Supporting Information

Controllable Construction of Pharmaceutical Significant Scaffolds of 2,3-Dihydroquinolin-4-one and Benzoazepine-5-one via Redox-Neutral Cascade Hydride Transfer/Cyclization

Ronghao Xie,^{a,§} Shixiao Chen,^{b,§} Yufeng Wang,^a Xiangcong Yin,^c Shuai-Shuai Li,^a Lubin Xu^a and Liang Wang^{*,a}

^aCollege of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China

^bKey Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China

^cHematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P. R. China

[§]These authors contributed equally.

Table of Contents

1. General Information	S2
2. General Procedure	.S2
3. Characterization of All Compounds	.S4
4. Crystal Structures and Data	S23
5. ¹ H and ¹³ C NMR Spectra	.S25

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from the commercial sources and used as received. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). TLC spots were visualized by UV-light irradiation on Spectroline Model ENF-24061/F 254 nm. The products were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl₃ or DMSO-d₆ solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet) or dimethyl sulfoxide-d6 (δ 2.54, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) was referenced to the appropriate residual solvent peak. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. All substituted aldehydes and isatins were purchased from adamas-beta.

2. General Procedure

2.1. General Procedure for the Synthesis of 3.

A reaction tube was charged with 2-(dialkylamino)acetophenone (0.1 mmol), aldehydes (0.15 mmol), potassium phosphate (0.1 mmol) and TFE (1.0 mL). The mixture was stirred at 100 °C under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the reaction was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The mixture was then extracted thrice with EtOAc, and the combined organic phase was washed water and brine, dried over anhydrous Na₂SO₄, which was concentrated in vacuo afterwards. The residue was subjected to flash column chromatography for purification to afford product **3**.

2.2. General Procedure for the Synthesis of 5.

A reaction tube was charged with 2-(dialkylamino)acetophenone (0.1 mmol), isatin (0.15 mmol), potassium phosphate (0.1 mmol) and TFE (1.0 mL). The mixture was stirred at 100 °C under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the reaction was cooled to room temperature and quenched by adding saturated aqueous NaHCO₃. The crude products were extracted with EtOAc thrice and the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford product **5**.

2.3. General Procedure for the Synthesis of 8.

A reaction tube was charged with 2-(dialkylamino)acetophenone (0.1 mmol), paraformaldehyde (0.5 mmol), potassium phosphate (0.1 mmol) and alcohol (1.0 mL). The mixture was stirred at 100 °C under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the reaction was cooled to room temperature and quenched by adding saturated aqueous NaHCO₃. The crude products were extracted with EtOAc thrice and the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford product **7**.

2.4. General Procedure for the Synthesis of 13

A reaction tube was charged with 1-(2-(azepan-1-yl)phenyl)ethan-1-one (0.1 mmol), paraformaldehyde (0.5 mmol), potassium phosphate (0.1 mmol) and water (1.0 mL). The mixture was stirred at 100 °C under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the reaction was cooled to room temperature. The crude products were extracted with EtOAc thrice and the combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography to afford product **13**.

3. Characterization of All Compounds

Compounds 3:

6-benzyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3a)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (24.4 mg, 80% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (dd, J = 7.8, 1.8 Hz, 1H), 7.41 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 7.35 (dd, J = 8.1, 6.8 Hz, 2H), 7.28 (dd, J = 7.8, 1.7 Hz, 1H), 7.24 – 7.20 (m, 2H), 6.78 – 6.63 (m, 2H), 4.13 (ddd, J = 15.2, 6.8, 2.1 Hz, 1H), 3.21 – 3.07 (m, 2H), 2.91 (dd, J = 13.4, 4.8 Hz, 1H), 2.76 (dd, J = 13.3, 11.4 Hz, 1H), 2.57 (ddd, J = 11.4, 4.8, 1.7 Hz, 1H), 2.13 (m, 1H), 1.91 – 1.79 (m, 1H), 1.64 (m, 1H), 1.59 – 1.53 (m, 1H), 1.52 – 1.43 (m, 1H), 1.40 (m, 2H), 1.35 – 1.27 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.2, 148.6, 138.9, 135.9, 129.2, 128.6, 128.6, 126.5, 116.8, 115.7, 112.4, 62.3, 53.7, 49.9, 35.9, 30.8, 26.7, 26.1, 25.2 ppm. **HRMS (ESI):** calcd. for C₂₁H₂₃NO [M+H]⁺: 306.1852; Found: 306.1858.

6-(4-methoxybenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3b)

Reaction time: 40 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (20.8 mg, 62% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.9, 1.7 Hz, 1H), 7.30 (ddd, J = 8.6, 6.8, 1.7 Hz, 1H), 7.05 – 6.99 (m, 2H), 6.81 – 6.75 (m, 2H), 6.66 – 6.53 (m, 2H), 4.01 (ddd, J = 15.1, 6.8, 2.1 Hz, 1H), 3.73 (s, 3H), 3.12 – 2.98 (m, 2H), 2.74 (dd, J = 13.5, 4.9 Hz, 1H), 2.60 (dd, J = 13.5, 11.4 Hz, 1H), 2.41 (ddd, J = 11.4, 4.9, 1.7 Hz, 1H), 2.10 – 1.96 (m, 1H), 1.83 – 1.69 (m, 1H), 1.59 – 1.49 (m, 1H), 1.46 (dt, J = 13.7, 5.2 Hz, 1H), 1.42 – 1.32 (m, 1H), 1.32 – 1.22 (m, 2H), 1.22 – 1.12 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.4, 158.3, 148.6, 135.9, 130.8, 130.2, 128.6, 116.8, 115.6, 114.1, 112.4, 62.3, 55.3, 53.9, 49.9, 34.9, 30.8, 26.7, 26.1, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1954.

6-(4-fluorobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3c)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (24.9 mg, 77% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.8, 1.6 Hz, 1H), 7.38 – 7.26 (m, 1H), 7.06 (dd, J = 8.2, 5.4 Hz, 2H), 6.93 (t, J = 8.5 Hz, 2H), 6.67 – 6.51 (m, 2H), 4.02 (ddd, J = 15.3, 6.8, 2.0 Hz, 1H), 3.02 (ddt, J = 15.3, 11.1, 5.2 Hz, 2H), 2.77 (dd, J = 13.6, 5.1 Hz, 1H), 2.65 (dd, J = 13.5, 11.1 Hz, 1H), 2.42 (dt, J = 11.2, 3.1 Hz, 1H), 2.10 – 1.97 (m, 1H), 1.76 (m, 1H), 1.48 (ddd, J = 13.9, 8.5, 5.9 Hz, 1H), 1.43 – 1.36 (m, 1H), 1.31 (m, 2H), 1.24 (ddd, J = 13.0, 8.5, 3.6 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.1, 162.6, 160.7, 148.5, 136.1, 134.5, 130.5, 128.6, 116.7, 115.8, 115.5, 115.3, 112.4, 62.5, 53.7, 49.9, 35.1, 30.8, 26.7, 25.9, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₁H₂₂FNO [M+H]⁺: 324.1758, found: 324.1752.

6-(4-chlorobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3d)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (25.8mg, 76% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (dd, J = 7.9, 2.0 Hz, 1H), 7.39 (td, J = 7.9, 6.9, 2.0 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.14 – 7.08 (m, 2H), 6.66 (dd, J = 12.7, 7.9 Hz, 2H), 4.09 (dd, J = 15.4, 6.5 Hz, 1H), 3.16 – 3.01 (m, 2H), 2.84 (dd, J = 13.6, 5.1 Hz, 1H), 2.71 (dd, J = 13.3, 11.4 Hz, 1H), 2.49 (dd, J = 11.1, 4.9 Hz, 1H), 2.10 (ddd, J = 15.3, 11.6, 6.4 Hz, 1H), 1.83 (td, J = 12.7, 12.3, 5.1 Hz, 1H), 1.63 – 1.57 (m, 1H), 1.56 – 1.44 (m, 1H), 1.39 (m, 2H), 1.34 – 1.27 (m, 2H). ¹³C **NMR** (125 MHz, CDCl₃) δ 195.9, 148.5, 137.3, 136.1, 132.4, 130.5, 128.7, 128.6, 116.7, 115.8, 112.4, 62.5, 53.5, 49.9, 35.2, 30.8, 26.7, 25.9, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₁H₂₂CINO [M+H]⁺: 340.1463, found: 340.1468.

6-(2-bromobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3e)

Reaction time: 30 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (30.6 mg, 80% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.7 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.41 (td, J = 7.8, 6.9, 1.7 Hz, 1H), 7.31 – 7.22 (m, 1H), 7.18 – 7.08 (m, 2H), 6.75 – 6.63 (m, 2H), 4.17 – 4.07 (m, 1H), 3.18 (tt, J = 10.7, 6.1 Hz, 2H), 3.03 – 2.96 (m, 2H), 2.77 (ddd, J = 8.8, 6.6, 1.6 Hz, 1H), 2.14 (dq, J = 12.2, 6.1 Hz, 1H), 1.94 – 1.77 (m, 1H), 1.61 (m, 2H), 1.54 – 1.38 (m, 3H), 1.30 (m,

1H). ¹³C NMR (125 MHz, CDCl₃) δ 195.7, 148.5, 138.2, 136.0, 133.2, 131.5, 128.6, 128.4, 127.4, 124.9, 116.7, 115.7, 112.5, 63.2, 51.4, 50.1, 36.2, 31.1, 26.5, 25.9, 25.2 ppm. HRMS (ESI): calcd. for C₂₁H₂₂BrNO [M+H]⁺: 384.0958, found: 384.0954.

6-(4-nitrobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3f)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (29.8 mg, 85% yield) as a brown solid. M.p. 142-143°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 2H), 7.85 (dd, J = 7.8, 1.7 Hz, 1H), 7.40 (ddd, J = 8.7, 6.9, 1.7 Hz, 1H), 7.33 (d, J = 8.4 Hz, 2H), 6.68 (t, J = 8.9 Hz, 2H), 4.11 (ddd, J = 15.2, 6.7, 2.1 Hz, 1H), 3.18 – 3.05 (m, 2H), 2.98 (dd, J = 13.5, 5.9 Hz, 1H), 2.89 (dd, J = 13.5, 10.2 Hz, 1H), 2.57 (ddd, J = 10.3, 5.8, 1.6 Hz, 1H), 2.22 – 2.03 (m, 1H), 1.86 (m, 1H), 1.64 (m, 1H), 1.59 – 1.53 (m, 1H), 1.50 – 1.38 (m, 3H), 1.32 (dq, J = 9.4, 4.7 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 194.99, 148.37, 146.89, 146.71, 136.22, 129.95, 128.61, 123.79, 116.73, 116.09, 112.51, 63.10, 53.05, 50.05, 35.92, 30.84, 26.65, 25.92, 25.15 ppm. **HRMS (ESI)**: calcd. for C₂₁H₂₂N₂O₃ [M+H]⁺: 351.1703, found: 351.1709.

6-(2-fluoro-5-(trifluoromethyl)benzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-

one (3g)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (32.1 mg, 82% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.33 (s, 1H), 6.93 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 8.9, 6.6 Hz, 2H), 4.46 (q, J = 7.7 Hz, 2H), 4.08 (dd, J = 15.5, 6.5 Hz, 1H), 3.17 (d, J = 11.9 Hz, 1H), 3.14 – 3.03 (m, 1H), 3.01 (dd, J = 13.5, 6.6 Hz, 1H), 2.92 (dd, J = 12.8, 9.9 Hz, 1H), 2.70 (t, J = 8.1 Hz, 1H), 2.21 – 2.06 (m, 1H), 1.92 – 1.78 (m, 1H), 1.72 – 1.55 (m, 2H), 1.49 (dq, J = 20.0, 9.8, 9.0 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 195.5, 157.8, 148.3, 135.9, 128.9, 128.8, 128.7, 128.5, 125.5, 116.7, 115.8, 112.4, 111.5, 65.9, 64.1, 50.9, 49.8, 31.2, 30.9, 26.6, 25.9, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₂H₂₁F₄NO [M+H]⁺: 392.1632, found: 392.1636.

6-(naphthalen-2-ylmethyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3h)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (18.5 mg, 52% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 7.8 Hz, 1H), 7.81 (q, J = 8.5 Hz, 3H), 7.62 (s, 1H), 7.51 – 7.43 (m, 2H), 7.42 – 7.37 (m, 1H), 7.34 (d, J = 8.4 Hz, 1H), 6.72 – 6.64 (m, 2H), 4.13 (dd, J = 15.3, 6.7 Hz, 1H), 3.19 – 3.08 (m, 2H), 3.03 (dd, J = 13.3, 4.6 Hz, 1H), 2.90 (t, J = 12.5 Hz, 1H), 2.64 (dd, J = 11.6, 4.7 Hz, 1H), 2.09 (dq, J = 15.6, 6.0 Hz, 1H), 1.84 (tt, J = 10.6, 6.3 Hz, 1H), 1.57 (td, J = 9.1, 8.6, 4.0 Hz, 1H), 1.52 – 1.39 (m, 1H), 1.38 – 1.20 (m, 3H), 0.91 – 0.81 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 196.2, 148.6, 136.4, 136.1, 133.6, 132.3, 128.6, 128.3, 127.8, 127.7, 127.5, 127.5, 126.2, 125.6, 116.8, 115.7, 112.5, 62.3, 53.6, 49.9, 35.9, 30.7, 26.7, 25.9, 25.1 ppm. HRMS (ESI): calcd. for C₂₅H₂₅NO [M+H]⁺: 356.2009, found: 356.2007.

6-(pyridin-2-ylmethyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3i)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (27.5 mg, 90% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.55 (d, J = 4.6 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.59 (td, J = 7.6, 1.8 Hz, 1H), 7.44 – 7.30 (m, 1H), 7.21 – 7.05 (m, 2H), 6.72 – 6.57 (m, 2H), 4.06 (ddd, J = 15.4, 6.8, 2.0 Hz, 1H), 3.30 (dd, J = 12.4, 3.4 Hz, 1H), 3.15 (ddd, J = 16.0, 11.1, 6.0 Hz, 1H), 3.06 – 2.93 (m, 2H), 2.87 – 2.75 (m, 1H), 2.08 (dq, J = 14.8, 5.4, 4.8 Hz, 1H), 1.92 – 1.79 (m, 1H), 1.62 (td, J = 14.5, 11.9, 6.4 Hz, 1H), 1.54 (ddd, J = 9.8, 7.1, 3.9 Hz, 1H), 1.51 – 1.40 (m, 3H), 1.32 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 195.8, 159.1, 149.4, 148.6, 136.4, 135.9, 128.5, 123.6, 121.5, 116.8, 115.5, 112.4, 63.3, 51.9, 49.9, 38.2, 30.7, 26.8, 26.1, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₀H₂₂N₂O [M+H]⁺: 307.1805, found: 307.1809.

2-methoxy-6-(pyridin-4-ylmethyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one

(3j)

Reaction time: 24 h. Flash column chromatography on a silica gel (dichloromethane: methyl alcohol, 100:3) afforded the product (22.8 mg, 68% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.58 – 8.51 (m, 2H), 7.84 (dd, J = 8.8, 1.6 Hz, 1H), 7.16 – 7.09 (m, 2H), 6.29 (dd, J = 8.8, 2.1 Hz, 1H), 6.09 (d, J = 2.1 Hz, 1H), 4.04 (dd, J = 15.3, 6.6 Hz, 1H), 3.91 (d, J = 1.7 Hz, 1H), 3.85 (d, J = 1.6 Hz, 3H), 3.12 – 3.02 (m, 2H), 2.88 (dd, J = 13.5, 5.0 Hz, 1H), 2.73 (dd, J = 13.2, 11.2 Hz, 1H), 2.51 (dd, J = 11.0, 4.9 Hz, 1H), 2.17 – 2.04 (m, 1H), 1.84 (m, 1H), 1.68 – 1.59 (m, 1H), 1.55 (h, J = 6.9, 5.9 Hz, 1H), 1.39 (m, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 193.7, 166.3, 150.2, 149.8, 148.3, 131.1, 130.9, 128.9, 124.5, 111.3, 103.7, 96.1, 62.9, 55.3, 52.4, 50.2, 35.5, 31.1, 26.6, 25.9, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₁H₂₄N₂O₂ [M+H]⁺: 337.1911, found: 337.1916.

6-(quinolin-2-ylmethyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3k)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (30.3 mg, 85% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (dd, J = 8.4, 4.1 Hz, 2H), 7.90 (dd, J = 7.8, 1.7 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.42 – 7.35 (m, 1H), 7.31 – 7.23 (m, 1H), 6.72 – 6.61 (m, 2H), 4.09 (ddd, J = 15.4, 6.8, 2.1 Hz, 1H), 3.39 (dd, J = 12.1, 3.4 Hz, 1H), 3.21 (qd, J = 13.6, 7.9 Hz, 3H), 2.91 (dd, J = 10.1, 5.5 Hz, 1H), 2.15 – 2.01 (m, 1H), 1.88 (dt, J = 12.0, 8.3 Hz, 1H), 1.66 – 1.57 (m, 1H), 1.51 (dq, J = 11.0, 6.6, 6.0 Hz, 1H), 1.44 (td, J = 10.6, 4.2 Hz, 3H), 1.32 (dp, J = 14.3, 5.0, 4.6 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 195.9, 159.6, 148.7, 147.9, 136.5, 136.1, 129.5, 129.1, 128.5, 127.6, 126.9, 126.1, 121.9, 116.8, 115.5, 112.5, 63.1, 51.8, 49.9, 38.8, 30.7, 26.9, 26.1, 25.2 ppm. **HRMS (ESI)**: calcd. for C₂₄H₂₄N₂O [M+H]⁺: 357.1961, found: 357.1965.

6-((4-oxo-4H-chromen-3-yl)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-on

e (31)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (26.9 mg, 72% yield) as a yellow solid. M.p. 158-159°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.28 – 8.19 (m, 1H), 7.82 (dd, J = 7.8, 1.9 Hz, 1H), 7.67 – 7.61 (m, 1H), 7.58 (s, 1H), 7.39 (dt, J = 6.7, 2.8 Hz, 2H), 7.34 (td, J = 7.8, 7.0, 1.8 Hz, 1H), 6.62 (t, J = 7.5 Hz, 1H), 6.58 (d, J = 8.6 Hz, 1H), 3.97 (dd, J = 15.4, 6.6 Hz, 1H), 3.52 (dd, J = 12.0, 4.3 Hz, 1H), 3.23 (ddd, J = 15.9, 11.2, 5.9 Hz, 1H), 2.86 (dd, J = 13.3, 5.6 Hz, 1H), 2.67 (m, 2H), 2.08 (ddd, J = 19.7, 10.0, 4.4 Hz, 1H), 1.82 (dt, J = 13.5, 6.8 Hz, 1H), 1.68 – 1.55 (m, 3H), 1.50 (dq, J = 10.2, 6.3, 5.5 Hz, 2H), 1.38 – 1.23 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 195.6, 177.6, 156.5, 152.8, 148.3, 135.9, 133.4, 128.4, 125.9, 124.9, 123.7, 121.5, 118.1, 116.8, 115.6, 112.3, 65.2, 50.1, 49.9, 31.3, 27.1, 26.6, 25.9, 25.3 ppm. **HRMS (ESI)**: calcd. for C₂₄H₂₃NO₃ [M+H]⁺: 374.1751, found: 374.1754.

5-(pyridin-2-ylmethyl)-1,2,3,4,4a,5-hexahydro-6H-pyrido[1,2-a]quinolin-6-one (3m)

Reaction time: 40 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:5) afforded the product (21.0 mg, 72% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.48 (d, J = 4.9 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.08 (dd, J = 10.8, 6.8 Hz, 2H), 6.79 (d, J = 8.7 Hz, 1H), 6.66 (t, J = 7.4 Hz, 1H), 4.06 (d, J = 13.8 Hz, 1H), 3.25 (dt, J = 11.9, 3.0 Hz, 1H), 3.14 – 2.96 (m, 2H), 2.94 – 2.76 (m, 2H), 1.72 (d, J = 10.1 Hz, 2H), 1.63 – 1.53 (m, 1H), 1.49 – 1.31 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.5, 159.1, 149.9, 149.2, 136.5, 135.7, 128.6, 123.9, 121.5, 119.1, 116.9, 114.3, 62.4, 52.2, 49.3, 37.3, 27.9, 25.1, 23.2 ppm. HRMS (ESI): calcd. for C₁₉H₂₀N₂O [M+H]⁺: 293.1648, found: 293.1642.

1-methyl-2-phenyl-3-(pyridin-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one (3n)

Reaction time: 30 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:2) afforded the product (21.0 mg, 64% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.23 (d, J = 4.8 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.23 – 7.17 (m, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.99 (q, J = 8.1, 7.4 Hz, 5H), 6.94 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 6.3 Hz, 1H), 6.31 (t, J = 7.4 Hz, 1H), 6.25 (d, J = 8.3 Hz, 1H), 3.43 (d, J = 13.5 Hz, 1H), 3.22 (dd, J = 13.9, 6.3 Hz, 2H), 3.02 (s, J = 1.8 Hz, 3H), 3.00 (s, 1H). ¹³C **NMR** (125 MHz, CDCl₃) δ 202.6, 160.8, 155.7, 148.4, 137.1, 135.9, 135.2, 129.8, 127.9, 126.6, 124.1, 123.8, 121.7, 120.3, 115.9, 107.1, 74.8, 44.0, 41.6, 28.9 ppm. **HRMS (ESI)**: calcd. for C₂₂H₂₀N₂O [M+H]⁺: 329.1648, found: 329.1645.

1-ethyl-2-methyl-3-(pyridin-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one (30)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:2) afforded the product (19.1 mg, 68% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.54 – 8.45 (m, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.07 (t, J = 6.2 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 6.65 – 6.53 (m, 2H), 3.46 (dp, J = 21.0, 7.1 Hz, 2H), 3.18 – 3.07 (m, 1H), 2.91 (m, 2H), 2.79 – 2.73 (m, 1H), 1.21 (td, J = 7.1, 2.1 Hz, 3H), 1.05 (dd, J = 6.7, 2.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.5, 158.9, 149.4, 147.8, 136.5, 135.8, 128.5, 123.7, 121.6, 117.1, 115.6, 112.4, 57.2, 52.3, 44.5, 38.3, 15.8, 13.2 ppm. HRMS (ESI): calcd. for C₁₈H₂₀N₂O [M+H]⁺: 281.1648, found: 281.1642.

6-(furan-2-ylmethyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3p)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:20) afforded the product (23.0 mg, 78% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.8, 1.8 Hz, 1H), 7.39 – 7.32 (m, 2H), 6.69 – 6.59 (m, 2H), 6.30 (dd, J = 3.2, 1.9 Hz, 1H), 6.05 (d, J = 3.1 Hz, 1H), 4.06 (ddd, J = 15.3, 6.7, 2.2 Hz, 1H), 3.28 (ddd, J = 11.8, 4.1, 1.8 Hz, 1H), 3.16 (ddd, J = 15.3, 11.1, 6.0 Hz, 1H), 2.94 – 2.77 (m, 2H), 2.64 (ddd, J = 10.5, 5.5, 1.8 Hz, 1H), 2.09 (m, 1H), 1.92 – 1.78 (m, 1H), 1.69 – 1.53 (m, 2H), 1.47 (m, 3H), 1.38 – 1.29 (m, 1H).¹³**C** NMR (125 MHz, CDCl₃) δ 195.5, 152.8, 148.5, 141.7, 136.1, 128.6, 116.6, 115.6, 112.4, 110.3, 107.1, 63.2, 51.1, 49.9, 30.6, 28.3, 26.9, 26.1, 25.2 ppm. HRMS (ESI): calcd. for C₁₉H₂₁NO₂ [M+H]⁺: 296.1645, found: 296.1641.

6-ethyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3q)

Reaction time: 30 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (13.6 mg, 56% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (dd, J = 8.1, 1.8 Hz, 1H), 7.26 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 6.53 (dd, J = 8.0, 6.3 Hz, 2H), 3.97 (ddd, J = 15.3, 6.8, 2.2 Hz, 1H), 3.34 (dq, J = 11.9, 1.8 Hz, 1H), 3.13 (ddd, J = 15.3, 11.0, 5.9 Hz, 1H), 2.10 (td, J = 7.7, 1.8 Hz, 1H), 2.03 (m, 1H), 1.77 (dd, J = 12.0, 8.2 Hz, 1H), 1.57 (m, 5H), 1.50 – 1.40 (m, 2H), 1.26 (m, 1H), 0.89 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 197.1, 148.2, 135.7, 128.4, 116.7, 115.3, 112.1, 64.7, 53.4, 50.1, 31.4, 26.8, 26.1, 25.3, 23.3, 11.8 ppm. **HRMS (ESI)**: calcd. for C₁₆H₂₁NO [M+H]⁺: 244.1696, found: 244.1698.

6-(2-bromobenzyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3r)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (23.0 mg, 58% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.7 Hz, 1H), 7.51 (dd, J = 8.0, 1.3 Hz, 1H), 7.36 (ddd, J = 8.6, 7.0, 1.8 Hz, 1H), 7.13 (td, J = 7.5, 1.3 Hz, 1H), 7.01 (td, J = 7.6, 1.8 Hz, 1H), 6.85 (dd, J = 7.7, 1.8 Hz, 1H), 6.66 (ddd, J = 7.9, 6.9, 0.9 Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 4.09 (ddd, J = 15.2, 6.3, 1.8 Hz, 1H), 3.36 (dd, J = 10.3, 6.5 Hz, 1H), 3.29 – 3.24 (m, 1H), 3.23 – 3.20 (m, 1H), 3.15 (d, J = 13.8 Hz, 1H), 2.14 – 2.03 (m, 1H), 1.71 (m, 3H), 1.59 – 1.45 (m, 3H), 1.43 – 1.35 (m, 1H), 1.09 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.1, 148.4, 137.1, 135.6, 132.9, 131.9, 128.7, 128.1, 126.9, 126.2, 117.3, 115.7, 112.1, 69.9, 50.9, 50.6, 41.2, 27.3, 26.9, 25.9, 25.4, 16.7 ppm. **HRMS (ESI)**: calcd. for C₂₂H₂₄BrNO [M+H]⁺: 398.1114, found: 398.1117.

Compounds 5:

7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6H)-dione

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (24.9 mg, 72% yield) as a brown solid. M.p. 154-155°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.66 (s, 1H), 7.82 (dd, J = 7.8, 1.8 Hz, 1H), 7.28 (ddd, J = 8.7, 6.9, 1.8 Hz, 1H), 7.18 – 7.12 (m, 2H), 7.04 (d, J = 8.5 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.85 – 6.81 (m, 1H), 6.76 (t, J = 7.4 Hz, 1H), 3.91 – 3.83 (m, 2H), 3.65 (d, J = 10.7 Hz, 1H), 3.50 (dd, J = 12.0, 4.3 Hz, 1H), 2.23 (d, J = 10.6 Hz, 1H), 1.85 – 1.69 (m, 2H), 1.67 – 1.50 (m, 3H), 1.38 (ddd, J = 15.0, 7.7, 4.2 Hz, 1H), 1.19 (m, 1H), 1.04 – 0.91 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 199.1, 179.5, 155.7, 139.9, 132.7, 131.3, 130.2, 128.6, 125.0, 123.4, 123.1, 117.7, 115.1, 109.8, 71.6, 64.1, 47.4, 47.3, 29.4, 28.9, 27.9, 26.3 ppm. **HRMS (ESI):** calcd. for C₂₂H₂₂N₂O₂ [M+H]⁺: 347.1754; Found: 347.1757.

5'-methyl-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5b)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (25.2 mg, 70% yield) as a brown solid. M.p. 162-163°C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (dd, J = 7.9, 1.8 Hz, 1H), 7.74 (s, 1H), 7.27 (ddd, J = 8.6, 6.9, 1.8 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 5.4 Hz, 2H), 6.76 (t, J = 7.4 Hz, 1H), 6.69 (d, J = 8.3 Hz, 1H), 3.87 (d, J = 10.9 Hz, 2H), 3.63 (d, J = 10.7 Hz, 1H), 3.48 (dd, J = 12.1, 4.3 Hz, 1H), 2.26 (s, 3H), 2.22 (d, J = 10.7 Hz, 1H), 1.84 – 1.70 (m, 2H), 1.71 – 1.60 (m, 1H), 1.56 (m, 3H), 1.39 (ddd, J = 14.9, 7.8, 4.3 Hz, 1H), 0.98 (q, J = 12.4, 11.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 199.0, 178.9, 155.7, 137.1, 132.7, 132.6, 131.4, 130.1, 128.9, 125.1, 124.2, 117.6, 115.0, 109.2, 71.6, 63.9, 47.3, 47.3, 29.4, 28.9, 27.9, 26.3, 21.3 HRMS (ESI): calcd. for C₂₃H₂₄N₂O₂ [M+H]⁺: 361.1911; Found: 361.1916.

5'-chloro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5c)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (29.6 mg, 78% yield) as a brown solid. M.p. 158-159°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.60 (s, 1H), 7.81 (dd, J = 7.9, 1.8 Hz, 1H), 7.29 (ddd, J = 8.7, 6.9, 1.8 Hz, 1H), 7.15 (d, J = 7.3 Hz, 2H), 7.04 (d, J = 8.5 Hz, 1H), 6.78 (dd, J = 8.2, 5.9 Hz, 2H), 3.87 – 3.83 (m, 2H), 3.64 (d, J = 10.7 Hz, 1H), 3.46 (dd, J = 12.1, 4.3 Hz, 1H), 2.22 (d, J = 10.7 Hz, 1H), 1.74 (d, J = 7.2 Hz, 2H), 1.64 (td, J = 14.0, 11.9, 7.7 Hz, 1H), 1.60 – 1.51 (m, 1H), 1.38 (m, 1H), 1.19 (qd, J = 11.0, 5.7 Hz, 2H), 0.99 (q, J = 12.2, 11.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 178.8, 155.6, 138.3, 132.9, 132.8, 130.1, 128.7, 128.6, 124.9, 124.1, 117.9, 115.1, 110.7, 71.6, 64.2, 47.4, 46.9, 29.4, 28.9, 27.8, 26.2 ppm. HRMS (ESI): calcd. for C₂₂H₂₁ClN₂O₂ [M+H]⁺: 381.1364; Found:381.1367.

6'-bromo-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5d)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (34.8 mg, 82% yield) as a brown solid. M.p. 156-157°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.43 (s, 1H), 7.80 (dd, J = 7.9, 1.7 Hz, 1H), 7.29 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 7.14 (dd, J = 8.0, 1.7 Hz, 1H), 7.06 – 7.00 (m, 3H), 6.78 (t, J = 7.4 Hz, 1H), 3.90 – 3.82 (m, 2H), 3.64 (d, J = 10.7 Hz, 1H), 3.46 (dd, J = 12.1, 4.3 Hz, 1H), 2.20 (d, J = 10.7 Hz, 1H), 1.76 (m, 2H), 1.65 (s, 3H), 1.59 – 1.52 (m, 1H), 1.39 (ddd, J = 14.7, 7.7, 4.3 Hz, 1H), 0.98 (q, J = 12.3, 11.7 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.9, 179.1, 155.6, 141.1, 132.8, 130.2, 130.1, 126.1, 125.0, 124.8, 122.2, 117.9, 115.1, 113.2, 71.5, 63.8, 47.4, 47.1, 29.4, 28.9, 27.8, 26.2 ppm. **HRMS (ESI):** calcd. for C₂₂H₂₁BrN₂O₂ [M+H]⁺: 425.0859; Found: 425.0854.

7'-bromo-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5e)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (29.7 mg, 70% yield) as a brown solid. M.p. 159-160°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.80 (dd, J = 7.9, 1.7 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.90 (t, J = 7.9 Hz, 1H), 6.77 (t, J = 7.4 Hz, 1H), 3.87 (dt, J = 8.7, 3.2 Hz, 2H), 3.65 (d, J = 10.8 Hz, 1H), 3.48 (dd, J = 12.2, 4.3 Hz, 1H), 2.23 (d, J = 10.7 Hz, 1H), 1.83 – 1.71 (m, 2H), 1.71 – 1.54 (m, 4H), 1.39 (ddd, J = 15.2, 7.7, 4.3 Hz, 1H), 0.98 (q, J = 12.3, 11.7 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.6, 177.7, 155.6, 139.1, 132.8,

132.4, 131.3, 130.1, 125.0, 124.5, 122.4, 117.8, 115.1, 102.7, 71.6, 65.4, 47.4, 47.2, 29.5, 28.9, 27.9, 26.2 ppm. **HRMS (ESI):** calcd. for C₂₂H₂₁BrN₂O₂ [M+H]⁺: 425.0859; Found: 425.0852.

2-methoxy-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5f)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (23.3 mg, 62% yield) as a brown solid. M.p. 159-160°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.20 (s, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.17 (dt, J = 7.6, 3.8 Hz, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 6.49 (d, J = 2.2 Hz, 1H), 6.38 (dd, J = 8.9, 2.1 Hz, 1H), 3.88 (ddd, J = 16.2, 11.0, 2.1 Hz, 1H), 3.82 (s, 1H), 3.79 (s, 3H), 3.59 (d, J = 10.8 Hz, 1H), 3.53 (dd, J = 12.2, 4.3 Hz, 1H), 2.20 (d, J = 10.8 Hz, 1H), 1.81 (dt, J = 14.8, 11.2 Hz, 1H), 1.73 (d, J = 14.3 Hz, 1H), 1.70 – 1.62 (m, 2H), 1.57 (dd, J = 14.8, 11.7 Hz, 1H), 1.38 (ddd, J = 15.0, 7.8, 4.2 Hz, 1H), 1.18 (s, 1H), 0.99 (q, J = 12.3, 11.8 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 197.2, 179.4, 163.5, 157.5, 139.7, 132.2, 131.4, 128.5, 123.5, 123.2, 119.7, 109.6, 104.7, 99.9, 71.5, 63.2, 55.3, 47.5, 47.3, 29.3, 28.8, 27.7, 26.3 ppm. **HRMS (ESI):** calcd. for C₂₃H₂₄N₂O₃ [M+H]⁺: 377.1860; Found: 377.1862.

5'-chloro-2-methoxy-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indol

ine]-2',5(6H)-dione (5g)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (31.6 mg, 77% yield) as a brown solid. M.p. 153-154°C.

¹**H** NMR (500 MHz, CDCl₃) δ 9.48 (s, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.22 – 7.14 (m, 2H), 6.96 (d, J = 8.2 Hz, 1H), 6.45 (d, J = 2.3 Hz, 1H), 6.39 (dd, J = 8.7, 2.0 Hz, 1H), 3.89 (dd, J = 15.5, 4.6 Hz, 1H), 3.80 (s, 3H), 3.48 (dd, J = 15.7, 10.8 Hz, 1H), 3.19 (d, J = 12.0 Hz, 1H), 2.50 (d, J = 11.9 Hz, 1H), 1.88 – 1.72 (m, 2H), 1.67 – 1.58 (m, 2H), 1.20 (d, J = 13.1 Hz, 3H), 1.09 (q, J = 11.3, 8.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 195.9, 179.2, 163.3, 156.6, 139.8, 132.9, 131.8, 128.9, 127.7, 123.84, 119.9, 111.8, 104.3, 99.9, 70.9, 63.5, 55.4, 47.7, 47.2, 29.6, 28.6, 27.2, 26.3 ppm. HRMS (ESI): calcd. for C₂₃H₂₃ClN₂O₃ [M+H]⁺: 411.1470; Found: 411.1473.

3-fluoro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6H

)-dione (5h)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (29.8 mg, 82% yield) as a brown solid. M.p. 151-152°C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (s, 1H), 7.50 (dd, J = 9.1, 2.7 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 7.03 – 7.00 (m, 2H), 6.99 (s, 1H), 6.83 (d, J = 7.8 Hz, 1H), 3.90 (ddd, J = 16.4, 9.6, 3.5 Hz, 1H), 3.84 - 3.77 (m, 1H), 3.63 (d, J = 10.7 Hz, 1H), 3.44 (dd, J = 12.1, 4.2 Hz, 1H), 2.25 (d, J = 10.7 Hz, 1H), 1.75 (m, 2H), 1.69 – 1.61 (m, 2H), 1.57 (dd, J = 14.9, 11.6 Hz, 1H), 1.38 (ddd, J = 15.0, 7.9, 4.3 Hz, 1H), 1.19 (d, J = 8.3 Hz, 1H), 0.97 (q, J = 12.6, 11.9 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.1, 179.1, 154.6, 151.6, 140.8, 129.8, 128.9, 123.6, 122.6, 119.9, 119.7, 115.8, 115.7, 110.6, 71.5, 63.8, 47.8, 47.3, 29.8, 28.6, 27.5, 26.3 ppm. **HRMS (ESI):** calcd. for C₂₂H₂₁FN₂O₂ [M+H]⁺: 365.1660; Found: 365.1665.

5'-chloro-3-fluoro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indolin

e]-2',5(6H)-dione (5i)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (33.8 mg, 85% yield) as a brown solid. M.p. 157-158°C.

¹**H NMR** (500 MHz, CDCl₃) δ 9.06 (s, 1H), 7.57 (d, J = 9.0 Hz, 1H), 7.20 (d, J = 10.1 Hz, 2H), 7.03 (d, J = 8.0 Hz, 1H), 6.95 (dt, J = 17.9, 6.0 Hz, 2H), 3.91 (d, J = 15.8 Hz, 1H), 3.71 (d, J = 11.6 Hz, 1H), 3.51 (dd, J = 15.6, 10.2 Hz, 1H), 3.24 (d, J = 11.9 Hz, 1H), 2.51 (d, J = 11.9 Hz, 1H), 1.81 – 1.72 (m, 2H), 1.68 – 1.59 (m, 2H), 1.20 (d, J = 15.4 Hz, 4H). ¹³C **NMR** (125 MHz, CDCl₃) δ 196.1, 178.8, 156.6, 154.7, 151.6, 139.5, 131.5, 129.1, 127.9, 125.6, 123.9, 120.2, 115.8, 111.7, 71.6, 64.2, 47.6, 47.3, 29.8, 28.5, 27.4, 26.3 ppm. **HRMS (ESI):** calcd. for C₂₂H₂₀ClFN₂O₂ [M+H]⁺: 399.1270; Found: 399.1273.

1'-benzyl-2-methoxy-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indol

ine]-2',5(6H)-dione (5j)

Reaction time: 40 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (31.7 mg, 68% yield) as a brown solid. M.p. 168-169°C.

¹**H** NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.8 Hz, 1H), 7.24 (dd, J = 13.9, 6.5 Hz, 4H), 7.20 – 7.16 (m, 2H), 7.12 (td, J = 7.8, 1.1 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 6.50 (d, J = 2.1 Hz, 1H), 6.38 (dd, J = 8.9, 2.1 Hz, 1H), 4.87 (s, 2H), 3.93 (ddd, J = 16.2, 11.2, 2.1 Hz, 1H), 3.83 (d, J = 3.7 Hz, 1H), 3.79 (s, 3H), 3.65 (d, J = 10.6 Hz, 1H), 3.57 (dd, J = 12.2, 4.3 Hz, 1H), 2.16 (d, J = 10.7 Hz, 1H), 1.81 (ddt, J = 11.6, 8.1, 3.5 Hz, 1H), 1.75 (d, J = 4.0 Hz, 1H), 1.69 – 1.55 (m, 2H), 1.48 (dt, J = 15.0, 11.6 Hz, 1H), 1.32 (ddd, J = 13.8, 7.7, 4.4 Hz, 1H), 1.19 (d, J = 3.0 Hz, 1H), 0.99 (q, J = 12.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 177.4, 163.5, 157.6, 141.8, 135.8, 132.2, 130.8, 128.8, 128.5, 127.7, 127.3, 123.2, 123.1, 119.7, 109.1, 104.7, 99.9, 71.4, 62.9, 55.4, 47.7, 47.5, 43.8, 29.6, 28.9, 27.7, 26.3 ppm. HRMS (ESI): calcd. for C₃₀H₃₀N₂O₃ [M+H]⁺: 467.2329; Found: 467.2323.

1'-benzyl-3-fluoro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indolin

e]-2',5(6H)-dione (5k)

Reaction time: 40 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (35.4 mg, 78% yield) as a brown solid. M.p. 165-166°C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.48 (m, 1H), 7.27 – 7.20 (m, 5H), 7.13 (t, J = 7.4 Hz, 2H), 7.02 (dd, J = 6.4, 2.5 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.70 – 6.66 (m, 1H), 4.87 (s, 2H), 3.95 (ddd, J = 16.3, 9.8, 3.6 Hz, 1H), 3.83 (dt, J = 16.3, 3.7 Hz, 1H), 3.68 (d, J = 10.6 Hz, 1H), 3.48 (dd, J = 12.0, 4.4 Hz, 1H), 2.21 (d, J = 10.6 Hz, 1H), 1.76 (tt, J = 10.1, 8.1, 3.9 Hz, 2H), 1.70 – 1.64 (m, 1H), 1.63 – 1.54 (m, 1H), 1.50 – 1.42 (m, 1H), 1.32 (ddd, J = 15.1, 7.8, 4.5 Hz, 1H), 1.18 (s, 1H), 1.03 – 0.92 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 197.9, 177.1, 152.7, 141.8, 135.7, 130.5, 128.9, 128.6, 127.8, 127.3, 125.1, 123.2, 123.1, 120.4, 120.2, 116.4, 116.4, 114.9, 114.7, 109.2, 71.9, 63.9, 47.6, 43.8, 29.7, 29.7, 28.9, 27.9, 26.3 ppm. **HRMS (ESI):** calcd. for C₂₉H₂₇FN₂O₂ [M+H]⁺: 455.2129; Found: 455.2122.

1'-allyl-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6H)-

dione (5l)

Reaction time: 40 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (26.3 mg, 68% yield) as a brown solid. M.p. 162-163°C.

¹**H** NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 7.9, 1.7 Hz, 1H), 7.27 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 7.18 (d, J = 9.7 Hz, 2H), 7.08 – 6.99 (m, 2H), 6.76 (dd, J = 7.8, 5.7 Hz, 2H), 5.78 (ddt, J = 15.8, 10.5, 5.3 Hz, 1H), 5.18 (dd, J = 3.5, 1.9 Hz, 1H), 5.16 – 5.12 (m, 1H), 4.42 – 4.33 (m, 1H), 4.23 (ddt, = 16.3, 5.4, 1.7 Hz, 1H), 3.96 – 3.83 (m, 2H), 3.65 (d, J = 10.6 Hz, 1H), 3.52 (dd, J = 12.0,

4.3 Hz, 1H), 2.15 (d, J = 10.6 Hz, 1H), 1.85 – 1.70 (m, 1H), 1.69 – 1.53 (m, 2H), 1.46 (dt, J = 15.1, 11.5 Hz, 1H), 1.32 (ddd, J = 15.0, 7.7, 4.4 Hz, 1H), 1.19 (d, J = 6.5 Hz, 2H), 1.05 – 0.91 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) & 198.8, 176.8, 155.8, 141.8, 132.6, 131.3, 130.7, 130.1, 128.5, 125.1, 123.1, 123.1, 117.7, 117.6, 115.1, 108.9, 71.5, 63.5, 47.6, 47.3, 42.3, 29.5, 28.8, 27.9, 26.3 ppm. HRMS (ESI): calcd. for C₂₅H₂₆N₂O₂ [M+H]⁺: 387.2067; Found: 387.2064.

1'-methyl-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5m)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (23.8 mg, 66% yield) as a brown solid. M.p. 159-160°C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, J = 7.9, 1.8 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.25 (dd, J = 7.6, 1.2 Hz, 1H), 7.14 – 7.07 (m, 2H), 6.87 – 6.81 (m, 2H), 4.01 – 3.91 (m, 2H), 3.72 (d, J = 10.7 Hz, 1H), 3.57 (dd, J = 12.1, 4.4 Hz, 1H), 3.25 (s, 3H), 2.22 (d, J = 10.6 Hz, 1H), 1.92 – 1.77 (m, 2H), 1.76 – 1.70 (m, 1H), 1.69 – 1.63 (m, 1H), 1.55 – 1.43 (m, 1H), 1.37 – 1.34 (m, 1H), 1.30 – 1.25 (m, 1H), 1.10 – 0.97 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 199.1, 177.1, 155.7, 142.7, 132.6, 130.7, 130.1, 128.6, 125.1, 123.2, 123.1, 117.6, 115.1, 108.1, 71.5, 63.6, 47.4, 43.6, 29.4, 28.9, 27.9, 26.3, 26.2 ppm. **HRMS (ESI):** calcd. for C₂₃H₂₄N₂O₂ [M+H]⁺: 361.1911; Found: 361.1917.

1'-(cyclopropylmethyl)-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-in

doline]-2',5(6H)-dione (5n)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (27.2 mg, 68% yield) as a brown solid. M.p. 159-160°C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, J = 7.9, 1.7 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.25 (s, 1H), 7.14 – 7.05 (m, 2H), 6.93 (d, J = 7.8 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 4.00 – 3.91 (m, 2H), 3.72 (d, J = 10.6 Hz, 1H), 3.64 (dd, J = 9.0, 7.0 Hz, 2H), 3.59 – 3.54 (m, 1H), 2.23 (d, J = 10.6 Hz, 1H), 1.83 (tdd, J = 15.0, 11.0, 5.3 Hz, 2H), 1.73 (dt, J = 13.1, 3.5 Hz, 1H), 1.66 – 1.62 (m, 1H), 1.57 – 1.49 (m, 1H), 1.39 (ddd, J = 14.8, 7.9, 4.5 Hz, 1H), 1.31 – 1.16 (m, 2H), 1.12 – 0.98 (m, 1H), 0.58 – 0.50 (m, 2H), 0.46 – 0.38 (m, J = 5.1 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 199.1, 177.2, 155.8, 142.3, 132.6, 130.8, 130.1, 128.5, 125.1, 123.2, 122.9, 117.6, 115.1, 108.5, 71.5, 63.5, 47.4, 47.4, 44.2, 29.4, 29.1, 27.9, 26.3, 9.8, 3.9, 3.9 ppm. **HRMS (ESI):** calcd. for C₂₆H₂₈N₂O₂ [M+H]⁺: 401.2224; Found: 401.2227.

1'-allyl-1-methyl-2-phenyl-1,2-dihydrospiro[benzo[b]azepine-3,3'-indoline]-2',5(4H)-dione

Reaction time: 40 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:4) afforded the product (22.0 mg, 54% yield) as a brown solid. M.p. 147-148°C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.13 (dt, J = 23.1, 7.8 Hz, 3H), 7.01 – 6.87 (m, 7H), 6.77 – 6.66 (m, 2H), 6.42 – 6.34 (m, 1H), 5.78 (ddt, J = 16.4, 10.5, 5.4 Hz, 1H), 5.25 (d, J = 17.1 Hz, 1H), 5.18 (d, J = 10.3 Hz, 1H), 4.47 – 4.36 (m, 1H), 4.18 (dd, J = 16.3, 5.8 Hz, 1H), 3.93 (s, 1H), 3.85 (d, J = 13.8 Hz, 1H), 3.39 (d, J = 13.9 Hz, 1H), 2.94 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 200.4, 173.1, 160.7, 143.9, 137.3, 134.7, 131.5, 130.0, 128.6, 127.8, 126.6, 125.3, 124.2, 123.9, 122.1, 120.9, 117.8, 116.8, 109.1, 106.5, 74.5, 49.4, 42.6, 38.4, 28.8 ppm. **HRMS (ESI):** calcd. for C₂₇H₂₄N₂O₂ [M+H]⁺: 409.1911; Found: 409.1916.

Compounds 8:

6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(

6H)-one (8a)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (26.6 mg, 78% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.81 (t, J = 7.9, 1.8 Hz, 1H), 7.35 (d, J = 8.7, 7.0, 1.8 Hz, 1H), 6.70 – 6.56 (m, 2H), 4.04 (m, 1H), 3.91 (qd, J = 9.3, 8.8, 3.1 Hz, 1H), 3.88 – 3.84 (m, 1H), 3.82 (d, J = 9.8 Hz, 1H), 3.75 – 3.65 (m, 1H), 3.46 (dd, J = 11.3, 5.5 Hz, 1H), 3.26 (ddd, J = 15.3, 11.6, 5.4 Hz, 1H), 2.05 (m, 1H), 1.78 (m, 1H), 1.74 – 1.64 (m, 2H), 1.63 – 1.55 (m, 2H), 1.54 – 1.48 (m, 1H), 1.41 (m, 1H), 1.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 197.5, 148.3, 135.9, 128.3, 116.4, 115.4, 112.1, 74.0, 68.9, 66.3, 51.0, 48.5, 27.3, 26.1, 25.9, 25.3, 20.0, 15.3 ppm. HRMS (ESI): calcd. for C₁₈H₂₂F₃NO₂ [M+H]⁺: 342.1675, found: 342.1679.

2-methoxy-6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]

quinolin-5(6H)-one (8b)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (28.6 mg, 77% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.82 – 7.74 (m, 1H), 6.27 – 6.20 (d, J = 10.0 Hz, 1H), 6.08 – 6.02 (s, 1H), 4.02 (dd, J = 15.3, 6.1 Hz, 1H), 3.95 – 1.87 (m, 2H), 3.84 (s, 3H), 3.80 (d, J = 10.0 Hz, 1H), 3.75 – 3.62 (m, 1H), 3.43 (dd, J = 11.6, 5.3 Hz, 1H), 3.25 (ddd, J = 16.0, 12.2, 5.8 Hz, 1H), 2.05 (dt, J = 12.8, 6.4 Hz, 1H), 1.85 – 1.74 (m, 1H), 1.70 (m, 2H), 1.57 (dt, J = 19.5, 7.7 Hz, 3H), 1.42 (m, 1H), 1.34 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.1, 166.1, 150.1, 130.6, 111.1, 103.2, 95.6, 74.1, 68.9, 66.5, 55.2, 51.2, 48.3, 27.3, 26.5, 25.9, 25.3, 20.2, 15.3 ppm. **HRMS (ESI):** calcd. for C₁₉H₂₄F₃NO₃ [M+H]⁺: 372.1781, found: 372.1786.

1-fluoro-6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]q

uinolin-5(6H)-one (8c)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (30.9 mg, 86% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (s, 1H), 7.11 (d, J = 7.8, 2.7 Hz, 1H), 6.61 (td, J = 8.6, 3.7 Hz, 1H), 4.01 (dd, J = 15.7, 6.5 Hz, 1H), 3.94 – 3.86 (t, J = 4.9 Hz, 2H), 3.83 (t, J = 10.1 Hz, 1H), 3.81 – 3.68 (m, 1H), 3.44 (dd, J = 11.4, 5.4 Hz, 1H), 3.27 (m, 1H), 2.02 (tq, J = 13.0, 6.6, 6.1 Hz, 1H), 1.83 – 1.74 (m, 1H), 1.74 – 1.64 (m, 2H), 1.57 (p, J = 6.3, 5.4 Hz, 2H), 1.54 – 1.46 (m, 1H), 1.44 – 1.36 (m, 1H), 1.34 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 196.8, 155.2, 145.2, 123.8, 123.6, 113.5, 113.1, 73.8, 68.8, 66.3, 64.9, 51.2, 50.6, 27.3, 25.9, 25.2, 19.9, 15.2 ppm. HRMS (ESI): calcd. for C₁₈H₂₁F₃NO₂ [M+H]⁺: 360.1581, found: 360.1587.

6-((2-hydroxyethoxy)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)

-one (8d)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (25.8 mg, 85% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 – 7.68 (d, J = 7.9, 1.6 Hz, 1H), 7.26 (t, J = 8.6, 7.0, 1.5 Hz, 1H), 6.53 (m, 2H), 3.95 (m, 1H), 3.73 – 3.67 (m, 2H), 3.62 – 3.57 (m, 1H), 3.54 – 3.51 (m, 2H), 3.42 (q, J = 4.7 Hz, 1H), 3.37 – 3.30 (m, 1H), 3.16 (ddd, J = 15.3, 11.6, 5.5 Hz, 1H), 2.10 (s, 1H), 2.02 – 1.90 (m, 1H), 1.69 (tt, J = 11.8, 6.0 Hz, 1H), 1.60 (m, 2H), 1.49 – 1.45 (ddd, J = 18.7, 8.5, 4.0 Hz, 2H), 1.43 – 1.40 (m, 1H), 1.38 – 1.32 (m, 1H), 1.26 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.1, 148.4, 135.8, 128.4, 116.6, 115.4, 112.1, 72.7, 72.2, 66.9, 61.7, 50.9, 48.5, 27.3, 26.4, 26.1, 25.3, 20.3 ppm. **HRMS (ESI):** calcd. for C₁₈H₂₅NO₃ [M+H]⁺: 304.1907, found: 304.1904.

3-fluoro-6-((2-hydroxyethoxy)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quino

lin-5(6H)-one (8e)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (28.2 mg, 88% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.48 (s, 1H), 7.16 – 7.06 (m, 1H), 6.59 (d, J = 9.0, 4.2 Hz, 1H), 3.98 (m, 1H), 3.81 – 3.75 (m, 1H), 3.70 (dt, J = 5.0, 2.4 Hz, 1H), 3.62 (t, J = 6.5 Hz, 3H), 3.54 – 3.49 (m, 1H), 3.45 – 3.37 (m, 1H), 3.27 (td, J = 15.7, 13.7, 5.3 Hz, 1H), 2.19 (s, 1H), 2.02 (m, 1H), 1.76 (dt, J = 11.8, 6.0 Hz, 1H), 1.69 (q, J = 8.2, 7.4 Hz, 2H), 1.57 (m, 2H), 1.49 (dd, J = 8.4, 4.8 Hz, 1H), 1.40 (q, J = 6.8 Hz, 1H), 1.20 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.3, 153.4, 145.8, 123.7, 123.5, 113.5, 113.1, 72.9, 72.7, 65.7, 61.7, 50.7, 27.4, 26.1, 26.0, 25.4, 20.1, 15.5 ppm. **HRMS (ESI):** calcd. for C₁₈H₂₄FNO₃ [M+H]⁺: 322.1813, found: 322.1817.

1-ethyl-3-((2-hydroxyethoxy)methyl)-2,3-dimethyl-2,3-dihydroquinolin-4(1H)-one (8f)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (21.1 mg, 76% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 8.1, 1.8 Hz, 1H), 7.28 (t, J = 7.7, 7.0, 1.8 Hz, 1H), 6.56 (m, 2H), 3.75 – 3.67 (m, 1H), 3.61 (t, J = 4.6 Hz, 1H), 3.58 (d, J = 9.8 Hz, 1H), 3.56 – 3.52 (m, 2H), 3.44 (dt, J = 9.4, 4.6 Hz, 1H), 3.41 – 3.35 (m, 1H), 3.07 (m, 1H), 2.15 (s, 1H), 1.22 (d, J = 5.6 Hz, 1H), 1.20 (d, J = 7.3 Hz, 3H), 1.15 (s, 3H), 1.01 (t, J = 6.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.4, 148.1, 135.7, 128.5, 117.6, 115.6, 112.2, 74.3, 72.8, 61.7, 59.5, 50.1, 43.9, 15.7, 13.1, 11.2 ppm. HRMS (ESI): calcd. for C₁₆H₂₃NO₃ [M+H]⁺: 278.1751, found: 278.1758.

6-(methoxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (8g)

Reaction time: 8 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) afforded the product (20.8 mg, 76% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.9, 1.8 Hz, 1H), 7.32 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 6.64 – 6.56 (m, 2H), 4.03 (ddd, J = 15.3, 6.3, 2.0 Hz, 1H), 3.68 (d, J = 9.7 Hz, 1H), 3.52 (d, J = 9.8 Hz, 1H), 3.42 (dd, J = 11.3, 5.4 Hz, 1H), 3.37 (s, 3H), 3.25 – 3.23 (m, 1H), 2.08 – 1.98 (m, 1H), 1.78 – 1.72 (ddt, J = 13.7, 11.3, 5.7 Hz, 2H), 1.69 – 1.65 (m, 2H), 1.59 – 1.52 (m, 2H), 1.39 (ddt, J = 13.7, 9.0, 4.6 Hz, 1H), 1.31 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.1, 148.3, 135.7, 128.3, 116.5, 115.2, 112.1, 73.9, 66.6, 59.4, 50.9, 48.3, 27.4, 26.2, 25.9, 25.3, 20.3 ppm. **HRMS (ESI):** calcd. for C₁₇H₂₃NO₂ [M+H]⁺: 274.1802; Found: 274.1808.

3-fluoro-6-((methoxy-d₃)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(

6H)-one (8h)

Reaction time: 8 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) afforded the product (24.1 mg, 82% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 7.11 (t, *J* = 8.5 Hz, 1H), 6.59 (d, *J* = 3.8, 2.8 Hz, 1H), 3.99 (td, *J* = 17.6, 16.7, 5.8 Hz, 1H), 3.68 (dd, *J* = 9.8, 2.2 Hz, 1H), 3.55 (m, 1H), 3.43 (dd, *J* = 11.5, 5.2 Hz, 1H), 3.33 – 3.19 (m, 1H), 2.03 (ddd, *J* = 17.9, 8.6, 4.6 Hz, 1H), 1.77 (dt, *J* = 12.0, 6.9 Hz, 1H), 1.74 – 1.65 (m, 2H), 1.64 – 1.53 (m, 2H), 1.53 – 1.46 (m, 1H), 1.39 (d, *J* = 10.3 Hz, 1H), 1.32 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 197.5, 155.1, 145.2, 123.6, 123.4, 113.3, 112.9, 73.6, 66.6, 58.6, 51.1, 48.6, 27.4, 25.9, 25.2, 20.2, 15.5 ppm. HRMS (ESI): calcd. for C₁₇H₁₉D₃FNO₂ [M+H]⁺: 295.1896, found: 295.1892.

6-(ethoxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (8i)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) afforded the product (21.5 mg, 75% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.8, 1.8 Hz, 1H), 7.32 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 6.64 – 6.55 (m, 2H), 4.03 (ddd, J = 15.1, 6.4, 2.0 Hz, 1H), 3.70 (d, J = 9.8 Hz, 1H), 3.56 – 3.49 (m, 2H), 3.46 – 3.40 (m, 1H), 3.29 – 3.23 (m, 1H), 2.09 – 2.01 (m, 1H), 1.78 – 1.72 (ddt, J = 19.5, 9.1, 5.5 Hz, 2H), 1.71 – 1.64 (m, 2H), 1.58 – 1.54 (m, 2H), 1.48 (ddd, J = 11.6, 7.6, 3.6 Hz, 1H), 1.42 – 1.35 (m, 1H), 1.32 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.4, 148.4, 135.7, 128.3, 116.6, 115.2, 112.1, 71.3, 66.9, 66.6, 50.9, 48.3, 27.4, 26.1, 26.1, 25.3, 20.4, 15.1 ppm. **HRMS (ESI):** calcd. for C₁₈H₂₅NO₂ [M+H]⁺: 288.1958; Found: 288.1952.

6-(butoxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (8j)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:10) afforded the product (25.8 mg, 82% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.71 (dd, J = 7.9, 1.8 Hz, 1H), 7.24 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 6.53 (d, J = 8.6 Hz, 1H), 6.50 (ddd, J = 7.8, 6.9, 1.0 Hz, 1H), 3.95 (ddd, J = 15.2, 6.4, 2.1 Hz, 1H), 3.62 (d, J = 9.7 Hz, 1H), 3.46 (d, J = 9.7 Hz, 1H), 3.43 – 3.38 (m, 1H), 3.38 – 3.33 (m, 2H), 3.17 (ddd, J = 15.2, 11.6, 5.6 Hz, 1H), 1.95 (m, 1H), 1.74 – 1.55 (m, 3H), 1.49 (m, 4H), 1.43 – 1.35 (m, 1H), 1.34 – 1.27 (m, 3H), 1.24 (s, 3H), 0.86 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ

197.4, 147.4, 134.6, 127.3, 115.6, 114.1, 110.9, 70.5, 70.3, 65.6, 49.8, 47.4, 30.6, 26.3, 25.1, 24.9, 24.3, 19.4, 18.4, 12.9 ppm. **HRMS (ESI):** calcd. for C₂₀H₂₉NO₂ [M+H]⁺: 316.2271; Found: 316.2278.

6-methyl-6-(((2-methylbut-3-yn-2-yl)oxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quin

olin-5(6H)-one (8k)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (20.8 mg, 64% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (dd, J = 7.9, 1.8 Hz, 1H), 7.33 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 6.64 – 6.55 (m, 2H), 4.03 (ddd, J = 15.2, 6.4, 2.1 Hz, 1H), 3.87 (d, J = 9.4 Hz, 1H), 3.69 (d, J = 9.4 Hz, 1H), 3.40 (dd, J = 11.3, 5.3 Hz, 1H), 3.29 – 3.20 (m, 1H), 2.39 (s, 1H), 2.03 (m, 1H), 1.81 (tt, J = 10.3, 4.4 Hz, 1H), 1.76 – 1.72 (m, 1H), 1.70 – 1.64 (m, 1H), 1.62 – 1.60 (m, 1H), 1.58 – 1.55 (m, 1H), 1.54 – 1.50 (m, 1H), 1.48 (s, 3H), 1.47 (s, 3H), 1.44 – 1.34 (m, 1H), 1.30 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.5, 148.4, 135.6, 128.3, 116.6, 115.1, 111.9, 85.9, 72.1, 69.9, 66.5, 64.7, 50.9, 48.1, 28.9, 28.5, 27.4, 26.1, 25.9, 25.4, 20.3 ppm. **HRMS (ESI):** calcd. for C₂₁H₂₇NO₂ [M+H]⁺: 326.2115, found: 326.2112.

6-((but-3-en-1-yloxy)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)

-one (8l)

Reaction time: 20 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:25) afforded the product (19.4 mg, 62% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.8, 1.7 Hz, 1H), 7.37 – 7.28 (m, 1H), 6.63 – 6.53 (m, 2H), 5.83 (ddt, J = 17.1, 10.3, 6.7 Hz, 1H), 5.17 – 4.98 (m, 2H), 4.03 (ddd, J = 15.2, 6.4, 2.0 Hz, 1H), 3.71 (d, J = 9.6 Hz, 1H), 3.58 – 3.54 (m, 1H), 3.48 (dt, J = 9.6, 6.7 Hz, 1H), 3.42 (dd, J = 10.8, 5.9 Hz, 1H), 3.24 (ddd, J = 15.3, 11.5, 5.5 Hz, 1H), 2.35 (m, 2H), 2.03 (m, 1H), 1.78 – 1.70 (m, 2H), 1.69 – 1.65 (m, 2H), 1.59 – 1.55 (m, 2H), 1.54 – 1.45 (m, 1H), 1.43 – 1.36 (m, 1H), 1.31 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 198.3, 148.4, 135.7, 135.4, 128.3, 116.6, 116.3, 115.2, 112.1, 71.6, 70.9, 66.6, 50.9, 48.4, 34.1, 27.4, 26.1, 26.1, 25.3, 20.4 ppm. **HRMS (ESI):** calcd. for C₂₀H₂₇NO₂ [M+H]⁺: 314.2115, found: 314.2112.

1-phenyl-2-((2,2,2-trifluoroethoxy)methyl)prop-2-en-1-one (10)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) afforded the product (22.5 mg, 92% yield) as a colourless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.79 – 7.75 (m, 2H), 7.59 – 7.55 (m, 1H), 7.49 – 7.43 (m, 2H), 6.20 (d, J = 1.6 Hz, 1H), 5.88 (q, J = 1.0 Hz, 1H), 4.54 (d, J = 1.4 Hz, 2H), 3.94 (q, J = 8.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 196.3, 143.4, 137.2, 132.6, 129.4, 128.4, 127.4, 125.1, 122.8, 71.2, 68.6, 29.7 ppm. HRMS (ESI): calcd. for C₁₂H₁₁F₃O₂ [M+H]⁺: 245.0784, found: 245.0789.

1-(2-fluorophenyl)-2-((2,2,2-trifluoroethoxy)methyl)prop-2-en-1-one (12)

Reaction time: 36 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:30) afforded the product (24.6 mg, 94% yield) as a colourless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.48 (m, 1H), 7.48 – 7.42 (m, 1H), 7.23 (td, J = 7.5, 1.1 Hz, 1H), 7.13 (ddd, J = 9.5, 8.3, 1.1 Hz, 1H), 6.28 (t, J = 1.6 Hz, 1H), 5.93 (t, J = 1.6 Hz, 1H), 4.54 (d, J = 1.4 Hz, 2H), 3.94 (q, J = 8.6 Hz, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 193.6, 160.8, 158.8, 144.3, 132.9, 130.3, 129.9, 124.2, 116.2, 70.1, 68.3, 29.7 ppm. **HRMS** (ESI): calcd. for C₁₂H₁₀F₄O₂ [M+H]⁺: 263.0690, found: 263.0697.

6-(hydroxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (13)

Reaction time: 24 h. Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:1) afforded the product (21.3 mg, 82% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.81 (dd, J = 7.8, 1.7 Hz, 1H), 7.38 (ddd, J = 8.7, 7.0, 1.8 Hz, 1H), 6.69 - 6.62 (m, 2H), 4.12 - 4.05 (m, 1H), 3.79 - 3.63 (m, 1H), 3.46 (d, J = 11.2 Hz, 1H), 3.32 - 3.24 (m, 1H), 3.21 (dd, J = 11.7, 5.4 Hz, 1H), 2.95 (s, 1H), 2.08 - 2.05 (m, 1H), 1.82 - 1.76 (m, 1H), 1.74 - 1.65 (m, 2H), 1.62 - 1.54 (m, 2H), 1.52 - 1.42 (m, 2H), 1.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 200.9, 148.4, 136.2, 128.3, 116.3, 115.6, 112.2, 68.7, 65.4, 51.1, 50.5, 27.2, 25.9, 25.2, 19.3, 14.9 ppm. **HRMS (ESI):** calcd. for C₁₆H₂₁NO₂ [M+H]⁺: 260.1645, found: 260.1649.

4. Crystal Structures and Data

3f (CCDC: 2124513)

Table 1. Crystal data and structure refinement for 3f.

Identification code	3f
Empirical formula	$C_{21}H_{22}N_2O_3$
Formula weight	350.40
Temperature	293(2) K
Wavelength	1.54184 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 8.2810(10) A alpha = 71.987(9) deg.
	b = 9.4019(9) A beta = 87.243(9) deg.
	c = 12.3847(13) A gamma = 75.194(9) deg.
Volume	886.04(18) A^3
Z, Calculated density	2, 1.313 Mg/m^3
Absorption coefficient	0.713 mm^-1
F(000)	372
Crystal size	0.140 x 0.120 x 0.120 mm
Theta range for data collection	3.755 to 67.246 deg.
Limiting indices	-9<=h<=9, -10<=k<=11, -14<=l<=14
Reflections collected / unique	5368 / 3144 [R(int) = 0.0220]
Completeness to theta = 67.246	99.1 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3144 / 0 / 236
Goodness-of-fit on F^2	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0481, wR2 = 0.1135
R indices (all data)	R1 = 0.0632, $wR2 = 0.1260$
Extinction coefficient	0.0189(11)
Largest diff. peak and hole	0.188 and -0.169 e.A^-3

5d (CCDC: 2124547)

Table 2. Crystal data and structure refinement for 5d.

Identification code	5d	
Empirical formula	$C_{22}H_{21}BrN_2O_2$	
Formula weight	425.32	
Temperature	293(2) K	
Wavelength	1.54184 A	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 13.8236(3) A alpha = 90 deg.	
	b = 19.2351(5) A beta = 91.195(3) deg.	
	c = 8.2291(3) A gamma = 90 deg.	
Volume	2187.62(10) A^3	
Z, Calculated density	4, 1.291 Mg/m^3	
Absorption coefficient	2.696 mm^-1	
F(000)	872	
Crystal size	0.120 x 0.120 x 0.110 mm	
Theta range for data collection	3.198 to 71.047 deg.	
Limiting indices	-15<=h<=16, -16<=k<=23, -10<=l<=10	
Reflections collected / unique	14147 / 4181 [R(int) = 0.0384]	
Completeness to theta $= 67.684$	100.0 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4181 / 0 / 244	
Goodness-of-fit on F^2	0.905	
Final R indices [I>2sigma(I)]	R1 = 0.0525, wR2 = 0.1973	
R indices (all data)	R1 = 0.0689, wR2 = 0.2204	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.628 and -0.993 e.A^-3	

5. ¹H and ¹³C NMR Spectra

Compounds 3:

6-benzyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3a)

7.927.7377.7377.74377.74377.74377.74377.74377.74377.74377.74377.74377.77377.77377.77377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.773377.772377.772377.722377.723

6-(4-methoxybenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3b)

$\begin{array}{c} 7.38\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.73\\$

6-(4-fluorobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3c)

6-(4-chlorobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3d)

6-(2-bromobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3e)

7.7.7.9 7.7.8 7.7.8 7.7.8 7.7.8 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7

6-(4-nitrobenzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3f)

6-(2-fluoro-5-(trifluoromethyl)benzyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-

one (3g)

2-methoxy-6-(pyridin-4-ylmethyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one

110 100 f1 (ppm) 140 130 120 6-((4-oxo-4H-chromen-3-yl)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-on

e (3l)

5-(pyridin-2-ylmethyl)-1,2,3,4,4a,5-hexahydro-6H-pyrido[1,2-a]quinolin-6-one (3m)

1-ethyl-2-methyl-3-(pyridin-2-ylmethyl)-2,3-dihydroquinolin-4(1H)-one (30)

$\begin{array}{c} 8.8 \\$

6-ethyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3q)

6-(2-bromobenzyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (3r)

Compounds 5:

7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6H)-dione

(5a)

5'-methyl-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5b)

5'-chloro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5c)

6'-bromo-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5d)

7'-bromo-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5e)

8 80 8 90 8 90 8 90 9 90

2-methoxy-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5f)

5'-chloro-2-methoxy-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indol inel_2' 5(6H)-dione (5g)

3-fluoro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6H

)-dione (5h)

5'-chloro-3-fluoro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indolin

1'-benzyl-2-methoxy-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indol ine]-2',5(6H)-dione (5j)

 $\begin{array}{c} 7.78\\ 7.78\\ 7.72$

1'-benzyl-3-fluoro-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indolin e]-2',5(6H)-dione (5k)

 $\begin{array}{c} 7.52\\ 7.751\\ 7.751\\ 7.752\\ 7.752\\ 7.725\\ 7.7$

1'-allyl-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6H)-

dione (5l)

1'-methyl-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-indoline]-2',5(6

H)-dione (5m)

1'-(cyclopropylmethyl)-7a,8,9,10,11,12-hexahydrospiro[azepino[1,2-a]benzo[f]azepine-7,3'-in doline]-2',5(6H)-dione (5n)

1'-allyl-1-methyl-2-phenyl-1,2-dihydrospiro[benzo[b]azepine-3,3'-indoline]-2',5(4H)-dione

(50)

77.117 77.117 77.118 77

Compounds 8:

6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(

6H)-one (8a)

	00000000000044	00-0040000000-	0000007700000000
000000000000000000000000000000000000000	x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0	x x x 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	, , , , , , , , , , , , , , , , , , ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		1 1 1 1 1 1 1 1 L L L L L L I	

NOESY of 6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino- [1,2-

a]quinolin-5(6H)-one (8a)

2-methoxy-6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a] quinolin-5(6H)-one (8b)

1-fluoro-6-methyl-6-((2,2,2-trifluoroethoxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]q uinolin-5(6H)-one (8c)

6-((2-hydroxyethoxy)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)

-one (8d)

3-fluoro-6-((2-hydroxyethoxy)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quino lin-5(6H)-one (8e)

7.7.50 7.

1-ethyl-3-((2-hydroxyethoxy)methyl)-2,3-dimethyl-2,3-dihydroquinolin-4(1H)-one (8f)

6-(methoxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (8g)

3-fluoro-6-((methoxy-d₃)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(

6H)-one (8h)

 $\begin{array}{c} 7.50\\ 7.74\\ 7.74\\ 7.74\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.72\\$

6-(ethoxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (8i)

6-methyl-6-(((2-methylbut-3-yn-2-yl)oxy)methyl)-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quin olin-5(6H)-one (8k)

6-((but-3-en-1-yloxy)methyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)

-one (8l)

7.7.80 7.7.78 7.7.78 7.7.78 7.7.78 7.7.78 7.7.78 7.7.73 7.

1-phenyl-2-((2,2,2-trifluoroethoxy)methyl)prop-2-en-1-one (10)

-71.22 -68.55 -29.69

1-(2-fluorophenyl)-2-((2,2,2-trifluoroethoxy)methyl)prop-2-en-1-one (12)

CF₃ 0

180 170

160 150

100 90 f1 (ppm) 80 70 60

50 40 30 20 10 0

140 130 120 110
6-(hydroxymethyl)-6-methyl-6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinolin-5(6H)-one (13)

