Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Copper-Catalyzed Enantioselective Fluoroalkenylation of Cyclic

Imino Esters

Zhiwei Chen,^{a,c} Xiang Huang,^{b,c} Jian Liao,^{a,b,c} and Min Wang^{*a,c}

*Email: wangmin@cib.ac.cn

^aNatural Product Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

^bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

Contents

1.	General Information	S-2
2.	Preparation of Substrates	S-3
3.	Optimization of Reaction Conditions	S-6
4.	General Procedure	S-10
5.	1 mmol-Scale Synthesis	S-11
6.	Characterization Data for Products 3aa–3al	S-12
7.	References	S-28
8.	NMR and HPLC Spectra	S-29
9.	X-ray Crystalstructure of Compound 3ka	S-104

1. General information

All reactions were generally performed in dried glassware under an atmosphere of dry Ar. Reaction mixtures were monitored by thin layer chromatography (TLC) with visualization by fluorescence quenching at 254 nm. TLC was performed on SGF254 glass plates percolated with 0.15 - 0.20 mm thickness of silica gel. Flash chromatography was performed with silica gel (300-400 mesh). The substrates $1^{[1]}$, and $2^{[2]}$ were synthesized according to published procedures and the spectral data of the substrates were consisted with that reported in the literature. The others commercially available reagents were used as received without further purification. Solvents used in the catalysis were distilled from appropriate drying agents. NMR spectra were recorded on a Bruker 400 spectrometer operating at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR. Chemical shifts were reported in ppm relative to the central line of CHCl₃ (δ 7.28) for ¹H NMR, for ¹³C NMR, the residual CDCl₃ (δ 77.2) were used as the internal standards. The coupling constants are in Hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, dd = doublet of doublet, dq = doublet of quartet, dt = doublet of quartet, t = triplet, q = quartet, m = multiplet and brs = broad singlet. Optical rotation were measured on PE polarmeter 341 and reported as $[\alpha]_D$. Enantiomeric excess was determined by HPLC analysis on Chiralpak IC column (Daicel Chemical Industries, LTD). Melting points were measured on X-4 Micro melting point apparatus. Electrospray ionization high-resolution mass spectra (ESI-HRMS) were recorded on a Waters Vion® IMS Q-TOF mass spectrometer. X-ray crystal structure analyses were performed on a Bruker D8 Venture Photon II using Cu-Ka radiation.

2. Preparation of Substrates

General procedure for 5-membered cyclic imino esters^{1a}:

The mixture of aldehyde (8 mmol) in dry THF (10 mL) was cooled to 0 °C in an ice-water bath and vinylmagnesium bromide (9.6 mmol, 1.0 M solution in THF) was added dropwise. The mixture was warmed to room temperature and stirred overnight. Saturated NH₄Cl solution (20 mL) was added to quench the reaction and the aqueous layer was extracted with EtOAc (20 mL×2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was dissolved in acetone (20 mL) and cooled to 0 °C in an ice-water bath, and then Jones reagent (2.5 M, 1.0 eq.) was added dropwise. The mixture was stirred at 0 °C for 5 mins before isopropyl alcohol (1 mL) was added to quench the reaction. Water (50 ml) was added and the mixture was extracted with DCM (20 mL×2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the desired vinyl ketone.

To a solution of vinyl ketone (1.1 eq.) and Schiff base (1.0 eq.) in DCM (1 M) at 0 °C was added DBU (0.1 eq.). After stirring at rt for 6 h, HCl 12 N (0.3 eq.) was added and the reaction mixture was stirred at rt overnight. Then, water was added and the mixture was extracted with DCM. The organic layers were combined, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was then purified by flash chromatography over silica gel.

All cyclic imino esters are known compounds and identical in the spectrum data reported by literatures.

7-membered cyclic imino ester 11 was synthesized according to the literature^{1b}.

methyl 4,4-dimethyl-7-phenyl-3,4,5,6-tetrahydro-2H-azepine-2-carboxylate (11)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.77 (m, 2H), 7.40 – 7.28 (m, 3H), 4.38 – 4.35 (d, *J* = 10.4 Hz, 1H), 3.83 (s, 3H), 2.98 – 2.93 (m, 1H), 2.68 – 2.61 (m, 1H), 1.80 – 1.77 (m, 1H), 1.59 – 1.53 (m, 2H), 1.38 – 1.31 (m, 1H), 1.18 (s, 3H), 0.99 (s, 3H).

General procedures for difluoroacrylates 2²

The mixture of ethyl phenylacetate **S1** (15 mmol, 1.0 eq) and 4-acetamidobenzenesulfonyl azide (2.25 mmol, 1.5 eq) in MeCN (0.25 M) was cooled to 0 °C in an ice-water bath, then DBU (2.25 mmol, 1.5 eq) was added slowly. The mixture was warmed to room temperature and stirred overnight. Saturated NH₄Cl solution (15 mL) was added to quench the reaction and the aqueous layer was extracted with EtOAc (20 mL×2). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the desired phenyl diazoacetate **S2** (1.5 g, 53% yield).

To an oven-dried 100 mL flask equipped with a stir bar was added NaI (3.0 eq), the solid was heated at 60 °C in vacuo for 30 min (remove H₂O). Then NaI was cooled down to room temperature followed by the addition of ethyl phenyl diazoacetate **S2** (1.5 g, 1.0 eq) and TMSCF₃ (3.0 eq) in anhydrous THF (0.3 M) under argon. The resulting mixture was heated at 60 °C for 5 h with vigorous stirring. After cooling to room temperature, the reaction mixture was extracted with 20 mL Et₂O, washed with H₂O (20 mL) and brine (20 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane : EA = 75 :

1) to afford difluoroacrylate 2a as a yellow oil (820 mg, 48% yield).

All difluoroacrylates except **2l** are known compounds and identical in the spectrum data reported by literatures.

2-((2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoyl)oxy)ethyl 3,3-difluoro-2-phenylacrylate

¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.30 (m, 5H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 7.4 Hz, 1H), 6.64 (s, 1H), 4.49 – 4.41 (m, 2H), 4.36 – 4.28 (m, 2H), 3.93 (brs, 2H), 2.35 (s, 3H), 2.21 (s, 3H), 1.75 (brs, 4H), 1.24 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.5, 163.8 (dd, *J* = 11.1, 7.1 Hz), 159.8 (dd, *J* = 314.1, 300.0 Hz), 156.9, 136.5, 130.3, 130.03 (dd, *J* = 3.0, 2.0 Hz), 128.5, 128.4, 123.6, 120.7, 111.9, 92.0 (dd, *J* = 22.2, 10.1 Hz), 67.8, 63.1, 61.9, 42.1, 37.0, 25.11, 25.07, 21.4, 15.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -68.5 (d, *J* = 12.5 Hz), -70.3 (d, *J* = 12.8 Hz). HRMS (m/z, ESI): Calcd. for C₂₆H₃₀F₂NaO₅ [M+H]⁺: 483.1954, Found: 483.1951.

3. Optimization of Reaction Conditions

Table S1. Screening of ligands^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Cs_2CO_3 (0.15 mmol), $Cu(MeCN)_4PF_6$ (10 mol %) and Ligand (12 mol %) in 1 mL THF at 20 °C for 15 h. ^{*b*}Yields (*E* + *Z*) and *E/Z* ratio were

determined by ¹H-NMR using 1,1,2,2-Tetrachloroethane as an internal standard; ^{*c*}The ee values were determined by chiral HPLC analysis.

Ph CO ₂ Et +	F Cu(MeCN) ₄ PF ₆ (10 L9 (12 mol%), base THF (1 mL), 20 °C	$\xrightarrow{\text{mol}\%)}_{\text{C, 15 h}} \xrightarrow{\text{Ph}} \xrightarrow{\text{CO}_2\text{Et}}_{\text{N}} \xrightarrow{\text{CO}_2\text{Et}}_{\text{N}}$	+ Ph CO ₂ Et Ph CO ₂ Et
1a	2a	(<i>E</i>)-3aa	(Z)- 3aa
Entry	base	Yield $(E/Z)^b$	ee/% (E) ^c
1	K ₂ CO ₃	87% (11.4/1)	98
2	Na ₂ CO ₃	39% (6.8/1)	98
3	NaHCO ₃	26% (5.5/1)	98
4	K ₃ PO ₄	90% (9.5/1)	98
5	Cs ₂ CO ₃	95% (12.6/1)	98
6	TEA	43% (4.4/1)	97
7	DBU	N.R.	/

Table S2. Screening of bases^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), base (0.15 mmol), Cu(MeCN)₄PF₆ (10 mol %) and **L9** (12 mol %) in 1 mL THF at 20 °C for 15 h. ^{*b*}Yields (E + Z) and E/Z ratio were determined by ¹H-NMR using 1,1,2,2-Tetrachloroethane as an internal standard; N.R.= no reaction. ^{*c*}The ee values were determined by chiral HPLC analysis.

Table S3. Screening of solvents^a

Ph CO ₂ Et	+ Ph CO ₂ Et	Cu(MeCN) ₄ PF ₆ (10 m L9 (12 mol%), Cs ₂ CO ₃ (solvent (1 mL), 20 °C	(1.5 eq) $(1.5 eq)$ $(1.5 h)$	+ Ph Ph CO ₂ Et Ph CO ₂ Et
iu iu	24		(<i>E</i>)-3aa	(Z)- 3aa
Entry		solvent	Yield $(E/Z)^b$	$ee/\% (E)^{c}$
1		DCM	90% (2.8/1)	97
2		DCE	53% (3.8/1)	98

8	THF	95% (12.6/1)	98
7	2-Me-THF	96% (12.2/1)	96
6	1,4-dioxane	85% (7.9/1)	98
5	DME	94% (10/1)	98
4	CPME	93% (13.2/1)	98
3	MeCN	46% (4.4/1)	94

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Cs_2CO_3 (0.15 mmol), $Cu(MeCN)_4PF_6$ (10 mol %) and **L9** (12 mol %) in 1 mL solvent at 20 °C for 15 h. ^{*b*}Yields (E + Z) and E/Z ratio were determined by ¹H-NMR using 1,1,2,2-Tetrachloroethane as an internal standard. ^{*c*}The ee values were determined by chiral HPLC analysis.

Table S4. Screening of Cu salts^a

Ph-V ^{CO2Et} + 1a	F Cu salt (10 L9 (12 mol%), Cs ₂ Ph CO ₂ Et THF (1 mL), 2 2a	$\begin{array}{c} \text{mol\%})\\ \underline{2CO_3 (1.5 \text{ eq})}\\ \underline{20 \circ C, 15 \text{ h}}\end{array} \xrightarrow{\text{Ph}} \underbrace{\begin{array}{c} \text{CO}_2\text{Et}\\ \text{N}\\ \underline{100 \circ C, 15 \text{ h}}\\ \text{EtO}_2\text{C}\end{array}}_{\text{EtO}_2\text{C}} \xrightarrow{\text{Ph}} \\ \begin{array}{c} \text{F}\\ \underline{100 \circ C, 15 \text{ h}}\\ \underline{100 \circ C, 15 \text{ h}}\end{array}$	+ Ph Ph CO ₂ Et Ph CO ₂ Et (Z)- 3aa
Entry	Cu salt	Yield $(E/Z)^b$	ee/% (E) ^c
1	CuCl	52% (12/1)	98
2	CuI	N.R.	/
3	CuBr	43% (8.4/1)	98
4	CuOAc	66% (12.2/1)	98
5	Cu(OTf) ₂	81% (6.4/1)	98
6	Cu(MeCN) ₄ PF ₆	95% (12.6/1) (66%) ^d	98
7 ^e	Cu(MeCN) ₄ PF ₆	78% ^d (12.9/1)	98

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), Cs₂CO₃ (0.15 mmol), Cu salt (10 mol %) and **L9** (12 mol %) in 1 mL THF at 20 °C for 15 h. ^{*b*}Yields (E + Z) and E/Z ratio were determined by ¹H-NMR using 1,1,2,2-Tetrachloroethane as an internal standard; N.R.= no reaction. ^{*c*}The ee values were determined by chiral HPLC analysis; ^{*d*}Isolated yield; ^{*e*}**2a** (0.15 mmol) was used.

4. General Procedure for the Copper-Catalyzed Enantioselective Nucleophilic Vinylic Substitution (S_NV) Reaction of Difluoroacrylates

In the glove box, to a dried tube with a magnetic stir bar was added $Cu(MeCN)_4PF_6$ (10 mol %, 0.01 mmol, 3.7 mg), L9 (12 mol %, 0.012 mmol, 5.8 mg) and 0.5 mL anhydrous THF, the mixture was stirred for 0.5 hour at 25 °C. Then, the mixture was successively added cyclic imino ester 1 (0.1 mmol), difluoroacrylate 2 (0.15 mmol), and Cs_2CO_3 (0.15 mmol, 48.8 mg). After that, another 0.5 mL THF was added into the mixture. The tube was sealed by the rubber stopper, removed out of the glove box and stirred at 20 °C for 15 h. When the reaction was completed, the mixture was filtered through celite and the filtrate was concentrated in vacuo. The E/Z ratio was determined by ¹HNMR analysis of the crude product. Then the recovered residue was purified by flash chromatography over silica gel with petro ether/Ethyl acetate (6:1 – 4:1) as the eluent to give the product 3, the ee was determined by HPLC analysis. The isolated yields and ee values given in the text were all refer to *E*-isomer of 3.

5. 1 mmol-scale synthesis

In the glove box, to a dried 50 ml round-bottom flask with a magnetic stir bar was added $Cu(MeCN)_4PF_6$ (10 mol %, 0.1 mmol, 37 mg), L9 (12 mol %, 0.12 mmol, 58 mg) and 5 mL anhydrous THF, the mixture was stirred for 0.5 hour at 25 °C. Then to the mixture was successively added cyclic imino ester 1k (1.0 mmol, 203 mg), difluoroacrylate 2a (1.5 mmol, 318 mg), and Cs_2CO_3 (1.5 mmol, 487 mg). After that, another 5.0 mL THF was added into the mixture. The flask was sealed by the rubber stopper, removed out of the glove box and stirred at 20 °C for 20 h. When the reaction was completed, the mixture was filtered through celite and silica gel and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography over silica gel with petro ether/ethyl acetate (15:1 – 6:1) as the eluent to give the product (*E*)-3ka as white solid, 316 mg, 80% yield, 99% ee.

6. Characterization data for Products (E)-3aa – (E)-3al

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (E)-(3aa)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 32 mg, 78% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 8.84 min (major) and 11.68 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 6.8 Hz, 2H), 7.58 – 7.29 (m, 8H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.23 – 4.12 (m, 2H), 3.34 – 3.12 (m, 2H), 2.91 – 2.85 (m, 1H), 2.55 – 2.40 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.7, 170.2, 166.9 (d, *J* = 15.2 Hz), 161.2 (d, *J* = 271.7 Hz), 133.6, 132.0, 1314, 129.0 (d, *J* = 4.0 Hz), 128.5 (d, *J* = 4.0 Hz), 128.2, 128.0, 116.3 (d, *J* = 17.2 Hz), 84.6 (d, *J* = 28.3 Hz), 62.0, 61.4, 35.6, 31.8 (d, *J* = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.7. HRMS (m/z, ESI): Calcd. for C₂₄H₂₅FNO₄ [M+H]⁺: 410.1762, Found: 410.1772. [α]_D²⁰= -102.6 (c 1.8, CHCl₃).

ethyl (*R*, *Z*)-3-(2-((ethylperoxy)-l2-methyl)-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-3-fluoro-2phenylacrylate (*Z*)-(3aa)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8 Hz, 2H), 7.58 – 7.29 (m, 8H), 4.27 – 4.22 (m, 2H), 3.95 –3.83 (m, 2H), 3.14 – 3.03 (m, 2H), 2.64 – 2.48 (m, 2H), 1.28 (t, *J* = 8 Hz, 3H), 1.21 (t, *J* = 8 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -99.9.

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(4-methyl)phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (*E*)-(3ba)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 37 mg, 88% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 11.24 min (major) and 14.87 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.47 (d, *J* = 8.9 Hz, 2H), 7.42 – 7.30 (m, 3H), 7.25 (d, *J* = 7.9 Hz, 2H), 4.28 (qd, *J* = 7.1, 1.9 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.32 – 3.09 (m, 2H), 2.91 – 2.84 (m, 1H), 2.49 – 2.40 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 170.3, 166.8 (d, *J* = 16.2 Hz), 161.4 (d, *J* = 271.7 Hz), 141.8, 132.0, 131.0, 129.2, 129.0 (d, *J* = 4.0 Hz), 128.4, 128.2, 128.0, 116.2 (d, *J* = 17.2 Hz), 84.6 (d, *J* = 28.3 Hz), 62.0, 61.4, 35.6, 31.8 (d, *J* = 3.0 Hz), 21.6, 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.6. HRMS (m/z, ESI): Calcd. for C₂₅H₂₇FNO₄ [M+H]⁺: 424.1919, Found: 424.1916. [α]_D²⁰= -112.0 (c 1.5, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(4-methyloxy)phenyl-3,4-dihydro-2H-pyrrol-

2-yl)-2-phenylacrylate (E)-(3ca)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 26 mg, 82% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 18.16 min (major) and 23.36 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.9 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.43 – 7.29 (m, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 4.34 – 4.22 (m, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.87 (s, 3H), 3.30 – 3.08 (m, 2H), 2.87 (ddd, *J* = 13.3, 8.8, 4.3 Hz, 1H), 2.51 – 2.38 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.9, 170.4, 166.9 (d, J = 15.2 Hz), 162.2, 161.4 (d, J = 271.7 Hz), 132.0, 130.2, 129.0 (d, J = 4.0 Hz), 128.2, 128.0, 126.5, 116.1 (d, J = 18.2 Hz), 113.8, 84.5 (d, J = 28.3 Hz), 62.0, 61.4, 55.4, 35.5, 31.8 (d, J = 2.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.7. HRMS (m/z, ESI): Calcd. for C₂₅H₂₇FNO₅ [M+H]⁺: 440.1868, Found: 440.1869. [α]_D²⁰= -111.4 (c 1.7, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(4-fluoro)phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (*E*)-(3da)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 25 mg, 59% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 8.49 min (major) and 10.34 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (dd, *J* = 8.7, 5.5 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.29 (m, 3H), 7.13 (t, *J* = 8.6 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.22 – 4.12 (m, 2H), 3.31 – 3.09 (m, 2H), 2.91– 2.81 (m, 1H), 2.55 – 2.41 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.4, 170.2, 166.9 (d, *J* = 15.2 Hz), 164.7 (d, *J* = 253.5 Hz), 161.1 (d, *J* = 271.7 Hz), 131.9, 130.7, 130.6, 129.9 (d, *J* = 3.0 Hz), 129.0 (d, *J* = 4.0 Hz), 128.3, 128.0, 116.3 (d, *J* = 17.2 Hz), 115.6 (d, *J* = 22.2 Hz), 84.6 (d, *J* = 28.3 Hz), 62.1, 61.4, 35.6, 31.9 (d, *J* = 4.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.8, -108.3. HRMS (m/z, ESI): Calcd. for C₂₄H₂₄F₂NO₄ [M+H]⁺: 428.1668, Found: 428.1667. [a]_D²⁰= -99.2 (c 1.7, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(4-bromo)phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (*E*)-(3ea)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 30 mg, 61% yield, 97% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 9.20 min (major) and 11.42 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 7.2 Hz, 2H), 7.42 – 7.30 (m, 3H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.22 – 4.12(m, 2H), 3.30 – 3.07 (m, 2H), 2.87 (dt, *J* = 13.2, 9.0 Hz, 1H), 2.48 (dt, *J* = 13.4, 9.0 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.7, 170.0, 166.8 (d, *J* = 16.2 Hz), 161.0 (d, *J* = 271.7 Hz), 132.5, 1319, 131.8, 129.9, 129.0 (d, *J* = 4.0 Hz), 128.3, 128.1, 126.1, 116.4 (d, *J* = 18.2 Hz), 84.7 (d, *J* = 28.3 Hz), 62.1, 61.4, 35.6, 31.8 (d, *J* = 4.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.7. HRMS (m/z, ESI): Calcd. for C₂₄H₂₄BrFNO₄ [M+H]⁺: 488.0867, Found: 488.0867. [α]_D²⁰= -97.0 (c 2.0, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(4-trifluoromethyloxy)phenyl-3,4-dihydro-2H-

pyrrol-2-yl)-2-phenylacrylate (E)-(3fa)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 36 mg, 73% yield, 97% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 6.00 min (major) and 7.46 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.36 – 7.26 (m, 3H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.24 – 4.11 (m, 2H), 3.33 – 3.10 (m, 2H), 2.87 (dt, *J* = 13.2, 9.0 Hz, 1H), 2.50 (dt, *J* = 14.7, 8.9 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.3, 170.1, 166.9 (d, *J* = 15.2 Hz), 161.0 (d, *J* = 271.7 Hz), 151.4 (d, *J* = 1.0 Hz), 132.2, 131.9, 130.1, 129.0 (d, J = 4.0 Hz), 128.3, 128.1, 121.7, 120.6, 119.1, 116.4 (d, J = 17.2 Hz), 84.6 (d, J = 18.2 Hz), 62.1, 61.4, 35.6, 31.8 (d, J = 4.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.7, -104.8. HRMS (m/z, ESI): Calcd. for C₂₅H₂₄F₄NO₅ [M+H]⁺: 494.1585, Found: 494.1587. [α]_D²⁰= -93.6 (c 2.4, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(4-phenyl)phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (E)-(3ga)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 29 mg, 60% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 13.98 min (major) and 20.15 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 7.9 Hz, 2H), 7.68 (dd, *J* = 11.4, 8.0 Hz, 4H), 7.55 – 7.45 (m, 4H), 7.45 – 7.31 (m, 4H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.38 – 3.15 (m, 2H), 2.91 (dt, *J* = 13.2, 8.7 Hz, 1H), 2.50 (dt, *J* = 13.4, 8.9 Hz, 1H), 1.36 (t, *J* = 6.4 Hz, 3H), 1.23 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.4, 170.2, 166.9 (d, *J* = 15.2 Hz), 161.3 (d, *J* = 271.7 Hz), 144.1, 140.2, 132.5, 132.0, 129.01 (d, *J* = 4.0 Hz), 129.0, 128.9, 128.3, 128.0, 127.9, 127.2, 127.1, 116.3 (d, *J* = 17.2 Hz), 84.7 (d, *J* = 28.3 Hz), 62.1, 61.5, 35.7, 31.8 (d, *J* = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.6. HRMS (m/z, ESI): Calcd. for C₃₀H₂₉FNO₄ [M+H]⁺: 486.2075, Found: 486.2074. [a]p²⁰= -135.5 (c 1.9, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(2-napthyl)-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (E)-(3ha)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 32 mg, 70% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 13.20 min (major) and 16.55 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (s, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 7.98 – 7.85 (m, 3H), 7.64 – 7.46 (m, 4H), 7.45 – 7.31 (m, 3H), 4.36 – 4.25 (m, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.47 – 3.27 (m, 2H), 2.96 (dt, *J* = 13.1, 8.6 Hz, 1H), 2.53 (dt, *J* = 13.4, 9.0 Hz, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.20 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.7, 170.2, 166.9 (d, *J* = 15.2 Hz), 161.4 (d, *J* = 270.7 Hz), 134.8, 132.8, 132.0, 131.2, 129.4, 129.1 (d, *J* = 3.0 Hz), 128.9, 128.3, 128.2, 128.0, 127.8, 127.6, 126.6, 124.9, 116.3 (d, *J* = 18.2 Hz), 84.8 (d, *J* = 28.3 Hz), 62.1, 61.5, 35.7, 31.9 (d, *J* = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.5. HRMS (m/z, ESI): Calcd. for C₂₈H₂₇FNO₄ [M+H]⁺: 460.1919, Found: 460.1911. [α]_D ²⁰= -117.9 (c 2.1, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(3-methyl)phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 35 mg, 83% yield, 97% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 9.50 min (major) and 13.64 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (s, 1H), 7.68 (d, *J* = 7.1 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 2H), 7.43 – 7.29 (m, 5H), 4.33 – 4.24 (m, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.32 – 3.13 (m, 2H), 2.91 (dt, *J* = 13.3, 8.9 Hz, 1H), 2.50 – 2.37 (m, 4H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.9, 170.1, 166.8 (d, *J* = 16.2 Hz), 161.5 (d, *J* = 270.7 Hz), 138.1, 133.6, 132.2, 132.0, 129.1 (d, *J* = 4.0 Hz), 128.9, 128.4, 128.2, 128.0, 125.7, 116.2 (d, *J* = 17.2 Hz), 84.7 (d, *J* = 28.3 Hz), 62.0, 61.4, 35.8, 31.8 (d, *J* = 3.0 Hz), 21.4, 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 104.2. HRMS (m/z, ESI): Calcd. for $C_{25}H_{27}FNO_4$ [M+H]⁺: 424.1919, Found: 424.1917. [α]_D²⁰= -87.6 (c 2.3, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-(3-methyloxy)phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (E)-(3ja)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 27 mg, 62% yield, 97% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 10.96 min (major) and 16.23 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (s, 1H), 7.48 (d, *J* = 7.3 Hz, 2H), 7.44 – 7.29 (m, 5H), 7.05 (dd, *J* = 8.3, 2.6 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.24 – 4.15 (m, 2H), 3.89 (s, 3H), 3.33 – 3.10 (m, 2H), 2.84 (dt *J* = 13.2, 9.0 Hz, 1H), 2.48 (dt, *J* = 13.5, 9.0 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.5, 170.2, 167.0 (d, *J* = 15.2 Hz), 161.1 (d, *J* = 271.7 Hz), 159.6, 135.0, 132.0, 129.4, 129.0 (d, *J* = 4.0 Hz), 128.2, 128.0, 121.1, 118.0, 116.4 (d, *J* = 17.2 Hz), 112.7, 84.4 (d, *J* = 28.3 Hz), 62.0, 61.34, 55.5, 35.7, 31.8 (d, *J* = 4.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.1. HRMS (m/z, ESI): Calcd. for C₂₅H₂₇FNO₅ [M+H]⁺: 440.1868, Found: 424.1868. [α]_D²⁰= -76.7 (c 1.8, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-methyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (*E*)-(3ka)

Eluent: petroleum ether/ethyl acetate (6/1), white solid, 30 mg, 76% yield, 97% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 10.63min (major) and 14.21 min (minor). ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.98 – 7.86 (m, 2H), 7.55 – 7.29 (m, 8H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.84 (s, 3H), 3.37 – 3.14 (m, 2H), 2.91 (dt, *J* = 13.3, 8.8 Hz, 1H), 2.57 – 2.41 (m, 1H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.9, 170.7, 166.8 (d, *J* = 15.2 Hz), 161.0 (d, *J* = 271.7 Hz), 133.5, 131.9, 131.5, 129.0 (d, *J* = 4.0 Hz), 128.5 (d, *J* = 4.0 Hz), 128.3, 128.1, 116.4 (d, *J* = 18.2 Hz), 84.6 (d, *J* = 29.3 Hz), 61.5, 53.1, 35.7, 31.8 (d, *J* = 3.0 Hz), 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.1. HRMS (m/z, ESI): Calcd. for C₂₃H₂₃FNO₄ [M+H]⁺: 396.1606, Found: 396.1604. [α]_D ²⁰= -100.6 (c 2.0, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-tert-butyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (E)-(3la)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 21 mg, 48% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 5.60 min (major) and 7.26 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.83 (m, 2H), 7.60 – 7.29 (m, 8H), 4.30 – 4.16 (m, 2H), 3.30 – 3.07 (m, 2H), 2.75 (dt, *J* = 12.9, 8.7 Hz, 1H), 2.49 – 2.37 (m, 1H), 1.54 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.1, 169.2, 167.0 (d, *J* = 15.2 Hz), 161.2 (d, *J* = 271.7 Hz), 133.86, 132.2, 131.2, 129.0, 128.9, 128.4 (d, *J* = 5.0 Hz), 128.2, 127.9, 115.8 (d, *J* = 18.2 Hz), 85.1 (d, *J* = 28.3 Hz), 61.4, 35.4, 31.6 (d, *J* = 5.0 Hz), 27.9, 13.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.2. HRMS (m/z, ESI): Calcd. for C₂₆H₂₉FNO₄ [M+H]⁺: 438.2075, Found: 438.2066. [α]_D ²⁰= -106.0 (c 1.4, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(4-methylphenyl)acrylate (*E*)-(3ab)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 29 mg, 69% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 10.04 min (major) and 15.85 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 9.4 Hz, 2H), 7.51 – 7.42 (m, 3H), 7.36 (d, *J* = 7.8 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.32 – 3.12 (m, 2H), 2.91 – 2.84 (m, 1H), 2.51 – 2.43 (m, 1H), 2.38 (s, 3H), 1.34 (t, *J* = 8.0 Hz, 3H), 1.20 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 170.3, 167.0 (d, *J* = 15.2 Hz), 160.9 (d, *J* = 270.7 Hz), 137.9, 133.7, 131.4, 129.0, 129.0, 128.9 (d, *J* = 4.0 Hz), 128.4 (d, *J* = 3.0 Hz), 116.2 (d, *J* = 17.2 Hz), 84.7 (d, *J* = 28.3 Hz), 62.0, 61.4, 35.6, 31.8 (d, *J* =4.0 Hz), 21.3, 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -105.4. HRMS (m/z, ESI): Calcd. for C₂₅H₂₇FNO₄ [M+H]⁺: 424.1919, Found: 424.1916. [*a*]_D²⁰= -101.6 (c 1.9, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(4-methyloxyphenyl)acrylate (E)-(3ac)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 33 mg, 75% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 15.56 min (major) and 26.21 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.4 Hz, 2H), 7.66 – 7.32 (m, 5H), 6.92 (d, *J* = 10.9 Hz, 2H), 4.37 – 4.23 (m, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 3.33 – 3.09 (m, 2H), 2.93 – 2.76 (m, 1H), 2.51– 2.43 (m, 1H), 1.34 (t, *J* = 8.1 Hz, 3H), 1.20 (t, *J* = 6.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 170.3, 167.1 (d, *J* = 15.2 Hz), 160.5 (d, *J* = 270.7 Hz), 159.24, 133.7, 131.4, 130.2 (d, *J* = 4.0 Hz), 128.4 (d, *J* = 4.0 Hz), 124.2, 115.9 (d, J=17.2 Hz), 113.7, 84.6 (d, J=29.3 Hz), 62.0, 61.4, 55.3, 35.6, 31.8 (d, J =4.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-d) δ -106.3. HRMS (m/z, ESI): Calcd. for C₂₅H₂₇FNO₅ $[M+H]^+$: 440.1868, Found: 440.1867. $[\alpha]_D^{20} = -$ 109.5 (c 2.2, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(4-fluorophenyl)acrylate (E)-(3ad)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 20 mg, 47% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 6.85 min (major) and 8.79 min (minor). ¹H NMR (400 MHz, Chloroform-d) δ 7.91 (d, J = 8.1 Hz, 2H), 7.55 – 7.40 (m, 5H), 7.08 (t, J = 8.7 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.22 – 4.14 (m, 2H), 3.33 – 3.14 (m, 2H), 2.90 – 2.83 (m, 1H), 2.53 - 2.40 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 177.7, 170.1, 166.8 (d, J = 15.2 Hz), 162.3 (d, J = 248.5 Hz), 161.6 (d, J = 271.7 Hz), 133.6, 131.4, 130.9 (q, J = 4.0 Hz), 128.5, 128.4, 115.4, 115.1, 84.6 (d, *J* = 17.2 Hz), 62.1, 61.5, 35.63, 31.8 (d, *J* = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-d) δ -104.2, -113.6. HRMS (m/z, ESI): Calcd. for $C_{24}H_{24}FNO_4$ [M+H]⁺: 428.1668, Found: 428.1669. [α]_D²⁰= -133.7 (c 1.3, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(4-chlorophenyl)acrylate (E)-(3ae)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 31 mg, 70% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ =

254 nm, retention time: 6.74 min (major) and 8.97 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 9.0 Hz, 2H), 7.57 – 7.33 (m, 7H), 4.35 – 4.25 (m, 2H), 4.24 – 4.12 (m, 2H), 3.30 – 3.15 (m, 2H), 2.90 – 2.84 (m, 1H), 2.54 – 2.42 (m, 1H), 1.34 (t, J = 7.3 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 170.0, 166.6 (d, J = 15.0 Hz), 161.9 (d, J = 272.7 Hz), 133.9, 133.5, 131.5, 130.43, 130.39, 128.50, 128.47, 128.4, 115.4 (d, J = 18.2 Hz), 84.6 (d, J = 28.3 Hz), 62.1, 61.6, 35.64, 31.8 (d, J = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.3. HRMS (m/z, ESI): Calcd. for C₂₄H₂₄ClFNO₄ [M+H]⁺: 444.1372, Found: 444.1370. [α]_D²⁰= -96.2 (c 2.1, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(4-bromophenyl)acrylate (E)-(3af)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 39 mg, 80% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 7.20 min (major) and 9.80 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.9 Hz, 2H), 7.58 – 7.40 (m, 5H), 7.34 (d, *J* = 10.9 Hz, 2H), 4.28 (q, *J* = 8.1, 6.8 Hz, 2H), 4.23 – 4.11 (m, 2H), 3.35 – 3.10 (m, 2H), 2.95 – 2.79 (m, 1H), 2.54 – 2.39 (m, 1H), 1.34 (t, *J* = 9.0 Hz, 3H), 1.20 (t, *J* = 8.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 170.0, 166.5 (d, J = 14.1 Hz), 161.9 (d, *J* = 272.7 Hz), 133.5, 131.5 (d, *J* = 4.0 Hz), 131.4, 130.9, 130.7 (d, *J* = 4.0 Hz), 128.5, 128.4, 122.17, 115.4 (d, *J* = 17.2 Hz), 84.6 (d, *J* = 18.2 Hz), 62.1, 61.6, 35.6, 31.8 (d, *J* = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.15. HRMS (m/z, ESI): Calcd. for C₂₄H₂₄BrFNO₄ [M+H]⁺: 488.0867, Found: 488.0868. [α]_D ²⁰= -75.8 (c 2.6, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(3-chlorophenyl)acrylate (E)-(3ag)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 25 mg, 56% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 6.90 min (major) and 8.91 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 6.8 Hz, 2H), 7.55 – 7.41 (m, 4H), 7.39 – 7.29 (m, 3H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.23 – 4.15 (m, 2H), 3.33 – 3.12 (m, 2H), 2.92 – 2.81 (m, 1H), 2.54 – 2.40 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 170.0, 166.4 (d, *J* = 15.2 Hz), 162.2 (d, *J* = 273.7 Hz), 134.1, 133.6, 133.5, 131.5, 129.5, 129.2 (d, *J* = 4.0 Hz), 128.5, 128.4, 128.2, 127.2 (d, *J* = 4.0 Hz), 115.3 (d, *J* = 17.2 Hz), 84.6 (d, *J* = 28.3 Hz), 62.1, 61.6, 35.6, 31.8 (d, *J* = 3.0 Hz), 14.1, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.5. HRMS (m/z, ESI): Calcd. for C₂₄H₂₄ClFNO₄ [M+H]⁺: 444.1372, Found: 444.1373. [α]_D²⁰= -88.6 (c 1.7, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(2-napthyl)acrylate (E)-(3ah)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 35 mg, 76% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 10.73 min (major) and 21.04 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.91 (m, 3H), 7.91 – 7.82 (m, 3H), 7.60 (d, *J* = 8.6 Hz, 1H), 7.55 – 7.42 (m, 5H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.23 (q, *J* = 6.6, 6.1 Hz, 2H), 3.36 – 3.17 (m, 2H), 2.96 – 2.89 (m, 1H), 2.57 – 2.49 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 170.2, 166.9 (d, J = 15.0 Hz), 161.7 (d, J = 271.7 Hz), 133.6, 133.1, 132.8, 131.4, 128.5 (d, J = 4.0 Hz), 128.4 (d, J = 4.0 Hz), 128.3, 127.8, 127.6, 126.8 (d, J = 4.0 Hz), 126.4, 126.2, 116.4 (d, J = 18.2 Hz), 84.7 (d, J = 28.3 Hz), 62.1, 61.5, 35.7, 31.8 (d, J = 3.0 Hz), 14.2, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.2. HRMS (m/z, ESI): Calcd. for C₂₈H₂₇FNO₄ [M+H]⁺: 460.1919, Found: 460.1918. [α]_D²⁰= -125.5 (c 2.3, CHCl₃).

Z)-1-F-1-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-2-(2-

napthyl)ethylene (Z)-(3ah')

(*R*,

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 17 mg, 43% yield, 99% ee, HPLC analysis: Daicel Chiralpak OJ-H, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 33.15 min (major) and 45.16 min (minor).¹H NMR (400 MHz, Chloroform-d) δ 8.08 – 7.94 (m, 3H), 7.86 – 7.76 (m, 3H), 7.72 (d, J = 8.7 Hz, 1H), 7.62 – 7.38 (m, 5H), 6.14 (d, J = 40.2 Hz, 1H), 4.46 – 4.21 (m, 2H), 3.38 – 3.12 (m, 2H), 3.01 – 2.87 (m, 1H), 2.51 – 2.38 (m, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 170.8, 159.0 (d, *J* = 268.7 Hz), 133.6 (d, *J* = 1.0 Hz), 133.5, 132.5 (d, *J* = 2.0 Hz), 131.5, 130.6 (d, *J* = 3.0 Hz), 128.6, 128.4, 128.1, 128.0 (d, *J* = 8.0 Hz), 127.9, 127.6, 126.8 (d, *J* = 8.0 Hz), 126.1, 126.0, 106.3 (d, *J* = 5.0 Hz), 84.5 (d, *J* = 30.0 Hz), 62.3, 35.9, 30.8, 14.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.6. HRMS (m/z, ESI): Calcd. for C₂₅H₂₃FNO₂ [M+H]⁺: 388.1707, Found: 388.1713.

(R, E)-Benzyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-phenylacrylate (*E*)-(3ai)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 27 mg, 57% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 8.60 min (major) and 11.42 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 6.9 Hz, 2H), 7.56 – 7.42 (m, 5H), 7.42 – 7.21 (m, 8H), 5.25 – 5.08 (m, 2H), 4.20 – 4.12 (m, 2H), 3.37 – 3.08 (m, 2H), 2.91– 2.84 (m, 1H), 2.49– 2.42 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.9, 170.1, 166.7 (d, *J* = 16.2 Hz), 161.3 (d, *J* = 270.7 Hz), 135.5, 133.6, 131.8, 131.5, 129.0 (d, *J* = 4.0 Hz), 128.5 (d, *J* = 4.0 Hz), 128.34, 128.31, 128.27, 128.1, 116.1 (d, *J* = 18.2 Hz), 84.7 (d, *J* = 29.3 Hz), 67.1, 62.1, 35.7, 31.8 (d, *J* = 3.0 Hz), 14.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -104.7. HRMS (m/z, ESI): Calcd. for C₂₉H₂₇FNO₄ [M+H]⁺: 472.1919, Found: 472.1919. [α]_D²⁰= -101.2 (c 1.8, CHCl₃).

(R, E)-ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-benzylacrylate (E)-(3aj)

Eluent: petroleum ether/ethyl acetate (6/1), pale yellow oil, 28 mg, 66% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 9.13 min (major) and 12.64 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 6.8 Hz, 2H), 7.51 – 7.42(m, 3H), 7.33 – 7.25 (m, 4H), 7.24 – 7.19 (m, 1H), 4.23 (qd, *J* = 7.2, 1.7 Hz, 2H), 4.17 – 4.02 (m, 2H), 3.88 – 3.68 (m, 2H), 3.34 – 3.11 (m, 2H), 3.04 (ddd, *J* = 13.5, 9.4, 4.1 Hz, 1H), 2.41 – 2.26 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.6, 170.0 (d, *J* = 3.0 Hz), 167.1 (d, *J* = 17.2 Hz), 165.9 (d, *J* = 272.7 Hz), 138.7 (d, *J* = 2.0 Hz), 133.6, 131.3, 128.50, 128.45, 128.34, 128.3, 126.2, 113.6 (d, J = 22.2 Hz), 85.1 (d, J = 25.3 Hz), 61.9, 61.0, 35.9, 32.4, 32.0 (d, J = 6.0 Hz), 14.0, 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -97.1. HRMS (m/z, ESI): Calcd. for C₂₅H₂₇FNO₄ [M+H]⁺: 424.1919, Found: 424.1917. [α]_D ²⁰= -94.5 (c 1.9, CHCl₃).

(R, E)-Ethyl 3-F-3-(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-

2-(4-phenylphenyl)acrylate (E)-(3ak)

Eluent: petroleum ether/ethyl acetate (4/1), pale yellow oil, 41 mg, 84% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 12.12 min (major) and 15.75 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 6.7 Hz, 2H), 7.65 – 7.58(m, 4H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.52 – 7.43 (m, 5H), 7.39 (d, *J* = 7.3 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.22 (qd, *J* = 7.2, 2.0 Hz, 2H), 3.34 – 3.16 (m, 2H), 2.93 – 2.86 (m, 1H), 2.55 – 2.47 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 170.3, 167.0 (d, *J* = 15.2 Hz), 161.4 (d, *J* = 276.5 Hz), 140.9, 140.7, 133.7, 131.5, 131.1, 129.5 (d, *J* = 4.0 Hz), 128.9, 128.55 (d, *J* = 4.0 Hz), 127.5, 127.2, 127.1, 116.1 (d, *J* = 17.2 Hz), 84.7 (d, *J* = 28.3 Hz), 62.2, 61.6, 35.7, 31.9 (d, *J* = 3.0 Hz), 14.2, 13.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.8. HRMS (m/z, ESI): Calcd. for C₃₀H₂₉FNO₄ [M+H]⁺: 486.2075, Found: 486.2073. [α]_D²⁰= -86.9 (c 2.7, CHCl₃).

(R, E)-2-((2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoyl)oxy)ethyl 3-F-3-

(2-ethyloxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-2-phenylacrylate (E)-(3al)

Eluent: petroleum ether/ethyl acetate (6/1), colorless oil, 38 mg, 58% yield, 98% ee, HPLC analysis: Daicel Chiralpak IC, hexane/iso-propanol = 90:10, 1.0 mL/min, λ = 254 nm, retention time: 14.12 min (major) and 17.81 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 6.7 Hz, 2H), 7.60 – 7.41 (m, 5H), 7.41 – 7.24 (m, 3H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.69 (d, *J* = 7.5 Hz, 1H), 6.60 (s, 1H), 4.42 – 4.14 (m, 6H), 3.86 (s, 2H), 3.33 – 3.14 (m, 2H), 2.95 – 2.81 (m, 1H), 2.54 – 2.40 (m, 1H), 2.34 (s, 3H), 2.18 (s, 3H), 1.76 – 1.61 (m, 4H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.17 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.9, 177.5, 170.1, 166.6 (d, *J* = 15.2 Hz), 161.5 (d, *J* = 271.7 Hz), 156.9, 136.5, 133.5, 131.7, 131.5, 130.3, 129.0, 128.9 (d, *J* = 3.0 Hz), 128.6, 128.4, 128.3, 128.1, 123.5, 120.7, 115.9 (d, *J* = 18.2 Hz), 111.9, 84.6 (d, *J* = 28.3 Hz), 67.8, 63.1, 62.1, 61.7, 42.0, 37.0, 35.6, 31.7 (d, *J* = 2.0 Hz), 25.1, 25.0, 21.4, 15.8, 14.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.96. HRMS (m/z, ESI): Calcd. for C₃₉H₄₅FNO₇ [M+H]⁺: 658.3175, Found: 658.3180. [α]_D²⁰= -79.0 (c 2.5, CHCl₃).

7. References

- (a) Penglin Liu, Xiaohong Huo, Bowen Li, Rui He, Jiacheng Zhang, Tianhong Wang, Fang Xie and Wanbin Zhang, Stereoselective Allylic Alkylation of 1-Pyrroline-5carboxylic Esters via a Pd/Cu Dual Catalysis, *Org. Lett.* 2018, 20, 6564–6568; (b) Wu Liang, Kun Jiang, Fei Du, Jie Yang, Li Shuai, Qin Ouyang, Ying-Chun Chen, and Ye Wei, Iron-Catalyzed, Iminyl Radical-Triggered Cascade 1,5-Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five-Atom Assembling Unit, *Angew. Chem. Int. Ed.* 2020, *59*, 19222–19228.
- (a) Q. Ma, Y. H. Wang and G. C. Tsui, Stereoselective Palladium Catalyzed C-F Bond Alkynylation of Tetrasubstituted gem-Difluoroalkenes, *Angew. Chem., Int. Ed.*, 2020, 59, 11293–11297; (b) Q. Ma, C. Liu, and G. C. Tsui, Palladium-Catalyzed Stereoselective Hydrodefluorination of Tetrasubstituted gem-Difluoroalkenes, *Org. Lett.*, 2020, 22, 5193–5197; (c) M. Li, Y. H. Wang, and G. C. Tsui, Palladium-Catalyzed Stereoselective C–F Bond Vinylation and Allylation of Tetrasubstituted gem-Difluoroalkenes via Stille Coupling: Synthesis of Monofluorinated 1,3- and 1,4-Dienes, *Org. Lett.*, 2021, 23,

8. NMR and HPLC Spectra for The New Compounds

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (376 MHz, Chloroform-d)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$\begin{array}{c} 7.93\\ 7.93\\ 7.94\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.75\\ 7.36\\ 7.73\\ 7.36\\ 7.36\\ 7.36\\ 7.26\\ 7.36\\ 7.26\\ 7.36\\ 7.26\\ 7.36\\ 7.26\\$

JJ J J J J

¹H NMR (400 MHz, Chloroform-d)

-1.0

-0.5

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

7.0

6.5 6.0 5.5 5.0

9 5 9.0 8, 5 8,0 7.5

¹⁹F NMR (376 MHz, Chloroform-d)

S-34

---104.60

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(*E*)-3da

¹³C NMR (101 MHz, Chloroform-d)

f1 (ppm) 210 200 190 180 170 160 150 140 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

EtO₂C (*E*)-**3ha**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

esults				
Retention Time	Area	Area %	Height	Height %
10.892	8286267	50.18	395204	62.29
15.948	8226441	49.82	239214	37.71
Totals				
	16512708	100.00	634418	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
10.962	22642096	98.28	1055688	98.92
16.225	396247	1.72	11482	1.08
Totals				
	23038343	100.00	1067170	100.00

UV1000-254nm Results Retention Time Area % Height Height % Area 54.22 5.610 17827276 48.95 1423125 7.247 18593385 51.05 1201587 45.78 Totals 100.00 2624712 100.00 36420661

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
5.597	25325696	98.65	1927803	98.89
7.257	346223	1.35	21727	1.11
Totals				
	25671919	100.00	1949530	100.00

10.548	6958938	50.31	318779	57.65
14.087	6873772	49.69	234159	42.35
9				
Totals				
	13832710	100.00	552938	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
10.627	3894862	98.79	176370	99.02
14.213	47789	1.21	1745	0.98
Totals				
	3942651	100.00	178115	100.00

Retention Time	Area	Area %	Height	Height %
10.043	11759869	49.06	621358	61.10
15.720	12211479	50.94	395648	38.90
Totals				
	23971348	100.00	1017006	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
10.043	26298178	99.00	1302055	99.38
15.852	266054	1.00	8182	0.62
Totals				
	26564232	100.00	1310237	100.00

¹H NMR (400 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

Results Retention Time Area % Height Height % Area 15.460 116731 3610337 50.00 63.04 26.073 3610146 50.00 68436 36.96 Totals 100.00 7220483 100.00 185167

UV1000-254nm

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
15.555	20039207	99.23	648878	99.53
26.207	155713	0.77	3036	0.47
Totals				
	20194920	100.00	651914	100.00

UV1000-254nm Results Retention Time Area % Height Height % Area 7848823 59.28 6.870 52.82 641352 8.792 7011089 47.18 440540 40.72 Totals 14859912 100.00 1081892 100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
6.853	17490845	99.03	1383435	99.26
8.785	170720	0.97	10351	0.74
Totals				
	17661565	100.00	1393786	100.00

V1000-254nm esults				
Retention Time	Area	Area %	Height	Height %
6.750	32975745	47.69	2195273	52.47
8.948	36165906	52.31	1988233	47.53
Totals				
	69141651	100.00	4183506	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
6.738	31122844	99.10	2083874	99.09
8.973	284008	0.90	19155	0.91
Totals				
	31406852	100.00	2103029	100.00

4.31 4.20 4.20 4.20 4.15 <t

 \int ſ [

¹H NMR (400 MHz, Chloroform-d)

7.090	4370569	50.11	339164	58.19
9.640	4351437	49.89	243686	41.81
N				
Totals				
	8722006	100.00	582850	100.00

UV1000-254nm				
Results	Y		** • •	** • • • •
Retention Time	Area	Area %	Height	Height %
7.198	11135679	98.87	846548	99.21
9.803	127502	1.13	6780	0.79
Totals				
	11263181	100.00	853328	100.00

¹H NMR (400 MHz, Chloroform-d)

84.72 84.44 62.10 61.61

¹³C NMR (101 MHz, Chloroform-d)

-35.63 -31.78 -31.75 14.11

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

V1000-254nm esults				
Retention Time	Area	Area %	Height	Height %
6.835	31580079	50.30	2636344	57.49
8.803	31198195	49.70	1949194	42.51
Totals				
	62778274	100.00	4585538	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
6.902	24608548	98.90	2048091	99.28
8.912	274153	1.10	14920	0.72
Totals				
	24882701	100.00	2063011	100.00

$\begin{array}{c} 7.98\\ 7.98\\ 7.98\\ 7.98\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.88\\ 7.86\\$

¹H NMR (400 MHz, Chloroform-d)

S-88

¹³C NMR (101 MHz, Chloroform-d)

S-90

Signal: DAD1 A, Sig=254,4 Ref=off

Signal:	DAD	1 A, Sig=254,4	Ref=off			
RT [min]	Туре	Width [min]	Area	Height	Area% N	ame
33.155	BB	1.8886	218624.5156	1718.0828	99.4716	
45.167	BB	2.4769	1161.4430	5.5106	0.5284	
		Sum	219785.9586			

 $\int \int \int f f$

-67.13 -62.05

¹H NMR (400 MHz, Chloroform-d)

¹³C NMR (101 MHz, Chloroform-d)

35.70 -31.78 -31.75 - 13.98

Retention Time	Area	Area %	Height	Height %
8.623	14952916	50.29	912088	57.92
11.432	14782443	49.71	662606	42.08
Totals				
	29735359	100.00	1574694	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
8.603	9920804	98.91	615144	99.19
11.420	109206	1.09	5014	0.81
Totals				
	10030010	100.00	620158	100.00

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

esults				
Retention Time	Area	Area %	Height	Height %
9.137	14761827	50.86	910989	58.71
12.583	14259955	49.14	640641	41.29
Totals				
	29021782	100.00	1551630	100.00

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
9.133	18499042	99.20	1125988	99.42
12.638	148752	0.80	6586	0.58
Totals				
	18647794	100.00	1132574	100.00

 \iint ſ,

¹H NMR (400 MHz, Chloroform-d)

¹⁹F NMR (376 MHz, Chloroform-d)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

UV1000-254nm Results				
Retention Time	Area	Area %	Height	Height %
11.118	2022444	98.76	85623	99.16
15.747	25338	1.24	724	0.84
Totals				
	2047782	100.00	86347	100.00

UV1000-254nm Results	A rag	A rep 9/	Height	Haight %
Retention Time	Area	Alea 70	Height	Height 76
14.117	23328910	98.72	472177	99.01
17.807	301569	1.28	4743	0.99
Totals				
	23630479	100.00	476920	100.00

9. X-ray Crystal structure of Compounds (E)-3ka (CCDC 2151837)

The single crystal for compound (*E*)-**3ka** were prepared from a mixture solvent of hexane and ethyl acetate (v/v = 3:1) at 14 °C. The data were collected on a Bruker D8 Venture Photon II instrument using Cu-K α radiation (λ = 1.54178 Å) at 170 K. The crystal structures were solved and refined using the SHELXTL software package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added in the riding model and refined with isotropicthermal parameters. The crystallographic data have already been deposited at the Cambridge Crystallographic Data Centre. CCDC numbers: 2151837

Figure S1 X-ray derived ORTEP of (E)-3ka with thermal ellipsoids shown at 50% probability

level

Table S5 Crystal data and structure refinement for (E)-3ka

(<i>E</i>)-3ka
$C_{23}H_{22}FNO_4$
395.41
169.99
orthorhombic
$P2_{1}2_{1}2_{1}$

a/Å	9.4819(3)
b/Å	11.7917(3)
c/Å	18.3290(5)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2049.32(10)
Ζ	4
$\rho_{calc}g/cm^3$	1.282
μ/mm^{-1}	0.775
F(000)	832.0
Crystal size/mm ³	$0.09\times0.08\times0.08$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	8.916 to 133.476
Index ranges	$-11 \le h \le 9, -14 \le k \le 14, -20 \le l \le 21$
Reflections collected	19517
Independent reflections	$3586 [R_{int} = 0.0428, R_{sigma} = 0.0283]$
Data/restraints/parameters	3586/0/265
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0278, wR_2 = 0.0716$
Final R indexes [all data]	$R_1 = 0.0285, wR_2 = 0.0721$
Largest diff. peak/hole / e Å-3	0.17/-0.13