH_3CN (0.01 M, 0.33 mL, 0.0033

mmol) were added and the mixture was heated to 60 °C. After 5 hours, an equal portion of the bistriflimide solution was added and the mixture was heated for 2 more hours before being concentrated at reduced pressure. The crude product was submitted to flash chromatography (hexane/AcOEt, 100:0 to 10:90) to afford compound **64** (5.31 mg, 39%), as a red oil.

¹**H RMN** (CDCl₃, 400 MHz); δ (ppm) = 7.54 – 7.53 (3H, m, H11, H12 and H13), 7.26 – 7.24 (2H, m, H10 and H14), 4.95 (4H, s, H1' and H11'), 3.86 - 3.84 (4H, m, H2' and H12'), 3.76 - 3.63 (24H, m, C3' - C8' and C13' - C18'), 3.55 - 3.53 (4H, m, H9' and H19'), 3.37 (6H, s, H10' and H20'), 2.46 (4H, q, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6), 1.31 (6H, s, CH₃1 and CH₃7), 1.03 (6H, t, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6). ¹³C RMN (CDCl₃, 100 MHz); δ (ppm) = 153.0 (C3 and C5), 144.4 (C8), 141.9 (C1 and C7), 136.4 (C2 and C6), 134.6 (C9), 130.2 (C7a and C8a), 129.7 (C11, C12 and C13), 127.7 (C10 and C14), 72.1 (C9' and C19'), 70.8 - 70.6 (C2' - C8' and C12' - C18'), 64.6 (C1' and C11'), 59.2 (C10' and C20'), 17.4 (CH₃CH₂2 and CH₃CH₂6), 14.8 (CH₃CH₂2

and CH₃CH₂6), 12.0 (CH₃1 and CH₃7).

HRMS (API-ES+) *m/z* calcd. for C₄₃H₆₃BN₄NaO₁₀ [M+Na] 829.4537; found 829.4550. Calcd. for C₄₃H₆₇BN₅O₁₀ [M+NH₄]⁺ 824.4983; found 824.4972.

Compound 65

To a solution of compound **12** (19.6 mg, 0.039 mmol) in dry CH_2Cl_2 (1.5 mL), pentafluorothiophenol (0.015 mL, 0.12 mmol) and a solution bistriflimide in CH_3CN (0.01 M, 0.58 mL, 0.0058 mmol) were added and the mixture was heated to 60 °C for 1.5 hours before being concentrated at reduced pressure. The crude product was submitted to flash chromatography (hexane/AcOEt, 100:0 to 10:90) to afford compound **65** (16.4 mg, 54 %), as a pink solid.

¹**H RMN** (CDCl₃, 400 MHz); δ (ppm) = 7.59 – 7.56 (3H, m, H11, H12 and H13), 7.32 – 7.30 (2H, m, H10 and H14), 4.53 (4H, s, H1' and H8'), 2.46 (4H, q, *J* = 7.5 Hz, CH₃<u>CH</u>₂2 and CH₃<u>CH</u>₂6), 1.35 (6H, s, CH₃1 and CH₃7), 1.10 (6H, t, *J* = 7.6 Hz, <u>CH</u>₃CH₂2 and <u>CH</u>₃CH₂6). ¹³C **RMN** (CDCl₃, 100 MHz); δ (ppm) = 150.7 (C3 and C5), 144.5 (C8), 142.7 (C1 and C7), 136.6 (C2 and C6), 134.2 (C9), 130.8 (C7a and C8a), 130.0 (C12), 129.8 (C11 and C13), 127.7 (C10 and C14), 108.5 (t, *J*_{S,C} = 21.7 Hz, C2' and C9'), 31.1 (C1' and C8'), 17.6 (CH₃<u>CH</u>₂2 and CH₃<u>CH</u>₂6), 14.6 (<u>CH</u>₃CH₂2 and <u>CH</u>₃CH₂6), 12.3 (CH₃1 and CH₃7).

HRMS (API-ES+) m/z calcd. for $C_{37}H_{25}BF_{10}N_4NaS_2$ [M+Na]⁺ 813.1353; found 813.1360. Calcd. for $C_{37}H_{29}BF_{10}N_5S_2$ [M+NH₄]⁺ 808.1799; found 808.1806.

Compound 66

To a solution of compound **12** (20.7 mg, 0.041 mmol) in CH₂Cl₂ (1.5 mL), allyltrimethylsilane (0.033 mL, 0.20 mmol) and a Sc(OTf)₃ solution in CH₃CN (0.01 M, 0.406 mL, 0.0041 mmol) were added. After stirring at 60 °C for 2 hours, the reaction mixture was quenched with H₂O (5 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed at reduced pressure. The resulting crude product was submitted to flash chromatography (hexane/AcOEt, 100:0 to 30:70) to afford **66** (10.5 mg, 55%), as an orange powder.

¹**H RMN** (CDCl₃, 400 MHz); δ (ppm) = 7.54 - 7.51 (3H, m, H11, H12 and H13), 7.31 - 7.28 (2H, m, H10 and H14), 6.02 (2H, ddt, J = 6.5, 10.2, 16.8 Hz, H3' and H7'), 5.24 (2H, dq, J = 1.6, 17.1 Hz, H4' and H8'), 5.11 (2H, dd, J = 1.6, 10.2 Hz, H4' and H8'), 3.14 - 3.10 (4H, m, H1' and H5'), 2.59 - 2.53 (4H, m, H2' and H6'), 2.36 (4H, q, J = 7.6 Hz, CH₃CH₂2 and CH₃CH₂6), 1.31 (6H, s, CH₃1 and CH₃7), 1.04 (6H, t, J = 7.6 Hz, CH₃CH₂2 and CH₃CH₂6).

¹³C RMN (CDCl₃, 100 MHz); δ (ppm) = 157.3 (C3 and C5), 141.7 (C8), 141.1 (C1 and C7), 137.2 (C3' and C7'), 135.0 (C9), 134.4 (C2 and C6), 129.5 (C11 and C13), 129.4 (C12), 129.3 (C7a and C8a), 128.5 (q, $J_{B,C}$ = 74.0 Hz, 2xCN), 128.1 (C10 and C14), 116.0 (C4' and C8'), 32.1 (C2' and C6'), 27.4 (C1' and C5'), 17.4 (CH₃CH₂2 and CH₃CH₂6), 14.8 (<u>CH₃CH₂2 and CH₃CH₂6), 12.2 (CH₃1 and CH₃7).</u>

HRMS (ESI⁺): *m/z* calcd. for C₃₁H₃₅BN₄ [M+H]⁺ 475.3033; found 475.3053.

Compounds 67 and 69

To a stirred solution of compound **12** (52.5 mg, 0.103 mmol) in anhydrous CH_2Cl_2 (1.5 mL) were added 2-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethoxy)ethoxy)ethoxy) (16.1 mg, 0.051 mmol) and Sc(OTf)₃ (7.1 mg, 0.014 mmol) at room temperature. After stirring for 1 day at 50 °C in a closed vial, the reaction mixture was quenched with H_2O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 85:15 to 30:70) to afford **67** (16.4 mg, 42% yield, based on starting limiting alcohol) and **69** (3.1 mg, 6% yield), as red-orange solids, and unreacted compound **12** (21 mg, 40% recovery).

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 7.58-7.52$ (3H, m, H3', H4' and H5'), 7.29-7.26 (2H, m, H2' and H6'), 5.45 (2H, s, H1'''), 4.97 (2H, s, H1''), 3.86 (2H, dd, *J* = 5.6, 3.9 Hz, H3'''), 3.75 (2H, dd, J = 5.6, 3.9 Hz, H4"), 3.69-3.65 (8H, m, H6", H7", H9" and H10"), 3.65-3.62 (2H, m, H12") 3.57 (2H, dd, J = 6.1, 3.9 Hz, H13"), 3.53 (2H, t, J = 6.7 Hz, H20"), 3.45 (2H, t, J = 6.7 Hz, H15"), 2.47 (2H, q, J = 7.6 Hz, CH₃CH₂6), 2.40 (2H, q, J = 7.6 Hz, CH₃CH₂2), 2.19 (3H, s, H4"), 1.77 (2H, q, *J* = 6.7 Hz, H19"'), 1.62-1-56 (2H.s, H16"'), 1.50-1.40 (2H, m, H18"), 1.40-1.34 (2H, m, H17"), 1.34 (CH₃1/CH₃7), 1.33 (CH_37/CH_31) , 1.04 (3H, t, J = 7.6 Hz, CH_3CH_26) 1.02 (3H, t, J = 7.6 Hz, CH_3CH_22). ¹³C **NMR** (CDCl₃, 125 MHz): $\delta = 170.7$ (C3"), 155.2 (C5), 148.2 (C3), 145.0 (C8), 143.2 (C7), 141.0 (C1), 137.2 (C6), 136.1 (C2), 134.4 (C1'), 131.0 (C7a/C8a), 130.4 (C8a/C7a), 129.9 (C4'), 129.8 (C3' and C5'), 127.6 (C1' and C6'), 71.4 (C15"'), 70.9 (C3"'), 70.7 (C4"), 70.8, 70.7 (from 70.7 to 70.7: C6", C7", C9", C10" and C12"), 70.3 (C13"), 64.7 (C1"), 56.5 (C1"), 45.2 (C20"), 32.7 (C19"), 29.6 (C16"), 26.9 (C18"), 25.6 (C17"), 20.96 (C4"), 17.5 $(CH_3CH_22/CH_3CH_26),$ 17.3 $(CH_3CH_26/CH_3CH_22),$ 15.1 $(\underline{CH_3CH_22}/\underline{CH_3CH_26}),$ $(\underline{CH}_3CH_26/\underline{CH}_3CH_22),$ 14.7 12.2 $(CH_{3}1/CH_{3}7),$ 12.1 (CH₃7/CH₃1).

HRMS (API-ES⁺) *m/z* calcd. for C₄₁H₆₀BClN₅O₇ [M+NH₄]⁺ 780.4276 (³⁵Cl), 782.4269 (3⁷Cl); found 780.4294 (³⁵Cl), 782.4286 (³⁷Cl). Calcd for C₄₁H₅₆BClN₄NaO₇ [M+Na]⁺ 785.3830 (³⁵Cl), 787.3823 (³⁷Cl); found 785.3859 (³⁵Cl), 787.3820 (³⁷Cl).

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 7.54$ (3H, m, H3', H4 and H5'), 7.24 (2H, m, H2' and H6'), 4.95 (4H, s, H1" and H1"'), 3.85 (4H, dd, J = 5.8, 3.7 Hz, H3" and H3"'), 3.75 (4H, dd, J = 5.8, 3.7 Hz, H4" and H4"'), 3.68-3.64 (16H, m, H6", H6"', H7", H7"', H9"', H9"' H10" and H10"'), 3.63 (4H, dd, J = 4.7, 1.8 Hz, H12" and H12"'), 3.58 (4H, dd, J = 4.7, 1.8 Hz, H13" and H13"'), 3.53 (4H, t, J = 6.7 Hz, H20" and H20"'), 3.45 (4H, t, J = 6.7 Hz, H15" and H15"'), 2.46 (4H, q, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂6), 1.83-1.71 (4H, m, H19" and H19"'), 1.63-1.55 (4H, m, H16" and H16"'), 1.48-1.40 (4H, m, H18" and H18"'), 1.39-1.32 (4H, m, H17" and H17"'), 1.31 (6H, s, CH₃1 and CH₃7), 1.03 (6H, t, J = 7.5 Hz, CH₃CH₂2 and CH₃CH₂2 and CH₃CH₂2 and CH₃CH₂2 and CH₃(H, t, J = 7.5 Hz, CH₃CH₂2 and CH₃(CH₂), 1.03 (6H, t, J = 7.5 Hz, CH₃CH₂ (CDCl₃, 100 MHz): $\delta = 153.0$ (C3 and C5), 144.4 (C8), 141.9 (C1 and C7), 136.4 (C2 and C6), 134.6 (C1'), 130.2 (C7a and C8a), 129.7 (C3'/C4'/C5'), 129.7 (C4'/C5'/C3'), 127.7 (C2' and C6'), 71.4 (C15" and

C15"'), 70.8, 70.7, 70.7, 70.7 (from 70.8 to 70.7: C3", C3", C4", C4", C6", C6", C7", C7", C9", C9", C9", C10", C10", C12" and C12"'), 70.3 (C13" and C13"'), 64.7 (C1" and C1"'), 45.2 (C20" and C20"'), 32.7 (C19" and C19"'), 29.6 (C16" and C16"'), 26.9 (C18" and C18"'), 25.6 (C17" and C17"'), 17.4 (CH₃CH₂2 and CH₃CH₂6), 14.8 (<u>CH₃CH₂2</u> and <u>CH₃CH₂6</u>), 12.0 (CH₃1 and CH₃7).

HRMS (API-ES⁺) m/z calcd. for C₅₃H₈₅BCl₂N₅O₁₀ [M+NH₄]⁺ 1032.5770 (³⁵Cl); found 1032.5790 (³⁵Cl).

Compound 68

To a stirred solution of compound **67** (15 mg, 0.019 mmol) in anhydrous CH₂Cl₂ (1.5 mL) were added trimethylsilyl azide (4.1 μ l, 0.029 mmol) and Sc(OTf)₃ (1.1 mg, 0.002 mmol) at room temperature. After stirring for 6 h at 50 °C in a closed vial and for 18 h at room temperature, the reaction mixture was quenched with H₂O (10 mL), the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed at reduced pressure. The crude was purified by silica gel flash column chromatography (hexane/AcOEt, 80:20 to 10:90) to afford **68** (3.8 mg, 25% yield), as a red-orange solid. Compound **68** was accompanied by a small impurity that was tentatively assigned, from ¹H NMR and HRMS data, to 18-chloro-3,6,9,12-tetraoxaoctadecyl acetate, formed by trans-esterification with **67** under the reaction conditions (see copies of NMR spectra in the accompanying Supporting Information document).

¹**H NMR** (CDCl₃, 500 MHz): $\delta = 7.58-7.53$ (3H, m, H3', H4 and H5'), 7.29-7.26 (2H, m, H2' and H6'), 4.97 (2H, s, H1'''), 4.86 (2H, s, H1''), 4.24-4.20 (2H, m, CH₂b: **impurity**), 3.87 (4H, dd, J = 5.6, 3.9 Hz), 3.76 (4H, dd, J = 5.6, 3.9 Hz), 3.71-3.67 (20H, m), 3.64–3.62 (4H, m), 3.59-3.56 (4H, m), 3.53 (2H, t, J = 6.7 Hz), 3.54 (2H, t, J = 6.7 Hz), 3.46 (2H, t, J = 6.7 Hz),), 3.47 (2H, t, J = 6.7 Hz), 2.50-2.45 (4H, m, CH₃CH₂2 and CH₃CH₂6), 2.08 (3H, s, CH₃a: **impurity**), 1.80-1.73 (4H, m), 1.62–1.56 (4H, m), 1.50-1.41 (4H, m), 1.40-1.36 (4H, m), 1.07 (3H, t, J = 7.6 Hz, CH₃CH₂2/CH₃CH₂6), 1.03 (3H, t, J = 7.6 Hz, CH₃CH₂6/CH₃CH₂2).

¹³C NMR (CDCl₃, 100 MHz): $\delta = 171.2$ (COO), 154.9 (C5), 148.3 (C8), 145.0 (C3), 143.1(C1/C7), 141.6 (C7/C1), 137.0 (C2/C6), 135.9 (C6/C2), 134.3(C1'), 130.8 (C7a/C8a), 130.0 (C8a/C7a), 129.9 (C4'), 129.8 (C3' and C5'), 127.6 (C1' and C6'), 71.4, 70.4, 70.8, 70.8, 70.7, 70.7, 70.6, 70.3, 69.3 (C1'''), 64.7(Cb: impurity), 45.4 (C1''), 45.2, 45.2, 32.7, 29.9, 29.6, 26.9, 25.6, 21.1 (Ca: impurity) 17.5(CH₃CH₂2/CH₃CH₂6), 17.4 (CH₃CH₂6/CH₃CH₂2), 14.7 (CH₃CH₂2/CH₃CH₂6), 14.7 (CH₃CH₂6/CH₃CH₂2), 14.7 (CH₃CH₂2/CH₃CH₂6), 14.7 (CH₃CH₂6/CH₃CH₂2), 12.2, 12.1.

HRMS (API-ES⁺) *m/z* calcd. for C₃₉H₅₇BClN₈O₅ [M+NH₄]⁺ 763.4235 (³⁵Cl), 765.4226 (³⁷Cl); found 763.4214 (³⁵Cl), 765.4208 (³⁷Cl). Calcd for C₃₉H₅₃BClN₇NaO₅ [M+Na]⁺ 768.3789 (³⁵Cl), 770.3780 (³⁷Cl); found 768.3766 (³⁵Cl), 770.3817 (³⁷Cl). HRMS (API-ES⁺) impurity *m/z* calcd. for C₁₆H₃₅ClNO₆ [M+NH₄]⁺ 372.2153; found

372.2152.

Compound 70

To a stirred solution of tetrazine 34 (1.0 mg, 0.0018 mmol) in AcOEt (0.5 mL), was added cyclooctyne 40 (4.0 mg, 0.026 mmol) in AcOEt (1.0 mL). After stirring for 5 min at room temperature, the reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (AcOEt) to afford compound 70 (1.1 mg, 94%), as a red solid.

¹**H NMR** (400 MHz, CDCl₃); $\delta = 7.56$ (m, 2H), 7.44 (m, 2H), 4.93 (s, 2H), 4.81 (s, 2H), 3.72 (m, 2H), 3'02 (m, 1H), 2.86 (m, 3H), 2.79 (s, 3H), 2.70 (s, 3H), 2.69 (s, 3H), 2,52 (q, J = 7.4 Hz, 2H), 2.45 (q, J = 7.4 Hz, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 1.56 (m, 4H), 1.27 (m, 1H), 1.10 (t, J = 7.4 Hz, 3H), 1.08 (t, J = 7.4 Hz, 3H), 0.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃); $\delta = 161.1$, 157.5, 155.9, 147.6, 142.7, 139.9, 138.4, 137.5, 137.4, 135.5, 135.1, 131.6, 130.3, 129.5, 128.3, 73.3, 63.5, 59.5, 32.1, 29.8, 28.2, 27.3, 22.8, 22.5, 20.5, 17.7, 17.5, 17.4, 15.3, 15.0, 14.8, 14.6, 14.3, 13.9.

HRMS (API-ES⁺) *m*/*z* calcd. for C₄₀H₄₇BN₆O₂ [M+H]⁺ 655.3926; found 655.3917.

Photophysical characterization

The UV/Vis absorption spectra were recorded by UV–Vis–NIR Spectroscopy (Cary 7000) equipped with two lamps (halogen lamp for Vis-IR region and deuterium lamp for UV region), a double monochromator (Littrow) and double diffraction grating of 1200 lines/mm. The fluorescence measurements were recorded with an Edinburgh Instruments Spectrofluorimeter (FLSP920 model) equipped with a xenon flash lamp 450 W as the excitation source. The fluorescence spectra were corrected from the wavelength dependence on the detector sensibility. The fluorescence quantum yield ($\Phi_{\rm fl}$) was calculated using as reference commercial BODIPY **3** in MeOH ($\Phi_{\rm fl}^{\rm ref} = 0.91$),⁴ using an excitation wavelength of 490 nm for all measurements.

Radiative decay curves were recorded with a time-correlated single-photon counting technique (Edinburgh Instruments, model FL920) using a microchannel plate detector (Hamamatsu C4878) with picosecond time resolution. The fluorescence lifetimes ($\tau_{\rm fl}$) were obtained after deconvolution of the instrumental response signal from the recorded decay curves by means of an iterative method. The goodness of the exponential fit was controlled by statistical parameters (chi-square, χ^2 , and analysis of the residuals). The estimated errors in the photophysical parameters are estimated to be around 10%. Fluorescence emission curves were monitored upon excitation by means of a continuous laser (Fianium) with 150 ps full-width at half maximum (FWHM) pulses.

Live-cell imaging studies

Cell culture. The established human squamous cell carcinoma (SCC38)-derived cell line was kindly provided by Dr R Grenman (University Central Hospital, Turku, Finland). SCC38 and HeLa cells were grown in DMEM supplemented with 10% fetal bovine serum, 100 units per mL penicillin, 200 μ g mL⁻¹ streptomycin, 2 mmol L⁻¹-glutamine and 100 μ mol L⁻¹ nonessential amino acids. Cell lines were periodically tested for human pathogens and mycoplasma infection. All methods were carried out in accordance with the approved guidelines of our institution.

Fluorescent cell labeling. Cells (50×10^3) were plated on black 24 well plates with flat and clear bottom suitable for fluorescence-based imaging of living cells (Ibidi GmbH) 24 hours before labeling. BODIPY probes were diluted in H₂O or DMSO to a stock concentration of 500 μ M, 50 μ M or 20 μ M. Adhered living cells were incubated with probes at 500 nM, 100 nM, or 50 nM, as indicated in figure legends, in DMEM without supplements for 30 minutes at 37 °C. Subsequently, the probes were removed and the cells were washed with PBS (3 × 5 min). Supplemented DMEM was then added to cells prior to microscopy analysis.

Live-cell microscopy. Microscopy imaging was performed on a Cell Observer equipment composed of a Zeiss AxioObserver Z1 wide field inverted fluorescence microscope (Carl Zeiss, Germany) with a Plan-Apochromat 40X/1.3 (NA = 1.3, working distance = 0.21 mm) or Plan-Apochromat 63X/1.4 (NA = 1.4, working distance = 0.19 mm) oil lens objective, a camera (AxioCam MRm; Carl Zeiss), a CO₂ incubator, and a ZEISS ApoTome.2 structured illumination system. ApoTome.2 allows acquisition of optical sections of the fluorescent sample by moving the appropriate grid into the beam path and calculating the optical section from three images with different grid positions without time lag. Acquisition and processing of images were conducted using the Zen (Carl Zeiss) software.

X-Ray diffraction

Experimental

Single crystals of compound 9 C₂₂H₂₇BN₄O₂ [CCDC 2177585]. A suitable crystal was selected and mounted on a SuperNova, Single source at offset/far, Atlas diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex2,⁵ the structure was solved with the ShelXS⁶ structure solution program using Direct Methods and refined with the ShelXL⁷ refinement package using Least Squares minimization.

Crystal structure determination of 9 [CCDC 2177585]

Crystal Data for C₂₂H₂₇BN₄O₂ (M =390.28 g/mol): triclinic, space group P-1 (no. 2), a = 9.5191(6) Å, b = 10.8959(7) Å, c = 11.6708(6) Å, a = 114.490(5)°, β = 96.844(5)°, γ = 101.099(5)°, V = 1053.80(10) Å³, Z = 2, T = 150.00(10) K, μ (CuK α) = 0.634 mm⁻¹, Dcalc = 1.230 g/cm³, 6898 reflections measured (8.54° ≤ 2 Θ ≤ 137.94°), 3908 unique (R_{int} = 0.0396, R_{sigma} = 0.0664) which were used in all calculations. The final R_1 was 0.0490 (I > 2 σ (I)) and wR_2 was 0.1292 (all data).

Table 1 Crystal data and structure reimement for 9 (CCDC 21/7585).				
Identification code	a20190212_BODIPV			
Empirical formula	C22H27BN4O2			
Formula weight	390.28			
Temperature/K	150.00(10)			
Crystal system	triclinic			
Space group	P-1			
a/Å	9.5191(6)			
b/Å	10.8959(7)			
c/Å	11.6708(6)			
α/°	114.490(5)			
β/°	96.844(5)			
$\gamma^{ m o}$	101.099(5)			
Volume/Å ³	1053.80(10)			
Ζ	2			
$\rho_{calc}g/cm^3$	1.230			
μ/mm^{-1}	0.634			
F(000)	416.0			
Crystal size/mm ³	$0.299 \times 0.053 \times 0.043$			
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)			
2Θ range for data collection/°	8.54 to 137.94			
Index ranges	$-11 \le h \le 11, -13 \le k \le 11, -11 \le l \le 14$			
Reflections collected	6898			
Independent reflections	$3908 [R_{int} = 0.0396, R_{sigma} = 0.0664]$			
Data/restraints/parameters	3908/0/269			
Goodness-of-fit on F^2	1.002			
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0490, wR_2 = 0.1179$			
Final R indexes [all data]	$R_1 = 0.0702$, $wR_2 = 0.1292$			
Largest diff. peak/hole / e Å ⁻³	0.31/-0.22			
0 ·······	· · · · · · · · · · · · · · · · · · ·			

0 (CCDC 2177595)

[a] Weighting scheme: $1/[\sigma^2(F^2)+(0.0586P)^2]$ donde P = [Max(F²,Q)+2F²]/3.

[b] Secondary extinction expression type SHELXL: $F_c^* = kF_c[1+0.001F_c^2\lambda^3/sen(2\theta)]^{-1/4}$

Quantum mechanics calculations

Ground state geometries of compounds 59-61 were optimized at Density Functional Theory (DFT) using the hybrid B3LYP method and the basis set function 6-311+G*. The energy minimization was carried out without any geometrical constraints and an energy minimum was reached when the corresponding frequency analysis did not give any negative value. Absorption energies and probability were simulated with the timedependent (TD DFT) method using the same basis set. All calculations were performed using the Gaussian 16 program suite, implemented in the computational cluster provided by the SGIker resources of UPV-EHU.

Atom coordinates and total energy (in Hartrees) of the ground state (B3LYP/6- $311+G^*$) of compounds 59-61.

С	-3.12573800	-2.35132700	0.57073000
Ν	-2.80219900	-1.07094200	0.28786600
С	-3.78965500	-0.53174400	-0.54429900
С	-4.78803600	-1.53832400	-0.73549300
С	-4.36795400	-2.66599600	-0.02944900
В	-1.47152300	-0.34331600	0.64547500
Ν	-1.63649600	1.15994700	0.27743400
С	-2.66103600	1.63452400	-0.55530800
С	-3.68529200	0.78548700	-1.01111200
С	-0.83896300	2.20349100	0.61500700
С	-1.34347600	3.38680300	0.02563800
С	-2.47612300	3.04104500	-0.71206100
С	-1.21549400	-0.48664900	2.21606900
С	-0.31200200	-1.03089100	-0.21401800
С	-4.68207600	1.29735900	-2.01987000
С	-5.07143000	-3.99202600	0.07403000
С	-4.73953900	-4.95702700	-1.07718500
С	-0.78103900	4.77125300	0.21326400
С	-1.36077200	5.51370800	1.42967500
С	0.35241900	2.12951700	1.53293100
С	-3.33312900	4.02610800	-1.45429700
С	-2.25525500	-3.26306300	1.36974000
С	-6.08396600	-1.44276900	-1.48658100
Ν	-1.07397800	-0.58661800	3.35783800
Ν	0.43845500	-1.58727200	-0.89349500
С	2.28437500	1.36192300	-0.07315400
С	1.99020900	2.20946900	-1.27678000
С	1.54826300	1.29322500	1.12441400
С	2.13939000	0.35431200	1.99321500
С	3.25966800	-0.20505300	1.37377600
С	4.10473400	-1.18030400	1.91885000
С	3.78532100	-1.68316100	3.31082300
С	5.22232600	-1.73671500	1.28429900
С	5.76804400	-1.50878700	0.02076900
С	5.38453700	-0.65523000	-1.01720600
С	6.21830000	-0.67329200	-2.30284900
С	7.67292600	-0.23130200	-2.06584500
С	6.15994500	-2.03690200	-3.01356600
С	4.28569000	0.21261800	-0.97350300
С	3.35497100	0.44207900	0.03011100
Н	-4.23639600	2.04183100	-2.67271800
---	-------------	-------------	-------------
Н	-5.04983900	0.49434800	-2.65134700
Н	-5.54914300	1.75898900	-1.53487100
Н	-4.82308400	-4.46741000	1.02737500
Н	-6.15408900	-3.83340600	0.10849000
Н	-5.26860300	-5.90699800	-0.95833800
Н	-5.02407800	-4.53274400	-2.04374500
Н	-3.66851300	-5.17144800	-1.11899400
Н	0.30737000	4.72198000	0.31037000
Н	-0.95704500	5.36349100	-0.68969900
Н	-0.92749700	6.51374900	1.52227800
Н	-2.44556600	5.62336900	1.34858300
Н	-1.15782300	4.97336500	2.35796400
Н	0.68972900	3.15739600	1.69538800
Н	0.01343400	1.77795200	2.51128300
Н	-3.05165800	5.04706400	-1.19658500
Н	-3.23018800	3.93401400	-2.54084300
Н	-4.39397700	3.91786000	-1.21984000
Н	-2.19932300	-2.95559500	2.41700000
Н	-2.63650700	-4.28288300	1.33339700
Η	-1.23265900	-3.27276500	0.98399200
Н	-6.63544300	-0.52904400	-1.25636700
Η	-5.94003600	-1.47098500	-2.57221500
Н	-6.73218000	-2.28321800	-1.23558600
Н	2.86873600	2.77221200	-1.61031800
Н	1.65306800	1.60363200	-2.12590600
Н	1.20282300	2.93657900	-1.07682500
Н	1.75620100	0.10298400	2.97141500
Н	4.49463200	-2.44508300	3.63628900
Н	3.80830300	-0.86767100	4.03982900
Н	2.78159800	-2.11537900	3.35134500
Н	5.75687500	-2.48047700	1.87005100
Н	6.64842800	-2.11445800	-0.18333100
Н	5.76868300	0.05975400	-2.98193300
Н	8.22018800	-0.17788900	-3.01215600
Н	7.71632900	0.75410800	-1.59468300
Н	8.20907800	-0.93106300	-1.41788000
Н	6.69354900	-1.99913600	-3.96849500
Н	5.12768500	-2.33448300	-3.21332400
Н	6.62069500	-2.82616700	-2.41200300
Н	4.13253200	0.80024600	-1.87652200

TOTAL ENERGY (Hartrees) = -1602.677713

Compound 60

С	-2.333372	0.846136	-0.116749
Ν	-1.976620	-0.458180	0.247894

В	-0.522531	-0.956154	0.431950
Ν	0.433132	0.248862	0.221690
С	0.010020	1.543486	-0.109158
С	-1.349041	1.826235	-0.326533
С	1.778092	0.254286	0.361792
С	2.269379	1.564287	0.155096
С	1.173668	2.376191	-0.140168
С	-3.761491	0.894799	-0.181940
С	-4.229814	-0.383210	0.135595
С	-3.101720	-1.196681	0.385273
С	-0.208776	-2.102673	-0.641525
С	-0.336971	-1.519532	1.922175
С	1.266232	3.855333	-0.383745
С	3.706606	1.990936	0.289509
С	-1.755908	3.196777	-0.804297
С	2.576259	-0.974035	0.708750
С	4.096505	2.389041	1.725436
С	-4.650535	2.066810	-0.481898
С	-5.661206	-0.843835	0.188493
С	-3.086966	-2.644625	0.743457
С	-6.203460	-1.335021	-1.166110
С	3.694998	-1.276813	-0.250961
Ν	4.961486	-1.582394	0.199796
С	5.789981	-1.857344	-0.864591
С	5.045683	-1.719692	-2.013704
С	3.724159	-1.355920	-1.627403
Ν	-0.200118	-1.894708	3.006644
Ν	-0.003882	-2.912879	-1.439590
Н	0.547807	4.419049	0.214946
Η	2.260909	4.217659	-0.123736
Н	1.096378	4.115063	-1.434179
Η	3.902502	2.831551	-0.382126
Н	4.354981	1.182645	-0.054687
Н	-0.969462	3.659508	-1.391704
Н	-2.642982	3.146948	-1.428145
Н	-1.978544	3.860619	0.038489
Н	2.992672	-0.835384	1.714648
Н	1.917828	-1.839679	0.787823
Н	5.149256	2.681572	1.774941
Н	3.944539	1.560797	2.423221
Н	3.494662	3.229082	2.083046
Н	-5.687997	1.819973	-0.253988
Н	-4.387763	2.949394	0.104917
Н	-4.617256	2.352470	-1.538799
Н	-6.294618	-0.030853	0.555920
Н	-5.759843	-1.644259	0.927223
Η	-2.511070	-3.225508	0.017610
Н	-2.629952	-2.808986	1.723466
Η	-4.101039	-3.041159	0.767887
Η	-7.242810	-1.663143	-1.074476

-5.615042	-2.175059	-1.544237
-6.163917	-0.541559	-1.917250
5.230748	-1.629853	1.169006
6.822791	-2.126251	-0.714443
5.405413	-1.869932	-3.019660
2.882542	-1.188457	-2.281262
	-5.615042 -6.163917 5.230748 6.822791 5.405413 2.882542	-5.615042-2.175059-6.163917-0.5415595.230748-1.6298536.822791-2.1262515.405413-1.8699322.882542-1.188457

TOTAL ENERGY (Hartrees) = -1230.422291

Compound 61

С	-2.970182	0.736849	-0.300398
Ν	-2.571315	-0.441142	0.342732
В	-1.109540	-0.785633	0.720535
Ν	-0.220996	0.447151	0.405651
С	-0.694855	1.622282	-0.192463
С	-2.034675	1.741731	-0.597506
С	1.098110	0.595539	0.681799
С	1.511237	1.896182	0.298896
С	0.399186	2.540184	-0.248815
С	-4.382636	0.652678	-0.508031
С	-4.799213	-0.578091	0.007250
С	-3.654466	-1.233364	0.513732
С	-0.630522	-2.049349	-0.142751
С	-1.026911	-1.111015	2.287677
С	0.401928	3.961534	-0.734615
С	2.874179	2.503395	0.503277
С	-2.472395	2.955408	-1.377294
С	1.894677	-0.505093	1.340423
С	3.073066	3.098114	1.908883
С	-5.307044	1.669541	-1.112504
С	-6.194957	-1.140032	0.015448
С	-3.587614	-2.584927	1.142226
С	-6.545639	-1.941980	-1.251223
С	3.321390	-0.670314	0.893618
С	4.425286	-0.610210	1.702882
Ν	5.568138	-0.847864	0.961854
С	5.214616	-1.085915	-0.351186
С	3.800031	-0.986179	-0.430991
Ν	-0.971327	-1.311774	3.424221
Ν	-0.308352	-2.944875	-0.798459
Η	-0.445169	4.531881	-0.349020
Η	1.309192	4.470641	-0.410024
Η	0.373177	4.026377	-1.827869
Н	3.037436	3.283911	-0.244607
Н	3.641044	1.750774	0.321290
Н	-1.654676	3.362603	-1.963338
Η	-3.275452	2.708296	-2.064957

Η	-2.835420	3.747417	-0.712931
Н	1.876256	-0.337927	2.424311
Н	1.373515	-1.452907	1.190043
Н	4.071791	3.533322	2.008006
Н	2.963226	2.331289	2.680315
Н	2.339338	3.881750	2.117883
Н	-6.345017	1.380684	-0.944238
Н	-5.170589	2.664120	-0.682729
Н	-5.173920	1.758036	-2.196015
Н	-6.916864	-0.326807	0.137197
Н	-6.326446	-1.778428	0.893834
Н	-2.875715	-3.230251	0.620280
Н	-3.263949	-2.524099	2.185064
Н	-4.564650	-3.065224	1.113136
Н	-7.566970	-2.329719	-1.197403
Н	-5.867846	-2.789804	-1.380619
Η	-6.466317	-1.318859	-2.146076
Н	4.488708	-0.411358	2.761945
Н	6.501804	-0.890725	1.333550
С	6.006366	-1.383270	-1.463201
Η	7.085759	-1.456694	-1.385774
С	5.358728	-1.587769	-2.673575
С	3.956257	-1.503769	-2.774259
С	3.173283	-1.206173	-1.669040
Н	5.942598	-1.823763	-3.556060
Н	3.482454	-1.684814	-3.732203
Н	2.093990	-1.167956	-1.757212

TOTAL ENERGY (Hartrees) = -1384.104609

Plausible mechanistic proposal for the acetoxylation of 3/5-methyl-BODIPYs with Pb(OAc)₄

As explained in the main text, in the absence of conclusive mechanistic studies on the C–H acyloxylation reaction of alkyl-substituted aromatic and heteroaromatic compounds with $Pb(OAc)_{4,}^{8}$ the substituents effects observed in this work for the reaction of BODIPYs point to a rate determining step with partial development of positive charge. A plausible mechanistic proposal is the following. Single-electron oxidation of the BODIPY π -system by the Pb⁺⁴ reagent leads to a delocalized radical-cation **A**, which evolves via deprotonation and reoxidation of the resulting radical to the corresponding carbocation **B** by the unstable Pb⁺³-radical intermediate.⁹ Subsequent nucleophilic attack by acetate anion affords the final acetoxylated product (Scheme 1). Methyl groups at C3/5 in the intermediate radical-cation **A** should have a considerably higher acidity than on the neutral molecule, thus facilitating their ionization and the ensuing second single-electron oxidation step.

Scheme 1. Plausive mechanism of the acetoxylation reaction of 3/5-methyl-BODIPYs with $Pb(OAc)_4$

resultant BODIPY-derivatives from the reaction with oxygen nucleophiles, in diluted solutions in different solvents. Absorption (λ_{ab}) and fluorescence (λ_{fl}) wavelengths (±1 nm), molar absorption coefficients (ε_{max}), fluorescence quantum yields (φ) and excitedstate lifetimes (τ) at room temperature.
 Compound
 Solvent
 λ_{ab} ε_{max} λ_{fl} (nm)
 ϕ τ (ns)

 9
 AcOEt
 515.0
 4.3
 538.0
 0.64
 6.7

 MeOH
 514.0
 4.4
 534.0
 0.61
 6.9

 PBS
 538.0
 1.1
 538.0
 0.01
 3.0 (43%), 6.2(57%)

 15
 AcOEt
 516.0
 5.8
 536.0
 0.85
 6.6

 MeOH
 516.0
 5.8
 537.0
 0.79
 7.0

Table S1. Photophysical properties of starting 3-acetoxymethyl-CN-BODIPY 9 and the

		(nm)	$(10^{4}M^{-1}cm^{-1})$			(ns)
9	AcOEt	515.0	4.3	538.0	0.64	6.7
	MeOH	514.0	4.4	534.0	0.61	6.9
	PBS	538.0	1.1	538.0	0.01	3.0 (43%), 6.2(57%)
15	AcOEt	516.0	5.8	536.0	0.85	6.6
	MeOH	516.0	5.5	537.0	0.79	7.0
	PBS	522.0	1.4	554.0	0.10	6.4
16	AcOEt	517.0	4.7	537.5	0.99	6.6
	MeOH	516.0	4.1	536.0	0.98	6.9
	PBS	523.0	1.3	-	-	-
17	AcOEt	523.0	2.9	535.0	0.39	2.8(48%),6.2(52%)
	MeOH	522.0	2.8	538.0	0.28	6.8^{b}
	PBS	535.0	0.7	543.0	0.01	2.8 (31%), 6.6(69%)
18	AcOEt	516.5	6.1	537.0	0.83	6.8
	MeOH	515.5	6.1	536.5	0.81	7.1
	PBS	513.5	3.4	534.5	0.78	7.1
19	AcOEt	516.0	5.6	535.0	0.98	6.6
	MeOH	515.0	4.9	535.0	0.99	6.9
	PBS	514.0	1.8	535.0	0.34	6.7
20	AcOEt	516.0	8.8	537.5	0.99	6.7
	MeOH	516.0	7.7	535.0	0.98	7.1
	PBS	522.0	3.1	537.0	0.01	-
21	AcOEt	516.0	5.0	538.0	0.89	6.5
	MeOH	516.0	5.0	534.0	0.79	6.8
	PBS	527.0	1.3	544.0	0.06	6.5^{b}
22	AcOEt	517.5	6.5	535.5	0.87	6.5

MeOH	517.0	6.0	535.0	0.86	6.9
PBS	521.5	1.8	546.5	0.01	-
AcOEt	516.0	6.4	535.5	0.99	6.6
MeOH	516.0	5.8	536.5	0.93	7.0
PBS	521.0	1.3	542.0	0.03	6.5^{b}
AcOEt	518.0	9.2	537.0	0.83	6.6
MeOH	515.0	5.3	538.0	0.70	7.0
PBS	521.0	1.4	536.0	0.02	0.5 (24%), 6.2(76%)
AcOEt	516.5	6.8	535.0	0.83	6.7
MeOH	515.5	6.0	535.5	0.83	7.0
PBS	517.5	0.9	536.5	0.15	6.7
AcOEt	516.0	7.6	536.0	0.85	6.8
MeOH	515.0	7.2	536.5	0.83	7.2
PBS	525.0	3.0	547.0	0.01	-
AcOEt	516.0	4.8	534.5	0.87	6.7
MeOH	515.0	4.6	535.5	0.82	7.0
PBS	525.0	1.9	544.0	0.01	-
AcOEt	515.5	3.3	534.0	0.84	6.6
MeOH	515.0	3.1	535.0	0.81	6.7
PBS	514.0	1.9	534.0	0.67	6.9
AcOEt	515.5	4.5	534.5	0.85	6.6
MeOH	514.5	4.7	534.0	0.82	6.9
PBS	514.0	1.9	532.5	0.67	6.9
AcOEt	516.0	5.9	535.0	0.83	6.6
MeOH	515.5	5.7	535.0	0.84	7.0
PBS	515.5	1.8	534.5	0.26	6.7
AcOEt	517.0	6.5	535.0	0.84	6.5
MeOH	516.0	5.6	536.0	0.78	6.9
PBS	524.0	1.4	-	-	-
AcOEt	516.0	6.3	536.5	0.90	6.7
MeOH	516.0	5.5	535.0	0.76	6.2
	MeOH PBS AcOEt MeOH PBS <	MeOH517.0PBS521.5AcOEt516.0MeOH516.0PBS521.0AcOEt518.0MeOH515.0PBS521.0AcOEt516.5MeOH515.5PBS517.5AcOEt516.0MeOH515.0PBS525.0AcOEt516.0MeOH515.0PBS525.0AcOEt516.0MeOH515.0PBS525.0AcOEt515.5MeOH515.5MeOH515.5MeOH514.0AcOEt515.5MeOH515.5MeOH515.5PBS514.0AcOEt516.0MeOH515.5PBS515.5AcOEt516.0MeOH515.5PBS515.5AcOEt517.0MeOH516.0PBS524.0AcOEt516.0MeOH516.0MeOH516.0MeOH516.0PBS524.0AcOEt516.0MeOH516.0PBS524.0AcOEt516.0MeOH516.0PBS524.0AcOEt516.0MeOH516.0PBS524.0AcOEt516.0MeOH516.0MeOH516.0PBS524.0AcOEt516.0PBS5	MeOH517.06.0PBS521.51.8AcOEt516.06.4MeOH516.05.8PBS521.01.3AcOEt518.09.2MeOH515.05.3PBS521.01.4AcOEt516.56.8MeOH515.56.0PBS517.50.9AcOEt516.07.6MeOH515.07.2PBS525.03.0AcOEt516.04.8MeOH515.04.6PBS525.01.9AcOEt515.53.3MeOH515.03.1PBS514.01.9AcOEt515.54.5MeOH515.54.5MeOH515.55.7PBS514.01.9AcOEt515.51.8AcOEt515.51.8AcOEt515.51.8AcOEt515.51.8AcOEt515.51.8AcOEt516.05.6PBS524.01.4AcOEt516.06.3MeOH516.06.3MeOH516.06.3MeOH516.06.3MeOH516.06.3MeOH516.06.3MeOH516.06.3MeOH516.05.5	MeOH517.06.0535.0PBS521.51.8546.5AcOEt516.06.4535.5MeOH516.05.8536.5PBS521.01.3542.0AcOEt518.09.2537.0MeOH515.05.3538.0PBS521.01.4536.0AcOEt516.56.8535.0PBS517.50.9536.5PBS517.50.9536.5PBS515.07.2536.5PBS525.03.0547.0AcOEt516.07.2536.5PBS525.03.0547.0AcOEt515.04.6535.5PBS525.01.9544.0AcOEt515.53.3534.0MeOH515.03.1535.0PBS514.01.9534.0AcOEt515.54.5534.5MeOH515.55.7535.0PBS514.01.9532.5AcOEt516.05.9535.0PBS515.51.8534.5AcOEt516.05.9535.0PBS515.51.8534.5AcOEt516.05.6535.0PBS515.51.8534.5AcOEt516.05.6535.0PBS515.51.8534.5AcOEt516.05.6535.0PBS516.05.6535.0<	MeOH 517.0 6.0 535.0 0.86 PBS 521.5 1.8 546.5 0.01 AcOEt 516.0 6.4 535.5 0.99 MeOH 516.0 5.8 536.5 0.93 PBS 521.0 1.3 542.0 0.03 AcOEt 518.0 9.2 537.0 0.83 MeOH 515.0 5.3 538.0 0.70 PBS 521.0 1.4 536.0 0.02 AcOEt 516.5 6.8 535.0 0.83 MeOH 515.5 6.0 535.5 0.83 PBS 517.5 0.9 536.5 0.15 AcOEt 516.0 7.6 536.0 0.83 PBS 525.0 3.0 547.0 0.01 AcOEt 516.0 4.8 534.5 0.82 PBS 525.0 1.9 544.0 0.01 AcOEt 515.5 3.3 534.0 </th

	PBS	513.0	1.8	534.0	0.71	6.8
34	AcOEt	516.0	7.5	535.5	0.04	0.1^{b}
	MeOH	516.0	3.8	533.0	0.05	0.1^b
	PBS	522.0	1.8	539.5	0.01	-
35	AcOEt	517.0	3.3	534.5	0.94	6.4
	MeOH	516.0	2.8	535.0	0.76	6.8^{b}
	PBS	520.0	0.6	536.5	0.18	6.6^{b}
36	AcOEt	515.0	4.5	536.0	0.88	6.5
	MeOH	514.0	3.9	534.0	0.93	6.9
	PBS	521.0	1.4	535.0	0.01	-
37	AcOEt	515.0	3.8	539.0	0.75	6.3
	MeOH	514.0	3.5	533.5	0.68	6.8
	PBS^{a}	-	-	-	-	-
38	AcOEt	514.0	3.1	533.5	0.80	6.5
	MeOH	513.0	1.7	534.0	0.74	6.8
	PBS	514.0	1.6	534.0	0.17	6.8
39	AcOEt	538.0	2.0	557.0	0.35	2.2 (43%), 5.1(57%)
	MeOH	537.0	2.9	550.0	0.06	0.1 (74%), 0.6(26%)
	PBS	541.0	0.3	534.0	0.01	-

^{*a*} Not soluble in PBS. ^{*b*} Contribution $\ge 90\%$

Table S2. Photophysical properties of the new BODIPYs from the reaction with sulfur (41-45), nitrogen (46, 49), halogen (50), and phosphorous (51) nucleophiles, in diluted solutions different solvents. Absorption (λ_{ab}) and fluorescence (λ_{fl}) wavelengths (±1 nm), molar absorption coefficients (ϵ_{max}), fluorescence quantum yields (ϕ) and excited-state lifetimes (τ) at room temperature.

Compound	Solvent	λ_{ab}	З	λ_{fl}	ϕ	τ
		(nm)	$(10^4 \text{ M}^{-1} \text{ cm}^{-1})$	(nm)		(ns)
41	AcOEt	522.0	6.9	542.0	0.79	6.3

	МеОН	522.0	6.3	540.5	0.94	6.6
	PBS	520.0	1.9	535.0	0.04	6.7^{a}
42	AcOEt	521.0	6.8	541.5	0.94	6.4
	MeOH	520.0	6.7	542.0	0.82	6.7
	PBS	520.0	1.6	536.5	0.03	6.6^{a}
43	AcOEt	517.0	2.9	539.0	0.68	3.5 (35%), 6.2 (65%)
	MeOH	516.0	2.6	538.0	0.51	1.1 (31%), 6.6 (69%)
	PBS	515.0	0.8	531.0	0.34	6.7
44	AcOEt	518.0	3.5	539.0	0.86	6.2^{a}
	MeOH	516.0	2.5	535.5	0.53	0.9 (17%), 6.6 (83%)
	PBS	516.0	0.6	-	-	-
45	AcOEt	522.0	4.0	539.5	0.86	6.2
	MeOH	522.0	4.3	540.0	0.77	6.4
	PBS	520.0	1.3	540.5	0.44	6.3
46	AcOEt	517.0	5.0	535.0	0.95	6.6
	MeOH	516.0	4.7	536.0	0.88	6.9
	PBS	521.0	1.6	539.0	-	-
47	AcOEt	517.5	5.3	537.0	0.84	6.8
	MeOH	516.5	5.2	537.5	0.84	7.2
	PBS	528.0	0.6	-	-	-
48	AcOEt	523.0	5.5	544.5	0.84	6.9
	MeOH	521.5	5.2	544.5	0.84	7.3
	PBS	530.5	0.7	-	-	-
49	AcOEt	512.0	4.0	536.0	0.33	2.4^{a}
	MeOH	509.0	3.5	534.0	0.15	0.06 (83%), 6.6(17%)
	PBS	510.0	1.4	530.0	0.03	1.0^{a}
50	AcOEt	517.0	4.8	538.0	0.78	6.7
	MeOH	515.0	5.1	534.0	0.73	6.8

	PBS	516.0	0.8	534.0	0.41	6.7
51	AcOEt	519.5	6.1	538.0	0.82	6.3
	MeOH	518.0	5.8	537.0	0.82	6.5
	PBS	516.0	3.3	537.0	0.28	5.7

^{*a*} Contribution \geq 90%.

Table S3. Photophysical properties of the new BODIPYs from the reaction with carbon nucleophiles, in diluted solutions different solvents. Absorption (λ_{ab}) and fluorescence (λ_{fl}) wavelengths (±1 nm), molar absorption coefficients (ϵ_{max}), fluorescence quantum yields (ϕ) and excited-state lifetimes (τ) at room temperature.

Compound	Solvent	λ_{ab}	З	λ_{fl}	ϕ	τ
		(nm)	$(10^4 M^{-1} cm^{-1})$	(nm)		(ns)
52	AcOEt	517.5	6.6	536.0	0.83	6.4
	MeOH	517.5	6.5	535.5	0.84	6.8
	PBS	521.0	0.3	534.5	0.01	-
53	AcOEt	518.0	7.6	536.0	0.89	6.4
	MeOH	518.0	7.4	536.0	0.91	6.7
	PBS	524.0	1.5	546.0	0.06	6.3
54 ^{<i>a</i>}	AcOEt	511.0	5.3	532.0	0.84	6.4
	MeOH	510.0	4.9	529.0	0.79	6.5
	PBS	-	-	-	-	-
55	AcOEt	518.0	6.9	538.0	0.84	6.5
	MeOH	517.0	6.8	538.0	0.83	6.8
	PBS	-	-	-	-	-
56	AcOEt	520.0	7.4	538.0	0.87	6.1
	MeOH	520.0	7.3	538.0	0.87	6.4
	PBS	532.0	1.3	540.0	0.01	1.3 (42%), 5.0 (58%)

57	AcOEt	520.5	4.5	538.0	0.83	6.2
	MeOH	520.0	4.3	538.0	0.67	5.4
	PBS	528.5	1.4	542.0	-	-
59	AcOEt	522.0	5.1	537.0	0.02	5.9
	MeOH	521.0	4.9	533.0	0.02	6.2
	PBS	527.0	1.8	529.5	-	-
60	AcOEt	521.0	3.6	537.0	0.16	0.4 (37%), 5.2 (63%)
	MeOH	520.0	3.4	536.0	0.19	1.8 (27%), 5.6 (73%)
	PBS	520.0	1.0	535.0 ^b	0.12	1.8 (37%), 5.6 (63%)
61	AcOEt	523.0	7.3	549.0	0.01	-
	MeOH	522.0	7.2	540.0	0.01	-
	PBS	532.0	1.7	538.0	0.01	-
62	AcOEt	533.0	14.53	547.7	0.69	3.9
	MeOH	532.0	12.9	545.5	0.05	0.06 (89%), 0.3(8%),6.2(3%)
	PBS	536.6	3.8	-	-	-
63	AcOEt	549.5	18.8	562.0	0.67	3.0
	MeOH	549.0	18.1	560.5	0.03	0.1 (93%), 0.7 (6%), 5.8(1%)
	PBS	552.5	5.2	-	-	-

Table S4. Photophysical properties of the homo- and heterobifunctional BODIPYs. Absorption (λ_{ab}) and fluorescence (λ_{fl}) wavelengths (±1 nm), molar absorption coefficients (ϵ_{max}), fluorescence quantum yields (ϕ) and excited-state lifetimes (τ) at room temperature.

Comp.	Disolv.	λ_{ab}	З	λ_{fl}	ϕ	τ
		(nm)	$(10^4 M^{-1} cm^{-1})$	(nm)		(ns)
12	AcOEt	525.0	4.8	539.0	0.62	4.75
	MeOH	550.0	3.9	540.0	0.57	5.12

	PBS	554.0	1.5	541.0	0.11	1.0 (7%), 4.2 (93%)
64	AcOEt	527.0	5.8	541.0	0.79	5.9
	MeOH	526.0	7.8	541.0	0.61	5.5
	PBS	531.0	4.4	541.0	0.45	5.0
66	AcOEt	527.0	8.1	539.0	0.93	5.9
	MeOH	527.0	7.8	540.0	0.88	6.2
	PBS	531.0	0.7	540.0	0.05	0.02 (99%)

Figure S1. Normalized fluorescence absorption and emission spectrum of starting acetoximethyl-BODIPY **9** in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S2. Normalized fluorescence absorption and emission spectra for compounds derived from O-nucleophiles with a lipophilic chain of C16 (17) and octaethylene glycol (18) in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S3. Normalized fluorescence absorption and emission spectra of the Sderivatives **44** (pentafluoreophenyl substituent) and **43** (*p*-tolyl substituent), the Nderivative with azide substituent **46** and the chlorine-derivative **50** in different solvents: AcOEt (black), MeOH (red), and PBS (blue).

Figure S4. Normalized fluorescence absorption and emission spectra of the Cnucleophilic derivatives **53** (allyl substituent) and **59** (guaiazulene substituent) in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S5. Frontier orbitals of **60** and **61** computed at B3LYP/6-311+G* level. The simulation of the absorption probabilities indicates that the first transition involves HOMO-1/LUMO molecular orbitals.

Figure S6. Normalized fluorescence absorption and emission spectra of homodisubstituted compounds **12** (with acetate groups) and **64** (with *O*-methyltetraethylene groups) in different solvents: AcOEt (black), MeOH (red) and PBS (blue).

Figure S7. Representative fluorescence microscopy images of Hela (A/B) and SCC38 (C/D) cells stained with 50 nM (A/C) or 100 nM (B, D, E) of dye **33** after 30 min (A-D) or 24 h (E) incubation. As shown, only partial loss of fluorescent emission was observed after 24 h, while retaining the same initial subcellular specificity. Scale bars: $10 \mu m$.

Figure S8. Representative examples of compounds that presumably exhibit specific subcellular staining. HeLa cells were stained with 100 nM of: A) **26** (serine); B) **22** (norbornene); and C) **52** (prepared from diethylzinc). Scale bars: 10 μm.

References

1. Nepomnyashchii, A. B.; Broering, M.; Ahrens, J.; Bard, A. J., Synthesis, Photophysical, Electrochemical, and Electrogenerated Chemiluminescence Studies. Multiple Sequential Electron Transfers in BODIPY Monomers, Dimers, Trimers, and Polymer. *J. Am. Chem. Soc.* **2011**, *133* (22), 8633-8645.

2. Buckley, D. L.; Raina, K.; Darricarrere, N.; Hines, J.; Gustafson, J. L.; Smith, I. E.; Miah, A. H.; Harling, J. D.; Crews, C. M., HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. *ACS Chem. Biol.* **2015**, *10* (8), 1831-1837.

3. Duran-Sampedro, G.; Esnal, I.; Agarrabeitia, A. R.; Banuelos Prieto, J.; Cerdan, L.; Garcia-Moreno, I.; Costela, A.; Lopez-Arbeloa, I.; Ortiz, M. J., First Highly Efficient and Photostable E and C Derivatives of 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin Films, and Solid-State Rods. *Chem. - Eur. J.* **2014**, *20* (9), 2646-2653.

4. Lopez Arbeloa, F.; Lopez Arbeloa, T.; Lopez Arbeloa, I.; Garcia-Moreno, I.; Costela, A.; Sastre, R.; Amat-Guerri, F., Photophysical and lasing properties of pyrromethene 567 dye in liquid solution. Environment effects. *Chem. Phys.* **1998**, *236* (1-3), 331-341.

5. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42* (2), 339-341.

6. Sheldrick, G. M., A short history of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *64* (1), 112-122.

7. Sheldrick, G. M., Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* **2015,** *71* (1), 3-8.

8. Harvey, D. R.; Norman, R. O. C., Reactions of lead tetraacetate. I. Reactions with some benzenoid compounds. *J. Chem. Soc.* **1964**, (Dec.), 4860-8.

9. Mosseri, S.; Henglein, A.; Janata, E., Trivalent lead as an intermediate in the oxidation of lead(II) and the reduction of lead(IV) species. *J. Phys. Chem.* **1990**, *94* (6), 2722-6.

Copies of ¹H and ¹³C NMR of the new compounds

Compound 18

¹H NMR (400 MHz, CDCl₃) spectrum of compound **49**

¹³C NMR (125 MHz, CD₃CN/CD₃COD₃ mixtured 6:1) spectrum of compound 58

¹H NMR (500 MHz, CDCl₃) spectrum of compound **62**

 ^1H NMR (400 MHz, CDCl₃) spectrum of compound **64**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 64

S213

¹H NMR (400 MHz, CDCl₃) spectrum of compound 66

S217

Compound 68 and impurity

¹H NMR (500 MHz, CDCl₃) spectrum of compound **68** and impurity

S219

¹³C NMR (400 MHz, CDCl₃) spectrum of compound **70**