Supporting information

Widely Applicable (Radio)dihalogenation of Alkynes and Alkenes using Two

Different Nucleophilic Alkali Metal Halides

Shiwen Liu, ‡^{a, b} Yueying Zhang, ‡^a Kehao Gong,^a Xiaojun Zeng, *^c Fang Xie, *^d Bo Xu, *^e Junbin Han*^a

^a Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China

^b College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, China

^c College of Chemistry, Nanchang University, Nanchang, 330031, China

^d PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China

^e Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China

Table of Contents

1.	General	2
2.	Experimental Procedure and Characterization Data	2
3.	Radio-synthesis of ¹²⁵ I-labeled alkenyl ioidide	5
4.	Characterization data	8
5.	Radio-HPLC analysis and characterization for ¹²⁵ I-labeled alkene	25
6.	Copies of NMR Spectra	36
7.	X-ray crystallographic data of 3q	134
8.	Calculated geometries of intermediates	142
9.	References	149

1.General

1.1 Chemistry-General procedures and materials information

Commercial reagents and solvents were obtained from the commercial providers and used without further purification. The products were purified using a commercial flash chromatography system or a regular glass column. TLC was developed on silica gel 60 F254 glass plates. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker NMR apparatus. Or alternatively, ¹H NMR chemical shifts were referenced to tetramethylsilane signal (0 ppm). The chemical shifts are reported in δ (ppm) values (¹H and ¹³C NMR relative to CHCl₃, δ 7.26 ppm for ¹H NMR, and δ 77.0 ppm for ¹³C NMR). Multiplicities are recorded by s (singlet), d (doublet of doublets), dtd (doublet of triplet of doublets), t (triplet), td (triplet of doublets), m (multiplet) and br (broad), q (quartet). Coupling constants (J), are reported in Hertz (Hz). GC analyses were performed using a Shimadzu GC-2010-ultra gas chromatography-mass spectrometry instrument equipped with a Shimadzu AOC-20s autosampler.

2. Experimental Procedure and Characterization Data

2.1 Preparation of compound 1

All alkynes and alkenes were purchased from commercial providers unless otherwise noted below.

Procedure for the synthesis of compound 1ab, 1ac

Compound **1ab** and **1ac** were prepared according to the referenced literature.¹ To a suspension of aryl iodides (4.02 mmol), Pd(PPh₃)₂Cl₂ (0.120 mmol, 84.3 mg), CuI (0.240 mmol, 45.7 mg) and Et₃N (2.24 mL, 16.1 mmol) in DMF (6.8 mL) was added terminal alkynes (4.06 mmol). After stirring at 50 °C for 12 h, the reaction mixture was diluted with AcOEt and H₂O. The organic layer was washed with H₂O three times, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluant: petroleum ether/ethyl acetate).

Procedure for the synthesis of the compound 1ag

Compound **1ag** was prepared according to the referenced literature,² and the compounds' spectra data are in agreement with the reports.

Procedure for the synthesis of compound 1ah, 1ai, 1aj

Compounds **1ah**, **1ai**, **1aj** were prepared according to the referenced literature.³ To a solution of alcohol (10 mmol) and acid (12 mmol) in DCM (20 mL) at 0 °C, DCC (15 mmol, 15 mL of a 1 M solution in DCM) and DMAP (5 mmol, 611 mg) was added successively. The mixture was warmed to rt and stirred for 20 h. The suspension was filtered, and the solid was washed with DCM. The combined filtrate was evaporated, and the residue was purified by column chromatography on silica gel.

Procedure for the synthesis of 1bi

Compound **1bi** was prepared according to the referenced literature,⁴ and the compounds' spectra data agree with the reports.

Procedure for the synthesis of 1bj

To an oven-dried 100 mL flask, thionyl chloride (2.23 g, 19 mmol) was added dropwise to a solution of *N*-Boc-L-propargylglycine (1.0 g, 2.35 mmol) in ethanol (45 mL), and the mixture was stirred at room temperature for 14 hours. The reaction mixture was evaporated in vacuo, and the residue was dissolved in dichloromethane and washed with 1 M NaHCO₃ solution and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the intermediate compound **S1-1bj**(628 mg, 95%) as a yellow oil.

To a solution of **S1-1bj** compound in DCM(25 mL) were added diethyl (*S*)-2-isocyanatopentanedioate(1.03 mg, 4.48 mmol) and Triethylamine(3.68 mL) at room temperature. The reaction mixture was stirred at room temperature for 24 hours. Then the mixture was poured into a saturated aqueous solution of NH_4Cl (150 mL) and extracted by dichloromethane (150 mL). The organic layer was washed with brine, dried with MgSO₄, then concentrated under reduced pressure. The crude product was purified by chromatography on silica gel to afford compound **1bj** as a white solid (1.29 g, 78%).

Procedure for the synthesis of 1bl

Compound **1bl** was prepared with two procedures according to the referenced literature,⁵ and the compounds' spectra data are in agreement with the reports.

Procedure for the synthesis of 1bm

To an oven-dried 500 mL flask, 2-Chloro-3-(Trifluoromethyl) Benzylamine (1.68 g, 8.0 mmol), 2-Pyrrolidone-5-carboxylic acid (1.03 g, 8.0 mmol), DIEA (1.92 g, 10.0 mmol), HATU (3.80 g, 10.0 mmol) and CH₃CN (150 mL) were added sequentially and stirred at rt overnight. The reaction mixture was washed with HCl and NaHCO₃ solution. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the intermediate compound **S1-1bm**(1.5 g, 60%) as a white solid⁶.

To a solution of the **S1-1bm** in THF(15 mL) were added LiHMDS (4.5 mL), 3-Bromopropyne (714 mg, 6 mmol) at 0 °C. The reaction mixture was gradually warmed to room temperature and was stirred overnight. The aqueous solution was extracted with EtOAc (3×25 mL), the organic layer washed with saturated NaCl solution (3×30 mL), dried with MgSO₄, and evaporated. The crude product was purified by chromatography on silica gel to afford compound **1bm** as a white solid (210 mg, 20%).

2.2 Preparation of iodochlorination of alkynes 3 or 4

Lithium iodide (0.24 mmol, 1.2 equiv), lithium chloride (0.24 mmol, 1.2 equiv) and alkynes (0.2 mmol) were added to a dried reaction vial equipped with a magnetic stir bar. Acetic acid (0.5 mL), DCM (0.25 mL) with or without HFIP (0.25 mL) were added, and the mixture was cooled to 0 °C. Then *m*CPBA (0.24 mmol, 85%, 1.2 equiv) was added into the mixture and stirred for 2 h under air at 0 °C. After the reaction was completed, the

saturated sodium thiosulfate solution was added into the mixture to quench the reaction (remove excess oxidants). The reaction mixture was extracted with DCM (15 mL×2). The combined organic layers were washed with brine, dried over Na_2SO_4 , and then the excess solvent was removed under reduced pressure, the crude product was further purified by silica gel column chromatography to provide the corresponding product.

2.3 Preparation of iodobromination of alkenes 5

Lithium iodide (0.24 mmol, 32 mg, 1.2 equiv), lithium chloride (0.24 mmol, 10 mg, 1.2 equiv) were added to a dried reaction vial equipped with a magnetic stir bar. Acetic acid (0.5 mL), DCM (0.25 mL) were added, and the mixture was cooled to 0 °C. Then *m*CPBA (0.24 mmol, 48 mg, 85%, 1.2 equiv) was added to the mixture. After 10 min, 4-fluorostyrene (0.2 mmol, 24 mg) was introduced and stirred for 2 h under air at 0 °C. After the reaction was completed, the saturated sodium thiosulfate solution was added to the mixture to quench the reaction (remove excess oxidants). The reaction mixture was extracted with DCM (15 mL×2). The combined organic layers were washed with brine, dried over Na₂SO₄, and then the excess solvent was removed under reduced pressure; the residue was purified by silica gel column chromatography to provide the final products **5a**.

3. Radio-synthesis of ¹²⁵I-labeled alkenyl ioidide

3.1 General

Sodium[¹²⁵I] iodide was purchased from HTA Co., Ltd. as none carrier added [¹²⁵I]sodium iodide in 1×10^{-5} M NaOH. The crude radiolabelled product purification was performed by HPLC on UltiMate 3000 system (Thermo Fisher Scientific, USA) equipped with a Bioscan Flow-Count radio-HPLC detector under the following conditions: Agilent Eclipse XDB-C18, 5 µm, 4.6 × 250 mm, 75% acetonitrile in ammonium formate buffer (0.1 M, pH = 4.5) as mobile phase, the flow rate at 1.0 mL/min, UV wavelength at 254 and 220 nm. Glass backed thin layer chromatography (TLC) plates purchased from Merck coated with silica gel 60 F₂₅₄ were used for radio-TLC analysis. Radio-TLC analyses were carried out on a Bioscan Mini-Scan TLC Scanner (Eckert & Ziegler). The data were recorded and processed by Chromatography Data System (Thermo Fisher Scientific, USA) for determination of radiochemical conversion. The activities of [¹²⁵I] radiolabeled samples were determined using a radioisotope dose calibrator CRC-55tR (Capintee Inc.).

3.2 Radioiodination condition screen

Table S1. Optimization of Radioiodination condition

	LiCl, Na ¹²⁵ I, <i>m</i> -CPBA						
Eatar	1a				3 	a Time/min	
	ΠΙΟΓΒΑ/μΠΙΟΙ	DCIVI/µL	ACOH/µL	ΠΓΙΓ/μL	Temp/ C	1 11110/111111	KC 1 / 70
1	12	50	150	0	60	30	9
2	12	50	150	0	60	120	18
3	12	50	150	0	60	300	23
4	12	50	150	0	80	30	83
5	12	50	150	0	80	40	79
6	12	50	150	0	80	120	77
7	6	50	150	0	80	30	63
8	24	50	150	0	80	30	71
9	12	50	100	50	80	30	54
10	12	100	50	50	80	30	11

3.3 General procedure for the radio-iodization

$$R^{1} = R^{2} \xrightarrow{\text{LiCl, Na}^{125}\text{I, }m\text{-CPBA}} R^{1} \xrightarrow{\text{Cl}} R^{2}$$

$$R^{1} \xrightarrow{\text{AcOH/DCM}(3:1), 80 °C, 30 min} R^{1} \xrightarrow{\text{Cl}} R^{2}$$

$$3$$

Alkynes 1 (25 µmol) and lithium chloride (2 mg) were added to a 1.5 mL microcentrifuge tube, followed by the addition of acetic acid (100 µL), DCM (50 µL), and 3 - 9 MBq of Na¹²⁵I in 2-5 µL aqueous solution. Finally, 12 µmol *m*-CPBA in 50 µL acetic acid was added to the mixture, and the reaction was kept at 80 °C for 30 min. The reaction was quenched by the addition of 10 mol% sodium thiosulfate (50 µL) and MeCN (50 µL). About 100 µL reaction mixture was analyzed by radio-HPLC to confirm the identity of the radiolabeled compound. The reaction mixture was eluted with acetonitrile and ammonium formate buffer (0.1 M, pH = 4.5), and the flow rate was 1.0 mL/min. Notedly, UV and radioactivity detectors were connected in series, giving a time delay of about 0.5-1.0 min. ¹²⁵I-labeled compounds were identified by co-injection of the unlabeled reference compounds.

3.4 Determinations of HPLC radiochemical yield (RCY)

About 100 µL reaction mixture (typically containing 1.0-3.0 MBq) was injected into radio-HPLC for analysis. The activity injected into HPLC was measured (this activity was denoted by A), and the time of injection was recorded. The fraction was collected by automatic fraction collector. The activity orresponding to the radiolabeled product was measured (this activity was denoted by B). The decay-corrected RCY was calculated by dividing the decay-corrected B by A. The activities of [¹²⁵I] radiolabeled samples were determined using a radioisotope dose calibrator CRC-55tR (Capintec Inc.).

3.5 Specific activity calculation

The specific activities (GBq/mg) were calculated by dividing the radioactivity of the ¹²⁵I-labeled product by the amount of the unlabeled tracer determined from the peak area in UV-HPLC chromatograms ($\lambda = 254$ nm). The amounts of unlabeled compounds were determined from the UV absorbance/concentration calibration curve. The solution of ¹²⁵I-labeled product obtained after HPLC purification was concentrated through C-18 light SepPak, and then eluted by EtOH

The resulting solutions were completely injected into the HPLC system. The peak area was determined, and the amount of carrier was calculated according to the calibration curve. For 0.42 MBq of purified compound **3a**, UV absorbance (at 220 nm) of 21.19 was measured, corresponding to 0.57 μ g for a specific activity of 7.53 GBq·mg⁻¹ at time of injection (TOI).

4. Characterization data

diethyl (((*S*)-1-ethoxy-1-oxopent-4-yn-2-yl)carbamoyl)-*L*-glutamate(1bj). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). White solid (1.29 g, 78%) ¹H NMR (400 MHz, CDCl₃) δ 5.75 (s, 1H), 4.40 (dd, J = 8.0, 4.9 Hz, 1H), 4.24 – 4.05 (m, 7H), 2.87 – 2.71 (m, 2H), 2.52 – 2.32 (m, 2H), 2.22 (dddd, J = 13.4, 8.4, 6.9, 4.9 Hz, 1H), 1.97 (dtd, J = 14.4, 8.3, 6.3 Hz, 1H), 1.30 – 1.22 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 172.3, 171.7, 150.1, 149.6, 61.5, 61.3, 60.6, 57.8, 54.1, 53.4, 30.2, 29.6, 28.6, 27.5, 14.2 (d, J = 7.5 Hz). HRMS (ESI-ORBITRAP) Calculated for C₁₇H₂₆N₂O₇ (M+H)⁺ 371.1813, found 371.1819.

(*S*)-*N*-(2-chloro-3-(trifluoromethyl)benzyl)-5-oxo-1-(prop-2-yn-1-yl)pyrrolidine-2-carboxamide (1bm). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). White solid (210 mg, 20%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 7.9, 1.6 Hz, 1H), 7.62 (dd, J = 7.7, 1.6 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 6.56 (d, J = 6.2 Hz, 1H), 4.70 – 4.56 (m, 2H), 4.47 (dd, J = 17.7, 2.6 Hz, 1H), 4.33 – 4.21 (m, 1H), 3.69 (dd, J = 17.7, 2.5 Hz, 1H), 2.60 – 2.44 (m, 1H), 2.44 – 2.30 (m, 2H), 2.18 (t, J = 2.6 Hz, 1H), 2.14 – 2.00 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 175.2, 171.0, 137.5, 133.8, 131.7, 129.1, 127.2, 127.2, 127.2, 127.0, 121.8, 73.3, 60.5, 41.7, 31.5, 29.5, 23.4. HRMS (ESI-ORBITRAP) Calculated for C₁₆H₁₄ClF₃N₂O₂ (M+H)⁺ 359.0769, found 359.0770.

(*E*)-(1-chloro-2-iodovinyl)benzene (3a). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (52 mg, 99%).⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.47 (m, 2H), 7.42 – 7.36 (m, 3H), 6.77 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 137.6, 134.1, 129.5, 129.0, 128.3, 73.0.

(*E*)-1-bromo-2-(1-chloro-2-iodovinyl)benzene (3b). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (62 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.1 Hz, 1H), 7.44 – 7.38 (m, 1H), 7.32 -7.27 (m, 2H), 6.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 133.6, 133.2, 130.8, 130.5, 127.7, 122.0, 78.3. HRMS (EI-TOF) Calculated for C₈H₅BrClI (M⁺) 341.8308, found 341.8301.

(*E*)-1-(1-chloro-2-iodovinyl)-2-ethylbenzene (3c). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (50 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 1H), 7.36 – 7.32 (m, 1H), 7.31 – 7.26 (m, 1H), 7.21 (dd, *J* = 7.6, 1.0 Hz, 1H), 6.84 (s, 1H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.31

(t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 137.7, 134.6, 129.7, 129.0, 128.7, 126.1, 76.8, 25.8, 14.8. HRMS (EI-TOF) Calculated for C₁₀H₁₀ClI (M⁺) 291.9516, found 291.9510.

(*E*)-1-(1-chloro-2-iodovinyl)-2-isopropylbenzene (3d). Purified by column chromatography on silica gel (eluant: petroleum ether = 9:1). Colorless oil (56 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.30 – 7.26 (m, 1H), 7.22 – 7.17 (m, 1H), 6.85 (s, 1H), 3.19 – 3.12 (m, 1H), 1.34 – 1.30 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 137.2, 134.7, 129.9, 128.9, 126.1, 126.0, 76.9, 30.4, 24.2, 23.8. HRMS (EI-TOF) Calculated for C₁₁H₁₂ClI (M⁺) 305.9672, found 305.9678.

(*E*)-3-(1-chloro-2-iodovinyl)benzonitrile (3e). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (46 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 6.90 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 133.3, 132.9, 132.7, 131.6, 129.3, 118.0, 112.8, 75.4. HRMS (EI-TOF) Calculated for C₉H₅CIIN (M⁺) 288.9155, found 288.9151.

(*E*)-1-(1-chloro-2-iodovinyl)-3-nitrobenzene (3f). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 15:1). Yellow oil (48 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 – 8.38 (m, 1H), 8.28 – 8.21 (m, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 6.93 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 139.2, 135.0, 131.4, 129.5, 124.3, 124.2, 75.7. HRMS (EI-TOF) Calculated for C₈H₅ClINO₂ (M⁺) 308.9053, found 308.9048.

(*E*)-1-(1-chloro-2-iodovinyl)-3-fluorobenzene (3g). Purified by column chromatography on silica gel (eluant: petroleum ether = 10:1). Colorless oil (50 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.40 (m, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.27 – 7.22 (m, 1H), 7.14 – 7.07 (m, 1H), 6.83 (s, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ - 112.11 – -112.19 (m). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, *J* = 246 Hz), 139.5 (d, *J* = 8.2 Hz), 132.6 (d, *J* = 2.5 Hz), 129.9 (d, *J* = 8.3 Hz), 124.8 (d, *J* = 3.1 Hz), 116.5 (d, *J* = 21 Hz), 116.1 (d, *J* = 23 Hz), 73.9. HRMS (EI-TOF) Calculated for C₈H₅ClFI (M⁺) 281.9108, found 281.9103.

(*E*)-3-(1-chloro-2-iodovinyl)phenol (3h). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 10:1). Colorless oil (52 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 7.9 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.02 – 6.95 (m, 1H), 6.91 – 6.85 (m, 1H), 6.76 (s, 1H), 5.01 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 139.1, 133.5, 129.6, 121.5, 116.6, 115.8, 73.2. HRMS (ESI-ORBITRAP) Calculated for C₈H₅CIIO (M-H)⁻ 278.9074, found 278.9068.

(*E*)-N-(3-(1-chloro-2-iodovinyl)phenyl)-*N*-,4-dimethylbenzenesulfonamide (3i). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (76 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.38 (m, 2H), 7.32 – 7.22 (m, 3H), 7.17 (s, 1H), 6.77 (s, 1H), 3.21 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 141.6, 138.3, 133.2, 133.0, 129.5, 128.9, 128.0, 127.9, 127.6, 126.3, 73.9, 37.9, 21.5. HRMS (ESI-ORBITRAP) Calculated for C₁₆H₁₆CIINO₂S (M+H)⁺ 447.9635, found 447.9629.

(*E*)-1-(4-(1-chloro-2-iodovinyl)phenyl)ethan-1-one (3j). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Yellow oil (50 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 6.86 (s, 1H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 142.0, 137.5, 132.9, 129.3, 128.3, 74.5, 26.7. HRMS (ESI-ORBITRAP) Calculated for C₁₀H₉ClIO (M+H) ⁺ 306.9386, found 306.9381.

Methyl (*E*)-4-(1-chloro-2-iodovinyl)benzoate (3k). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 50:1). Colorless oil (54 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 6.85 (s, 1H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 141.9, 133.0, 130.9, 129.6, 129.1, 74.4, 52.3. HRMS (ESI-ORBITRAP) Calculated for C₁₀H₉ClIO₂ (M+H)⁺ 322.9336, found 322.9330.

(*E*)-1-(1-chloro-2-iodovinyl)-4-(trifluoromethyl)benzene (3l). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (50 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.62 (m, 4H), 6.88 (s, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.89 (s). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 132.5, 131.3 (q, *J* = 33.3 Hz), 129.4, 125.4 (q, *J* = 4.0 Hz), 123.7 (q, *J* = 273.7 Hz), 74.6. HRMS (EI-TOF) Calculated for C₉H₅ClF₃I (M⁺) 331.9077, found 331.9070.

(*E*)-1-(1-chloro-2-iodovinyl)-4-(trifluoromethoxy)benzene (3m). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (68 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.7 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 6.85 (s, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -57.70 (s). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 136.1, 132.7, 130.8, 120.5, 120.3 (q, *J* = 256 Hz), 73.9. HRMS (EI-TOF) Calculated for C₉H₅ClF₃IO (M⁺) 347.9026, found 347.9020.

(*E*)-1-chloro-4-(1-chloro-2-iodovinyl)benzene (3n). Purified by column chromatography on silica gel (eluant: petroleum ether = 9:1). Colorless oil (56 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H),

7.38 (d, J = 8.5 Hz, 2H), 6.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 135.4, 133.0, 130.4, 128.6, 73.6. HRMS (EI-TOF) Calculated for C₈H₅Cl₂I (M⁺) 297.8813, found 297.8819.

(*E*)-1-bromo-4-(1-chloro-2-iodovinyl)benzene (3o). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (64 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.41 (d, J = 8.5 Hz, 2H), 6.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 133.0, 131.5, 130.6, 123.7, 73.7. HRMS (EI-TOF) Calculated for C₈H₅BrClI (M⁺) 341.8308, found 341.8301.

(*E*)-1-(tert-butyl)-4-(1-chloro-2-iodovinyl)benzene (3p). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (63 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 6.73 (s, 1H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 134.5, 134.2, 128.7, 125.1, 72.0, 34.8, 31.2.HRMS (EI-TOF) Calculated for C₁₂H₁₄ClI (M⁺) 319.9829, found 319.9833.

(*E*)-4-(1-chloro-2-iodovinyl)-1, 1'-biphenyl (3q). Purified by column chromatography on silica gel (eluant: petroleum ether = 7:1). Colorless oil (62 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 - 7.68 (m, 6H), 7.53 (t, *J* = 7.3 Hz, 2H), 7.46 - 7.43 (m, 1H), 6.85 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 140.2, 136.4, 133.9, 129.5, 128.9, 127.9, 127.2, 127.0, 73.0. HRMS (EI-TOF) Calculated for C₁₄H₁₀ClI (M⁺) 339.9516, found 339.9510.

(*E*)-1-(benzyloxy)-4-(1-chloro-2-iodovinyl)benzene (3r). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 50:1). Colorless oil (66 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H), 7.46 – 7.34 (m, 5H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.72 (s, 1H), 5.13 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 136.5, 134.0, 130.6, 130.0, 128.6, 128.1, 127.5, 114.4, 71.7, 70.1. HRMS (EI-TOF) Calculated for C₁₅H₁₂ClIO (M⁺) 369.9621, found 369.9620.

(*E*)-2-(1-chloro-2-iodovinyl)naphthalene (3s). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (56 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.03 (m, 1H), 7.91 – 7.85 (m, 3H), 7.60 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.57 – 7.51 (m, 2H), 6.85 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 134.9, 134.2, 133.4, 132.5, 129.0, 128.4, 128.1, 127.8, 127.2, 126.6, 125.8, 73.2. HRMS (EI-TOF) Calculated for C₁₂H₈CII (M⁺) 313.9359, found 313.9350.

(*E*)-2-(1-chloro-2-iodovinyl)benzofuran (3t). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (54 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.34 – 7.29 (m, 1H), 6.95 (s, 1H). ¹³C NMR (101 MHz, CDCl₃)

δ 154.7, 150.2, 127.5, 126.1, 124.2, 123.5, 121.8, 111.6, 110.3, 71.6. HRMS (EI-TOF) Calculated for C₁₀H₆ClIO (M⁺) 303.9152, found 303.9148.

(*E*)-2-(1-chloro-2-iodovinyl)benzo[*b*]thiophene (3u). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (60 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.82 (dd, *J* = 7.6, 1.5 Hz, 2H), 7.44 - 7.37 (m, 2H), 6.93 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 138.2, 138.1, 128.3, 128.1, 125.9, 124.8, 124.5, 122.1, 72.7. HRMS (EI-TOF) Calculated for C₁₀H₆CIIS (M⁺) 319.8923, found 319.8917.

(*E*)-1-(1-chloro-2-iodovinyl)-9H-fluorene (3v). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (60 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.82 (m, 2H), 7.74 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.46 - 7.37 (m, 2H), 6.82 (s, 1H), 3.97 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 143.1, 143.0, 140.8, 135.8, 134.6, 128.0, 127.4, 126.9, 125.6, 125.1, 120.3, 119.5, 72.7, 36.9. HRMS (EI-TOF) Calculated for C₁₅H₁₀CII (M⁺) 351.9516, found 351.9511.

(*E*)-(1-chloro-2-iodoprop-1-en-1-yl)benzene (3w). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (54 mg, 98%)⁷. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 5H), 2.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 129.2, 129.0, 128.8, 128.3, 92.0, 31.3.

(*E*)-(1-chloro-2-iodobut-1-en-1-yl)benzene (3x). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (56 mg, 97%)⁷. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.28 (m, 5H), 2.88 (q, *J* = 7.4 Hz, 2H), 1.20 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 129.2, 128.8, 128.3, 127.7, 102.8, 36.3, 13.1.

(*E*)-(1-chloro-2-iodopent-1-en-1-yl)benzene (3y). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (55 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.30 (m, 5H), 2.90 – 2.80 (m, 2H), 1.72 – 1.70 (m, 2H), 1.07– 1.03 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 129.2, 128.7, 128.5, 128.3, 101.3, 43.9, 21.9, 12.9. HRMS (EI-TOF) Calculated for C₁₁H₁₂ClI (M⁺) 305.9672, found 305.9671.

(*E*)-3-chloro-2-iodo-3-phenylprop-2-en-1-ol (3z). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 8:1). Colorless oil (56 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.34 (m, 5H), 4.62 (d, *J* = 6.4 Hz, 2H), 2.15 (t, *J* = 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 130.4, 129.3, 128.9, 128.4, 101.4, 67.8. HRMS (EI-TOF) Calculated for C₉H₈CIIO (M⁺) 293.9308, found 293.9311.

(*E*)-(1-chloro-2-iodoethene-1,2-diyl)dibenzene (3aa).⁸ Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (64 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.51 – 7.38 (m, 7H), 7.32 (t, *J* = 7.3 Hz, 1H).

(*E*)-4-(1, 6-dichloro-2-iodohex-1-en-1-yl)phenyl methanesulfonate (3ab). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 5:1). Colorless oil (74 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 8.7 Hz, 2H), 3.62 (t, *J* = 6.4 Hz, 2H), 3.17 (s, 3H), 2.88 (t, *J* = 7.2 Hz, 2H), 1.94 – 1.77 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 140.8, 131.1, 127.4, 121.9, 101.3, 44.6, 41.3, 37.6, 31.2, 25.8. HRMS (ESI-ORBITRAP) Calculated for C₁₃H₁₉Cl₂IO₃SN (M+NH₄)⁺ 465.9507, found 465.9502.

(*E*)-5-(1-chloro-2-iodo-5-phenylpent-1-en-1-yl)-1-tosyl-1H-indole (3ac). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (100 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.6 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 3.7 Hz, 1H), 7.54 (d, *J* = 1.2 Hz, 1H), 7.37 – 7.30 (m, 3H), 7.30 – 7.24 (m, 5H), 6.69 – 6.68 (m, 1H), 2.97 – 2.89 (m, 2H), 2.81 – 2.73 (m, 2H), 2.39 (s, 3H), 2.09 – 1.98 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 141.7, 137.1, 135.3, 134.5, 130.4, 130.0, 128.8, 128.5, 128.4, 127.1, 126.9, 125.9, 125.7, 122.4, 113.4, 109.0, 101.2, 41.9, 34.7, 30.2, 21.6. HRMS (ESI-ORBITRAP) Calculated for C₂₆H₂₄ClINO₂S (M+H)⁺ 576.0261, found 576.0262.

(*E*)-4-chloro-3-iodo-4-phenylbut-3-en-2-one (3ad). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (49 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 2H), 7.43 – 7.41 (m, 3H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.0, 138.4, 131.1, 129.9, 128.9, 128.4, 92.3, 27.4. HRMS (ESI-ORBITRAP) Calculated for C₁₀H₉ClIO (M+H)⁺ 306.9386, found 306.9381.

(*E*)-3-chloro-2-iodo-3-phenylacrylaldehyde (3ae). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 40:1). Colorless oil (50 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.55 – 7.51 (m, 2H), 7.49 – 7.45 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.1, 149.1, 139.9, 130.8, 128.6, 128.5, 103.8. HRMS (ESI-ORBITRAP) Calculated for C₉H₆ClIONa (M+Na)⁺ 314.9050, found 314.9059.

(*E*)-3-chloro-2-iodo-3-phenylacrylonitrile (3af). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (26 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.41 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 136.9, 131.3, 128.7, 128.6, 116.7, 52.5. HRMS (EI-TOF) Calculated for C₉H₅ClIN (M⁺) 288.9155, found 288.9162.

(*8R*, *9S*, *13S*, *14S*)-3-((*E*)-1-chloro-2-iodovinyl)-13-methyl-6, 7, 8, 9, 11, 12, 13, 14, 15, 16-decahydro-17*H*cyclopenta[*a*]phenanthren-17-one (3ag). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (66 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 2H), 7.27 (s, 1H), 6.71 (s, 1H), 2.95 (dd, *J* = 8.5, 3.8 Hz, 2H), 2.52 (dd, *J* = 18.8, 8.6 Hz, 1H), 2.47 – 2.40 (m, 1H), 2.36 – 2.29 (m, 1H), 2.17 (dd, *J* = 18.4, 9.3 Hz, 1H), 2.11 – 2.02 (m, 2H), 2.01 – 1.95 (m, 1H), 1.69 – 1.61 (m, 2H), 1.60 –1.59 (m, 1H), 1.57 – 1.49 (m, 3H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 136.6, 134.9, 134.1, 129.4, 126.4, 125.2, 72.1, 50.5, 47.9, 44.5, 37.9, 35.8, 31.6, 29.3, 26.4, 25.6, 21.6, 13.9. HRMS (ESI-ORBITRAP) Calculated for C₂₀H₂₃CIIO (M+H)⁺ 441.0482, found 441.0479.

(*IR*, *2S*, *5R*)-2-isopropyl-5-methylcyclohexyl 3-((*E*)-1-chloro-2-iodovinyl)benzoate (3ah). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (72 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 1.5 Hz, 1H), 8.09 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 6.86 (s, 1H), 5.01 –4.94 (m, 1H), 2.17–2.14 (m, 1H), 2.05 – 1.96 (m, 1H), 1.79 – 1.73 (m, 2H), 1.63 – 1.54 (m, 2H), 1.21 – 1.10 (m, 2H), 0.97– 0.94 (m, 7H), 0.82 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 137.9, 133.1, 131.1, 130.5, 130.3, 128.4, 75.3, 73.9, 47.3, 40.9, 34.3, 31.5, 26.5, 23.7, 22.1, 20.8, 16.6. HRMS (ESI-ORBITRAP) Calculated for C₁₉H₂₅ClIO₂ (M+H)⁺ 447.0588, found 447.0582.

(*3aS*, *5S*, *6R*, *6aS*)-5-((S)-2, 2-dimethyl-1,3-dioxolan-4-yl)-2, 2-dimethyltetrahydrofuro [2, 3-d][1, 3]dioxol-6-yl 3-((*E*)-1-chloro-2-iodovinyl)benzoate (3ai). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 10:1). Colorless oil (97 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (t, *J* = 1.5 Hz, 1H), 8.00 – 7.91 (m, 1H), 7.68 – 7.62 (m, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 6.75 (s, 1H), 5.86 (d, *J* = 3.7 Hz, 1H), 5.40 (d, *J* = 2.9 Hz, 1H), 4.55 (d, *J* = 3.7 Hz, 1H), 4.33 – 4.19 (m, 2H), 4.05 – 4.01 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.22 (s, 3H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 138.2, 133.8, 132.8, 130.6, 130.4, 129.8, 128.7, 112.4, 109.5, 105.1, 83.4, 80.0, 74.4, 72.6, 67.4, 26.8, 26.7, 26.2, 25.2. HRMS (ESI-ORBITRAP) Calculated for C₂₁H₂₅ClIO₇ (M+H)⁺ 551.0328, found 551.0325.

(*E*)-2-(1-chloro-2-iodovinyl)benzyl 2-(10-oxo-10,11-dihydrodibenzo[*b*, *f*]thiepin-2-yl)propanoate (3aj). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (80 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.9 Hz, 1H), 7.55 (dd, *J* = 7.9, 4.0 Hz, 2H), 7.42 – 7.34 (m, 2H), 7.33 – 7.23 (m, 4H), 7.20 – 7.15 (m, 1H), 7.12 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.72 (s, 1H), 5.14–5.04 (m, 2H), 4.31 (s, 2H), 3.75 (q, *J* = 7.1 Hz, 1H), 1.46 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.2, 173.5, 142.5, 140.2, 137.9, 137.8, 136.2, 133.3, 133.2, 132.5, 131.5, 131.5, 130.9, 129.8, 129.3, 129.1, 128.7, 128.7, 126.8, 126.5, 77.7, 64.1, 51.1, 45.1, 18.5. HRMS (ESI-ORBITRAP) Calculated for C₂₆H₂₁ClIO₃S (M+H)⁺ 574.9944, found 574.9935.

(*E*)-(1-chloro-2-iodovinyl)cyclopropane (3ak). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (36 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 6.27 (s, 1H), 2.23 – 2.16 (m, 1H), 0.98 – 0.90 (m, 2H), 0.85 – 0.80 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 70.3, 18.4, 6.4. HRMS (EI-TOF) Calculated for C₅H₆ClI (M⁺) 227.9203, found 227.9211.

(*E*)- (1-chloro-2-iodovinyl)cyclopentane (3al). Purified by column chromatography on silica gel (eluant: petroleum ether = 7:1). Colorless oil (42 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 3.46 – 3.36 (m, 1H), 1.88 – 1.75 (m, 4H), 1.72 – 1.62 (m, 4H). ¹³ NMR (101 MHz, CDCl₃) δ 142.3, 71.0, 46.4, 30.3, 25.9. HRMS (EI-TOF) Calculated for C₇H₁₀ClI (M⁺) 255.9516, found 255.9510.

(*E*)-2-chloro-1, 5-diiodopent-1-ene (3am). Purified by column chromatography on silica gel (eluant: petroleum ether = 5:1). Colorless oil (61 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 1H), 3.57 (t, *J* = 6.5 Hz, 2H), 2.73 – 2.67 (m, 2H), 2.07 – 2.00 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 101.6, 80.6, 43.1, 42.4, 31.1. HRMS (EI-TOF) Calculated for C₅H₇ClI₂ (M⁺) 355.8326, found 355.8321.

(*E*)-6-chloro-7-iodohept-6-en-1-ol (3an). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 5:1). Colorless oil (48 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 6.29 (s, 1H), 3.66 (t, *J* = 6.5 Hz, 2H), 2.61 – 2.56 (m, 2H), 1.64 – 1.58 (m, 4H), 1.46 – 1.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 72.5, 62.8, 38.4, 32.5, 26.5, 24.6. HRMS (EI-TOF) Calculated for C₇H₁₂ClIO (M⁺) 273.9621, found 273.9616.

(*E*)-5-chloro-6-iodohex-5-en-1-yl 4-methylbenzenesulfonate (3ao). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (66 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 6.33 (s, 1H), 4.09 (t, *J* = 6.0 Hz, 2H), 2.57 (t, *J* = 6.9 Hz, 2H), 2.48 (s, 3H), 1.74 – 1.64 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 137.1, 133.1, 129.9, 127.9, 73.2, 70.0, 37.6, 27.5, 22.6, 21.7. HRMS (ESI-ORBITRAP) Calculated for C₁₃H₂₀ClIO₃SN (M+NH₄)⁺ 431.9897, found 431.9892.

(*E*)-6-chloro-7-iodohept-6-en-1-yl benzoate (3ap). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (58 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* =

7.5 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 6.31 (s, 1H), 4.34 (t, J = 6.6 Hz, 2H), 2.61 (t, J = 7.3 Hz, 2H), 1.89 – 1.78 (m, 2H), 1.73 – 1.64 (m, 2H), 1.55 – 1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 137.9, 132.8, 130.5, 129.6, 128.3, 72.6, 64.8, 38.4, 28.5, 26.3, 24.9. HRMS (ESI-ORBITRAP) Calculated for C₁₄H₁₇ClIO₂ (M+H)⁺ 378.9962, found 378.9958.

(*E*)-2-(5-chloro-6-iodohex-5-en-1-yl)isoindoline-1,3-dione (3aq). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 10:1). Colorless oil (56 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.53 (m, 2H), 7.72 – 7.70 (m, 2H), 6.31 (s, 1H), 3.72 (t, *J* = 7.0 Hz, 2H), 2.62 (t, *J* = 7.1 Hz, 2H), 1.77 – 1.64 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 137.5, 133.9, 132.1, 123.2, 72.9, 37.9, 37.7, 27.4, 23.9. HRMS (ESI-ORBITRAP) Calculated for C₁₄H₁₄ClINO₂ (M+H)⁺ 389.9758, found 389.9751.

(*E*)-1, 2, 4-trichloro-3-iodobut-2-ene (3ar). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (50 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 4.57 (s, 2H), 4.50 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5, 97.4, 52.1, 51.4. HRMS (EI-TOF) Calculated for C₄H₄Cl₃I (M⁺⁾ 283.8430, found 283.8423.

(*E*)-4-chloro-5-iodooct-4-ene (3as). Purified by column chromatography on silica gel (eluant: petroleum ether). Colorless oil (47 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 2.70 – 2.61 (m, 4H), 1.64 – 1.53 (m, 4H), 0.97 –0.91 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 131.5, 99.2, 44.7, 43.6, 21.7, 20.5, 13.1, 12.8. HRMS (EI-TOF) Calculated for C₈H₁₄ClI (M⁺) 271.9829, found 271.9833.

(*E*)-1-(1-chloro-2-I odoprop-1-en-1-yl)cyclohexan-1-ol (3at). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 10:1). Colorless oil (48 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 2.79 (s, 1H), 2.54 (d, *J* = 1.4 Hz, 3H), 2.13 – 2.05 (m, 2H), 1.84 – 1.80 (m, 2H), 1.71 – 1.54 (m, 5H), 1.28 – 1.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 125.3, 113.6, 75.9, 36.9, 35.6, 25.1, 22.3. HRMS (ESI-ORBITRAP) Calculated for C₉H₁₅CIIO (M+H)⁺ 300.9856, found 300.9860.

(*E*)-(((3-chloro-2-iodonon-2-en-4-yl)oxy)methyl)benzene (3au). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 50:1). Colorless oil (58 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 4.52 – 4.18 (m, 2H), 3.99 (t, *J* = 6.7 Hz, 1H), 2.48 (s, 3H), 1.70 – 1.61 (m, 1H), 1.52 – 1.44 (m, 1H), 1.29 – 1.26 (m, 6H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.9, 129.5, 128.3, 128.2, 127.6, 107.9, 78.5, 70.3, 35.3, 31.6, 31.1, 24.3, 22.5, 14.0. HRMS (ESI-ORBITRAP) Calculated for C₁₆H₂₆ClION (M+NH₄)⁺ 410.0747, found 410.0742.

Methyl (E)-3-chloro-2-iodooct-2-enoate (3av). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (42 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 3H), 2.72 – 2.65 (m, 2H), 1.65 –1.56 (m, 2H), 1.36 –1.34 (m, 4H), 0.91 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 139.7, 79.5, 53.2, 41.7, 30.7, 26.4, 22.4, 13.8. HRMS (ESI-ORBITRAP) Calculated for C₉H₁₅ClIO₂ (M+H)⁺ 316.9805, found 316.9800.

(*E*)-(2-chloro-1-iodo-2-phenylvinyl)(methyl)sulfane (3aw). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (51 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.31 –7.27 (m, 1H), 2.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 129.1, 128.9, 128.3, 128.2, 93.1, 18.5. HRMS (EI-TOF) Calculated for C₉H₈CIIS (M⁺) 309.9081, found 309.9074.

(*E*)-(2,5-dichloro-1-iodopent-1-en-1-yl)(phenyl)sulfane (3ax). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (56 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 3.57 (t, *J* = 6.6 Hz, 2H), 2.97 – 2.92 (m, 2H), 2.36 (s, 3H), 2.12 – 2.04 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 132.6, 130.0, 128.7, 127.9, 104.1, 43.3, 40.7, 31.5, 21.3. HRMS (EI-TOF) Calculated for C₁₂H₁₃Cl₂IS (M⁺) 385.9160, found 385.9166.

(*E*)-1-((2-chloro-1-iodohept-1-en-1-yl)oxy)-4-methylbenzene (3ay). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (60 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 2.64 – 2.56 (m, 2H), 2.32 (s, 3H), 1.66 – 1.58 (m, 2H), 1.40 – 1.37 (m, 4H), 0.95 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 133.7, 130.2, 117.3, 104.1, 91.1, 43.9, 30.6, 28.3, 22.5, 20.8, 14.0. HRMS (EI-TOF) Calculated for C₁₄H₁₈CIIO (M⁺) 364.0087, found 364.0091.

(*E*)-(2-chloro-1-iodo-2-phenylvinyl)trimethylsilane (3az).⁹ Purified by column chromatography on silica gel (eluant: petroleum ether = 10:1). Colorless oil (53 mg, 80%). ¹H NMR (600 MHz, CDCl₃) δ 7.37 - 7.35 (m, 3H), 7.32 (dd, *J* = 7.7, 1.7 Hz, 2H), -0.02 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 145.8, 139.7, 129.3, 128.7, 128.3, 109.4, 0.9.

(*E*)-(1,2-dichloro-2-iodovinyl)benzene (3ba). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (58 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 133.4, 129.6, 129.2, 128.6, 69.7. HRMS (EI-TOF) Calculated for C₈H₅Cl₂I (M⁺) 297.8813, found 297.8818.

(*E*)-(2-bromo-1-chloro-2-iodovinyl)benzene (3bb).¹⁰ Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (64 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 136.0, 129.6, 128.8, 128.6, 51.8.

(1-chloro-2,2-diiodovinyl)benzene (3bc).¹¹ Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (70 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.9 Hz, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 139.6, 129.4, 128.6, 128.5, 14.3.

(*E*)-1-(2-bromo-1-chloro-2-iodovinyl)-3-methylbenzene (3bd). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (70 mg, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.7 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 138.4, 136.2, 130.3, 129.3, 128.5, 125.9, 51.6, 21.4. HRMS (EI-TOF) Calculated for C₉H₇BrClI (M⁺) 355.8464, found 355.8466.

(*E*)-6-bromo-5-chloro-6-iodohex-5-enenitrile (3be). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (54 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 2.83 (t, *J* = 7.4 Hz, 2H), 2.42 (t, *J* = 7.1 Hz, 2H), 2.02 (p, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 118.7, 51.3, 40.6, 23.2, 16.2. HRMS (ESI-ORBITRAP) Calculated for C₆H₇BrClIN (M+H)⁺ 333.8489, found 333.8490.

(*E*)-1-bromo-2-chloro-1-iodooct-1-ene (3bf). Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (60 mg, 86%). 1H NMR (400 MHz, CDCl₃) δ 2.68 – 2.60 (m, 2H), 1.66 – 1.57 (m, 2H), 1.40 – 1.27 (m, 6H), 0.90 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 48.6, 41.9, 31.5, 28.2, 27.1, 22.5, 14.1. HRMS (EI-TOF) Calculated for C₈H₁₃BrClI (M⁺) 349.8934, found 349.8936.

(*E*)-1-chloro-3-(1-chloro-2-iodovinyl)benzene (3bg). Purified by column chromatography on silica gel (eluant: petroleum ether = 9:1). Light yellow oil (24 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.44 (m, 2H), 7.41 – 7.35 (m, 2H), 6.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 135.5, 133.0, 130.4, 129.0. HRMS (EI-TOF) Calculated for C₈H₅Cl₂I (M⁺) 297.8813, found 297.8815.

(*E*)-3-(1-chloro-2-iodovinyl)quinoline (3bh). Purified by column chromatography on silica gel (eluant: petroleum ether = 9:1). Colorless oil (26 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, J = 2.3 Hz, 1H), 8.33 (d, J = 2.2 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.87 (dd, J = 8.2, 1.5 Hz, 1H), 7.81 – 7.74 (m, 1H), 7.65 – 7.56 (m, 1H), 6.97 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 147.8, 136.8, 131.3, 131.0, 130.8, 129.4, 128.3, 128.1, 127.4, 126.9. HRMS (EI-TOF) Calculated for C₁₁H₇CIIN (M⁺) 314.9312, found 314.9314.

(*E*)-1-((2-chloro-1-iodoprop-1-en-1-yl)sulfonyl)-4-methylbenzene (3bi). Purified by column chromatography on silica gel (eluant: petroleum ether = 9:1). Brown solid (33 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 2.57 (s, 3H), 2.45 (s, 3H), 1.25 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 143.2, 136.1, 129.6, 128.8, 99.2, 34.9, 21.7. HRMS (ESI- ORBITRAP) Calculated for C₁₀H₁₀ClIO₂S (M+H)⁺ 356.9207, found 356.9212.

(*S,E*)-4-chloro-2-(3-((*S*)-1,5-diethoxy-1,5-dioxopentan-2-yl)ureido)-5-iodopent-4-enoic acid (3bj). Purified by column chromatography on silica gel (eluant: petroleum ether = 5:5). Light yellow solid (31 mg, 42%).¹H NMR (400 MHz, CDCl₃) δ 5.75 (s, 1H), 4.40 (dd, J = 8.0, 4.9 Hz, 1H), 4.24 – 4.05 (m, 7H), 2.87 – 2.71 (m, 2H), 2.52 – 2.32 (m, 2H), 2.22 (dddd, J = 13.4, 8.4, 6.9, 4.9 Hz, 1H), 1.97 (dtd, J = 14.4, 8.3, 6.3 Hz, 1H), 1.30 – 1.22 (m, 9H).¹³C NMR (101 MHz, CDCl₃) δ 172.9, 172.3, 171.7, 150.1, 149.6, 61.5, 61.3, 60.6, 57.8, 54.1, 53.4, 30.2, 29.6, 28.6, 27.5, 14.2 (d, J = 7.5 Hz). HRMS (ESI-ORBITRAP) Calculated for Calculated for C₁₇H₂₆IN₂O₇ (M-Cl)⁺ 497.07792, found 497.07784.

(8R,9S,13S,14S,17S)-17-((*E*)-1-chloro-2-iodovinyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthrene-3,17-diol (3bk). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:2). White solid (29 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.26 (s, 1H), 6.72 (s, 1H), 5.10 (s, 1H), 2.79 (dd, J = 8.7, 4.3 Hz, 2H), 2.61 (s, 1H), 2.40 – 2.22 (m, 2H), 2.19 (td, J = 10.9, 4.3 Hz, 1H), 2.09 – 1.97 (m, 1H), 1.96 – 1.63 (m, 4H), 1.56 – 1.22 (m, 4H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 139.3, 135.1, 135.0, 114.9, 87.4, 82.4, 79.8, 74.1, 49.4, 47.0, 43.2, 39.1, 38.9, 32.6, 29.2, 27.0, 26.3, 22.8, 12.6. HRMS (ESI-ORBITRAP) Calculated for C₂₀H₂₅ClIO₂ (M+H)⁺ 459.0582, found 459.0590.

methyl (*S,E*)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-chloro-2-iodovinyl)phenyl)propanoate (3bl). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:2). Light yellow solid (33 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.44 (m, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.75 (s, 1H), 5.02 (d, J = 8.4 Hz, 1H), 4.62 (q, J = 6.9 Hz, 1H), 3.72 (s, 3H), 3.15 (dd, J = 13.7, 5.8 Hz, 1H), 3.06 (dd, J = 13.9, 6.4 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 154.8, 137.8, 136.2, 133.8, 129.2, 129.2, 80.1, 72.8, 54.2, 52.3, 38.3, 28.3. HRMS (ESI-ORBITRAP) Calculated for C₁₇H₂₁ClINO₄ (M+H)⁺ 466.0277, found 466.0279.

(S,E)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-chloro-3-iodoallyl)-5-oxopyrrolidine-2-carboxamide

(**3bm**). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:2). Light yellow solid (68 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (t, J = 7.9 Hz, 2H), 7.35 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 1.2 Hz, 1H), 6.66 (t, J = 6.1 Hz, 1H), 4.66 – 4.61 (m, 2H), 4.61 – 4.57 (m, 1H), 4.04 – 3.90 (m, 2H), 2.63 – 2.49 (m, 1H), 2.52 – 2.32 (m, 2H), 2.08 (dtd, J = 11.7, 9.6, 8.5, 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 170.9, 137.5, 134.5, 132.0, 129.1 (q, *J* = 31.2 Hz), 127.2 (q, *J* = 1.4 Hz), 127.0, 122.7 (q, *J* = 274.5 Hz), 97.5, 83.7, 59.8, 52.6, 41.9, 29.4, 23.7. HRMS (ESI-ORBITRAP) Calculated for C₁₆H₁₅Cl₂F₃IN₂O₂ (M+H)⁺ 520.9502, found 520.9508.

(*E*)-(1-bromo-2-iodoprop-1-en-1-yl)benzene (4a).⁷ Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (63 mg, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 1H), 7.36 – 7.29 (m, 4H), 2.75 (s, 3H). ¹³C NMR (101 MHz,CDCl₃) δ 143.8, 129.1, 128.7, 128.4, 118.3, 93.1, 34.5.

(*E*)-(1-bromo-2-iodopent-1-en-1-yl)benzene (4b). Purified by column chromatography on silica gel (eluant: petroleum ether = 8:1). Colorless oil (64 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 5H), 2.87 – 2.80 (m, 2H), 1.75 – 1.65 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 129.1, 128.6, 128.4, 117.6, 102.2, 46.8, 21.8, 12.9. HRMS (EI-TOF) Calculated for C₁₁H₁₂BrI (M⁺) 349.9167, found 349.9166.

(*E*)-2-(1-bromo-2-iodovinyl)benzofuran (4c). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (60 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.10 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 150.8, 127.6, 126.2, 123.5, 121.8, 111.69, 111.3, 110.9, 74.1. HRMS (EI-TOF) Calculated for C₁₀H₆BrIO (M⁺) 347.8647, found 347.8641.

(*E*)-1-bromo-4-(1,2-diiodovinyl)benzene (4d).¹² Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (68 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 133.0, 131.6, 130.6, 123.8, 73.7.

(*E*)- (1, 2-diiodobut-1-en-1-yl)benzene (4e).¹² Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (53 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.33 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 143.1, 128.9, 128.5, 128.5, 96.2, 80.8.

(*E*)- (1, 2-dibromovinyl)benzene (4f).¹³ Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (42 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.43 - 7.35 (m, 3H), 6.81 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 129.4, 129.2, 128.3, 121.3, 103.0.

(*E*)-2-(1-bromo-2-iodovinyl)benzofuran (4h). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (28 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 3H), 7.32 (d, *J* = 6.4 Hz, 2H), -0.05 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 139.5, 138.6, 134.7, 129.5, 129.4, 128.4, -0.65. HRMS (EI-TOF) Calculated for C₁₁H₁₄Cl₂Si (M⁺) 244.0242, found 244.0241.

(*E*)-(2-iodo-1-thiocyanatovinyl)benzene (4i).¹⁴ Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (37 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.44 (m, 5H), 7.28 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.9, 130.9, 130.3, 129.1, 129.0, 109.3, 81.3.

(*E*)-2-iodo-1-phenylvinyl acetate (4j).¹⁵ Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 50:1). Colorless oil (24 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 - 7.59 (m, 2H), 7.39 -7.26 (m, 3H), 6.34 (s, 1H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 151.2, 134.5, 129.5, 128.9, 128.2, 67.1, 20.8.

1-(1-chloro-2-iodoethyl)-4-fluorobenzene (5a). Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (49 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.08 (t, *J* = 8.6 Hz, 2H), 5.06 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.84 – 3.65 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, *J* = 249.1 Hz), 135.0 (d, *J* = 3.3 Hz), 129.1 (d, *J* = 8.4 Hz), 115.8 (d, *J* = 22.6 Hz), 60.7, 9.9. HRMS (EI-TOF) Calculated for C₈H₂ClFI (M⁺) 283.9365, found 283.9361.

1-bromo-4-(1-chloro-2-iodoethyl)benzene (5b). Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (59 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 5.02 (dd, *J* = 10.0, 5.4 Hz, 1H), 3.84 – 3.63 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 138.1, 132.0, 128.9, 123.2, 60.6, 9.5. HRMS (EI-TOF) Calculated for C₈H₇BrClI (M⁺) 343.8464, found 343.8469.

4-(1-chloro-2-iodoethyl)phenyl acetate (5c). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 50:1). Colorless oil (45 mg, 70%). ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.17 - 5.15 (m, 1H), 4.13 – 3.98 (m, 2H), 2.33 (s, 3H). ¹³C NMR (151

MHz, CDCl₃) δ 169.1, 151.0, 136.1, 128.9, 121.9, 50.1, 35.0, 21.2. HRMS (EI-TOF) Calculated for C₁₀H₁₀ClIO₂ (M⁺) 323.9414, found 323.9411.

4-(1-chloro-2-iodoethyl)-1,1'-biphenyl (5d). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (52 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 4H), 7.47 – 7.44 (m, 4H), 7.40 – 7.35 (m, 1H), 5.13 (dd, *J* = 9.6, 5.8 Hz, 1H), 3.88 – 3.75 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 142.1, 140.3, 137.9, 128.8, 127.7, 127.7, 127.5, 127.2, 61.5, 9.8. HRMS (EI-TOF) Calculated for C₁₄H₁₂ClI (M⁺) 341.9672, found 341.9677.

1-(1-chloro-2-iodoethyl)-4-methylbenzene (5e). Purified by column chromatography on silica gel (eluant: petroleum ether = 50:1). Colorless oil (45 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 5.06 (dd, *J* = 9.7, 5.7 Hz, 1H), 3.84 – 3.69 (m, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 139.2, 136.2, 129.5, 127.1, 61.6, 21.3, 10.1. HRMS (EI-TOF) Calculated for C₉H₁₀ClI (M⁺) 279.9516, found 279.9518.

1-(1-chloro-2-iodoethyl)-4-(trifluoromethyl)benzene (5f). Purified by column chromatography on silica gel (eluant: petroleum ether = 50:1). Colorless oil (44 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 5.14 – 5.12 (m, 1H), 3.91 – 3.67 (m, 2H). ¹⁹F NMR (565 MHz, CDCl₃) δ -62.64 (s). ¹³C NMR (151 MHz, CDCl₃) δ 142.9, 131.2 (q, *J* = 33.2 Hz), 127.8, 126.5, 125.8 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 271.8Hz), 60.3, 9.1. HRMS (EI-TOF) Calculated for C₉H₇ClF₃I (M⁺) 333.9233, found 333.9228.

1-(1-chloro-2-iodoethyl)-4-nitrobenzene (5g). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 15:1). Colorless oil (38 mg, 61%). ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 2H), 5.16 – 5.13 (m, 1H), 3.87 – 3.67 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 145.9, 128.5, 124.1, 59.5, 8.5. HRMS (EI-TOF) Calculated for C₈H₇ClINO₂ (M⁺) 310.9210, found 310.9218.

Methyl-4-(1-chloro-2-iodoethyl)benzoate (5h). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 30:1). Colorless oil (47 mg, 73%). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 5.12 - 5.10 (m, 1H), 3.95 (s, 3H), 3.95 - 3.71 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 143.8, 130.8, 130.1, 127.4, 60.6, 52.3, 9.1. HRMS (EI-TOF) Calculated for C₁₀H₁₀ClIO₂ (M⁺) 323.9414, found 323.9218.

1-bromo-2-(1-chloro-2-iodoethyl)benzene (5i). Purified by column chromatography on silica gel (eluant: petroleum ether = 15:1). Colorless oil (53 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 –7.53 (m, 2H), 7.41 – 7.37 (m, 1H), 7.25 – 7.19 (m, 1H), 5.60 (dd, *J* = 8.4, 6.6 Hz, 1H), 3.82 – 3.71 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 133.1, 130.5, 128.2, 128.2, 123.8, 59.5, 8.5. HRMS (EI-TOF) Calculated for C₈H₇BrClI (M⁺) 343.8464, found 343.8469.

1-bromo-3-(1-chloro-2-iodoethyl)benzene (5j). Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (56 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.46 (m, 2H), 7.34 – 7.23 (m, 2H), 5.00 (dd, J = 9.8, 5.6 Hz, 1H), 3.81 – 3.63 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 141.3, 132.3, 130.4, 130.3, 125.9, 122.7, 60.5, 9.4. HRMS (EI-TOF) Calculated for C₈H₇BrClI (M⁺) 343.8464, found 343.8469.

2-(1-chloro-2-iodoethyl)naphthalene (5k). Purified by column chromatography on silica gel (eluant: petroleum ether = 20:1). Colorless oil (45 mg, 71%). ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.6 Hz, 1H), 7.8 - 7.85 (m, 2H), 7.82 (d, *J* = 0.9 Hz, 1H), 7.54 - 7.49 (m, 3H), 5.27 - 5.24 (m, 1H), 3.92 - 3.83 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 136.2, 133.5, 132.9, 129.1, 128.2, 127.8, 127.2, 126.9, 126.7, 123.8, 62.0, 9.7. HRMS (EI-TOF) Calculated for C₁₂H₁₀CII (M⁺) 315.9516, found 315.9521.

1-chloro-2-iodocyclooctane (5l). Purified by column chromatography on silica gel (eluant: petroleum ether = 5:1). Colorless oil (38 mg, 71%). ¹H NMR (600 MHz, CDCl₃) δ 4.66 – 4.57 (m, 1H), 4.51 – 4.42 (m, 1H), 2.40 – 2.22 (m, 2H), 2.14 – 1.96 (m, 2H), 1.87 – 1.66 (m, 4H), 1.64 – 1.53 (m, 2H), 1.51 – 1.38 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 70.3, 41.9, 34.5, 33.3, 27.9, 25.6, 25.3, 25.2. HRMS (EI-TOF) Calculated for C₈H₁₄ClI (M⁺) 271.9829, found 271.9828.

(*4R*, *5R*)-4-chloro-5-iodooctane (5m). Purified by column chromatography on silica gel (eluant: petroleum ether = 5:1). Colorless oil (38 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 4.35 – 4.33 (m, 1H), 3.77–3.74 (m, 1H), 2.00 – 1.85 (m, 2H), 1.82 – 1.76 (m, 2H), 1.60 –1.57 (m, 2H), 1.46 – 1.35 (m, 2H), 1.03 – 0.86 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 66.4, 42.1, 38.8, 38.2, 22.8, 20.0, 13.5, 13.2. HRMS (EI-TOF) Calculated for C₈H₁₆ClI (M⁺) 273.9985, found 273.9991.

4-chloro-5-iodooctane (5m'). Purified by column chromatography on silica gel (eluant: petroleum ether = 5:1). Colorless oil (34 mg, 63%). ¹H NMR (600 MHz, CDCl₃) δ 4.27 – 4.23 (m, 1H), 3.92 – 3.89 (m, 1H), 2.06 – 1.89 (m, 2H), 1.87 – 1.77 (m, 2H), 1.69 – 1.59 (m, 2H), 1.49 – 1.36 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 66.8, 42.3, 39.8, 39.1, 22.6, 19.4, 13.5, 13.2. HRMS (EI-TOF) Calculated for C₈H₁₆ClI (M⁺) 273.9985, found 273.9991.

2-(2-chloro-3-iodopropyl)isoindoline-1, 3-dione (5n). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 15:1). Colorless oil (58 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.4, 3.1 Hz, 2H), 7.76 (dd, J = 5.4, 3.1 Hz, 2H), 4.77 - 4.70 (m, 1H), 4.17 (d, J = 7.3 Hz, 2H), 4.05 - 3.87 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 167.7, 134.4, 131.7, 123.7, 48.3, 43.9, 26.3. HRMS (EI-TOF) Calculated for C₁₁H₉ClINO₂ (M⁺) 348.9367, found 348.9371.

2-(2-chloro-3-iodopropoxy)benzaldehyde (50). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 40:1). Colorless oil (41 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 7.89 – 7.86 (m, 1H), 7.59 – 7.54 (m, 1H), 7.12 – 7.08 (m, 1H), 7.00 (t, *J* = 7.1 Hz, 1H), 4.59 – 4.37 (m, 3H), 4.15 – 3.67 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 189.4, 160.1, 136.0, 128.8, 125.2, 121.8, 112.8, 69.6, 46.2, 24.9. HRMS (EI-TOF) Calculated for C₁₀H₁₀CIIO₂ (M⁺) 323.9414, found 323.9420.

4-(1-chloro-2-iodoethyl)-1, 3-dioxolan-2-one (5p). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 20:1). Colorless oil (37 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 4.76 – 4.69 (m, 1H), 4.65 (t, *J* = 8.6 Hz, 1H), 4.28 – 4.19 (m, 2H), 4.12 – 3.98 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 153.7, 72.9, 69.5, 45.4, 31.8. HRMS (EI-TOF) Calculated for C₅H₆ClIO₃ (M⁺) 275.9050, found 275.9058.

3-chloro-3-(iodomethyl)dihydrofuran-2(3*H***)-one (5q).** Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 40:1). Colorless oil (36 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 4.45 (t, *J* = 8.8 Hz, 1H), 4.40 – 4.26 (m, 2H), 4.11 (d, *J* = 11.5 Hz, 1H), 2.87 – 2.78 (m, 1H), 2.41 (dd, *J* = 14.7, 5.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 65.6, 48.6, 37.3, 33.8. HRMS (EI-TOF) Calculated for C₅H₆CIIO₂ (M⁺) 259.9101, found 259.9105.

2-chloro-1-iododecane (5r). Purified by column chromatography on silica gel (eluant: petroleum ether). Colorless oil (40 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 4.31 – 3.69 (m, 2H), 3.58 – 3.40 (m, 1H), 2.10 – 1.90 (m, 1H), 1.81 – 1.67 (m, 1H), 1.56 – 1.19 (m, 12H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 61.1, 50.0, 37.2, 36.4, 33.6, 31.8, 29.4, 29.4, 29.2, 29.2, 28.8, 28.7, 25.9, 22.7, 14.1, 11.1. HRMS (EI-TOF) Calculated for C₁₀H₂₀CII (M⁺) 302.0298, found 302.0290.

4-(1-chloro-2-iodoethyl)phenyl acetate (5s). Purified by column chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 50:1). Colorless oil (50 mg, 79%). ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.34

(m, 2H), 7.22 – 7.07 (m, 2H), 5.10 - 5.08 (m, 1H), 3.88 – 3.58 (m, 2H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.2, 151.0, 136.6, 128.4, 121.9, 61.0, 21.2, 9.9. HRMS (EI-TOF) Calculated for C₁₀H₁₀BrIO₂ (M⁺) 367.8909, found 367.8913.

5. Radio-HPLC analysis and characterization for ¹²⁵I-labeled alkene

3a, tR = 8.59 min, RCY = $83 \pm 3\%$, n = 20

HPLC condition(SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 254nm)

3c, tR = 12.97 min, RCY = 76 \pm 4%, n = 4

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 70/30, flow rate = 1 mL/min, λ = 254nm)

3f, tR = 6.67 min, $RCY = 82\pm6\%$, n = 4

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 220 nm) **3g**, tR = 8.44 min, RCY = 69±8%, n = 4

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 220 nm)

3k, tR = 7.91 min, RCY = 40±6%, n = 4

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 70/30, flow rate = 1 mL/min, λ = 220 nm) **3n**, tR = 17.26 min, RCY = 82±3%, n = 4

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 220nm)

3p, tR =23.80 min, RCY = $85 \pm 2\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 220 nm)

3q, tR = 18.85 min, RCY = $60 \pm 7\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer= 75/25, flow rate = 1 mL/min, λ = 220nm)

3s, tR = 14.36 min, RCY = $55 \pm 4\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 220nm)

3z, tR = 9.12 min, RCY = 92 \pm 2%, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 65/35, flow rate=1 mL/min, λ = 220nm)

3ab, tR = 8.76 min, $RCY = 80 \pm 2\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer=75/25, flow rate = 1 mL/min, λ = 220nm)

3ak, tR = 8.95 min, $RCY = 38 \pm 8\%$, n = 3

S32

3ap, tR = 17.71min, RCY = $70 \pm 3\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate=1 mL/min, λ = 220 nm)

3aq, tR = 8.97 min, RCY = $51 \pm 5\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer=75/25, flow rate=1 mL/min, λ =220nm)

3bg, tR = 12.02 min, RCY = $80 \pm 3\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 75/25, flow rate = 1 mL/min, λ = 220nm)

3bh, tR = 6.42 min, $RCY = 65 \pm 5\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer=75/25, flow rate = 1 mL/min, λ = 220 nm)

3bi, tR = 5.92 min, RCY = $76 \pm 4\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 70/30, flow rate = 1 mL/min, λ = 220nm)

3bj, tR = 7.17 min, RCY = $30 \pm 7\%$, n = 3

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 50/50, flow rate= 1 mL/min, λ = 220nm)

3bk, tR = 15.25 min, RCY = $28 \pm 10\%$, n = 3

3bl, tR = 6.70 min, RCY = $45\pm7\%$, n = 5

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 70/30, flow rate = 1 mL/min, λ = 220nm)

3bm, tR = 7.94 min, RCY = 93±3%, n = 6

HPLC condition (SB-C18, MeCN/0.1 M ammonium formate buffer = 50/50, flow rate = 1 mL/min, λ = 220nm)

6. Copies of NMR Spectra

77.68 77.76 77.77 77

LSW-3F-CL-I

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
LSW-4-OCF3-C	L-I				<pre><149.66 </pre>	₇ 136.11	J_132.73	f 121.66	119.10					-73.95								

S58

-1.55

-1.56

S78

lsw-que-br

S110

---62.64

LSW-CF3

S132

7. X-ray crystallographic data of 3q

To a glass vial (2 mL) was added **3q** (CCDC 1912785) (0.2 g) and charged with DCM/hexane (1 mL : 0.5 mL) and then sealed with a septum. The crystal of 3q grew slowly with the volatilization of solvents within 1 week.

Figure S2. ORTEP drawing of 3q at the 50% probability level.

Table S2. Crystal data and structure refinement for mo_dd18319_0m.

Identification code mo_dd18319_	0m
Empirical formula C14 H10 Cl I	
Formula weight 340.57	
Temperature 293(2) K	
Wavelength 0.71073 Å	
Crystal system Monoclinic	
Space group P 21/c	
Unit cell dimensions $a = 9.7863(4) \text{ Å}$	□=90°.
$b = 9.7114(3) \text{ Å} \Box = 100.442(2)$	2)°.
$c = 13.7154(5) \text{ Å} \Box = 90^{\circ}.$	

Volume 1281.91(8) Å3

Z 4

Density (calculated) 1.765 Mg/m3

Absorption coefficient 2.676 mm-1

F(000) 656

Crystal size 0.170 x 0.150 x 0.110 mm3

Theta range for data collection 2.116 to 25.988°.

Index ranges -10<=h<=12, -11<=k<=10, -16<=l<=14

Reflections collected 6080

Independent reflections 2478 [R(int) = 0.0201]

Completeness to theta = 25.242° 98.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission $0.7456 \ \text{and} \ 0.5529$

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2478 / 0 / 146

Goodness-of-fit on F2 1.050

Final R indices [I>2sigma(I)] R1 = 0.0397, wR2 = 0.0956

R indices (all data)R1 = 0.0474, wR2 = 0.1017

Extinction coefficient 0.0055(15)

Largest diff. peak and hole 1.069 and -0.788 e.Å-3

Table S3. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103)for mo_dd18319_0m. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)
I(1) 7537(1) 10197(1) 3302(1) 78(1)
Cl(1) 8203(1) 7305(1) 722(1) 63(1)
C(1)7781(4) 9237(5) 1995(3) 55(1)
C(2)7857(4) 7890(4) 1879(3) 47(1)
C(3)7684(4) 6774(4) 2581(3) 43(1)
C(4)6471(4) 6649(4) 2952(3) 51(1)
C(5)6295(4) 5596(4) 3591(3) 49(1)
C(6)7339(4) 4628(4) 3894(3) 41(1)
C(7)8554(4) 4758(4) 3504(3) 48(1)
C(8)8719(4) 5803(4) 2862(3) 48(1)
C(9)7159(4) 3508(4) 4593(3) 42(1)
C(10) 5864(4) 2960(4) 4629(3) 52(1)
C(11) 5697(5) 1921(5) 5286(4) 63(1)
C(12) 6827(5) 1410(5) 5927(4) 68(1)
C(13) 8114(5) 1929(5) 5894(4) 69(1)
C(14) 8298(4) 2968(4) 5239(3) 53(1)

	U11 U22	2 U33	3 U23 U1	3 U12	
I(1) 98(1)	57(1)	88(1)	-15(1)	38(1)	-5(1)
Cl(1) 74(1)	71(1)	47(1)	-2(1)	17(1)	-18(1)
C(1)56(2)	54(2)	59(2)	8(2) 1	7(2) -5	5(2)
C(2)40(2)	53(2)	46(2)	-2(2)	6(2)	-8(2)
C(3)44(2)	42(2)	43(2)	-4(2)	6(2)	-4(2)
C(4)42(2)	47(2)	63(2)	8(2) 1	.2(2) 9	(2)
C(5)43(2)	50(2)	57(2)	6(2) 1	.6(2) 6	6(2)
C(6)42(2)	40(2)	42(2)	-5(2)	8(2)	1(2)
C(7)38(2)	52(2)	53(2)	-1(2)	3(2)	7(2)
C(8)36(2)	54(2)	55(2)	-1(2)	11(2)	-2(2)
C(9)48(2)	38(2)	41(2)	-6(2)	8(2)	5(2)
C(10) 49(2) 50(2	2) 59(2) 5(2) 10(2)	5(2)
C(11) 62(3)	53(3)	77(3)	10(2)	20(2)	2(2)
C(12) 78(3)	57(3)	72(3)	20(2)	17(3)	8(2)
C(13) 77(3)	62(3)	64(3)	16(2)	2(2)	17(3)
C(14) 52(2) 54(2	2) 52(2) 2(2) 6(2)	5(2)

 Table S4.
 Anisotropic displacement parameters
 (Å2x 103) for mo_dd18319_0m.
 The anisotropic

 displacement factor exponent takes the form:
 -2□2[h2 a*2U11 + ... + 2 h k a* b* U12]

	X	y z	U(eq)		
 H(1)7	840	9793	1453	66	
H(4)5	761	7286	2768	61	
H(5)5	463	5528	3825	59	
H(7)9	267	4124	3683	58	
H(8)9	539	5861	2610	57	
H(10)	5089	3298	4202	63	
H(11)	4817	1566	5295	76	
H(12)	671	6 720	6377	82	
H(13)	8883	1578	6320	83	
H(14)	9184	3307	5230	63	

Table S5.Hydrogen coordinates (x 104) and isotropicdisplacement parameters (Å2x 10 3)for mo_dd18319_0m.

I(1)-C(1)-C(2)-C(3) 5.3(7)
I(1)-C(1)-C(2)-Cl(1) -175.2(2)
C(1)-C(2)-C(3)-C(4) 58.2(6)
Cl(1)-C(2)-C(3)-C(4) -121.4(4)
C(1)-C(2)-C(3)-C(8) -123.7(5)
Cl(1)-C(2)-C(3)-C(8) 56.7(4)
C(8)-C(3)-C(4)-C(5) 0.6(6)
C(2)-C(3)-C(4)-C(5) 178.7(4)
C(3)-C(4)-C(5)-C(6) 0.7(7)
C(4)-C(5)-C(6)-C(7) -1.4(6)
C(4)-C(5)-C(6)-C(9) 179.0(4)
C(5)-C(6)-C(7)-C(8) 0.9(6)
C(9)-C(6)-C(7)-C(8) -179.6(4)
C(6)-C(7)-C(8)-C(3) 0.4(6)
C(4)-C(3)-C(8)-C(7) -1.1(6)
C(2)-C(3)-C(8)-C(7) -179.2(4)
C(7)-C(6)-C(9)-C(10) -149.3(4)
C(5)-C(6)-C(9)-C(10) 30.2(5)
C(7)-C(6)-C(9)-C(14) 30.6(5)
C(5)-C(6)-C(9)-C(14) -149.9(4)
C(14)-C(9)-C(10)-C(11) 0.5(6)
C(6)-C(9)-C(10)-C(11) -179.6(4)
C(9)-C(10)-C(11)-C(12) 0.3(7)
C(10)-C(11)-C(12)-C(13) -1.0(8)

C(11)-C(12)-C(13)-C(14) 0.9(8)
C(12)-C(13)-C(14)-C(9) -0.1(7) C(10)-C(9)-C(14)-C(13) -0.6(6) C(6)-C(9)-C(14)-C(13) 179.5(4)

Symmetry transformations used to generate equivalent atoms:

Table S7. Hydrogen bonds for mo_dd18319_0m [Å and °].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

8. Calculated geometries of intermediates

Intermediate A

SPARTAN '14 Quantum Mechanics Driver: (Win/32b) Release 1.1.0 Job type: Geometry optimization. Method: RDFTWB97X-D Basis set: 6-311+G** Number of shells: 96 Number of basis functions: 274 Charge : +1 Multiplicity: 1 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -7227.758801 0.013729 0.155116 2 -7227.759158 0.005778 0.081724 3 -7227.759361 0.001178 0.008483 4 -7227.759373 0.000649 0.003919 5 -7227.759376 0.000244 0.003100 6 -7227.759376 0.000161 0.001631

Reason for exit: Successful completion Quantum Calculation CPU Time : 14:31.38 Quantum Calculation Wall Time: 20:13.75

```
SPARTAN '14 Semi-Empirical Program: (Win/32b) Release 1.1.0
Semi-empirical Property Calculation
M0001
Memory Used: 557.62 Kb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .31
Semi-Empirical Program Wall Time: .02
SPARTAN '14 Properties Program: (Win/32b) Release 1.1.0
Use of molecular symmetry disabled
Cartesian Coordinates (Angstroms)
Atom X Y Z
_____ ____
1 H H1 -1.8719746 -2.1596143 0.3832351
2 C C1 -2.4071402 -1.2363950 0.1962588
3 C C4 -3.7260106 1.2158294 -0.2680792
4 C C2 -1.7402455 0.0110907 0.4000880
5 C C6 -3.7108784 -1.2368777 -0.2332296
6 C C5 -4.3611631 -0.0175480 -0.4622777
7 C C3 -2.4220687 1.2438693 0.1599514
8 H H6 -4.2352819 -2.1697948 -0.3954389
9 H H5 -5.3914010 -0.0287605 -0.8017611
10 H H3 -1.8983917 2.1786946 0.3194759
11 H H4 -4.2621695 2.1369674 -0.4565310
12 C C7 -0.4506261 0.0240168 0.8216612
13 C C8 0.7758982 0.0328539 1.1846715
14 I II 2.2624152 0.0130282 -0.3020809
15 H H9 1.0952716 0.0496949 2.2224296
```

```
Point Group = C1 Order = 1 Nsymop = 1
```

Intermediate ${\bf B}$ has identitical geometry as intermediate ${\bf A}$

Intermediate ${\bf C}$

SPARTAN '14 MECHANICS PROGRAM: (Win/32b) Release 1.1.0

Frequency Calculation

Warning: global charge (+0.00) does not match input file (+1)! Adjusted 5 (out of 66) low frequency modes

Reason for exit: Successful completion Mechanics CPU Time : .64 Mechanics Wall Time: .37

SPARTAN '14 Quantum Mechanics Driver: (Win/32b) Release 1.1.0

Job type: Geometry optimization. Method: RB3LYP Basis set: 6-31G* & LANL2DZ>Kr Number of shells: 61 Number of basis functions: 147 Multiplicity: 1 Parallel Job: 4 threads

SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization

```
Optimization:

Step Energy Max Grad. Max Dist.

1 -286.266825 0.037863 0.175851

2 -286.271671 0.007064 0.141671

3 -286.271315 0.005188 0.118204

4 -286.271976 0.005218 0.244219

5 -286.272018 0.004271 0.165318

6 -286.271624 0.006251 0.058949

7 -286.272417 0.000997 0.015420

8 -286.272440 0.000752 0.023524

9 -286.272449 0.000236 0.036684

10 -286.272454 0.000653 0.005971

11 -286.272458 0.000195 0.003232
```

```
12 -286.272459 0.000108 0.002999
Reason for exit: Successful completion
Quantum Calculation CPU Time : 4:51.31
Quantum Calculation Wall Time: 11:29.53
SPARTAN '14 Semi-Empirical Program: (Win/32b) Release 1.1.0
Semi-empirical Property Calculation
M0001
Memory Used: 719.24 Kb
Reason for exit: Successful completion
Semi-Empirical Program CPU Time : .47
Semi-Empirical Program Wall Time: .02
SPARTAN '14 Properties Program: (Win/32b) Release 1.1.0
Use of molecular symmetry disabled
Cartesian Coordinates (Angstroms)
Atom X Y Z
_____ ____
1 C C7 0.7714962 1.5603948 0.1744514
2 H H8 1.3646764 2.2228771 0.8047220
3 C C8 1.3675105 1.1902717 -1.0932171
4 H H2 0.7405063 0.7411031 -1.8588569
5 H H9 2.2304180 1.7492402 -1.4478873
6 I II 2.1430833 -0.4359937 0.2151378
7 C C1 -0.6568557 1.3919660 0.5457428
8 H H3 -1.0464951 2.4206763 0.3888865
9 H H7 -0.7291649 1.2496575 1.6316511
10 C C2 -1.5222939 0.3854405 -0.2207840
11 H H1 -1.0843853 -0.6181323 -0.1326327
12 H H4 -1.5364847 0.6365075 -1.2897573
13 C C3 -2.9652771 0.3509430 0.3079300
14 H H5 -2.9523706 0.0964347 1.3772913
15 H H10 -3.4078331 1.3542134 0.2336756
16 C C4 -3.8458008 -0.6557162 -0.4448534
```

17 H H6 -3.3831902 -1.6512895 -0.3905844 18 H H11 -3.8728205 -0.3865884 -1.5098637 19 C C5 -5.2728802 -0.7239448 0.1063305 20 H H12 -5.2783273 -1.0282086 1.1596338 21 H H13 -5.8728466 -1.4492760 -0.4520201 22 H H14 -5.7756172 0.2477434 0.0363862

Intermediate **D**

SPARTAN '14 Quantum Mechanics Driver: (Win/32b) Release 1.1.0 Job type: Geometry optimization. Method: RB3LYP Basis set: 6-31G* & LANL2DZ>Kr Number of shells: 53 Number of basis functions: 150 Multiplicity: 1 Parallel Job: 4 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Optimization: Step Energy Max Grad. Max Dist. 1 -320.698706 0.035062 0.207173 2 -320.713781 0.025046 0.212035 3 -320.724588 0.020347 0.230662 4 -320.732822 0.016244 0.224955 5 -320.739334 0.013545 0.215704 6 -320.744848 0.011728 0.204188 7 -320.749800 0.010649 0.198502 8 -320.754394 0.009755 0.192977 9 -320.758774 0.009014 0.188802 10 -320.763063 0.008115 0.189877 11 -320.767001 0.006593 0.191244 12 -320.770414 0.006646 0.181636 13 -320.773179 0.006515 0.168861 14 -320.775130 0.005086 0.174281

15 -320.776095 0.005308 0.202812 16 -320.776928 0.006898 0.099844 17 -320.777349 0.006860 0.075329 18 -320.778046 0.002153 0.062140 19 -320.778114 0.002566 0.028765 20 -320.778228 0.000520 0.009730 21 -320.778233 0.000399 0.014025 22 -320.778237 0.000313 0.008093 23 -320.778239 0.000164 0.003170 24 -320.778240 0.000081 0.002034 Reason for exit: Successful completion Quantum Calculation CPU Time : 9:27.30 Ouantum Calculation Wall Time: 25:36.73 SPARTAN '14 Semi-Empirical Program: (Win/32b) Release 1.1.0 Semi-empirical Property Calculation M0001 Memory Used: 622.27 Kb Reason for exit: Successful completion Semi-Empirical Program CPU Time : .61 Semi-Empirical Program Wall Time: .04 SPARTAN '14 Properties Program: (Win/32b) Release 1.1.0 Use of molecular symmetry disabled Cartesian Coordinates (Angstroms) Atom X Y Z _____ ____ 1 H H1 -0.6551815 -1.0715584 -1.3137798 2 C C1 -1.4755613 -0.6269607 -0.7604824 3 C C4 -3.6104503 0.5181705 0.6970624 4 C C2 -1.3012695 0.6244506 -0.0890517 5 C C6 -2.6903004 -1.2771095 -0.6981492 6 C C5 -3.7549121 -0.7067655 0.0267874 7 C C3 -2.3976082 1.1777440 0.6464324

8 H H6 -2.8301411 -2.2262071 -1.2049148
9 H H5 -4.7072598 -1.2280689 0.0681840
10 H H3 -2.2635927 2.1251400 1.1611959
11 H H4 -4.4433201 0.9387049 1.2504664
12 C C7 -0.1100984 1.3601429 -0.1347166
13 H H8 -0.0997193 2.3107509 0.3971284
14 C C8 1.1355208 1.0152343 -0.8163804
15 H H2 1.1077202 0.1852841 -1.5170706
16 H H9 1.6742198 1.8747555 -1.2127405
17 I I1 2.2888321 0.3721624 0.9475240
Point Group = C1 Order = 1 Nsymop = 1
Closed-Shell Molecular Orbital Coefficients
MO: 1 2 3 4 5
Eigenvalues: -10.44549 -10.41629 -10.39679 -10.38900 -10.38819
(ev) -284.23632 -283.44177 -282.91121 -282.69928 -282.67711

9. References

- 1 Ueda, H.; Yamaguchi, M.; Kameya, H.; Sugimoto, K.; Tokuyama, H. Autotandem Catalysis: Synthesis of Pyrroles by Gold-Catalyzed Cascade Reaction. *Org. Lett.* 2015, **46**, 4948.
- 2 Xu, Z.-F.; Dai, H.; Shan, L.; Li, C.-Y. Metal-Free Synthesis of (E)-Monofluoroenamine from 1-Sulfonyl-1,2,3-triazole and Et2O·BF3 via Stereospecific Fluorination of α-Diazoimine. *Org. Lett.* 2018, **20**, 1054-1057.
- 3 Boeck, F.; Kribber, T.; Xiao, L.; Hintermann, L. Mixed Phosphane η5-CpRuCl(PR3)2 Complexes as Ambifunctional Catalysts for Anti-Markovnikov Hydration of Terminal Alkynes. *J. Am. Chem. Soc.* 2011, **133**, 8138-8141.
- 4 Chen, H.; Zhang, L. A Desulfonylative Approach in Oxidative Gold Catalysis: Regiospecific Access to Donor-Substituted Acyl Gold Carbenes. *Angew. Chem. Int. Ed.* 2015, **54**, 11775-11779.
- (a) Verlinden, S.; Ballet, S.; Verniest, G. Synthesis of Heterocycle-Bridged Peptidic Macrocycles through 1,3-Diyne Transformations. *Eur. J. Org. Chem.* 2016, 2016, 5807-5812; (b) Kayser, B.; Altman, J.; Beck, W. Alkyne bridged α- amino acids by palladium mediated coupling of alkynes with N-t-Boc-4-iodo-phenylalanine methyl ester. *Tetrahedron* 1997, 53, 2475-2484.
- 6 Yasuno, T.; Ohe, T.; Takahashi, K.; Nakamura, S.; Mashino, T. The human immunodeficiency virus-reverse transcriptase inhibition activity of novel pyridine/pyridinium-type fullerene derivatives. *Bioorg. Med. Chem. Lett.* 2015, **25**, 3226-3229.
- 7 Bortolini, O.; Bottai, M.; Chiappe, C.; Conte, V.; Pieraccini, D. Trihalide-based ionic liquids. Reagent-solvents for stereoselective iodination of alkenes and alkynes. *Green Chemistry* 2002, **4**, 621-627.
- 8 Al-Hassan, M. I. Halogenation of alkynes and alkynylsilanes. J. Organomet. Chem. 1989, **372**, 183-186.
- 9 Sproul, K. C.; Chalifoux, W. A. Highly Regio- and Diastereoselective Formation of Tetrasubstituted (Z)-1,2-Dihaloalkenes from the Halogenation of Trimethylsilyl Alkynes with ICl. *Org. Lett.* 2015, **17**, 3334-3337.
- 10 Barluenga, J.; Rodríguez, M. A.; Campos, P. J. Stereoselective Synthesis of 2-Functionalized 1-Bromo-1-iodo-1alkenes by Electrophilic Iodination of 1-Bromo-1-alkynes. *Synthesis* 1992, **1992**, 270-272.
- 11 Barluenga, J.; Rodriguez, M. A.; Campos, P. J.; Asensio, G. Synthesis of 2-functionalized 1,1-diiodo-1-alkenes. Generation and reactions of 1-iodo-1-lithio-1-alkenes and 1,1-dilithio-1-alkenes. *J. Am. Chem. Soc.* 1988, **110**, 5567-5568.
- 12 Rao, D. S.; Reddy, T. R.; Kashyap, S. Chemoselective and stereospecific iodination of alkynes using sulfonium iodate(i) salt. *Org. Biomol. Chem.* 2018, **16**, 1508-1518.
- 13 Xiang, J.; Yuan, R.; Wang, R.; Yi, N.; Lu, L.; Zou, H.; He, W. Method for Transforming Alkynes into (E)-Dibromoalkenes. J. Org. Chem. 2014, **79**, 11378-11382.
- Zeng, X.; Chen, L. Iodine-mediated regio- and stereoselective iodothiocyanation of alkynes in aqueous ethanol.
 Org. Biomol. Chem. 2018, 16, 7557-7560.
- 15 Xia, X.-F.; Gu, Z.; Liu, W.; Wang, N.; Wang, H.; Xia, Y.; Gao, H.; Liu, X. Selective oxygenation of alkynes: a direct approach to diketones and vinyl acetate. *Org. Biomol. Chem.* 2014, **12**, 9909-9913.