Supplementary Information for

Asymmetric Sonogashira C(sp³)-C(sp) Bond Coupling Enabled by Copper(I) Complex of New Guanidine-Hybrid Ligand

Jinzhao Li, Lichao Ning, Qingfa Tan, Xiaoming Feng, and Xiaohua Liu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

*Corresponding Author: Xiaohua Liu: liuxh@scu.edu.cn

Table of Contents

1. General Information	3
2. General procedure for the synthesis of 2-picolylamine-based guanidine	e-amide
ligands	3
3. Optimization of reaction conditions	8
4. Full list of the coupling products.	11
5. General procedure for the catalytic reactions	12
6. Characterization of the products	13
7. X-ray crystal data	47
8. Mechanistic Studies	49
9. Computational details	60
10. Copies of NMR spectra for the ligands and the products	74
11. References	121
12. Author Contributions	121

1. General Information

Unless otherwise noted, reagents were obtained from commercial sources and used without further purification. Column chromatography was generally performed on silica gel (300–400 mesh) and reactions were monitored with thin-layer chromatography (TLC) using 254 nm UV light and basic KMnO₄ aqueous.

NMR characterization data were collected on bruker ASCENDTM operating at 400 MHz for ¹H NMR, 101 MHz for ¹³C{1H} NMR (with complete proton decoupling), and 376 MHz for ¹⁹F{1H} NMR (with complete proton decoupling). ¹H NMR chemical shifts were reported in ppm from tetramethylsilane with the TMS resonance as the internal standard ($\delta = 0.00$). ¹³C NMR spectra chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$, CD₂Cl₂, $\delta = 53.8$, (CD₃)₂CO, $\delta = 206.3$, $\delta = 29.8$, CD₃CN, $\delta = 118.3$, $\delta = 1.3$). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. Enantiomeric ratios (er) were determined by high-performance liquid chromatography (HPLC) analysis using the corresponding commercial chiral column as stated in the experimental procedures at 25 °C.

Optical rotations were measured on Rudolph Research Analytic Automatic Polarimeter, and reported as follows: $[\alpha]_D^T$ (c g/100 mL, in solvent).

High-resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z).

Infrared spectra (IR) were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory and the peaks are reported as absorption maxima (v, cm⁻¹).

All catalytic reactions were run in over-dried glassware. Tetrahydrofuran (THF), toluene, and diethyl ether (Et_2O) were distilled from sodium benzophenone ketyl. Ethyl acetate (EtOAc), and dichloromethane (DCM) were distilled over CaH₂.

The preparation of alkyl halide¹ followed the literature.

2. General procedure for the synthesis of 2-picolylamine-based guanidineamide ligands

<u>General Procedure for the synthesis of guanidine G.</u> In an over-dried RB flask, amide A (1.0 mmol,1.0 equiv.) was dissolved in THF (20 mL) and cooled to -20 °C under nitrogen atmosphere. *n*-BuLi (2.4 M in hexane, 2.2 mmol, 2.2 equiv.) was added dropwise. After stirring at -20 °C for 20 mins, *N*,*N*-diisopropylcarbodiimide (1.2 mmol, 1.2 equiv.) was added dropwise. The reaction mixture was slowly warmed up to rt and further stirred for 48 h. The reaction was quenched with water (25 mL) at 0 °C and extracted with dichloromethane (3 × 20 mL). The combined organic layer was washed with brine, then dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel (eluent: DCM/MeOH/NEt₃ = 85:15:1) to afford the corresponding guanidine.

Guanidine G-PrPy

1.0 mmol scale, 130 mg, pale yellow oil, 39% yield. $[\alpha]_D^{20} = -15.0$ (*c* 0.60, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 8.94 (brs, 1H), 8.56 (t, J = 5.9 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.34 (dd, J = 12.4, 8.0 Hz, 1H), 7.25 - 7.13 (m, 1H), 5.88 (brs, 1H), 4.15 - 3.42 (m, 4H), 3.10 - 2.92 (m, 2H), 2.14 - 2.07 (m, 1H), 1.95 - 1.83 (m, 1H), 1.76 - 1.67 (m, 2H), 1.22 - 0.88 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 174.4, 152.2, 149.1, 149.0, 136.9, 122.57, 121.96, 60.7, 60.6, 47.3, 47.2, 30.8, 30.6, 26.1, 26.0, 24.8, 23.3.

HR-MS (ESI) calcd for C₁₈H₃₀N₅O⁺ ([M+H]⁺): 332.2445, found 332.2441;

IR (neat) 13326, 2964, 2868, 1639, 1589, 1499, 1436, 1169, 1124, 995, 735 cm⁻¹.

Guanidine G-qPrPy

1.0 mmol scale, 157 mg, pale yellow oil, 45% yield. $[\alpha]_D^{20}$ = -16.3 (*c* 0.44, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 9.21 (brs, 1H), 8.58 - 8.56 (m, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 6.2 Hz, 1H), 5.90 (brs, 1H), 4.17 (m, 3H), 3.15 - 3.07 (m, 1H), 3.00 - 2.83 (m, 1H), 2.29 - 2.22 (m, 1H), 1.86 - 1.55 (m, 4H), 1.40 (d, J = 16.8 Hz, 3H), 1.11 - 1.01 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 176.6, 156.9, 152.1, 149.1, 136.9, 122.5, 122.0, 66.4, 47.2, 47.1, 38.0, 37.4, 26.5, 26.4, 25.8, 25.7, 25.0, 22.4.

HR-MS (ESI) calcd for C₁₉H₃₂N₅O⁺ ([M+H]⁺): 346.2601, found 346.2600;

IR (neat) 3326, 2963, 2688, 1643, 1590, 1570, 1495, 1365, 1170, 1052, 753 cm⁻¹.

Guanidine G-PePy

3.0 mmol scale, 719 mg, pale yellow oil, 62% yield. $[\alpha]_D^{20}$ = +8.2 (*c* 0.33, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 9.19 (brs, 1H), 8.57 - 8.53 (m, 1H), 7.65 (t, J = 7.2 Hz, 1H), 7.37 - 7.32 (m, 1H), 7.20 - 7.17 (m, 1H), 5.96 (s, 1H), 4.61 - 3.47 (m, 4H), 3.31 (dt, J = 9.6, 4.8 Hz, 1H), 2.34 - 2.20(m, 1H), 1.99 - 1.89 (m, 1H), 1.83 - 1.60 (m, 4H), 1.55 - 1.43 (m, 2H), 1.39 - 1.23 (m, 4H), 1.18 - 0.94 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 157.4, 152.2, 149.1, 136.9, 122.4, 122.2, 58.9, 57.4, 38.0, 37.6, 35.9, 35.6, 29.4, 29.3, 27.8, 27.4, 25.0, 24.2, 23.8, 22.6, 21.6, 20.9.

HR-MS (ESI) calcd for C₂₂H₃₅N₅O⁺ ([M+H]⁺):386.2914, found 386.2910;

IR (neat) 3323, 2961, 2927, 2858, 1642, 1590, 1570, 1496, 1378, 1305, 1172, 1124, 751, 624 cm⁻¹.

Guanidine G-PiPy

1.4 mmol scale, 243 mg, pale yellow oil, 49% yield. $[\alpha]_D^{20} = -14.0$ (*c* 0.60, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (d, J = 4.8 Hz, 1H), 8.24 (brs, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.25 - 7.12 (m, 1H), 5.85 (brs, 1H), 3.99 (brs, 3H), 3.28 - 3.23 (m, 1H), 3.13 - 3.03 (m, 1H), 2.75 - 2.61 (m, 1H), 1.96 - 1.89 (m, 1H), 1.81 - 1.78 (m, 1H), 1.57 - 1.55 (m, 1H), 1.52 - 1.38 (m, 3H), 1.19 - 0.92 (m, 12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.0, 152.2, 148.9, 148.8, 136.9, 122.6, 121.8, 60.1, 45.9, 45.8, 29.8, 26.1, 26.0, 24.8, 24.1, 24.0, 23.3, 22.6.

HR-MS (ESI) calcd for C₁₉H₃₂N₅O⁺ ([M+H]⁺): 346.2601, found 346.2596;

IR (neat) 3344, 2961, 2929, 2857, 1638, 2589, 1498, 1436, 1378, 1171, 1126, 752, 619 cm⁻¹.

Guanidine G-TqPy

2.0 mmol scale, 258 mg, pale yellow oil, 33% yield. [α]_D²¹ = -58.3 (*c* 0.40, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.61 - 8.50 (m, 1H), 7.65 (q, *J* = 8.0 Hz, 1H), 7.41 - 7.31 m, 1H), 7.21 - 7.20 (m, 1H), 7.17 - 7.13 (m, 3H), 7.08 - 7.02 (m, 1H), 5.88 (s, 1H), 4.23 - 3.36 (m, 6H), 3.24 - 3.12 (m, 1H), 2.92 - 2.81 (m, 1H), 1.20 - 0.93 (m, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.2, 152.4, 149.0, 148.9, 137.0, 135.9, 135.8, 134.2, 134.1, 129.2, 126.4, 126.3, 126.1, 125.7, 125.6, 122.7, 121.8, 56.6, 56.5, 47.6, 47.5, 45.0, 31.1, 24.8, 23.3.

HR-MS (ESI) calcd for C₂₃H₃₂N₅O⁺ ([M+H]⁺): 394.2601, found 394.2599;

IR (neat) 3338, 2963, 2927, 1638, 1589, 1495, 1435, 1379, 1249, 1172, 1125, 996, 747, 626 cm⁻¹.

Guanidine G-TqPy-oMe

1.0 mmol scale, 283 mg, pale yellow oil, 70% yield. $[\alpha]_{D}^{21} = -59.8$ (c 0.40, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.52 (q, J = 8.2 Hz, 1H), 7.21 - 7.08 (m, 4H), 7.06 - 7.02 (m, 2H), 5.85 (s, 1H), 4.43 - 3.37 (m, 7H), 3.16 (dt, J = 12.8, 4.4 Hz, 1H), 2.87 (dt, J = 16.4, 10.8 Hz, 1H), 2.54 (d, J = 4.8 Hz, 3H), 1.18 - 0.96 (m, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.1, 157.7, 152.2, 137.2, 135.8, 135.7, 134.2, 134.1, 129.3, 129.2, 126.4, 126.1, 125.6, 122.1, 118.6, 56.6, 47.6, 31.1, 24.4, 24.4, 24.4, 22.4.

HR-MS (ESI) calcd for C₂₄H₃₄N₅O⁺ ([M+H]⁺): 408.2758, found 408.2752;

IR (neat) 3335, 2963, 2926, 1640, 1576, 1496, 1455, 1377, 1257, 1173, 1125, 747 cm⁻¹.

Guanidine G-TqPy^{Me2}

2.0 mmol scale, 455 mg, white solid, m. p. 88.3-89.3 °C, 54% yield. $[\alpha]_D^{21} = -69.0$ (*c* 0.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.51 - 8.42 (m, 1H), 7.53 (td, *J* = 7.6, 2.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.15 - 7.09 (m, 3H), 7.06 - 7.01 (m 2H), 4.81 (d, *J* = 6.0 Hz, 1H), 4.47 - 4.28 (m, 2H), 3.55 - 3.22 (m, 4H), 2.95 (dd, *J* = 16.0, 6.4 Hz, 1H), 1.66 (s, 3H), 1.63 (s, 3H), 1.13 (m, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.2, 165.2, 155.5, 148.1, 136.2, 134.4, 132.8, 128.8, 126.5, 125.6, 125.4, 121.1, 119.3, 57.0, 55.5, 47.2, 47.0, 29.4, 28.5, 27.9, 24.4.

HR-MS (ESI) calcd for C₂₅H₃₆N₅O⁺ ([M+H]⁺):422.2914, found 422.2909;

IR (neat) 3346, 2964, 1672, 1620, 1502, 1457, 1398, 1360, 1310, 1274, 1237, 1125, 1084, 990, 748 cm⁻¹.

Guanidine G-TqPy^{(S)-tBu}

2.0 mmol scale, 433 mg, white solid, m. p. 150.1-151.7 °C, 48% yield. $[\alpha]_D^{21} = -112.5$ (*c* 0.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 9.2 Hz, 1H), 8.54 (dd, *J* = 4.8, 1.8 Hz, 1H), 7.55 (td, *J* = 7.6, 1.9 Hz, 1H), 7.21 - 7.08 (m, 5H), 7.06 - 7.03 (m, 1H), 4.85 - 4.80 (m, 2H), 4.56 - 4.28 (m, 2H), 3.46 (s, 1H), 3.37 - 3.31 (m, 3H), 2.91 (dd, *J* = 15.9, 6.4 Hz, 1H), 1.25 - 1.23 (m, 6H), 1.15 - 1.13 (m, 3H), 1.09 - 0.98 (m, 3H), 0.85 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.9, 159.9, 155.2, 148.4, 135.2, 134.6, 132.7, 128.9, 126.4, 125.7, 125.4, 123.4, 121.6, 62.5, 55.4, 47.6, 47.1, 46.7, 35.2, 29.6, 27.2, 25.5, 24.4, 24.2, 23.2.

HR-MS (ESI) calcd for C₂₇H₄₀N₅O⁺ ([M+H]⁺): 450.3227, found 450.3225;

IR (neat) 13354, 2963, 2867, 1667, 1624, 1537, 1472, 1398, 1362, 1309, 1228, 1164, 1084, 992, 749 cm⁻¹.

<u>General Procedure for the synthesis of N-EWG guanidine.</u> In an over-dried RB flask, amide A (1.0 mmol,1.0 equiv.) and *N*,*N*-di-Boc-pyrazole-1-carbodiimide (1 mmol, 1.0 equiv.) was dissolved in DCM (10 mL). The reaction mixture was stirred for 48 h. Then, concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel (eluent: PE/EtOAc = 2:1) afforded the corresponding guanidine. *Guanidine* G³-PrPy

1.0 mmol scale, 173 mg, colorless oil, 39% yield. $[\alpha]_D^{22}$ = -84.0 (*c* 0.20, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.52 (d, *J* = 4.8 Hz, 1H), 7.81 (s, 1H), 7.65 - 7.61(m, 1H), 7.34 - 7.25 (m, 1H), 7.17 - 7.14 (m, 1H), 4.96 (s, 1H), 4.70 (dd, *J* = 16.2, 6.4 Hz, 1H), 4.48 (dd, *J* = 16.2, 5.2 Hz, 1H), 3.71 (dt, *J* = 11.2, 7.2 Hz, 1H), 3.55 (dt, *J* = 12.0, 6.6 Hz, 1H), 2.47 (s, 1H), 2.30 - 2.17 (m, 2H), 2.06 - 1.99 (m, 1H), 1.94 - 1.83 (m, 1H), 1.45 (s, 18H).

¹³C NMR δ 171.5, 157.4, 154.6, 148.9, 136.6, 122.0, 121.3, 61.6, 49.7, 44.8, 29.2, 28.0, 24.4.

HR-MS (ESI) calcd for $C_{22}H_{34}N_5O_5^+$ ([M+H]⁺): 448.2554, found 448.2548;

IR (neat) 3299, 2976, 1726, 1649, 1595, 1544, 1453, 1389, 1364, 1304, 1252, 1169, 1132, 803, 755 cm⁻¹.

Guanidine G⁴-PrPy

1.0 mmol scale, 195 mg, white solid, m. p. 136.2-137.6 °C, 38% yield. [α]_D²¹ = -87.0 (*c* 0.20, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 10.45 (s, 1H), 8.41 (d, J = 4.8 Hz, 1H), 7.58 (s, 1H), 7.42 - 7.19 (m, 12H), 7.05 (t, J = 6.2 Hz, 1H), 5.11 (s, 4H), 4.89 (t, J = 7.2 Hz, 1H), 4.63 (dd, J = 16.2, 6.0 Hz, 1H), 4.46 (dd, J = 16.2, 5.2 Hz, 1H), 3.78 - 3.72 (m, 1H), 3.65 - 3.50 (m, 1H), 2.28 - 2.18 (m, 2H), 2.10 - 1.98 (m, 1H), 1.91 - 1.86 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.0, 156.9, 154.8, 148.9, 136.7, 128.4, 128.1, 122.0, 121.3, 67.8, 62.1, 50.1, 44.6, 29.3, 24.4.

HR-MS (ESI) calcd for $C_{28}H_{30}N_5O_5^+$ ([M+H]⁺): 516.2241, found516.2239;

IR (neat) 2951, 1751, 1677, 1599, 1503, 1454, 1376, 1268, 1219, 1192, 1128, 1049, 751, 698 cm⁻¹.

3. Optimization of reaction conditions

[a] Reaction conditions: Cul (10 mol %), Guanidine (12 mol %), A1 (0.05 mmol), B1 (0.075 mmol) and Cs₂CO₃ (0.1 mmol) in THF (0.1 M) under N₂ at 30 °C. [b] ¹H NMR yields using CH₂Br₂ as an internal standard. [c] the *er* value was determined by HPLC on a chiral stationary phase.

Table S2: Screening of copper salts and other metal salts.

	Br + =-Ph	[Cu] (10 mol%) G-TqPy-°Me (12 mol%) Cs ₂ CO ₃ (2.0 equiv.) THF (0.1 M), N ₂ , 30 °C	
	A1 B1	Č1	
Entry ^[a]	metal salts	Yield [%] ^[b]	er ^[c]
1	CuCl	40	93.5:6.5
2	CuBr	69	93.5:6.5
3	Cul	81	94:6
4	CuTc	53	94:6
5	CuOAc	35	93:7
6	(CuOTf) ₂ PhH	8	93:7
7	Cu(CH ₃ CN) ₄ BF ₄	61	94:6
8	Cu(CH ₃ CN) ₄ PF ₆	51	94:6
9	Cu(PPh ₃) ₂ BH ₄	50	94:6
10	CuPhenylethynyl	48	94:6
11	CuBr ₂	41	94:6
12	FeCl ₂	-	-
13	CoCl ₂	-	-
14	NiCl ₂	-	-

[a] Reaction conditions: [M] (10 mol %), G^2 -TqPy-oMe (12 mol %), A1 (0.05 mmol), B1 (0.075 mmol) and Cs₂CO₃ (0.1 mmol) in THF (0.1 M) under N₂ at 30 °C. [b] ¹H NMR yields using CH₂Br₂ as an internal standard. [c] the *er* value was determined by HPLC on a chiral stationary phase.

Table S3: Screening of solvent.

	→ Br + =Ph A1 B1	Cul (10 mol%) G-TqPy-°Me (12 mol%) Cs ₂ CO ₃ (2.0 equiv.) solvent (0.1 M), N ₂ , 30 °C C1	
Entry ^[a]	Solvent	Yield [%] ^[b]	er ^[c]
1	THF	81	94:6
2	Et ₂ O	trace	ND
3	DCM	54	91:9
4	Toluene	trace	ND
5	MeCN	57	79:21
6	EtOAc	66	88:12
7	1,4-dioxane	63	93:7
8	DME	45	91:9

[a] Reaction conditions: Cul (10 mol %), G^2 -TqPy-oMe (12 mol %), A1 (0.05 mmol), B1 (0.075 mmol) and Cs₂CO₃ (0.1 mmol) in solvent (0.1 M) under N₂ at 30 °C. [b] 1H NMR yields using CH₂Br₂ as an internal standard. [c] the *er* value was determined by HPLC on a chiral stationary phase.

Table S4: Screening of base.

Entry ^[a]	base	Yield [%] ^[b]	er ^[c]
1	Na ₂ CO ₃	trace	ND
2	K ₂ CO ₃	36	91:9
3	K ₃ PO ₄	50	93:7
4	Cs ₂ CO ₃	81	94:6
5	Cs ₂ CO ₃ + KI (0.5 eq)	-	-
6	KOʻBu	-	-
7	КОН	19	77:23
8	DABCO	-	-
9	DIPEA	-	-

[a] Reaction conditions: Cul (10 mol %), **G²-TqPy-oMe** (12 mol %), **A1** (0.05 mmol), **B1** (0.075 mmol) and base (0.1 mmol) in THF (0.1 M) under N₂ at 30 °C. [b] 1H NMR yields using CH_2Br_2 as an internal standard. [c] the *er* value was determined by HPLC on a chiral stationary phase.

4. Full list of the coupling products.

Table S5: Full list of the scope of alkynes.

C30, 61%, 95:5 er

C31, 84%, 95:5 er

Q11

S11

C32, 85%, 95.5:4.5 er

C33, 87%, 85:15 er

C34, 86%, 80.5:19.5 er

5. General procedure for the catalytic reactions

1. General procedure A:

Under nitrogen atmosphere, an over-dried reaction tube charged with alkyl halide (0.20 mmol, 1.0 equiv.), Cul (10 mol %), **G²-TqPy-oMe** (12 mol %), Cs₂CO₃ (2.0 equiv.), and anhydrous THF (1.0 mL). Then, alkyne (0.24 mmol, 1.2 equiv.) was sequentially added to the mixture and the reaction mixture was stirred at 30 °C for 24 to 72 h. Upon completion (monitored by TLC), THF was evaporated in vacuo, then the crude mixture was purified by flash chromatography on silica gel (eluent: PE) to afford the desired product.

2. General procedure B:

Under nitrogen atmosphere, an over-dried reaction tube charged with alkyl halide (0.24 mmol, 1.2 equiv.), Cul (10 mol %), G^2 -TqPy-oMe (12 mol %), Cs_2CO_3 (2.0 equiv.), and anhydrous THF (1.0 mL). Then, alkyne (0.20 mmol, 1.0 equiv.) was sequentially added to the mixture and the reaction mixture was stirred at 30 °C for 24 to 72 h. Upon completion (monitored by TLC), THF was evaporated in vacuo, then the crude mixture was purified by flash chromatography on silica gel (eluent: PE) to afford the desired product.

3. General procedure for the racemic coupling reaction:

Under nitrogen atmosphere, an over-dried reaction tube charged with alkyl halide (0.10 mmol, 1.0 equiv.), Cul (10 mol %), L (12 mol %), Cs₂CO₃ (2.0 equiv.), and anhydrous THF (1.0 mL). Then, alkyne (0.15 mmol, 1.5 equiv.) was sequentially added to the mixture and the reaction mixture was stirred at 30 °C for 24 h. Upon completion (monitored by TLC), THF was evaporated in vacuo, then the crude mixture was purified by flash chromatography on silica gel (eluent: PE) to afford the desired product.

6. Characterization of the products

(S)-1-(4-phenylbut-3-yn-2-yl)naphthalene (C1)

General procedure A for 48 h.

0.2 mmol scale; 49.1 mg, colorless oil, 96% yield, 94:6 *er*; $[\alpha]_D^{20}$ = +73.4 (*c* 0.98, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.70 min, t₂ = 8.10 min.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.55 - 7.50 (m, 1H), 7.49 - 7.43 (m, 4H), 7.27 - 7.26 (m, 3H), 4.72 (q, J = 7.2 Hz, 1H), 1.72 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.8, 134.0, 131.6, 130.5, 129.0, 128.2, 127.7, 127.5, 126.0, 125.7, 125.5, 124.3, 123.8, 123.2, 92.8, 82.7, 29.1, 23.4.

HR-MS (ESI) calcd for $C_{16}H_{17}^+$ ([M+H]⁺): 257.1325, found 257.1329;

IR (neat) 3054, 2977, 2929, 1597, 1489, 1445, 1395, 1263, 896, 798, 776, 731, 701, 456 cm⁻¹.

	Retention Time	Area	% Area
1	6.697	6523769	94.05
2	8.100	413072	5.95

General procedure A for 48 h.

0.2 mmol scale; 48.9 mg, colorless oil, 90% yield, 94:6 *er*; $[\alpha]_D^{20}$ = +72.3 (*c* 0.98, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 5.75 min, t₂ = 7.21 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.55 - 7.51 (m, 1H), 7.49 - 7.44 (m, 2H), 7.42 (d, J = 7.2 Hz, 1H), 7.17 - 7.16 (m, 2H), 7.12 - 7.08 (m, 1H), 4.77 (q, J = 7.2 Hz, 1H), 2.43 (s, 3H), 1.74 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.0, 139.0, 134.0, 131.9, 130.6, 129.3, 129.0, 127.7, 127.4, 126.0, 125.6, 125.5, 125.4, 124.3, 123.5, 123.2, 96.8, 81.6, 29.3, 23.5, 20.8.

HR-MS (ESI) calcd for $C_{21}H_{19}^+$ ([M+H]⁺): 271.1481, found 271.1489;

IR (neat) 3058, 2975, 2928, 1597, 1510, 1485, 1452, 1395, 1309, 1164, 1118, 985, 797, 776, 756, 451 cm⁻¹.

	Retention Time	Area	% Area
1	5.886	9713938	50.12
2	7.452	9666508	49.88

	Retention Time	Area	% Area
1	5.750	4731770	94.05
2	7.212	299471	5.95

General procedure A for 48 h.

0.2 mmol scale; 46.9 mg, colorless oil, 87% yield, 94:6 *er*; $[\alpha]_D^{20}$ = +76.4 (*c* 0.94, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.27 min, t₂ = 7.66 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.49 - 7.44 (m, 2H), 7.28 - 7.25 (m, 2H), 7.17 (t, J = 7.6 Hz, 1H), 7.08 - 7.07 (m, 1H), 4.72 (q, J = 7.2 Hz, 1H), 2.30 (s, 3H), 1.72 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.9, 137.8, 134.0, 132.2, 130.6, 129.0, 128.7, 128.6, 128.1, 127.4, 126.0, 125.7, 125.5, 124.3, 123.5, 123.2, 92.4, 82.8, 29.1, 23.4, 21.2.

HR-MS (ESI) calcd for $C_{21}H_{19}^+$ ([M+H]⁺): 271.1481, found 271.1487;

IR (neat) 3044, 2975, 2927, 1599, 1510, 1484, 1450, 1395, 1372, 1309, 1000, 860, 777, 691, 503, 455 cm⁻¹.

	Retention Time	Area	% Area
1	6.352	6482340	50.40
2	7.869	6378385	49.60

	Retention Time	Area	% Area
1	6.268	4144309	94.03
2	7.663	263231	5.97

General procedure A for 48 h.

0.2 mmol scale; 51.1 mg, colorless oil, 95% yield, 94.5:5.5 *er*, $[\alpha]_D^{20}$ = +81.1 (*c* 1.02, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.42 min, t₂ = 8.36 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.87 - 7.85 (m, 1H), 7.82 - 7.80 (m, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.55 - 7.50 (m, 1H), 7.49 - 7.44 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 4.71 (q, *J* =

7.2 Hz, 1H), 2.32 (s, 3H), 1.71 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 139.0, 137.7, 134.0, 131.5, 130.6, 128.9, 127.4, 126.0, 125.7, 125.4, 124.3, 123.2, 120.7, 92.0, 82.7, 29.1, 23.4, 21.4.

HR-MS (ESI) calcd for $C_{21}H_{19}^+$ ([M+H]⁺): 271.1481, found 271.1482;

IR (neat) 3047, 2975, 2926, 1596, 1509, 1450, 1395, 1372, 1308, 1103, 816, 797, 776, 533, 447 cm⁻¹.

	Relention nine	Alea	70 Alea
1	6.427	7238632	48.83
2	8.517	7584342	51.17

	Retention Time	Area	% Area
1	6.417	2911585	94.47
2	8.360	170302	5.53

(S)-1-(4-(4-ethylphenyl)but-3-yn-2-yl)naphthalene (C5)

General procedure A for 48 h.

0.2 mmol scale; 46.2 mg, colorless oil, 81% yield, 93.5:6.5 er, $[\alpha]_D^{20}$ = +77.8 (c 0.92, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.03 min, t₂ = 8.15 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.88 - 7.81 (m, 2H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.55 - 7.51 (m, 1H), 7.50 - 7.44 (m, 2H), 7.41 - 7.34 (m, 2H), 7.12 - 7.10 (m, 2H), 4.72 (q, *J* = 7.2 Hz, 1H), 2.61 (q, *J* = 7.6 Hz, 2H), 1.72 (d, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.1, 139.0, 133.9, 131.6, 130.5, 128.9, 127.8, 127.4, 126.0, 125.7, 125.4, 124.3, 123.2, 120.9, 92.0, 82.7, 29.1, 28.7, 23.4, 15.4.

HR-MS (ESI) calcd for $C_{22}H_{21}^+$ ([M+H]⁺): 285.1638, found 285.1635;

IR (neat) 3051, 2968, 2930, 1596, 1510, 1451, 1395, 1263, 833, 798, 776, 733, 703, 553,436 cm⁻¹.

	Retention Time	Area	% Area
1	6.026	3694660	93.49
2	8.151	257202	6.51

(S)-1-(4-(4-methoxyphenyl)but-3-yn-2-yl)naphthalene (C6)

General procedure A for 48 h.

0.00

2.00

2

4.00

6.00

14.406

0.2 mmol scale; 41.4 mg, colorless oil, 74% yield, 94.5:5.5 *er*, $[\alpha]_D^{20}$ = +85.7 (*c* 0.83, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 11.58 min, t₂ = 14.41 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 7.2 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.56 - 7.52 (m, 1H), 7.51 - 7.45 (m, 2H), 7.43 - 7.36 (m, 2H), 6.87 - 6.78 (m, 2H), 4.72 (q, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 1.72 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.1, 139.0, 133.9, 133.0, 130.5, 128.9, 127.4, 126.0, 125.6, 125.4, 124.3, 123.2, 115.8, 113.8, 91.2, 82.4, 55.2, 29.0, 23.4.

HR-MS (ESI) calcd for $C_{21}H_{19}O^+$ ([M+H]⁺): 287.1430, found 287.1429;

IR (neat) 3045, 2974, 2931, 1604, 1508, 1459, 1287, 1247, 1173, 1031, 832, 797, 777, 538, 436 cm⁻¹.

	Retention Time	Area	% Area
1	11.575	6294102	94.58

10.00

360499

Mir

12.00

14.00

5.42

16.00

18.00

20.00

8.00

(S)-1-(4-(2-fluorophenyl)but-3-yn-2-yl)naphthalene (C7)

General procedure B for 48 h.

0.2 mmol scale; 40.5 mg, colorless oil, 74% yield, 92.5:7.5 *er*; $[\alpha]_D^{20}$ = +65.1(c 0.81, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.71 min, t₂ = 7.70 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.88 - 7.83 (m, 2H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.56 - 7.52 (m, 1H), 7.50 - 7.41 (m, 3H), 7.29 - 7.20 (m, 1H), 7.10 - 7.00 (m, 2H), 4.77 (q, *J* = 7.2 Hz, 1H), 1.74 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.1 (d, *J* = 251.6 Hz, 1C), 138.4, 134.0, 133.5, 130.4, 129.4 (d, *J* = 8.1 Hz, 1C), 129.0, 127.5, 126.0, 125.7, 125.5, 124.4, 123.8 (d, *J* = 3.7 Hz, 1C), 123.1, 115.5 (d, *J* = 21.0 Hz), 112.3 (d, *J* = 15.5 Hz, 1C), 98.2 (d, *J* = 3.5 Hz, 1C), 76.1, 29.3, 23.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -110.42.

HR-MS (ESI) calcd for $C_{20}H_{16}F^+$ ([M+H]⁺): 275.1231, found 275.1239;

IR (neat) 3058, 2977, 2932, 1573, 1491, 1450, 1256, 1214, 1106, 800, 776, 756, 571, 449 cm⁻¹.

	Retention Time	Area	% Area
1	6.766	6194964	50.87
2	7.788	5984229	49.13

	Retention Time	Area	% Area
1	6.712	4041019	92.58
2	7.697	323851	7.42

(S)-1-(4-(3-fluorophenyl)but-3-yn-2-yl)naphthalene (C8)

General procedure B for 48 h.

0.2 mmol scale; 50.4 mg, colorless oil, 92% yield, 91.5:8.5 *er*, $[\alpha]_D^{20}$ = +80.5 (c 1.0, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.81 min, t₂ = 8.26 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 1H), 7.88 - 7.86 (m, 1H), 7.81 - 7.72 (m, 2H), 7.56 - 7.52 (m, 1H), 7.50 - 7.44 (m, 2H), 7.24 - 7.19 (m, 2H), 7.18 - 7.09 (m, 1H), 7.03 - 6.92 (m, 1H), 4.71 (q, J = 7.2 Hz, 1H), 1.72 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.5 (d, *J* = 246.7 Hz, 1C), 138.4, 134.0, 130.5, 129.8 (d, *J* = 8.7 Hz, 1C), 129.0, 127.6, 127.50(d, *J* = 3.0 Hz, 1C), 126.1, 125.6, 125.4, 124.2, 123.1, 118.5 (d, *J* = 22.5 Hz, 1C), 115.2 (d, *J* = 21.4 Hz,1C), 93.9, 81.5 (d, *J* = 3.5 Hz, 1C), 29.0, 23.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -113.16

HR-MS (ESI) calcd for $C_{20}H_{16}F^+$ ([M+H]⁺): 275.1231, found 275.1232;

IR (neat) 3064, 2977, 2931, 1606, 1578, 1485, 1431, 1265, 1150, 1000, 945, 868, 777, 681, 519 cm⁻¹.

	Retention Time	Area	% Area
1	6.850	3060489	50.07
2	8.390	3051688	49.93

	Retention Time	Area	% Area
1	6.808	2216069	91.49
2	8.260	206148	8.51

(S)-1-(4-(4-fluorophenyl)but-3-yn-2-yl)naphthalene (C9)

General procedure B for 48 h.

0.2 mmol scale; 45.7 mg, colorless oil, 83% yield, 93:7 *er*, $[\alpha]_D^{20}$ = +67.6 (c 0.91, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.57 min, t₂ = 8.64 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.88 - 7.86 (m, 1H), 7.82 - 7.73 (m, 2H), 7.56 - 7.52 (m, 1H), 7.51 - 7.45 (m, 2H), 7.44 - 7.38 (m, 2H), 6.99 - 6.95 (m, 2H), 4.71 (q, *J* = 7.2 Hz, 1H), 1.72 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.39 (d, *J* = 249.3 Hz, 1C), 138.69, 133.96, 133.45 (d, *J* = 8.1 Hz, 1C), 130.50, 128.99, 127.53, 126.04, 125.64, 125.52, 124.22, 123.11, 119.77 (d, *J* = 3.6 Hz, 1C), 115.51 (d, *J* = 21.9 Hz, 2C), 92.43, 81.53, 28.98, 23.26.

¹⁹F NMR (377 MHz, CDCl₃) δ -111.81

HR-MS (ESI) calcd for $C_{20}H_{16}F^+$ ([M+H]⁺): 275.1231, found 275.1237;

IR (neat) 3050, 2976, 2929, 1598, 1506, 1451, 1228, 1156, 1094, 835, 798, 776, 532, 446 cm⁻¹.

	Retention Time	Area	% Area
1	6.518	4814040	48.34
2	8.450	5144257	51.66

	Retention Time	Area	% Area
1	6.572	4256561	93.07
2	8.645	317051	6.93

(S)-1-(4-(4-chlorophenyl)but-3-yn-2-yl)naphthalene (C10)

General procedure B for 48 h.

0.2 mmol scale; 52.5 mg, colorless oil, 90% yield, 92:8 er, $[\alpha]_D^{20}$ = +82.8 (c 1.05, CH₂Cl₂).

CI

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.74 min, t₂ = 8.96 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 6.8 Hz, 2H), 7.56 - 7.51 (m, 1H), 7.50 - 7.44 (m, 2H), 7.36 - 7.34 (m, 2H), 7.25 - 7.23 (m, 2H), 4.71 (q, *J* = 7.2 Hz, 1H), 1.71 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.5, 134.0, 133.7, 132.8, 130.5, 129.0, 128.5, 127.6, 126.1, 125.6, 125.5, 124.2, 123.1, 122.2, 93.8, 81.5, 29.0, 23.2.

HR-MS (ESI) calcd for $C_{20}H_{16}CI^+$ ([M+H]⁺): 291.0935, found 291.0927;

IR (neat) 3052, 2976, 2929, 1595, 1510, 1488, 1395, 1090, 1013, 827, 797, 776, 748, 525, 428 cm⁻¹.

	Retention Time	Area	% Area
1	6.803	23034943	49.56
2	8.834	23444272	50.44

	Retention Time	Area	% Area
1	6.742	10180453	91.92
2	8.963	894764	8.08

(S)-1-(4-(4-bromophenyl)but-3-yn-2-yl)naphthalene (C11)

General procedure B for 48 h.

0.2 mmol scale; 56.8 mg, colorless oil, 85% yield, 91:9 er, $[\alpha]_D^{20}$ = +77.0 (c 1.14, CH₂Cl₂).

B

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 7.35 min, t₂ = 9.83 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.80 - 7.74 (m, 2H), 7.56 - 7.51 (m, 1H), 7.50 - 7.44 (m, 2H), 7.42 - 7.37 (m, 2H), 7.30 - 7.28 (m, 2H), 4.70 (q, *J* = 7.2 Hz, 1H), 1.71 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.5, 134.0, 133.1, 131.4, 130.5, 129.0, 127.6, 126.1, 125.6, 125.5, 124.2, 123.1, 122.6, 121.9, 94.0, 81.6, 29.0, 23.2.

 $\label{eq:HR-MS} \mbox{(ESI) calcd for $C_{20}H_{16}Br^{+}$ ([M+H]^{+}): 335.0430, 337.0409, found $335.0438, 337.0400; $$$

IR (neat) 3050, 2978, 2920, 2850, 1595, 1510, 1394, 1263, 1069, 1009, 824, 798, 777, 738, 523 cm⁻¹.

	Retention Time	Area	% Area
1	7.186	27157463	49.80
2	9.276	27371338	50.20

	Retention Time	Area	% Area
1	7.353	20705183	91.10
2	9.828	2023100	8.90

(S)-1-(4-(3-(naphthalen-1-yl)but-1-yn-1-yl)phenyl)ethan-1-one (C12)

General procedure B for 48 h.

0.2 mmol scale; 37.9 mg, colorless oil, 63% yield, 89:11 *er*; $[\alpha]_D^{20}$ = +98.7 (c 0.76, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 95/5, 1.0 mL/min, λ = 254 nm, t₁ = 12.55 min, t₂ = 14.33 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.92 - 7.84 (m, 3H), 7.80 - 7.77 (m, 2H), 7.58 - 7.44 (m, 5H), 4.75 (q, *J* = 7.2 Hz, 1H), 2.57 (s, 3H), 1.74 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 197.4, 138.3, 135.8, 134.0, 131.7, 130.4, 129.0, 128.7, 128.1, 127.6, 126.1, 125.6, 125.6, 124.2, 123.0, 96.5, 82.0, 29.1, 26.6, 23.1.

HR-MS (ESI) calcd for $C_{22}H_{19}O^+$ ([M+H]⁺): 299.1430, found 299.1430;

IR (neat) 3048, 2977, 2931, 2231, 1682, 1600, 1510, 1400, 1357, 1262, 836, 799, 777, 592 cm⁻¹.

	Retention Time	Area	% Area
1	12.546	7318545	88.97
2	14.334	907579	11.03

(S)-1,1'-(but-1-yne-1,3-diyl)dinaphthalene (C13)

General procedure A for 48 h.

0.2 mmol scale; 59.0 mg, colorless oil, 96% yield, 94:6 *er*; $[\alpha]_D^{20}$ = +80.1 (c 1.18, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 10.70 min, t₂ = 12.41 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.4 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.92 - 7.86 (m, 2H), 7.81 - 7.45 (m, 3H), 7.68 - 7.66 (m, 1H), 7.58 - 7.44 (m, 5H), 7.39 - 7.36 (m, 1H), 4.88 (q, *J* = 7.2 Hz, 1H), 1.83 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.8, 134.0, 133.5, 133.2, 130.6, 130.2, 129.0, 128.2, 127.5, 126.6, 126.3, 126.2, 126.1, 125.7, 125.5, 125.2, 124.3, 123.2, 121.4, 97.8, 80.8, 29.4, 23.5.

HR-MS (ESI) calcd for $C_{24}H_{19}^+$ ([M+H]⁺): 307.1481, found 304.1485;

IR (neat) 3054, 2976, 2930, 1591, 1508, 1394, 861, 797, 773, 736, 568, 452 cm⁻¹.

	Retention Time	Area	% Area
1	10.735	1979438	50.48
2	12.390	1941582	49.52

	Retention Time	Area	% Area
1	10.701	1835615	93.88
2	12.409	119582	6.12

(S)-1-(4-(naphthalen-2-yl)but-3-yn-2-yl)naphthalene (C14)

General procedure A for 48 h.

0.2 mmol scale; 58.7 mg, colorless oil, 96% yield, 93:7 *er*, $[\alpha]_D^{20}$ = +117.5 (c 1.17, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 10.70 min, t₂ = 12.41 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.96 - 7.95 (m, 1H), 7.87 - 7.85 (m, 2H), 7.79 - 7.69 (m, m)

4H), 7.59 - 7.39 (m, 6H), 4.76 (q, *J* = 7.2 Hz, 1H), 1.76 - 1.74 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.8, 134.0, 133.0, 132.5, 131.2, 130.5, 129.0, 128.7, 127.8, 127.7, 127.6, 127.5, 126.4, 126.3, 126.0, 125.7, 125.5, 124.3, 123.2, 121.0, 93.2, 83.0, 29.1, 23.4.

HR-MS (ESI) calcd for $C_{24}H_{19}^+$ ([M+H]⁺): 307.1481, found 307.1485;

IR (neat) 3054, 2976, 2930, 1596, 1505, 1451, 1395, 1264, 893, 858, 797, 776, 754, 475, 445 cm⁻¹.

(S)-1-(4-([1,1'-biphenyl]-4-yl)but-3-yn-2-yl)naphthalene (C15)

General procedure A for 48 h.

0.2 mmol scale; 53.2 mg, colorless oil, 80% yield, 92:8 er, $[\alpha]_D^{20}$ = +99.1 (c 1.06, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 97/3, 1.0 mL/min, λ = 254 nm, t₁ = 10.70 min, t₂ = 12.41 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.91 - 7.81 (m, 2H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.60 - 7.53 (m, 3H), 7.52 (s, 4H), 7.50 - 7.46(m, 2H), 7.43 - 7.40 (m, 2H), 7.36 - 7.30 (m, 1H), 4.75 (q, *J* = 7.2 Hz, 1H), 1.74 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.4, 138.8, 134.0, 132.0, 130.5, 129.0, 128.8, 127.5, 127.0 126.9, 126.0, 125.7, 125.5, 124.3, 123.2, 122.6, 93.5, 82.5, 29.1, 23.4.

HR-MS (ESI) calcd for $C_{26}H_{21}^+$ ([M+H]⁺): 333.1638, found 333.1642;

12.112

2

IR (neat) 3055, 2976, 2929, 1597, 1485, 1396, 1308, 1004, 840, 798, 764, 724, 696, 558, 501 cm⁻¹.

2345706

49.53

0.20 0.10 0.10 0.00 0.00 0.00 0.00 0.00							<u> </u>
0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00
				Minutes			

	Retention Time	Area	% Area
1	10.514	306253	8.00
2	11.826	3520541	92.00

(S)-trimethyl(3-(naphthalen-1-yl)but-1-yn-1-yl)silane (C16)

General procedure A for 72 h.

0.2 mmol scale; 43.7 mg, colorless oil, 87% yield, 93:7 *er*, [α]_D²⁰ = +5.6 (c 0.87, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t_1 = 3.86 min, t_2 = 4.08 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.91 - 7.83 (m, 1H), 7.80 - 7.70 (m, 2H), 7.57 - 7.40 (m, 3H), 4.53 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.2 Hz, 3H), 0.19 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.6, 133.9, 130.4, 128.9, 127.4, 125.9, 125.6, 125.4, 124.3, 123.1, 109.7, 86.55, 29.5, 23.6, 0.2.

HR-MS (ESI) calcd for $C_{17}H_{21}Si^{+}$ ([M+H]⁺): 253.1407, found 253.1411;

IR (neat) 2960, 2166, 1263, 1114, 1005, 913, 844, 798, 775, 732, 703 cm⁻¹.

	Retention Time	Area	% Area
1	3.865	1810589	93.02
2	4.078	135852	6.98

(S)-1-(4-cyclopropylbut-3-yn-2-yl)naphthalene (C17)

General procedure A for 72 h.

0.2 mmol scale; 31.4 mg, colorless oil, 71% yield, 94:6 *er*, $[\alpha]_D^{20}$ = +14.3 (c 0.63, CH₂Cl₂).

HPLC Chiralcel AD-H, hexane/isopropanol = 99.5/0.5, 1.0 mL/min, λ = 214 nm, t₁ = 6.01 min, t₂ = 9.30 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 1H), 7.86 - 7.84 (m, 1H), 7.74 - 7.70 (m, 2H), 7.54 - 7.42 (m, 3H), 4.46 (qd, *J* = 7.2, 1.6 Hz, 1H), 1.58 (d, *J* = 7.2 Hz, 3H), 1.33 - 1.25 (m, 1H), 0.78 - 0.71 (m, 2H), 0.71 - 0.64 (m, 2H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 139.5, 133.9, 130.5, 128.9, 127.2, 125.8, 125.6, 125.4, 124.1, 123.2, 85.5, 78.32 28.4, 23.7, 8.2, 8.1, -0.3.

HR-MS (ESI) calcd for $C_{17}H_{17}^+$ ([M+H]⁺): 221.1325, found 221.1326;

IR (neat) 3051, 2976, 2931, 1596, 1510, 1450, 1395, 1362, 1264, 1052, 1026, 798, 777, 736, 704 cm⁻¹.

- 1			71100	70 7 ti Ou
ſ	1	5.915	403566	5.78
	2	6.871	6578801	94.22

(S)-1-(4-cyclopentylbut-3-yn-2-yl)naphthalene (C18)

General procedure A for 72 h.

0.2 mmol scale; 33.3 mg, colorless oil, 67% yield, 93:7 *er*; $[\alpha]_D^{20}$ = +4.1 (c 0.67, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 214 nm, t₁ = 4.98 min, t₂ = 5.71 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.86 - 7.84 (m, 1H), 7.76 - 7.72 (m, 2H), 7.53 - 7.42 (m, 3H), 4.49 (qd, *J* = 7.2, 2.0 Hz, 1H), 2.67 (pd, *J* = 7.2, 2.0 Hz, 1H), 2.00 - 1.85 (m, 2H), 1.75 - 1.69 (m, 2H), 1.67 - 1.47 (m, 7H).

¹³**C NMR** (101 MHz, CDCl₃) δ 139.8, 133. 9, 130.5, 128.9, 127.2, 125.8, 125.6, 125.3, 124.1, 123.2, 87.0, 82.6, 34.1, 30.4, 28.6, 24.9, 23.9.

HR-MS (ESI) calcd for C₁₉H₂₁⁺ ([M+H]⁺): 249.1638, found 249.1638;

IR (neat) 2962, 1263, 895, 731, 703 cm⁻¹.

	Retention Time	Area	% Area
1	5.009	1733216	49.77
2	5.692	1749523	50.23

	Retention Time	Area	% Area
1	4.977	286553	6.80
2	5.708	3930035	93.20

(S)-1-(5-phenylpent-3-yn-2-yl)naphthalene (C19)

General procedure B for 72 h.

0.2 mmol scale; 46.0 mg, colorless oil, 85% yield, 93:7 *er*, $[\alpha]_D^{20}$ = +16.4 (c 0.92, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 214 nm, t₁ = 9.96 min, t₂ = 18.40 min

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 1H), 7.89 - 7.83 (m, 1H), 7.78 - 7.73 (m, 2H), 7.54 - 7.44 (m, 3H), 7.38 - 7.36 (m, 2H), 7.32 - 7.28 (m, 2H), 7.25 - 7.19 (m, 1H), 4.57 (qt, J = 7.2, 2.0 Hz, 1H), 3.67 (d, J = 2.4 Hz, 2H), 1.65 (d, J = 7.2 Hz, 3H).

 $^{13}\textbf{C}\,\textbf{NMR}\,(101\,\text{MHz},\text{CDCl}_3)\,\delta\,139.3,\,137.3,\,133.9,\,130.5,\,128.9,\,128.4,\,127.9,\,127.3,\,126.4,\,125.9,\,125.6,\,125.4,\,$ 124.1, 123.2, 85.4, 79.9, 28.5, 25.2, 23.5.

HR-MS (ESI) calcd for C₂₁H₁₉⁺ ([M+H]⁺): 271.1481, found 271.1489;

IR (neat) 3057, 2975, 1598, 1494, 1451, 1263, 1029, 798, 777, 729, 700 cm⁻¹.

18.398	7001993	92.84

General procedure B for 72 h.

0.2 mmol scale; 46.5 mg, colorless oil, 82% yield, 92:8 *er*, $[\alpha]_D^{20}$ = +14.6 (c 0.93, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 214 nm, t₁ = 10.64 min, t₂ = 20.36 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.87 - 7.82 (m, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 6.8 Hz, 1H), 7.52 - 7.39 (m, 3H), 7.31 - 7.24 (m, 2H), 7.24 - 7.17 (m, 3H), 4.52 - 4.42 (m, 1H), 2.84 (t, *J* = 7.6 Hz, 2H), 2.53 (td, *J* = 7.6, 2.4 Hz, 2H), 1.58 (d, *J* = 7.2 Hz, 3H).

 $\label{eq:stars} {}^{13}\textbf{C}\,\textbf{NMR}\,(101\,\text{MHz},\text{CDCl}_3)\,\delta\,140.9,\,139.3,\,133.9,\,130.5,\,128.9,\,128.6,\,128.3,\,127.2,\,126.1,\,125.8,\,125.6,\,125.4,\,124.1,\,123.2,\,83.9,\,81.8,\,35.4,\,28.4,\,23.6,\,21.1.$

HR-MS (ESI) calcd for $C_{22}H_{21}^+$ ([M+H]⁺): 285.1638, found 285.1644;

IR (neat) 3059, 2974, 2928, 1598, 1495, 1451, 1394, 1029, 798, 777, 745, 698, 577, 499 cm⁻¹.

	Retention Time	Area	% Area
1	10.636	324528	8.02
2	20.359	3723608	91.98

(S)-1-(5,5-diethoxypent-3-yn-2-yl)naphthalene (C21)

General procedure B for 72 h.

0.2 mmol scale; 53.0 mg, colorless oil, 94% yield, 94:6 *er*; $[\alpha]_D^{20}$ = +16.2 (c 1.06, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 280 nm, t_1 = 7.86 min, t_2 = 9.33 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.89 - 7.83 (m, 1H), 7.76 - 7.71 (m, 2H), 7.54 - 7.43 (m, 3H), 5.35 (s, 1H), 4.59 (q, *J* = 6.8 Hz, 1H), 3.76 (dp, *J* = 9.6, 7.2 Hz, 2H), 3.59 (dp, *J* = 9.6, 7.2 Hz, 2H), 1.65 (d, *J* = 7.2 Hz, 3H), 1.23 (q, *J* = 7.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.0, 133.9, 130.4, 128.9, 127.5, 126.0, 125.6, 125.5, 124.2, 123.0, 91.5, 88.7, 77.8, 60.7, 60.6, 28.3, 22.9, 15.1, 15.0.

HR-MS (ESI) calcd for $C_{19}H_{23}O_2^+$ ([M+H]⁺): 283.1693, found 283.1690;

IR (neat) 2975, 2930, 2881, 2246, 1597, 1511, 1448, 1394, 1356, 1329, 1149, 1097, 1051, 1007, 799, 777 cm⁻¹.

	Retention Time	Area	% Area
1	7.865	7587706	50.13
2	9.200	7547750	49.87

	Retention Time	Area	% Area
1	7.857	6448420	93.99
2	9.330	412629	6.01

(S)-1-(5-phenoxypent-3-yn-2-yl)naphthalene (C22)

General procedure B for 48 h.

0.2 mmol scale; 38.7 mg, colorless oil, 67% yield, 94:6 *er*; $[\alpha]_D^{20}$ = +15.2 (c 0.77, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 95/5, 1.0 mL/min, λ = 220 nm, t₁ = 12.32 min, t₂ = 17.61 min ¹H **NMR** (400 MHz, CDCl₃) δ 8.08 - 8.00 (m, 1H), 7.86 - 7.84 (m, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 6.8 Hz, 1H), 7.52 - 7.38 (m, 3H), 7.31 - 7.26 (m, 2H), 7.00 - 6.96 (m, 3H), 4.74 (d, *J* = 2.0 Hz, 2H), 4.54 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.7, 138.2, 133.9, 130.4, 129.4, 128.9, 127.5, 126.0, 125.6, 125.4, 124.2, 123.0, 121.2, 115.0, 90.7, 56.4, 28.4, 22.9.

HR-MS (ESI) calcd for C₂₁H₁₈ONa⁺ ([M+Na]⁺): 309.1250, found 309.1246;

IR (neat) 3059, 2977, 2931, 2870, 2246, 1595, 1493, 1452, 1372, 1215, 1174, 1030, 1009, 799, 777, 753, 690, 506, 432 cm⁻¹.

	Retention Time	Area	% Area
1	12.068	5528583	50.02
2	17.555	5523197	49.98

	Retention Time	Area	% Area
1	12.320	177576	6.12
2	17.606	2725414	93.88

(3aS,4R,5aS,8aS,8bS)-2,2,7,7-tetramethyl-4-((((S)-4-(naphthalen-1-yl)pent-2-yn-1-yl)oxy)methyl)hexahydrobenzo[1,2-d:3,4-d']bis([1,3]dioxole) (C23)

General procedure B for 72 h.

0.1 mmol scale; 29.9 mg, colorless oil, 66% yield, 95:5 dr; $[\alpha]_D^{20}$ = -40.8 (c 0.60, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 80/20, 1.0 mL/min, λ = 220 nm, t₁ = 9.33 min, t₂ = 11.17 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.74 (t, J = 8.0 Hz, 2H), 7.57 - 7.42 (m, 3H), 5.55 (d, J = 5.2 Hz, 1H), 4.63 - 4.52 (m, 2H), 4.36 - 4.20 (m, 4H), 4.04 - 3.97 (m, 1H), 3.80 - (dd, J = 10.0, 5.2 Hz, 1H), 3.69 (dd, J = 10.0, 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H), 1.53 (s, 3H), 1.44 (s, 3H), 1.33 (d, J = 4.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 133.9, 130.4, 128.9, 127.4, 126.0, 125.6, 125.4, 124.2, 123., 109.2, 108.6, 96.3, 89.7, 78.0, 71.1, 70.6, 70.4, 68.3, 66.6, 59.0, 28.4, 26.0, 25.9, 24.9, 24.4, 23.1.

HR-MS (ESI) calcd for $C_{27}H_{32}O_6Na^+$ ([M+Na]⁺): 475.2091, found 475.2086;

IR (neat) 2983, 2932, 1511, 1454, 1377, 1254, 1211, 1171, 1102, 1070, 1004, 891, 862, 801, 777, 511 cm⁻¹.

(8*R*,9*S*,13*S*,14*S*,17*S*)-3-(cyclopentyloxy)-13-methyl-17-((*S*)-3-(naphthalen-1-yl)but-1-yn-1-yl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-ol (C24)

General procedure B for 72 h.

0.1 mmol scale; 36.9 mg, colorless oil, 71% yield, 91:9 dr, [α]_D²⁰ = +4.9 (c 0.74, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 90/10, 1.0 mL/min, $\lambda = 220$ nm, $t_1 = 12.32$ min, $t_2 = 17.61$ min ¹H **NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.77 - 7.69 (m, 2H), 7.57 - 7.40 (m, 3H), 7.16 (d, J = 8.4 Hz, 1H), 6.67 (dd, J = 8.4, 2.4 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 4.71 (dt, J = 5.6, 2.8 Hz, 1H), 4.58 (q, J = 7.2 Hz, 1H), 3.74 (brs, 1H), 2.83 - 2.81 (m, 2H), 2.36 - 2.26 (m, 2H), 2.12 - 1.99 (m, 2H), 1.90 - 1.82 (m, 6H), 1.81 - 1.71 (m, 4H), 1.70 - 1.64 (m, 5H), 1.61 - 1.57 (m, J = 7.1, 6.7, 3.6 Hz, 2H), 1.50 - 1.28 (m, 4H), 0.87 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.8, 138.9, 137.8, 133.9, 132.1, 130.4, 128.9, 127.4, 126.2, 125.9, 125.5, 125.4, 124.1, 123.2, 115.5, 112.8, 89.0, 86.0, 80.0, 78.9, 49.5, 47.4, 43.6, 39.4, 39.1, 32.8, 29.8, 28.6, 27.3, 26.4, 24.0, 23.4, 22.8, 12.8.

HR-MS (ESI) calcd for $C_{37}H_{42}O_2Na^+$ ([M+Na]⁺): 541.3077, found 541.3083;

IR (neat) 3446, 2932, 2869, 1609, 1497, 1450, 1280, 1251, 1166, 1047, 1001, 867, 798, 777, 452 cm⁻¹.

(S)-but-1-yne-1,3-diyldibenzene (C25)

General procedure A for 24 h.

0.2 mmol scale; 35.5 mg, colorless oil, 86% yield, 82.5:17.5 *er*, $[\alpha]_D^{20}$ = +25.5 (c 0.71, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 5.46 min, t₂ = 6.19 min

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 - 7.43 (m, 4H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.30 - 7.21 (m, 4H), 3.98 (q, *J* = 7.2 Hz, 1H), 1.58 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 143.3, 131.6, 128.5, 128.2, 127.7, 126.9, 126.6, 123.7, 92.6, 82.4, 32.4, 24.5. HR-MS (ESI) calcd for $C_{16}H_{15}^+$ ([M+H]⁺): 207.1168, found 207.1166;

IR (neat) 3059, 3027, 2975, 2929, 2870, 1598, 1489, 1448, 1299, 1071, 1028, 911, 755, 694, 556, 527 cm⁻¹.

	Retention Time	Area	% Area		
1	5.459	12792927	82.42		
2	6.187	2728630	17.58		

(S)-pent-1-yne-1,3-diyldibenzene (C26)

General procedure A for 48 h.

0.2 mmol scale; 39.1 mg, colorless oil, 89% yield, 85:15 *er*, $[\alpha]_D^{20}$ = +15.9 (c 0.78, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99.5/0.5, 1.0 mL/min, λ = 254 nm, t₁ = 4.63 min, t₂ = 5.26 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 - 7.38 (m, 4H), 7.35 - 7.31 (m, 2H), 7.31 - 7.19 (m, 4H), 3.83 - 3.75 (m, 1H), 1.94 - 1.78 (m, 2H), 1.05 (t, *J* = 7.2 Hz, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 142.0, 131.6, 128.4, 128.2, 127.7, 127.5, 126.6, 123.8, 91.4, 83.3, 39.9, 31.7, 11.8.

HR-MS (ESI) calcd for $C_{17}H_{17}^+$ ([M+H]⁺): 221.1325, found 221.1321;

IR (neat) 3060, 3028, 2965, 2930, 2871, 1599, 1490, 1450, 1378, 1344, 1070, 1027, 913, 754, 694, 543 cm⁻¹.

	Retention Time	Area	% Area		
1	4.632	7422572	85.26		
2	5.264	1282884	14.74		

(S)-hex-1-yne-1,3-diyldibenzene (C27)

General procedure A for 48 h.

0.2 mmol scale; 43.2 mg, colorless oil, 92% yield, 82:18 *er*, [α]_D²⁰ = +13.0 (c 0.86, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99.5/0.5, 1.0 mL/min, λ = 254 nm, t₁ = 4.34 min, t₂ = 4.99 min ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 - 7.40 (m, 4H), 7.35 - 7.31 (m, 2H), 7.30 - 7.20 (m, 4H), 3.84 (dd, *J* = 8.0, 6.0 Hz, 1H), 1.84 - 1.76 (m, 2H), 1.63 - 1.44 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 142.3, 131.6, 128.4, 128.2, 127.7, 127.4, 126.6, 123.8, 91.6, 83.1, 40.8, 38.2, 20.6, 13.8.

HR-MS (ESI) calcd for $C_{18}H_{19}^+$ ([M+H]⁺): 235.1481, found 235.1477;

IR (neat) 2958, 2931, 2869, 1599, 1490, 1453, 1342, 1070, 1028, 754, 694, 539 cm⁻¹.

	Retention Time	Area	% Area		
1	4.345	11136935	81.97		
2	4.988	2449216	18.03		

(S)-(4-methylpent-1-yne-1,3-diyl)dibenzene (C28)

General procedure A for 48 h.

0.2 mmol scale; 27.0 mg, colorless oil, 58% yield, 90:10 *er*; $[\alpha]_D^{20}$ = +28.3 (c 0.54, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 100/0, 1.0 mL/min, λ = 254 nm, t₁ = 8.84 min, t₂ = 10.55 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 - 7.43 (m, 2H), 7.42 - 7.36 (m, 2H), 7.35 - 7.21 (m, 6H), 3.73 (d, *J* = 6.0 Hz, 1H), 2.05 (dq, *J* = 13.2, 6.4 Hz, 1H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.0, 131.6, 128.2, 128.2, 127.7, 126.6, 123.9, 90.2, 84.2, 45.7, 35.2, 21.3, 18.7. HR-MS (ESI) calcd for $C_{18}H_{19}^+$ ([M+H]⁺): 235.1481, found 235.1471;

IR (neat) 3028, 2960, 2927, 2869, 2361, 1599, 1490, 1450, 1384, 1348, 1273, 1069, 1029, 912, 754, 694, 542 cm⁻¹.

	Retention Time	Area	% Area
1	8.840	971793	89.86
2	10.547	109710	10.14

(S)-1-methyl-2-(4-phenylbut-3-yn-2-yl)benzene (C29)

General procedure A for 48 h.

0.2 mmol scale; 38.2 mg, colorless oil, 87% yield, 93:7 *er*, $[\alpha]_D^{20}$ = +36.1 (c 0.76, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99.5/0.5, 1.0 mL/min, λ = 254 nm, t₁ = 5.04 min, t₂ = 5.66 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.5 Hz, 1H), 7.45 - 7.39 (m, 2H), 7.30 - 7.24 (m, 3H), 7.24 - 7.19 (m, 1H), 7.18 - 7.14 (m, 2H), 4.14 (q, *J* = 7.2 Hz, 1H), 2.40 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.3, 134.7, 131.6, 130.4, 128.2, 127.7, 126.8, 126.6, 126.4, 123.8, 92.9, 81.7, 29.1, 22.8, 19.1.

HR-MS (ESI) calcd for C₁₇H₁₇⁺ ([M+H]⁺): 221.1325, found 221.1322;

IR (neat) 3021, 2974, 2930, 1599, 1488, 1458, 1374, 1327, 1290, 1073, 912, 756, 728, 691, 563, 465 cm⁻¹.

	Retention Time	Area	% Area		
1	5.044	642035	7.09		
2	5.663	8409506	92.91		

(S)-1-methoxy-2-(4-phenylbut-3-yn-2-yl)benzene (C30)

General procedure A for 48 h.

0.2 mmol scale; 28.8 mg, colorless oil, 61% yield, 95:5 *er*; $[\alpha]_D^{20}$ = +53.5 (c 0.58, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 100/0, 1.0 mL/min, λ = 254 nm, t₁ = 16.25 min, t₂ = 20.34 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 - 7.64 (m, 1H), 7.48 - 7.40 (m, 2H), 7.32 - 7.19 (m, 4H), 7.00 - 6.96 (m, 1H), 6.91 - 6.82 (m, 1H), 4.39 (q, *J* = 7.2 Hz, 1H), 3.84 (s, 3H), 1.50 (d, *J* = 7.2 Hz, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 156.0, 131.6, 131.6, 128.1, 127.8, 127.7, 127.6, 123.9, 120.7, 110.3, 93.1, 81.7, 55.3, 26.1, 22.9.

HR-MS (ESI) calcd for $C_{17}H_{17}O^+$ ([M+H]⁺): 237.1274, found 237.1269;

IR (neat) 2973, 2932, 2836, 1596, 1491, 1459, 1242, 1115, 1075, 1051, 1029, 753, 691, 502 cm⁻¹.

	Retention Time	Area	% Area
1	16.252	736009	94.80
2	20.345	40408	5.20

(S)-1-chloro-2-(4-phenylbut-3-yn-2-yl)benzene (C31)

General procedure A for 48 h.

0.2 mmol scale; 40.2 mg, colorless oil, 84% yield, 95:5 *er*; $[\alpha]_D^{20}$ = +55.8 (c 0.80, CH2Cl2).

HPLC Chiralcel OD-H, hexane/isopropanol = 100/0, 1.0 mL/min, λ = 254 nm, t₁ = 8.05 min, t₂ = 8.85 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.48 - 7.41 (m, 2H), 7.36 - 7.33 (m, 1H), 7.32 - 7.25 (m, 4H), 7.20 - 7.15 (m, 1H), 4.44 (q, *J* = 7.2 Hz, 1H), 1.55 (d, *J* = 7.2 Hz, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 140.7, 132.5, 131.6, 129.5, 128.6, 128.2, 128.0, 127.9, 127.2, 123.5, 91.8, 82.4, 29.7, 22.9.

HR-MS (APCI) calcd for $C_{16}H_{14}CI^+$ ([M+H]⁺): 241.0779, 243.0749, found 241.0780, 243.0752; **IR** (neat)3060, 2978, 2931, 1596, 1472, 1440, 1324, 1036, 753, 691, 562, 469 cm⁻¹.

	Retention Time	Area	% Area
1	8.050	41657	4.77
2	8.847	832202	95.23

(S)-1-bromo-2-(4-phenylbut-3-yn-2-yl)benzene (C32)

General procedure A for 48 h.

0.2 mmol scale; 48.6 mg, colorless oil, 85% yield, 95.5:4.5 *er*, $[\alpha]_D^{20}$ = +62.3 (c 0.97, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 100/0, 1.0 mL/min, λ = 254 nm, t₁ = 8.05 min, t₂ = 8.85 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.53 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.48 - 7.41 (m, 2H), 7.36 - 7.25 (m, 4H), 7.14 - 7.06 (m, 1H), 4.42 (q, *J* = 7.2 Hz, 1H), 1.54 (d, *J* = 7.2 Hz, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 142.4, 132.8, 131.6, 128.8, 128.3, 128.2, 127.9, 123.5, 123.0, 91.9, 82.5, 32.3, 23.1.

HR-MS (ESI) calcd for C₁₆H₁₄Br⁺ ([M+H]⁺): 285.0273, found 285.0268;

IR (neat) 3058, 2977, 2930, 1595, 1567, 1489, 1469, 1438, 1323, 1023, 753, 691, 561, 461 cm⁻¹.

		Retention Time	Area	% Area		
	1	9.164	35119	4.46		
ſ	2	10.069	751486	95.54		

(S)-2-(4-phenylbut-3-yn-2-yl)naphthalene (C33)

General procedure A for 48 h.

0.2 mmol scale; 44.4 mg, white solid, m.p. 81.9-83.1 °C, 87% yield, 85:15 *er*; $[\alpha]_D^{20}$ = +17.1 (c 0.89, CH₂Cl₂). **HPLC** Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 6.18 min, t₂ = 6.68 min ¹**H NMR** (400 MHz, CDCl₃) 7.88 - 7.87(m, 1H), 7.85 - 7.78 (m, 3H), 7.58 - 7.55 (m, 1H), 7.45 (m, 4H), 4.13 (q, J = 7.2 Hz, 1H), 1.65 (d, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.6, 133.5, 132.4, 131.6, 131.4, 128.3, 128.2, 127.8, 127.7, 127.6, 126.0, 125.6, 125.1, 123.7, 92.5, 82.6, 32.6, 24.3.

HR-MS (ESI) calcd for $C_{20}H_{17}^+$ ([M+H]⁺): 257.1325, found 257.1335;

IR (neat) 3054,2975, 2929, 1599, 1489, 1445, 1368, 1302, 1072, 856, 818, 751, 691, 478 cm⁻¹.

	Retention Time	Area	% Area
1	6.180	2159212	85.00
2	6.682	381110	15.00

(S)-4-(4-phenylbut-3-yn-2-yl)-1,1'-biphenyl (C34)

General procedure A for 48 h.

0.2 mmol scale; 48.7 mg, colorless oil, 86% yield, 80.5:19.5 *er*, $[\alpha]_D^{20}$ = +12.3 (c 0.97, CH₂Cl₂).

HPLC Chiralcel OD-H, hexane/isopropanol = 99/1, 1.0 mL/min, λ = 254 nm, t₁ = 7.58 min, t₂ = 10.75 min

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 - 7.55 (m, 4H), 7.53 - 7.50 (m, 2H), 7.48 - 7.39 (m, 4H), 7.36 - 7.24 (m, 4H), 4.02 (q, *J* = 7.2 Hz, 1H), 1.61 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.4, 140.9, 139.6, 131.6, 128.7, 128.5, 128.2, 127.8, 127.4, 127.3, 127.1, 127.0, 123.6, 92.5, 82.5, 32.1, 24.4.

HR-MS (ESI) calcd for $C_{22}H_{19}^+$ ([M+H]⁺): 283.1481, found 283.1490;

IR (neat) 3028, 2975, 2929, 1685, 1599, 1486, 1447, 1299, 1075, 1005, 838, 759, 694, 570, 510 cm⁻¹.

7. X-ray crystal data

The structure of the catalyst **G-TqPy**^{(S)-tBu} was determined by X-ray chromatography analysis.

Single crystal of **G-TqPy**^{(S)-tBu} was obtained by recrystallization in petroleum ether and ethyl acetate at room temperature in a 10 mL glassware bottle.

The crystal data and further details are listed in Table S8.

CCDC 2182833 (**G-TqPy**^{(S)+Bu}) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

The colourless crystal in block-shape, with approximate dimensions of $0.279 \times 0.234 \times 0.160 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Cu radiation source (K_{α} = 1.54178Å). Applied with faceindexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a, b, c, d}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^e.

Datablock ljj008 - ellipsoid plot

Figure S7. the thermal ellipsoid figure of $G-TqPy^{(S)-tBu}$ with 50% probabilities

Table S8. Crystallographic Data for C₂₇H₃₉N₅O

· · · · · · · · · · · · · · · · · · ·	
Formula	C27H39N5O
Formula mass (amu)	449.63
Space group	P 21
<i>a</i> (Å)	9.0124(2)
<i>c</i> (Å)	14.6098(4)
<i>c</i> (Å)	10.7090(3)
α (deg)	90
β (deg)	110.238(1)
γ (deg)	90
V (Å ³)	1323.00(6)
Ζ	2
λ (Å)	1.54178
Т(К)	173 K
$ ho_{ m calcd}$ (g cm ⁻³)	1.129
μ (mm ⁻¹)	0.548
Transmission factors	0.860, 0.970
$2\theta_{\max}(\deg)$	68.264
No. of unique data, including $F_o^2 < 0$	4774
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	4722
No. of variables	313
$R(F)$ for $F_o^2 > 2\sigma(F_o^2)^a$	0.0261
R _w (F _o ²) ^b	0.0669
Goodness of fit	1.083

^a $R(F) = \sum ||F_0| - |F_c|| / \sum |F_0|$.

 ${}^{b} R_{w}(F_{\circ}^{2}) = \left[\sum [w(F_{\circ}^{2} - F_{c}^{2})^{2}] / \sum wF_{\circ}^{4}\right]^{1/2}; \ w^{-1} = \left[\sigma^{2}(F_{\circ}^{2}) + (Ap)^{2} + Bp\right], \ \text{where} \ p = \left[\max(F_{\circ}^{2}, 0) + 2F_{c}^{2}\right] / 3.$

References:

^a Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.

^b Sheldrick, G. M. Acta Cryst. **2015**, A71, 3–8.

^c Sheldrick, G. M. Acta Cryst. **2015**, C71, 3–8.

^d Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J. A. K., Puschmann, H. *J. Appl. Cryst.* **2009**, *4*2, 339-341.

^e Spek, A. L. *J. Appl. Cryst.* **2003**, *36*, 7–13.

8. Mechanistic Studies

8.1 Radical trapping experiment with TEMPO:

Under nitrogen atmosphere, an over-dried reaction tube charged with alkyl halide (0.10 mmol, 1.0 equiv.), TEMPO (0.12 mmol, 0.2 equiv.), Cul (10 mol %), **G²-TqPy-oMe** (12 mol %), Cs₂CO₃ (2.0 equiv.), and anhydrous THF (1.0 mL). Then, alkyne (0.12 mmol, 1.2 equiv.) was sequentially added to the mixture and the reaction mixture was stirred at 30 °C for 24 h. Upon completion (monitored by TLC), THF was evaporated in vacuo, then the crude mixture was purified by flash chromatography on silica gel (eluent: PE/EtOAc = 19:1) to afford the TEMPO adduct (4.6 mg, 15% yield).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.19 - 8.16 (m 1H), 7.88 - 7.82 (m, 1H), 7.74 -7.71 (m, 1H), 7.57 - 7.55 (m, 1H), 7.51 - 7.42 (m, 3H), 5.45 (q, *J* = 6.8 Hz, 1H), 1.65 (d, *J* = 6.8 Hz, 3H), 1.53 (brs, 3H), 1.42 - 1.40 (m, 5H), 1.25 - 1.24 (m, 4H), 1.01 (brs, 3H), 0.62 (brs, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.4, 133.8, 130.3, 128.7, 127.0, 125.5, 125.4, 125.2, 124.4, 123.8, 82.2, 59.80, 40.3, 34.7, 33.6, 23.8, 20.5, 17.18.

HR-MS (ESI) calcd for C21H30NO⁺ ([M+H]⁺): 312.2322, found 312.2317;

8.2 NMR Analysis of G and G/Cu^I:

Under nitrogen atmosphere, an over-dried reaction tube charged with CuI (7.6 mg, 0.04 mmol), **G-TqPy-oMe** (16.3 mg, 0.04 mmol) and CDCl₃ (1.0 mL). The mixture was stirred at r.t. for 30 mins. The mixture was filtered through a syringe filter and transferred into an NMR tube for recording the ¹H NMR.

Figure S9. Stacking ¹H NMR spectrum of G and Cul/G . (green color: G; red color: Cul/G)

	H ₃	H۹	H ₁₁₋₁₃	H ₁₉	H ₂₁₋₂₃	H_{53}	H ₅₉₋₆₁	H ₆₄
G	5.86	2	1.02	2	1.12	7.52	2.54	8.58
G/Cu ^l	6.16, 5.63	2.94	1.28	2.94	1.39	7.68	2.56	8.98, 8.45
δ		~	0.26	2	0.27	0.16	0.02	

8.3 ESI-MS analysis of catalytic system:

Under nitrogen atmosphere, an over-dried reaction tube charged with **A1** (11.7 mg, 0.05 mmol, 1.0 equiv.), Cul (0.9 mg, 0.005 mmol, 10 mol %), **G-TqPy-oMe** (2.4 mg, 0.006 mmol, 12 mol %), Cs_2CO_3 (32.6 mg, 0.1 mmol, 2.0 equiv.), and anhydrous THF (0.5 mL). Then, alkyne **B1** (8.4 µL, 0.075 mmol, 1.5 equiv.) was sequentially added to the mixture. The reaction mixture was stirred at 30 °C for 30 mins. An aliquot was taken up with the syringe through the filter and diluted 1000 times in the dilution vial. Lastly, the mixture was transferred to a glass syringe and taken for mass measurement. The mass spectra are listed in accordance as: the free catalyst **G-TqPy-oMe**, G⁻/Cu^{II}, G/Cu^{III}, G/Cu^{III}/A1/B1 adduct.

ESI-MS (m/z) calculated for [G-TqPy-oMe/H⁺]⁺ (C₂₄H₃₄N₅O⁺): 408.28, found 408.37;

ESI-MS (m/z) calculated for [(G-H⁺)⁻/Cu²⁺]⁺ (C₂₄H₃₂CuN₅O⁺): 469.19, found 469.28;

ESI-MS (m/z) calculated for $[G/Cu^{2+}Br]^+$ (C₂₄H₃₃BrCuN₅O⁺): 549.11, 551.11, found 549.18, 551.23;

ESI-MS (m/z) calculated for [G/Cu²⁺I]⁺ (C₂₄H₃₃ICuN₅O⁺): 597.10, 599.10; found 597.18, 599.22;

ESI-MS (m/z) calculated for [(G-H⁺)⁻/Cu³⁺/PhCC⁻/R[•]]^{+•} (C₄₄H₄₈CuN₅O⁺⁺): 725.32, found 725.54;

Figure S10. Overview of the ESI-MS (positive mode) of catalytic system.

Figure S11. Zoomed-in view of the ESI-MS (positive mode) of G^2 -TqPy-oMe (top) and simulation of $[M]^+$ below.

Figure S12. Zoomed-in view of the ESI-MS (positive mode) of **(G-H⁺)⁻/Cu²⁺** (top) and simulation of [M]⁺ below.

Figure S13. Zoomed-in view of the ESI-MS (positive mode) of **G/Cu²⁺Br** (top) and simulation of [M]⁺ below.

Figure S13. Zoomed-in view of the ESI-MS (positive mode) of **G/Cu²⁺I** (top) and simulation of [M]⁺ below.

Figure S14. Overview of the ESI-MS (positive mode) of catalytic system.

Figure S15. Zoomed-in view of the ESI-MS (positive mode) of **(G-H⁺)⁻/Cu³⁺/PhCC⁻/R[•]** (top) and simulation of [M]⁺ below.

8.4 EPR analysis of catalytic system:

Experiment for independent synthesis of the Cu^{II} intermediate.

Under nitrogen atmosphere, an over-dried reaction tube charged with $CuBr_2$ (1.1 mg, 0.005 mmol), **G-TqPy-oMe** (2.0 mg, 0.005 mmol), alkyne **B1** (8.4 µL, 0.075 mmol, 15.0 equiv.) and anhydrous THF (0.5 mL). The reaction mixture was stirred at 30 °C for 30 mins. An aliquot of the reaction mixture (0.50 mL) was transferred to an EPR tube under a nitrogen atmosphere for X-band EPR measurement at 100K.

Experiment for detection of the Cu^{II} species in the reaction system without B1.

Under nitrogen atmosphere, an over-dried reaction tube charged with **A1** (11.7 mg, 0.05 mmol, 1.0 equiv.), CuBr (0.6 mg, 0.005 mmol, 10 mol %), **G-TqPy-oMe** (2.4 mg, 0.006 mmol, 12 mol %), Cs₂CO₃ (32.6 mg, 0.1 mmol, 2.0 equiv.), and anhydrous THF (0.5 mL). The reaction mixture was stirred at 30 °C for 30 mins. An aliquot of the reaction mixture (0.50 mL) was transferred to an EPR tube under a nitrogen atmosphere for X-band EPR measurement at 100K.

Experiment for detection of the Cu^{II} species in the reaction system.

Under nitrogen atmosphere, an over-dried reaction tube charged with **A1** (11.7 mg, 0.05 mmol, 1.0 equiv.), CuBr (0.6 mg, 0.005 mmol, 10 mol %), **G-TqPy-oMe** (2.4 mg, 0.006 mmol, 12 mol %), Cs_2CO_3 (32.6 mg, 0.1 mmol, 2.0 equiv.), and anhydrous THF (0.5 mL). Then, alkyne **B1** (8.4 µL, 0.075 mmol, 1.5 equiv.) was sequentially added to the mixture. The reaction mixture was stirred at 30 °C for 30 mins. An aliquot of the reaction mixture (0.50 mL) was transferred to an EPR tube under a nitrogen atmosphere for X-band EPR measurement at 100K.

Figure S16. X-band EPR spectrum (9.42 GHz, 100K). Black: a mixture of CuBr₂, G-TqPy-oMe and B1. Red: a a mixture of CuBr, G-TqPy-oMe, Cs₂CO₃, A1 and B1. Blue: a mixture of CuBr, G-TqPy-oMe, Cs₂CO₃, A1 and B1.

8.5 Cyclic voltammogram (CV) analysis of the catalysts

Cyclic Voltammetry experiments were performed using a CH Instruments Electrochemical Workstation model CHI620E, scan rate = 0. 1V/s, 2 sweep segments, sample interval = 0.001 V. The electrochemical cell was equipped with a glassy carbon disk working electrode (3mm diameter) and a Pt wire counter electrode and the potentials were calibrated with Fc as an internal standard. The samples(CuBr 10nM, CuBr/G 5nM) were

prepared under the protection of the N_2 by dissolving them in degassed CH_3CN (0.1 M Bu_4NPF_6) directly and stirred for 1min.

Figure S17. CVs of the CuBr (10 mM), calibrated with Fc as an internal standard.

Figure S18. CVs of the CuBr/guanidine complex (5 mM), calibrated with Fc as an internal standard.

9. Computational details

9.1 DFT caculations of guanidine and possible guanidine-metal complex structures.

DFT caculations were conducted to evaluate the coordination of guanidine-Cul complexes, as listed in Scheme S19. Various coordination form and valence states were involved [Cu(I) in **E1-E5**, Cu(II) in **E6**], and the simulated ¹H NMR of **E1** & **E2** are consistent with the experimental results (see 9.1).

Scheme S19. Possible coordination structures of guanidine and Cul.

Figure S20.Simulated ¹H NMR of E1 (up: basic structure, down: Boltzmann-weighted chemical shifts)

Figure S21. Simulated ¹H NMR of E2. (up: basic structure, down: Boltzmann-weighted chemical shifts)

Figure S22. Simulated ¹H NMR of E3.

Figure S23. Simulated ¹H NMR of E4.

Figure S24. Simulated ¹H NMR of E5.

Figure S25. Simulated ¹H NMR of E6.

	E1	E1'		E2	E2'	E3	E4	E5	E6
No.	CS	CS	No.	CS	CS	CS	CS	CS	CS
3(H)	2.977	2.654	3(H)	3.671	3.974	3.364	3.032	2.720	3.864
9(H)	3.557	3.322	9(H)	3.540	4.033	3.507	3.539	3.524	3.448
11(H)	1.266	0.710	11(H)	1.289	1.349	1.316	1.410	1.438	1.157
12(H)	<mark>0.979</mark>	0.738	12(H)	1.172	1.665	0.993	1.042	0.969	1.010
13(H)	<mark>0.804</mark>	0.769	13(H)	1.118	1.328	0.937	0.854	0.743	1.008
15(H)	1.401	1.016	15(H)	1.517	1.413	1.400	1.404	1.426	1.552
16(H)	<mark>0.986</mark>	1.000	16(H)	1.135	1.316	0.999	0.991	0.945	1.109
17(H)	1.101	0.767	17(H)	1.156	1.362	1.045	1.138	1.113	1.059
19(H)	3.482	3.224	19(H)	3.587	3.526	3.503	3.641	3.579	3.566
21(H)	1.107	1.103	21(H)	1.274	1.326	1.181	1.143	0.934	1.361
22(H)	<mark>1.500</mark>	1.663	22(H)	<mark>1.390</mark>	1.401	1.519	1.403	1.194	1.714
23(H)	<mark>1.180</mark>	0.757	23(H)	1.378	1.301	1.173	1.292	1.063	1.277
25(H)	<mark>0.895</mark>	0.580	25(H)	<mark>1.318</mark>	1.264	1.239	1.014	1.154	1.584
26(H)	<mark>1.014</mark>	0.435	26(H)	1.335	1.274	1.161	1.143	1.075	1.398
27(H)	1.040	0.364	27(H)	1.590	1.205	1.526	1.732	1.440	2.402
29(H)	4.197	4.220	29(H)	4.439	4.420	4.292	4.923	4.396	3.914
31(H)	3.449	3.316	31(H)	3.619	3.126	3.937	3.024	3.174	3.620
32(H)	2.737	2.508	32(H)	3.147	3.497	2.722	3.061	3.119	2.603
35(H)	7.173	7.014	35(H)	7.244	7.304	7.174	7.139	6.996	7.150
37(H)	7.180	6.958	37(H)	7.309	7.327	7.163	7.156	6.997	7.159
39(H)	7.123	6.868	39(H)	7.290	7.264	7.092	7.098	7.041	7.116
41(H)	6.987	6.807	41(H)	7.112	7.244	6.992	6.977	6.991	7.073
44(H)	4.295	3.960	44(H)	4.494	4.400	4.830	4.009	6.055	4.877
45(H)	4.419	4.115	45(H)	4.678	4.520	4.195	4.575	4.415	4.334
48(H)	4.874	4.367	48(H)	5.365	5.039	5.269	4.308	5.595	4.825
51(H)	7.286	6.873	51(H)	7.127	6.883	6.966	6.996	7.088	6.945
<mark>53(H)</mark>	7.440	7.372	<mark>53(H)</mark>	<mark>7.657</mark>	7.513	7.341	7.401	6.992	7.476
55(H)	6.961	6.866	55(H)	7.208	7.131	6.915	7.021	6.684	7.063
59(H)	2.604	2.331	59(H)	2.929	2.753	2.945	2.995	2.501	3.553
60(H)	2.658	2.235	60(H)	3.039	2.908	2.908	2.995	2.613	3.058
61(H)	2.076	2.367	61(H)	2.609	2.460	2.410	2.391	1.942	2.357
62(H)	3.587	3.865	62(H)	4.133	3.540	4.434	4.007	3.554	4.678
63(H)	8.649	10.992	64(H)	5.958	4.388	10.992	9.645		

Table S26. The NMR comparison of simulated structures

It was found that protons related to *N*-isopropyl substituents (H 11-13, 15-17) and *para*-proton at pyridine ring (H 53) of the ligand appeared to significant downfield shift upon mixing Cul with the ligand G-TqPy-*o*Me, which E1 and E2 were well consistent with the ¹H NMR experiments. While the Boltzmann-weighted chemical shifts of E1' were inconsistent with the ¹H NMR experiments bearing a wider range of chemical shifts. It reveals the coordination of two sp²-N of the ligand to the copper center.

9.2 Computational methods

Geometries were fully optimized by using B3LYP density functional, as implemented in Gaussian 09 program package². The aug-cc-pVTZ-PP basis set was used for the I atom and LANL2DZ basis set and pseudopotential for the Cu atom, and the 6-31g(d) for C, H, O and N atom. The scaling method³ was used to obtain the NMR shifts. Based on the optimized structures, the NMR shift was calculated at the same level using the gauge-invariant atomic orbital (GIAO) method. The SMD solvent model of chloroform was used during the calculation. The Boltzmann-weighted chemical shifts were calculated by using Multiwfn software⁴ combined with xtb program⁵ to generate the conformers. The cartesian coordinates of lowest free energy structures were given in this study.

9.3 Cartesian coordinats

E1 O 0.305680000 -2.796609000 0.154354000 N -1.777995000 2.591989000 -0.483276000

Н	-1.326516000	3.475644000	-0.690789000
Ν	0.395685000	1.784402000	0.134044000
Ν	-1.418844000	0.338536000	0.040274000
Ν	1.085461000	-0.864320000	-0.793762000
Н	1.117657000	0.147701000	-0.625586000
С	-0.865386000	1.614563000	-0.084542000
С	-3.077192000	2.775459000	0.199120000
Н	-3.519875000	1.781448000	0.303564000
С	-2.913879000	3.378930000	1.601850000
Н	-2.264889000	2,752241000	2.222815000
Н	-3.884366000	3,465260000	2,104549000
Н	-2.472107000	4.382368000	1.549025000
С	-3 983264000	3 630511000	-0 690347000
н	-4 112321000	3 172233000	-1 676099000
н	-3 559533000	4 633339000	-0 834964000
н	-4 969975000	3 753051000	-0.004004000
C	1 01/037000	3 008501000	0.2/1227000
ц	0.267853000	3 801877000	0.241227000
\hat{c}	1 761383000	3 426523000	1 062068000
Ц	1.701303000	3.420323000	-1.002900000
п	2 515922000	3.437332000	-1.917505000
п	2.515822000	2.007400000	-1.200271000
Н	2.265878000	4.397573000	-0.992920000
C	1.977181000	3.088836000	1.436999000
н	1.439529000	2.868160000	2.365443000
н	2.475152000	4.059356000	1.548037000
Н	2.742413000	2.316979000	1.297229000
С	-0.731232000	-0.690160000	0.830642000
Н	-0.124382000	-0.156290000	1.568800000
С	-1.782993000	-1.543510000	1.551736000
Н	-1.297863000	-2.445696000	1.935021000
Н	-2.151202000	-0.973695000	2.415664000
С	-2.958372000	-1.927783000	0.674956000
С	-3.840892000	-2.936348000	1.084518000
Н	-3.651849000	-3.453067000	2.023198000
С	-4.943343000	-3.289463000	0.310668000
Н	-5.612911000	-4.077233000	0.645838000
С	-5.180770000	-2.630533000	-0.898300000
Н	-6.039085000	-2.895898000	-1.509824000
С	-4.310052000	-1.627121000	-1.315265000
н	-4.489423000	-1.112224000	-2.257531000
С	-3.201054000	-1.268471000	-0.538688000
С	-2.247192000	-0.204859000	-1.041534000
H	-1.595897000	-0.634162000	-1.822767000
н	-2 794436000	0.614402000	-1.510955000
С	0.265969000	-1.574369000	0.025584000
c	2 199557000	-1 493960000	-1 493629000
н	1 907674000	-2 523841000	-1 710657000
C	3 480943000	-1.458384000	-0.679669000
c	3 780460000	-2 476235000	0.235116000
ц	3.700400000	2 20600000	0.233110000
C	4 054069000	2 27/192000	0.300330000
	4.934900000	-2.374103000	1 600275000
	5.220902000	-3.143713000	0.794052000
	5.182114000 6 707000000	-1.20/938000	0.101003000
П	0.101928000		1.339159000
U	5.402659000	-0.289840000	-0.144932000
N	4.269264000	-0.388961000	-0.862005000
C	6.245/00000	0.936/90000	-0.3956/7000
Н	6.520293000	1.002819000	-1.454474000
Н	5.681542000	1.845463000	-0.155069000
Н	7.161805000	0.929332000	0.202781000
Н	2.366281000	-0.959257000	-2.432998000

E1'			
0	-0.538345000	-2.807878000	0.590005000
Ν	-1.230892000	2.786319000	-0.470132000
Н	-0.531777000	3.392559000	-0.883010000
Ν	0.597844000	1.439629000	0.252870000
Ν	-1.518420000	0.615089000	0.339761000
Ν	0.591853000	-1.139776000	-0.446587000
С	-0.653391000	1.635486000	0.061674000
С	-2.195183000	3.565381000	0.297284000
Н	-2.760501000	2.872604000	0.926033000
С	-1.492326000	4.572002000	1.212743000
Н	-0.935951000	5.299481000	0.623206000
Н	-0.799685000	4.058013000	1.877030000
н	-2.220656000	5.105457000	1.818308000
С	-3.144097000	4.273250000	-0.666822000
Н	-3.898195000	4.828115000	-0.115163000
н	-3.639711000	3.549132000	-1.307774000
н	-2.591470000	4.968162000	-1.295331000
С	1.624461000	2.431606000	0.076860000
Н	1.243645000	3.461029000	0.214370000
С	2.223657000	2.303333000	-1.328046000
H	2.651037000	1.310458000	-1.451677000
Н	3.004744000	3.046269000	-1.473030000
Н	1.456726000	2.446888000	-2.087621000
С	2,699915000	2.172981000	1,133059000
Ĥ	2.278617000	2.264664000	2.131537000
Н	3.513791000	2.886207000	1.027289000
н	3.089799000	1.165463000	1.015121000
С	-1 095317000	-0.509721000	1 152651000
н	-0.396430000	-0.111890000	1.900333000
С	-2 326361000	-1 134748000	1 815875000
н	-2 014268000	-1 929793000	2 491237000
н	-2 865617000	-0.372304000	2.385255000
C	-3 178888000	-1 684986000	0 713882000
c	-3 738624000	-2 950997000	0 735542000
н	-3 601881000	-3 578807000	1 602875000
C	-4 456018000	-3 411573000	-0.354359000
н	-4 891572000	-4 399598000	-0.334209000
С	-4 602648000	-2 614043000	-1 476712000
н	-5 151183000	-2 978583000	-2 332806000
C	-4 040611000	-1.349747000	-1 5060200000
н	-4.152366000	-0.725544000	-2.381555000
С	-3 330708000	-0.880999000	-0 411968000
C C	-2 786324000	0.517386000	-0.366638000
н	-2 657825000	0.917331000	-1.377041000
н	-3 548315000	1 134216000	0 136858000
С	-0.324731000	-1 625662000	0.398134000
c	1 561599000	-1 976981000	-1 120783000
н	1 232748000	-3 014367000	-1 022825000
C	2 907457000	-1 768505000	-0.477601000
c	3 229705000	-2.392914000	0.721626000
н	2.534570000	-3.081468000	1.175484000
c	4 450678000	-2 101618000	1 306941000
н	4 739002000	-2 568584000	2 238028000
C	5 295778000	-1 200960000	0.681944000
н	6 254116000	-0.947501000	1 109728000
c	4 887389000	-0 617644000	-0 514645000
N	3,718346000	-0.902832000	-1.071278000
С	5,744890000	0.382470000	-1.226314000
н	6 758028000	0.003679000	-1 344253000
••	5.70020000	0.000010000	1.077200000

Н	5.320928000	0.598077000	-2.202453000
Н	5.792833000	1.306254000	-0.650956000
Н	1.612228000	-1.692110000	-2.175151000
Н	0.808419000	-0.136261000	-0.340150000
E2			
0	0.361146000	-2.603899000	1.609357000
Ν	-1.790945000	2.364074000	-0.705243000
н	-1.378450000	3.238706000	-1.005005000
Ν	0.327655000	1,770281000	0.174212000
N	-1.345865000	0 148261000	-0.098834000
N	0 785086000	-1 616362000	-0.408552000
C	0.004203000	1 45802000	0.10/888000
ĉ	2 220097000	2 471797000	-0.134000000
ц	-3.230907000	2.471707000	-0.333909000
	-3.555624000	1.474102000	-0.051391000
	-3.429406000	3.430612000	0.826272000
н	-2.869213000	3.097350000	1.706684000
н	-4.488881000	3.483441000	1.098457000
Н	-3.101216000	4.445887000	0.5/12/2000
С	-4.024242000	2.910073000	-1.590069000
Н	-3.899318000	2.207909000	-2.420777000
Н	-3.702790000	3.901460000	-1.933145000
Н	-5.090386000	2.972813000	-1.351743000
С	0.651161000	3.184882000	0.484580000
Н	-0.283449000	3.719288000	0.698645000
С	1.347900000	3.871964000	-0.699072000
Н	0.732930000	3.854986000	-1.606921000
Н	2.292354000	3.368059000	-0.937172000
Н	1.573095000	4.917214000	-0.461994000
С	1.502210000	3.248734000	1.757363000
н	0.987694000	2.770862000	2.597227000
н	1.706639000	4.290329000	2.027427000
н	2 464723000	2 743990000	1,614133000
С	-0.983209000	-0 679309000	1 055127000
H	-0.475047000	-0.016078000	1,762509000
C	-2 235364000	-1 243127000	1 748530000
н	-1 916066000	-2 043321000	2 4 2 3 3 5 7 0 0 0
н	-2 656918000	-0.440287000	2 379/01000
C	-3 298164000	-1 738684000	0 790498000
ĉ	4 21/692000	2 597296000	1 252545000
ц	4.314002000	2.00000000	2 201550000
	-4.304973000	-2.900001000	2.29100000
	-5.320895000	-3.023051000	0.402353000
	-0.104043000	-3.062254000	0.777057000
	-5.337282000	-2.013095000	-0.934668000
Н	-6.124492000	-2.946218000	-1.604411000
0	-4.331785000	-1.773854000	-1.404760000
Н	-4.334130000	-1.458676000	-2.446441000
С	-3.312658000	-1.330786000	-0.549713000
С	-2.205492000	-0.468282000	-1.121285000
Н	-1.587823000	-1.093333000	-1.791580000
Н	-2.609878000	0.321010000	-1.755231000
С	0.074696000	-1.764842000	0.776168000
С	1.873534000	-2.520902000	-0.727937000
Н	1.776653000	-3.396973000	-0.079050000
С	3.270409000	-1.932851000	-0.545619000
С	4.359630000	-2.789557000	-0.713043000
н	4.186593000	-3.835783000	-0.946018000
С	5.647246000	-2.288579000	-0.574365000
н	6.509708000	-2.936326000	-0.698982000
С	5.811978000	-0.938866000	-0.268910000
н	6.802003000	-0.512093000	-0.151766000

С	4.692280000	-0.125897000	-0.106984000
Ν	3.432345000	-0.624891000	-0.247461000
С	4.839523000	1.330357000	0.238746000
Н	4.292510000	1.961535000	-0.470709000
н	4.447167000	1.533496000	1.242378000
н	5.889560000	1.632923000	0.222574000
н	1,767966000	-2.863503000	-1.763656000
Cu	1.833529000	0.530009000	0.003151000
Н	0.317211000	-1 146292000	-1 171659000
••	01011211000		
F2'			
0	-0 465078000	0.971386000	2 824108000
N	2 526190000	-2 022018000	-0 735785000
н	2 255784000	-2 922264000	-1 113883000
N	0.367547000	-1 895184000	0.218229000
N	1 700547000	0.027195000	0.067144000
N		1 357616000	0.503004000
C	1 510756000	-1 335006000	-0 130640000
c	2 070210000	1.035424000	-0.130040000
ц	4 11210000	-1.933424000	-0.403003000
п С	4.113109000	-0.980400000	0.117010000
	4.370700000	-3.071772000	0.540072000
	3.789502000	-3.039305000	1.474407000
	5.431499000	-2.992386000	0.807127000
Н	4.218683000	-4.051486000	0.076950000
0	4.800739000	-1.945873000	-1.691/8/000
н	4.524944000	-1.119225000	-2.353495000
н	4.65514/000	-2.883881000	-2.241416000
Н	5.866908000	-1.862058000	-1.458622000
С	0.305359000	-3.363933000	0.414112000
Н	1.317385000	-3.727940000	0.637103000
С	-0.209200000	-4.087136000	-0.840058000
Н	0.414857000	-3.894514000	-1.721454000
Н	-1.225802000	-3.759323000	-1.083552000
Н	-0.233413000	-5.169656000	-0.675515000
С	-0.570175000	-3.670966000	1.634043000
Н	-0.191121000	-3.163550000	2.526536000
Н	-0.589468000	-4.748480000	1.829652000
Н	-1.603631000	-3.339711000	1.469566000
С	1.429502000	0.604751000	1.398003000
Н	1.660195000	-0.144483000	2.160375000
С	2.325601000	1.848643000	1.626207000
Н	2.078289000	2.283936000	2.598532000
Н	3.371185000	1.514091000	1.679773000
С	2.132616000	2.834679000	0.499800000
С	1.911992000	4.200539000	0.687220000
Н	1.905816000	4.613112000	1.692965000
С	1.704916000	5.035396000	-0.414473000
Н	1.543979000	6.098741000	-0.263085000
С	1.697874000	4.504301000	-1.705942000
Н	1.531344000	5.152177000	-2.561392000
С	1.905317000	3.135774000	-1.899675000
н	1.905169000	2.721912000	-2.905434000
С	2.130262000	2.301957000	-0.800851000
С	2.433510000	0.829039000	-0.944901000
н	2.150549000	0.464013000	-1.935947000
Н	3.519620000	0.687750000	-0.852512000
С	-0.031404000	0.995941000	1.685361000
C	-2.126493000	1.937032000	0.805328000
н	-2,298172000	1.914016000	1.887959000
C	-3 258646000	1 198500000	0 109095000
c	-4 454732000	1 873580000	-0 135447000
5	1.101/02000	1.57 5556000	0.100447000

Н	-4.541840000	2.924091000	0.123465000
С	-5.519695000	1.183051000	-0.702778000
Н	-6.461779000	1.685722000	-0.899943000
С	-5.356571000	-0.164007000	-1.018021000
Н	-6.165486000	-0.733066000	-1.462874000
С	-4.136046000	-0.789253000	-0.764606000
Ν	-3.101625000	-0.106689000	-0.205728000
С	-3.919472000	-2.238274000	-1.104590000
Н	-3 128355000	-2.347303000	-1.856112000
н	-3 618877000	-2 806608000	-0 217007000
н	-4 831106000	-2 688991000	-1 504801000
н	-2 135204000	2.000001000	0.494509000
с	1 21060000	0.026922000	0.494309000
Сu ⊔	-1.319090000	1 624782000	0.007771000
п	-0.300593000	1.024702000	-0.247227000
E2			
E 3	0.046794000	2 051922000	1 405174000
N	-0.240701000	-2.951655000	0.724227000
	-1.078021000	2.345599000	-0.731337000
н	-1.232702000	3.217691000	-0.985153000
N	0.342909000	1.775237000	0.378551000
N	-1.336557000	0.173141000	0.035773000
Ν	0.954011000	-1.533002000	0.107850000
С	-0.851524000	1.450152000	-0.079018000
С	-3.133364000	2.461396000	-0.509297000
Н	-3.512623000	1.448599000	-0.357582000
С	-3.449309000	3.289942000	0.745355000
Н	-2.980839000	2.848913000	1.631821000
Н	-4.530876000	3.333232000	0.918621000
Н	-3.084358000	4.319797000	0.640194000
С	-3.785106000	3.051943000	-1.763231000
Ĥ	-3.578107000	2.434876000	-2.643476000
н	-3 410938000	4 065287000	-1 961675000
н	-4 870503000	3 1100020000	-1 635523000
C	0.662239000	3 183882000	0.660223000
н	-0.270807000	3 7/3671000	0.826837000
C	1 /18001000	3 840763000	0.505754000
с ц	0 929217000	2 922790000	1 426242000
	0.030217000	3.022709000	-1.430343000
	2.333830000	3.302039000	-0.090028000
Н	1.001578000	4.885185000	-0.276600000
C	1.476058000	3.263131000	1.957481000
Н	0.920162000	2.819331000	2.789790000
Н	1.708651000	4.304758000	2.209307000
Н	2.418213000	2.712415000	1.851545000
С	-1.059168000	-0.695970000	1.190789000
Н	-0.589273000	-0.063651000	1.950096000
С	-2.400426000	-1.210729000	1.739803000
Н	-2.177108000	-2.052139000	2.401795000
Н	-2.868060000	-0.420294000	2.344721000
С	-3.377691000	-1.651287000	0.666569000
С	-4.507463000	-2.407567000	1.009762000
Н	-4.654271000	-2.690815000	2.049932000
С	-5.431470000	-2.806940000	0.046898000
н	-6.297413000	-3.396628000	0.336540000
С	-5.237043000	-2.452429000	-1.291003000
H	-5.952029000	-2.757786000	-2.050487000
C	-4 118602000	-1 701709000	-1 645324000
н	-3 959600000	-1 424064000	-2 686327000
C	-3 188023000	-1 20687/000	
ĉ	1 05720000	0 5100014000	1 005404000
ц	1 206262000	1 202705000	1 510264000
п		-1.203/03000	1 070020000
н	-2.198892000	0.211795000	-1.870039000

С	-0.061574000	-1.867713000	0.913563000
С	1.971887000	-2.539950000	-0.043892000
Н	2.036913000	-3.181766000	0.851459000
С	3.342206000	-1.943623000	-0.306768000
С	4.418489000	-2.787086000	-0.616924000
Н	4.248655000	-3.857769000	-0.683826000
С	5.676590000	-2.243169000	-0.824558000
Н	6.524332000	-2.881072000	-1.060287000
С	5.838623000	-0.859474000	-0.723775000
н	6.808695000	-0.398083000	-0.878906000
С	4.734513000	-0.066016000	-0.421737000
N	3.507504000	-0.606008000	-0.218263000
С	4.854532000	1,430548000	-0.315088000
H	4,273818000	1.920760000	-1.105586000
н	4 457964000	1 781938000	0.643760000
н	5 896223000	1 753554000	-0 403220000
н	1 751894000	-3 235553000	-0.873583000
	1 721202000	0.362555000	0.130587000
	1.721202000	0.00200000	0.100001000
0	0.067400000	2 307277000	0 301560000
N	2 699061000	2.397277000	1 409612000
	-3.000901000	-1.449101000	2 029427000
	-3.700121000	-2.243323000	2.030437000
	-1.304434000	-1.741709000	1.308288000
IN N	-2.327441000	0.101923000	0.316263000
N	0.650699000	0.368605000	1.181534000
C	-2.390581000	-1.097406000	1.032972000
C	-4.788435000	-1.51/935000	0.418878000
Н	-4.749200000	-0.591238000	-0.159985000
С	-4.624357000	-2.698005000	-0.549818000
Н	-3.668114000	-2.638441000	-1.080343000
Н	-5.426749000	-2.701678000	-1.296803000
Н	-4.659749000	-3.655112000	-0.013701000
С	-6.120167000	-1.575241000	1.171989000
Н	-6.234823000	-0.712202000	1.835890000
Н	-6.187349000	-2.485505000	1.782813000
Н	-6.959755000	-1.587715000	0.469000000
С	-1.291617000	-3.120068000	1.793012000
Н	-2.292682000	-3.467927000	2.101164000
С	-0.379683000	-3.207298000	3.024823000
Н	-0.727135000	-2.537754000	3.820199000
Н	0.645860000	-2.924256000	2.758894000
Н	-0.356737000	-4.229089000	3.420500000
С	-0.807898000	-4.053018000	0.671873000
Н	-1.502132000	-4.033229000	-0.175400000
н	-0.735837000	-5.086342000	1.032565000
н	0.173983000	-3.737416000	0.303784000
С	-1.137683000	0.414651000	-0.488625000
Н	-0.689937000	-0.537048000	-0.785404000
С	-1.563091000	1,190960000	-1.742775000
н	-0 679151000	1 657394000	-2 191204000
н	-1 934951000	0 459251000	-2 472264000
C	-2 635382000	2 234461000	-1 502842000
C C	-2 932805000	3 176659000	-2 496636000
н	-2 360858000	3 166778000	-3 422171000
C	-3 93985/000	4 122032000	-2 315022000
й	-4 15187000	4.122002000	-3 008302000
Ċ	-4 673320000	4.040007000	-0.0000002000
ц	-+.013320000 5 /6/13/000	4.100/0000	- 1. 120004000 0 07640000
п С	4 206722000	4.000020000	-0.310400000
	4 0529 47000	3.202112000	-0.133309000
	-4.90004/000	3.2000000000	0.190000000
C	-3.314230000	2.201100000	-0.31109/000

С	-3.048401000	1.284236000	0.806030000
Н	-2.440178000	1.806257000	1.566178000
Н	-3.956257000	0.952976000	1.311578000
С	-0.092032000	1.184446000	0.348397000
С	1.390672000	0.985862000	2.272033000
н	0.764613000	1.705718000	2.813434000
C	2 660763000	1 697709000	1 836304000
ĉ	2.0007.00000	2 912042000	2 541069000
	3.114140000	2.013043000	2.341000000
	2.522890000	3.208393000	3.300773000
C	4.314472000	3.406062000	2.165673000
Н	4.688268000	4.278095000	2.694877000
С	5.025926000	2.871735000	1.093660000
Н	5.962680000	3.313159000	0.770120000
С	4.521507000	1.758474000	0.419120000
Ν	3.353061000	1.186098000	0.800577000
С	5.243179000	1.152200000	-0.753660000
H	5 441579000	0.088271000	-0.582049000
н	4 631500000	1 216852000	-1 661062000
н Ц	6 102060000	1.210002000	0.027675000
	0.193009000	1.002341000	-0.937075000
н	1.661218000	0.185222000	2.971453000
Cu	2.567783000	-0.341759000	-0.241051000
Н	0.205275000	-0.550167000	1.349406000
I	2.276381000	-2.171806000	-1.847481000
E5			
0	-0.338762000	1.550943000	1.831305000
Ν	-4.555829000	-0.083732000	0.872624000
н	-5 048118000	-0.698188000	1 512076000
N	-2 580161000	-1 288631000	1 543887000
N	2 416760000	0.560654000	0 156317000
IN NI	-2.410700000	0.009004000	1.020576000
	1.133488000	-0.030120000	1.030576000
C	-3.162705000	-0.334567000	0.909641000
C	-5.248683000	-0.016850000	-0.429465000
Н	-4.684742000	0.685898000	-1.048894000
С	-5.278892000	-1.369964000	-1.158452000
Н	-4.263964000	-1.757763000	-1.293533000
Н	-5.742109000	-1.273819000	-2.148704000
Н	-5.854496000	-2.110691000	-0.587443000
С	-6.657511000	0.542538000	-0.208304000
Н	-6.615384000	1.521235000	0.281024000
н	-7 250242000	_0 128799000	0.428612000
ц	7 100245000	0.640180000	1 160/12000
$\hat{\mathbf{C}}$	2 21/171000	0.049100000	-1.100412000
	-3.314471000	-2.374077000	2.104907000
П	-4.323021000	-2.511642000	1.720995000
C	-3.488811000	-2.093611000	3.668878000
Н	-4.075363000	-1.182138000	3.837291000
Н	-2.507423000	-1.944368000	4.132196000
Н	-3.993299000	-2.928151000	4.173272000
С	-2.542129000	-3.681701000	1.937639000
Н	-2.425770000	-3.878304000	0.866676000
н	-3.061821000	-4.533772000	2.395359000
н	-1 538687000	-3 604981000	2 370049000
C	-1 010373000	0.236651000	-0.103062000
ц	-0.061737000	_0.8/8060000	_0 108872000
	-0.901737000	-0.040900000	-0.196672000
	-0.021773000	0.859412000	-1.401211000
Н	0.462301000	0.782306000	-1.59/802000
Н	-1.075719000	0.248080000	-2.254447000
С	-1.075249000	2.292418000	-1.637115000
С	-0.497844000	3.104924000	-2.624018000
Н	0.310233000	2.699515000	-3.230072000
С	-0.937697000	4.409864000	-2.836517000
Н	-0.473843000	5.022853000	-3.605943000

C	1 07/022000	1 024904000	2 052490000
	-1.974023000	4.924094000	-2.032460000
н	-2.329001000	5.941215000	-2.208208000
С	-2.549768000	4.127095000	-1.066000000
Н	-3.351461000	4.527067000	-0.446640000
С	-2.111840000	2.813744000	-0.848067000
С	-2.716282000	2.005792000	0.277591000
н	-2.310161000	2,373493000	1,228037000
н	-3 70057/000	2 1/2237000	0.2038/5000
0	-3.799374000	2.142237000	1.022462000
C	-0.030012000	0.038/78000	1.033462000
С	2.075858000	0.336177000	2.092700000
Н	1.507354000	0.720207000	2.951150000
С	3.084212000	1.389382000	1.667576000
С	2.652556000	2.646081000	1.202967000
н	1.589430000	2.860181000	1.172851000
C	3 608679000	3 575567000	0.817341000
ц	3 209720000	4 557502000	0.017041000
	3.308729000	4.557505000	0.457052000
C	4.962939000	3.236845000	0.900377000
н	5.736100000	3.940251000	0.601226000
С	5.307777000	1.970713000	1.376943000
Ν	4.383216000	1.068893000	1.755485000
С	6.748459000	1.528120000	1.487537000
н	6.970177000	1,192916000	2,507509000
н	6 938922000	0.676094000	0.823925000
 Ц	7 442404000	2 224072000	1.024556000
п	7.442404000	2.334072000	1.224556000
н	2.638778000	-0.546999000	2.407571000
Cu	1.638795000	-1.440153000	-0.178823000
1	2.227834000	-3.241295000	-1.759711000
E6			
0	1.054249000	3.433306000	0.914964000
N	1 820056000	-2 340561000	0.261232000
н	1 2/1310000	-3 1681/7000	0.105233000
NI NI	0.000046000	4 205002000	1 206246000
IN	-0.022240000	-1.205092000	1.200340000
N	1.769368000	-0.001304000	0.353603000
Ν	-0.513614000	1.843970000	0.394968000
С	1.160703000	-1.199796000	0.620770000
С	3.274405000	-2.570295000	0.256337000
н	3.745979000	-1.585128000	0.235743000
С	3 713432000	-3 295279000	1 538002000
й	3 / 30620000	-2 717001000	2 427563000
	4 700627000	-2.111001000	1 54500000
п	4.799637000	-3.440822000	1.545230000
н	3.242020000	-4.283462000	1.611521000
С	3.674844000	-3.348039000	-1.002488000
Н	3.377786000	-2.815140000	-1.911085000
Н	3.198381000	-4.336605000	-1.020060000
Н	4.758923000	-3.500805000	-1.028635000
С	-0.424060000	-2.340741000	2.060579000
H	0 498091000	-2 831560000	2 407160000
ĉ	1 287867000	3 406403000	1 367083000
	-1.207007000	-3.400493000	0.492542000
H	-0.803718000	-3.831918000	0.482542000
Н	-2.241294000	-2.990323000	1.030892000
Н	-1.495372000	-4.223516000	2.069749000
С	-1.143819000	-1.781819000	3.295890000
Н	-0.509106000	-1.065734000	3.828149000
Н	-1.414754000	-2.588548000	3.986812000
н	-2.064483000	-1.262083000	3.003387000
C	1 653024000	1 121303000	1 292600000
ц	1 217016000	0 700705000	2 207027000
	1.21/910000	0.700780000	2.20/08/000
C	3.063930000	1.648614000	1.601864000
Н	2.966206000	2.633797000	2.065403000
Н	3.527394000	0.979012000	2.340408000
С	3.970210000	1.743920000	0.388881000
С	5.165582000	2.472637000	0.464003000
----	--------------	--------------	--------------
Н	5.411001000	2.987571000	1.390427000
С	6.032495000	2.553151000	-0.622976000
Н	6.951859000	3.127170000	-0.542898000
С	5.712586000	1.898798000	-1.815893000
Н	6.382079000	1.954376000	-2.670011000
С	4.527461000	1.172599000	-1.903697000
Н	4.270438000	0.664995000	-2.831674000
С	3.655093000	1.087488000	-0.810792000
С	2.350856000	0.328560000	-0.948139000
Н	1.620604000	0.934546000	-1.507720000
Н	2.485401000	-0.592786000	-1.518376000
С	0.696571000	2.249446000	0.830960000
С	-1.429892000	2.928898000	0.099013000
Н	-1.330558000	3.742626000	0.833126000
С	-2.864954000	2.469582000	0.071579000
С	-3.898333000	3.383205000	-0.163322000
Н	-3.656982000	4.423151000	-0.360923000
С	-5.212114000	2.939033000	-0.126279000
Н	-6.033645000	3.627535000	-0.303990000
С	-5.465695000	1.597361000	0.162164000
Н	-6.482193000	1.223070000	0.223457000
С	-4.400742000	0.724604000	0.378797000
Ν	-3.120208000	1.167848000	0.308773000
С	-4.635280000	-0.721834000	0.714067000
Н	-4.244626000	-1.368498000	-0.079135000
Н	-4.120988000	-0.992010000	1.643919000
Н	-5.702710000	-0.922555000	0.841483000
н	-1.186419000	3.391098000	-0.872233000
Cu	-1.352334000	0.048520000	0.283564000
I	-1.847702000	-1.451643000	-1.876227000

10. Copies of NMR spectra for the ligands and the products

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.53

 8.57
 8.53

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57
 8.57

 8.57

 $\begin{array}{c} 8.824\\ 8.557\\ 8.557\\ 8.557\\ 8.557\\ 8.557\\ 8.557\\ 7.665\\ 7.665\\ 7.665\\ 7.7655\\ 7.703\\ 7.338\\ 7.7338\\ 7.7333\\ 7.7333\\ 7.7333\\ 7.7333\\ 7.7555\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7455\\ 7.7333\\ 7.7333\\ 7.7555\\ 7.7455\\ 7.7$

B. 172 B. 172 B. 8151 J. 1874 B. 8151 J. 1875 B. 8151 J. 1852 J. 1852 J. 1852 J. 1812 J. 1812

8, 166
8, 145
8, 145
8, 145
8, 145
17, 786
17, 786
17, 799
17, 773
17, 773
17, 555
17, 555
17, 555
17, 555
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 556
17, 566
17, 566
17, 566
17, 567
17, 567
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
17, 566
16, 567
16, 567
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16, 566
16

 $\begin{array}{c} 8.150\\ 8.150\\ 7.8781\\ 7.7781\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7760\\ 7.7531\\ 7.551\\ 7.551\\ 7.5532\\ 7.5532\\ 7.5532\\ 7.5532\\ 7.5532\\ 7.5532\\ 7.5532\\ 7.5532\\ 7.5332\\ 7.5332\\ 7.5332\\ 7.5332\\ 7.5332\\ 7.5332\\ 7.5332\\ 7.7495\\ 7.7405\\ 7.777$

B. 4168 B. 8147 B. 8148 B. 8148B. 8148

8,121 8,100 7,756 7,7859 7,7739 7,7756 7,7739 7,7756 7,7739 7,7756 7,7756 7,7756 7,7756 7,7756 7,7756 7,7756 7,7756 7,7756 7,7756 7,7472 7,443 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4454 7,4553 7,4554 7,4554 7,4554 7,4554 7,4554 7,4554 7,4554 7,4554 7,4554 7,4554 7,4554 7,17563 7,175645 7,175645 7,1756456 7,175645 7,1756456 7,1756456 7,1756456 7,1756456 7,1

110 100 90 f1 (ppm)

80

70

60

50

40

30

20

0 -1

10

140 130 120

90 180

170

160

150

8.140 7.7141 7.7244 7.7744 7.7744 7.7744 7.7744 7.7744 7.7744 7.7744 7.7744 7.7744 7.7744 7.7556 7.7556 7.7484 7.7484 7.7484 7.7556 7.7556 7.7484 7.7556 7.7556 7.7484 7.7556 7.7556 7.7484 7.7556 7.7556 7.7487 7.7556 7.7556 7.7487 7.7556

 $\begin{array}{c} 8 & 0.78 \\ 8 & 0.78 \\ 1 & 0.058 \\ 1 & 0.058 \\ 1 & 1.77 \\ 1 & 1.78 \\ 1 & 1.77 \\ 1 & 1.78 \\ 1 & 1.78 \\ 1 & 1.77 \\ 1 & 1.78 \\ 1$

8.083 7.7846 7.7728 7.7736 7.7736 7.7736 7.7736 7.7736 7.7738 7.77728 7.77728 7.77728 7.7533 7.7556 7.7553 7.75566 7.755666 7.755666 7.755666 7.75566 7.756

8. 063
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 049
 8. 049
 8. 049
 8. 049
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 048
 8. 049
 1. 122
 1. 058
 1. 058
 1. 058
 1. 058
 1. 058
 1. 058
 1. 058

S110

 $\begin{array}{c} 7.461\\ 7.445\\ 7.445\\ 7.445\\ 7.445\\ 7.445\\ 7.445\\ 7.445\\ 7.445\\ 7.445\\ 7.425\\ 7.425\\ 7.232\\ 7.232\\ 7.232\\ 7.232\\ 7.232\\ 7.225\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.$

 $\begin{array}{c} 7.452 \\ 7.444 \\ 7.444 \\ 7.443 \\ 7.428 \\ 7.428 \\ 7.7428 \\ 7.7428 \\ 7.7428 \\ 7.7428 \\ 7.7259 \\ 7$

 $\begin{array}{c} 7.47 \\ 7.463 \\ 7.465 \\ 7.465 \\ 7.465 \\ 7.465 \\ 7.465 \\ 7.465 \\ 7.465 \\ 7.238 \\ 7.238 \\ 7.339 \\ 7.339 \\ 7.339 \\ 7.339 \\ 7.332 \\ 7.339 \\ 7.332 \\ 7.322 \\$

7 660 7 7 655 7 7 7 7 7 7 7 656 7 7 7 450 7 7 457 7 7 440 7 7 440 7 7 7 310 7 7 7 310 7 7 289 7 2 289

11. References

1. Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. *Nat. Chem.* **2019**, *11*, 1158–1166.

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K.N.; taroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 (Revision D.01) I. Gaussian, Wallingford, CT, 2013.

3. Pierens, G.K. J. Comput. Chem. 2014, 35, 1388–1394.

4. Lu, T.; Chen, F., J. Comput. Chem., 2012, 33, 580–592

5. Bannwarth, C.; Ehlert, S.; Grimme, S., J. Chem. Theory Comput., 2019, 15, 1652-1671

12. Author Contributions

X. H. L. guided the research. J. Z. L conducted the experiments, analyzed the results, and wrote the Supplementary Information and manuscript. L. C. N. conducted the DFT calculations. Q. F. T. repeated some experiments. X. H. L. and X. M. F. helped revise the Supplementary Information and manuscript. All the authors contributed to the discussion.