Supporting Information

Regio- and stereo-selective construction of *cis*-indeno[1,2-*c*]isoxazoles

via C-H allylation/1,3-dipolar cycloaddition cascade

Man Zhu, Yanan Zhang, Miaomiao Tian, Xingwei Li, Bingxian Liu,* and Junbiao Chang*

¹ NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Table of Contents

1. General Information.	2
2. General Procedures for the Preparation of Substrates	2
3. Experimental Section	6
4. Mechanistic Studies	
5. X-Ray Crystal Structures	
6. References	
7. Characterization Data	
8. NMR Spectrum and Mass Spectroscopy	41

1. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All the reactions were carried out under argon atmosphere using standard Schlenk technique. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 565 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard TMS, and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), m (multiplet), brs (broad singlet), etc. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale. HRMS spectra were obtained on an Agilent Q-TOF 6540 spectrometer. Column chromatography was performed on silica gel (300-400 mesh). HPLC analysis was performed using the corresponding commercial chiral columns as stated in the experimental procedures at 30 °C with the UV detector at 254 nm. The vinylethylene carbonates **2a** and **5a** were purchased from commercial sources, and other vinylethylene carbonates **3a**, **4a**, were prepared by following a literature procedure.¹ The arylnitrones were prepared according to the literature report.²

2. General Procedures for the Preparation of Substrates

(1) The Preparation of 3-Int

2-[(2*E*)-4-Hydroxy-2-buten-1-yl]benzaldehyde was prepared by following a literature procedure⁴. N-tert-Butylhydroxylamine hydrochloride (4.0 mmol) and the aldehyde (4.0 mmol) were dissolved in anhydrous DCM (20 mL). The reaction mixture was cooled down to 0 °C and pyrrolidine (4.8 mmol) was added dropwise. The reaction was stirred at room temperature. After the reaction was finished as judged by TLC (3 h), the solvent was then removed under reduced pressure to give a crude product. Purification by silica gel column chromatography with petroleum and ethyl acetate as eluent (PE: EA = 3: 1) to afford the pure product **3-Int**. Colourless oil, (683 mg, 69%); ¹H NMR (400 MHz, CDCl₃) δ 9.08 – 8.92 (m, 1H), 7.65 (s, 1H), 7.26 – 7.21 (m, 2H), 7.13 – 7.08 (dd, m, 1H), 5.82 – 5.61 (m, 1H), 5.56 – 5.34 (m, 1H), 3.95 (dd, *J* = 5.6, 1.0 Hz, 2H), 3.37 (dd, *J* = 6.0, 1.0 Hz, 2H), 2.38 (s, 1H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 131.1, 130.1, 129.8, 129.1, 128.4, 127.4, 126.8, 71.2, 62.9, 36.8, 28.3). HRMS (ESI): m/z calcd. for [C₁₅H₂₁NNa₂O₂, M+Na] + : 270.1465; found: 270.1459.

(2) The preparation of complex bioactive molecules

The corresponding aldehydes was prepared by following а literature⁵ procedure, N-tert-Butylhydroxylamine hydrochloride (5.0 mmol) and the aldehydes (5.0 mmol) were dissolved in anhydrous DCM (20 mL). The reaction mixture was cooled down to 0 °C and pyrrolidine (6.0 mmol) was added dropwise. The reaction was stirred at room temperature. After the reaction was finished as judged by TLC (1-4 h), the solvent was then removed under reduced pressure to give a crude product. Purification by silica gel column chromatography with petroleum and ethyl acetate as eluent (PE: EA = 1:1-6:1) to afford the corresponding pure products.

The corresponding aldehydes was prepared by following а literature⁵ procedure, N-tert-Butylhydroxylamine hydrochloride (5.0 mmol) and the aldehydes (5.0 mmol) were dissolved in anhydrous DCM (20 mL). The reaction mixture was cooled down to 0 °C and pyrrolidine (6.0 mmol) was added dropwise. The reaction was stirred at room temperature. After the reaction was finished as judged by TLC (1-4h), the solvent was then removed under reduced pressure to give a crude product. Purification by silica gel column chromatography with petroleum and ethyl acetate as eluent (PE: EA = 1:1-6:1) to afford the corresponding pure products.

Characterizations of substrates: White solid, (5 mmol, 1.067 g, 50%); M.p.:76-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.8 Hz, 2H), 7.57 (s, 1H), 7.12 (d, *J* = 8.8 Hz, 2H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.69 (d, *J* = 7.4 Hz, 1H), 6.65 (s, 1H), 4.01 (t, *J* = 4.8 Hz, 2H), 2.33 (s, 3H), 2.20 (s, 3H), 1.97 – 1.86 (m, 4H), 1.64 (s, 9H), 1.40 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 156.8, 151.9, 136.5, 130.3, 130.0, 129.0, 128.6, 123.6, 121.6, 120.8, 111.9, 70.8, 67.7, 42.5, 37.1, 28.3, 25.2, 25.1, 21.4, 15.8. HRMS (ESI): m/z calcd. for [C₂₆H₃₅NNaO₄, M+Na]⁺ : 448.2458; found: 448.2450.

Characterizations of substrates: White solid, (3.1 mmol, 1.043 g, 74%); M.p.:137 - 139 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.4 Hz, 2H), 8.25 (d, *J* = 8.4 Hz, 2H), 7.69 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.31 - 7.24 (m, 2H), 7.08 (q, *J* = 16.2 Hz, 2H), 6.70 (d, *J* = 2.0 Hz, 2H), 6.43 - 6.40 (m, 1H), 3.86 (s, 6H), 1.67 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 161.0, 150.4, 139.2, 135.6, 135.1, 130.12, 130.1, 129.0, 128.9, 128.4, 128.2, 127.5, 121.9, 104.6, 100.1, 71.8, 55.4, 28.4. HRMS (ESI): m/z calcd. for [C₂₈H₂₉NNaO₅, M+Na]⁺ : 482.1938; found: 482.1911.

Characterizations of substrates: White solid, (4.1 mmol, 972 mg, 59%); M.p.:124 - 126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.6 Hz, 2H), 8.15 (d, *J* = 8.6 Hz, 2H), 7.58 (s, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 1.6 Hz, 1H), 6.72 (dd, *J* = 8.0, 1.6 Hz, 1H), 3.73 (s, 3H), 2.84 (t, *J* = 7.4 Hz, 2H), 2.71 (t, *J* = 7.4 Hz, 2H), 2.09 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 207.7, 164.3, 151.1, 140.2, 138.2, 135.4, 130.4, 130.1, 129.0, 128.4, 122.7, 120.4, 112.8, 71.7, 55.9, 45.1, 30.1, 29.6, 28.3. HRMS (ESI): m/z calcd. for [C₂₃H₂₇NNaO₅, M+Na]⁺ : 420.1781; found: 420.1769.

Characterizations of substrates: White solid, (3.2 mmol, 856 mg, 52%); M.p.:223 - 225 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.6 Hz, 2H), 8.08 (d, *J* = 8.6 Hz, 2H), 7.63 (s, 1H), 5.44 (d, *J* = 3.6 Hz, 1H), 5.01 - 4.78 (m, 1H), 2.56 (t, *J* = 8.8 Hz, 1H), 2.50 (d, *J* = 7.6 Hz, 2H), 2.25 - 2.16 (m, 1H), 2.15 (s, 3H), 2.12 - 2.20 (m, 3H), 1.95 (dt, *J* = 13.2, 3.4 Hz, 1H), 1.85 - 1.66 (m, 5H), 1.65 (s, 9H), 1.60 - 1.45 (m, 3H), 1.33 - 1.16 (m, 3H), 1.10 (s, 3H), 1.06 (dd, *J* = 11.6, 4.8 Hz, 1H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 165.4, 139.6, 134.8, 131.5, 129.6, 129.0, 128.3, 122.5, 76.7, 74.7, 71.6, 63.7, 56.9, 49.9, 44.0, 38.8, 38.2, 37.1, 36.7, 31.9, 31.8, 31.5, 28.4, 27.8, 24.5, 22.9, 21.1, 19.8, 13.2. HRMS (ESI): m/z calcd. for [C₃₃H₄₅NNaO₄, M+Na]⁺ : 542.3241; found: 542.3249.

Characterizations of substrates: Colourless oil, (3.7 mmol, 392 mg, 28%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.8 Hz, 2H), 7.44 (s, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.85 (q, *J* = 7.2 Hz, 1H), 2.39 (d, *J* = 7.2 Hz, 2H), 1.86 – 1.74 (m, 1H), 1.51 (s, 9H), 0.83

(d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 151.8, 140.9, 137.0, 130.0, 129.5, 129.2, 128.6, 127.2, 121.4, 70.8, 45.3, 45.1, 30.2, 28.3, 22.4, 18.5. HRMS (ESI): m/z calcd. for [C₂₄H₃₁NNaO₃, M+Na]⁺ : 404.2196; found: 404.2179.

Characterizations of substrates: White solid, (5.0 mmol, 856 mg, 38%); M.p.:198 - 203 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8. Hz, 2H), 8.21 (d, *J* = 8.8 Hz, 2H), 7.66 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 6.99 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 3.04 – 2.86 (m, 2H), 2.57 – 2.47 (m, 1H), 2.46 – 2.38 (m, 1H), 2.32 (td, *J* = 10.8, 3.6 Hz, 1H), 2.21 – 2.04 (m, 2H), 2.03 – 1.94 (m, 2H), 1.64 (s, 1.64), 1.70 – 1.58 (m, 3H), 1.55 – 1.43 (m, 3H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.8, 164.9, 148.9, 138.2, 137.6, 135.7, 130.4, 129.0, 128.6, 126.6, 121.8, 118.9, 77.5, 77.2, 76.8, 71.9, 50.6, 48.1, 44.3, 38.2, 35.9, 31.7, 29.6, 28.5, 26.5, 25.9, 21.7, 13.9. HRMS (ESI): m/z calcd. for [C₃₀H₃₅NNaO₄, M+Na]⁺ : 496.2458; found: 496.2458.

Characterizations of substrates: White solid, (3.2 mmol, 942 mg, 82%); M M.p.:98 - 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.6 Hz, 2H), 7.99 (d, *J* = 8.6 Hz, 2H), 7.54 (s, 1H), 4.87 (td, *J* = 10.8, 4.4 Hz, 1H), 2.14 - 2.00 (m, 1H), 1.95 - 1.83 (m, 1H), 1.72 - 1.61 (m, 2H), 1.56 (s, 9H), 1.54 - 1.44 (m, 2H), 1.15 - 0.99 (m, 2H), 0.93 - 0.81 (m, 7H), 0.72 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 134.7, 131.5, 129.6, 129.0, 128.3, 75.0, 71.5, 47.2, 40.9 34.3, 31.4, 28.3, 26.5, 23.7, 22.0, 20.7, 16.6. HRMS (ESI): m/z calcd. for [C₂₂H₃₃NNaO₃, M+Na]⁺ : 382.2353; found: 382.2339.

Characterizations of substrates: Yellow Oil, (1.3 mmol, 508 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.6 Hz, 2H), 8.12 (d, *J* = 8.6 Hz, 2H), 7.57 (s, 1H), 6.74 (d, *J* = 2.4 Hz, 1H), 6.69 (d, *J* = 2.6 Hz, 1H), 2.79 – 2.60 (m, 2H), 2.10 (s, 3H), 1.81 – 1.63 (m, 2H), 1.57 (s, 9H), 1.54 – 1.48 (m, 2H), 1.47 – 1.43 (m, 1H), 1.41 – 1.25 (m, 5H), 1.24 – 1.12 (m, 10H), 1.10 – 0.95 (m, 6H), 0.78 (t, *J* = 6.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 149.9, 142.7), 135.4, 130.6, 130.2, 128.9, 128.4, 127.4, 121.2, 121.1, 119.1), 76.2, 71.72 (s, 2H), 40.2, 39.2, 37.5, 37.4, 37.3, 32.8, 32.7, 31.0, 28.4, 28.0, 24.8,

24.4, 24.2, 22.7, 22.6, 22.5, 20.9, 19.8, 19.7, 16.1. HRMS (ESI): m/z calcd. for $[C_{39}H_{59}NNaO_4, M+Na]^+$: 628.4336; found: 628.4320.

3. Experimental Section

(1) Optimization studies for vinylethylene carbonate and azomethine imines

	N +		[Cp*RhCl ₂] ₂ /AgSbF ₆ Solvet, Salt, T (°C), N ₂	H	N-N H ^H OH
	4a	2a			4aa
entry	Catalyst (mol %)	Solvent	Salt	T (°C)	yield ^b
1	[Cp*RhCl ₂] ₂ /AgSbF ₆	DCM	Ag ₂ CO ₃	80	Decomposition of 4a
2	[Cp*RhCl ₂] ₂ /AgSbF ₆	PhCl	Ag ₂ CO ₃	80	Decomposition of 4a
3	[Cp*RhCl ₂] ₂ /AgSbF ₆	THF	Ag ₂ CO ₃	80	Self-coupling of 4a
4	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	Ag ₂ CO ₃	80	58%
5	[Cp*RhCl ₂] ₂ /AgSbF ₆	1,4-Dioxane	Ag ₂ CO ₃	80	54%
6	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	AgOAc	80	46%
7	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	-	80	67%
8	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	-	60	62%
9	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	-	40	50%
10	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	-	100	72%
11	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	4Å (60 mg)	80	76%
12 ^c	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	4Å (60 mg)/NaOAc	80	52%

^aReaction conditions: **4** (0.1 mmol), **2** (0.15 mmol), $[Cp*RhCl_2]_2$ (4 mol%), AgSbF₆ (16 mol%), additive (0.05 mmol), solvent (1.0 mL), 24 h, under Ar, ^bIsolated yields. ^cNaOAc (0.1 mmol).

(2) Optimization studies for the reaction of 1a with 2c

entry	Catalyst (mol %)	Solvent	Salt	yield ^b
1	[Cp*RhCl2]2/AgSbF6	PhCl	Ag ₂ CO ₃	45%
2	[Cp*RhCl2]2/AgSbF6	DCE	Ag ₂ CO ₃	35%
3	[Cp*RhCl ₂] ₂ /AgSbF ₆	TFE	Ag ₂ CO ₃	16%
4	[Cp*RhCl2]2/AgSbF6	1,4-Dioxane	Ag ₂ CO ₃	6%
5 ^{<i>c</i>}	[Cp*RhCl ₂] ₂ /AgSbF ₆	PhCl	Ag ₂ CO ₃ + NaOAc	61%
6^d	[Cp*RhCl2]2/AgSbF6	DCE	AgOAc + KHCO ₃	38%

^aReaction conditions: **1a** (0.1 mmol), **2c** (0.15 mmol), [Cp*RhCl₂]₂ (4 mol%), AgSbF₆ (16 mol%), Ag₂CO₃ (0.05 mmol), solvent (1.0 mL), 80 °C, 12 h, under Ar. ^{*b*}Isolated yields. ^{*c*}Ag₂CO₃ (0.05 mmol), NaOAc (0.05 mmol), ^{*d*}AgOAc (0.05 mmol), KHCO₃ (0.05 mmol).

(3) General procedures for the synthesis of products 3.

A mixture of **1** (0.1 mmol), $[Cp^*RhCl_2]_2$ (2.5mg, 4 mol%), and Ag_2CO_3 (14 mg, 0.05 mmol), were charged into a reaction tube. $AgSbF_6$ (5.5 mg, 16 mol%) was added in a glove box, and then to which were added **2a** (0.015 ml, 0.15 mmol) and dry PhCl (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 60 °C heated by metal sand bath for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA =2:1 – 6:1) to afford **3**.

(4) General procedures for the synthesis of products 4aa.

A mixture of **4** (0.1 mmol), $[Cp^*RhCl_2]_2$ (2.5mg, 4 mol%), and 4A molecular sieve (60 mg) were charged into a reaction tube. AgSbF₆ (5.5 mg, 16 mol%) was added in a glove box, and then to which were added **2a** (0.015 ml, 0.15 mmol) and TFE (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 80 °C heated by metal sand bath for 24 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (DCM:Methanol =20:1) to afford **4aa**.

(5) Scale-up synthesis of the product 3aa.

A mixture of **1a** (890 mg, 5.0 mmol,), $[Cp*RhCl_2]_2$ (2.5mg, 4 mol%), and Ag_2CO_3 (700 mg, 2.5 mmol), were charged into a round-bottom flask (100 mL). $AgSbF_6$ (275 mg, 16 mol%) was added in a glove box, and then to which were added **2a** (0.75 ml, 7.5 mmol) and PhCl (50.0 mL) under argon atmosphere. The reaction mixture was stirred at 60 °C heated by metal sand bath for 48 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography. using PE: EtOAc =4:1 to afford **3aa** (778mg, 72% yiled).

(6) General procedures for the synthesis of product 3ab.

A mixture of **1a** (0.1 mmol), $[Cp^*RhCl_2]_2$ (2.5mg, 4 mol%), and Ag₂CO₃ (14 mg, 0.05 mmol) were charged into a reaction tube. AgSbF₆ (5.5 mg, 16 mol%) was added in a glove box, and then to which were added **2b** (19.2 mg, 0.15 mmol) and DCE (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 60 °C heated by metal sand bath for 20 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA = 2:1) to afford **3ab**.

(7) General procedures for the synthesis of product 3ac.

A mixture of **1a** (0.1 mmol), $[Cp^*RhCl_2]_2$ (2.5mg, 4 mol%), Ag₂CO₃ (14 mg, 0.05 mmol) and NaOAc (5 mg, 0.05 mmol) were charged into a reaction tube. AgSbF₆ (5.5 mg, 16 mol%) was added in a glove box, and then to which were added **2c** (47 mg, 0.15 mmol) and PhCl (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 80 °C heated by metal sand bath for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA = 6:1) to afford **3ac**.

(8) General procedures for the synthesis of product 3ad.

A mixture of **1a** (0.1 mmol), $[Cp^*RhCl_2]_2$ (2.5mg, 4 mol%), and Ag_2CO_3 (14 mg, 0.05 mmol) were charged into a reaction tube. $AgSbF_6$ (5.5 mg, 16 mol%) was added in a glove box, and then to which were added **2d** (35 mg, 0.3mmol ml) and PhCl (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 50 °C heated by metal sand bath for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA = 4:1) to afford **3ad**.

(9) Synthetic transformation of the products.

1-(tert-butyl)-3-(iodomethyl)-3, 3a, 4, 8b-tetrahydro-1H-indeno[1,2-c] isoxazole

To a solution of **3aa** (0.2 mmol, 50 mg) in toluene (10 mL) was added iodine (0.4 mmol, 103 mg), triphenylphosphine (0.6 mmol, 157 mg) and imidazole (0.6 mmol, 40 mg) under Ar. The solution was heated to reflux for 6 h at 110 °C with stirring. After evaporation of the solvent, the residual oil was purified by silica gel chromatography (PE:EA = 10:1) to give **5** (65 mg, 92%) as a white solid. M.p.:79-83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.18 (m, 1H), 7.18 – 7.03 (m, 3H), 4.85 (d, *J* = 7.6 Hz, 1H), 4.58 (dd, *J* = 14.0, 7.2 Hz, 1H), 3.49 (ddd, *J* = 15.6, 7.6, 4.4 Hz, 1H), 3.10 (dd, *J* = 16.8, 4.4 Hz, 1H), 3.05 (dd, *J* = 10.0, 6.0 Hz, 1H), 2.95 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.85 (dd, *J* = 10.0, 8.0 Hz, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 142.6, 128.7, 127.8, 125.9, 124.8, 83.1, 70.5, 60.5, 52.0, 32.1, 27.5, 3.0. HRMS (ESI): m/z calcd. for [C₁₅H₂₀NINaO, M+Na]⁺ : 358.0662; found: 358.0670.

1-(tert-butyl)-3-(chloromethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

To a solution of **3aa** (0.1 mmol, 25 mg) in Carbon tetrachloride (2 mL) was added triphenylphosphine (0.3 mmol, 80 mg) under Ar. The solution was heated to reflux overnight at 90 °C with stirring. After evaporation of the solvent, the residual oil was purified by silica gel chromatography (PE:EA = 8:1) to give **6** (13 mg, 53%) as a yellow solid. M.p.:53-57 °C. ¹H NMR (600 MHz,) δ 7.27 – 7.22 (m, 1H), 7.16 – 7.13 (m, 2H), 7.11 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.86 (d, *J* = 7.7 Hz, 1H), 4.48 – 4.44 (m, 1H), 3.52 – 4.47 (m, 3.0 Hz, 1H), 3.36 (dd, *J* = 11.4, 5.4 Hz, 1H), 3.19 (dd, *J* = 10.8, 7.8 Hz, 1H), 3.14 (dd, *J* = 16.8, 3.0 Hz, 1H)., 2.97 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 141.8, 128.1, 127.3, 125.4, 124.1, 80.4, 69.5, 59.5, 51.2, 50.4, 31.6, 26.9. HRMS (ESI): m/z calcd. for [C₁₅H₂₁CINO, M+H]⁺ : 266.1306; found: 266.1310.

2-(1,2-dihydroxyethyl)-2,3-dihydro-1H-inden-1-one

A solution of the **3aa** (50 mg, 0.2 mmol) in diethyl ether (2 mL) was cooled in ice bath, and *m*-Chloroperoxybenzoic acid (138 mg, 0.8 mmol, 4.0 equiv) was added portionwise to the solution under Ar, The clear and blue solution was stirred at this temperature for 2 h and then quenched by addition of an aqueous 10% sodium bicarbonate (2 ml)/10% sodium thiosulfate (2 ml) solution and vigorous stirring for 20 min. The mixture was decanted and extracted with DCM (5 mL), the organic phase was washed with saturated sodium carbonate solution and then with brine, dried (Na₂SO₄),

filtered, and concentrated in vacuo to give the crude product, which was used immediately in the next reaction.

The crude product was dissolved in THF (2 mL) with strirring in ice bath, and 2N hydrochloric acid solution (2 mL) was added (exothermic reaction). The solution was stirred in ice bath for 30 min whereupon it was neutralized with saturated sodium carbonate solution and extracted with DCM. The organic phase was washed with water and brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude product was purified by silica gel (DCM:Methanol = 20:1) to give **7** as white solid (22 mg, 54%). M.p.:102-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.59 – 7.48 (m, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 1H), 4.24 (dt, *J* = 7.2, 4.0 Hz, 1H), 3.72 (dd, *J* = 11.2, 3.6 Hz, 1H), 3.65 (dd, *J* = 11.2, 7.2 Hz, 1H) 3.24 – 3.06 (m, 2H), 2.81 – 2.73 (m, 1H), 2.35 (s, 1H), 1.65 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 207.5, 154.6, 136.7, 135.1, 127.4, 126.6, 123.9, 71.6, 65.3, 50.2, 27.8. HRMS (ESI): m/z calcd. for [C₁₅H₂₃NNaO₂, M+Na]⁺ : 215.0679; found: 215.0679.

1-(1-(tert-butylamino)-2,3-dihydro-1H-inden-2-yl)ethane-1,2-diol

To a vial under Ar atmosphere were added **3aa** (0.2 mmol, 50 mg,) and THF (1.0 mL). To the mixture were added Zn (2.0 mmol, 130 mg), AcOH (2.0 mL), and H2O (1.0 mL). The reaction mixture was stirred at 80 °C overnight. After dried by MgSO4, the mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, and purified by silica gel chromatography (DCM:Methanol = 10:1) to give the indicated product 8 as a white solid (47 mg, 95%). M.p.:123-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 1H), 7.19 – 7.15 (m, 1H), 7.15 – 7.09 (m, 2H), 4.35 (d, *J* = 6.6 Hz, 1H), 4.24 – 4.14 (m, 1H), 3.53 – 3.49 (m, 2H), 3.20 (dd, *J* = 16.0, 10.0 Hz, 1H), 2.63 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.36 – 2.24 (m, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 144.0, 127.9, 126.9, 125.3, 124.0, 72.2, 66.3, 60.3, 51.6, 44.9, 29.9), 29.6. HRMS (ESI): m/z calcd. for [C₁₅H₂₃NNaO₂, M+Na]⁺ : 272.1621; found: 272.1610.

(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c] is oxazol-3-yl) methyl-4-methyl benzenes ulfon ate

3aa (0.3 mmol), *p*-TsCl (0.45 mmol, 1.5 equiv), and DMAP (0.06 mmol, 0.2 equiv) were taken into a 25 mL round bottom flask and dry DCM (6 mL) was added with stirring under nitrogen atmosphere. The flask was cooled with ice-water and distilled Et₃N (0.9 mmol, 3.0 equiv) was added. The reaction was allowed to stir for 6h at room temperature. After complete consumption of starting material (monitored by TLC), volatiles were evaporated to dryness and the crude reaction mixture was loaded directly onto silica gel column (PE:EA = 6:1) and purified to give 9 (112 mg, 92%) as a yellow solid. M.p.:78-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.13 – 7.05 (m, 2H), 7.01 – 6.89 (m, 1H), 4.78 (d, *J* = 7.6 Hz, 1H), 4.42 (dt, *J* = 7.8, 6.2

Hz, 1H), 3.77 (d, J = 6.2 Hz, 2H), 3.43 – 3.39 (m, 1H), 3.01 – 2.78 (m, 2H), 2.36 (s, 3H), 1.12 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 143.1, 141.5, 132.7, 129.8, 128.1, 127.9, 127.3, 125.3, 124.1, 78.8, 69.6, 68.9, 59.7, 50.1, 31.5, 26.8, 21.6. HRMS (ESI): m/z calcd. for [C₂₂H₂₈NO₄S, M+H]⁺: 402.1734; found: 402.1727.

3-(azidomethyl)-1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

A 10 mL a Schlenk tube was charged with **9** (80 mg, 0.2 mmol, 1 equiv.), NaN3 (52 mg, 0.8 mmol, 4 equiv.) and DMF (2 mL). The reaction was allowed to stir overnight at 70 °C. The vial was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was further purified with flash column chromatography (Hex/EA/DCM = 10:1:3) to give **10** as yellow solid (32 mg, 59%). M.p.:79-83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 1H), 7.17 – 7.12 (m, 2H), 7.10 (dd, *J* = 8.0, 4.0 Hz, 1H), 4.82 (d, *J* = 8.0 Hz, 1H), 4.41 – 4.37 (m, 1H), 3.45 – 3.41 (m, 1H), 3.18 (dd, *J* = 12.8, 7.6 Hz, 1H), 3.04 – 2.88 (m, 3H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 141.8, 128.2, 127.3, 125.3, 124.1, 82.1, 69.8, 59.8, 50.5, 42.4, 31.5, 26.9. HRMS (ESI): m/z calcd. for [C₁₅H₂₀NNaO, M+Na]⁺ : 295.1529; found: 295.1520.

1-benzyl-1,2,3,3a,4,8b-hexahydroindeno[1,2-b]pyrrol-3-ol

3aa (0.2 mmol), *p*-TsCl (0.3 mmol, 1.5 equiv), and DMAP (0.04 mmol, 0.2 equiv) were taken into a 25 mL round bottom flask and dry DCM (5 mL) was added with stirring under nitrogen atmosphere. The flask was cooled with ice-water and distilled Et_3N (0.6 mmol, 3.0 equiv) was added. The reaction was allowed to stir for 6 h at room temperature. After complete consumption of starting material (monitored by TLC), volatiles were evaporated to dryness and the crude reaction mixture was loaded directly onto silica gel column (PE:EA = 4:1) and purified to give the pure product, which was used immediately in the next reaction.

To a vial under Ar atmosphere were added the above product (0.2 mmol, 1.0 equiv) and THF (1.0 mL). To the mixture were added Zn (2.0 mmol, 130 mg), AcOH (2.0 mL), and H₂O (1.0 mL). The reaction mixture was stirred at 80 °C overnight. After dried by MgSO4, the mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, and purified by silica gel chromatography (DCM:Methanol = 10:1) to give the product as a white solid, which was used in the next step without further purification.

The above product (0.2 mmol), DMAP (0.1 mmol, 0.5 equiv) were taken into a Schlenk tube and dry DCM (2 mL) was added with stirring under nitrogen atmosphere. The flask was cooled with ice-water and distilled Et_3N (0.6 mmol, 3.0 equiv) was added. The reaction was allowed to stir for 6h at room

temperature. After complete consumption of starting material (monitored by TLC), volatiles were evaporated to dryness and the crude reaction mixture was loaded directly onto silica gel column (Hex/DCM/ Methanol = 10:10:1) and purified to give the pure product **11** as colourless oil (41 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.21 (m, 4H), 7.21 – 7.14 (m, 2H), 7.14 – 7.05 (m, 3H), 4.56 (d, *J* = 8.0 Hz, 1H), 3.95 (dd, *J* = 7.2, 4.0 Hz, 1H), 3.89 (d, *J* = 13.2 Hz, 1H), 3.83 (d, *J* = 13.2 Hz, 1H), 3.13 (dd, *J* = 16.8, 9.8 Hz, 1H), 2.92 (ddd, *J* = 10.0, 7.6, 3.6 Hz, 1H), 2.75 (dd, *J* = 16.8, 4.2 Hz, 1H), 2.67 (dd, *J* = 9.8, 4.4 Hz, 1H), 2.51 (dd, *J* = 10.0, 4.0 Hz, 1H), 2.07 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 141.3, 139.3, 128.8, 128.4, 127.9, 127.0, 126.3, 125.8, 125.0, 77.8, 70.7, 59.1, 57.3, 50.8, 36.3. HRMS (ESI): m/z calcd. for [C₁₈H₂₀NO, M+H]⁺ : 266.1539; found: 266.1539.

4. Mechanistic Studies

(1) H/D Exchange experiment of 1a with 2a

A mixture of **1** (0.1 mmol), $[Cp^*RhCl_2]_2$ (2.5mg, 4 mol%), and Ag₂CO₃ (14 mg, 0.05 mmol) were charged into a Schlenk tube. AgSbF₆ (5.5 mg, 16 mol%) was added in a glove box, and then to which were added **2a** (0.015 ml, 0.15 mmol), D₂O (18.0 mg, 1.0 mmol, 10.0 eq) and dry PhCl (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 60 °C heated in metal sand bath for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EtOAc = (8:1 to 4:1) to afford **3aa** in 53% yield and **1a** in 39% yield. ¹H NMR analysis indicated 10% deuteration at the *ortho* position of **3aa** and 10% deuteration at the *ortho* position of **1a**.

(2) Determination of Kinetic Isotope Effects

For the cyclization of [1a-H₅]: a 25-mL a Schlenk tube equipped with a magnetic stir bar was charged with 1a-H₅ (17.7 mg, 0.1 mmol, 1.0 eq), [Cp*RhCl₂]₂ (2.5mg, 4 mol%), and Ag₂CO₃ (14 mg, 0.05 mmol), AgSbF₆ (5.5 mg, 16 mol%) was added in a glove box, and then to which was added dry PhCl (1.0 mL) under argon atmosphere, the reaction tube stand for 5 minutes in a low temperature reaction bath at 10 °C, and then **2a** was added to the mixture whit striing. After 20 minutes of reaction, the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with CDCl₃, 7 μ L of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ¹H NMR. The amount of **3aa-H**₄, The experiment was repeated at 30, 40, 50 and 60 minutes.

For the cyclization of [1a-D₅]: a 25-mL a Schlenk tube equipped with a magnetic stir bar was charged with 1a-D₅ (18.5 mg, 0.1 mmol, 1.0 eq), [Cp*RhCl₂]₂ (2.5mg, 4 mol%), and Ag₂CO₃ (14 mg, 0.05 mmol), AgSbF₆ (5.5 mg, 16 mol%) was added in a glove box, and then to which was added dry PhCl (1.0 mL) under argon atmosphere, the reaction tube stand for 5 minutes in a low temperature reaction bath at 10 °C, and then **2a** was added to the mixture whit striing. After 20 minutes of reaction, the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with CDCl₃, 7 μ L of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ¹H NMR. The amount of **3aa-D**₄, The experiment was repeated at 40, 80, 120 and 170 minutes.

Initial rates determined by plots of [3aa-H4] versus time, which gave the value of 0.4900×10⁻⁴ M/min.

Initial rates determined by plots of [**3aa-D**₄] versus time, which gave the value of 0.0872×10^{-4} M/min.

The KIE value measured based on the above experiments is 5.6.

(3) Verification of the intermediate

1) Experiments using the intermediate as a substrate

entry	conditions	yield of 3aa/%	yield of 3aa'/%
а	Ag ₂ CO ₃ , PhCl, 60 °C	n.d.	60
b	Ag ₂ CO ₃ , PhCl, r.t.	n.d.	28
с	PhCl, 60 °C	n.d.	50
d	standard conditons	n.d.	60

standard conditons: **3-Int** (0.1 mmol), $[Cp*RhCl_2]_2$ (4 mol%), AgSbF₆ (16 mol%), Ag₂CO₃ (0.05 equiv), PhCl (1.0 mL), 60 °C, 12 h, under Ar, n.d. = no detection. $[Cp*RhCl_2]_2$ (4 mol%, 2.5 mg),

Condition a: A 25 mL Schlenk tube was charged with **3-Int** (25 mg, 0.1 mmol, 1 equiv.), Ag₂CO₃ (14 mg) and PhCl (1.0 ml). and then the reaction was allowed to stir for 12h at 60 °C under N₂. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with CDCl₃, 7 μ L of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ¹H NMR.

Condition b: A 25 mL Schlenk tube was charged with **3-Int** (25 mg, 0.1 mmol, 1 equiv.), Ag₂CO₃ (14 mg) and PhCl (1.0 ml). and then the reaction was allowed to stir for 12h at rt under N₂. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with CDCl₃, 7 μ L of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ¹H NMR.

Condition c: A 25 mL Schlenk tube was charged with **3-Int** (25 mg, 0.1 mmol, 1 equiv.) and PhCl (1.0 ml). and then the reaction was allowed to stir for 12h at rt under N₂. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with CDCl₃, 7 μ L of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ¹H NMR.

Condition d: A 25 mL Schlenk tube was charged with **3-Int** (25 mg, 0.1 mmol, 1 equiv.), $[Cp*RhCl_2]_2$ (4 mol%, 2.5 mg), AgSbF₆ (16 mol%, 5.5 mg), Ag₂CO₃ (14 mg) and PhCl (1.0 ml). and then the reaction was allowed to stir for 12h at 60 °C under N₂. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with CDCl₃, 7 µL of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ¹H NMR.

2) Data analysis for the product 3aa'

¹H NMR of H-H tocsy

¹H NMR of H-H noesy

¹H NMR of H-H noesy

5. X-Ray Crystal Structures

Thermal ellipsoids are set at the 50% probability level.

Table 1 Crystal data and structure refinement for 3aa.

Identification code	1_sq
Empirical formula	$C_{15}H_{21}NO_2$
Formula weight	247.33
Temperature/K	293(2)
Crystal system	trigonal
Space group	R-3
a/Å	30.683(2)
b/Å	30.683(2)
c/Å	9.8677(17)
a/°	90
β/°	90
γ/°	120
Volume/Å ³	8045.5(17)
Z	18
$\rho_{calc}g/cm^3$	0.919
μ/mm^{-1}	0.480
F(000)	2412.0
Crystal size/mm ³	$0.23 \times 0.21 \times 0.18$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/	^o 9.986 to 147.364
Index ranges	-22 \leq h \leq 37, -28 \leq k \leq 23, -12 \leq l \leq 11

Reflections collected	7442
Independent reflections	3440 [$R_{int} = 0.0940$, $R_{sigma} = 0.1028$]
Data/restraints/parameters	3440/30/167
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0952, wR_2 = 0.2361$
Final R indexes [all data]	$R_1 = 0.1390, wR_2 = 0.2894$
Largest diff. peak/hole / e Å-2	3 0.41/-0.53

Thermal ellipsoids are set at the 50% probability level.

Identification code	ZM-2-20220413
Empirical formula	$C_{11}H_9O_3$
Formula weight	192.22
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	10.3910(3)
b/Å	8.8427(3)
c/Å	10.6292(3)
α/°	90
β/°	98.559(3)
γ/°	90
Volume/Å ³	965.78(5)
Z	4
$\rho_{calc}g/cm^3$	1.3219
μ/mm^{-1}	0.791

Table 1 Crystal data and structure refinement for 7.

F(000)	409.4
Crystal size/mm ³	$0.35 \times 0.25 \times 0.25$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.6 to 142.44
Index ranges	$-12 \le h \le 12, -6 \le k \le 10, -12 \le l \le 12$
Reflections collected	3834
Independent reflections	1838 [$R_{int} = 0.0173$, $R_{sigma} = 0.0236$]
Data/restraints/parameters	1838/0/143
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0440, wR_2 = 0.1194$
Final R indexes [all data]	$R_1 = 0.0502, \ wR_2 = 0.1251$
Largest diff. peak/hole / e Å-3	0.25/-0.18

Thermal ellipsoids are set at the 50% probability level.

Table 1 Crystal data and structure refinement for 8.

Identification code	ZM-1-20220413
Empirical formula	$C_{68}H_{108}N_4O_{16}\\$
Formula weight	1237.58
Temperature/K	298(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.0611(2)
b/Å	9.8268(2)
c/Å	38.9367(6)
α/°	90
β/°	93.796(2)
γ/°	90

Volume/Å ³	3459.38(12)
Z	2
$\rho_{calc}g/cm^3$	1.188
μ/mm^{-1}	0.679
F(000)	1344.0
Crystal size/mm ³	0.5 imes 0.5 imes 0.5
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/c	9.104 to 142.95
Index ranges	$\text{-10} \le h \le 11, \text{-11} \le k \le 4, \text{-47} \le l \le 47$
Reflections collected	14315
Independent reflections	6581 [$R_{int} = 0.0408$, $R_{sigma} = 0.0573$]
Data/restraints/parameters	6581/9/422
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0838, wR_2 = 0.2223$
Final R indexes [all data]	$R_1 = 0.1150, wR_2 = 0.2347$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.62/-0.51

Thermal ellipsoids are set at the 50% probability level.

Table 1 Crystal data and structure refinement for 4ba.

Identification code	ZM-2-20220510
Empirical formula	$C_{14}H_{15}BrN_2O_2$
Formula weight	323.19
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	7.18110(10)
b/Å	21.3904(4)

c/Å	9.2071(2)
α/°	90
β/°	107.427(2)
γ/°	90
Volume/Å ³	1349.36(5)
Z	4
$\rho_{calc}g/cm^3$	1.5908
μ/mm^{-1}	4.157
F(000)	655.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/ ^c	⁹ 8.26 to 142.9
Index ranges	$-6 \le h \le 8, -25 \le k \le 25, -11 \le l \le 11$
Reflections collected	6467
Independent reflections	2583 [$R_{int} = 0.0255$, $R_{sigma} = 0.0252$]
Data/restraints/parameters	2583/0/173
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0503, wR_2 = 0.1361$
Final R indexes [all data]	$R_1 = 0.0539, wR_2 = 0.1403$
Largest diff. peak/hole / e Å ⁻³	0.64/-1.05

6. References

- (a) H. Hu, W.-H. Xu, W.-X. Kang, W. Su, R. Sun, X.-H. Wei, M. Sun, *Org. Chem. Front.* 2021, 8, 4459-4465.
 (b) B. Song, P. Xie, Y. Li, J. Hao, L. Wang, X. Chen, Z. Xu, Ha. Quan, L. Lou, Y. Xia, K. N. Houk, W. Yang, *J. Am. Chem. Soc.*, 2020, 142, 9982-9992.
- 2. S. Morales, F. G. Guijarro. I. Alonso, J. L. G. Ruano, M. B. Cid, ACS Catal., 2016, 6, 84-91.
- (a) H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata, *Angew. Chem. Int. Ed.*, 2009, 48, 6324-6327.
 (b) S. E. Winterton, J. M. Ready, *Org. Lett.*, 2016, 18, 2608-2611.
- (a) S. Vabatino, J. G. Rebelein, T. R. Ward, J. Am. Chem. Soc., 2019, 141, 17048-17052. (b) S. Raghavan, P. Senapati, J. Org. Chem., 2016, 81, 6201-6210.
- (a) M. S. M. Pearson, D. R. Carbery, J. Org. Chem., 2009, 74, 5320–5325. (b) A. R. H. Narayan, G. Jiménez-Osés, P. Liu, S. Negretti, W. Zhao, R. O. Ramabhadr, L. Furan, Z. Li, Y.-F. Yang, M. Gilbert, L. M. Podust, J. Montgomery, K. N. Houk, D. H. Sherman, Nat. Chem., 2015, 7, 653–660.
 (c) S. Mukherjee, T. Patra, F. Glorius, ACS Catal., 2018, 87, 5842–5846. (d) J. Cao, G. Wang, L. Gao, X. Cheng, S. Li, Chem. Sci., 2018, 9, 3664-3671. (e) J. Yan, H. Cheo, W. Teo, X. Shi, H. Wu, S. B. Idres, L.-W. Deng, J. Wu, J. Am. Chem. Soc., 2020, 142, 11357–11362. (f) L. -F. Tao, S. Zhang, F. Huang, W.-T. Wang, Z.-H. Luo, L. Qian, J.-Y. Liao, Angew. Chem. Int. Ed., 2022, 61, e202202679.

7. Characterization Data

(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, white solid (20.0 mg, 81%, m.p. 81 - 84 °C); ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.29(m, 1H), 7.24 – 7.18 (m, 2H), 7.18 – 7.13 (m, 1H), 4.95 (d, *J* = 8.0 Hz, 1H), 4.42 (m, , 1H), 3.57 (dd, *J* = 11.6, 3.6 Hz, 1H), 4.44 – 4.39 (m, 1H), 3.39 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.06 (dd, *J* = 16.6, 2.4 Hz, 1H), 2.98 (dd, *J* = 16.6, 8.4 Hz, 1H), 1.95 (s, 1H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 142.2, 128.1, 127.2, 125.2, 124.0, 82.0, 77.4, 70.1, 62.4, 59.7, 49.2, 31.9, 26.9. HRMS (ESI): m/z calcd. for [C₁₅H₂₁NNaO₂, M+Na]⁺ : 270.1465; found: 270.1457.

(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, white solid (15.0 mg, 60%, m.p. 107 - 109 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.32 (m, 1H), 7.27 - 7.18 (m, 3H), 4.79 (d, *J* = 8.2 Hz, 1H), 3.95 (dd, *J* = 12.4, 2.8 Hz, 1H), 3.77 (dd, *J* = 12.4, 4.8 Hz, 1H), 3.55 (ddd, *J* = 9.6, 4.8, 2.8 Hz, 1H), 3.17 - 3.00 (m, 2H), 2.76 (d, *J* = 15.7 Hz, 1H), 1.82 (s, 1H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.14, 140.4, 127.9, 127.4, 125.8, 125.2, 82.5, 69.3, 61.9, 58.7, 46.8, 32.8, 26.3. HRMS (ESI): m/z calcd. for [C₁₅H₂₁NNaO₂, M+Na]⁺ : 270.1465; found: 270.1458.

(1-(tert-butyl)-6-methyl-3, 3a, 4, 8b-tetrahydro-1H-indeno[1, 2-c] is oxazol-3-yl) methanol.

Eluent: Ether: DCM = 2:5, white solid (23.0 mg, 88%, m.p. 117 - 120 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.89 (s, 1H), 4.82 (d, *J* = 8.0 Hz, 1H), 4.37 - 4.25 (m, 1H), 3.49 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.39 (ddd, *J* = 16.4, 8.0, 3.6 Hz, 1H), 3.35 - 3.28 (m, 1H), 2.93 (dd, *J* = 16.8, 2.8 Hz, 1H), 2.85 (dd, *J* = 16.8, 8.0 Hz, 1H), 2.24 (s, 3H), 1.88 (s, 1H), 1.19 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 142.4, 140.1, 137.8, 128.1, 124.9, 124.6, 81.8, 69.8, 62.5, 59.5, 49.5, 31.7, 26.9, 21.3. HRMS (ESI): m/z calcd. for [C₁₆H₂₃NNaO₂, M+Na]⁺ : 284.1621; found: 284.1618.

(1-(tert-butyl)-6-isopropyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, yellow solid (21.1 mg, 73%, m.p. 75 - 78 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.16 (d, *J* = 7.8 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 6.93 (s, 1H), 4.83 (d, *J* = 7.8 Hz, 1H), 4.36 - 4.32 (m, 1H), 3.50 (dd, *J* = 11.4, 3.6 Hz, 1H), 3.43 - 3.37 (m, 1H), 3.34 (dd, *J* = 11.4, 7.8 Hz, 1H), 2.95 (dd, *J* = 16.8, 2.4 Hz, 1H), 2.87 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.79 (dt, *J* = 13.8, 7.2 Hz, 1H), 1.97 (s, 1H), 1.19 (s, 9H), 1.14 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 142.4, 140.5, 125.7, 124.9, 121.9, 81.9, 69.8, 62.5, 59.63 (s, 2H), 49.6, 34.1, 31.8, 26.9, 24.2, 24.1. HRMS (ESI): m/z calcd. for [C₁₈H₂₇NNaO₂, M+Na]⁺ : 312.1934; found: 312.1926.

(1-(tert-butyl)-6-phenyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 2:1, white solid (21.3 mg, 65%, m.p. 118 - 120 °C); ¹H NMR (600 MHz, CDCl₃) δ 7.58 -7.54 (m, 2H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.37 (s, 1H), 7.35 - 7.31 (m, 1H), 4.98 (d, *J* = 7.8 Hz, 1H), 4.46 - 4.42 (m, 1H), 3.60 (dd, *J* = 11.4, 3.6 Hz, 1H), 3.54 - 3.49 (m, 1H), 3.45 (dd, *J* = 11.4, 7.8 Hz, 1H), 3.12 (dd, *J* = 16.8, 2.4 Hz, 1H), 3.03 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.07 (s, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 142.3, 141.4, 141.3, 128.7, 127.2, 128.1, 126.5, 125.5, 122.8, 82.0, 69.8, 62.5, 59.7, 49.6, 31.9, 27.0. HRMS (ESI): m/z calcd. for [C₂₁H₂₅NNaO₂, M+Na]⁺: 351.1778; found: 346.1768.

(1-(tert-butyl)-6-fluoro-3, 3a, 4, 8b-tetrahydro-1H-indeno[1, 2-c] is oxazol-3-yl) methanol.

Eluent: DCM: Methenol = 20:1, colorless oil (15.1 mg, 57%); ¹H NMR (600 MHz, CDCl₃) δ 7.17 (dd, J = 8.4, 5.4 Hz, 1H), 6.82 (td, J = 9.0, 1.8 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 4.82 (d, J = 8.4 Hz, 1H), 4.39 – 4.25 (m, 1H), 3.48 (dd, J = 11.4, 4.8 Hz, 1H), 3.45 – 3.41 (m, 2.4 Hz, 1H), 3.33 (dd, J = 12.0, 6.8 Hz, 1H), 2.98 (dd, J = 16.8, 1.8 Hz, 1H), 2.87 (dd, J = 16.8, 8.4 Hz, 1H), 2.29 (s, 1H), 1.18 (s, 9H).

13C NMR (101 MHz, CDCl3) δ 163.1(d, J = 245.8 Hz),144.6 (d, J = 8.3 Hz), 138.59 (d, J = 1.7 Hz), 126.38 (d, J = 9.0 Hz), 114.2 (d, J = 22.6 Hz), 110.8 (d, J = 22.1 Hz), 82.0, 69.4, 62.2, 59.8, 49.8, 31.9 (d, J = 2.0 Hz), 26.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.25. HRMS (ESI): m/z calcd. for [C₁₅H₂₀NFNaO₂, M+Na]⁺: 288.1370; found: 288.1362.

(1-(tert-butyl)-6-chloro-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: DCM: Methenol = 20:1, white solid (16.3 mg, 68%, m.p. 88 - 91 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.8 Hz, 1H), 7.11 (d, *J* = 9.2 Hz, 1H), 7.07 (s, 1H), 4.84 (d, *J* = 7.6 Hz, 1H), 4.46 - 4.29 (m, 1H), 3.52 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.43 (ddd, *J* = 16.4, 8.4, 2.8 Hz, 1H), 3.36 (dd, *J* = 11.6, 7.2 Hz, 1H), 2.99 (dd, *J* = 16.8, 2.4 Hz, 1H), 2.89 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.81 (s, 1H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 141.6, 133.9, 127.4, 126.3, 124.2, 81.9, 69.5, 62.3, 59.8, 49.4, 31.8, 26.9. HRMS (ESI): m/z calcd. for [C₁₅H₂₀NClNaO₂, M+Na]⁺ :304.1075; found: 304.1070.

(1-(tert-butyl)-6-methoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA = 2:1, yellow solid (25.0 mg, 90%, m.p. 109 - 112 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.4 Hz, 1H), 6.70 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.61 (s, 1H), 4.82 (d, *J* = 8.0 Hz, 1H), 4.36 - 4.32 (m, 1H), 3.70 (s, 3H), 3.52 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.47 - 3.32 (m, 2H), 2.95 (dd, *J* = 16.8, 2.8 Hz, 1H), 2.87 (dd, *J* = 16.8, 8.0 Hz, 1H), 1.91 (s, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 143.9, 125.9 113.6, 108.9, 81.9, 69.5, 62.4, 59.7, 55.4, 49.78, 31.9, 26.9. HRMS (ESI): m/z calcd. for [C₁₆H₂₃NNaO₃, M+Na]⁺:300.1570; found: 300.1577.

(1-(tert-butyl)-6-(trifluoromethyl)-3, 3a, 4, 8b-tetrahydro-1H-indeno[1, 2-c] is oxazol-3-yl) methanol (1-(tert-butyl)-6-(trifluorometh

Eluent: PE: EA = 2:1, white solid (17.6 mg, 56%, m.p. 110 - 112 °C); 1H NMR (600 MHz, CDCl3) δ 7.40 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 4.90 (d, J = 8.4 Hz, 1H), 4.40 - 4.31 (m, 1H), 3.51 (dd, J = 11.4, 4.8 Hz, 1H), 3.49 - 3.45 (m, 1H), 3.33 (dd, J = 12.0, 6.8 Hz, 1H), 3.06 (dd, J = 16.8, 1.8

Hz, 1H), 2.95 (dd, J = 16.8, 8.4 Hz, 1H), 1.96 (s, 1H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 143.1, 130.5 (q, J = 32.3 Hz), 125.7, 124.4 (q, J = 4.0 Hz), 124.3 (q, J = 274.0 Hz), 121.0 (q, J = 7.0 Hz), 82.1, 69.8, 62.1, 59.9, 49.3, 31.9, 26.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.15 HRMS (ESI): m/z calcd. For [C₁₆H₂₀NF₃NaO₂, M+Na]⁺:338.1338; found: 338.1332.

Methyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole-6-carbo xylate.

Eluent: PE: EA = 4:1, brown oil (27.4 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.76 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 4.89 (d, *J* = 8.0 Hz, 1H), 4.36 (d, *J* = 4.0 Hz, 1H), 3.82 (s, 3H), 3.50 – 3.41 (m, 2H), 3.31 (dd, *J* = 11.6, 7.2 Hz, 1H), 3.08 – 3.00 (m, 1H), 2.95 (d, *J* = 8.4 Hz, 1H), 2.45 (1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 148.2, 142.8, 130.2, 128.8, 125.4, 125.2, 82.2, 69.9, 62.1, 60.1, 52.0, 49.4, 31.6, 26.9. HRMS (ESI): m/z calcd. For [C₁₇H₂₃NNaO₄, M+Na]⁺:328.1519; found: 328.1514.

(1-(tert-butyl)-8-methyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, white solid (20.4 mg, 78%, m.p. 80 - 83 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.02 (t, *J* = 7.6 Hz, 1H), 6.89 (t, *J* = 6.8 Hz, 2H), 5.11 (d, *J* = 7.2 Hz, 1H), 4.34 (ddd, *J* = 9.6, 7., 3.9 Hz, 1H), 3.52 (dd, *J* = 11.4, 3.4 Hz, 1H), 3.39 - 3.25 (m, 2H), 2.96 - 2.80 (m, 2H), 2.42 (s, 3H), 1.75 (s, 1H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 140.0, 136.1, 129.2, 128.3, 121.4, 82.2, 71.2, 63.2, 61.1, 48.0, 32.1, 27.7, 19.6. HRMS (ESI): m/z calcd. For [C₁₆H₂₃NNaO₂, M+Na]⁺ :284.1621; found: 284.1615.

(8-bromo-1-(tert-butyl)-3, 3a, 4, 8b-tetrahydro-1H-indeno[1, 2-c] is oxazol-3-yl) methanol.

Eluent: PE: EA = 4:1, white solid (21.8 mg, 68%, m.p. 106 - 109 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.6 Hz, 1H), 7.13 - 6.99 (m, 2H), 5.16 (d, *J* = 7.2 Hz, 1H), 4.41 (dd, *J* = 12.4, 6.8 Hz, 1H),

3.61 (d, J = 10.8 Hz, 1H), 3.50 – 3.35 (m, 2H), 3.06 (d, J = 16.8 Hz, 1H), 2.96 (dd, J = 16.8, 8.0 Hz, 1H), 1.80 (s, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 140.8, 131.9, 129.8, 122.9, 120.9, 82.0, 72.3, 62.9, 61.6, 48.0, 32.5, 28.0. HRMS (ESI): m/z calcd. For [C₁₅H₂₀NBrNaO₂, M+Na]⁺:348.0570; found: 348.0570.

(1-(tert-butyl)-7-methyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA = 4:1, white solid (19.5 mg, 73%, m.p. 130 - 133 °C); ¹H NMR (600 MHz, CDCl₃) δ 7.13 (s, 1H), 7.02 (q, *J* = 7.8 Hz, 2H), 4.92 (d, *J* = 7.8 Hz, 1H), 4.46 - 4.37 (m, 1H), 3. 60 - 3.52 (m, 1H), 3.50 - 3.41 (m, 1H), 3.36 (dd, *J* = 11.4, 7.8 Hz, 1H), 3.04 - 2.90 (m, 2H), 2.33 (s, 3H), 1.83 (s, 1H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 139.1, 136.8, 129.0, 125.6, 123.7, 82.0, 70.1, 62.6, 59.6, 49.2, 31.5, 27.1, 21.3. HRMS (ESI): m/z calcd. For [C₁₆H₂₃NNaO₂, M+Na]⁺ :284.1621; found: 284.1612.

(7-bromo-1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, white solid (24.0 mg, 74%, m.p. 133 - 135 °C); ¹H NMR (600 MHz, CDCl₃) δ 7.42 (s, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.8 Hz, 1H), 4.92 (d, *J* = 7.8 Hz, 1H), 4.43 - 4.38 (m, 1H), 3.63 - 3.54 (m, 1H), 3.52 - 3.45 (m, 1H), 3.39 (dd, *J* = 11.4, 6.6 Hz, 1H), 3.01 (d, *J* = 16.8 Hz, 1H), 2.92 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.88 (s, 1H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 141.2, 131.2, 128.4, 125.5, 120.9, 82.0, 69.9, 62.3, 59.7, 49.4, 31.6, 27.0. HRMS (ESI): m/z calcd. For [C₁₅H₂₀NBrNaO₂, M+Na]⁺ :348.0570; found: 348.0561.

(1-(tert-butyl)-5,7-dichloro-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c] is oxazol-3-yl) methanol.

Eluent: PE: EA = 4:1, white solid (17.9 mg, 57%, m.p. 107 - 109 °C); ¹H NMR (600 MHz, CDCl₃) δ 7.15 (s, 1H), 7.11 (s, 1H), 4.89 (d, *J* = 7.8 Hz, 1H), 4.38 – 4.33 (m, 1H), 3.54 (dd, *J* = 12.0, 3.6 Hz, 1H), 3.47 – 3.42 (m, 1H), 3.38 (dd, *J* = 11.4, 6.6 Hz, 1H), 3.03 (dd, *J* = 17.4, 1.8 Hz, 1H), 2.85 (dd, *J* = 17.4, 8.4 Hz, 1H), 1.89 (s, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4=, 139.2, 133.6, 130.6,

128.0, 124.0, 82.1, 70.6, 62.0, 60.1, 48.8, 30.9, 26.9. HRMS (ESI): m/z calcd. For $[C_{15}H_{29}NCl_2NaO_2, M+Na]^+$:338.0685; found: 338.0678.

(1-(tert-butyl)-5,6,7-trimethoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA = 1:2, orange solid (20.0 mg, 59%, m.p. 93 - 96 °C); ¹H NMR (600 MHz, CDCl₃) δ 6.54 (s, 1H), 4.83 (d, *J* = 7.8 Hz, 1H), 4.40 – 4.30 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.74 (s, 3H), 3.54 (dd, *J* = 11.4, 4.8 Hz, 1H), 3.43 – 3.35 (m, 2H), 2.96 (dd, *J* = 16.8, 1.8 Hz, 1H), 2.79 (dd, *J* = 16.8, 8.4 Hz, 1H), 1.89 (s, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 148.8, 141.7, 138.6, 126.7, 103.6, 82.2, 70.6, 62.5, 60.9, 60.4, 59.7, 56.0, 49.2, 28.6, 26.9. HRMS (ESI): m/z calcd. For [C₁₈H₂₇NNaO₅, M+Na]⁺:360.1781; found: 360.1777.

(1-(tert-butyl)-5,6,8-trimethoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 1:2, yellow solid (28.0 mg, 83%, m.p. 111 - 114 °C); ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 5.01 (d, *J* = 7.6 Hz, 1H), 4.32 (ddd, *J* = 8.8, 6.8, 3.6 Hz, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.67 (s, 3H), 3.65 - 3.57 (m, 1H), 3.47 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.38 - 3.34 (m, 1H), 3.06 (dd, *J* = 17.2, 2.4 Hz, 1H), 2.75 (dd, *J* = 17.2, 8.8 Hz, 1H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.2, 152.9, 138.3, 137.4, 122.7, 96.6, 81.9, 69.4, 62.8, 60.5, 60.4, 56.5, 55.2, 49.1, 29.3, 27.3. HRMS (ESI): m/z calcd. For [C₁₈H₂₇NNaO₅, M+Na]⁺ :360.1781; found: 360.1780.

(10-(tert-butyl)-7a, 8, 10, 10a-tetrahydro-7H-benzo [6,7] indeno [1,2-c] isoxazol-8-yl) methanol.

Eluent: PE: EA = 4:1, white solid (23.1 mg, 78%, m.p. 86 - 88 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.28 (s, 1H), 5.52 (d, *J* = 7.2 Hz, 1H), 4.56 - 4.42 (m, 1H), 3.64 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.53 (dd, *J* = 15.6, 7.6 Hz, 1H), 3.39 (dd, *J* = 11.6, 7.2Hz, 1H), 3.22 - 3.02 (m, 2H), 1.89 (s, 1H),

1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 136.2, 133.6, 130.9, 129.4, 128.5, 126.1, 124.9, 124.2, 122.3, 82.4, 71.8, 63.2, 61.2, 48.1, 32.7, 27.9. HRMS (ESI): m/z calcd. For [C₁₉H₂₃NNaO₂, M+Na]⁺ 320.1621; found: 320.1619.

(1-(tert-butyl)-3,3a,4,10b-tetrahydro-1H-benzo[5,6]indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, yellow solid (17.0 mg, 57%, m.p. 117 - 119 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.78 - 7.62 (m, 3H), 7.52 (s, 1H), 7.38 - 7.26 (m, 2H), 4.98 (d, *J* = 8.0 Hz, 1H), 4.42 - 4.37 (m, 1H), 3.55 - 3.40 (m, 2H), 3.26 (dd, *J* = 11.6, 7.6 Hz, 1H), 3.17 - 2.99 (m, 2H), 1.77 (s, 1H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 140.8, 133.9, 133.3, 128.2, 127.4, 125.6, 125.1, 124.0, 122.2, 81.9, 69.5, 62.5, 59.8, 49.7, 31.5, 27.0. HRMS (ESI): m/z calcd. For [C₁₉H₂₃NNaO₂, M+Na]⁺ 320.1621; found: 320.1610.

(1-isopropyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA = 2:1, white solid (20.1 mg, 86%, m.p. 78 - 81 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.23 (m, 1H), 7.17 – 7.11 (m, 2H), 7.11 – 7.05 (m, 1H), 4.87 (d, *J* = 7.6 Hz, 1H), 4.24 (ddd, *J* = 8.4, 6.8, 3.6 Hz, 1H), 3.69 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.53 (dd, *J* = 11.6, 6.6 Hz, 1H), 3.40 (ddd, *J* = 16.4, 8.4, 2.6 Hz, 1H), 3.06 – 2.96 (m, 2H), 2.90 (dd, *J* = 16.8, 8.6 Hz, 1H), 1.73 (s, 1H), 1.18 (d, *J* = 6.2 Hz, 3H), 1.15 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 142.1, 128.2, 127.1, 125.1, 124.1, 78.7, 74.1, 61.9, 54.1, 46.6, 31.9, 21.3, 20.1. HRMS (ESI): m/z calcd. For [C₁₄H₁₉NNaO₂, M+Na]⁺ 256.1308; found: 256.1305.

(1-benzyl-3, 3a, 4, 8b-tetrahydro-1H-indeno[1, 2-c] isoxazol-3-yl) methanol

Eluent: PE: EA = 4:1, colorless oil (23.4 mg, 83%); ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 4.69 (d, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.11 (m, 1H), 7.11 – 7.07 (m, 3H), 7.16 – 7.11 (m, 1H), 7.11 – 7.11 (m, 1H), 7.11

J = 7.8 Hz, 1H), 4.45 (ddd, J = 8.4, 6.0, 3.6 Hz, 1H), 4.15 (d, J = 12.6 Hz, 1H), 3.99 (d, J = 12.6 Hz, 1H), 3.72 (dd, J = 11.4, 3.6 Hz, 1H), 3.62 – 3.48 (m, 2H), 3.06 (dd, J = 16.8, 2.4 Hz, 1H), 2.92 (dd, J = 16.8, 9.0 Hz, 1H), 1.83 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 141.1, 137.1, 129.2, 128.5, 128.4, 127.6, 126.9, 125.1, 124.2, 79.0, 76.1, 62.2, 61.3 46.6, 31.9. HRMS (ESI): m/z calcd. For [C₁₈H₁₉NNaO₂, M+Na]⁺ 304.1308 found: 304.1301.

1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-6-yl-5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate

Eluent: PE: EA = 4:1, white solid (35.0 mg, 65%, m.p. 78 - 81 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 6.79 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.75 (s, 1H), 6.59 (d, *J* = 7.6 Hz, 1H), 6.56 (s, 1H), 4.84 (d, *J* = 8.0 Hz, 1H), 4.35 (ddd, *J* = 8.4, 7.6, 3.7 Hz, 1H), 3.91 (d, *J* = 2.8 Hz, 2H), 3.52 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.45 - 3.41 (m, 1H), 3.35 (dd, *J* = 11.6, 7.2 Hz, 1H), 2.93 (qd, *J* = 16.8, 5.2 Hz, 2H), 2.23 (s, 3H), 2.10 (s, 3H), 1.80 (d, *J* = 2.8 Hz, 4H), 1.64 (s, 1H), 1.28 (s, 6H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 156.9, 151.2, 143.7, 136.5), 130.3, 125.9, 123.6, 120.7, 120.4, 117.2, 112.0, 81.9, 69.6, 67.8, 62.4, 59.7, 49.6, 42.4, 37.2, 31.8, 26.9, 25.3, 25.2, 25.1, 21.4, 15.8. HRMS (ESI): m/z calcd. For [C₃₀H₄₂NO₅, M+H]⁺ 496.3057, found: 496.3070.

4-((E)-3,5-dimethoxystyryl)phenyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-ind eno[1,2-c]isoxazole-6-carboxylate

Eluent: PE: EA = 1:1, yellow solid (15.0 mg, 28%, m.p. 111 - 114 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.93 (s, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 16.4 Hz, 1H), 6.93 (d, *J* = 16.4 Hz, 1H), 6.60 (d, *J* = 2.4 Hz, 2H), 6.33 (t, *J* = 2.4 Hz, 1H), 4.92 (d, *J* = 8.0 Hz, 1H), 4.38 (ddd, *J* = 8.4, 7.2, 3.6 Hz, 1H), 3.76 (s, 6H), 3.61 – 3.44 (m, 2H), 3.36 (dd, *J* = 11.6, 6.8 Hz, 1H), 3.10 (dd, *J* = 16.8, 2.0 Hz, 1H), 3.00 (dd, *J* = 17.0, 8.3 Hz, 1H), 1.74 (s, 1H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 161.0, 150.5, 149.5, 142.9, 139.3, 134.9, 129.4, 128.9, 128.3, 127.5, 125.9, 125.4, 121.9, 104.6, 100.1, 82.0, 69.9, 62.3, 59.8, 55.4, 49.3, 31.8, 27.0. HRMS (ESI): m/z calcd. For [C₃₂H₃₆NO₆, M+H]⁺ 530.2537, found: 530.2525.

2-methoxy-4-(3-oxobutyl)phenyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-inden o[1,2-c]isoxazole-6-carboxylate

¹ Eluent: DCM: Methenol = 20:1, yellow oil (15.0 mg, 28%); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 1H), 7.93 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.76 (s, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 4.91 (d, *J* = 8.0 Hz, 1H), 4.46 – 4.31 (m, 1H), 3.71 (s, 3H), 3.58 – 3.44 (m, 2H), 3.35 (dd, *J* = 11.2, 7.2 Hz, 1H), 3.08 (d, *J* = 16.8 Hz, 1H), 2.98 (dd, *J* = 16.8, 8.0 Hz, 1H), 2.83 (t, *J* = 7.6 Hz, 2H), 2.71 (t, *J* = 7.2 Hz, 2H), 2.08 (s, 3H), 1.80 (s, 1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 207.7, 164.9, 151.1, 149.2, 142.8, 140.0, 138.3, 129.6, 129.4, 126.1, 125.3, 122.8, 120.4, 112.8, 81.9, 69.9, 62.3, 59.8, 55.9, 49.3, 45.2, 31.7, 30.1, 29.6, 27.0. HRMS (ESI): m/z calcd. For [C₂₇H₃₃NNaO₆, M+Na]⁺ 490.2200, found: 490.2194.

(3S,8S,9S,10R,13S,14S,17S)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a]phenanthren-3-yl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole-6-carboxylate

Eluent: PE: EA = 2:1, white solid (42.0 mg, 72%); Following the general procedure, the product (42.0 mg) was obtained in 72% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by HPLC with a Daicel Chiralpak AD-H, n-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, λ = 254 nm, t₁ = 6.8 min, t₂ = 12.7 min; signals of the 2 isomers cannot be distinguished by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.76 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 5.34 (d, *J* = 4.4 Hz, 1H), 4.88 (d, *J* = 8.0 Hz, 1H), 4.77 (ddd, *J* = 16.2, 9.0, 4.6 Hz, 1H), 4.36 (dd, *J* = 3.8, 1.2 Hz, 1H), 3.59 – 3.40 (m, 2H), 3.34 (dd, *J* = 11.6, 7.2 Hz, 1H), 3.03 (dd, *J* = 17.2, 2.0 Hz, 1H), 2.97 (d, *J* = 16.8, 8.4 Hz, 1H), 2.47 (t, *J* = 8.8 Hz, 1H), 2.39 (d, *J* = 7.6 Hz, 2H), 2.16 – 2.07 (m, 1H), 2.06 (s, 3H), 1.99 (dd, *J* = 8.4, 2.4 Hz, 1H), 1.97 – 1.88 (m, 2H), 1.85 (dt, *J* = 13.6, 3.2 Hz, 1H), 1.78 (s, 1H), 1.70 – 1.51 (m, 5H), 1.47 – 1.32 (m, 3H), 1.20 (s, 9H), 1.18 – 1.04 (m, 3H), 1.00 (s, 3H), 0.97 – 0.92 (m, 1H), 0.57 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 209.6, 166.1, 142.5, 139.7, 130.8, 128.8, 125.3, 125.1, 122.4, 82.0, 74.4, 69.9, 63.7, 62.3, 59.8, 56.8, 49.9, 49.3, 44.0, 38.8, 38.1, 37.1, 36.7, 31.9, 31.8, 31.7, 31.6, 27.8, 27.0, 24.5, 22.8, 21.0, 19.4, 13.2. HRMS (ESI): m/z calcd. For [C₃₇H₅₂NO₅, M+H]⁺ 590.3840, found: 590.3850.

<Peak Table>

Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	6.877	1539407	79606	51.344	51.344				
2	12.737	1458817	43785	48.656	48.656				
Total		2998223	123391		100.000				

1-(tert-butyl)-3-(hydroxymethyl)-3, 3a, 4, 8b-tetrahydro-1H-indeno[1, 2-c] is oxazol-6-yl-(2R)-2-(4-ison variable of the second secon

Eluent: PE: EA = 2:1, white solid (21.0 mg, 46%); Following the general procedure, the product (21.0 mg) was obtained in 46% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by ¹H NMR). ¹H NMR (400 MHz, CDCl3) δ 7.25 – 7.17 (m, 3H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.80 – 6.65 (m, 2H), 4.81 (d, *J* = 8.0 Hz, 1H), 4.37 – 4.25 (m, 1H), 3.83 (q, *J* = 7.2 Hz, 1H), 3.48 (ddd, *J* = 11.6, 5.2, 4.0 Hz, 1H), 3.45 – 3.36 (m, 1H), 3.32 (dt, *J* = 11.6, 7.2 Hz, 1H), 3.02 – 2.80 (m, 2H), 2.39 (d, *J* = 7.2 Hz, 2H), 1.87 – 1.72 (m, 1H), 1.55 – 1.47 (m, 2H) ,1.17 (s, 9H), 0.84 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.41, 173.38, 151.01, 143.70, 140.79, 140.59, 140.57, 137.29, 137.26, 129.51, 127.22, 125.83, 120.43, 120.33, 117.11, 117.06, 81.9, 69.54, 62.39, 59.68, 49.65, 49.61, 45.27, 45.25, 45.06, 31.84, 30.19, 26.96, 22.4, 18.57. HRMS (ESI): m/z calcd. For [C₂₈H₃₇NNaO₄, M+Na]⁺ 474.2615, found: 474.2607.

(8S,9R,13R,14R)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phena nthren-3-yl-(3R)-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol e-6-carboxylate

Eluent: PE: EA = 1:1, white solid (39.4 mg, 76%); Following the general procedure, the product (39.4 mg) was obtained in 76% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by HPLC with a Daicel Chiralpak AD-H, n-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, λ = 254 nm, t₁ = 17.3 min, t₂ = 31.3 min; signals of the 2 isomers cannot be distinguished by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.98 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 6.97 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.94 (d, *J* = 1.6 Hz, 1H), 4.99 (d, *J* = 8.0 Hz, 1H), 4.5 - 4.4 (m, 1H), 3.67 - 3.50 (m, 2H), 3.43 (dd, *J* = 11.6, 6.8 Hz, 1H), 3.20 - 3.12 (m, 1H), 3.10 - 3.02 (m, 1H), 2.99 - 2.87 (m, 2H), 2.56 - 2.46 (m, 1H), 2.45 - 2.38 (m, 1H), 2.36 - 2.46 (m, 1H), 2.21 - 2.04 (m, 2H), 2.03 - 1.92 (m, 2H), 1.70 - 1.54 (m, 4H), 1.50 - 1.43 (m, 2H), 1.29 (s, 9H), 0.92 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 220.5, 165.6, 148.9, 143.0, 138.2, 137.5, 129.7, 129.5, 126.5, 126.0, 125.5, 121.8, 119.0, 82.1, 70.1, 62.4, 60.0, 50.5, 49.4, 48.1, 44.3, 38.1, 35.9, 31.9, 31.7, 29.5, 27.1, 26.5, 25.9, 21.7, 13.9. HRMS (ESI): m/z calcd. For [C₃₄H₄₂NO₅, M+H]⁺ 544.3057, found: 544.3052.

<Peak Table>

Detector A 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%			
1	17.366	3532465	80603	49.181	49.181			
2	31.311	3650112	46036	50.819	50.819			
Total		7182577	126638		100.000			

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydr o-1H-indeno[1,2-c]isoxazole-6-carboxylate

Eluent: DCM: Methanol = 20:1, white solid (33.5 mg, 78%); Following the general procedure, the product (33.5 mg) was obtained in 78% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by 1H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.80 (m, 1H), 7.76 (s, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 4.88 (t, *J* = 7.2 Hz, 1H), 4.86 – 4.80 (m, 1H), 4.40 – 4.32 (m, 1H), 3.55 – 3.49 (m, 1H), 3.47 – 3.42 (m, 1H), 3.35 – 3.31 (m, 1H), 3.04 (ddd, *J* = 16.8, 7.8, 2.24 Hz, 1H), 2.95 (dt, *J* = 16.8, 7.8 Hz, 1H), 2.09 – 2.00 (m, 1H), 1.91 – 1.82 (m, 1H), 1.79 (s, 1H), 1.65 (dd, *J* = 11.4, 1.8 Hz, 2H), 1.53 – 1.44 (m, 2H), 1.20 (s, 9H), 1.11 – 0.99 (m, 2H), 0.88 – 0.82 (m, 6H), 0.72 – 0.68 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.18, 166.15, 148.33, 148.26, 142.57, 142.54, 130.94, 130.87, 128.88, 128.79, 125.33, 125.31, 125.09, 125.06, 81.94, 74.82, 69.89, 62.38, 59.77, 49.37, 49.30, 47.34, 47.39, 41.01, 40.97, 34.36, 31.76, 31.71, 31.46, 27.00, 26.97, 26.60, 26.52, 23.78, 23.70, 22.03, 20.76, 20.71, 16.62, 16.53. HRMS (ESI): m/z calcd. For [C₂₆H₄₀NO₅, M+H]⁺ 430.2952, found: 430.2938.

(R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl-1-(tert-butyl)-3-(hydroxymet hyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole-6-carboxylate

Eluent: PE: EA = 3:1, white solid (47.0 mg, 70%); Following the general procedure, the product (47.0 mg) was obtained in 70% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by HPLC with a Daicel Chiralpak AD-H, n-hexane/2-propanol = 90/10, v = 0.8 mL·min⁻¹, λ = 254 nm, t₁ = 3.7 min, t₂ = 4.4 min; signals of the 2 isomers cannot be distinguished by 1H NMR). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.97 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 6.79 (d, *J* = 2.4 Hz, 1H), 6.74 (d, *J* = 2.6 Hz, 1H), 4.99 (d, *J* = 8.0 Hz, 1H), 4.5 – 4.35 (m, 1H), 3.70 – 3.49 (m, 2H), 3.20 – 2.95 (dd, *J* = 11.6, 6.8 Hz, 1H), 3.20 – 2.95 (m, 2H), 2.87 – 2.65 (m, 2H), 2.17 (s, 3H), 1.90 – 1.70 (m, 3H), 1.63 – 1.49 (m, 3H), 1.44 – 1.33 (m, 4H), 1.29 (s, 9H), 1.28 (s, 3H), 1.32 – 1.20 (m, 7H), 1.17 – 1.03 (m, 6H), 0.86 (t, *J* = 6.8 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 166.0, 149.9, 142.9, 142.8, 130.0, 129.5, 127.5, 125.9, 125.4, 121.4, 121.1, 119.3, 82.1, 76.2, 70.1, 62.4, 59.9, 49.4, 40.3, 40.2, 39.5, 37.6, 37.4, 32.9, 32.8, 31.9, 31.2, 28.1, 27.1, 24.9, 24.6, 24.4, 24.3, 22.8, 22.7, 22.6, 21.1, 19.8, 19.7, 16.2. HRMS (ESI): m/z calcd. For [C₄₃H₆₆NO₅, M+H]⁺ 676.4936, found: 676.4935.

<Peak Table>

Detector A 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	3.751	3565131	191750	51.645	51.645
2	4.448	3338006	181596	48.355	48.355
Total		6903136	373346		100.000

10-(hydroxymethyl)-2,3,4a,9,9a,10-hexahydro-1H-indeno[1,2-c]pyrazolo[1,2-a]pyrazol-1-one

Eluent: DCM: Methanol = 20:1, white solid (18.5 mg, 76%, m.p. 124 - 126 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.15 (m, 4H), 5.31 (s, 1H), 4.12 (d, *J* = 8.4 Hz, 1H), 3.92 (d, *J* = 12.4 Hz, 1H), 3.83 (dd, *J* = 12.4, 8.8 Hz, 1H), 3.74 - 3.69 (m, 1H), 3.55 - 3.48 (m, 1H), 3.15 (dd, *J* = 16.0, 8.8 Hz, 1H), 3.10 - 3.01 (m, 2H), 2.91 (dd, *J* = 16.4, 4.0 Hz, 1H), 2.88 - 2.78 (m, 1H), 2.69 (ddd, *J* = 16.0, 8.4, 2.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.1, 142.3, 139.9, 129.1, 127.4, 125.6, 124.8, 74.9, 64.4, 62.6, 52.7, 48.1, 36.3, 36.2. HRMS (ESI): m/z calcd. For [C₁₄H₁₆N₂O₂, M+H]⁺ 267.1104, found: 267.1100.

7-bromo-10-(hydroxymethyl)-2,3,4a,9,9a,10-hexahydro-1H-indeno[1,2-c]pyrazolo[1,2-a]pyrazol-1 -one

Eluent: DCM: Methanol = 20:1, brown solid (22.6 mg, 70%, m.p. 178 - 180 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.0 Hz, 1H), 5.22 (s, 1H), 4.05 (d, J = 8.0 Hz, 1H), 3.98 - 3.88 (m, 1H), 3.86 - 3.78 (m, 1H), 3.70 (t, J = 8.8 Hz, 1H), 3.49 (t, J = 7.2 Hz, 1H), 3.18 - 3.01 (m, 3H), 2.93 - 2.78 (m, 2H), 2.69 (dd, J = 16.0, 8.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.2, 144.6,

139.2, 130.6, 128.7, 126.3, 123.1, 74.2, 64.2, 62.4, 52.7, 48.2, 36.3, 35.9. HRMS (ESI): m/z calcd. For $[C_{15}H_{15}BrN_2NaO_2, M+Na]^+$ 345.0209, found: 345.0204.

2-(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)ethan-1-ol

Eluent: PE: EA = 2:1, yellow oil (8.0 mg, 31%); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dt, *J* = 8.0, 4.0 Hz, 1H), 7.15 – 7.07 (m, 3H), 4.80 (d, *J* = 8.0 Hz, 1H), 4.39 (ddd, *J* = 10.0, 7.2, 3.2 Hz, 1H), 3.66 (ddd, *J* = 16.4, 9.2, 4.8 Hz, 2H), 3.40 (ddd, *J* = 15.6, 7.6, 4.0 Hz, 1H), 3.03 (dd, *J* = 16.2, 4.4 Hz, 1H), 2.88 (dd, *J* = 16.4, 8.4 Hz, 1H), 1.69 – 1.62 (m, 1H), 1.56 – 1.46 (m, 1H), 1.19 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 143.4, 142.5, 127.9, 127.0, 125.3, 124.2, 80.9, 69.4, 61.6, 59.6, 51.7, 33.4, 32.0, 27.0. HRMS (ESI): m/z calcd. For [C₁₆H₂₃NNaO₂, M+Na]⁺ 284.1621, found: 284.1611.

N-(2-(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)phenyl)-4-methylbenzene sulfonamide

Eluent: PE: EA = 6:1, yellow oil (28.2 mg, 61%); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.26 – 7.20 (m, 3H), 7.10 – 7.06 (m, 1H), 7.04 – 6.99 (m, 2H), 6.96 (d, J = 8.0 Hz, 2H), 4.75 (d, J = 8.4 Hz, 1H), 3.94 (d, J = 10.0 Hz, 1H), 3.04 (dd, J = 17.2, 8.0 Hz, 1H), 2.89 (dd, J = 16.8, 7.6 Hz, 1H), 2.43 – 2.37 (m, 1H), 2.24 (s, 3H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 140.4, 137.1, 137.0, 129.4, 129.3, 128.0, 127.7, 127.6, 127.3, 126.9, 126.4, 125.9, 125.3, 124.3, 121.7, 81.7, 69.0, 58.6, 49.2, 32.3, 26.4, 21.5. HRMS (ESI): m/z calcd. For [C₂₇H₃₁N₂O₂S, M+H]⁺ 463.2050, found: 463.2050.

1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

Eluent: PE: EA = 4:1, yellow oil (15.0 mg, 69%); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 1H), 7.19 – 7.07 (m, 3H), 4.71 (d, *J* = 8.0 Hz, 1H), 4.20 (t, *J* = 7.6 Hz, 1H), 3.32 (t, *J* = 8.0 Hz, 1H), 3.28 –

3.17 (m, 1H), 3.05 (dd, J = 16.4, 7.2 Hz, 1H), 2.76 (d, J = 16.4 Hz, 1H), 1.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 140.9, 127.9, 127.4, 125.8, 125.0, 73.7, 68.9, 58.9, 47.2, 34.6, 26.7. HRMS (ESI): m/z calcd. For [C₁₄H₂₀NO, M+H]⁺ 281.1539, found: 281.1539

8. NMR Spectrum and Mass Spectrogr

 $-\frac{8.42}{1.567} = -\frac{8.42}{1.567} = -\frac{8.42}{1.567} = -\frac{8.24}{1.567} = -\frac{1.26}{1.568} = -\frac{1.26}{1.668} = -\frac{1.26}{1.668} = -\frac{1.26}{1.568} = -\frac{1.26}{1$

1.65
1.61
1.61

-138.45 -131.09 -130.08 -129.87 -129.12 -129.12 -128.39 -127.41

 $- \frac{14242}{14242} - \frac{14242}{14242} - \frac{14242}{12463} - \frac{124.08}{124.63} - \frac{124.63}{124.63} - \frac{-81.87}{75.705} - \frac{-81.87}{-69.79} - \frac{-81.73}{-69.73} - \frac{-62.53}{-69.73} - \frac{-49.46}{-31.73} - \frac{-26.97}{-21.30} - \frac{-21.30}{-21.30} - \frac{-21.20}{-21.30} - \frac{-21.20}{-21.30} - \frac{-21.30}{-21.30} - \frac{-21.30$

f1 (ppm) 30

90 80 f1 (ppm) o

100 90 f1 (ppm)

50 40 30 20

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm)

 $\begin{array}{c} -166.00 \\ -149.93 \\ < 142.81 \\ \hline 142.81 \\ \hline 129.48 \\ \hline 125.41 \\ \hline 125.41 \\ \hline 125.41 \\ \hline 121.36 \\ 119.30 \\ \hline 119.30 \\ \hline 119.30 \\ \hline 237.56 \\ < 59.47 \\ \hline 237.56 \\ \hline 237.57 \\ \hline 237.57$

165 155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

7,235 7,244 7,224 7,225 7,719 7,719 7,719 7,719 7,718 7,718 7,718 7,719

Analysis Info

Analysis NameG:\ZM MS\0412_RB3_01_12730.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412

Acquisition D 2022-04-13 11:44:52

Operator Demo User Instrumen compact

8255754.2017 6

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	8.0 l/min
Scan End	1500 m/z	Sat sebarging	2000 V	Set Divert Valve	Waste
		Weltege ona	0 nA	Set APCI Heater	0 °C
Scan Begin Scan End	50 m/z 1500 m/z	Set End Plate Sétseh arging Vei t ege ona	-500 V 2000 V 0 nA	Set Dry Gas Set Divert Valve Set APCI Heater	8.0 1/1 Waste 0 °C

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name G:\ZM MS\0617_GA7_01_14488.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0617 Acquisition D 2022-06-20 12:33:32

6

Operator Demo User Instrumen compact 8255754.2017

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	50 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Gét s eh arging	2000 V	Set Divert Valve	Waste
		Voitegeona	0 nA	Set APCI Heater	0 °C

Analysis Info

 Analysis
 Name G:\ZM
 MS\0412_RA8_01_12727.d

 Method
 LC_NO
 UV_P50-1500_6MIN.m

 Sample
 Name
 0412

Acquisition D 2022-04-13 11:21:46

Operator Demo User Instrumen compact

8255754.2017 6

	Mass S	pectrum Sm	artForm	nula Report	
Analysis Info	b			Acquisition D 2022-0	4-13 9:43:00
Analysis Name	G:\ZM MS\0412_1	RA5_01_12715.d			
Method	LC_NO_UV_P50-1	500_6MIN.m		Operator Demo User	
Sample Name	0412			Instrumen compact	8255754.2017 6
Comment					
Acquisition H	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	8.0 1/min
Scall Elig	1500 ш/2	Settegeona	0 nA	Set APCI Heate	r 0 °C
Intens x10 ⁶					+MS, 1.7min #96
4	312,1926				
					t-Bu
3-145.0	e 4 e			H H	.N.
145.0	040				
2					Н Н
				30	a

800

1000

m/z err [ppm] mSigma # mSigma Score rdb e;¥ Conf N-Rule 1570 -2.5 1.7 1 100.00 6.0 even ok

1200

1400

m/z

577.3231

400

600

0.4

0.0

200

Meas. m/z # Ion Formula

300.1577 1 C16H23NNaO3 300.1570

Analysis Info

 Analysis
 Name G: \ZM
 MS\0412_RB2_01_12729.d

 Method
 LC_NO
 UV_P50-1500_6MIN.m

 Sample
 Name
 0412

Acquisition D 2022-04-13 11:36:44

Operator Demo User Instrumen compact

8255754.2017 6

Comment

Mass Spectrum SmartFormula Report

Analysis Info			Acquisition D 2022-04-13 12:39:30			
Analysis Nam	eG:\ZM MS\0412_1	RC2_01_12737.d				
Method	LC_NO_UV_P50-1	500_6MIN.m		Operator Demo User		
Sample Name 0412			Instrumen compact	8255754.2017 6		
Comment						
Acquisition	Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebuli	zer 3.0 Bar	
Focus	Not active	Set Capillary	4000 V	Set Dry He	ater 200 °C	
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Ga	s 8.0 l/min	
Scan End	1500 m/z	Oéfseharging	2000 V	Set Divert	Valve Waste	
		gettøge ona	0 nA	Set APCI H	eater 0 °C	
Intens. x10 ⁶					+MS, 1.6min #93	
6-	284 ₍ 1615			(Me t-Bu H N O OH	
					Ή́Ή 3ja	

2-											
200	400	, 600	,	800	1000	1	1200		1	400	m/z
Meas. m/z # 284.1615 1	Ion Formula C16H23NNaO2	m/z err 284.1621	[ppm] 2.1	mSigma 2.0	# mSigma 1	Score 100.00	rdb 6.0	e;¥ even	Conf	N-1	Rule ok

Mass Spectrum SmartFormula Report Analysis Info Acquisition D 2022-04-13 11:29:23 Analysis NameG:\ZM MS\0412_RB1_01_12728.d Method LC_NO UV_P50-1500_6MIN.m Operator Demo User Sample Name 0412 Instrumen compact 6 Comment Acquisition Paramet Source Type Positive Set Nebulizer ESI Ion Polarity 3.0 Bar Set Dry Heater Set Dry Gas Set Divert Valve Not active Set Capillary 4000 V 200 °C Focus Scan Begin 50 m/z 1500 m/z -500 V 8.0 1/min Set End Plate **G∉f**seharging 2000 V Waste Scan End gettegeona Set APCI Heater 0 °C 0 nA +MS, 2.4min #138

8255754.2017

Analysis Info

Analysis Name G:\ZM MS\0412_RC6_01_12741.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412 Acquisition D 2022-04-13 13:11:47

8255754.2017

6

Operator Demo User

Instrumen compact

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	8.0 l/min
Scan End	1500 m/z	Sét s ch arging	2000 V	Set Divert Valve	Waste
		Wet tegeona	0 nA	Set APCI Heater	0 °C

Mass Spectrum SmartFormula Report Analysis Info Acquisition D 2022-04-13 13:19:40 Analysis Name G:\ZM MS\0412 RC7 01 12742.d Acquisition D 2022-04-13 13:19:40

Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412			Operator Demo User Instrumen compact	8255754.2017	
Comment					0
Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Drv Heater	200 °C

Intens.				+MS. 2.2min #12	2
		yettege ona	0 nA	Set APCI Heater 0 °C	
Scan End	1500 m/z	Géf s eh arging	2000 V	Set Divert Valve Waste	
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas 8.0 l/min	
Focus	Not active	Set Capillary	4000 V	Set Dry Heater 200 °C	

Meas. m/z # Ion Formula m/z err [ppm] mSigma # mSigma Score rdb e;¥ Conf N-Rule 338.0678 1 C15H19Cl2NNa02 338.0685 2.2 6.8 1 100.00 6.0 even ok

Analysis Info

Analysis Name G:\ZM MS\0412_RC8_01_12743.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412 Acquisition D 2022-04-13 13:27:19

Operator Demo User Instrumen compact

8255754.2017 6

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	8.0 l/min
Scan End	1500 m/z	Sét seharging	2000 V	Set Divert Valve	Waste
		Vet tegeona	0 nA	Set APCI Heater	0 °C

Analysis Info

Analysis	Info		Acquisition D 2022-0	4-13 11:14:10
Analysis	Name G:\ZM	MS\0412_RA7_01_12726.d		
Method	LC_NO	UV_P50-1500_6MIN.m	Operator Demo User	
Sample Na	me 0412		Instrumen compact	8255754.2017 6

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	8.0 l/min
Scan End	1500 m/z	Gét s ch arging	2000 V	Set Divert Valve	Waste
		Vet t eg eona	0 nA	Set APCI Heater	0 °C

нн 3sa

Mass Spectrum SmartFormula Report

Analysis Info

Analysis NameG:\ZM MS\0412_RD1_01_12744.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412

Acquisition D 2022-04-13 13:35:25

Operator Demo User Instrumen compact

8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info Analysis NameG:\ZM MS\0412_RC1_01_12736.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412

Acquisition D 2022-04-13 12:31:22

Operator Demo User Instrumen compact 8255754.2017 6

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	8.0 l/min
Scan End	1500 m/z	Géf s Ch arging	2000 V	Set Divert Valve	Waste
		gettage ona	0 nA	Set APCI Heater	0 °C

Analysis Info

Analysis Name G:\ZM MS\0412_RB7_01_12734.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0412 Acquisition D 2022-04-13 12:16:08

6

Operator Demo User Instrumen compact 8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info

 Analysis
 Name G:\ZM
 MS\0617_GB6_01_14495.d

 Method
 LC_NO
 UV_P50-1500_6MIN.m

 Sample
 Name
 0617

Acquisition D 2022-06-20 13:27:52

Operator	Demo	User		
Instrumen	compa	act	8255754.201	7
			6	

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	50 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Géfseh arging	2000 V	Set Divert Valve	Waste
		Vettege ona	0 nA	Set APCI Heater	0 °C

3.3

0.6

1 100.00 8.0 even

ok

430.2952

⁾ Identify Chemistry Process Calibrate Amotation Method View Iools Compass Window Help . [▲ ▲ ▲ 鼎 赤 杰 杰 ★ ▲ 杰 (▲ . 爲 (山 田) 爲 紹 (今) 약 약 약 약 약 같 [1] 영 전 + [] 글 [人戴太) 쇼 는 □[] [圖 圖

Analysis Info

 Analysis
 Name G:\ZM
 MS\0504_GA5_01_13319.d

 Method
 LC_NO
 UV_P50-1500_20MIN.m

 Sample
 Name
 0504

Acquisition D 2022-05-06 0:32:09

8255754.2017

6

Operator Demo User Instrumen compact

Comment

Mass Spectrum SmartFormula Report

Analysis Info		Acquisition D 2022-07-18 23:59:46			
Analysis NameG:\ZM MS\0715_BE3_01_15261.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0715				Operator Demo User Instrumen compact	8255754.2017
Comment					
Acquisition Pa	aramet				
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Séfseh arging Veitage ona	Positive 4000 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valvo Set APCI Heater	3.0 Bar 200 °C 8.0 1/min Waste 0 °C
Intens x10 ⁶					+MS, 2.0min #115
1.25	270 ₍ 1459				
1.00	214.0836				tBu N,
0.75					ОН
0.50 132.044	4			~	3-Int
0.25	4	24.2081			
0.00-↓⊥₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	200 4	00 600	800	1000 1200	1400 m/z

Meas. m/z # Ion Formula m/z err [ppm] mSigma # mSigma Score rdb e;¥ Conf N-Rule 270.1459 1 C15H21NNa02 270.1464 1.9 0.7 1 100.00 6.0 even ok

Analysis 1	Name G: \ZM	MS\0617_GC4_01_14501.d
Method	LC_NO	UV_P50-1500_6MIN.m
Sample Nam	me 0617	

Acquisition D 2022-06-20 14:14:05

Operator Demo User Instrumen compact 8255754.2017 6

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	50 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Q£f s @h arging	2000 V	Set Divert Valve	Waste
		Vettegrona	0 nA	Set APCI Heater	0 °C

Mass Spectrum SmartFormula Report

111

	Mass	Spectr	rum Sma	artForr	nula Rep	port		
Analysis Info	þ				Acquisition	n D 2022-06	-20 13:59:0	9
Analysis Name	G:\ZM MS\06	7_GC2_01_14	499.d					
Method	LC_NO UV_P50	-1500_6MIN.	m		Operator D	emo User		
Sample Name	0617				Instrumen c	ompact	8255754.203 6	17
Comment								
Acquisition H	Paramet							
Source Type	ESI	Ion Po	olarity	Positive	Set	Nebulizer	3.0 Bar	
Focus	Not active	Set Ca	apillary	4000 V	Set	Dry Heater	50 °C	
Scan Begin Case End	50 m/z	Set Ei	nd Plate	-500 V	Set	Dry Gas	4.0 1/min	
Scall Ella	1500 11/2	Velter	farging ∮¢ona	0 nA	Set	APCI Heater	0 °C	
Intens.							+MS, 5.6min #3	26
x100-					_			
1.00		542,3	249		Me Ling the Contraction		^t Bu +N-O H	
0.75		464.2805		802.4946		S-3daa		
0.50								
0.25 95.0595	288.9237		676.4955	5	1061.659)		
سب باسط 0.00	մ. հղուհեր քին օրո	ا ا من ا من ا	عبيبة البارجا					_
	200	400	600	800	1000	1200	1400 m	n/z
Meas. m 542.32	/z # Ion For 49 1 C33H45NN	mula m/ aO4 542.324	z err [ppu 1 -1	m] mSigma # .5 6.3	t mSigma Scor 1 100.	re rdb e;¥ 00 12.0 eve	Conf N-Rul	le ok

Analysis Info Analysis NameG:\ZM MS\0617_GC6_01_14503.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0617 Acquisition D 2022-06-20 14:30:08

Operator Demo User Instrumen compact 8255754.2017 6

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	50 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Ø£fs€harging	2000 V	Set Divert Valve	Waste
		yettegeona	0 nA	Set APCI Heater	0 °C

Mass Spectrum SmartFormula Report

Analysis Info Analysis NameG:\ZM MS\0617_GC7_01_14504.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0617 Acquisition D 2022-06-20 14:37:59

Operator Demo User Instrumen compact 8255754.2017 6

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	50 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Offseharging	2000 V	Set Divert Valve	Waste
		Vettage ona	0 nA	Set APCI Heater	0 °C

Analysis Info

 Analysis
 Name G:\ZM
 MS\0617_GC7_01_14504.d

 Method
 LC_NO
 UV_P50-1500_6MIN.m

 Sample
 Name
 0617

Acquisition D 2022-06-20 14:37:59

Operator Demo User	
Instrumen compact	8255754.2017
	6

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	50 °C
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Q£f s@harging	2000 V	Set Divert Valve	Waste
		Veltageona	0 nA	Set APCI Heater	0 °C

Analysis Info Analysis NameG:\ZM MS\0621_GD3_01_14604.d Method LC_NO UV_P50-1500_6MIN.m Sample Name 0621

200

Acquisition D 2022-06-24 17:01:13

6

Operator Demo User Instrumen compact 8255754.2017

Comment

Acquisition	Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer 3.0 Ba:	r
Focus	Not active	Set Capillary	4000 V	Set Dry Heater 200 °C	
Scan Begin	50 m/z	Set End Plate	-500 V	Set Dry Gas 8.0 1/1	min
Scan End	1500 m/z	Qéf s Ch arging	2000 V	Set Divert Valve Waste	
		Vettegrona	0 nA	Set APCI Heater 0 °C	

Mass Spectrum SmartFormula Report Analysis Info Acquisition D 2022-06-20 15:00:18 Analysis NameG:\ZM MS\0617_GD2_01_14507.d Method LC_NO UV_P50-1500_6MIN.m Operator Demo User 8255754.2017 Sample Name 0617 Instrumen compact 6 Comment Acquisition Paramet Positive Set Nebulizer 3.0 Bar Source Type ESI Ion Polarity Set Dry Heater Set Dry Gas Set Divert Valve Focus Scan Begin Not active 50 m/z Set Capillary Set End Plate 4000 V -500 V 50 °C 4.0 1/min Scan End 1500 m/z **Gétseh**arging 2000 V Waste yeltegeona Set APCI Heater 0 °C 0 nA +MS, 1.5min #86 Intens. x10⁷ 266,1539 Bn 1.0-0.8-OН ΗĤ 0.6-11 0.4 150 0914 0.2 0.0 400 600 800 1000 1200 1400 m/z

Meas. m/z # Ion Formula m/z 266.1539 1 C18H20NO 266.1539 m/z err [ppm] mSigma # mSigma Score rdb e;¥ Conf N-Rule .1539 -0.0 17.8 1 100.00 10.0 even ok