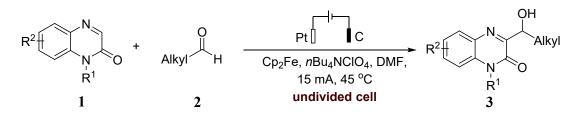
Supporting Information

Electrochemical C-H Functionalization to Synthesize 3hydroxyalkylquinoxalin-2(1*H*)-ones via quinoxalin-2(1*H*)ones and Aldehydes

Han-Fu Liu,^{a,b} Mu-Xue He,^b and Hai-Tao Tang^{*a}

^aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, Guangxi (P. R. China). *E-mail: httang@gxnu.edu.cn.

^bGuangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health of Guilin Medical University, Guilin 541199, Guangxi (P. R. China).


Table of Contents

1.	General Information	2S
2.	Procedures for the Electrolysis	3S
3.	Procedures for the Flow Electrolysis	58
4.	General procedure for the synthesis of starting materials	68
5.	Additional Optimization of Reaction Conditions	78
6.	The Control experiments	98
7.	Cyclic Voltammetry Studies	178
8.	Characterization Data for the Electrolysis Products	208
9.	Copies of ¹ H NMR and ¹³ C NMR for the Products	

1.General Information

Without special instructions, all reagents and solvents were commercially available and were not further purified. Column chromatography was carried out using silica gel (300-400 mesh). NMR spectroscopy was performed on Bruker AV-400 or Bruker AV-600 instruments. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.00) and relative to the signal of Dimethyl Sulfoxide-d6 (δ 2.50). The abbreviations used to explain the multiplicities were as follows: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. ¹³C NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.00) and relative to the signal of Dimethyl Sulfoxide-d6 (δ 39.52). The HRMS spectrum was measured by micromass QTOF2 Quadrupole/Time of Flight Tandem mass spectrometer with electron spray ionization. Cyclic voltammograms were recorded on a CHI 660E potentiostat.

2. Procedures for the Electrolysis

A 10 ml three-necked round-bottomed flask was charged with derivatives of quinoxalin-2(1*H*)-ones 1 (0.4 mmol, 1.0 equiv.), aliphatic aldehydes 2 (2.4 mmol, 6.0 equiv.), nBu_4NClO_4 (0.6 mmol, 1.5 equiv.) Cp₂Fe (0.08 mmol, 20 mol %). The flask was equipped with a platinum plate (1 cm x 1 cm) anode and a graphite rod (Φ 6 mm) cathode, the distance between the two electrodes was 1.6 cm. DMF (6.0 mL) was added. Electrolysis was carried out at 45 °C, which using a constant current of 15 mA until the substrate was completely consumed (monitored by TLC, about 5 hours). After the reaction was completed, the solvent was extracted with ethyl acetate and water. The aqueous phase was extracted with ethyl acetate (3 x 30.0 mL). The combined organic solution was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification with silica gel column chromatography using ethyl acetate/petroleum ether to afford the desired products **3**. The pictures of reaction set-up were shown in Figure S1.

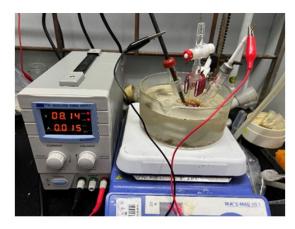
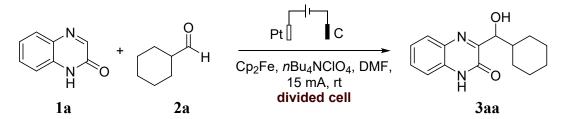
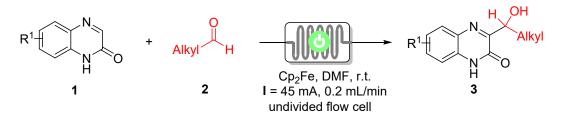



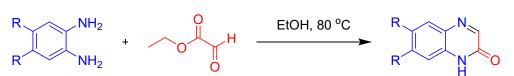
Figure S1. Electrolysis setup. (undivided cell)

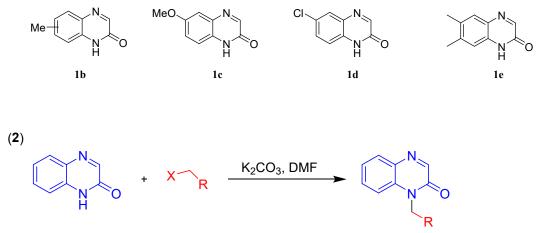


A 10 ml three-necked round-bottomed flask was charged with quinoxalin-2(1*H*)-one **1a** (0.4 mmol, 1.0 equiv.), cyclohexanecarboxaldehyde **2a** (2.4 mmol, 6.0 equiv.), nBu_4NCIO_4 (0.6 mmol, 1.5 equiv.), Cp₂Fe (0.08 mmol, 20 mol %). The flask was equipped with a platinum plate (1 cm x 1 cm) anode and a graphite rod (Φ 6 mm) cathode, the distance between the two electrodes was 5.2 cm. DMF (6.0 mL) was added. Electrolysis was carried out in the divided cell at room temperature, which using a constant current of 15 mA until the substrate was completely consumed (monitored by TLC, about 5 hours). The picture of reaction set-up was shown in Figure S2.

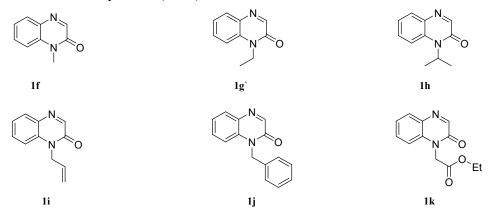
Figure S2. Electrolysis setup. (divided cell)

3. Procedures for the Flow Electrolysis


The electrolysis was conducted with a constant current of 45 mA using a flow electrolytic cell equipped with a Pt plate anode and a graphite cathode with the electrode surface of 8 cm \times 6 cm. **1** (10.0 mmol, 1.0 equiv.), **2** (60.0 mmol, 6.0 equiv.), Cp₂Fe (2.0 mmol, 20 mol %), *n*Bu₄NClO₄ (15.0 mmol, 1.5 equiv.), in DMF (150 mL) at room temperature were pushed via peristatic pump to pass through the flow electrolytic cell with a flow rate of 0.2 mL/min. After 12.5 h, the solvent was extracted with ethyl acetate and water. The aqueous phase was extracted with ethyl acetate (3 x 200 mL). The combined organic solution was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification with silica gel column chromatography using ethyl acetate/petroleum ether to afford the desired products **3**. The picture of reaction set-up was shown in Figure S3.


Figure S3. Flow electrolysis setup. (undivided flow cell)

4. General procedure for the synthesis of starting materials


(1)

The substituted quinoxalin-2(1*H*)-ones were prepared according to literature procedure^[1]. To ethanol (8.0 ml) suspension solution of *o*-arylenediamine (2.0 mmol) was added ethyl 2-oxoacetate (2.4 equiv., 50% toluene solution). The reaction system was stirred and heated to refluxing at 80 °C for 1 h, Then the reaction was cooled. The precipitate was filtered and washed with ethanol, and finally dried to give quinoxalin-2(1*H*)-ones (**1b-1e**).

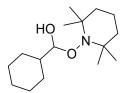
A typical procedure^[1]: To a stirred solution of quinoxalin-2(1*H*)-ones (3.0 mmol) in DMF (10.0 mL) was added the corresponding halide (1.6 equiv.) and potassium carbonate (1.2 equiv.) at room temperature overnight. Then the resulting mixture was added with water, and extracted with et hyl acetate for three times. The combined organic layers were dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to obtain the desired products (1f-1k).

REFERENCES

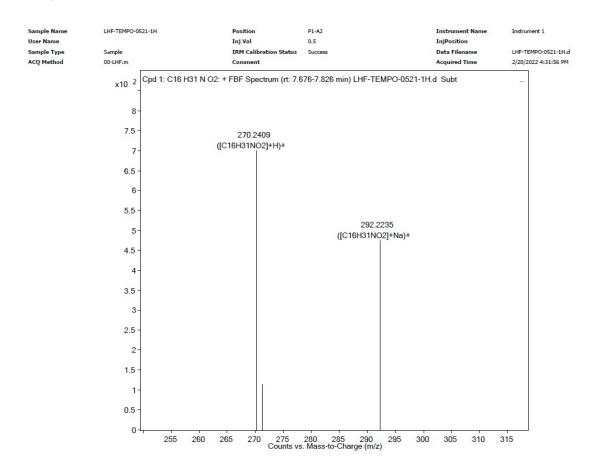
[1] H. Ni; X. Shi; Y. Li; X. Zhang; J. Zhao and F. Zhao, Metal-free C3-H acylation of quinoxalin-2(1*H*)-ones with alpha-oxo-carboxylic acids, *Org. Biomol. Chem.*, 2020, **18**, 6558-6563.

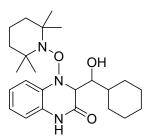
5. Additional Optimization of Reaction Conditions

N N H 1a	+ H $C_{p_2Fe, nBu_4NCIO_4, DMF, I5 mA, 45 °C undivided cell}$	OH N N H 3aa
Entry	Variation from standard conditions	Yield ^b (%)
1	graphite rod as anode, graphite rod as cathode	52
2	RVC as anode, graphite rod as cathode	49
3	Mg as anode, graphite rod as cathode	trace
4	Pt plate as anode, Pt plate as cathode	45
5	Pt plate as anode, RVC as cathode	66
6	DMSO as solvent	trace
7	EtOH as solvent	trace
8	MeCN as solvent	trace
9	MeOH as solvent	trace
10	DMA as solvent	60
11	HFIP as solvent	trace
12	without <i>n</i> Bu ₄ NClO ₄	NR
13	nBu_4NPF_4 as electrolyte	55
14	nBu_4NPF_6 as electrolyte	58
15	<i>n</i> Bu ₄ NHSO ₄ as electrolyte	46
16	<i>n</i> Bu ₄ NCl as electrolyte	62
17	Et ₄ NOTs as electrolyte	42
18	reaction at 0 °C	trace
19	reaction at 25 °C	55
20	reaction at 60 °C	62
21	reaction at 80 °C	58
22	reaction at 100 °C	46
23	5 mA	55
24	20 mA	65
25	30 mA	64

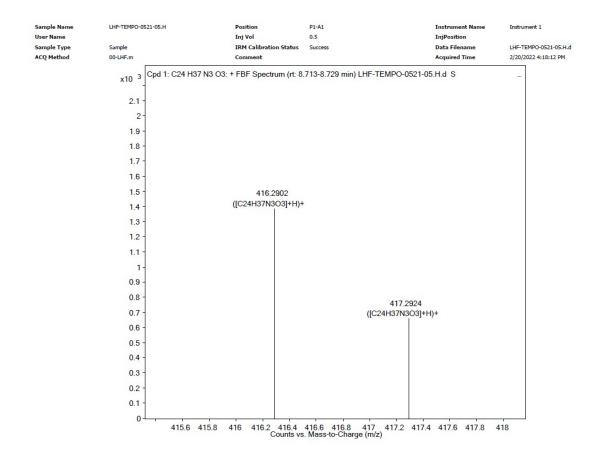

Table S1. Optimization of the reaction conditions^a

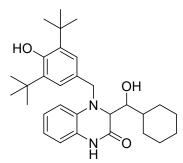
26	Cp ₂ Fe (15 mol %)	69
27	Cp ₂ Fe (30 mol %)	65
28	reaction under Ar	61

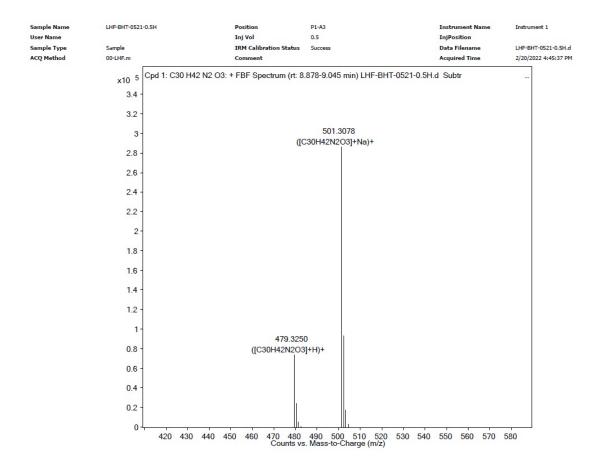

^{*a*}Reaction conditions: A platinum plate (1 cm x 1 cm) anode and a graphite rod (Φ 6 mm) cathode, undivided cell, **1a** (0.4 mmol, 1.0 equiv.), **2a** (2.4 mmol, 6.0 equiv.), catalyst (20 mol %), electrolyte (1.5 equiv.), DMF (6.0 mL), 45 °C, 15 mA, 5 h (7.0 F/mol). ^{*b*}Isolated yields. NR = no reaction.

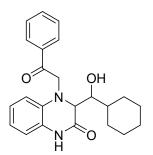

6. The Control experiments

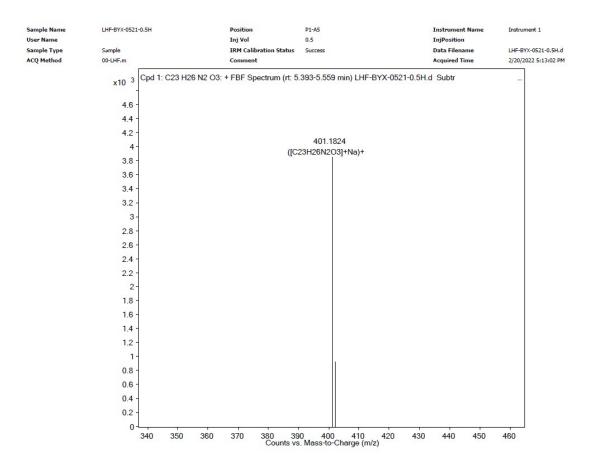
6.1 The HRMS spectra of compounds 4, 5, 6, 7 and 8

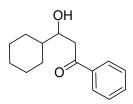


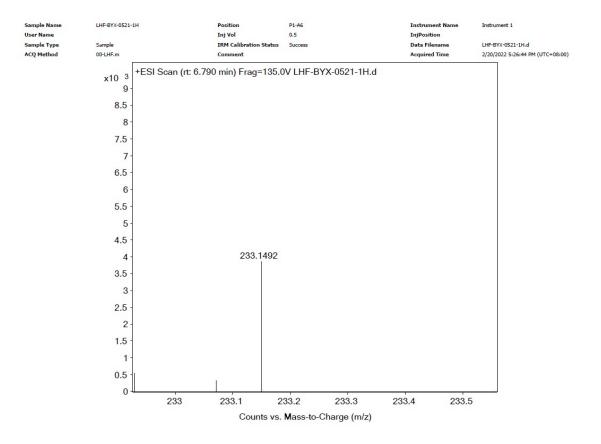

Compound 4: HRMS(m/z) [ESI]: calculated for $C_{16}H_{32}NO_2^+[M+H]^+$: 270.2428, found 270.2409.



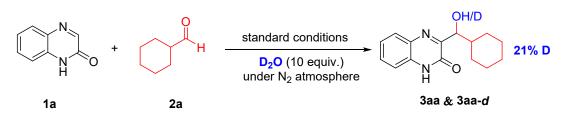

Compound 5: HRMS(m/z) [ESI]: calculated for $C_{24}H_{38}N_3O_3^+[M+H]^+$: 416.2908, found 416.2902.



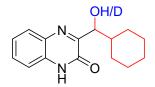

Compound **6** : **HRMS**(m/z) [ESI]: calculated for $C_{30}H_{42}N_2O_3+Na^+$ [M+Na]⁺: 501.3088, found 381.2266.



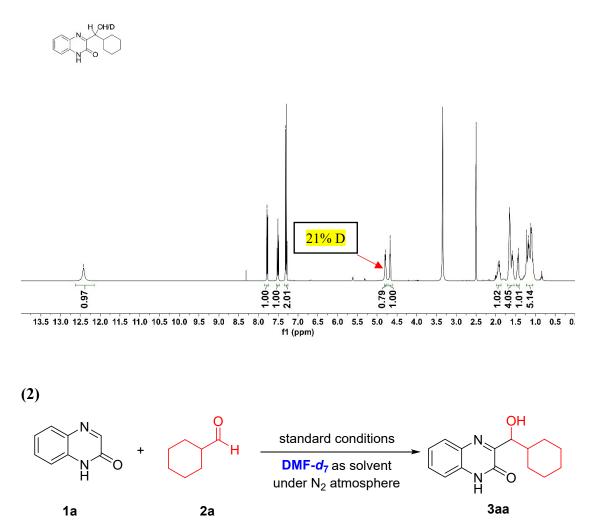
Compound 7 : HRMS(m/z) [ESI]: calculated for $C_{23}H_{26}N_2O_3+Na^+$ [M+Na]⁺: 401.1836, found 401.1824.



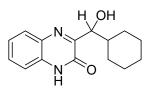
Compound 8: HRMS(m/z) [ESI]: calculated for $C_{15}H_{21}O_2^+[M+H]^+$: 233.1536, found 233.1492.



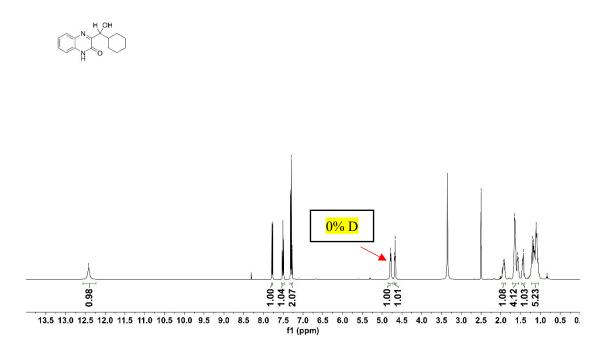
6.2 Deuterium-labeling experiments(1)


A 10 ml three-necked round-bottomed flask was charged with quinoxalin-2(1H)-one **1a** (0.4 mmol, 1.0 equiv.), cyclohexanecarboxaldehyde **2a** (2.4 mmol, 6.0 equiv.), nBu_4NCIO_4 (0.6 mmol, 1.5 equiv.) Cp₂Fe (0.08 mmol, 20 mol %) and **deuterium oxide** (10 equiv.). The flask was equipped with a platinum plate (1 cm x 1 cm) anode and a graphite rod (Φ 6 mm) cathode, the distance between the two electrodes was 1.6 cm. Dry DMF (6.0 mL) was added. Electrolysis was carried out at 45 °C, under N₂ atmosphere, which using a constant current of 15 mA until the substrate was completely consumed (monitored by TLC, about 5 hours). After the reaction was completed, the solvent was extracted with ethyl acetate and water. The aqueous phase was extracted with ethyl acetate (3 x 30.0 mL). The combined organic solution was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification with silica gel column chromatography using ethyl acetate/petroleum ether to afford the desired products **3aa** and **3aa**-*d* (**3aa**: **3aa**-*d* = 79:21), yield 73%.

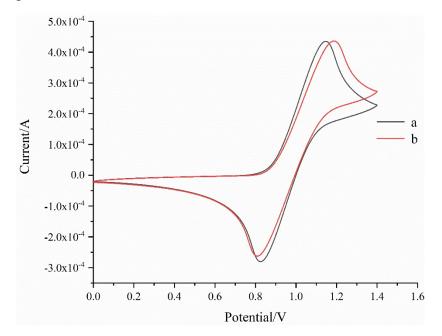
¹H NMR spectra of Compounds 3aa & 3aa-d



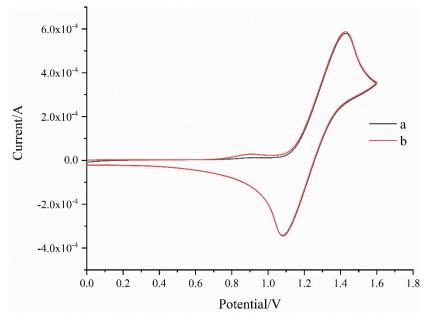
3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3aa & 3aa**-*d*). white solid (75.4 mg, 73%). mp: 144 - 145 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.42 (s, 1H), 7.79 - 7.77 (m, 1H), 7.53 - 7.49 (m, 1H), 7.32 - 7.28 (m, 2H), 4.79 (d, *J*=6.7, 0.79H), 4.67 (t, *J*=5.6, 1H), 1.97 - 1.88 (m, 1H), 1.68 - 1.57 (m, 4H), 1.46-1.43 (m, 1H), 1.22 - 1.06 (m, 5H).



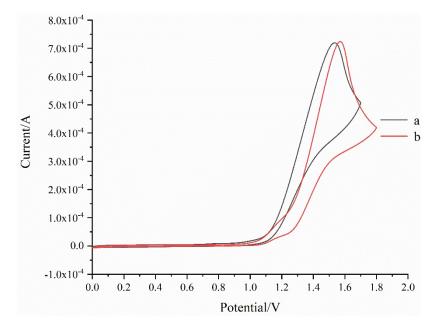
A 10 ml three-necked round-bottomed flask was charged with quinoxalin-2(1H)-one **1a** (0.4 mmol, 1.0 equiv.), cyclohexanecarboxaldehyde **2a** (2.4 mmol, 6.0 equiv.), nBu_4NCIO_4 (0.6 mmol, 1.5 equiv.) Cp₂Fe (0.08 mmol, 20 mol %). The flask was equipped with a platinum plate (1 cm x 1 cm) anode and a graphite rod (Φ 6 mm) cathode, the distance between the two electrodes was 1.6 cm. **DMF-d**₇ (6.0 mL) was added. Electrolysis was carried out at 45 °C, under N₂ atmosphere, which using a constant current of 15 mA until the substrate was completely consumed (monitored by TLC, about 5 hours). After the reaction was completed, the solvent was extracted with ethyl acetate and water. The aqueous phase was extracted with ethyl acetate (3 x 30.0 mL). The combined organic solution was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification with silica gel column chromatography using ethyl acetate/petroleum ether to afford the desired products **3aa** in 71% yield.

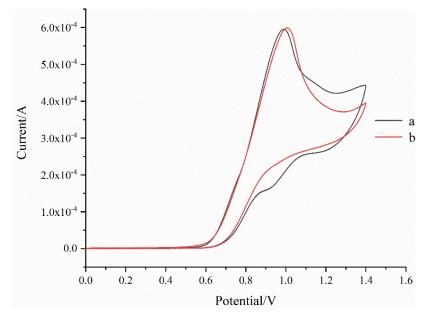

3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3aa). white solid (73.4 mg, 71%). mp: 144 - 145 °C. ¹H NMR (400 MHz, DMSO-***d***₆) δ 12.42 (s, 1H), 7.78 (dd,** *J***=8.0, 1.4, 1H), 7.53-7.48 (m, 1H), 7.32 - 7.27 (m, 2H), 4.79 (d,** *J***=6.8, 1H), 4.67 (t,** *J***=5.8, 1H), 1.97 - 1.90 (m, 1H), 1.65 - 1.56 (m, 4H), 1.46-1.39 (m, 1H), 1.21-1.04 (m, 5H). HRMS (m/z) [ESI]: calculated for C₁₅H₁₉N₂O₂⁺ m/z [M+H]⁺: 259.1441, found 259.1443.**

7,242 7,442 7,



7. Cyclic Voltammetry Studies


The cyclic voltammograms were recorded in an electrolyte solution of nBu_4NClO_4 (0.1 M) in DMF using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and an Ag/AgCl reference electrode. The scan rate was 100 mV/s.


Figure S4-1. Cyclic voltammograms. (a) A1 (0.15 mM) + nBu_4NCIO_4 (0.1 M), $E_{p/2} = 1.148$ V, $i_{p,c} = 0.435$ mA. (b) **1a** (0.3 mM) + **2a** (1.8 mM) + A1 (0.15 mM) + nBu_4NCIO_4 (0.1 M), $E_{p/2} = 1.186$ V, $i_{p,c} = 0.436$ mA.

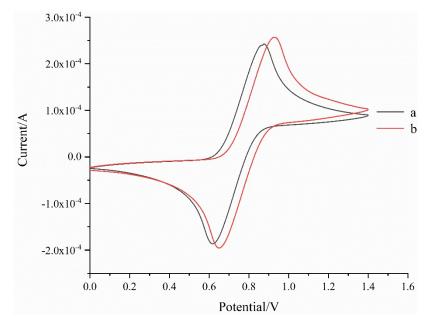

Figure S4-2. Cyclic voltammograms. (a) A2 (0.15 mM) + nBu_4NCIO_4 (0.1 M), $E_{p/2} = 1.427$ V, $i_{p, c} = 0.577$ mA. (b) **1a** (0.3 mM) + **2a** (1.8 mM) + A2 (0.15 mM) + nBu_4NCIO_4 (0.1 M), $E_{p/2} = 1.429$ V, $i_{p, c} = 0.578$ mA.

Figure S4-3. Cyclic voltammograms. (a) A3 (0.15 mM) + nBu_4NClO_4 (0.1 M), $E_{p/2} = 1.534$ V, $i_{p,c} = 0.720$ mA. (b) **1a** (0.3 mM) + **2a** (1.8 mM) + A3 (0.15 mM) + nBu_4NClO_4 (0.1 M), $E_{p/2} = 1.523$ V, $i_{p,c} = 0.722$ mA.

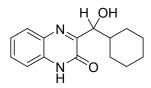


Figure S4-4. Cyclic voltammograms. (a) A4 (0.15 mM) + nBu_4NClO_4 (0.1 M), $E_{p/2} = 0.988$ V, $i_{p,c} = 0.593$ mA. (b) **1a** (0.3 mM) + **2a** (1.8 mM) + A4 (0.15 mM) + nBu_4NClO_4 (0.1 M), $E_{p/2} = 1.008$ V, $i_{p,c} = 0.594$ mA.

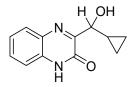
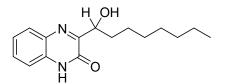
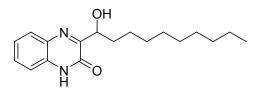
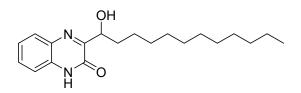
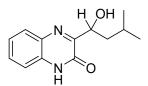


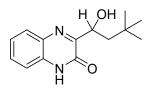
Figure S4-5. Cyclic voltammograms. (a) A5 (0.15 mM) + nBu_4NClO_4 (0.1 M), $E_{p/2} = 0.973$ V, $i_{p,c} = 0.548$ mA. (b) **1a** (0.3 mM) + **2a** (1.8 mM) + A5 (0.15 mM) + nBu_4NClO_4 (0.1 M), $E_{p/2} = 1.008$ V, $i_{p,c} = 0.558$ mA.

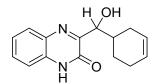

8. Characterization Data for the Electrolysis Products

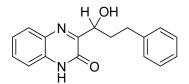

3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3aa). white solid (78.5 mg, 76%). mp: 144 - 145 °C. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 12.43 (s, 1H), 7.77 (dd,** *J* **= 8.1, 1.3 Hz, 1H), 7.52 -7.49 (m, 1H), 7.30 - 7.28 (m, 2H), 4.81 (d,** *J* **= 6.8 Hz, 1H), 4.67 (t,** *J* **= 6.2 Hz, 1H), 1.96 - 1.87 (m, 1H), 1.66 - 1.55 (m, 4H), 1.4 - 1.42 (m, 1H), 1.20 - 1.05 (m, 5H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 161.93, 154.24, 131.80, 131.28, 130.05, 128.39, 123.37, 115.40. HRMS (m/z) [ESI]: calculated for C₁₅H₁₉N₂O₂⁺ m/z [M+H]⁺: 259.1441, found 259.1443.**

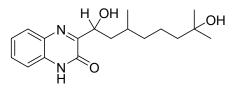

3-(cyclopropyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3ab). yellow solid (58.0 mg, 67%). mp: 146 - 147 °C. ¹H NMR (400 MHz, DMSO-d_6) \delta 12.45 (s, 1H), 7.79 - 7.77 (m, 1H), 7.54-7.50 (m, 1H), 7.32 - 7.28 (m, 2H), 5.00 (d, J = 6.5 Hz, 1H), 4.44 (t, J = 6.8 Hz, 1H), 1.38 - 1.31 (m, 1H), 0.42 - 0.35 (m, 4H). ¹³C NMR (100 MHz, DMSO-d_6) \delta 161.81, 154.21, 131.87, 131.29, 130.06, 128.39, 123.34, 115.35, 71.02, 15.31, 2.39, 1.67. HRMS (m/z) [ESI]: calculated for C₁₂H₁₃N₂O₂⁺ m/z [M+H]⁺ : 217.0972, found 217.0983.**

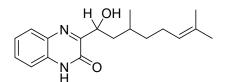

3-(1-hydroxyoctyl)quinoxalin-2(1*H***)-one (3ac).** white solid (75.7 mg, 69%). mp: 135 - 136 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.42 (s, 1H), 7.78 - 7.76 (m, 1H), 7.53 - 7.48 (m, 1H), 7.31 - 7.27 (m, 2H), 4.92 - 4.85 (m, 2H), 1.86 - 1.78 (m, 1H), 1.65 - 1.56 (m, 1H), 1.40 - 1.21 (m, 10H), 0.85 - 0.81 (m, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.35, 154.04, 131.86, 131.26, 129.93, 128.31, 123.28, 115.33, 68.54, 34.58, 31.26, 28.94, 28.66, 25.28, 22.09, 13.95. HRMS (m/z) [ESI]: calculated for C₁₆H₂₃N₂O₂⁺ m/z [M+H]⁺: 275.1754, found 275.1757.

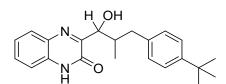

3-(1-hydroxydecyl)quinoxalin-2(1*H***)-one (3ad).** white solid (79.8 mg, 66%). mp: 151 - 152 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.43 (s, 1H), 7.78 - 7.76 (m, 1H), 7.51 (td, *J* = 7.6, 1.4 Hz, 1H), 7.31 - 7.28 (m, 2H), 4.92 (s, 1H), 4.87 (dd, *J*= 8.2, 4.3 Hz, 1H), 1.84 - 1.79 (m, 1H), 1.63 - 1.57 (m,1H), 1.44 - 1.39 (m, 1H), 1.36 - 1.32 (m, 1H), 1.26 - 1.19 (m, 12H), 0.83 (t, *J*=6.9 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 162.37, 154.06, 131.89, 131.27, 129.94, 128.32, 123.28, 115.35, 68.52, 34.57, 31.31, 29.00, 28.97, 28.71, 25.27, 22.12, 13.98. HRMS (m/z) [ESI]: calculated for C₁₈H₂₇N₂O₂⁺ m/z [M+H]⁺: 303.2067, found 303.2066.

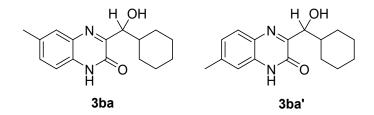

3-(1-hydroxydodecyl)quinoxalin-2(1*H***)-one (3ae).** white solid (84.6 mg, 64%). mp: 145 - 146 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.42 (s, 1H), 7.76 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.52-7.48 (m, 1H), 7.31-7.27 (m, 2H), 4.92 - 4.85 (m, 2H), 1.86 - 1.77 (m, 1H), 1.64 - 1.56 (m, 1H), 1.35-1.20 (m, 18H), 0.85 - 0.81 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.33, 154.04, 131.87, 131.26, 129.92, 128.31, 123.27, 115.33, 68.55, 34.58, 31.32, 29.06, 29.03, 29.01, 29.00, 28.98, 28.73, 25.26, 22.12, 13.96. HRMS (m/z) [ESI]: calculated for C₂₀H₃₁N₂O₂⁺ m/z [M+H]⁺ : 331.2380, found 331.2388.

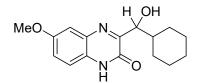

3-(1-hydroxy-3-methylbutyl)quinoxalin-2(1*H***)-one (3af). white solid (53.9 mg, 58%). mp: 150 - 151 °C. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 12.43 (s, 1H), 7.76 (d,** *J* **= 8.0 Hz, 1H), 7.51 - 7.48 (m, 1H), 7.31 - 7.27 (m, 2H), 4.97 (dd,** *J* **= 9.1 Hz, 4.0, 1H), 4.91 (s, 1H), 1.88 - 1.81 (m, 1H), 1.61 - 1.52 (m, 2H), 0.94 (d,** *J* **= 6.6 Hz, 3H), 0.90 (d,** *J* **= 6.7 Hz, 3H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 162.68, 154.04, 131.90, 131.33, 129.92, 128.31, 123.28, 115.36, 66.91, 43.73, 24.37, 23.55, 21.70. HRMS (m/z) [ESI]: calculated for C₁₃H₁₇N₂O₂⁺ m/z [M+H]⁺ : 233.1285, found 233.1287.**

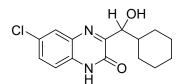

3-(1-hydroxy-3,3-dimethylbutyl)quinoxalin-2(1*H***)-one (3ag). yellow (64.0 mg, 65%). mp: 169-170 °C. dr 1:1.1, as an inseparable diastereomeric mixture. ¹H NMR (600 MHz, DMSO-d_6) \delta = 7.76 (dd, J = 8.1, 1.4 Hz, 1H), 7.51 - 7.48 (m, 1H), 7.32 - 7.27 (m, 2H), 5.07 (d, J = 3.4 Hz, 0.48H), 4.83 (s, 1H), 5.06 (d, J = 3.4 Hz, 0.52H) 1.75 (dd, J = 14.0, 3.4 Hz, 1H), 1.49 (dd, J = 14.0, 8.4 Hz, 1H), 0.96 (s, 9H). ¹³C NMR (150 MHz, DMSO-d_6) \delta 162.97, 154.02, 131.99, 131.30, 129.88, 128.28, 123.26, 115.40, 66.59, 47.89, 30.40, 30.17. HRMS (m/z) [ESI]: calculated for C₁₄H₁₉N₂O₂⁺ m/z [M+H]⁺: 247.1441, found 247.1442.**

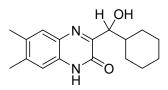

3-(cyclohex-3-en-1-yl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3ah). white solid (68.7 mg, 67%). mp: 134 - 135 °C. dr 1:1, as an inseparable diastereomeric mixture. ¹H NMR (600 MHz, DMSO-***d***₆) \delta = 12.45 (d,** *J***=7.8, 1H), 7.79 (dd,** *J* **= 8.1, 3.1 Hz, 1H), 7.52 (t,** *J* **= 7.7 Hz, 1H), 7.32-7.29 (m, 2H), 5.64- 5.57 (m, 2H), 4.95 (d,** *J* **= 30.6 Hz, 1H), 4.80 (d,** *J* **= 5.9 Hz, 0.5H), 4.73 (d,** *J* **= 6.6 Hz, 0.5H) 2.28 - 2.15 (m, 1H), 2.04 - 1.80 (m, 5H), 1.45.1.27 (m, 1H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 161.56, 161.54, 154.30, 154.20, 131.84, 131.32, 131.24, 130.11, 130.09, 128.43, 128.41, 126.93, 126.51, 126.34, 123.36, 72.31, 71.90, 37.33, 36.97, 27.98, 25.93, 25.60, 24.81, 24.62, 23.36. HRMS (m/z) [ESI]: calculated for C₁₅H₁₇N₂O₂⁺ m/z [M+H]⁺ : 257.1285, found 257.1282.**

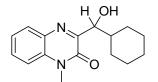

3-(1-hydroxy-3-phenylpropyl)quinoxalin-2(1*H***)-one (3ai). white solid (80.7 mg, 72%). mp: 158 - 159 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.41 (s, 1H), 7.78 (dd,** *J* **= 8.5, 1.3 Hz, 1H), 7.51 (td,** *J* **= 7.5, 1.4 Hz, 1H), 7.32 - 7.12 (m, 9H), 5.12 (d,** *J* **= 6.4 Hz, 1H), 4.94 - 4.89 (m, 1H), 2.82 - 2.69 (m, 2H), 2.19 - 2.10 (m, 1H), 2.00 - 1.90 (m, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 161.94, 154.05, 141.97, 131.94, 131.29, 129.99, 128.38, 128.30, 128.24, 125.63, 123.28, 115.34, 68.07, 36.20, 31.42. HRMS (m/z) [ESI]: calculated for C₁₇H₁₇N₂O₂⁺ m/z [M+H]⁺ : 281.1285, found 281.1294.**

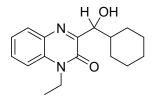

3-(1,7-dihydroxy-3,7-dimethyloctyl)quinoxalin-2(1*H***)-one (3aj). white solid (93.0 mg, 73%). mp: 136 - 137 °C. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 12.42 (s, 1H), 7.77 (dd,** *J* **= 8.0, 1.4 Hz, 1H), 7.51-7.48 (m, 1H), 7.31 - 7.28 (m, 2H), 4.99 (dd,** *J* **= 9.6, 3.3 Hz, 1H), 4.89 (s, 1H), 4.05 (s, 1H), 1.80-1.74 (m, 1H), 1.63-1.58 (m, 1H), 1.52 - 1.48 (m, 1H), 1.31 - 1.25 (m, 4H), 1.21 - 1.20 (m, 1H), 1.16 - 1.12 (m, 1H), 1.03 (d,** *J* **= 1.5 Hz, 6H), 0.94 (d,** *J* **= 6.6 Hz, 3H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 162.87, 154.12, 154.01, 131.91, 131.33, 129.89, 128.29, 123.29, 115.37, 68.80, 66.66, 43.97, 41.92, 38.19, 29.35, 29.32, 28.90, 21.30, 19.02. HRMS (m/z) [ESI]: calculated for C₁₈H₂₇N₂O₃⁺ m/z [M+H]⁺ : 319.2016, found 319.2015.**

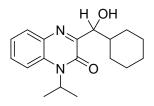

3-(1-hydroxy-3,7-dimethyloct-6-en-1-yl)quinoxalin-2(1*H***)-one (3ak). white solid (88.9 mg, 74%). mp: 151 - 152 °C. dr 1.1:1, as an inseparable diastereomeric mixture. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 12.42 (s, 1H), 7.76 (dd,** *J* **= 7.4, 2.8 Hz, 1H), 7.50 (t,** *J* **= 7.7 Hz, 1H), 7.31 - 7.28 (m, 2H), 5.08 - 5.0 (m, 1H), 5.00 (d,** *J* **= 4.3 Hz, 0.52H), 4.98 (d,** *J* **= 4.4 Hz, 0.48H), 2.03 - 1.90z (m, 2H), 1.81 - 1.74 (m, 1H), 1.68-1.64 (m, 1H), 1.60 (d,** *J* **= 4.3 Hz, 3H), 1.54 (d,** *J* **= 5.4 Hz, 3H), 1.46 - 1.44 (m, 1H), 1.27 - 1.12 (m, 2H), 0.94 (d,** *J* **= 6.6 Hz, 1H), 0.90 (d,** *J* **= 6.7 Hz, 2H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 162.75, 162.62, 154.14, 154.06, 131.98, 131.95, 131.36, 131.33, 130.42, 130.37, 129.92, 129.88, 128.31, 128.28, 124.79, 124.71, 123.25, 115.39, 66.91, 66.70, 42.09, 41.86, 37.51, 35.89, 28.84, 28.57, 25.52, 25.51, 25.06, 24.71, 20.43, 18.88, 17.52. HRMS (m/z) [ESI]: calculated for C₁₈H₂₅N₂O₂⁺ m/z [M+H]⁺: 301.1911, found 301.1914.**

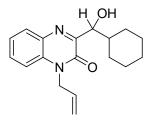

3-(3-(4-(tert-butyl)phenyl)-1-hydroxy-2-methylpropyl)quinoxalin-2(1*H***)-one (3al). white solid (99.5 mg, 71%). mp: 165 - 166 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.34 (s, 1H), 7.77 (dd,** *J* **= 8.1, 1.2 Hz, 1H), 7.52 - 7.48 (m, 1H), 7.31 - 7.25 (m, 2H), 7.15 - 7.13 (m, 2H), 7.00 - 6.98 (m, 2H), 5.09 (d,** *J* **= 6.4 Hz, 1H), 4.72 (t,** *J* **= 6.3 Hz, 1H), 2.87 (dd,** *J* **= 13.3, 4.6 Hz, 1H), 2.31 (dd,** *J* **= 13.4, 8.8 Hz, 1H), 1.22 (s, 1H), 1.19 (s, 9H), 0.79 (d,** *J* **= 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 161.57, 154.14, 147.60, 137.55, 131.83, 131.22, 129.95, 128.84, 128.30, 124.61, 123.24, 115.30, 72.65, 38.39, 36.64, 33.94, 31.19, 16.68. HRMS (m/z) [ESI]: calculated for C₂₂H₂₇N₂O₂⁺ m/z [M+H]⁺: 351.2067, found 351.2066.**

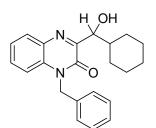

3-(cyclohexyl(hydroxy)methyl)-6-methylquinoxalin-2(1*H***)-one (3ba) /3-(cyclohexyl(hydroxy)methyl)-7-methylquinoxalin-2(1***H***)-one (3ba'). white solid (85.0 mg, 78%). mp: 142-143 °C. ¹H NMR (600 MHz, DMSO-d_6) \delta 12.36 (s, 1H), 7.66 (d, J = 8.2 Hz, 0.37H), 7.58 (d, J = 2.1 Hz, 0.65H), 7.34 (dd, J = 1.9,8.3 Hz, 0.65H), 7.21 (d, J = 8.3 Hz, 0.65H), 7.12 (dd, J = 1.9, 8.3 Hz, 0.39H), 7.08 (s, 0.37H), 4.77 (d, J = 6.9 Hz, 1H), 4.66 (d, J = 6.6 Hz, 0.56H), 4.46 (d, J = 6.4 Hz, 0.44H), 2.39 (s, 1H), 2.37 (s, 2H), 1.94 - 1.88 (m, 1H), 1.66 - 1.56 (m, 4H), 1.44 - 1.41 (m, 1H), 1.21 - 1.07 (m, 5H). ¹³C NMR (150 MHz, DMSO-d_6) \delta 161.67, 160.61, 154.39, 154.16, 140.24, 132.67, 131.73, 131.20, 129.69, 129.53, 129.52, 128.13, 128.02, 124.72, 115.12, 114.98, 72.90, 72.87, 41.40, 41.37, 29.54, 27.38, 27.31, 26.10, 25.90, 25.60, 21.29, 20.44. HRMS (m/z) [ESI]: calculated for C₁₆H₂₀N₂NaO₂⁺ m/z [M+Na]⁺ : 295.1417, found 295.1422.**

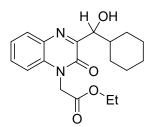

3-(cyclohexyl(hydroxy)methyl)-6-methoxyquinoxalin-2(1*H***)-one (3ca). white solid (93.4 mg, 81%). mp: 136 - 137 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.40 (s, 1H), 7.30 (d,** *J* **= 2.8 Hz, 1H), 7.24 (d,** *J* **= 8.9 Hz, 1H), 7.16 (dd,** *J* **= 8.9, 2.8 Hz, 1H), 5.29 - 4.78 (m, 1H), 4.67 (d,** *J* **= 5.9 Hz, 1H), 3.81 (s, 3H), 1.95 - 1.89 (m, 1H), 1.66 - 1.57 (m, 4H), 1.46 - 1.43 (m, 1H), 1.21 - 1.05 (m, 5H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 162.15, 155.41, 153.87, 131.93, 125.93, 119.34, 116.30, 109.88, 72.98, 55.60, 41.39, 29.56, 27.29, 26.08, 25.89, 25.59. HRMS (m/z) [ESI]: calculated for C₁₆H₂₀N₂NaO₃⁺ m/z [M+Na]⁺: 311.1366, found 311.1365.**


6-chloro-3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3da). yellow solid (78.5 mg, 67%). mp: 159 - 160 °C. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 12.49 (s, 1H), 7.78 (d,** *J* **= 8.5 Hz, 1H), 7.33 - 7.30 (m, 2H), 4.85 (d,** *J* **= 6.6 Hz, 1H), 4.66 (d,** *J* **= 4.2 Hz, 1H), 1.93-1.87 (m, 1H), 1.67 - 1.57 (m, 4H), 1.46 - 1.40 (m, 1H), 1.22 - 1.07 (m, 5H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 162.48, 153.99, 134.02, 132.92, 130.07, 129.68, 123.41, 114.65, 72.75, 41.33, 29.47, 27.35, 26.06, 25.86, 25.57. HRMS (m/z) [ESI]: calculated for C₁₅H₁₈ClN₂O₂⁺ m/z [M+H]⁺: 293.1051, found 293.1051.**


3-(cyclohexyl(hydroxy)methyl)-6,7-dimethylquinoxalin-2(1*H***)-one (3ea). white solid (90.5 mg, 79%). mp: 133 - 134 °C. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 12.30 (s, 1H), 7.55 (s, 1H), 7.06 (s, 1H), 4.75 (d,** *J* **= 6.8 Hz, 1H), 4.63 (t,** *J* **= 6.4 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H), 1.92-1.87 (m, 1H), 1.67 - 1.57 (m, 3H), 1.43-1.41 (m, 1H), 1.18 - 1.04 (m, 5H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 160.43, 154.34, 139.59, 132.08, 129.80, 129.78, 128.29, 115.40, 72.91, 41.40, 29.55, 27.37, 26.13, 25.92, 25.63, 19.83, 19.00. HRMS (m/z) [ESI]: calculated for C₁₇H₂₂KN₂O₂⁺ m/z [M+K]⁺ : 325.1313, found 325.1309.**

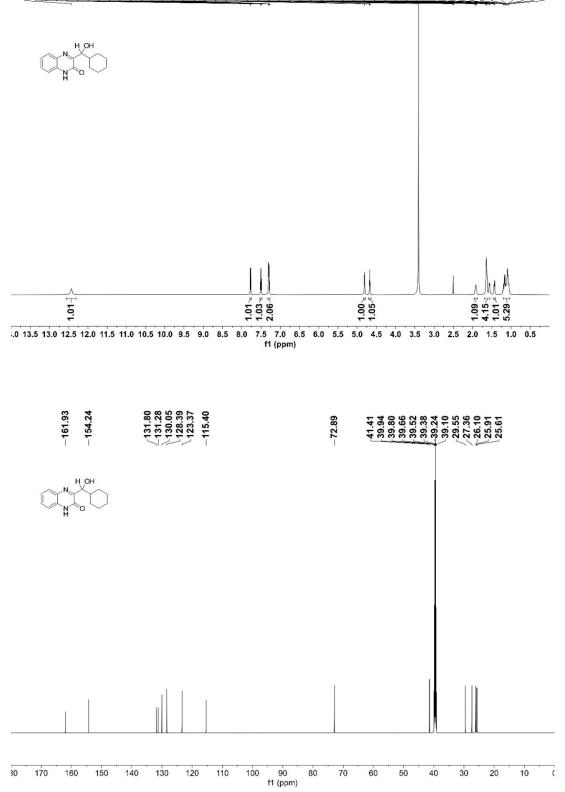

3-(cyclohexyl(hydroxy)methyl)-1-methylquinoxalin-2(1*H***)-one (3fa**). white solid (81.7 mg, 75%). mp: 118 - 119 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.83 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.64 - 7.61 (m, 1H), 7.56 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.40 - 7.37 (m, 1H), 4.82 (d, *J*= 6.7 Hz, 1H), 4.71 (t, *J* = 6.0 Hz, 1H), 3.63 (s, 3H), 1.95 - 1.90 (m, 1H), 1.60-1.56 (m, 4H), 1.45 - 1.43 (m, 1H), 1.21 - 1.06 (m, 5H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 160.40, 153.56, 133.00, 131.54, 130.29, 129.11, 123.53, 114.81, 73.27, 41.33, 29.57, 28.91, 27.27, 26.06, 25.88, 25.57. HRMS (m/z) [ESI]: calculated for C₁₆H₂₁N₂O₂⁺ m/z [M+H]⁺: 273.1598, found 273.1560.


3-(cyclohexyl(hydroxy)methyl)-1-ethylquinoxalin-2(1*H***)-one (3ga). white solid (83.6 mg, 73%). mp: 144 - 145 °C. ¹H NMR (600 MHz, DMSO-***d***₆) \delta 7.85 - 7.84 (m, 1H), 7.63-7.62 (m, 2H), 7.39 - 7.37 (m, 1H), 4.83 (d,** *J* **= 6.8 Hz, 1H), 4.72 (t,** *J* **= 6.5 Hz, 1H), 4.32 - 4.22 (m, 2H), 1.93 - 1.88 (m, 1H), 1.67 - 1.56 (m, 4H), 1.43 - 1.41 (m, 1H), 1.23 (t,** *J* **= 7.1 Hz, 3H), 1.18 - 1.04 (m, 5H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 160.46, 153.10, 131.86, 131.77, 130.41, 129.46, 123.44, 114.49, 73.01, 41.40, 36.73, 29.49, 27.38, 26.06, 25.84, 25.56, 12.38. HRMS (m/z) [ESI]: calculated for C₁₇H₂₃N₂O₂⁺ m/z [M+H]⁺ : 287.1754, found 287.1753.**

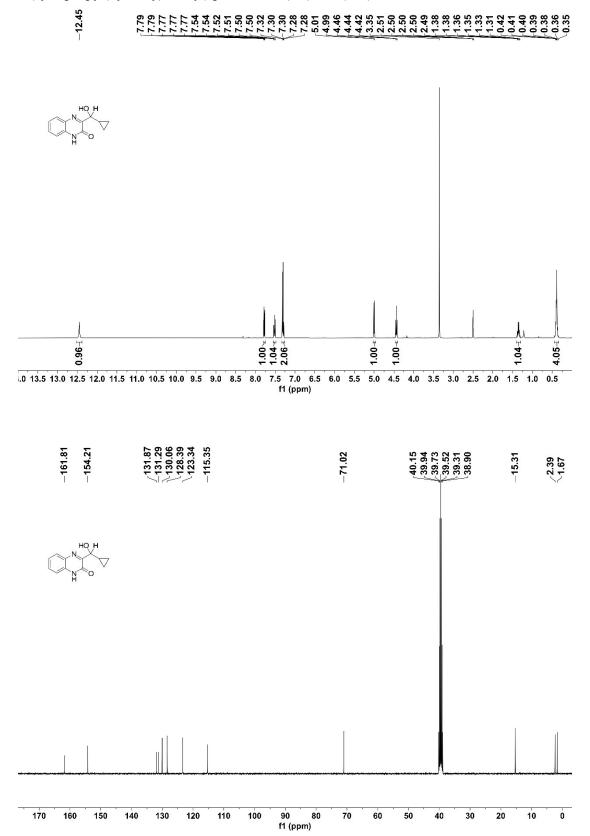

3-(cyclohexyl(hydroxy)methyl)-1-isopropylquinoxalin-2(1*H***)-one (3ha). yellow liquid (96.1 mg, 80%). ¹H NMR (600 MHz, DMSO-***d***₆) \delta 7.96 (dd,** *J* **= 8.2, 1.4 Hz, 1H), 7.78 (dd,** *J* **= 8.3, 1.4 Hz, 1H), 7.67 (ddd,** *J* **= 8.3, 7.0, 1.5 Hz, 1H), 7.58 (ddd,** *J* **= 8.3, 6.9, 1.4 Hz, 1H), 5.49-5.43 (m, 1H), 5.01 (d,** *J* **= 6.6 Hz, 1H), 4.71 (t,** *J* **= 6.8 Hz, 1H), 1.94 - 1.89 (m, 1H), 1.79 - 1.75 (m,1H), 1.66 - 1.55 (m, 3H), 1.37 (t,** *J* **= 5.8, 6H), 1.28 - 1.25 (m, 1H), 1.13 - 1.05 (m, 5H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta 154.49, 152.06, 139.34, 137.45, 129.62, 128.20, 126.54, 126.46, 72.73, 68.89, 42.44, 29.18, 28.09, 26.04, 25.81, 25.56, 21.58, 21.51. HRMS (m/z) [ESI]: calculated for C₁₈H₂₅N₂O₂⁺ m/z [M+H]⁺ : 301.1911, found 301.1911.**

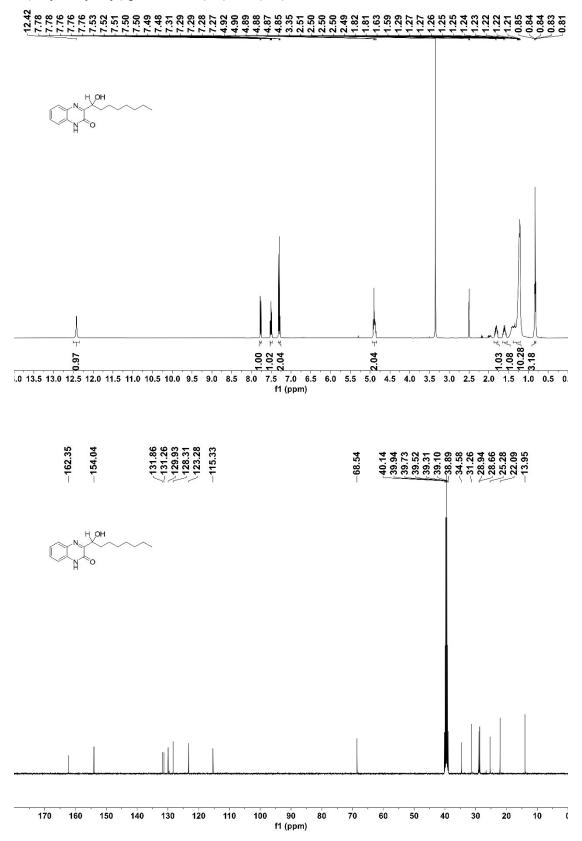
1-allyl-3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3**ia). white solid (82.3 mg, 69%). mp: 128 - 129 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 (dd, J = 8.0, 1.4 Hz, 1H), 7.61-7.57 (m, 1H), 7.50 - 7.48 (m, 1H), 7.39 - 7.35 (m, 1H), 5.98 - 5.89 (m, 1H), 5.19 - 5.16 (m, 1H), 5.03 - 4.99 (m, 1H), 4.95 - 4.8 (m, 2H), 4.86 (d, J = 6.8 Hz, 1H), 4.72 (d, J = 6.5 Hz, 1H), 1.97 - 1.85 (m, 1H), 1.68 - 1.56 (m, 4H), 1.44 - 1.42 (m, 1H), 1.21 - 1.07 (m, 5H). ¹³C NMR (100 MHz, DMSO- d_6) δ 160.58, 153.19, 133.14, 132.02, 131.75, 131.56, 130.23, 129.30, 123.56, 116.99, 115.07, 73.08, 43.64, 41.44, 29.46, 27.41, 26.05, 25.83, 25.56. HRMS (m/z) [ESI]: calculated for C₁₈H₂₃N₂O₂⁺ m/z [M+H]⁺: 299.1754, found299.1751.

1-benzyl-3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H***)-one (3ja). white solid (100.4 mg, 72%). mp: 123 - 124 °C. ¹H NMR (600 MHz, DMSO-d_6) \delta 7.86 (dd, J = 8.0, 1.5 Hz, 1H), 7.53-7.50 (m, 1H), 7.45 (dd, J = 8.6, 1.2 Hz, 1H), 7.36 - 7.33 (m, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.24 (t, J = 8.1 Hz, 3H), 5.57 - 5.46 (m, 2H), 4.94 (d, J = 6.7 Hz, 1H), 4.79 (t, J = 6.4 Hz, 1H), 1.96 (dd, J = 14.8, 7.1 Hz, 1H), 1.72 - 1.57 (m, 4H), 1.46 (d, J = 11.2 Hz, 1H), 1.22 - 1.10 (m, 5H). ¹³C NMR (150 MHz, DMSO-d_6) \delta 160.88, 153.84, 135.92, 132.12, 131.96, 130.39, 129.50, 128.83, 127.48, 126.83, 123.80, 115.17, 73.20, 44.76, 41.58, 29.56, 27.57, 26.13, 25.91, 25.64. HRMS (m/z) [ESI]: calculated for C₂₂H₂₅N₂O₂+ m/z [M+H]+ : 349.1911, found 349.1914.**



ethyl 2-(3-(cyclohexyl(hydroxy)methyl)-2-oxoquinoxalin-1(2*H*)-yl)acetate (3ka). Yellow liquid (106.1 mg, 77%). ¹H NMR (600 MHz, DMSO- d_6) δ 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.62-7.59 (m, 1H), 7.52 (dd, J = 8.5, 1.2 Hz, 1H), 7.42 - 7.39 (m, 1H), 5.15 - 5.08 (m, 2H), 4.95 (d, J = 6.8 Hz, 1H), 4.71 (t, J = 6.5 Hz, 1H), 4.20 - 4.12 (m, 2H), 1.92 - 1.87 (m, 1H), 1.71 - 1.57 (m, 4H), 1.42 - 1.41 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.17 - 1.07 (m, 5H). ¹³C NMR (150 MHz, DMSO- d_6) δ 167.50, 160.49, 153.42, 132.30, 131.68, 130.50, 129.46, 123.89, 114.61, 61.41, 43.60, 41.57, 29.41, 27.55, 26.07, 25.84, 25.58, 14.02. HRMS (m/z) [ESI]: calculated for C₁₉H₂₅N₂O₄⁺ m/z [M+H]⁺ : 345.1809, found 345.1808.


9. Copies of ¹H NMR and ¹³C NMR for the Products


3-(cyclohexyl(hydroxy)methyl)quinoxalin-2(1*H*)-one (3aa)

3-(cyclopropyl(hydroxy)methyl)quinoxalin-2(1*H*)-one (3ab)

3-(1-hydroxyoctyl)quinoxalin-2(1*H*)-one (3ac).

12.43 7.78 7.76 7.76 7.52 7.52 7.52 7.52 77.23 77.23 77.22 77.23 50 ñ Ň 0 A 1.08 1.03 1.06 1.14 1.14 3.08 3.08 0.98 1.01 1.04 2.08 0.92 .0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. f1 (ppm) -154.06 131.89 131.27 129.94 128.32 128.32 128.32 -162.37 68.52 39.94 39.55 39.55 39.55 39.55 39.55 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.39 39.555

3-(1-hydroxydecyl)quinoxalin-2(1*H*)-one (3ad)

90

f1 (ppm)

80

70

50

40

30

20

60

10

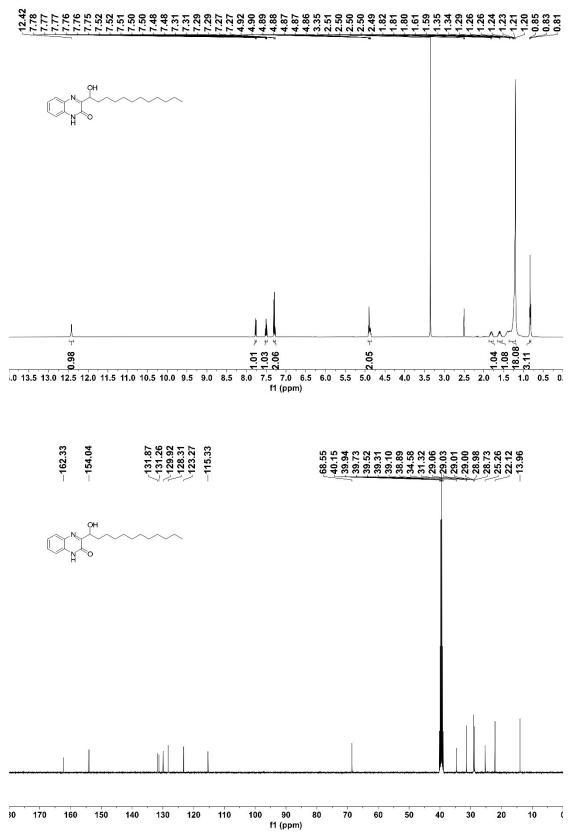
Ċ

30

170

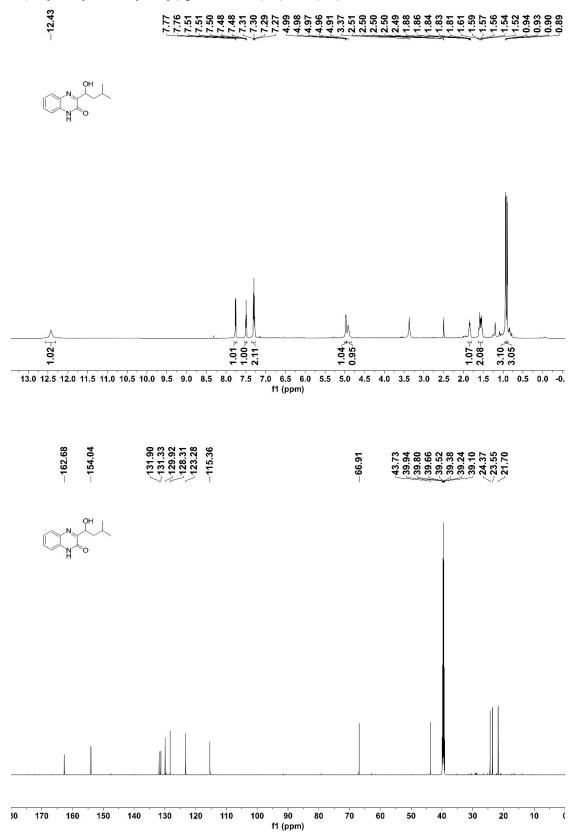
160

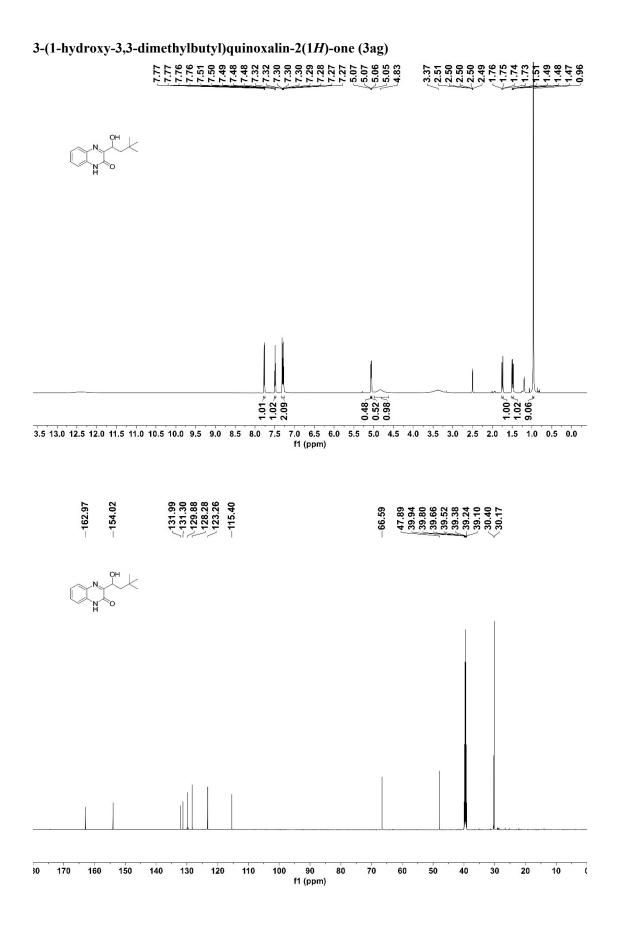
150

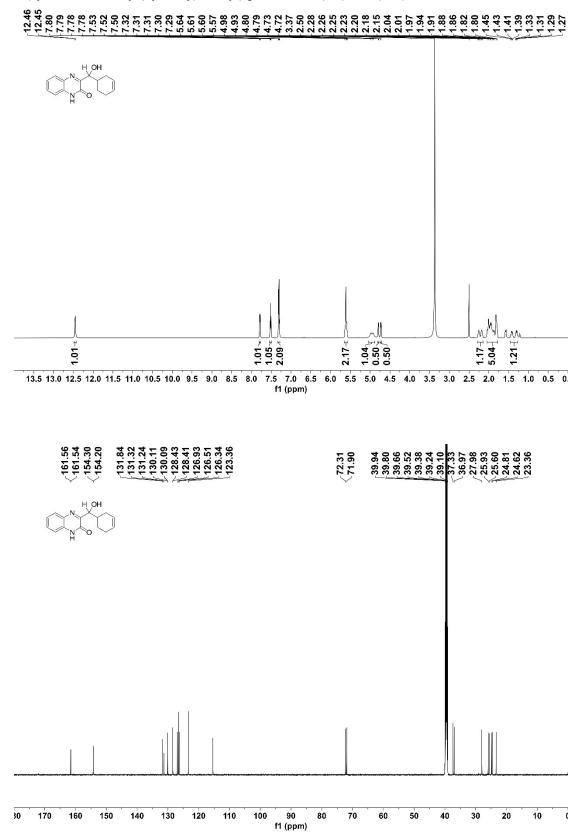

140

130

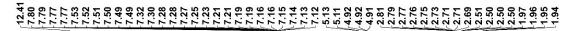
120

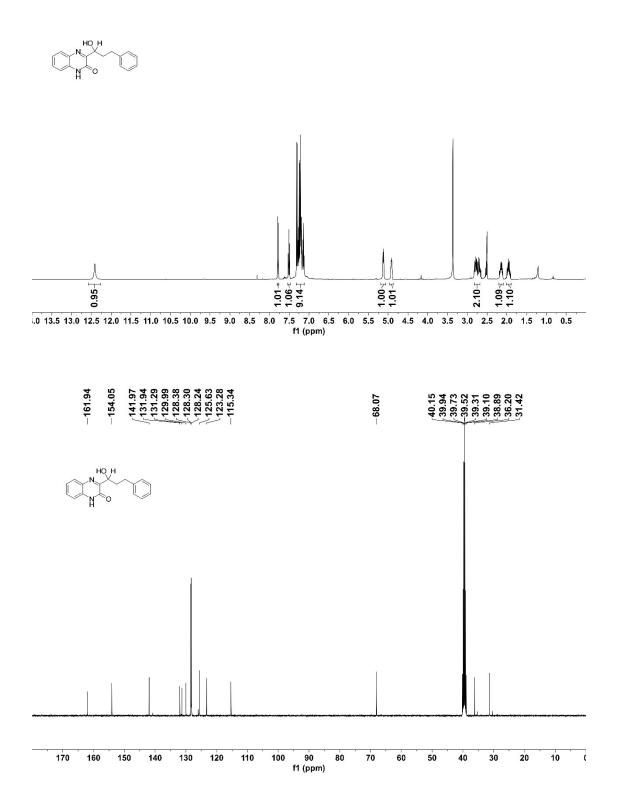

110

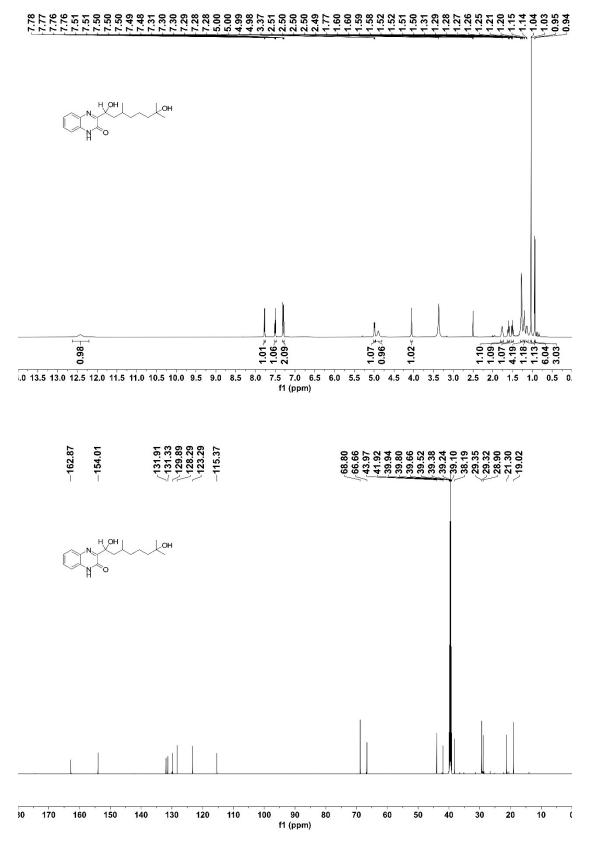

100


3-(1-hydroxydodecyl)quinoxalin-2(1*H*)-one (3ae)

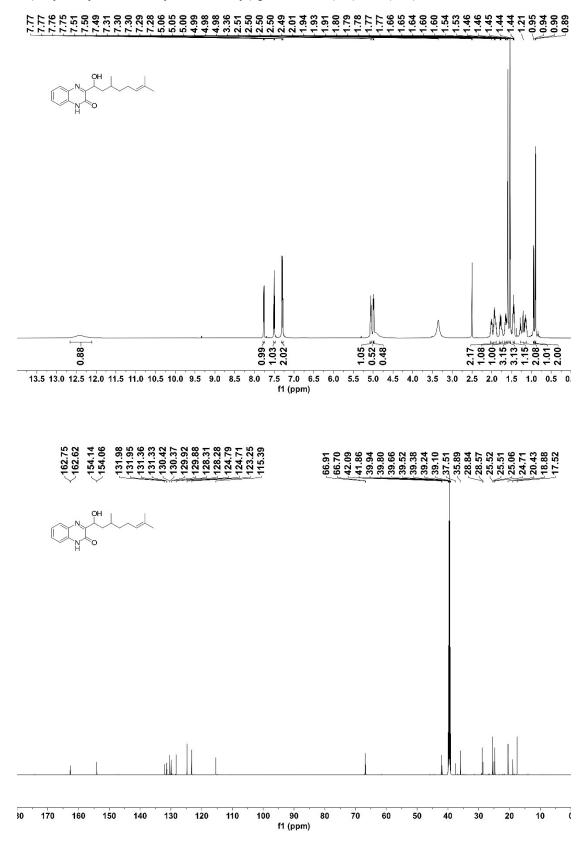
3-(1-hydroxy-3-methylbutyl)quinoxalin-2(1*H*)-one (3af).

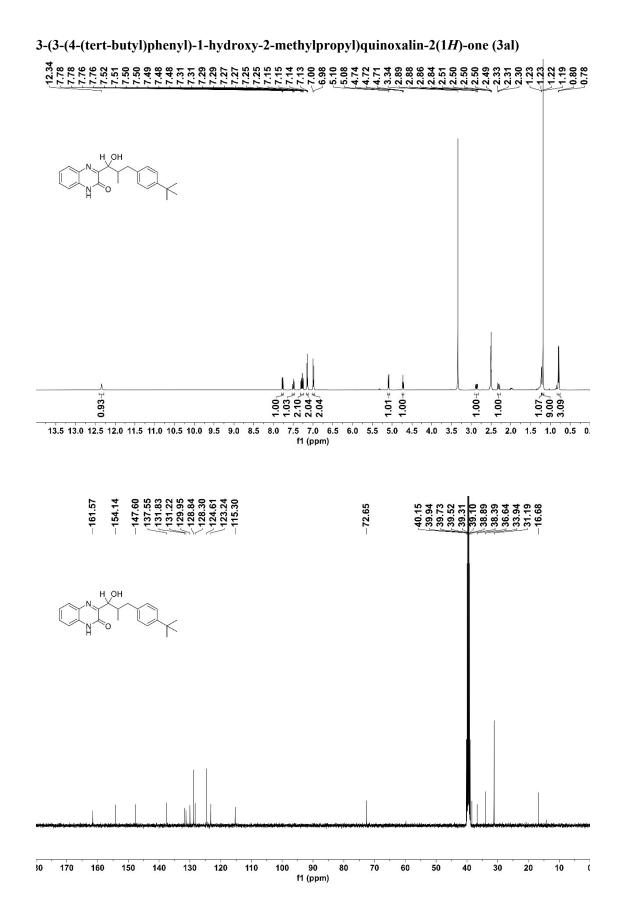


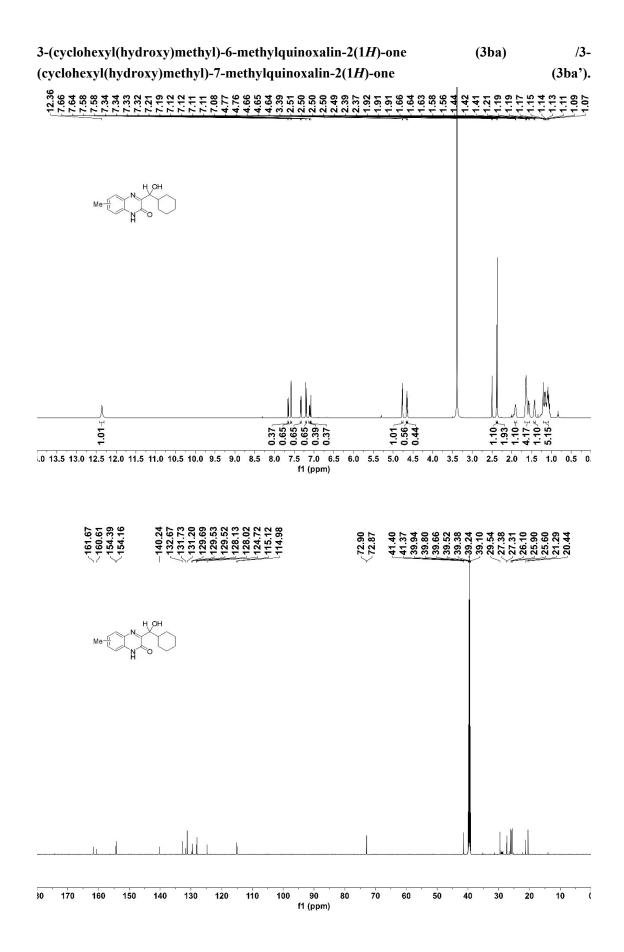



3-(cyclohex-3-en-1-yl(hydroxy)methyl)quinoxalin-2(1*H*)-one (3ah)

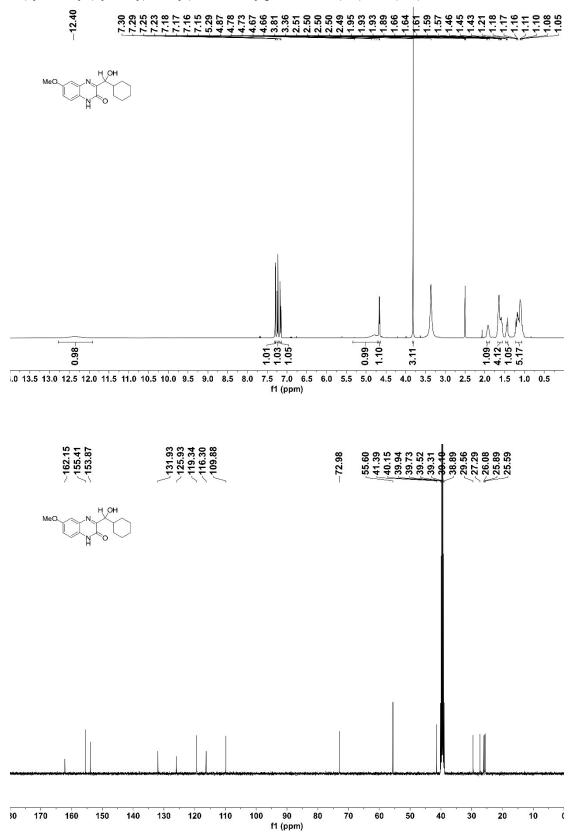
3-(1-hydroxy-3-phenylpropyl)quinoxalin-2(1*H*)-one (3ai)

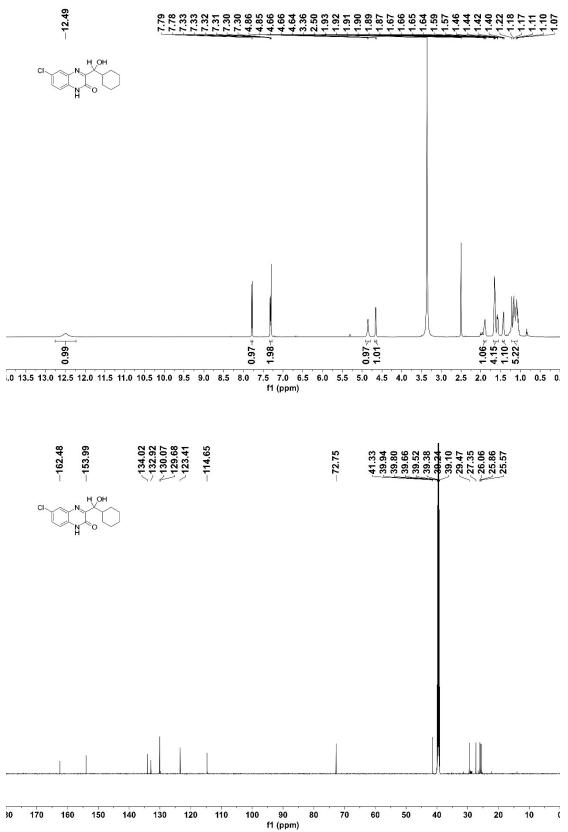


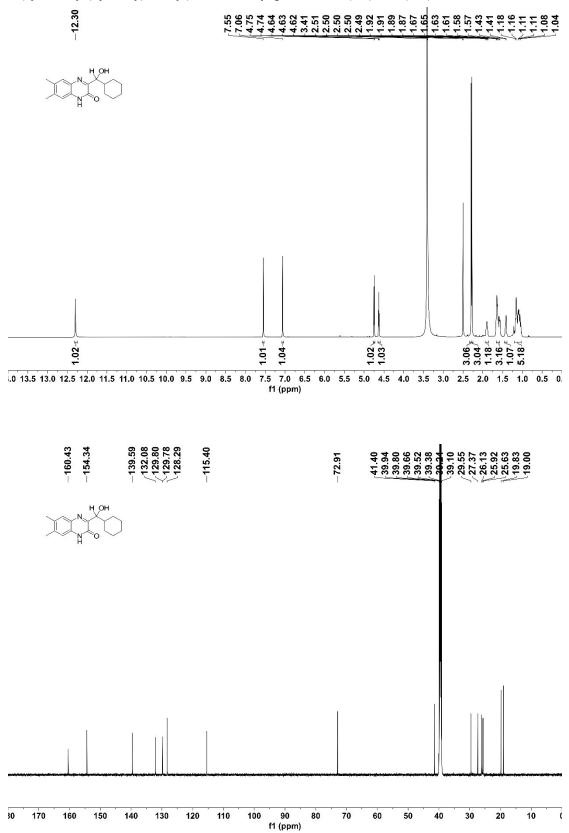


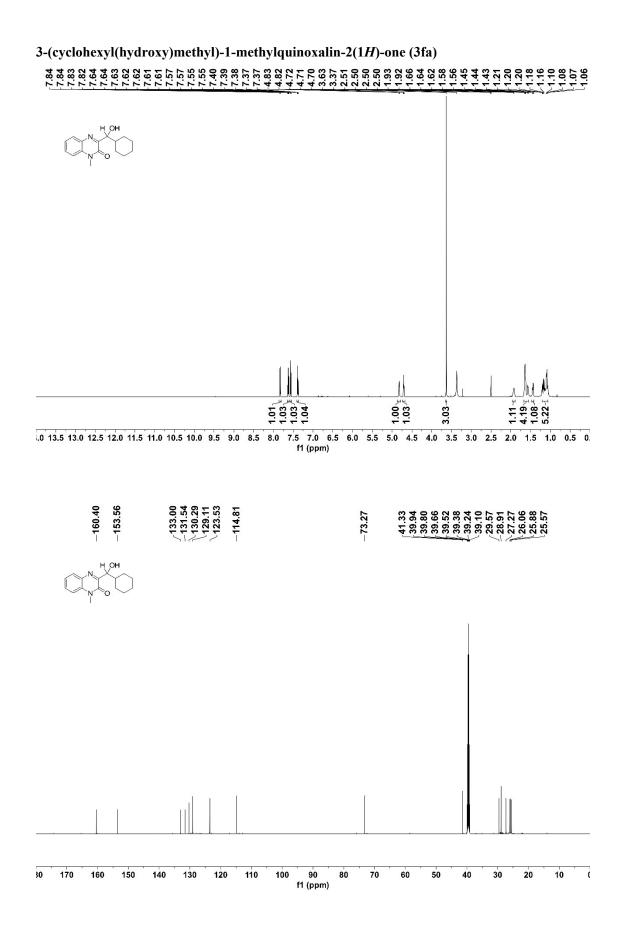


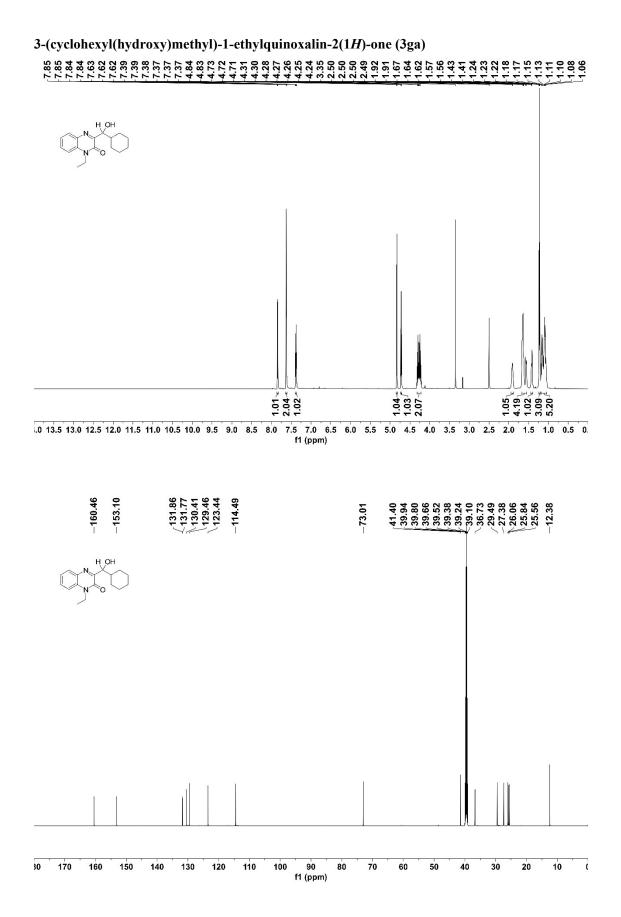
3-(1,7-dihydroxy-3,7-dimethyloctyl)quinoxalin-2(1H)-one (3aj).


3-(1-hydroxy-3,7-dimethyloct-6-en-1-yl)quinoxalin-2(1H)-one (3ak)

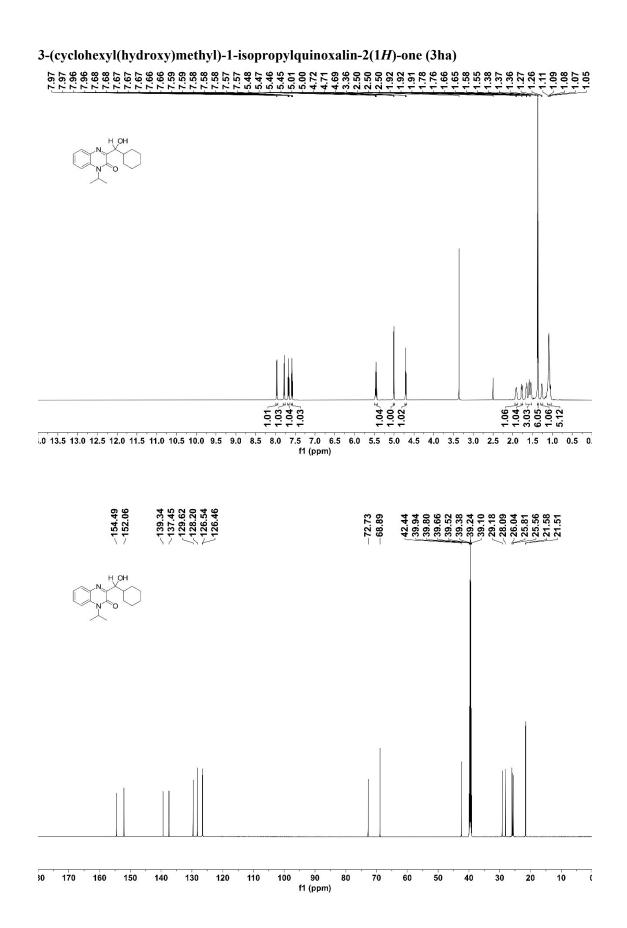


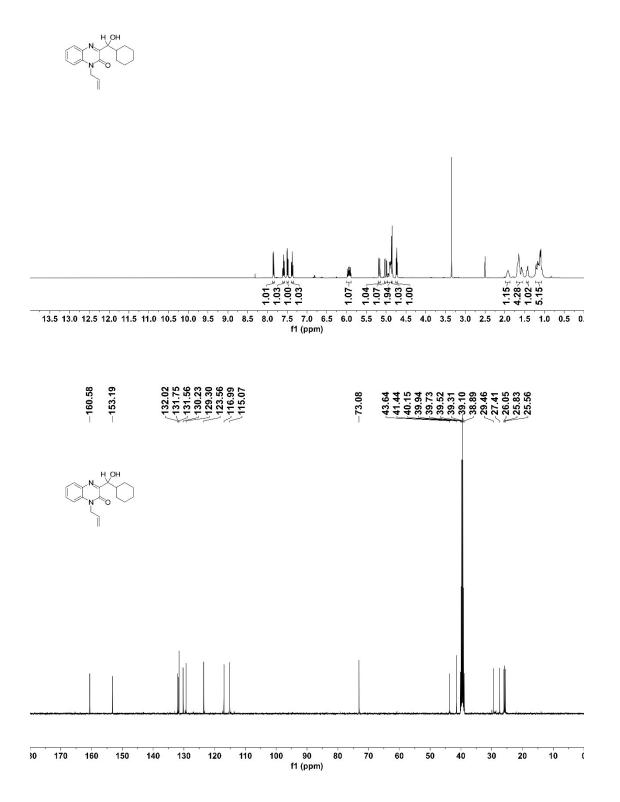

3-(cyclohexyl(hydroxy)methyl)-6-methoxyquinoxalin-2(1*H*)-one (3ca)

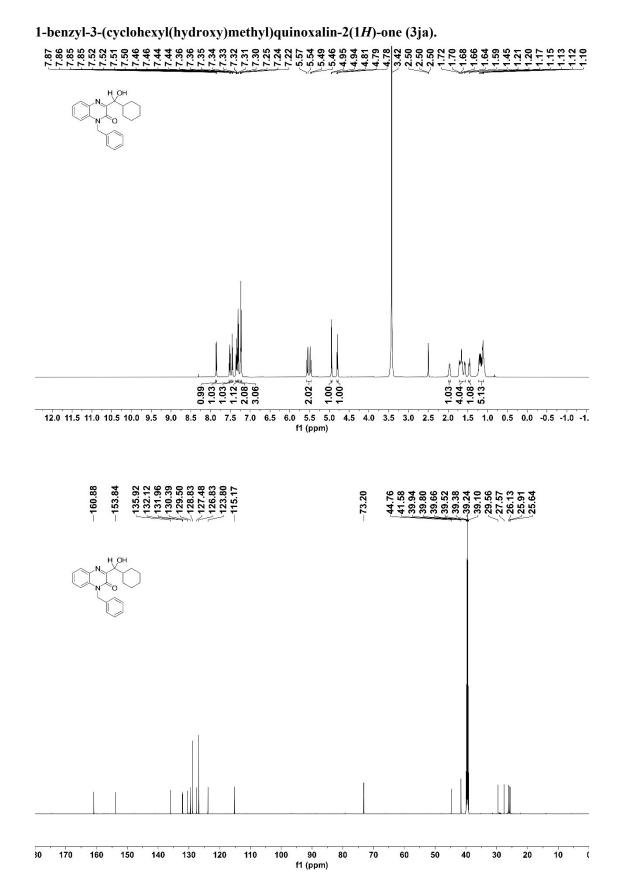


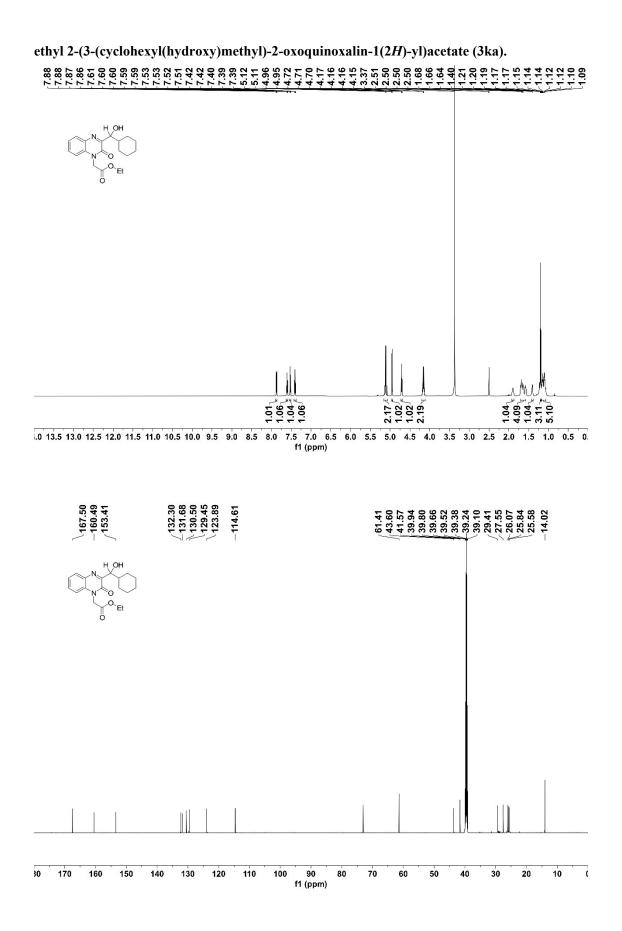


3-(cyclohexyl(hydroxy)methyl)-6,7-dimethylquinoxalin-2(1*H*)-one (3ea)




S44




S45

S46

