Supporting Information

Regio- and stereo-selective construction of cis-indeno[1,2-c]isoxazoles via $\mathbf{C}-\mathrm{H}$ allylation/1,3-dipolar cycloaddition cascade

Man Zhu, Yanan Zhang, Miaomiao Tian, Xingwei Li, Bingxian Liu,* and Junbiao Chang *
${ }^{1}$ NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Table of Contents

1. General Information 2
2. General Procedures for the Preparation of Substrates 2
3. Experimental Section 6
4. Mechanistic Studies 13
5. X-Ray Crystal Structures 20
6. References 24
7. Characterization Data. 25
8. NMR Spectrum and Mass Spectroscopy 41

1. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All the reactions were carried out under argon atmosphere using standard Schlenk technique. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz or 150 MHz . The ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 565 MHz . Chemical shifts were expressed in parts per million (δ) downfield from the internal standard TMS, and were reported as s (singlet), d (doublet), t (triplet), $d d$ (doublet of doublet), dt (doublet of triplet), m (multiplet), brs (broad singlet), etc. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale. HRMS spectra were obtained on an Agilent Q-TOF 6540 spectrometer. Column chromatography was performed on silica gel (300-400 mesh). HPLC analysis was performed using the corresponding commercial chiral columns as stated in the experimental procedures at $30^{\circ} \mathrm{C}$ with the UV detector at 254 nm . The vinylethylene carbonates 2a and $\mathbf{5 a}$ were purchased from commercial sources, and other vinylethylene carbonates $\mathbf{3 a}, \mathbf{4 a}$, were prepared by following a literature procedure. ${ }^{1}$ The arylnitrones were prepared according to the literature report. ${ }^{2}$ The azomethine imines were prepared according to the literature reports. ${ }^{3}$

2. General Procedures for the Preparation of Substrates

(1) The Preparation of 3-Int

2-[(2E)-4-Hydroxy-2-buten-1-yl]benzaldehyde was prepared by following a literature procedure ${ }^{4}$. N-tert-Butylhydroxylamine hydrochloride (4.0 mmol) and the aldehyde $(4.0 \mathrm{mmol})$ were dissolved in anhydrous DCM (20 mL). The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and pyrrolidine (4.8 mmol) was added dropwise. The reaction was stirred at room temperature. After the reaction was finished as judged by TLC (3 h), the solvent was then removed under reduced pressure to give a crude product. Purification by silica gel column chromatography with petroleum and ethyl acetate as eluent (PE: EA = 3: 1) to afford the pure product 3-Int. Colourless oil, ($683 \mathrm{mg}, 69 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.08-8.92(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{dd}, \mathrm{m}, 1 \mathrm{H}), 5.82-5.61(\mathrm{~m}, 1 \mathrm{H})$, $5.56-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=5.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=6.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,131.1,130.1,129.8,129.1,128.4,127.4,126.8,71.2,62.9$, 36.8, 28.3). HRMS (ESI): m/z calcd. for [$\left.\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNa}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{Na}\right]+: 270.1465$; found: 270.1459.

(2) The preparation of complex bioactive molecules

The corresponding aldehydes was prepared by following a literature ${ }^{5}$ procedure, N-tert-Butylhydroxylamine hydrochloride (5.0 mmol) and the aldehydes $(5.0 \mathrm{mmol})$ were dissolved in anhydrous DCM (20 mL). The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and pyrrolidine (6.0 mmol) was added dropwise. The reaction was stirred at room temperature. After the reaction was finished as judged by TLC (1-4 h), the solvent was then removed under reduced pressure to give a crude product. Purification by silica gel column chromatography with petroleum and ethyl acetate as eluent (PE: EA = 1:1-6:1) to afford the corresponding pure products.

The corresponding aldehydes was prepared by following a literature ${ }^{5}$ procedure, N -tert-Butylhydroxylamine hydrochloride (5.0 mmol) and the aldehydes $(5.0 \mathrm{mmol})$ were dissolved in anhydrous DCM (20 mL). The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and pyrrolidine (6.0 mmol) was added dropwise. The reaction was stirred at room temperature. After the reaction was finished as judged by TLC ($1-4 \mathrm{~h}$), the solvent was then removed under reduced pressure to give a crude product. Purification by silica gel column chromatography with petroleum and ethyl acetate as eluent (PE: EA = 1:1-6:1) to afford the corresponding pure products.

Characterizations of substrates: White solid, ($5 \mathrm{mmol}, 1.067 \mathrm{~g}, 50 \%$); M.p.:76-79 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.86$ (m, 4H), $1.64(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,156.8,151.9,136.5,130.3$, 130.0, 129.0, 128.6, 123.6, 121.6, 120.8, 111.9, 70.8, 67.7, 42.5, 37.1, 28.3, 25.2, 25.1, 21.4, 15.8. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 448.2458; found: 448.2450.

Characterizations of substrates: White solid, ($3.1 \mathrm{mmol}, 1.043 \mathrm{~g}, 74 \%$); M.p.: $137-139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{q}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.43-6.40(\mathrm{~m}, 1 \mathrm{H}), 3.86$ $(\mathrm{s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,161.0,150.4,139.2,135.6,135.1,130.12$, 130.1, 129.0, 128.9, 128.4, 128.2, 127.5, 121.9, 104.6, 100.1, 71.8, 55.4, 28.4. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NNaO}_{5}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 482.1938; found: 482.1911.

Characterizations of substrates: White solid, ($4.1 \mathrm{mmol}, 972 \mathrm{mg}, 59 \%$); M.p.:124-126 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.71$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7,164.3,151.1,140.2$, 138.2, 135.4, 130.4, 130.1, 129.0, 128.4, 122.7, 120.4, 112.8, 71.7, 55.9, 45.1, 30.1, 29.6, 28.3. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NNaO}_{5}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 420.1781; found: 420.1769.

Characterizations of substrates: White solid, ($3.2 \mathrm{mmol}, 856 \mathrm{mg}, 52 \%$); M.p.:223-225 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01-4.78(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}$, $3 \mathrm{H}), 2.12-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{dt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.45$ $(\mathrm{m}, 3 \mathrm{H}), 1.33-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.4,165.4,139.6,134.8,131.5,129.6,129.0,128.3,122.5,76.7,74.7,71.6,63.7$, $56.9,49.9,44.0,38.8,38.2,37.1,36.7,31.9,31.8,31.5,28.4,27.8,24.5,22.9,21.1,19.8,13.2$ HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 542.3241 ; found: 542.3249.

Characterizations of substrates: Colourless oil, ($3.7 \mathrm{mmol}, 392 \mathrm{mg}, 28 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.83$
$(\mathrm{d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.8,151.8,140.9,137.0,130.0,129.5,129.2$, 128.6, 127.2, 121.4, 70.8, 45.3, 45.1, 30.2, 28.3, 22.4, 18.5. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NNaO}_{3}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}$: 404.2196; found: 404.2179.

Characterizations of substrates: White solid, ($5.0 \mathrm{mmol}, 856 \mathrm{mg}, 38 \%$); M.p.: $198-203{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=8 . \mathrm{Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H})$, $2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{td}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}$, 1.64), $1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.8$, $164.9,148.9,138.2,137.6,135.7,130.4,129.0,128.6,126.6,121.8,118.9,77.5,77.2,76.8,71.9,50.6$, 48.1, 44.3, 38.2, 35.9, 31.7, 29.6, 28.5, 26.5, 25.9, 21.7, 13.9. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 496.2458; found: 496.2458 .

Characterizations of substrates: White solid, ($3.2 \mathrm{mmol}, 942 \mathrm{mg}, 82 \%$); M M.p.: $98-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{td}, J=10.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.15-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.81(\mathrm{~m}, 7 \mathrm{H}), 0.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,134.7,131.5,129.6,129.0,128.3,75.0,71.5,47.2,40.934 .3,31.4,28.3,26.5,23.7$, 22.0, 20.7, 16.6. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NNaO}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 382.2353$; found: 382.2339.

Characterizations of substrates: Yellow Oil, ($1.3 \mathrm{mmol}, 508 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.47-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 5 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 10 \mathrm{H}), 1.10-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.78(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.2,149.9,142.7$), 135.4, 130.6, 130.2, 128.9, 128.4, 127.4, $121.2,121.1,119.1), 76.2,71.72(\mathrm{~s}, 2 \mathrm{H}), 40.2,39.2,37.5,37.4,37.3,32.8,32.7,31.0,28.4,28.0,24.8$,
$24.4,24.2,22.7,22.6,22.5,20.9,19.8,19.7,16.1$. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{NNaO}_{4}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}: 628.4336$; found:628.4320.

3. Experimental Section

(1) Optimization studies for vinylethylene carbonate and azomethine imines

	 4a	 2a	$\xrightarrow[\text { Solvet, Salt, T }\left({ }^{\circ} \mathrm{C}\right), \mathrm{N}_{2}]{\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}}$		 4aa
entry	Catalyst (mol \%)	Solvent	Salt	T (${ }^{\circ} \mathrm{C}$)	yield ${ }^{\text {b }}$
1	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	DCM	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	80	Decomposition of 4a
2	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	PhCl	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	80	Decomposition of $\mathbf{4 a}$
3	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	THF	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	80	Self-coupling of 4a
4	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	80	58\%
5	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	1,4-Dioxane	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	80	54\%
6	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	AgOAc	80	46\%
7	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	-	80	67\%
8	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	-	60	62\%
9	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	-	40	50\%
10	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	-	100	72\%
11	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	$4 \dot{\mathrm{~A}}(60 \mathrm{mg})$	80	76\%
12^{c}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	$4 \dot{\mathrm{~A}}(60 \mathrm{mg}) / \mathrm{NaOAc}$	80	52\%

[^0]
(2) Optimization studies for the reaction of 1a with 2 c

entry	Catalyst (mol \%)	Solvent	Salt	yield ${ }^{\text {b }}$
1	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	PhCl	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	45\%
2	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	DCE	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	35\%
3	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	TFE	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	16\%
4	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	1,4-Dioxane	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	6\%
$5^{\text {c }}$	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	PhCl	$\mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{NaOAc}$	61\%
6^{d}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$	DCE	$\mathrm{AgOAc}+\mathrm{KHCO}_{3}$	38\%

${ }^{\text {a Reaction conditions: } \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 c}(0.15 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.05)}$ mmol), solvent (1.0 mL), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$, under Ar. ${ }^{b}$ Isolated yields. ${ }^{c} \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol}), \mathrm{NaOAc}(0.05 \mathrm{mmol})$, ${ }^{d} \mathrm{AgOAc}(0.05 \mathrm{mmol}), \mathrm{KHCO}_{3}(0.05 \mathrm{mmol})$.
(3) General procedures for the synthesis of products 3 .

A mixture of $1(0.1 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$, were charged into a reaction tube. $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which were added $2 \mathbf{2 a}(0.015 \mathrm{ml}, 0.15 \mathrm{mmol})$ and dry $\mathrm{PhCl}(1.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ heated by metal sand bath for 12 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (PE:EA $=2: 1-6: 1$) to afford 3 .

(4) General procedures for the synthesis of products 4aa.

A mixture of $4(0.1 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and 4 A molecular sieve (60 mg) were charged into a reaction tube. $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which were added $2 \mathbf{a}(0.015 \mathrm{ml}, 0.15 \mathrm{mmol})$ and TFE $(1.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ heated by metal sand bath for 24 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography $(\mathrm{DCM}$:Methanol $=20: 1$) to afford 4aa.

(5) Scale-up synthesis of the product 3aa.

A mixture of $\mathbf{1 a}(890 \mathrm{mg}, 5.0 \mathrm{mmol}$, $)$, $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($700 \mathrm{mg}, 2.5 \mathrm{mmol}$), were charged into a round-bottom flask $(100 \mathrm{~mL}) . \mathrm{AgSbF}_{6}(275 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which were added $\mathbf{2 a}(0.75 \mathrm{ml}, 7.5 \mathrm{mmol})$ and $\mathrm{PhCl}(50.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ heated by metal sand bath for 48 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography. using PE: EtOAc $=4: 1$ to afford 3aa ($778 \mathrm{mg}, 72 \%$ yiled).
(6) General procedures for the synthesis of product 3ab.

A mixture of $1 \mathbf{1 a}(0.1 \mathrm{mmol})$, $\left[\mathrm{Cp}{ }^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ were charged into a reaction tube. $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which were added $\mathbf{2 b}(19.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ and DCE $(1.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ heated by metal sand bath for 20 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography ($\mathrm{PE}: E A=2: 1$) to afford 3ab.

(7) General procedures for the synthesis of product 3ac.

A mixture of $1 \mathbf{1 a}(0.1 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ and NaOAc ($5 \mathrm{mg}, 0.05 \mathrm{mmol}$) were charged into a reaction tube. $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which were added $\mathbf{2 c}(47 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ heated by metal sand bath for 12 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography ($\mathrm{PE}: \mathrm{EA}=6: 1$) to afford 3ac.

(8) General procedures for the synthesis of product 3ad.

A mixture of $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\left[\mathrm{Cp}{ }^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ were charged into a reaction tube. $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which were added $\mathbf{2 d}(35 \mathrm{mg}, 0.3 \mathrm{mmol} \mathrm{ml})$ and $\mathrm{PhCl}(1.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ heated by metal sand bath for 12 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography $(\mathrm{PE}: \mathrm{EA}=4: 1)$ to afford 3ad.
(9) Synthetic transformation of the products.

7,54\%, CCDC 1844840

1-(tert-butyl)-3-(iodomethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

To a solution of $\mathbf{3 a a}(0.2 \mathrm{mmol}, 50 \mathrm{mg})$ in toluene $(10 \mathrm{~mL})$ was added iodine ($0.4 \mathrm{mmol}, 103 \mathrm{mg}$), triphenylphosphine ($0.6 \mathrm{mmol}, 157 \mathrm{mg}$) and imidazole $(0.6 \mathrm{mmol}, 40 \mathrm{mg})$ under Ar. The solution was heated to reflux for 6 h at $110{ }^{\circ} \mathrm{C}$ with stirring. After evaporation of the solvent, the residual oil was purified by silica gel chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) to give $5(65 \mathrm{mg}, 92 \%)$ as a white solid. M.p.:79-83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.03(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=15.6,7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=16.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (dd, $J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, $J=10.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,142.6,128.7,127.8,125.9,124.8,83.1,70.5$, 60.5, 52.0, 32.1, 27.5, 3.0. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NINaO}, \mathrm{M}+\mathrm{Na}\right]^{+}: 358.0662$; found: 358.0670 .

1-(tert-butyl)-3-(chloromethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

To a solution of 3aa ($0.1 \mathrm{mmol}, 25 \mathrm{mg}$) in Carbon tetrachloride (2 mL) was added triphenylphosphine ($0.3 \mathrm{mmol}, 80 \mathrm{mg}$) under Ar. The solution was heated to reflux overnight at $90^{\circ} \mathrm{C}$ with stirring. After evaporation of the solvent, the residual oil was purified by silica gel chromatography ($\mathrm{PE}: \mathrm{EA}=8: 1$) to give $6(13 \mathrm{mg}, 53 \%)$ as a yellow solid. M.p. $53-57{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 MHz,) $\delta 7.27-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.52$ $-4.47(\mathrm{~m}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=10.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=$ $16.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ., 2.97(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3$, $141.8,128.1,127.3,125.4,124.1,80.4,69.5,59.5,51.2,50.4,31.6,26.9$. HRMS (ESI): m/z calcd. for $\left[^{15} \mathrm{H}_{21} \mathrm{ClNO}, \mathrm{M}+\mathrm{H}\right]^{+}: 266.1306$; found: 266.1310 .

2-(1,2-dihydroxyethyl)-2,3-dihydro-1H-inden-1-one
A solution of the 3aa ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) in diethyl ether (2 mL) was cooled in ice bath, and m-Chloroperoxybenzoic acid ($138 \mathrm{mg}, 0.8 \mathrm{mmol}, 4.0$ equiv) was added portionwise to the solution under Ar, The clear and blue solution was stirred at this temperature for 2 h and then quenched by addition of an aqueous 10% sodium bicarbonate $(2 \mathrm{ml}) / 10 \%$ sodium thiosulfate $(2 \mathrm{ml})$ solution and vigorous stirring for 20 min . The mixture was decanted and extracted with DCM (5 mL), the organic phase was washed with saturated sodium carbonate solution and then with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$,
filtered, and concentrated in vacuo to give the crude product, which was used immediately in the next reaction.
The crude product was dissolved in THF (2 mL) with strirring in ice bath, and 2 N hydrochloric acid solution (2 mL) was added (exothermic reaction). The solution was stirred in ice bath for 30 min whereupon it was neutralized with saturated sodium carbonate solution and extracted with DCM. The organic phase was washed with water and brine, dried (Na2SO4), filtered, and concentrated in vacuo. The crude product was purified by silica gel (DCM :Methanol $=20: 1$) to give 7 as white solid (22 mg , 54%). M.p.: $102-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dt}, J=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}) 3.24-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.5,154.6,136.7,135.1,127.4,126.6,123.9,71.6,65.3,50.2$, 27.8. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 215.0679; found: 215.0679.

1-(1-(tert-butylamino)-2,3-dihydro-1H-inden-2-yl)ethane-1,2-diol

To a vial under Ar atmosphere were added 3aa ($0.2 \mathrm{mmol}, 50 \mathrm{mg}$,) and THF (1.0 mL). To the mixture were added $\mathrm{Zn}(2.0 \mathrm{mmol}, 130 \mathrm{mg}), \mathrm{AcOH}(2.0 \mathrm{~mL})$, and $\mathrm{H} 2 \mathrm{O}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. After dried by MgSO 4 , the mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, and purified by silica gel chromatography ($\mathrm{DCM}:$ Methanol $=$ 10:1) to give the indicated product 8 as a white solid ($47 \mathrm{mg}, 95 \%$). M.p.:123-126 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=16.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5,144.0,127.9,126.9$, 125.3, 124.0, 72.2, 66.3, 60.3, 51.6, 44.9, 29.9), 29.6. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{2}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}$: 272.1621; found: 272.1610.

9
(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methyl-4-methylbenzenesulfon ate
3aa (0.3 mmol), $p-\mathrm{TsCl}(0.45 \mathrm{mmol}, 1.5$ equiv), and DMAP ($0.06 \mathrm{mmol}, 0.2$ equiv) were taken into a 25 mL round bottom flask and dry DCM (6 mL) was added with stirring under nitrogen atmosphere. The flask was cooled with ice-water and distilled $\mathrm{Et}_{3} \mathrm{~N}(0.9 \mathrm{mmol}, 3.0$ equiv) was added. The reaction was allowed to stir for 6 h at room temperature. After complete consumption of starting material (monitored by TLC), volatiles were evaporated to dryness and the crude reaction mixture was loaded directly onto silica gel column (PE:EA $=6: 1$) and purified to give $9(112 \mathrm{mg}, 92 \%)$ as a yellow solid. M.p.:78-81 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.89(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=7.8,6.2$
$\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,143.1,141.5,132.7,129.8,128.1,127.9,127.3,125.3,124.1$, $78.8,69.6,68.9,59.7,50.1,31.5,26.8,21.6$. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}+\mathrm{H}\right]^{+}$: 402.1734; found: 402.1727.

3-(azidomethyl)-1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

A 10 mL a Schlenk tube was charged with 9 ($80 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.), NaN3 ($52 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv.) and DMF (2 mL). The reaction was allowed to stir overnight at $70^{\circ} \mathrm{C}$. The vial was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was further purified with flash column chromatography ($\mathrm{Hex} / \mathrm{EA} / \mathrm{DCM}=10: 1: 3$) to give $\mathbf{1 0}$ as yellow solid ($32 \mathrm{mg}, 59 \%$). M.p.: $79-83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=$ $8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=12.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.88(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,141.8,128.2$, 127.3, 125.3, 124.1, 82.1, 69.8, 59.8, 50.5, 42.4, 31.5, 26.9. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NNaO}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}$: 295.1529; found: 295.1520 .

11

1-benzyl-1,2,3,3a,4,8b-hexahydroindeno[1,2-b]pyrrol-3-ol

3aa (0.2 mmol), $p-\mathrm{TsCl}(0.3 \mathrm{mmol}, 1.5$ equiv), and DMAP ($0.04 \mathrm{mmol}, 0.2$ equiv) were taken into a 25 mL round bottom flask and dry DCM (5 mL) was added with stirring under nitrogen atmosphere. The flask was cooled with ice-water and distilled $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{mmol}, 3.0$ equiv) was added. The reaction was allowed to stir for 6 h at room temperature. After complete consumption of starting material (monitored by TLC), volatiles were evaporated to dryness and the crude reaction mixture was loaded directly onto silica gel column (PE:EA = 4:1) and purified to give the pure product, which was used immediately in the next reaction.

To a vial under Ar atmosphere were added the above product ($0.2 \mathrm{mmol}, 1.0$ equiv) and THF (1.0 mL). To the mixture were added $\mathrm{Zn}(2.0 \mathrm{mmol}, 130 \mathrm{mg})$, $\mathrm{AcOH}(2.0 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. After dried by MgSO 4 , the mixture was filtered through a pad of celite eluting with ethyl acetate, concentrated, and purified by silica gel chromatography (DCM :Methanol $=10: 1$) to give the product as a white solid, which was used in the next step without further purification.

The above product (0.2 mmol), DMAP ($0.1 \mathrm{mmol}, 0.5$ equiv) were taken into a Schlenk tube and dry DCM (2 mL) was added with stirring under nitrogen atmosphere. The flask was cooled with ice-water and distilled $\mathrm{Et}_{3} \mathrm{~N}$ ($0.6 \mathrm{mmol}, 3.0$ equiv) was added. The reaction was allowed to stir for 6 h at room
temperature. After complete consumption of starting material (monitored by TLC), volatiles were evaporated to dryness and the crude reaction mixture was loaded directly onto silica gel column $(\mathrm{Hex} / \mathrm{DCM} /$ Methanol $=10: 10: 1)$ and purified to give the pure product $\mathbf{1 1}$ as colourless oil $(41 \mathrm{mg}$, 77%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 3 \mathrm{H})$, $4.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13$ (dd, $J=16.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (ddd, $J=10.0,7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.8,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67(\mathrm{dd}, J=9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,141.3,139.3,128.8,128.4,127.9,127.0,126.3,125.8,125.0,77.8,70.7,59.1,57.3$, 50.8, 36.3. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}, \mathrm{M}+\mathrm{H}\right]^{+}: 266.1539$; found: 266.1539.

4. Mechanistic Studies

(1) H/D Exchange experiment of 1a with 2a

A mixture of $1(0.1 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ were charged into a Schlenk tube. $\mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%$) was added in a glove box, and then to which were added $2 \mathbf{2 a}(0.015 \mathrm{ml}, 0.15 \mathrm{mmol}), \mathrm{D}_{2} \mathrm{O}(18.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 10.0 \mathrm{eq})$ and dry $\mathrm{PhCl}(1.0 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ heated in metal sand bath for 12 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using $\mathrm{PE} / \mathrm{EtOAc}=(8: 1$ to $4: 1)$ to afford 3aa in 53% yield and $\mathbf{1 a}$ in 39% yield. ${ }^{1} \mathrm{H}$ NMR analysis indicated 10% deuteration at the ortho position of $\mathbf{3} \mathbf{a a}$ and 10% deuteration at the ortho position of $\mathbf{1 a}$.

1 a

9:1

(2) Determination of Kinetic Isotope Effects

For the cyclization of [1a-H5]: a $25-\mathrm{mL}$ a Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{1 a - H} 5$ ($17.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%)$ was added in a glove box, and then to which was added dry PhCl $(1.0 \mathrm{~mL})$ under argon atmosphere, the reaction tube stand for 5 minutes in a low temperature reaction bath at $10^{\circ} \mathrm{C}$, and then $\mathbf{2 a}$ was added to the mixture whit striing. After 20 minutes of reaction, the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with $\mathrm{CDCl}_{3}, 7 \mu \mathrm{~L}$ of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ${ }^{1} \mathrm{H}$ NMR. The amount of $\mathbf{3 a a}-\mathbf{H}_{4}$ was determined by the relative integration of the characteristic signals of dibromomethane and $\mathbf{3 a a}-\mathbf{H}_{4}$, The experiment was repeated at $30,40,50$ and 60 minutes.

For the cyclization of $\left[\mathbf{1 a -} \mathbf{D}_{5}\right]$: a $25-\mathrm{mL}$ a Schlenk tube equipped with a magnetic stir bar was charged with 1a-D $\mathbf{D}_{5}\left(18.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{mg}, 4 \mathrm{~mol} \%)$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{AgSbF}_{6}(5.5 \mathrm{mg}, 16 \mathrm{~mol} \%$) was added in a glove box, and then to which was added dry PhCl $(1.0 \mathrm{~mL})$ under argon atmosphere, the reaction tube stand for 5 minutes in a low temperature reaction bath at $10^{\circ} \mathrm{C}$, and then $\mathbf{2 a}$ was added to the mixture whit striing. After 20 minutes of reaction, the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with $\mathrm{CDCl}_{3}, 7 \mu \mathrm{~L}$ of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ${ }^{1} \mathrm{H}$ NMR. The amount of $\mathbf{3 a a}-\mathbf{D}_{4}$ was determined by the relative integration of the characteristic signals of dibromomethane and 3aa-D4, The experiment was repeated at 40, 80, 120 and 170 minutes.

Initial rates determined by plots of [3aa-H4] versus time, which gave the value of $0.4900 \times 10^{-4} \mathrm{M} / \mathrm{min}$.

Initial rates determined by plots of [3aa-D4] versus time, which gave the value of $0.0872 \times 10^{-4} \mathrm{M} / \mathrm{min}$.

The KIE value measured based on the above experiments is 5.6.

(3) Verification of the intermediate

1) Experiments using the intermediate as a substrate

standard conditons: 3-Int (0.1 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.05$ equiv), $\mathrm{PhCl}(1.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$, under $\mathrm{Ar}, \mathrm{n} . \mathrm{d} .=$ no detection. $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%, 2.5 \mathrm{mg})$,

Condition a: A 25 mL Schlenk tube was charged with 3-Int ($25 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1 equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (14 $\mathrm{mg})$ and $\mathrm{PhCl}(1.0 \mathrm{ml})$. and then the reaction was allowed to stir for 12 h at $60^{\circ} \mathrm{C}$ under N_{2}. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with $\mathrm{CDCl}_{3}, 7 \mu \mathrm{~L}$ of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ${ }^{1} \mathrm{H}$ NMR.

Condition b: A 25 mL Schlenk tube was charged with 3-Int ($25 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1 equiv.), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (14 $\mathrm{mg})$ and $\mathrm{PhCl}(1.0 \mathrm{ml})$. and then the reaction was allowed to stir for 12 h at rt under N_{2}. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with $\mathrm{CDCl}_{3}, 7 \mu \mathrm{~L}$ of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ${ }^{1} \mathrm{H}$ NMR.

Condition c: A 25 mL Schlenk tube was charged with 3-Int ($25 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) and $\mathrm{PhCl}(1.0$ $\mathrm{ml})$. and then the reaction was allowed to stir for 12 h at rt under N_{2}. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with $\mathrm{CDCl}_{3}, 7 \mu \mathrm{~L}$ of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ${ }^{1} \mathrm{H}$ NMR.

Condition d: A 25 mL Schlenk tube was charged with 3-Int ($25 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1 equiv.), [$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ $(4 \mathrm{~mol} \%, 2.5 \mathrm{mg}), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%, 5.5 \mathrm{mg}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(14 \mathrm{mg})$ and $\mathrm{PhCl}(1.0 \mathrm{ml})$. and then the reaction was allowed to stir for 12 h at $60^{\circ} \mathrm{C}$ under N_{2}. the tube was removed from the bath, the resulting solution was filtered through a Celite filter and the solvent was removed under reduced pressure. the resulting mixture were diluted with $\mathrm{CDCl}_{3}, 7 \mu \mathrm{~L}$ of dibromomethane was added and The mixed solution was transferred to an NMR tube and the sample was analyzed by ${ }^{1} \mathrm{H}$ NMR.

2) Data analysis for the product 3aa'

${ }^{1} \mathrm{H}$ NMR of H-H tocsy

${ }^{1} \mathrm{H}$ NMR of H-H noesy

${ }^{1} \mathrm{H}$ NMR of H-H noesy

5. X-Ray Crystal Structures

ọ:

Thermal ellipsoids are set at the 50\% probability level.

Table 1 Crystal data and structure refinement for 3aa.

Reflections collected 7442
Independent reflections $\quad 3440\left[\mathrm{R}_{\text {int }}=0.0940, \mathrm{R}_{\text {sigma }}=0.1028\right]$
Data/restraints/parameters 3440/30/167
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.039$
Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0952, \mathrm{wR}_{2}=0.2361$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1390, \mathrm{wR}_{2}=0.2894$
Largest diff. peak/hole / e $\AA^{-3} 0.41 /-0.53$

Thermal ellipsoids are set at the 50% probability level.

Table 1 Crystal data and structure refinement for 7.

Identification code	$\mathrm{ZM}-2-20220413$
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3}$
Formula weight	192.22
Temperature/K	$293(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	$10.3910(3)$
b / \AA	$8.8427(3)$
c / \AA	$10.6292(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$98.559(3)$
$\gamma /{ }^{\circ}$	90
$\mathrm{Volume} / \AA^{3}$	$965.78(5)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.3219
μ / mm^{-1}	0.791

$\mathrm{F}(000)$	409.4
Crystal size $/ \mathrm{mm}^{3}$	$0.35 \times 0.25 \times 0.25$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 8.6$ to 142.44	
Index ranges	$-12 \leq \mathrm{h} \leq 12,-6 \leq \mathrm{k} \leq 10,-12 \leq 1 \leq 12$
Reflections collected	3834
Independent reflections	$1838\left[\mathrm{R}_{\text {int }}=0.0173, \mathrm{R}_{\text {sigma }}=0.0236\right]$
Data/restraints/parameters	$1838 / 0 / 143$
Goodness-of-fit on F^{2}	1.060
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0440, \mathrm{wR}_{2}=0.1194$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0502, \mathrm{wR}_{2}=0.1251$
Largest diff. peak/hole /e $\mathrm{A}-30.25 /-0.18$	

Thermal ellipsoids are set at the 50% probability level.

Table 1 Crystal data and structure refinement for 8.

Identification code	$\mathrm{ZM}-1-20220413$
Empirical formula	$\mathrm{C}_{68} \mathrm{H}_{108} \mathrm{~N}_{4} \mathrm{O}_{16}$
Formula weight	1237.58
Temperature/K	$298(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/A	$9.0611(2)$
b / \AA	$9.8268(2)$
c / \AA	$38.9367(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$93.796(2)$
$\gamma /{ }^{\circ}$	90

Volume $/ \AA^{3}$	$3459.38(12)$
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.188
μ / mm^{-1}	0.679
$\mathrm{~F}(000)$	1344.0
Crystal size $/ \mathrm{mm}^{3}$	$0.5 \times 0.5 \times 0.5$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 9.104$ to 142.95	
Index ranges	$-10 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 4,-47 \leq 1 \leq 47$
Reflections collected	14315
Independent reflections	$6581\left[\mathrm{R}_{\text {int }}=0.0408, \mathrm{R}_{\text {sigma }}=0.0573\right]$
Data/restraints/parameters	$6581 / 9 / 422$
Goodness-of-fit on F^{2}	1.055
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0838, \mathrm{wR}_{2}=0.2223$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1150, \mathrm{wR}_{2}=0.2347$
Largest diff. peak/hole /e $\AA^{-3} 0.62 /-0.51$	

Thermal ellipsoids are set at the 50% probability level.

Table 1 Crystal data and structure refinement for 4ba.

Identification code	$\mathrm{ZM}-2-20220510$
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Formula weight	323.19
Temperature/K	$293(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/ \AA	$7.18110(10)$
b/A	$21.3904(4)$

$\mathrm{c} / \AA ̊$	$9.2071(2)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$107.427(2)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{\circ}$	$1349.36(5)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.5908
μ / mm^{-1}	4.157
$\mathrm{~F}(000)$	655.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.26$ to 142.9	
Index ranges	$-6 \leq \mathrm{h} \leq 8,-25 \leq \mathrm{k} \leq 25,-11 \leq 1 \leq 11$
Reflections collected	6467
Independent reflections	$2583\left[\mathrm{R}_{\text {int }}=0.0255, \mathrm{R}_{\text {sigma }}=0.0252\right]$
Data/restraints/parameters	$2583 / 0 / 173$
Goodness-of-fit on F^{2}	1.044
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0503, \mathrm{wR}_{2}=0.1361$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0539, \mathrm{wR}_{2}=0.1403$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3} 0.64 /-1.05$	

6. References

1. (a) H. Hu, W.-H. Xu, W.-X. Kang, W. Su, R. Sun, X.-H. Wei, M. Sun,. Org. Chem. Front. 2021, 8, 4459-4465. (b) B. Song, P. Xie, Y. Li, J. Hao, L. Wang, X. Chen, Z. Xu, Ha. Quan, L. Lou, Y. Xia, K. N. Houk, W. Yang,. J. Am. Chem. Soc., 2020, 142, 9982-9992.
2. S. Morales, F. G. Guijarro. I. Alonso, J. L. G. Ruano, M. B. Cid,. ACS Catal., 2016, 6, 84-91.
3. (a) H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata,. Angew. Chem. Int. Ed., 2009, 48, 6324-6327. (b) S. E. Winterton, J. M. Ready,. Org. Lett., 2016, 18, 2608-2611.
4. (a) S. Vabatino, J. G. Rebelein, T. R. Ward,. J. Am. Chem. Soc., 2019, 141, 17048-17052. (b) S. Raghavan, P. Senapati,. J. Org. Chem., 2016, 81, 6201-6210.
5. (a) M. S. M. Pearson, D. R. Carbery,. J. Org. Chem., 2009, 74, 5320-5325. (b) A. R. H. Narayan, G. Jiménez-Osés, P. Liu, S. Negretti, W. Zhao, R. O. Ramabhadr, L. Furan, Z. Li, Y.-F. Yang, M. Gilbert, L. M. Podust, J. Montgomery, K. N. Houk, D. H. Sherman,. Nat. Chem., 2015, 7, 653-660. (c) S. Mukherjee, T. Patra, F. Glorius,. ACS Catal., 2018, 87, 5842-5846. (d) J. Cao, G. Wang, L. Gao, X. Cheng, S. Li,. Chem. Sci., 2018, 9, 3664-3671. (e) J. Yan, H. Cheo, W. Teo, X. Shi, H. Wu, S. B. Idres, L.-W. Deng, J. Wu,. J. Am. Chem. Soc., 2020, 142, 11357-11362. (f) L. -F. Tao, S. Zhang, F. Huang, W.-T. Wang, Z.-H. Luo, L. Qian, J.-Y. Liao,. Angew. Chem. Int. Ed., 2022, 61, e202202679.

7. Characterization Data

(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid $\left(20.0 \mathrm{mg}, 81 \%\right.$, m.p. $\left.81-84{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ $-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~m}, ~, 1 \mathrm{H}), 3.57$ (dd, $J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=11.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $143.0,142.2,128.1,127.2,125.2,124.0,82.0,77.4,70.1,62.4,59.7,49.2,31.9,26.9$. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 270.1465; found: 270.1457.

(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid ($15.0 \mathrm{mg}, 60 \%$, m.p. $107-109^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{ddd}, J=9.6,4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.14,140.4,127.9,127.4,125.8$, $125.2,82.5,69.3,61.9,58.7,46.8,32.8,26.3$. HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 270.1465; found: 270.1458 .

(1-(tert-butyl)-6-methyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: Ether: $\mathrm{DCM}=2: 5$, white solid (23.0 mg , 88%, m.p. $117-120^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.25$ (m, 1H), $3.49(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{ddd}, J=16.4,8.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H})$, $2.93(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,140.1,137.8,128.1,124.9,124.6,81.8,69.8,62.5,59.5,49.5$, 31.7, 26.9, 21.3. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 284.1621 ; found: 284.1618 .

(1-(tert-butyl)-6-isopropyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, yellow solid ($21.1 \mathrm{mg}, 73 \%$, m.p. $75-78{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.32(\mathrm{~m}$, $1 \mathrm{H}), 3.50(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=$ $16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=13.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}$, $9 \mathrm{H}), 1.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,142.4,140.5,125.7,124.9,121.9$, 81.9, 69.8, 62.5, 59.63 (s, 2H), 49.6, 34.1, 31.8, 26.9, 24.2, 24.1. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 312.1934; found: 312.1926.

(1-(tert-butyl)-6-phenyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=2: 1$, white solid ($21.3 \mathrm{mg}, 65 \%$, m.p. $118-120^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}$, $1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.8$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,142.3,141.4,141.3$, 128.7, 127.2, 128.1, 126.5, 125.5, 122.8, 82.0, 69.8, 62.5, 59.7, 49.6, 31.9, 27.0. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 351.1778 ; found: 346.1768 .

(1-(tert-butyl)-6-fluoro-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: DCM: Methenol $=20: 1$, colorless oil $(15.1 \mathrm{mg}, 57 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{dd}$, $J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=12.0$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$.

13C NMR (101 MHz, CDCl3) $\delta 163.1(\mathrm{~d}, \mathrm{~J}=245.8 \mathrm{~Hz}), 144.6(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 138.59(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz})$, $126.38(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}), 114.2(\mathrm{~d}, \mathrm{~J}=22.6 \mathrm{~Hz}), 110.8(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 82.0,69.4,62.2,59.8,49.8,31.9$ $\left(\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}\right.$), 26.9. ${ }^{19} \mathrm{~F} \operatorname{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.25$. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NFNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 288.1370; found: 288.1362.

(1-(tert-butyl)-6-chloro-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: DCM: Methenol $=20: 1$, white solid $\left(16.3 \mathrm{mg}, 68 \%\right.$, m.p. $\left.88-9{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (ddd, $J=16.4,8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}$, $J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H})$, 1.20 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,141.6,133.9,127.4,126.3,124.2,81.9,69.5$, 62.3, 59.8, 49.4, 31.8, 26.9. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NClNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$:304.1075; found: 304.1070.

(1-(tert-butyl)-6-methoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA $=2: 1$, yellow solid ($25.0 \mathrm{mg}, 90 \%$, m.p. $109-112^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-$ $4.32(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=16.8,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.1, 143.9, 125.9 113.6, 108.9, 81.9, 69.5, 62.4, 59.7, 55.4, 49.78, 31.9, 26.9. HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{3}, \mathrm{M}+\mathrm{Na}\right]^{+}: 300.1570$; found: 300.1577 .

(1-(tert-butyl)-6-(trifluoromethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA $=2: 1$, white solid ($17.6 \mathrm{mg}, 56 \%$, m.p. $110-112^{\circ} \mathrm{C}$); 1 H NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) δ $7.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.51$ (dd, $\mathrm{J}=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.8,1.8$
$\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $147.1,143.1,130.5(\mathrm{q}, J=32.3 \mathrm{~Hz}), 125.7,124.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.3(\mathrm{q}, J=274.0 \mathrm{~Hz}), 121.0(\mathrm{q}, J=$ 7.0 Hz), 82.1, 69.8, 62.1, 59.9, 49.3, 31.9, 26.9. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.15$ HRMS (ESI): m / z calcd. For $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NF}_{3} \mathrm{NaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 338.1338$; found: 338.1332.

Methyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole-6-carbo xylate.

Eluent: PE: EA $=4: 1$, brown oil $(27.4 \mathrm{mg}, 90 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,148.2,142.8,130.2,128.8,125.4,125.2$, 82.2, 69.9, 62.1, 60.1, 52.0, 49.4, 31.6, 26.9. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NNaO}_{4}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}: 328.1519$; found: 328.1514 .

(1-(tert-butyl)-8-methyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid ($20.4 \mathrm{mg}, 78 \%$, m.p. $80-83^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=9.6,7 ., 3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{dd}, J=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H})$, $1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,140.0,136.1,129.2,128.3,121.4,82.2,71.2,63.2$, 61.1, 48.0, 32.1, 27.7, 19.6. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 284.1621$; found: 284.1615.

(8-bromo-1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid ($21.8 \mathrm{mg}, 68 \%$, m.p. $106-109{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.61(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,140.8,131.9,129.8,122.9,120.9$, 82.0, 72.3, 62.9, 61.6, 48.0, 32.5, 28.0. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NBrNaO}_{2}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}: 348.0570$; found: 348.0570 .

(1-(tert-butyl)-7-methyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA $=4: 1$, white solid ($19.5 \mathrm{mg}, 73 \%$, m.p. $130-133{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}$, $1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}$, $1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,139.1,136.8,129.0,125.6,123.7,82.0,70.1$, 62.6, 59.6, 49.2, 31.5, 27.1, 21.3. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$:284.1621; found: 284.1612.

(7-bromo-1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid ($24.0 \mathrm{mg}, 74 \%$, m.p. $133-135^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.38(\mathrm{~m}$, $1 \mathrm{H}), 3.63-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=11.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7$, 141.2, 131.2, 128.4, 125.5, 120.9, 82.0, 69.9, 62.3, 59.7, 49.4, 31.6, 27.0. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NBrNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}: 348.0570$; found: 348.0561.

(1-(tert-butyl)-5,7-dichloro-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid ($17.9 \mathrm{mg}, 57 \%$, m.p. $107-109{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.15(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.4$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4=139.2,133.6,130.6$,
128.0, 124.0, 82.1, 70.6, 62.0, 60.1, 48.8, 30.9, 26.9. HRMS (ESI): m/z calcd. For [$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NCl}_{2} \mathrm{NaO}_{2}$, $\mathrm{M}+\mathrm{Na}]^{+}: 338.0685$; found: 338.0678 .

(1-(tert-butyl)-5,6,7-trimethoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA $=1: 2$, orange solid ($20.0 \mathrm{mg}, 59 \%$, m.p. $93-96{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.54(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.54$ (dd, $J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{dd}, J=16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,148.8,141.7,138.6,126.7$, 103.6, 82.2, 70.6, 62.5, 60.9, 60.4, 59.7, 56.0, 49.2, 28.6, 26.9. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{5}, \mathrm{M}+\mathrm{Na}\right]^{+}: 360.1781$; found: 360.1777 .

(1-(tert-butyl)-5,6,8-trimethoxy-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA $=1: 2$, yellow solid ($28.0 \mathrm{mg}, 83 \%$, m.p. $111-114{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.25(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=8.8,6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $17.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=17.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2$, $152.9,138.3,137.4,122.7,96.6,81.9,69.4,62.8,60.5,60.4,56.5,55.2,49.1,29.3,27.3$. HRMS (ESI): m / z calcd. For $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaO}_{5}, \mathrm{M}+\mathrm{Na}\right]^{+}: 360.1781$; found: 360.1780 .

(10-(tert-butyl)-7a,8,10,10a-tetrahydro-7H-benzo[6,7]indeno[1,2-c]isoxazol-8-yl)methanol.

Eluent: PE: EA $=4: 1$, white solid ($23.1 \mathrm{mg}, 78 \%$, m.p. $86-88{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.02(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H})$,
$1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,136.2,133.6,130.9,129.4,128.5,126.1,124.9$, $124.2,122.3,82.4,71.8,63.2,61.2,48.1,32.7,27.9$. HRMS (ESI): m/z calcd. For [$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{2}$, $\mathrm{M}+\mathrm{Na}]^{+} 320.1621$; found: 320.1619.

(1-(tert-butyl)-3,3a,4,10b-tetrahydro-1H-benzo[5,6]indeno[1,2-c]isoxazol-3-yl)methanol.

Eluent: PE: EA = 4:1, yellow solid ($17.0 \mathrm{mg}, 57 \%$, m.p. $117-119^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.78-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H})$, $3.55-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-2.99(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,140.8,133.9,133.3,128.2,127.4,125.6,125.1,124.0,122.2,81.9$, $69.5,62.5,59.8,49.7,31.5,27.0$. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+} 320.1621$; found: 320.1610 .

3sa
(1-isopropyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA $=2: 1$, white solid ($20.1 \mathrm{mg}, 86 \%$, m.p. $78-81{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ $-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{ddd}, J=8.4$, $6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=16.4$, $8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=16.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,142.1,128.2,127.1,125.1,124.1$, $78.7,74.1,61.9,54.1,46.6,31.9,21.3,20.1$. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$ 256.1308; found: 256.1305 .

3ta
(1-benzyl-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)methanol

Eluent: PE: EA $=4: 1$, colorless oil ($23.4 \mathrm{mg}, 83 \%$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{~d}$,
$J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{ddd}, J=8.4,6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72$ (dd, $J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $16.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,141.1,137.1,129.2,128.5,128.4$, 127.6, 126.9, 125.1, 124.2, 79.0, 76.1, 62.2, 61.3 46.6, 31.9. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+} 304.1308$ found: 304.1301.

1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-6-yl-5-(2,5-dimet hylphenoxy)-2,2-dimethylpentanoate

Eluent: PE: EA $=4: 1$, white solid ($35.0 \mathrm{mg}, 65 \%$, m.p. $78-81{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=8.4,7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.52(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{qd}$, $J=16.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H})$, $1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,156.9,151.2,143.7,136.5$), 130.3, 125.9, 123.6, $120.7,120.4,117.2,112.0,81.9,69.6,67.8,62.4,59.7,49.6,42.4,37.2,31.8,26.9,25.3,25.2,25.1$, 21.4, 15.8. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NO}_{5}, \mathrm{M}+\mathrm{H}\right]^{+}$496.3057, found: 496.3070.

4-((E)-3,5-dimethoxystyryl)phenyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-ind eno[1,2-c]isoxazole-6-carboxylate

Eluent: PE: EA $=1: 1$, yellow solid ($15.0 \mathrm{mg}, 28 \%$, m.p. $111-114{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=8.4,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.61-3.44(\mathrm{~m}$, 2 H), 3.36 (dd, $J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=16.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (dd, $J=17.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.74(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,161.0,150.5,149.5,142.9,139.3$, $134.9,129.4,128.9,128.3,127.5,125.9,125.4,121.9,104.6,100.1,82.0,69.9,62.3,59.8,55.4,49.3$,
31.8, 27.0. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{NO}_{6}, \mathrm{M}+\mathrm{H}\right]^{+} 530.2537$, found: 530.2525.

2-methoxy-4-(3-oxobutyl)phenyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-inden o[1,2-c]isoxazole-6-carboxylate
${ }^{1}$ Eluent: DCM: Methenol $=20: 1$, yellow oil $(15.0 \mathrm{mg}, 28 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}$, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.7, 164.9, 151.1, 149.2, 142.8, 140.0, 138.3, 129.6, 129.4, 126.1, 125.3, 122.8, 120.4, 112.8, 81.9, 69.9, 62.3, 59.8, 55.9, 49.3, 45.2, 31.7, 30.1, 29.6, 27.0. HRMS (ESI): m/z calcd. For [C $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NNaO}_{6}$, $\mathrm{M}+\mathrm{Na}]^{+} 490.2200$, found: 490.2194 .

(3S,8S,9S,10R,13S,14S,17S)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a]phenanthren-3-yl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole-6-carboxylate

Eluent: PE: EA $=2: 1$, white solid $(42.0 \mathrm{mg}, 72 \%)$; Following the general procedure, the product (42.0 mg) was obtained in 72% yield as an inseparable mixture of 2 diastereomers ($1: 1$, estimated by HPLC with a Daicel Chiralpak AD-H, n-hexane $/ 2$-propanol $=80 / 20, \mathrm{v}=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{1}=6.8$ $\mathrm{min}, \mathrm{t}_{2}=12.7 \mathrm{~min}$; signals of the 2 isomers cannot be distinguished by $\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ddd}, J=16.2,9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.40(\mathrm{~m}$, $2 \mathrm{H}), 3.34(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{dt}, J=13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 5 \mathrm{H})$, $1.47-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6,166.1,142.5,139.7,130.8,128.8,125.3,125.1,122.4,82.0,74.4$, $69.9,63.7,62.3,59.8,56.8,49.9,49.3,44.0,38.8,38.1,37.1,36.7,31.9,31.8,31.7,31.6,27.8,27.0$, 24.5, 22.8, 21.0, 19.4, 13.2. HRMS (ESI): m / z calcd. For $\left[\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{NO}_{5}, \mathrm{M}+\mathrm{H}\right]^{+} 590.3840$, found: 590.3850 .

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	6.877	1539407	79606	51.344	51.344
2	12.737	1458817	43785	48.656	48.656
Total		2998223	123391		100.000

1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-6-yl-(2R)-2-(4-is obutylphenyl)propanoate

Eluent: PE: EA $=2: 1$, white solid $(21.0 \mathrm{mg}, 46 \%)$; Following the general procedure, the product $(21.0$ mg) was obtained in 46% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by ${ }^{1} \mathrm{H}$ NMR). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.65(\mathrm{~m}$, $2 \mathrm{H}), 4.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{ddd}, J=11.6,5.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dt}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.41,173.38,151.01,143.70,140.79,140.59,140.57,137.29,137.26,129.51$, $127.22,125.83,120.43,120.33,117.11,117.06,81.9,69.54,62.39,59.68,49.65,49.61,45.27,45.25$, $45.06,31.84,30.19,26.96,22.4,18.57$. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$ 474.2615, found: 474.2607.

(8S,9R,13R,14R)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phena nthren-3-yl-(3R)-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol e-6-carboxylate

Eluent: PE: EA = 1:1, white solid ($39.4 \mathrm{mg}, 76 \%$); Following the general procedure, the product (39.4 mg) was obtained in 76% yield as an inseparable mixture of 2 diastereomers ($1: 1$, estimated by HPLC with a Daicel Chiralpak AD-H, n-hexane $/ 2$-propanol $=80 / 20, \mathrm{v}=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{1}=17.3$ $\mathrm{min}, \mathrm{t}_{2}=31.3 \mathrm{~min}$; signals of the 2 isomers cannot be distinguished by ${ }^{1} \mathrm{H} \mathrm{NMR}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.5-4.4(\mathrm{~m}, 1 \mathrm{H}), 3.67-$ $3.50(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.87(\mathrm{~m}$, 2H), $2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.92$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 220.5,165.6,148.9,143.0,138.2,137.5,129.7,129.5,126.5,126.0,125.5,121.8,119.0,82.1$, $70.1,62.4,60.0,50.5,49.4,48.1,44.3,38.1,35.9,31.9,31.7,29.5,27.1,26.5,25.9,21.7,13.9$. HRMS (ESI): m/z calcd. For [$\left.\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{5}, \mathrm{M}+\mathrm{H}\right]^{+} 544.3057$, found: 544.3052.

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	17.366	3532465	80603	49.181	49.181
2	31.311	3650112	46036	50.819	50.819
Total		7182577	126638		100.000

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl-1-(tert-butyl)-3-(hydroxymethyl)-3,3a,4,8b-tetrahydr o-1H-indeno[1,2-c]isoxazole-6-carboxylate

Eluent: DCM: Methanol = 20:1, white solid ($33.5 \mathrm{mg}, 78 \%$); Following the general procedure, the product (33.5 mg) was obtained in 78% yield as an inseparable mixture of 2 diastereomers ($1: 1$, estimated by 1 H NMR $).{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H})$, $3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=16.8,7.8,2.24 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dt}, J=16.8,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-$ $1.44(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.11-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.82(\mathrm{~m}, 6 \mathrm{H}), 0.72-0.68(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.18,166.15,148.33,148.26,142.57,142.54,130.94,130.87,128.88,128.79$, $125.33,125.31,125.09,125.06,81.94,74.82,69.89,62.38,59.77,49.37,49.30,47.34,47.39,41.01$, $40.97,34.36,31.76,31.71,31.46,27.00,26.97,26.60,26.52,23.78,23.70,22.03,20.76,20.71,16.62$, 16.53. HRMS (ESI): m / z calcd. For $\left[\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{NO}_{5}, \mathrm{M}+\mathrm{H}\right]^{+} 430.2952$, found: 430.2938.

(R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl-1-(tert-butyl)-3-(hydroxymet hyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole-6-carboxylate

Eluent: PE: EA $=3: 1$, white solid $(47.0 \mathrm{mg}, 70 \%)$; Following the general procedure, the product (47.0 mg) was obtained in 70% yield as an inseparable mixture of 2 diastereomers (1:1, estimated by HPLC with a Daicel Chiralpak AD-H, n-hexane/2-propanol $=90 / 10, \mathrm{v}=0.8 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{1}=3.7$ $\min , \mathrm{t}_{2}=4.4 \mathrm{~min}$; signals of the 2 isomers cannot be distinguished by 1 H NMR). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.5-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.20-2.95(\mathrm{dd}, J$ $=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.63-$ $1.49(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 7 \mathrm{H}), 1.17-1.03(\mathrm{~m}, 6 \mathrm{H})$, $0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,149.9,142.9,142.8,130.0,129.5$, $127.5,125.9,125.4,121.4,121.1,119.3,82.1,76.2,70.1,62.4,59.9,49.4,40.3,40.2,39.5,37.6,37.4$, $32.9,32.8,31.9,31.2,28.1,27.1,24.9,24.6,24.4,24.3,22.8,22.7,22.6,21.1,19.8,19.7,16.2$ HRMS (ESI): m / z calcd. For $\left[\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{NO}_{5}, \mathrm{M}+\mathrm{H}\right]^{+}$676.4936, found: 676.4935.

<Peak Table>
Detector A 254 nm

Peak\#	Ret. Time	Area	Height	Conc.	Area $\%$
1	3.751	3565131	191750	51.645	51.645
2	4.448	3338006	181596	48.355	48.355
Total		6903136	373346		100.000

10-(hydroxymethyl)-2,3,4a,9,9a,10-hexahydro-1H-indeno[1,2-c]pyrazolo[1,2-a]pyrazol-1-one

Eluent: DCM: Methanol $=20: 1$, white solid ($18.5 \mathrm{mg}, 76 \%$, m.p. $124-126^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dd, $J=12.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=16.0,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=16.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=16.0,8.4,2.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,142.3,139.9,129.1,127.4,125.6,124.8,74.9,64.4$, 62.6, 52.7, 48.1, 36.3, 36.2. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}\right]^{+} 267.1104$, found: 267.1100.

4ba

7-bromo-10-(hydroxymethyl)-2,3,4a,9,9a,10-hexahydro-1H-indeno[1,2-c]pyrazolo[1,2-a]pyrazol-1 -one

Eluent: DCM: Methanol = 20:1, brown solid ($22.6 \mathrm{mg}, 70 \%$, m.p. $178-180^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ $-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.01(\mathrm{~m}$, 3H), $2.93-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=16.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,144.6$,
139.2, 130.6, 128.7, 126.3, 123.1, 74.2, 64.2, 62.4, 52.7, 48.2, 36.3, 35.9. HRMS (ESI): m/z calcd. For $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$345.0209, found: 345.0204.

2-(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)ethan-1-ol

Eluent: PE: EA = 2:1, yellow oil ($8.0 \mathrm{mg}, 31 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{dt}, J=8.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{ddd}, J=10.0,7.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddd}, J=$ $16.4,9.2,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40$ (ddd, $J=15.6,7.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (dd, J $=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.4,142.5,127.9,127.0,125.3,124.2,80.9,69.4,61.6,59.6,51.7,33.4,32.0,27.0$. HRMS (ESI): m/z calcd. For [$\left.\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}, \mathrm{M}+\mathrm{Na}\right]^{+}$284.1621, found: 284.1611.

$3 a c$

N -(2-(1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazol-3-yl)phenyl)-4-methylbenzene sulfonamide

Eluent: PE: EA = 6:1, yellow oil ($28.2 \mathrm{mg}, 61 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.06(\mathrm{~m}$, $1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.27$ ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4,140.4,137.1,137.0,129.4,129.3,128.0,127.7,127.6$, 127.3, 126.9, 126.4, 125.9, 125.3, 124.3, 121.7, 81.7, 69.0, 58.6, 49.2, 32.3, 26.4, 21.5. HRMS (ESI): m / z calcd. For $\left[\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}+\mathrm{H}\right]^{+} 463.2050$, found: 463.2050.

1-(tert-butyl)-3,3a,4,8b-tetrahydro-1H-indeno[1,2-c]isoxazole

Eluent: PE: EA = 4:1, yellow oil ($15.0 \mathrm{mg}, 69 \%$) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.19-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-$
$3.17(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=16.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,140.9,127.9,127.4,125.8,125.0,73.7,68.9,58.9,47.2,34.6,26.7$. HRMS (ESI): m/z calcd. For [$\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}, \mathrm{M}+\mathrm{H}\right]^{+} 281.1539$, found: 281.1539

8. NMR Spectrum and Mass Spectrogr

[^1]

$\begin{array}{llllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{y}{9} 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
-i/
$\stackrel{\sim}{\infty}$
S-3caa

$\underset{\sim}{\underset{\sim}{*}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{n}} \\ & \stackrel{y}{n} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \end{aligned}$	N్ㅜㅄ		$\stackrel{N}{\underset{N}{i}}$	¢	$\stackrel{n}{\dot{j}}$

（
嘸

$\stackrel{\sim}{\sim}$

$\stackrel{\infty}{\infty} \underset{\infty}{\infty} \underset{\sim}{\circ}$

3ba
OH

[^2]

3ha

$$
\underset{\text { ì }}{\text { N }}
$$

+

3oa

3ta

3ta

180	170	160	150	140	130	120	110	100	$\underset{f 1}{90}(\mathrm{ppm})$	80	70	60	50	40	30	20	10

$\begin{array}{lllllllllllllllllllllllllllllll}10 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]

[^4]

3ad

ジ

事

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name $G: \backslash \mathrm{ZM}$ MS $\backslash 0412$ _RB4_01_12731.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name $04 \overline{12}$ Instrumen compact
$\begin{array}{ll}\text { Instrumen compact } & 8255754.2017 \\ & 6\end{array}$
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS $\backslash 0412$ _RA4_01_12714.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name 0412
Acquisition D 2022-04-13 9:35:39

Sample Name 041
Operator Demo User
Instrumen compact 8255754.2017
Comment

to Identify Chemistry Erocess Colilirate Annotation Method View Iools Cempass Window Help

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412$ _RC4_01_12739.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name $04 \overline{12} \quad$ Instrumen compact 8255754.2017 $\begin{array}{ll}\text { Instrumen compact } & 825\end{array}$
Comment

Mass Spectrum SmartFormula Report

Analysis Info	Acquisition D 2022-04-13 $12: 24: 01$
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412 _$RB8_-01_12735.d	
Method	LC_NO UV_P50-1500_6MIN.m
Sample Name 0412	Operator Demo User
Comment	
Instrumen compact	8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-04-13 11:36:44
Analysis Name G: \ZM MS \0412_RB2_01_12729.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name $0412 \quad$ Instrumen compact $\quad 8255754.2017$
Comment

Mass Spectrum SmartFormula Report

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS \0412_RB1_01_12728.d
Method LC NO UV P50-1500 6MIN.m
Sample Name 0412

Acquisition D 2022-04-13 11:29:23

Operator Demo User
Instrumen compact
8255754.2017

6

Comment

Acquisition Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas	$8.01 / \mathrm{min}$
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Seffeharging	2000 V	Set Divert Valve	Waste
		Yełtegeona	0 nA	Set APCI Heater	$0{ }^{\circ} \mathrm{C}$

Meas. m / z \# Ion Formula m / z err [ppm] mSigma \# mSigma Score rdb e; $¥$ Conf N-Rule

Identify Chemistry Process Calibrate Annotation Method View Iools Compass Window Help

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412$ _RC6_01_12741.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0412 Instrumen compact 8255754.2017
Comment

ute Iderity Shemisty Process Caribrate Annotation Method Xiew Iools Cemposs Window Help

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412$ RC3_01_12738.d
Method LC_NO UV_P50-1500_6MIN.m
Instrumen compact 8255754.201 6
Comment

to Identify Shemistry Erocess Calibrato Annotation Method View Iools Compass Window Help

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412$ RC8_01_12743.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name 0412

Acquisition D 2022-04-13 13:27:19

Operator Demo User
Instrumen compact
8255754.2017

6

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS $\backslash 0617$ _GD1_01_14506.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
$\begin{array}{llll}\text { Sample Name } 06 \overline{1} 7 & \text { Instrumen compact } & 8255754.2017 \\ 6\end{array}$
Comment

Acquisition Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer
Focus	Not active	Set Capillary	4000 V	Set Dry Heater
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Qffseharging	2000 V	Set Divert Valve Waste
		Ge\#tageona	0 nA	Set APCI Heater $0{ }^{\circ} \mathrm{C}$

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-04-13 11:14:10
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412$ RA7_01_12726.d
Method LC_NO UV_P50-1500_6MIN.m
Operator Demo User Instrumen compact $\quad 8255754.2017$

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS \0412_RC1_01_12736.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name 0412

Acquisition D 2022-04-13 12:31:22

Operator Demo User Instrumen compact 8255754.2017 6

Comment

Mass Spectrum SmartFormula Report

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS \0621_GC8_01_14599.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0621 Instrumen compact 8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0621$ _GC7_01_14601.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0621
$\begin{array}{ll}\text { Instrumen compact } & 8255754.2017 \\ & 6\end{array}$
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0617$ GA8_01_14489.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0617 Instrumen compact 8255754.2017
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0617$ _GB4_01_14493.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0617 Instrumen compact Instrumen compact 8255754.2017 6
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS $\backslash 0617$ _GB3_01_14492.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name $06 \overline{17}$
Comment
Comment

Acquisition Paramet					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heater	$50{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas	$4.0 \mathrm{l} / \mathrm{min}$
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Qffseharging	2000 V	Set Divert Valve	Waste
		Ge\#tageona	0 nA	Set APCI Heater	$0{ }^{\circ} \mathrm{C}$

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-07-21 16:28:45
Analysis Name g: \Desktop\0718_BE3_01_15377.d
Method LC_NO UV_P50-1500_30MIN.m Operator Demo User
Sample Name $0718 \quad$ Instrumen compact 8255754.2017
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: $\backslash \mathrm{ZM}$ MS $\backslash 0412$ RD2_01 12745.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name 0412

Acquisition D 2022-04-13 13:43:33

Operator Demo User
Instrumen compact
8255754.2017

6

Comment


```
Idensify Shemitry Process Calibrate Annotation Method Yiew Lools Cemposs Weindow Help
```


Mass Spectrum SmartFormula Report

```
Analysis Info Acquisition D 2022-06-24 16:46:14
Analysis NameG:\ZM MS\0621_GD1_01_14602.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name 0621 Instrumen compact 8255754.2017
```

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-06-20 15:07:38
Analysis Name G: \ZM MS \0617_GD3_01_14508.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
$\begin{array}{lll}\text { Sample Name } 0617 & \text { Instrumen compact } & 8255754.2017 \\ 6\end{array}$
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS \0504_GA5_01_13319.d
Method LC_NO UV_P50-1500_20MIN.m
Sample Name $05 \overline{0} 4$ Operator Demo User

Comment

Mass Spectrum SmartFormula Report

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-05-05 22:45:50
Analysis Name G: \ZM MS $\backslash 0504$ RE8_01_13314.d
Method LC_NO UV_P50-1500_20MIN.m
Operator Demo User
Sample Name 0504 Instrumen compact

```
8255754.2017
```

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS \0617_GC4_01_14501.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name $06 \overline{17}$

Acquisition D 2022-06-20 14:14:05

Operator Demo User
$\begin{array}{ll}\text { Instrumen compact } & 8255754.2017 \\ & 6\end{array}$

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS \0504_GA1_01_13315.d
Method LC_NO UV_P50-1500_20MIN.m
Sample Name $05 \overline{0} 4$

Acquisition D 2022-05-05 23:07:05

Operator Demo User Instrumen compact 8255754.2017 6

Comment

Mass Spectrum SmartFormula Report

Analysis Info

Acquisition D 2022-06-20 13:59:09
Analysis Name G: \ZM MS $\backslash 0617$ _GC2_01_14499.d
Method LC_NO UV_P50-1500_6MIN.m
Operator Demo User
Sample Name 0617 Instrumen compact
Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS $\backslash 0504$ _GA3_01_13317.d
Method LC_NO UV_P50-1500_20MIN.m Operator Demo User
Sample Name 0504
Acquisition D 2022-05-05 23:49:38

Comment
Instrumen compact

Acquisition Paramet

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS $\backslash 0617$ _GC3_01_14500.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name $06 \overline{1} 7 \quad$ Operator Demo User
Comment

Mass Spectrum SmartFormula Report

```
Analysis Info Acquisition D 2022-07-21 17:00:03
Analysis Nameg:\Desktop\0718_BE4_01_15378.d
Method LC_NO UV_P50-1500_30MIN.m Operator Demo User
Sample Name 0718 Instrumen compact 8255754.2017
Comment
```

Acquisition Paramet				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer
Focus	Not active	Set Capillary	4000 V	Set Dry Heater $200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate	-500 V	Set Dry Gas
Scan End	$1500 \mathrm{~m} / \mathrm{z}$	Gefseharging	2000 V	Set Divert Valve Waste
		Gettageona	0 nA	Set APCI Heater $0{ }^{\circ} \mathrm{C}$

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name G: \ZM MS $\backslash 0617$ _GC6_01_14503.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name $06 \overline{17}$
Comment

Mass Spectrum SmartFormula Report

te Idenity Chemistry Process Calibrate Annotaion Method View Iools Compass Window Help

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-06-20 14:37:59
Analysis Name G:\ZM MS \0617 GC7 $0114504 . d$
Method LC_NO UV_P50-1500_6MIN.m
Operator Demo User
Sample Name 061
Instrumen compact
8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name $:$: ZM MS $\backslash 0412 _$RD7_01_12750.d
Method LC_NO UV_P50-1500_6MIN.m
Sample Name 0412

Acquisition D 2022-04-13 14:23:11
Operator Demo User
Instrumen compact 8255754.2017

Comment

Mass Spectrum SmartFormula Report

Analysis Info
Acquisition D 2022-06-24 17:01:13
Analysis Name G: \ZM MS \0621_GD3_01_14604.d
Method LC_NO UV_P50-1500_6MIN.m Operator Demo User
Sample Name $06 \overline{2} 1$ Instrumen compact
Comment

[^0]: ${ }^{\text {a }}$ Reaction conditions: $4(0.1 \mathrm{mmol}), 2(0.15 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%)$, additive $(0.05$ $\mathrm{mmol})$, solvent $(1.0 \mathrm{~mL}), 24 \mathrm{~h}$, under $\mathrm{Ar},{ }^{b}$ Isolated yields. ${ }^{c} \mathrm{NaOAc}(0.1 \mathrm{mmol})$.

[^1]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ 11(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^2]:

[^3]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{100}(\mathrm{ppm}) & 90\end{array}$

[^4]: $\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ f 1(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$

