Supporting Information

Controllable Methylenation with Ethylene Glycol as Methylene

Source: Bridging Enaminones and Synthesis of

Tetrahydropyrimidines

Yulei Zhao,*‡ Huimin Wang,‡ Xin Kang, Ruihua Zhang, Nan Feng, and Qi Su

Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.

> Corresponding Author: Yulei Zhao E-mail: ylzhao@qfnu.edu.cn ‡ These authors contributed equally to this work.

Contents:	Page
General Information	S3
Synthesis and characterization of 2	S4-S15
Synthesis and characterization of 3	S16-S21
Synthesis and characterization of 2'	S22-S23
Gram-Scale Preparation of 2a and 3a	S24
References	S25
NMR spectra of compounds	S26-S57
Cross reaction result	S58

General Information

All glassware was oven dried at 100 °C for hours and cooled down under vacuum. Anhydrous DMF was prepared by distillation from CaH₂. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). ¹H NMR spectra were recorded at 500 or 400 MHz, ¹³C NMR spectra were recorded at 125 or 100 MHz, and in CDCl₃ (containing 0.03% TMS) solutions with Bruker Advance III spectrometers. ¹H NMR spectra were recorded with Me₄Si ($\delta = 0.00$) or CDCl₃ ($\delta = 7.26$) as the internal reference and ¹³C NMR spectra were recorded with CDCl₃ ($\delta = 77.16$) as the internal reference. High-resolution mass spectra were obtained using a Bruker Maxis Impact mass spectrometer with a TOF (for ESI) analyzer. The enaminones **1** were prepared according to the literature methods.¹⁻⁹ Synthesis and characterization of 2

In an oven-dried Schlenk tube (25 mL) containing a magnetic stirring bar was added 1 (0.3 mmol), NaIO₄ (64.8 mg, 0.3 mmol). Then, the vessel was evacuated and refilled with Ar for three times. Under a stream of Ar, to this vessel were added DMF (1.5 mL) and ethylene glycol (16.8 μ L, 0.3 mmol). Then the vessel was stirred in a 100 °C oil bath for the corresponding time (see Table 2). The reaction could be monitored by TLC analysis. Finally, H₂O (7 mL) was added to reaction system, and the resulting mixture was directly filtered and washed with H₂O (5 mL × 6) to give pure products **2**.

NOTE: Products **2b**, **2f**, **2i**, **2m**, **2q**, are new compounds. Other products **2** are known compounds,¹⁰ and the spectroscopic data are in agreement with that previously reported.

(2E, 4E)-1,5-Diphenyl-2,4-bis((phenylamino)methylene)pentane-1,5-dione (2a).¹⁰ Compound 2a was prepared in 92% yield (63 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 15/1); Yellow solid; mp 194-196 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.89 (d, J = 13.3 Hz, 2H), 7.78 (d, J = 13.3 Hz, 2H), 7.60-7.58 (m, 4H), 7.52-7.45 (m, 6H), 7.30-7.27 (m, 4H), 7.07-7.01 (m, 6H), 3.84 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 197.5, 149.3, 140.8, 140.5, 130.3, 129.8, 128.9, 128.3, 123.3, 116.2, 113.8, 20.4; Analytical data for **2a** were consistent with our previous reports.¹⁰

(2*E*, 4*E*)-1,5-Diphenyl-2,4-bis(((3,4,5-trimethoxyphenyl)amino)methylene)pentane-1,5 -dione (2b). Compound 2b was prepared in 97% yield (93 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 4/1); Yellow solid; mp 213-215 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.79 (d, *J* = 13.2 Hz, 2H), 7.65 (d, *J* = 13.2 Hz, 2H), 7.58 (d, *J* = 7.1 Hz, 4H), 7.49-7.42 (m, 8H), 6.25 (s, 2H), 3.81 (s, 12H), 3.79 (s, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 197.3, 154.2, 149.7, 140.4, 137.3, 134.5, 130.5, 129.0, 128.2, 113.7, 94.0, 61.2, 56.3, 20.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₉N₂O₈ 639.2701, Found 639.2698.

(2E,4E)-2,4-Bis(((4-methoxyphenyl)amino)methylene)-1,5-diphenylpentane-1,5-dione (2c).¹⁰ Compound 2c was prepared in 92% yield (72 mg) according to the general

procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); Yellow solid; mp 180-182 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.89 (d, J = 13.4 Hz, 2H), 7.68 (d, J = 13.4 Hz, 2H), 7.56 (d, J = 7.0 Hz, 4H), 7.48-7.43 (m, 6H), 7.00 (d, J = 8.7 Hz, 4H), 6.83 (d, J = 8.7 Hz, 4H), 3.81 (s, 2H), 3.76 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 196.8, 156.1, 150.1, 140.7, 134.5, 130.1, 128.8, 128.3, 117.5, 115.0, 113.1, 55.7, 20.4; Analytical data for **2c** were consistent with our previous reports.¹⁰

(2*E*, 4*E*)-2, 4-Bis(((4-(dimethylamino)phenyl)amino)methylene)-1, 5-diphenylpentane-1, 5-dione (2d).¹⁰ Compound 2d was prepared in 90% yield (74 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 12/1); Yellow solid; mp 220-222 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.85 (d, *J* = 13.5 Hz, 2H), 7.67 (d, *J* = 13.6 Hz, 2H), 7.55 (d, *J* = 6.4 Hz, 4H), 7.45-7.42 (m, 6H), 6.97 (d, *J* = 9.0 Hz, 4H), 6.67 (d, *J* = 9.0 Hz, 4H), 3.81 (s, 2H), 2.89 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 196.2, 150.1, 147.6, 141.0, 131.5, 129.8, 128.8, 128.2, 117.6, 114.0, 112.7, 41.1, 20.3; Analytical data for 2d were consistent with our previous reports.¹⁰

Diethyl 4,4'-(((1E,4E)-2,4-dibenzoylpenta-1,4-diene-1,5diyl)bis(azanediyl))dibenzoate (2e).¹⁰ Compound 2e was prepared in 99% yield (89 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); White solid; mp 218-220 °C; ¹H NMR (500 MHz, CDCl₃): δ 11.03 (d, J = 13.0 Hz, 2H), 7.97 (d, J = 8.6 Hz, 4H), 7.78 (d, J = 13.0 Hz, 2H), 7.60 (d, J = 7.1 Hz, 4H), 7.56-7.53 (m, 2H), 7.50-7.47 (m, 4H), 7.06 (d, J = 8.6 Hz, 4H), 4.34 (q, J = 7.1 Hz, 4H), 3.82 (s, 2H), 1.37 (t, J = 7.1 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 198.3, 166.2, 148.1, 144.5, 139.9, 131.6, 130.9, 128.9, 128.5, 125.0, 115.3, 115.1, 60.9, 20.7, 14.5; Analytical data for **2e** were consistent with our previous reports.¹⁰

(2*E*,4*E*)-2,4-Bis(((4-chlorophenyl)amino)methylene)-1,5-diphenylpentane-1,5-dione (2*f*). Compound 2f was prepared in 96% yield (76 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 12/1); Yellow solid; mp 247-249 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.94 (d, *J* = 13.0 Hz, 2H), 7.68 (d, *J* = 13.1 Hz, 2H), 7.56 (d, *J* = 7.0 Hz, 4H), 7.53-7.51(m, 2H), 7.48-7.45(m, 4H), 7.23 (d, *J* = 8.3 Hz, 4H), 6.97 (d, *J* = 8.3 Hz, 4H), 3.79 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 197.8, 149.0, 140.2, 139.5, 130.6, 129.8, 128.9, 128.4, 128.3, 117.3, 114.2, 20.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₅Cl₂N₂O₂ 527.1288, Found 527.1283.

(2*E*, 4*E*)-2, 4-*Bis*(((4-(tert-butyl)phenyl)amino)methylene)-1, 5-diphenylpentane-1, 5-dio ne (2g).¹⁰ Compound 2g was prepared in 94% yield (80 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 15/1); Yellow solid; mp 205-207 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.84 (d, *J* = 13.4 Hz, 2H), 7.75 (d, *J* = 13.4 Hz, 2H), 7.57 (d, *J* = 6.9 Hz, 4H), 7.51-7.43 (m, 6H), 7.31 (d, *J* = 8.6 Hz, 4H), 7.00 (d, *J* = 8.6 Hz, 4H), 3.83 (s, 2H), 1.29 (s, 18H); ¹³C NMR (125 MHz, CDCl₃): δ 197.2, 149.6, 146.4, 140.6, 138.4, 130.2, 128.9, 128.3 126.6, 115.9, 113.5, 34.4, 31.5, 20.3; Analytical data for **2g** were consistent with our previous reports.¹⁰

(2*E*, 4*E*)-1,5-Diphenyl-2,4-bis((*p*-tolylamino)methylene)pentane-1,5-dione (2*h*).¹⁰ Compound 2*h* was prepared in 98% yield (72 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 15/1); Yellow solid; mp 188-190 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.86 (d, *J* = 13.3 Hz, 2H), 7.74 (d, *J* = 13.4 Hz, 2H), 7.57 (d, *J* = 6.9 Hz, 4H), 7.51-7.44 (m, 6H), 7.08 (d, *J* = 8.1 Hz, 4H), 6.96 (d, *J* = 8.2 Hz, 4H), 3.83 (s, 2H), 2.29 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 197.1, 149.6,

140.6, 138.5, 133.0, 130.2, 130.2, 128.8, 128.3, 116.2, 113.4, 20.9, 20.4; Analytical data for **2h** were consistent with our previous reports.¹⁰

(2E, 4E)-1, 5-Diphenyl-2, 4-bis((o-tolylamino)methylene)pentane-1, 5-dione(2i). Compound **2i** was prepared in 92% yield (67 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 15/1); White solid; mp 156-158 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.13 (d, J = 12.9 Hz, 2H), 7.68 (d, J = 13.0 Hz, 2H), 7.55 (d, J = 6.7 Hz, 4H), 7.47-7.40 (m, 6H), 7.19 (d, J = 7.3 Hz, 2H), 7.12-7.10 (m, 2H), 7.01-6.98 (m, 2H), 6.81 (d, J = 8.0 Hz, 2H), 3.89 (s, 2H), 2.58 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 197.4, 151.8, 140.7, 140.2, 131.4, 130.1, 129.1, 128.8, 128.2, 127.0, 124.1, 117.4, 113.9, 20.2, 18.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₃₁N₂O₂ 487.2380, Found 487.2377.

(2*E*, 4*E*)-2, 4-*Bis*((*tert-butylamino*)*methylene*)-1, 5-*diphenylpentane*-1, 5-*dione* (2*j*).¹⁰ Compound 2*j* was prepared in 93% yield (58 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 12/1); Yellow solid; mp 122-124 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 14.2 Hz, 2H), 7.41-7.35 (m, 10H), 7.27 (d, J = 14.4, 2H), 3.54 (s, 2H), 1.23 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 154.1, 141.7, 129.1, 128.3, 128.0, 110.1, 52.7, 29.9, 19.1; Analytical data for 2j were consistent with our previous reports.¹⁰

(2*E*, 4*E*)-1,5-Bis(4-methoxyphenyl)-2,4-bis((phenylamino)methylene)pentane-1,5-dion e (2*k*).¹⁰ Compound 2*k* was prepared in 94% yield (73 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 9/1); Yellow solid; mp 189-191 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.91 (d, *J* = 13.2 Hz, 2H), 7.78 (d, *J* = 13.3 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 4H), 7.31-7.27 (m, 4H), 7.07 (d, *J* = 7.8 Hz, 4H), 7.02-6.99 (m, 2H), 6.97 (d, *J* = 8.7 Hz, 4H), 3.89 (s, 6H), 3.80 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 196.8, 161.6, 148.3, 141.1, 132.9, 131.1, 129.7, 123.0, 116.0, 113.6, 55.5, 21.2; Analytical data for 2*k* were consistent with our previous reports.¹⁰

(2*E*, 4*E*)-1,5-Bis(4-chlorophenyl)-2,4-bis((phenylamino)methylene)pentane-1,5-dione (2*l*).¹⁰ Compound 2l was prepared in 95% yield (75 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); Yellow solid; mp 236-238 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.86 (d, *J* = 13.3 Hz, 2H), 7.71 (d, *J* = 13.3 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 4H), 7.44 (d, *J* = 8.3 Hz, 4H), 7.32-7.29 (m, 4H), 7.05-7.04 (m, 6H) , 3.79 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 196.1, 149.2, 140.6, 138.8,

136.6, 130.3, 129.9, 128.7, 123.7, 116.2, 113.6, 20.6; Analytical data for **21** were consistent with our previous reports.¹⁰

(2*E*, 4*E*)-1,5-Bis(4-bromophenyl)-2,4-bis((phenylamino)methylene)pentane-1,5-dione (2*m*). Compound 2*m* was prepared in 94% yield (87 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 5/1); Yellow solid; mp 262-263 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.87 (d, *J* = 13.3 Hz, 2H), 7.72 (d, *J* = 13.4 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 4H), 7.46 (d, *J* = 8.3 Hz, 4H), 7.33-7.29 (m, 4H), 7.06-7.04 (m, 6H) , 3.79 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 196.1, 149.2, 140.6, 139.2, 131.6, 130.5, 129.9, 124.9, 123.7, 116.2, 113.5, 20.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₅Br₂N₂O₂ 615.0277, Found 615.0273.

(2*E*, 4*E*)-1,5-*Di*(furan-2-yl)-2,4-*bis*((*phenylamino*)*methylene*)*pentane*-1,5-*dione* (2*n*).¹⁰ Compound 2*n* was prepared in 90% yield (59 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); Yellow solid; mp 168-170 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.93 (d, *J* = 13.2 Hz, 2H), 8.55 (d, *J* = 13.3 Hz, 2H), 7.63 (s, 2H), 7.36-7.32 (m, 4H), 7.21 (d, *J* = 7.8 Hz, 4H), 7.10 (d, *J* = 3.3 Hz, 2H), 7.07-7.04 (m, 2H), 6.56-6.54 (m, 2H), 3.77 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 181.8, 153.5, 147.3, 145.1, 141.0, 129.8, 123.4, 116.9, 116.4, 112.9, 111.7, 20.8; Analytical data for **2n** were consistent with our previous reports.¹⁰

2,2'-Methylenebis(5,5-dimethyl-3-(phenylamino)cyclohex-2-en-1-one) (20).¹⁰ Compound **20** was prepared in 93% yield (62 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 5/1); White solid; mp 190-192 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.81 (s, 2H), 7.37-7.33 (m, 4H), 7.18-7.14 (m, 6H), 3.55 (s, 2H), 2.50-2.30 (m, 8H), 1.00 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 196.3, 162.0, 139.6, 129.2, 125.0, 124.5, 110.3, 50.1, 41.0, 32.8, 28.8, 18.1; Analytical data for **20** were consistent with our previous reports.¹⁰

2,2'-Methylenebis(3-(phenylamino)cyclopent-2-en-1-one) (2p).¹⁰ Compound 2p was prepared in 93% yield (50 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 4/1); Yellow solid; mp 196-198 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.51 (s, 2H), 7.35-7.32 (m, 4H), 7.24-7.22 (m, 4H), 7.12-7.10 (m, 2H), 3.15 (s, 2H), 2.84 (s, br, 4H), 2.49 (t, J = 4.8 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 203.4, 172.1, 139.8, 129.4, 124.3, 121.0, 116.2, 33.4, 26.6, 14.6; Analytical data for **2p** were consistent with our previous reports.¹⁰

2,2'-Methylenebis(5,5-dimethyl-3-(naphthalen-1-ylamino)cyclohex-2-en-1-one) (2q). Compound **2q** was prepared in 93% yield (76 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); White solid; mp 275-277 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.80 (s, 2H), 7.94-7.89 (m, 4H), 7.82 (d, J = 8.2 Hz, 2H), 7.54-7.53 (m, 4H), 7.50-7.47 (m, 2H), 7.29 (d, J = 7.2 Hz, 2H), 3.86 (s, 2H), 2.26-2.17 (m, 8H) , 0.96 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 196.0, 164.4, 135.7, 134.6, 131.3, 128.4, 127.5, 126.8, 126.6, 125.6, 125.0, 123.2, 109.4, 50.0, 40.5, 32.5, 28.2, 18.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₉N₂O₂ 543.3006, Found 543.3004.

2,2'-Methylenebis(3-((4-fluorophenyl)amino)-5,5-dimethylcyclohex-2-en-1-one)

(2*r*).¹⁰ Compound 2*r* was prepared in 93% yield (67 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 5/1); White solid; mp 235-237 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.75 (s, 2H), 7.11-7.08 (m, 4H), 7.07-7.03 (m, 4H), 3.51 (s, 2H), 2.42-2.28 (m, 8H), 0.99 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 196.4, 162.2, 160.4 (d, $J_{C-F} = 243.4$ Hz), 135.6 (d, $J_{C-F} = 2.9$ Hz), 126.5 (d, $J_{C-F} = 8.2$ Hz), 116.1 (d, $J_{C-F} = 22.5$ Hz), 110.0, 50.0, 40.9, 32.8, 28.4, 18.1; Analytical data for **2r** were consistent with our previous reports.¹⁰

2,2'-Methylenebis(3-((4-chlorophenyl)amino)-5,5-dimethylcyclohex-2-en-1-one)

(2s).¹⁰ Compound 2s was prepared in 95% yield (73 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 5/1); Yellow solid; mp 237-239 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.86 (s, 2H), 7.31 (d, J = 8.6 Hz, 4H), 7.08 (d, J = 8.6 Hz, 4H), 3.49 (s, 2H), 2.51-2.29 (m, 8H), 1.00-0.97 (m, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 196.8, 161.6, 138.3, 130.3, 129.3, 125.5, 110.8, 50.1, 41.0, 32.9, 29.1, 27.4, 18.3; Analytical data for **2s** were consistent with our previous reports.¹⁰

2,2'-Methylenebis(3-((4-methoxyphenyl)amino)-5,5-dimethylcyclohex-2-en-1-one)

(2*t*).¹⁰ Compound 2*t* was prepared in 93% yield (70 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 4/1); White solid; mp 178-180 °C; ¹H NMR (500 MHz, CDCl₃): δ 10.58 (s, 2H), 7.04 (d, J = 8.1 Hz, 4H), 6.87 (d, J = 7.9 Hz, 4H), 3.81 (s, 6H), 3.53 (s, 2H), 2.26 (s, br, 8H), 0.98 (s, 12H); ¹³C NMR (125) MHz, CDCl₃): δ 195.7, 162.7, 157.5, 132.5, 126.5, 114.4, 109.2, 55.6, 50.0, 40.8, 32.6, 28.4, 17.8; Analytical data for **2t** were consistent with our previous reports.¹⁰

Synthesis and characterization of 3

In an oven-dried Schlenk tube (25 mL) containing a magnetic stirring bar was added 1 (0.3 mmol), NaIO₄ (129.5 mg, 0.6 mmol), H₂O/DMF (3.5 mL, v/v = 1/6) and ethylene glycol (33.5 μ L, 0.6 mmol), R¹NH₂ (0.3 mmol). Then the vessel was stirred in a 90 °C oil bath for the corresponding time (see Table 3). The reaction could be monitored by TLC analysis.

For **3a**, **3c-3e**, H_2O (7 mL) was added to reaction system, and the resulting mixture was directly filtered and washed with H_2O (5 mL × 6) to give pure products.

For **3b**, **3f-3k**, the resulting mixture was brine (20 mL), and extracted with ethyl acetate (30 mL). The organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure and subjected to column chromatography for purification directly, using petroleum ether/ethyl acetate (3:1-7:1) as the eluent.

NOTE: Products **3d-3f**, **3i**, are new compounds. Other products **3** are known compounds,¹¹ and the spectroscopic data are in agreement with that previously reported.

(1,3-Diphenyl-1,2,3,4-tetrahydropyrimidin-5-yl)(phenyl)methanone (3a).¹¹ Compound 3a was prepared in 95% yield (97 mg) according to the general procedure. $R_f = 0.2$

(petroleum ether/ethyl acetate = 4/1); Yellow solid; mp 134-137 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.52 (m, 3H), 7.46-7.43 (m, 1H), 7.42-7.38 (m, 2H), 7.36-7.33 (m, 2H), 7.25-7.23 (m, 2H), 7.15-7.12 (m, 1H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.95-6.90 (m, 3H), 5.16 (s, 2H), 4.51 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 193.5, 148.6, 146.1, 144.0, 139.7, 130.4, 129.9, 129.4, 128.5, 128.3, 124.6, 121.3, 118.7, 117.9, 110.9, 65.6, 47.2; Analytical data for **3a** were consistent with our previous reports.¹¹

(1,3-Diphenyl-1,2,3,4-tetrahydropyrimidin-5-yl)(4-methoxyphenyl)methanone (**3b**).¹¹ Compound **3b** was prepared in 86% yield (96 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 5/1); Yellow solid; mp 119-121 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.54 (m, 3H), 7.36-7.32 (m, 2H), 7.25-7.21 (m, 2H), 7.15-7.11 (m, 1H), 6.99 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 7.8 Hz, 2H), 6.92-6.88 (m, 3H), 5.16 (s, 2H), 4.50 (s, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.6, 161.6, 148.6, 145.2, 144.2, 132.2, 130.6, 129.9, 129.4, 124.4, 121.2, 118.5, 118.0, 113.6, 111.1, 65.5, 55.5, 47.4; Analytical data for **3b** were consistent with our previous reports.¹¹

(4-Chlorophenyl)(1,3-diphenyl-1,2,3,4-tetrahydropyrimidin-5-yl)methanone (3c).¹¹ Compound **3c** was prepared in 83% yield (93mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); Yellow solid; mp 138-141 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.50-7.47 (m, 3H), 7.38-7.34 (m, 4H), 7.23 (d, J = 8.5 Hz, 2H), 7.17-7.14 (m, 1H), 6.99-6.90 (m, 5H), 5.16 (s, 2H), 4.49 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 192.0, 148.5, 146.0, 144.0, 138.0, 136.5, 130.0, 130.0, 129.5, 128.6, 124.9, 121.4, 118.8, 117.9, 110.8, 65.7, 47.1; Analytical data for **3c** were consistent with our previous reports.¹¹

(1,3-Di-p-tolyl-1,2,3,4-tetrahydropyrimidin-5-yl)(phenyl)methanone (3d). Compound 3d was prepared in 92% yield (102 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10/1); Yellow solid; mp 139-141 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.54-7.53 (m, 2H), 7.47-7.37 (m, 4H), 7.13 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 5.09 (s, 2H), 4.46 (s, 2H), 2.31 (s, 3H), 2.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 193.3, 146.4, 146.3, 141.8, 139.9, 134.5, 130.7, 130.4, 130.3, 129.9, 128.5, 128.2, 118.9, 118.1, 110.3, 66.2, 47.3, 20.8, 20.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₅N₂O 369.1961; found, 369.1958.

(1,3-Bis(4-chlorophenyl)-1,2,3,4-tetrahydropyrimidin-5-yl)(phenyl)methanone (3e).
Compound 3e was prepared in 77% yield (95mg) according to the general procedure.

 $R_f = 0.2$ (petroleum ether/ethyl acetate = 5/1); Yellow solid; mp 127-129 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.54 (d, J = 7.2 Hz, 2H), 7.48-7.45 (m, 1H), 7.42-7.39 (m, 3H), 7.29 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.7 Hz, 2H), 6.88-6.83 (m, 4H), 5.08 (s, 2H), 4.45 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 193.5, 147.0, 145.3, 142.6, 139.3, 130.7, 130.1, 129.4, 128.5, 128.4, 126.4, 119.8, 119.2, 111.3, 65.8, 47.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₉Cl₂N₂O 409.0869; found, 409.0865.

Diethyl 4,4'-(5-benzoylpyrimidine-1,3(2H,4H)-diyl)dibenzoate (3f). Compound **3f** was prepared in 55% yield (80 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 15/1); White solid; mp 120-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.7 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 7.57-7.55 (m, 3H), 7.50-7.47 (m, 1H), 7.44-7.40 (m, 2H), 6.96-6.90 (m, 4H), 5.25 (s, 2H), 4.57 (s, 2H), 4.38-4.28 (m, 4H), 1.39-1.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 193.6, 166.4, 165.8, 151.8, 147.0, 144.2, 139.0, 131.7, 131.4, 131.0, 128.6, 128.5, 126.1, 122.7, 116.8, 116.1, 113.0, 63.8, 61.2, 60.7, 47.0, 14.5, 14.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₉N₂O₅ 485.2071; found, 485.2070.

(1,3-Diphenyl-1,2,3,4-tetrahydropyrimidin-5-yl)(furan-2-yl)methanone (3g).¹¹ Compound 3g was prepared in 83% yield (82mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 12/1); White solid; mp 104-107 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.38 (s, 1H), 7.51 (s, 1H), 7.42-7.39 (m, 2H), 7.23-7.17 (m, 3H), 7.09-7.06 (m, 3H), 6.98 (d, J = 8.1 Hz, 2H), 6.91-6.88 (m, 1H), 6.49-6.48 (m, 1H), 5.16 (s, 2H), 4.48 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 177.9, 153.8, 148.6, 144.7, 144.5, 144.3, 130.0, 129.4, 124.7, 121.3, 118.8, 118.0, 116.0, 111.6, 110.1, 65.7, 47.0; Analytical data for 3g were consistent with our previous reports.¹¹

(6-Butyl-1,3-diphenyl-1,2,3,4-tetrahydropyrimidin-5-yl)(phenyl)methanone (**3h**).¹¹ Compound **3h** was prepared in 81% yield (96 mg) according to the general procedure. $R_f = 0.2$ (petroleumm ether/ethyl acetate = 15/1); Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.68-7.66 (m, 2H), 7.46-7.40 (m, 3H), 7.34-7.31 (m, 2H), 7.25-7.21 (m, 3H), 7.03 (d, J = 7.2 Hz, 2H), 6.92 (d, J = 7.9 Hz, 2H), 6.89-6.87 (m, 1H), 4.89 (s, 2H), 4.32 (s, 2H), 2.11 (t, J = 8.0 Hz, 2H), 1.15-1.09 (m, 2H), 0.76-0.68 (m, 2H), 0.46 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 196.3, 157.0, 148.4, 144.6, 142.5, 130.8, 129.5, 129.3, 128.4, 128.0, 127.4, 126.8, 120.6, 117.3, 109.4, 70.6, 49.9, 30.8, 30.7, 22.3, 13.3; Analytical data for **3h** were consistent with our previous reports.¹¹

7,7-Dimethyl-1,3-di(naphthalen-1-yl)-2,3,4,6,7,8-hexahydroquinazolin-5(1H)-one (*3i*). Compound **3i** was prepared in 80% yield (104 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 4/1); Yellow solid; mp 171-173 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.09 (d, J = 8.2 Hz, 1H), 7.82-7.76 (m, 3H), 7.62 (d, J = 8.1 Hz, 1H), 7.46-7.30 (m, 9H), 4.92 (s, 2H), 4.53 (d, J = 16.3 Hz, 1H), 4.45 (d, J = 16.3 Hz, 1H), 2.36-2.29 (m, 2H), 2.15 (d, J = 16.8 Hz, 1H) 1.79 (d, J = 12.5 Hz, 1H), 0.99 (s, 3H), 0.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 193.8, 158,3, 146.3, 138.8, 135.0, 134.6, 131.0, 128.7, 128.6, 128.6, 128.5, 127.4, 126.9, 126.0, 125.9, 125.8, 125.7, 125.7, 124.4, 123.4, 122.4, 116.7, 105.0, 71.9, 50.3, 47.9, 40.7, 32.6, 29.1, 27.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₉N₂O 433.2274; found, 433.2269.

(1,3-Dibutyl-1,2,3,4-tetrahydropyrimidin-5-yl)(phenyl)methanone (3j). Compound 3j was prepared in 75% yield (67 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate = 15/1); Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.38 (m, 5H), 7.06 (s, 1H), 3.99 (s, 2H), 3.68 (s, 2H), 3.09 (t, J = 6.8 Hz, 2H), 2.53 (t, J = 7.1 Hz, 2H), 1.56-1.48 (m, 4H), 1.40-1.27 (m, 4H), 0.96-0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 150.5, 140.7, 129.6, 128.4, 128.1, 105.0, 67.3, 54.3, 53.1, 47.7, 31.1, 30.1, 20.7, 19.8, 14.1, 13.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₉N₂O 301.2274; found, 301.2272.

Synthesis and characterization of 1,4-dihydropyridines

In an oven-dried seal tube (25 mL) containing a magnetic stirring bar was added **2** (0.2 mmol) and ZnCl₂ (8.2 mg, 0.06 mmol). Then, the vessel was evacuated and refilled with argon (Ar) for three times. Under a stream of Ar, to this vessel was added MeCN (3 mL). Then the vessel was sealed and stirred in a 120 °C oil bath for the corresponding time (see Scheme 2). The reaction could be monitored by TLC analysis. The resulting mixture was concentrated under reduced pressure and subjected to column chromatography for purification directly, using petroleum ether/ethyl acetate/ dichloromethane/Et₃N as the eluent.

(1-Phenyl-1,4-dihydropyridine-3,5-diyl)bis(phenylmethanone) (2a'). Compound 2a' was prepared in 70% yield (56 mg) according to the general procedure. $R_f = 0.2$ ((petroleum ether/ethyl acetate/dichloromethane/Et₃N = 100/10/10/1); Yellow solid; mp 142-144 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.63-7.62 (m, 4H), 7.51-7.48 (m, 2H), 7.45-7.42 (m, 4H), 7.37-7.34 (m, 2H), 7.24-7.21 (m, 1H), 7.17 (s, 2H), 7.06 (d, J = 7.7 Hz, 2H), 3.65 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 194.9, 143.2, 141.6, 139.1, 131.2, 130.2, 128.6, 128.5, 126.8, 120.9, 117.4, 21.9; Analytical data for **2a'** were consistent with our previous reports.¹⁰

3,3,6,6-tetramethyl-10-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (2o'). Compound 2o' was prepared in 64% yield (45 mg) according to the general procedure. $R_f = 0.2$ (petroleum ether/ethyl acetate/dichloromethane/Et₃N = 100/10/10/1); Yellow solid; mp 248-250 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.51-7.49 (m, 3H), 7.16 (d, J = 7.7 Hz, 2H), 3.22 (s, 2H), 2.20 (s, 4H), 1.78 (s, 4H), 0.91 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 196.8, 151.0, 139.4, 130.1, 130.2, 130.0, 129.3, 110.96, 50.1, 42.0, 32.4, 28.4, 18.6; Analytical data for **2o'** were consistent with our previous reports.¹⁰

Gram-Scale Preparation of 2a

In an oven-dried Schlenk tube (100 mL) containing a magnetic stirring bar was added **1a** (1.1 g, 5 mmol), NaIO₄ (1.1 g, 5 mmol). Then, the vessel was evacuated and refilled with Ar for three times. Under a stream of Ar, to this vessel were added DMF (25 mL) and ethylene glycol (279 μ L, 5 mmol). Then the vessel was stirred in a 100 °C oil bath for about 5 hours. The reaction could be monitored by TLC analysis. Finally, H₂O (60 mL) was added to reaction system, and the resulting mixture was directly filtered and washed with H₂O (50 mL × 6) to give pure products **2a** (1.00 g, 88%).

Gram-Scale Preparation of 3a

In an oven-dried Schlenk tube (100 mL) containing a magnetic stirring bar was added **1a** (0.67 g, 3 mmol), NaIO₄ (1.3 g, 6 mmol), H₂O/DMF (35 mL, v/v = 1/6) and ethylene glycol (335 μ L, 6 mmol), PhNH₂ (273 uL, 3 mmol). Then the vessel was stirred in a 90 °C oil bath for about 4 hours. The reaction could be monitored by TLC analysis. Then, H₂O (50 mL) was added to reaction system, and the resulting mixture was directly filtered and washed with H₂O (50 mL × 6) to give pure **3a** (0.98 g, 96%).

References:

- J. Yang, C. Wang, X. Xie, H. Li and Y. Li, Acid-Catalyzed Cascade Reactions of Enaminones with Aldehydes: C-H Functionalization To Afford 1,4-Dihydropyridines, *Eur. J. Org. Chem.*, 2010, 4189–4193.
- B. Datta, M. B. M. Reddy and M. A. Pasha, Molecular Iodine–Catalyzed Mild and Effective Synthesis of β-Enaminones at Room Temperature, *Synth. Comm.*, 2011, 41, 2331-2336.
- P. Šimůnek, L. Lusková, M. Svobodová, V. Bertolasi, A. Lyčka and V. Macháček, Synthesis and structure of some azo coupled cyclic β-enaminones, *Magn. Reson. Chem.*, 2007, 45, 330–339.
- D. R. Chisholm, R. Valentine, E. Pohl and A. Whiting, Conjugate Addition of 3-Buytn-2-one to Anilines in Ethanol: Alkene Geometric Insights through In Situ FTIR Monitoring, J. Org. Chem., 2016, 81, 7557–7565.
- 5. J. Kim and S. H. Hong, Organocatalytic activation of isocyanides: N-heterocyclic carbene-catalyzed enaminone synthesis from ketones, *Chem. Sci.*, 2017, **8**, 2401-2406.
- S. Sultana, J.-J. Shim, S. H. Kim and Y. R. Lee, Silver(i)/base-promoted propargyl alcohol-controlled regio- or stereoselective synthesis of furan-3-carboxamides and (Z)-enaminones, *Org. Biomol. Chem.*, 2018, 16, 6749–6759.
- T. Sakamoto, T. Nagano, Y. Kondo and H. Yamanaka, Condensed Heteroaromatic Ring Systems; XVII:¹ Palladium-Catalyzed Cyclization of β-(2-Halophenyl)amino Substituted α,β-Unsaturated Ketones and Esters to 2,3-Disubstituted Indoles, *Synthesis*, 1990, 215-218.
- S. S. Palimkar, V. S. More and K. V. Srinivasan, Simple and Efficient One-Pot, Three-Component, Solvent-Free Synthesis of β-Enaminones via Sonogashira Coupling-Michael Addition Sequences, *Synth. Commun.*, 2008, **38**, 1456-1469.
- J. Liu, W. Wei, T. Zhao, X. Liu, J. Wu, W. Yu and J. Chang, Iodine/Copper Iodide-Mediated C-H Functionalization: Synthesis of Imidazo[1,2-a]pyridines and Indoles from N-Aryl Enamines, *J. Org. Chem.*, 2016, 81, 9326-9336.
- Y. Zhao, X. Guo, X. Ding, Z. Zhou, M. Li, N. Feng, B. Gao, X. Lu, Y. Liu and J. You, Reductive CO₂ Fixation via the Selective Formation of C–C Bonds: Bridging Enaminones and Synthesis of 1,4-Dihydropyridines, *Org. Lett.*, 2020, 22, 8326–8331.
- Y. Zhao, X. Liu, L. Zheng, Y. Du, X. Shi, Y. Liu, Z. Yan, J. You and Y. Jiang, One-Pot Methylenation–Cyclization Employing Two Molecules of CO₂ with Arylamines and Enaminones, *J. Org. Chem.*, 2020, **85**, 912–923.

NMR spectra of compounds 2

NMR spectra of compounds 3

9.10-3-H PROTON

 $\sum_{1,2}^{7} \frac{4815}{1,4676}$ $\sum_{1,3676}^{7} \frac{4815}{3971}$ $\sum_{1,2814}^{7} \frac{3814}{2742}$

NMR spectra of compounds 2'

Cross reaction result

The above ratio is derived from a comparison of spectra of known compounds.¹¹