Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Cobalt-Catalyzed Carbonylative Synthesis of Free (NH)-Tetrahydro-

β-Carbolinones from Tryptamine Derivatives

Yiwen Zhu, ^a Binghu Guo, ^a Shenkui Gao, ^a Jun Ying, ^{*a} and Xiao-Feng Wu ^{*b}

^a Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.

^b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China; Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.

*E-mail: yingjun@zstu.edu.cn

*E-mail: xiao-feng.wu@catalysis.de

Table of Contents

 General experimental information	S1 S1 S2		
		4. General procedure for the synthesis of N-substituted tryptamine derivatives (3a-3l)	S2
		5. General procedure for the synthesis of (<i>NH</i>)-tetrahydro-β-carbolinones (2a-2j, 4a-4l)	S3
6. General procedure for the synthesis of bioactive molecules (5, 6, 7)	S4		
7. Characterization data of substrates (1a-1j, 3a-3l)	S5		
8. Characterization data of products (2a-2j, 4a-4l, 5, 6, 7)	S15		
9. References	S23		
10. ¹ H, ¹³ C spectra of substrates (1a-1j, 3a-3l) and products (2a-2j, 4a-4l, 5, 6, 7)	S24		

1. General experimental information

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. All commercially available reagents were used without further purification. All of the solvents were treated according to known methods. Column chromatography was performed on silica gel (200-400 mesh). ¹H NMR (400 MHz) chemical shifts were reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. ¹³C NMR (100 MHz) chemical shifts were reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, qd = quartet of doublets, m = multiplet), coupling constants (Hz) and integration. HRMS measurements were obtained on a TOF analyzer.

2. Preparation of benzene-1,3,5-triyl triformate (TFBen)^[1]

Formic acid (8.4 mL, 222.8 mmol, 5.0 equiv) was added to acetic anhydride (16.8 mL, 178.2 mmol, 4.0 equiv) at r.t. The mixture was stirred at 60 °C for 1 h and cooled to r.t. The resulting solution was poured into a flask containing 1,3,5-trihydroxybenzene (5.62 g, 44.6 mmol, 1.0 equiv) and AcONa (1.83 g, 22.3 mmol, 0.5 equiv). The mixture was stirred for 4 h in a water bath and then diluted with toluene (100 mL), washed with H₂O (50 mL) twice. Keep the organic phase in fridge (2-8 °C) for overnight. Then filtered and dried in vacuo to afford the desired product benzene-1,3,5-triyl triformate (TFBen) as a white solid (5.1 g, 55%).

3. General procedure for the synthesis of tryptamine derivatives (1a-1j)

Tryptamine **1'** (3.0 mmol, 1.0 equiv), picolinic acid (3.3 mmol, 1.1 equiv), HOBT (3.3 mmol, 1.1 equiv), DIPEA (9.0 mmol, 3.0 equiv), and EDCI (3.3 mmol, 1.1 equiv) were added to an ovendried flask (50 mL). Then DCM (15 mL) was added into the flask via syringe. The flask was sealed and stirred at r.t. for 12 h. Upon the reaction was completed, the resulting mixture was purified by silica gel column using chromatography (PE / EA = 1:1) to obtain product **1**.

4. General procedure for the synthesis of *N*-substituted tryptamine derivatives (3a-3l)

Method A: The tryptamine derivative **1a** (3.0 mmol, 1.0 equiv) and DMF (5.0 mL) were added to an oven-dried tube (15 mL). NaH (4.5 mmol, 1.5 equiv) was added dropwise via syringe at 0 °C and the reaction was stirred at r.t. for 1 h. Then an alkyl halide (3.0 mmol, 1.0 equiv) was added into the tube via syringe at 0 °C and the reaction was stirred at r.t. for 1 h. Upon the reaction was completed, the mixture was quenched with water, extracted with DCM, dried over Na₂SO₄ and purified by silica gel column using chromatography (PE / EA = 2:1) to obtain product **3**.

Method B: The tryptamine derivative **1a** (3.0 mmol, 1.0 equiv), CuI (0.3 mmol, 10 mol %), Cs_2CO_3 (6.0 mmol, 2.0 equiv) were added to an oven-dried tube (15 mL) which was then placed under vacuum and refilled with nitrogen three times. Then an aryl iodide (6.0 mmol, 2.0 equiv) and DMF (5.0 mL) were added into the tube via syringe. The reaction was stirred at 120 °C for 16 h. Upon the reaction was completed, the mixture was quenched with water, extracted with DCM, dried over Na₂SO₄ and purified by silica gel column using chromatography (PE / EA = 2:1) to obtain product **3**.

5. General procedure for the synthesis of (*NH*)-tetrahydro-β-carbolinones (2a-2j, 4a-4l)

 $Co(OAc)_2 \cdot 4H_2O$ (15.0 mg, 30 mol%), Ag₂CO₃ (82.5 mg, 1.5 equiv), tryptamine derivative 1 (0.2 mmol, 1.0 equiv), and TFBen (126.0 mg, 0.6 mmol, 3.0 equiv) were added to an oven-dried tube (15 mL) which was then placed under vacuum and refilled with nitrogen three times. Then Et₃N (70.5 mg, 0.7 mmol, 3.5 equiv), PivOH (10.1 mg, 0.1 mmol, 0.5 equiv) and dioxane (2.0 mL) were added into the tube via syringe. The tube was sealed and stirred at 120 °C for 20 h. Upon the reaction was completed, the resulting mixture was purified by silica gel column using chromatography (PE / EA = 1:1) to obtain product **2**.

 $Co(OAc)_2 \cdot 4H_2O$ (15.0 mg, 30 mol%), Ag₂CO₃ (82.5 mg, 1.5 equiv), *N*-substituted tryptamine derivative **3** (0.2 mmol, 1.0 equiv), and TFBen (126.0 mg, 0.6 mmol, 3.0 equiv) were added to an oven-dried tube (15 mL) which was then placed under vacuum and refilled with nitrogen three times. Then Et₃N (80.5 mg, 0.8 mmol, 4.0 equiv) and dioxane (2.0 mL) were added into the tube via syringe. The tube was sealed and stirred at 130 °C for 20 h. Upon the reaction was completed, the resulting mixture was purified by silica gel column using chromatography (PE / EA = 1:1) to obtain product **4**.

6. General procedure for the synthesis of bioactive molecules (5, 6, 7)

To a solution of carboxylic acid (1.5 mmol, 1.0 equiv) in DCM (10 mL) was added oxalyl chloride (3.0 mmol, 2.0 equiv) dropwise at 0 °C. The reaction was stirred at r.t. for 3 h to give the acyl chloride without further purification.

The (*NH*)-tetrahydro- β -carbolinone **2a** (0.2 mmol, 1.0 equiv), the corresponding acyl chloride (0.8 mmol, 4.0 equiv), and toluene (2.0 mL) were added to an oven-dried tube (15 mL). The reaction was stirred at 130 °C for 8-24 h. Upon the reaction was completed, the resulting mixture was purified by silica gel column using chromatography (PE / EA = 3:1) to obtain product **5**, **6**, **7**.

7. Characterization data of substrates (1a-1j, 3a-3l)

N-(**2**-(**1***H*-indol-3-yl)ethyl)picolinamide (1a). Yellow solid, mp: 115.6 – 116.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, *J* = 4.7, 0.6 Hz, 1H), 8.22 (d, *J* = 7.8 Hz, 2H), 7.83 (td, *J* = 7.7, 1.7 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.21 (t, *J* = 7.1 Hz, 1H), 7.13 (t, *J* = 7.0 Hz, 1H), 7.08 (d, *J* = 2.2 Hz, 1H), 3.83 (dd, *J* = 13.3, 7.0 Hz, 2H), 3.12 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 137.3, 136.5, 127.4, 126.1, 122.2, 122.12, 122.06, 119.4, 118.9, 113.1, 111.2, 39.8, 25.6.

N-(2-(6-methyl-1*H*-indol-3-yl)ethyl)picolinamide (1b). Yellow solid, mp: 146.3 – 147.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.4 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 2H), 8.00 (s, 1H), 7.83 (td, *J* = 7.7, 1.5 Hz, 1H), 7.52 (d, *J* = 8.6 Hz, 1H), 7.39 (dd, *J* = 6.7, 5.0 Hz, 1H), 6.97 (s, 1H), 6.86 (d, *J* = 1.9 Hz, 1H), 6.79 (dd, *J* = 8.6, 2.1 Hz, 1H), 3.84 (s, 3H), 3.81 – 3.78 (m, 2H), 3.07 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 156.6, 150.1, 148.1, 137.3, 137.2, 126.1, 122.2, 121.9, 120.7, 119.5, 113.2, 109.4, 94.8, 55.7, 39.8, 25.7.

N-(2-(6-chloro-1*H*-indol-3-yl)ethyl)picolinamide (1c). Yellow solid, mp: 154.6 – 155.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.01 (s, 1H), 8.93 (t, *J* = 5.5 Hz, 1H), 8.66 (d, *J* = 3.9 Hz, 1H), 8.10 (d, *J* = 7.7 Hz, 1H), 8.03 (td, *J* = 7.6, 1.6 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.63 – 7.60 (m, 1H),

7.44 (d, J = 1.6 Hz, 1H), 7.29 (s, 1H), 7.04 (dd, J = 8.4, 1.8 Hz, 1H), 3.65 (dd, J = 13.7, 6.8 Hz, 2H), 3.01 (t, J = 7.3 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.3, 150.5, 148.8, 138.2, 137.1, 126.9, 126.6, 126.3, 124.3, 122.3, 120.3, 119.1, 112.7, 111.5, 25.5.

N-(2-(5-methyl-1*H*-indol-3-yl)ethyl)picolinamide (1d). Yellow solid, mp: 153.1 – 154.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 4.7 Hz, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 8.09 (s, 1H), 7.87 (td, *J* = 7.7, 1.7 Hz, 1H), 7.47 (s, 1H), 7.43 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 7.30 (t, 1H), 7.06 (d, *J* = 8.6 Hz, 2H), 3.85 (d, *J* = 6.8 Hz, 2H), 3.12 (t, *J* = 7.0 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 137.3, 134.8, 128.7, 127.7, 126.0, 123.7, 122.2, 118.6, 112.7, 110.9, 39.9, 25.6, 21.5.

N-(2-(5-methoxy-1*H*-indol-3-yl)ethyl)picolinamide (1e). Yellow solid, mp: 116.3 – 117.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.7 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 2H), 8.01 (s, 1H), 7.84 (td, *J* = 7.7, 1.6 Hz, 1H), 7.40 (ddd, *J* = 7.5, 4.8, 0.9 Hz, 1H), 7.27 – 7.25(m, 1H), 7.07 (t, *J* = 2.5 Hz, 2H), 6.86 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.84 – 3.79 (m, 5H), 3.08 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 154.1, 150.1, 148.1, 137.3, 131.5, 127.8, 126.1, 122.8, 122.2, 113.0, 112.5, 111.9, 100.6, 55.9, 39.8, 25.6.

N-(2-(5-fluoro-1*H*-indol-3-yl)ethyl)picolinamide (1f). Yellow solid, mp: 118.6 – 119.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.7 Hz, 1H), 8.40 (s, 1H), 8.23 (s, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.83 (td, *J* = 7.7, 1.2 Hz, 1H), 7.40 (dd, *J* = 7.0, 5.2 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.10 (s, 1H), 6.93 (td, J = 9.1, 2.3 Hz, 1H), 3.79 (q, J = 6.8 Hz, 2H), 3.05 (t, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 157.8 (d, J = 234.5 Hz), 149.9, 148.1, 137.4, 132.9, 127. 8 (d, J = 9.6 Hz), 126.2, 123.9, 122.2, 113.2 (d, J = 4.7 Hz), 111.9 (d, J = 9.6 Hz), 110.4 (d, J = 26.3 Hz), 103.7 (d, J = 23.4 Hz), 39.8, 25.5.

N-(2-(5-chloro-1*H*-indol-3-yl)ethyl)picolinamide (1g). Yellow solid, mp: 119.8 – 120.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.6 Hz, 1H), 8.36 (s, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.83 (td, *J* = 7.7, 1.6 Hz, 1H), 7.59 (d, *J* = 1.7 Hz, 1H), 7.40 (ddd, *J* = 7.5, 4.8, 0.9 Hz, 1H), 7.27 (d, *J* = 6.8 Hz, 1H), 7.13 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.09 (d, *J* = 2.1 Hz, 1H), 3.79 (q, *J* = 6.8 Hz, 2H), 3.05 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 149.9, 148.1, 137.4, 134., 128.54, 126.2, 125.2, 123.5, 122.4, 122.2, 118.4, 113.0, 112.2, 39.9, 25.5.

N-(**2**-(**5**-bromo-1*H*-indol-3-yl)ethyl)picolinamide (1h). Yellow solid, mp: 139.6 – 139.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.50 (dd, *J* = 4.7, 0.6 Hz, 1H), 8.24 (s, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.82 (td, *J* = 7.7, 1.7 Hz, 1H), 7.74 (s, 1H), 7.39 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 7.24 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.20 (d, *J* = 8.5 Hz, 1H), 7.03 (d, *J* = 2.1 Hz, 1H), 3.78 (q, *J* = 6.9 Hz, 2H), 3.04 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 149.9, 148.2, 137.4, 135.1, 129.2, 126.2, 124.9, 123.4, 122.2, 121.4, 112.8, 112.74, 112.65, 39.9, 25.4.

N-(2-(4-chloro-1*H*-indol-3-yl)ethyl)picolinamide (1i). Yellow solid, mp: 140.8 – 141.5 °C; ¹¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.6 Hz, 1H), 8.42 (s, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.83 (td,

J = 7.7, 1.6 Hz, 1H), 7.40 (dd, J = 7.5, 4.8 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.09 – 7.06 (m, 3H), 3.86 (q, J = 6.9 Hz, 2H), 3.34 (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 138.0, 137.3, 126.4, 126.1, 124.2, 123.8, 122.6, 122.2, 120.5, 113.4, 110.1, 40.9, 26.6.

N-(2-(5,6-dichloro-1*H*-indol-3-yl)ethyl)picolinamide (1j). Yellow solid, mp: 185.6 – 186.3 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.16 (s, 1H), 8.96 (t, *J* = 6.0 Hz, 1H), 8.68 (d, *J* = 4.5 Hz, 1H), 8.09 (d, *J* = 7.7 Hz, 1H), 8.03 (td, *J* = 7.6, 1.6 Hz, 1H), 7.92 (s, 1H), 7.65 – 7.63 (m, 1H), 7.62 (s, 1H), 7.37 (d, *J* = 2.1 Hz, 1H), 3.61 (dd, *J* = 13.9, 6.9 Hz, 2H), 2.99 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.2, 150.5, 148.8, 138.2, 135.6, 127.9, 126.9, 126.1, 123.7, 122.3, 121.4, 120.2, 113.3, 112.6, 25.4.

N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)picolinamide (3a). Yellow solid, mp: 62.3 - 63.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 4.6 Hz, 1H), 8.24 (d, J = 7.8 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.38 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 15.0 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 6.94 (s, 1H), 3.83 (q, J = 6.7 Hz, 2H), 3.74 (s, 3H), 3.12 (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 137.3, 137.2, 127.9, 126.8, 126.1, 122.2, 121.7, 119.0, 118.9, 111.7, 109.3, 40.0, 32.7, 25.6.

N-(2-(1-benzyl-1*H*-indol-3-yl)ethyl)picolinamide (3b). Yellow solid, mp: 75.3 – 76.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 4.6 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.84 (td, *J* = 7.7, 1.6 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.40 (ddd, *J* = 7.4, 4.8, 0.9 Hz, 1H), 7.30 – 7.28 (m, 2H), 7.25 (d,

J = 5.4 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.13 (dd, J = 10.2, 4.3 Hz, 3H), 7.03 (s, 1H), 5.29 (s, 2H), 3.83 (q, J = 6.9 Hz, 2H), 3.12 (t, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 150.1, 148.0, 137.7, 137.3, 136.8, 128.8, 128.1, 127.6, 126.8, 126.3, 126.0, 122.2, 121.9, 119.2, 119.1, 112.3, 109.8, 50.0, 39.7, 25.6.

N-(2-(1-(4-methylbenzyl)-1*H*-indol-3-yl)ethyl)picolinamide (3c). Yellow solid, mp: 96.5 – 97.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.6 Hz, 1H), 8.30 (d, *J* = 4.1 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.82 (t, *J* = 7.7 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.24 – 7.16 (m, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.25 – 7.15 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 7.04 (s, 1H), 5.24 (s, 2H), 3.90 – 3.84 (m, 2H), 3.16 (t, *J* = 7.0 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.2, 148.1, 137.35, 137.26, 136.9, 134.7, 129.5, 128.2, 127.0, 126.3, 126.1, 122.2, 121.9, 119.23, 119.17, 112.2, 109.9, 49.8, 39.9, 25.7, 21.2.

N-(2-(1-(4-chlorobenzyl)-1*H*-indol-3-yl)ethyl)picolinamide (3d). Yellow solid, mp: 103.3 – 104.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.7 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.83 (td, *J* = 7.7, 1.6 Hz, 1H), 7.69 (d, *J* = 7.7 Hz, 1H), 7.40 (ddd, *J* = 7.5, 4.8, 0.9 Hz, 1H), 7.24 – 7.18 (m, 4H), 7.16 – 7.12 (m, 1H), 7.03 (s, 1H), 7.01 (s, 2H), 5.23 (s, 2H), 3.83 (q, *J* = 6.8 Hz, 2H), 3.12 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 150.1, 148.0, 137.3, 136.7, 136.2, 133.4, 128.9, 128.1, 126.11, 126.09, 122.2, 122.1, 119.4, 119.2, 112.6, 109.7, 49.3, 39.7, 25.5.

N-(2-(1-(4-(trifluoromethoxy)benzyl)-1*H*-indol-3-yl)ethyl)picolinamide (3e). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.7 Hz, 1H), 8.22 (d, *J* = 7.3 Hz, 1H), 7.83 (t, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.23 (d, *J* = 3.5 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.10 (s, 4H), 7.03 (s, 1H), 5.27 (s, 2H), 3.85 (q, *J* = 6.6 Hz, 2H), 3.14 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 150.1, 148.5, 148.0, 137.3, 136.7, 136.5, 128.15, 128.09, 126.1 (d, *J* = 4.7 Hz), 122.2 (d, *J* = 3.7 Hz), 121.2, 120.5 (q, *J* = 256.5 Hz), 119.4, 119.3, 112.7, 109.6, 49.2, 39.7, 25.5.

N-(**2**-(**1**-phenyl-1*H*-indol-3-yl)ethyl)picolinamide (3f). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.6 Hz, 1H), 8.29 (s, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.84 (td, *J* = 7.7, 1.6 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.51 – 7.50 (m, 4H), 7.41 (ddd, *J* = 7.5, 4.8, 1.0 Hz, 1H), 7.34 (ddd, *J* = 8.6, 4.9, 3.5 Hz, 1H), 7.27 (d, *J* = 3.3 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.22 – 7.18 (m, 1H), 3.88 (q, *J* = 6.9 Hz, 2H), 3.18 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 139.8, 137.4, 136.3, 129.6, 128.8, 126.2, 126.1, 125.9, 124.2, 122.6, 122.2, 120.1, 119.3, 114.3, 110.6, 39.7, 25.6.

N-(2-(1-(4-ethylphenyl)-1*H*-indol-3-yl)ethyl)picolinamide (3g). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.6 Hz, 1H), 8.28 (s, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.84 (td, *J* = 7.7, 1.6 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.39 (m, 3H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.24 – 7.22 (m, 2H), 7.19 (t, *J* = 7.0 Hz, 1H), 3.87 (q, *J* = 6.9 Hz, 2H), 3.18 (t, *J* = 7.1 Hz, 2H), 2.74 (q, *J* = 7.6 Hz, 2H), 1.32 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 142.4, 137.5, 137.3, 136.4, 129.0, 128.7, 126.1, 126.0, 124.2, 122.5, 122.2, 119.9, 119.2, 113.9, 110.7, 39.7, 28.5, 25.6, 15.6.

N-(2-(1-(4-methoxyphenyl)-1H-indol-3-yl)ethyl)picolinamide (3h). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (dd, *J* = 4.7, 0.7 Hz, 1H), 8.27 (s, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.84 (td, *J* = 7.7, 1.6 Hz, 1H), 7.72 (d, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.38 (m, 3H), 7.25 – 7.21 (m, 1H), 7.19 – 7.15 (m, 2H), 7.05 – 7.01 (m, 2H), 3.89 – 3.84 (m, 5H), 3.17 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 158.1, 150.1, 148.1, 137.3, 136.7, 132.9, 128.4, 126.2, 126.1, 125.8, 122.4, 122.2, 119.8, 119.2, 114.8, 113.6, 110.5, 55.6, 39.7, 25.6.

N-(2-(1-(4-chlorophenyl)-1*H*-indol-3-yl)ethyl)picolinamide (3i). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, *J* = 4.7, 0.6 Hz, 1H), 8.28 (s, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.84 (td, *J* = 7.7, 1.7 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.46 (d, *J* = 8.9 Hz, 2H), 7.40 (dd, *J* = 12.4, 5.0 Hz, 3H), 7.28 – 7.24 (m, 1H), 7.22 – 7.18 (m, 2H), 3.86 (q, *J* = 7.0 Hz, 2H), 3.16 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 138.4, 137.4, 136.1, 131.7, 129.8, 129.0, 126.2, 125.6, 125.3, 122.9, 122.2, 120.4, 119.4, 114.8, 110.4, 39.6, 25.5.

N-(2-(1-(naphthalen-1-yl)-1*H*-indol-3-yl)ethyl)picolinamide (3j). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.7 Hz, 1H), 8.35 (s, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 7.98 – 7.94 (m, 2H), 7.86 – 7.80 (m, 2H), 7.60 – 7.52 (m, 4H), 7.27 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.24 – 7.20 (m, 2H), 7.19 – 7.15 (m, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 3.95 (td, *J* = 7.2, 1.3 Hz, 2H), 3.26 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.2, 148.1, 138.5, 137.4, 136.1, 134.6, 130.6, 128.4, 128.3, 128.0, 127.8, 126.9, 126.7, 126.1, 125.6, 125.1, 123.5, 122.5, 122.2, 119.9, 119.2, 113.6, 111.0, 39.7, 25.7.

N-(2-(1-(thiophen-3-yl)-1*H*-indol-3-yl)ethyl)picolinamide (3k). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.7 Hz, 1H), 8.27 (s, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.85 (td, *J* = 7.7, 1.6 Hz,

1H), 7.72 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.45 (dd, J = 5.1, 3.2 Hz, 1H), 7.41 (ddd, J = 7.4, 4.8, 0.8 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.26 (dd, J = 2.8, 1.3 Hz, 1H), 7.24 (s, 1H), 7.20 (t, J = 7.4 Hz, 1H), 3.87 (q, J = 6.9 Hz, 2H), 3.16 (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.1, 148.1, 138.6, 137.4, 136.5, 128.6, 126.2, 126.1, 125.9, 123.7, 122.8, 122.3, 120.2, 119.3, 114.4, 114.1, 110.8, 39.7, 25.6.

N-(2-(1-allyl-1*H*-indol-3-yl)ethyl)picolinamide (3l). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.2 Hz, 1H), 8.22 (d, *J* = 7.8 Hz, 1H), 7.83 (td, *J* = 7.7, 1.7 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.39 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.14 – 7.10 (m, 1H), 6.99 (s, 1H), 6.03 – 5.94 (m, 1H) 5.18 (dd, *J* = 10.3, 1.3 Hz, 1H), 5.09 (dd, *J* = 17.1, 1.3 Hz, 1H), 4.69 (dt, *J* = 5.3, 1.5 Hz, 2H), 3.81 (dd, *J* = 13.3, 7.0 Hz, 2H), 3.11 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 150.1, 148.0, 137.3, 136.6, 133.6, 128.0, 126.0, 125.9, 122.2, 121.8, 119.1, 117.2, 112.0, 109.6, 48.7, 39.8, 25.6. 8. Characterization data of products (2a-2j, 4a-4l, 5, 6, 7)

2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2a**).^[2] Yellow solid, 35.3 mg, 95% yield, mp: 185.5 – 186.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.65 (s, 1H), 7.64 (s, 1H), 7.62 (s, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 3.56 (td, *J* = 7.0, 2.5 Hz, 2H), 2.96 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.4, 137.6, 127.7, 125.4, 124.5, 120.6, 119.9, 118.7, 113.0, 41.7, 20.8.

7-methyl-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2b**). Yellow solid, 36.0 mg, 90% yield, mp: 263.1 – 264.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.43 (s, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.44 (s, 1H), 6.89 (d, *J* = 2.2 Hz, 1H), 6.76 (dd, *J* = 8.7, 2.3 Hz, 1H), 3.82 (s, 3H), 3.52 (td, *J* = 7.0, 2.5 Hz, 2H), 2.91 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.4, 158.0, 138.6, 126.6, 121.4, 119.8, 119.3, 111.1, 94.8, 55.6, 41.6, 20.9; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₁₃N₂O⁺ : 201.1022; found: 201.1022.

7-chloro-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indol-1-one (2c).^[3] Yellow solid, 40.0 mg, 91% yield, mp: 211.2 – 212.5 °C; ¹H NMR (400 MHz, DMSO-***d***₆) δ 11.80 (s, 1H), 7.67 (s, 1H), 7.65 (s, 1H), 7.44 (d,** *J* **= 1.6 Hz, 1H), 7.12 (dd,** *J* **= 8.5, 1.9 Hz, 1H), 3.55 (td,** *J* **= 7.0, 2.5 Hz, 2H), 2.96 (t,** *J* **= 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ 162.0, 137.8, 129.0, 128.7, 124.2, 122.2, 120.4, 118.8, 112.4, 41.5, 20.7.**

6-methyl-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2d**). Yellow solid, 35.6 mg, 89% yield, mp: 210.5 – 211.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.47 (s, 1H), 7.55 (s, 1H), 7.40 (s, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.09 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.54 (td, *J* = 6.9, 2.4 Hz, 2H), 2.93 (t, *J* = 6.9 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.4, 136.0, 128.5, 127.7, 126.3, 125.6, 119.9, 118.1, 112.7, 41.7, 21.6, 20.8; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₁₂N₂NaO⁺ : 223.0842; found: 223.0839.

6-methoxy-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2e**).^[4] Yellow solid, 29.8 mg, 69% yield, mp: 220.5 – 221.6 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.06 (s, 1H), 7.15 (s, 1H), 6.92 (d, J = 8.9 Hz, 1H), 6.69 (d, J = 2.3 Hz, 1H), 6.51 (dd, J = 8.9, 2.5 Hz, 1H), 3.14 (td, J = 6.9, 2.4 Hz, 2H), 2.98 (s, 3H), 2.53 (t, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.3, 154.0, 132.8, 128.2, 125.5, 118.2, 115.6, 113.8, 101.2, 55.8, 41.7, 20.9.

6-fluoro-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2f**).^[5] Yellow solid, 29.4 mg, 72% yield, mp: 226.3 – 227.9 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.73 (s, 1H), 7.66 (s, 1H), 7.45 – 7.43 (m, 1H), 7.41 – 7.40 (m, 1H), 7.11 (td, *J* = 9.3, 2.5 Hz, 1H), 3.55 (td, *J* = 7.0, 2.6 Hz, 2H), 2.94 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.0, 157.4 (d, *J* = 232.9 Hz), 134.2, 129.5, 125.4 (d, *J* = 10.1 Hz), 118.6 (d, *J* = 5.2 Hz), 114.2 (d, *J* = 9.7 Hz), 113.1 (d, *J* = 26.6 Hz), 105.0 (d, *J* = 23.0 Hz), 41.6, 20.7.

6-chloro-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2g**).^[5] Yellow solid, 40.9 mg, 93% yield, mp: 232.1 – 233.0 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.84 (s, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.70 (s, 1H), 7.45 (d, *J* = 8.7 Hz, 1H), 7.25 (dd, *J* = 8.7, 2.1 Hz, 1H), 3.55 (td, *J* = 7.0, 2.5 Hz, 2H), 2.95 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.0, 135.9, 129.2, 126.4, 124.5, 119.9, 118.2, 114.6, 41.5, 20.6.

6-bromo-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2h**).^[6] Yellow solid, 38.0 mg, 72% yield, mp: 259.3 – 259.9 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.86 (s, 1H), 7.87 (d, *J* = 1.7 Hz, 1H), 7.70 (s, 1H), 7.40 (d, *J* = 8.6 Hz, 1H), 7.36 (dd, *J* = 8.7, 1.8 Hz, 1H), 3.55 (td, *J* = 7.0, 2.5 Hz, 2H), 2.95 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.4, 135.6, 128.5, 126.6, 126.4, 122.5, 117.6, 114.5, 111.8, 41.0, 20.1.

5-chloro-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indol-1-one (2i).^[3] Yellow solid, 40.5 mg, 92% yield, mp: 208.3 – 209.5 °C; °C; ¹H NMR (400 MHz, DMSO-***d***₆) δ 12.00 (s, 1H), 7.74 (s, 1H), 7.40 (dd,** *J* **= 8.2, 0.5 Hz, 1H), 7.22 (t,** *J* **= 7.9 Hz, 1H), 7.12 (dd,** *J* **= 7.5, 0.5 Hz, 1H), 3.57 (td,** *J* **= 7.0, 2.5 Hz, 2H), 3.23 (t,** *J* **= 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ 161.8, 138.7, 128.8, 126.5, 125.1, 122.8, 120.3, 117.7, 112.2, 41.5, 22.3.**

6,7-dichloro-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**2j**).^[7] Yellow solid, 48.3 mg, 95% yield, mp: 246.5 – 247.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.96 (s, 1H), 7.96 (s, 1H), 7.76 (s, 1H), 7.61 (s, 1H), 3.55 (td, *J* = 7.0, 2.5 Hz, 2H), 2.96 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.6, 136.2, 130.0, 126.6, 125.3, 122.6, 122.0, 118.3, 114.3, 41.4, 20.5.

9-methyl-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indol-1-one (4a).^[2] Yellow solid, 21.2 mg, 53% yield, mp: 157.6 – 158.3 °C; ¹H NMR (400 MHz, DMSO-***d***₆) δ 7.71 (s, 1H), 7.67 (d,** *J* **= 8.0 Hz, 1H), 7.55 (d,** *J* **= 8.4 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.18 – 7.14 (m, 1H), 4.07 (s, 3H), 3.52 (td,** *J* **= 6.9, 2.7 Hz, 2H), 2.96 (t,** *J* **= 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ 162.6, 138.9, 126.6, 124.8, 124.3, 120.8, 120.2, 119.4, 111.0, 41.3, 31.4, 21.0.**

9-benzyl-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indol-1-one (4b).^[2] Yellow solid, 35.9 mg, 65% yield, mp: 182.3 – 183.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d,** *J* **= 8.0 Hz, 1H), 7.36 (d,** *J* **= 8.4 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.24 – 7.15 (m, 5H), 6.12 (s, 1H), 5.92 (s, 2H), 3.65 (td,** *J* **= 7.0, 2.7 Hz, 2H), 3.08 (t,** *J* **= 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 138.7, 138.5, 128.5, 127.1, 126.9, 125.5, 125.2, 124.6, 120.54, 120.49, 120.3, 111.1, 47.8, 41.8, 21.2.**

9-(4-methylbenzyl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**4c**)**.** Yellow solid, 30.7 mg, 53% yield, mp: 193.8 – 194.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.71 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.10 (s, 4H), 5.87 (s, 2H), 3.54 (td, *J* = 6.9, 2.6 Hz, 2H), 3.01 (t, *J* = 6.9 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.5, 138.3, 136.6, 136.2, 129.4, 127.3, 126.1, 125.0, 124.7, 120.9, 120.4, 120.2, 111.7, 46.9, 41.3, 21.1, 21.0; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₉N₂O⁺ : 291.1492; found: 291.1494.

9-(4-chlorobenzyl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one (4d).** Yellow solid, 42.8 mg, 69% yield, mp: 186.5 – 187.8 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (s, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.20 (d, *J* = 8.5 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 5.90 (s, 2H), 3.54 (td, *J* = 6.9, 2.6 Hz, 2H), 3.01 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.5, 138.3, 132.1, 129.2, 128.9, 126.0, 125.2, 124.7, 121.0, 120.6, 120.4, 111.5, 46.5, 41.2, 21.0; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₁₅ClN₂NaO⁺ : 333.0765; found: 333.0761.

9-(4-(trifluoromethoxy)benzyl)-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indol-1-one** (**4e**). Yellow solid, 46.8 mg, 65% yield, mp: 192.1 – 193.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.76 (s, 1H),

7.71 (d, J = 7.9 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.33 – 7.29 (m, 5H), 7.17 (t, J = 7.5 Hz, 1H), 5.95 (s, 2H), 3.55 (td, J = 7.0, 2.6 Hz, 2H), 3.02 (t, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.5, 147.8, 138.8, 138.3, 129.2, 129.1, 126.0, 125.2, 124.7, 121.5, 121.1, 120.6, 120.5 (q, J = 256.1 Hz), 120.4, 111.5, 46.5, 41.2, 21.0; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₆F₃N₂O_{2⁺} : 361.1158; found: 361.1162.

9-phenyl-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**4f**).^[2] Yellow solid, 28.8 mg, 55% yield, mp: 249.1 – 250.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 7.8 Hz, 1H), 7.64 (s, 1H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.47 (dd, *J* = 8.5, 6.3 Hz, 1H), 7.42 – 7.40 (m, 2H), 7.34 – 7.30 (m, 1H), 7.23 (t, *J* = 7.1 Hz, 1H), 7.19 (d, *J* = 8.3 Hz, 1H), 3.59 (td, *J* = 6.8, 2.7 Hz, 2H), 3.06 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.3, 139.9, 139.0, 129.7, 128.3, 128.2, 126.2, 125.5, 122.6, 121.7, 121.6, 111.9, 41.4, 21.8.

9-(4-ethylphenyl)-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indol-1-one (4g). Yellow solid, 34.8 mg, 60% yield, mp: 238.3 – 239.1 °C; ¹H NMR (400 MHz, DMSO-***d***₆) δ 7.76 (d,** *J* **= 7.8 Hz, 1H), 7.62 (s, 1H), 7.37 (d,** *J* **= 8.3 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.21 (dd,** *J* **= 10.9, 3.9 Hz, 1H), 7.17 (d,** *J* **= 8.3 Hz, 1H), 3.57 (td,** *J* **= 6.8, 2.7 Hz, 2H), 3.04 (t,** *J* **= 6.8 Hz, 2H), 2.75 (q,** *J* **= 7.6 Hz, 2H), 1.31 (t,** *J* **= 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ 160.9, 143.1, 139.5, 136.1, 128.5, 127.7, 127.6, 125.7, 125.0, 121.9, 121.1, 121.0, 111.4, 41.0, 28.3, 21.3, 15.9; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₈N₂NaO⁺ : 313.1311; found: 313.1313.**

9-(4-methoxyphenyl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one** (**4h**). Yellow solid, 29.8 mg, 51% yield, mp: 253.8 – 254.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.59 (s, 1H), 7.30 (dd, *J* = 11.8, 4.9 Hz, 3H), 7.21 (t, *J* = 7.1 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.09 – 7.07 (m, 1H), 3.88 (s, 3H), 3.57 (td, *J* = 6.8, 2.7 Hz, 2H), 3.04 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.0, 158.7, 139.7, 131.3, 129.0, 127.8, 125.6, 124.8, 121.4, 121.0, 121.0, 114.4, 111.4, 55.8, 41.0, 21.2; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₁₇N₂O₂⁺ : 293.1285; found: 293.1286.

9-(4-chlorophenyl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one (4i).** Yellow solid, 38.5 mg, 65% yield, mp: 270.3 – 271.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.68 (s, 1H), 7.62 – 7.58 (m, 2H), 7.48 – 7.44 (m, 2H), 7.34 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 7.27 – 7.21 (m, 2H), 3.58 (td, *J* = 6.9, 2.7 Hz, 2H), 3.05 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.9, 139.2, 137.4, 132.1, 129.6, 129.2, 127.6, 126.0, 125.2, 122.4, 121.4, 111.3, 40.9, 21.2; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃ClN₂NaO⁺ : 319.0609; found: 319.0610.

9-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one (4j).** Yellow solid, 30.6 mg, 49% yield, mp: 232.5 – 233.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.11 (dd, *J* = 8.2, 2.9 Hz, 2H), 7.85 – 7.83 (m, 1H), 7.72 – 7.68 (m, 1H), 7.59 – 7.57 (m, 2H), 7.54 (s, 1H), 7.43 (ddd, *J* = 8.1, 6.9,

1.1 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H), 6.77 – 6.73 (m, 1H), 3.65 – 3.61 (m, 2H), 3.14 (dd, J = 12.6, 6.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 160.9, 140.3, 135.4, 134.3, 131.4, 129.1, 128.8, 128.7, 127.4, 126.8, 126.5, 126.1, 125.7, 125.0, 122.8, 121.2, 121.1, 111.5, 41.2, 21.2; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₁₇N₂O⁺ : 313.1335; found: 313.1334.

9-(thiophen-3-yl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one (4k).** Yellow solid, 32.7 mg, 61% yield, mp: 241.7 – 242.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.67 – 7.65 (m, 2H), 7.63 (s, 1H), 7.37 – 7.33 (m, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.18 – 7.17 (m, 1H), 3.56 (td, *J* = 6.9, 2.7 Hz, 2H), 3.04 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.9, 139.5, 136.3, 127.8, 127.5, 125.8, 125.4, 124.9, 121.8, 121.3, 121.0, 120.5, 111.7, 40.9, 21.2.; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₂N₂NaOS⁺ : 291.0563; found: 291.0558.

9-allyl-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one (4l).** Yellow solid, 26.2 mg, 58% yield, mp: 193.8 – 194.6 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.70 (s, 1H), 7.68 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 5.99 (ddt, *J* = 15.5, 10.3, 5.2 Hz, 1H), 5.30 (d, *J* = 5.2 Hz, 2H), 5.09 (dd, *J* = 10.3, 1.4 Hz, 1H), 4.93 (dd, *J* = 17.1, 1.6 Hz, 1H), 3.52 (td, *J* = 6.9, 2.7 Hz, 2H), 2.99 (t, *J* = 6.9 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.4, 138.2, 135.3, 126.1, 124.9, 124.5, 120.9, 120.4, 119.9, 116.3, 111.4, 46.3, 41.3, 21.0; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅N₂O⁺ : 227.1179; found: 227.1179.

2-((2Z,4Z)-hexa-2,4-dienoyl)-2,3,4,9-tetrahydro-1*H***-pyrido**[**3,4-***b*]**indol-1-one (5).** Yellow solid, 43.7 mg, 78% yield, mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.88 (s, 1H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.35 – 7.25 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 15.1 Hz, 1H), 6.39 – 6.24 (m, 2H), 4.21 (t, *J* = 6.3 Hz, 2H), 3.06 (t, *J* = 6.3 Hz, 2H), 1.86 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 161.7, 143.2, 139.7, 139.1, 130.8, 126.8, 126.3, 124.7, 123.7, 123.5, 121.5, 120.5, 113.3, 45.0, 20.9, 18.9.

4-(1-oxo-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b***]indole-2-carbonyl)-***N***,***N***-dipropylbenzenesulfon--amide (6). Yellow solid, 73.4 mg, 81% yield, mp: >300 °C; ¹H NMR (400 MHz, DMSO-***d***₆) δ 11.86 (s, 1H), 7.88 (d,** *J* **= 8.4 Hz, 2H), 7.80 – 7.76 (m, 3H), 7.48 (d,** *J* **= 8.3 Hz, 1H), 7.38 (dd,** *J* **= 11.7, 4.4 Hz, 1H), 7.19 (t,** *J* **= 7.5 Hz, 1H), 4.32 (t,** *J* **= 6.3 Hz, 2H), 3.28 (t,** *J* **= 6.3 Hz, 2H), 3.12 – 3.08 (m, 4H), 1.58 – 1.49 (m, 4H), 0.87 (t,** *J* **= 7.4 Hz, 6H); ¹³C NMR (100 MHz, DMSO-***d***₆) δ 172.2, 161.3, 141.7, 141.0, 139.2, 129.0, 127.0, 126.6, 125.9, 124.9, 124.3, 121.6, 120.7, 113.3, 50.1, 46.7, 22.1, 21.0, 11.5.**

2-(isopropoxymethyl)-5-(4-methyl-5-(1-oxo-2,3,4,9-tetrahydro-1*H***-pyrido[3,4-***b*]indole-2-car- **-bonyl)thiazol-2-yl)benzonitrile (7).** Yellow solid, 30.6 mg, 32% yield, mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.92 (s, 1H), 8.33 (d, *J* = 2.3 Hz, 1H), 8.26 (dd, *J* = 8.9, 2.3 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 4.26 (t, J = 6.2 Hz, 2H), 4.05 (d, J = 6.5 Hz, 2H), 3.25 (t, J = 6.2 Hz, 2H), 2.51 (s, 3H), 2.14 (dt, J = 13.3, 6.6 Hz, 1H), 1.06 (d, J = 6.7 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 165.8, 165.7, 162.5, 161.3, 156.3, 139.2, 133.4, 131.9, 128.6, 126.7, 126.0, 125.8, 124.9, 124.0, 121.6, 120.7, 115.8, 114.4, 113.4, 102.1, 75.6, 47.5, 28.1, 21.1, 19.2, 17.3.

9. References

- 1. Jiang, L.-B.; Qi, X.; Wu, X.-F. Benzene-1,3,5-triyl triformate (TFBen): a convenient, efficient, and non-reacting CO source in carbonylation reactions. *Tetrahedron Lett.* **2016**, *57*, 3368-3370.
- Tokmakov, G. P.; Zemyanova, T. G.; Grandberg, I. I. Reaction of arylhydrazines with αformylbutyrolactam derivatives. *Chem. Heterocyclic Compds.* 1984, 20, 47-51.
- Pohl, B.; Luchterhandt, T.; Bracher, F. Total syntheses of the chlorinated β-carboline alkaloids bauerine A, B, and C. *Synth. Commun.* 2007, *37*, 1273-1280.
- Nicolaou, K. C.; Kiappes, J. L.; Becker, J. Synthesis of the carboline disaccharide domain of shishijimicin A. Org. Lett. 2011, 13, 3924-3927.
- 5. Thompson, M. J.; Louth, J. C.; Coldham, I. Synthesis and evaluation of 1-amino-6-halo-βcarbolines as antimalarial and antiprion agents. *ChemMedChem* **2012**, *7*, 578-586.
- Zheng, C.; Fang, Y. Z.; Chen, Y. F. Synthesis and biological evaluation of novel tetrahydro-βcarboline derivatives as antitumor growth and metastasis agents through inhibiting the transforming growth factor-β signaling pathway. *J. Med. Chem.* 2014, *57*, 600-612.
- Lingam, Y.; Rao, D. M.; Islam, A. A facile synthesis 2,3,4,9-thtrahydro-β-carbolin-1-ones. *Indian J. Chem.* 2007, 46, 2049-2052.

10. $^1\mathrm{H},\,^{13}\mathrm{C}$ spectra of substrates (1a-1j, 3a-3l) and products (2a-2j , 4a-4l, 5, 6, 7)

S55

