Supplementary Information for Ligand-Controlled Chemoselectivity in Gold Catalyzed Cascade Cyclization of 1,4-Diene-Tethered 2-Alkynylbenzaldehydes

Jichao Chen,^a Rui Hu,^a Qing Bao,^a Dandan Shang,^a Lei Yu,^b Philip Wai Hong Chan,^{*,b} and Weidong Rao^{*,a}

^aJiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest

Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing,

210037, China

^bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia E-mail: <u>weidong@njfu.edu.cn</u> (W.R.); <u>phil.chan@monash.edu</u> (P.W.H.C.)

Table of Contents

1.	General information	S1
2.	Preparation and characterization of starting materials	S1
3.	General procedure for BrettPhosAuNTf ₂ -catalyzed	6-endo-dig S25
	oxycyclization/[3 + 2] cycloaddition/cyclopropanation	
4.	General procedure for SIMesAuNTf ₂ -catalyzed	6-endo-dig S47
	oxycyclization/[$3 + 2$] cycloaddition/C(sp ³)–H bond insertion	
5.	Gram-scale synthesis of 2a and 3a and selective transformation	ns S67
6.	¹ H, ¹³ C and ¹⁹ F NMR Spectra	S73
7.	X-ray crystal structures of 2a, 3m, 4, 6, and 7'	S179
8.	References	S188

1. General information

All commercial chemicals were used without additional purification, unless otherwise stated. All (phosphine)AuNTf₂ and (NHC)AuNTf₂ catalysts were prepared following literature procedures.^{S1} THF and toluene were dried over Na/benzophenone and 1,2-dichloroethanne was dried over CaH₂. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV-vis light (254 nm). Flash column chromatography was performed using silica gel and gradient solvent system (petroleum ether: EtOAc as eluent). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 or 600 MHz spectrometer in CDCl₃. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (n) for a given resonance is indicated by nH and coupling constants are reported as a J value in Hz. High resolution mass spectra (HRMS) were obtained on a LC/HRMS TOF mass spectrometer using simultaneous electrospray (ESI). Melting points were determined using a digital melting point apparatus.

2. Preparation and characterization of starting materials

2.1. General procedure A

Step 1: To a 100 mL round-bottom flask equipped with a reflux condenser and stirring bar were added methyl 2-(triphenyl-phosphanylidene)pent-4-enoate **S1** (9.735 g, 26 mmol, 1.3 equiv), aldehyde derivative (20 mmol, 1.0 equiv) and $(CH_2Cl)_2$ (60 mL). The reaction mixture was allowed to stir at 80 °C for 3–15 h until full consumption of the aldehyde, as indicated by TLC analysis.^{S2} The resulting mixture was cooled to room temperature and concentrated under reduced pressure. The

residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S2**.

Step 2: To a solution of the resulting 1,4-diene ester **S2** (1 equiv) in anhydrous THF (0.25 M) at -78 °C was added DIBAL-H (1.0 M in hexanes, 2.5 equiv) dropwise and the reaction mixture was stirred -78 °C for 4 h. The reaction mixture was quenched carefully with hydrochloric acid (1 N) and ethyl acetate and vigorously stirred for 1 h, extracted with EtOAc and the combined organic layers were washed with brine and dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to give the 1,4-dienol **S3**.

Step 3: To a solution of triphenylphosphine (1.3 equiv), 1,4-dienol **S3** (1.0 equiv) and 4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (1.1 equiv) in anhydrous THF (0.4 M) at 0 $^{\circ}$ C was added diisopropyl azodicarboxylate (DIAD, 1.3 equiv) dropwise. The mixture was warmed to room temperature and stirred for 12 h.^{S3} The mixture was concentrated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the 1,4-diene-ynes **S4**.

Step 4: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo(bromo)-benzaldehyde derivatives (1.1 equiv), 1,4-diene-ynes **S4** (1.0 equiv, if solid, added at this time), Pd(PPh₃)₂Cl₂ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (i Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. 1,4-diene-ynes **S4** (if liquid, dissolved in THF and added at this time by a syringe). The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1a-1ab** and **1ad-1ae**.

2.2. General procedure B

Following a slightly modified reported procedure, to a solution of **S5** (860 mg, 2 mmol) and the above **S4a** (877 mg, 2.4 mmol) in DMF (5 mL) were added Pd(PPh₃)₂Cl₂ (70.2 mg, 0.1 mmol) and Et₃N (8.8 mmol, 4.4 equiv) under argon atmosphere at room temperature.^{S4,S5} The resulting mixture was then heated at 90 °C for 12 h overnight. The reaction was cooled to room temperature and quenched with saturated NH₄Cl solution (15 mL), extracted with EtOAc (2 × 15 mL). The combined organic extracts were washed with saturated brine (10 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 9:1 to 4:1) to afford **1ac** (297 mg, 23%) as a pale-yellow oil.

2.3. General procedure C

Step 1: Following a slightly modified reported procedure,^{S6} to a solution of 2-bromo-5-hydroxybenzaldehyde (402 mg, 2.0 mmol), acid derivatives (2.0 mmol) and DMAP (12.2 mg, 0.1 mmol) in CH₂Cl₂ (8 mL) was added dropwise a solution of EDC (*N*-(3-Dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride) (2.4 mmol) in CH₂Cl₂ (5 mL) at 0 °C under an argon atmosphere. The reaction mixture was stirred at room temperature for 5 h. Upon completion, based on monitoring by TLC analysis, the reaction mixture was quenched with H₂O and extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to provide **S7**.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added

S7 (1.1 equiv), 1,4-diene-ynes **S4a** (1.0 equiv), Pd(PPh₃)₂Cl₂ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (i Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with brine and dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1ad-1ae**.

2.4. General procedure D

Step 1: To a solution of **S3a** (348 mg, 2.0 mmol), Bu_4NHSO_4 (136 mg, 0.4 mmol) and NaOH (240 mg, 6 mmol) in Toluene-H₂O (9 mL, 2:1, v:v) was added dropwise propargylic bromide (0.4 mL, 2 equiv) at room temperature. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S8**.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo-benzaldehyde derivatives (1.1 equiv), **S8** (1.0 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (^{*i*}Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to

afford 1af.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-met hylbenzenesulfonamide (1a)

The title compound was prepared according to general procedure A in 56% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a colorless solid, mp 80–82 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.82–7.75 (m, 2H), 7.51–7.49 (m, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.34–7.32 (m, 2H), 7.30–7.24 (m, 3H), 7.23–7.21 (m, 3H), 6.63 (s, 1H), 5.98–5.92 (m, 1H), 5.21 (d, *J* = 17.2 Hz, 1H), 5.17 (d, *J* = 10.1 Hz, 1H), 4.40 (s, 2H), 3.98 (s, 2H), 3.10 (d, *J* = 5.8 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.9, 136.4, 135.9, 135.8, 134.7, 133.6, 133.4, 133.3, 131.4, 129.6, 128.8, 128.5, 128.3, 127.7, 127.3, 127.2, 125.6, 116.9, 89.1, 81.7, 52.6, 36.6, 32.8, 21.3; HRMS (ESI) calcd for C₂₉H₂₈NO₃S [M+H]⁺: 470.1784; found: 470.1788.

(*E*)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(4-(trifluoromethyl)ben zylidene)pent-4-en-1-yl)benzenesulfonamide (1b)

The title compound was prepared according to general procedure A in 49% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a yellow solid, mp 104–106 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.90 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), S5 7.38 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 7.8 Hz, 3H), 6.68 (s, 1H), 5.96–5.90 (m, 1H), 5.22–5.18 (m, 2H), 4.41 (s, 2H), 4.01 (s, 2H), 3.07 (d, J = 5.9 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 144.0, 140.0, 135.9, 135.8, 135.7, 134.2, 133.6, 133.4, 129.7, 129.6, 129.2, 128.9, 128.8, 127.7, 127.4, 125.4, 125.3, 125.2, 117.2, 88.8, 81.9, 52.3, 36.8, 32.9, 21.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.50; HRMS (ESI) calcd for C₃₀H₂₇F₃NO₃S [M+H]⁺: 538.1658; found: 538.1678.

(*E*)-*N*-(2-(4-fluorobenzylidene)pent-4-en-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1c)

The title compound was prepared according to general procedure A in 43% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a pale-yellow solid, mp 87–90 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.90 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.51 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.26–7.20 (m, 5H), 7.01 (t, *J* = 8.7 Hz, 2H), 6.60 (s, 1H), 5.96–5.90 (m, 1H), 5.25–5.14 (m, 2H), 4.39 (s, 2H), 3.97 (s, 2H), 3.06 (d, *J* = 5.9 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 162.7, 161.1, 143.9, 135.8 (d, *J* = 1.2 Hz), 134.5, 133.6, 133.4 (d, *J* = 9.2 Hz), 132.4 (d, *J* = 3.1 Hz), 130.2, 130.2, 129.6, 128.9, 127.7, 127.3, 125.5, 116.9, 115.3, 115.2, 88.9, 81.7, 52.5, 36.6, 32.7, 21.3; HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1695.

(*E*)-*N*-(2-(4-bromobenzylidene)pent-4-en-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1d)

The title compound was prepared according to general procedure A in 35% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a yellow solid, mp 126–127 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.89 (s, 1H), 7.84 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.50 (td, *J* = 7.6, 1.4 Hz, 1H), 7.47–7.40 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 3H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.57 (s, 1H), 5.95–5.88 (m, 1H), 5.22–5.14 (m, 2H), 4.39 (s, 2H), 3.97 (s, 2H), 3.05 (d, *J* = 6.0 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.9, 135.8, 135.3, 134.3, 134.3, 133.6, 133.4, 131.4, 130.1, 129.9, 129.6, 128.9, 127.7, 127.3, 125.5, 121.2, 117.1, 88.9, 81.8, 52.4, 36.7, 32.8, 21.3; HRMS (ESI) calcd for C₂₉H₂₇BrNO₃S [M+H]⁺: 548.0890; found: 548.0909.

(*E*)-*N*-(2-([1,1'-biphenyl]-4-ylmethylene)pent-4-en-1-yl)-*N*-(3-(2-formylphenyl)pr op-2-yn-1-yl)-4-methylbenzenesulfonamide (1e)

The title compound was prepared according to general procedure A in 50% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a pale-yellow solid, mp 100–102 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.94 (s, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.45–7.42 (m, 3H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.24 (t, *J* = 7.9 Hz, 3H), 6.68 (s, 1H), 6.03–5.96 (m, 1H), 5.26 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.21 (d, *J* = 10.1 Hz, 1H), 4.43 (s, 2H), 4.02 (s, 2H), 3.16 (d, *J* = 6.0 Hz, 2H), 2.27 (s, 3H); ¹³C

NMR (150 MHz, CDCl₃) δ 190.6, 143.9, 140.5, 139.9, 135.8, 135.8, 135.4, 134.6, 133.5, 133.5, 133.4, 130.9, 129.6, 128.9, 128.8, 128.8, 127.7, 127.3, 127.2, 126.9, 126.9, 125.6, 116.9, 89.0, 81.7, 52.7, 36.6, 32.9, 21.3; HRMS (ESI) calcd for C₃₅H₃₂NO₃S [M+H]⁺: 546.2097; found: 546.2120.

(*E*)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-*N*-(2-(4-methoxybenzylidene)pent-4-en -1-yl)-4-methylbenzenesulfonamide (1f)

The title compound was prepared according to general procedure A in 38% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 11:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.50 (td, *J* = 7.6, 0.9 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.22 (dd, *J* = 13.8, 8.1 Hz, 5H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.56 (s, 1H), 5.99–5.92 (m, 1H), 5.21 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.1 Hz, 1H), 4.39 (s, 2H), 3.96 (s, 2H), 3.80 (s, 3H), 3.10 (d, *J* = 5.9 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 158.7, 143.8, 135.8, 135.7, 134.7, 133.5, 133.3, 131.4, 130.9, 129.8, 129.6, 128.9, 128.8, 127.6, 127.1, 125.6, 116.7, 113.7, 89.1, 81.6, 55.2, 52.7, 36.4, 32.6, 21.3; HRMS (ESI) calcd for C₃₀H₂₉KNO4S [M+K]⁺: 538.1449; found: 538.1475.

(*E*)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(4-methylbenzylidene)p ent-4-en-1-yl)benzenesulfonamide (1g)

The title compound was prepared according to general procedure A in 36% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 6.9 Hz, 3H), 7.18 (d, *J* = 7.7 Hz, 2H), 7.14 (d, *J* = 7.7 Hz, 2H), 6.59 (s, 1H), 5.98–5.92 (m, 1H), 5.21 (d, *J* = 17.1 Hz, 1H), 5.17 (d, *J* = 10.1 Hz, 1H), 4.39 (s, 2H), 3.97 (s, 2H), 3.10 (d, *J* = 5.8 Hz, 2H), 2.34 (s, 3H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.8, 137.1, 135.9, 135.8, 134.7, 133.6, 133.5, 133.4, 132.5, 131.4, 129.6, 129.0, 128.8, 128.5, 127.7, 127.1, 125.7, 116.9, 89.1, 81.6, 52.7, 36.5, 32.8, 21.3, 21.2; HRMS (ESI) calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1962.

(*E*)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(naphthalen-2-ylmethyl ene)pent-4-en-1-yl)benzenesulfonamide (1h)

The title compound was prepared according to general procedure A in 33% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a brown solid, mp 128–129 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.95 (s, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.80 (t, *J* = 8.0 Hz, 5H), 7.76 (s, 1H), 7.53–7.39 (m, 5H), 7.24 (t, *J* = 8.6 Hz, 3H), 6.79 (s, 1H), 6.05–5.98 (m, 1H), 5.27 (d, *J* = 17.1 Hz, 1H), 5.22 (d, *J* = 10.1 Hz, 1H), 4.45 (s, 2H), 4.05 (s, 2H), 3.18 (d, *J* = 5.7 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.9, 135.9, 135.8, 134.7, 133.9, 133.8, 133.6, 133.4, 133.2, 132.4, 131.3, 129.6, 128.8, 127.9, 127.8, 127.7, 127.6, 127.5, 127.2, 126.7, 126.2, 126.0, 125.6, 117.1, 89.1, 81.7, 52.6, 36.7, 32.9, 21.3; HRMS (ESI) calcd for C₃₃H₂₉KNO₃S [M+K]⁺: 558.1500; found: 558.1505.

(*E*)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(naphthalen-1-ylmethyl ene)pent-4-en-1-yl)benzenesulfonamide (1i)

The title compound was prepared according to general procedure A in 29% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 15:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.00 (s, 1H), 8.00–7.95 (m, 1H), 7.88–7.85 (m, 4H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.51–7.45 (m, 4H), 7.43–7.40 (m, 2H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.27–7.24 (m, 2H), 7.16 (s, 1H), 5.96–5.89 (m, 1H), 5.21 (dd, *J* = 17.1, 1.6 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.4 Hz, 1H), 4.58 (s, 2H), 4.20 (s, 2H), 3.01 (d, *J* = 6.4 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.3, 143.8, 135.6, 135.5, 135.1, 134.9, 133.5, 133.4, 133.3, 133.2, 131.6, 129.5, 129.4, 128.7, 128.3, 127.7, 127.5, 127.1, 126.0, 125.9, 125.7, 125.2, 125.1, 124.3, 116.9, 88.8, 81.8, 51.7, 36.7, 32.9, 21.2; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 519.1868; found: 519.1872.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-methylenepent-4-en-1-yl)be nzenesulfonamide (1j)

The title compound was prepared according to general procedure A in 24% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.86 (s, 1H), 7.82 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.48 (td, *J* = 7.6, 1.3 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 3H), 5.88–5.81 (m, 1H), 5.13 (dd, *J* = 17.1, 1.5 Hz, 1H), 5.11–5.04 (m, 3H), 4.33 (s, 2H), 3.84 (s,

2H), 2.86 (d, J = 6.9 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.8, 141.5, 135.7, 134.9, 133.5, 133.3, 129.6, 128.8, 127.6, 127.0, 125.6, 117.2, 115.9, 88.9, 81.5, 51.5, 37.4, 36.4, 21.3; HRMS (ESI) calcd for C₂₃H₂₃KNO₃S [M+K]⁺: 432.1030; found: 432.1039.

(*E*)-*N*-(2-allylnon-2-en-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenz enesulfonamide (1k)

The title compound was prepared according to general procedure A in 23% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.86 (d, *J* = 0.7 Hz, 1H), 7.84 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.49 (td, *J* = 7.6, 1.4 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.20–7.12 m, 3H), 5.82–5.76 (m, 1H), 5.49 (t, *J* = 7.3 Hz, 1H), 5.12 (dd, *J* = 17.1, 1.7 Hz, 1H), 5.04 (dd, *J* = 10.0, 1.6 Hz, 1H), 4.30 (s, 2H), 3.78 (s, 2H), 2.87 (d, *J* = 6.5 Hz, 2H), 2.23 (s, 3H), 2.08 (dd, *J* = 14.6, 7.3 Hz, 2H), 1.37–1.20 (m, 8H), 0.86 (dt, *J* = 10.4, 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.7, 143.7, 135.9, 135.8, 134.9, 133.5, 133.3, 133.1, 130.5, 129.5, 128.7, 127.7, 126.9, 125.8, 116.1, 89.3, 81.3, 52.6, 36.1, 32.2, 31.6, 29.4, 28.9, 27.9, 22.6, 21.3, 14.0; HRMS (ESI) calcd for C₂₉H₃₆NO₃S [M+H]⁺: 478.2410; found: 478.2429.

(*E*)-*N*-(2-allyl-5-phenylpent-2-en-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-m ethylbenzenesulfonamide (11)

The title compound was prepared according to general procedure A in 21% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 50:1 to 25:1) to afford the product as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.85 (dd, J = 7.8, 1.1 Hz, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.25–7.22 (m, 2H), 7.20–7.07 (m, 6H), 5.74–5.64 (m, 1H), 5.50 (t, J = 7.2 Hz, 1H), 5.08 (dd, J = 17.1, 1.6 Hz, 1H), 5.02 (dd, J = 10.0, 1.4 Hz, 1H), 4.15 (s, 2H), 3.74 (s, 2H), 2.80 (d, J = 6.4 Hz, 2H), 2.68 (t, J = 7.4 Hz, 2H), 2.45 (d, J = 7.3 Hz, 1H), 2.41 (d, J = 7.3 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 143.7, 141.4, 135.8, 135.7, 134.7, 133.5, 133.3, 131.6, 131.5, 129.5, 128.7, 128.4, 128.3, 127.6, 127.0, 125.9, 125.8, 116.1, 89.2, 81.4, 52.4, 36.0, 35.5, 32.1, 29.6, 213; HRMS (ESI) calcd for C₃₁H₃₂NO₃S [M+H]⁺: 498.2097; found: 498.2099.

N-((2*E*,4*E*)-2-allyl-5-phenylpenta-2,4-dien-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1m)

The title compound was prepared according to general procedure A in 13% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a yellow solid, mp 120–121 °C; **¹H NMR (600 MHz, CDCl**₃) δ 9.91 (d, *J* = 0.5 Hz, 1H), 7.86 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.51 (td, *J* = 7.6, 1.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.25–7.20 (m, 4H), 7.01 (dd, *J* = 15.5, 11.0 Hz, 1H), 6.58 (d, *J* = 15.5 Hz, 1H), 6.27 (d, *J* = 11.0 Hz, 1H), 5.90–5.83 (m, 1H), 5.19 (dd, *J* = 17.0, 1.6 Hz, 1H), 5.11 (dd, *J* = 10.0, 1.4 Hz, 1H), 4.34 (s, 2H), 3.92 (s, 2H), 3.11 (d, *J* = 6.5 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.7, 143.8, 137.1, 135.9, 135.8, 134.7, 134.2, 133.6, 133.4, 133.4, 130.8, 129.6, 128.8, 128.6, 127.9, 127.7, 127.1, 126.5, 125.7, 123.8, 116.7, 89.1, 81.6, 52.6, 36.6, 32.9, 21.3; **HRMS (ESI)** calcd for C₃₁H₃₀NO₃S [M+H]⁺: 496.1941; found: 496.1944.

(*E*)-*N*-(2-allyl-5-phenylpent-2-en-4-yn-1-yl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1n)

The title compound was prepared according to general procedure A in 9% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.87 (s, 1H), 7.84 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.49 (td, *J* = 7.6, 1.3 Hz, 1H), 7.44–7.41 (m, 3H), 7.33–7.31 (m, 3H), 7.22 (t, *J* = 7.8 Hz, 3H), 5.94–5.88 (m, 1H), 5.83 (s, 1H), 5.25 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.13 (dd, *J* = 10.0, 1.3 Hz, 1H), 4.35 (s, 2H), 3.95 (s, 2H), 3.22 (d, *J* = 6.9 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.4, 145.8, 143.9, 135.6, 135.5, 133.7, 133.4, 133.3, 131.3, 129.5, 128.8, 128.2, 127.5, 127.1, 125.2, 122.9, 117.3, 110.4, 94.4, 88.5, 85.7, 81.8, 50.9, 36.8, 35.3, 21.2; HRMS (ESI) calcd for C₃₁H₂₈NO₃S [M+H]⁺: 494.1784; found: 494.1802.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(3-fluoro-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (10)

The title compound was prepared according to general procedure A in 43% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a colorless solid, mp 108–110 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.08 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.46–7.42 (m, 1H), 7.35–7.31 (m, 2H), 7.29 (d, *J* = 7.4 Hz, 2H), 7.26–7.23 (m, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.13–7.09 (m, 1H), 7.00 (d, *J* = 7.7 Hz, 1H), 6.70 (s, 1H), 5.98–5.92 (m, 1H), 5.21 (dd, *J* = 17.2, 1.3 Hz, 1H), 5.17 (d, *J* = 10.1 Hz, 1H), 4.39 (s, 2H), 4.02 (s, 2H), S13

3.09 (d, J = 6.0 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 186.9 (d, J = 3.6 Hz), 162.7 (d, J = 262.3 Hz), 143.6, 136.5, 135.9, 134.7, 134.6 (d, J = 10.5 Hz), 133.3, 131.5, 129.8 (d, J = 3.6 Hz), 129.5, 128.5, 128.3, 127.7, 127.2, 125.6 (d, J = 3.2 Hz), 124.2 (d, J = 8.2 Hz), 117.0, 116.9, 89.7, 81.8, 52.5, 36.5, 32.7, 21.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.60 (dd, J = 10.4, 5.4 Hz); HRMS (ESI) calcd for C₂₉H₂₆FKNO₃S [M+K]⁺: 526.1249; found: 526.1265.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(2-formyl-4-(trifluoromethyl)phenyl)pr op-2-yn-1-yl)-4-methylbenzenesulfonamide (1p)

The title compound was prepared according to general procedure A in 49% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 11:1) to afford the product as a colorless solid, mp 130–132 °C; **¹H NMR (600 MHz, CDCl3)** δ 9.90 (s, 1H), 8.11 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.30–7.25 (m, 3H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.62 (s, 1H), 5.97–5.91 (m, 1H), 5.21 (d, *J* = 17.2 Hz, 1H), 5.17 (d, *J* = 10.1 Hz, 1H), 4.43 (s, 2H), 3.99 (s, 2H), 3.09 (d, *J* = 5.9 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.1, 143.9, 136.3, 136.0, 135.8, 134.6, 133.9, 133.2, 131.5, 130.9 (d, *J* = 34.0 Hz), 129.8 (d, *J* = 3.5 Hz), 129.7, 128.7, 128.5, 128.3, 127.7, 127.3, 124.3 (d, *J* = 3.8 Hz), 124.0, 117.0, 92.1, 80.5, 52.7, 36.5, 32.7, 21.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -63.22; HRMS (ESI) calcd for C₃₀H₂₇F₃NO₃S [M+H]⁺: 538.1658; found: 538.1664.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(4-fluoro-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1q)

The title compound was prepared according to general procedure A in 51% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a pale-yellow solid, mp 87–89 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.83 (d, *J* = 3.1 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.52 (dd, *J* = 8.5, 2.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.28–7.26 (m, 3H), 7.25–7.19 (m, 4H), 6.61 (s, 1H), 5.97–5.90 (m, 1H), 5.20 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.5 Hz, 1H), 4.39 (s, 2H), 3.97 (s, 2H), 3.09 (d, *J* = 6.1 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.4, 162.4 (d, *J* = 253.8 Hz), 143.9, 137.8 (d, *J* = 6.5 Hz), 136.3, 135.9, 135.4 (d, *J* = 7.7 Hz), 134.6, 133.3, 131.4, 129.6, 128.5, 128.3, 127.7, 127.3, 121.7 (d, *J* = 3.2 Hz), 121.2 (d, *J* = 22.6 Hz), 116.9, 113.6 (d, *J* = 22.9 Hz), 88.9, 80.6, 52.6, 36.5, 32.8, 21.4; HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1705.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(4-chloro-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1r)

The title compound was prepared according to general procedure A in 54% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a pale-yellow solid, mp 121–123 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.82 (s, 1H), 7.81 (d, *J* = 2.1 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.46 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.26 (dd, *J* = 8.9, 5.1 Hz, 3H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.3 Hz, 1H), 6.61 (s, 1H), 5.97–5.90 (m, 1H), 5.20 (dd, *J* = 17.2, 1.3 Hz, 1H), 5.17 (dd, *J* = 10.1 Hz, 1.0 Hz, 1H), 4.39 (s, 2H), 3.97 (s, 2H), 3.09 (d, *J* = 5.9 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.3, 143.9, 136.9, 136.3, 135.9, 135.4, 134.6, 134.5, 133.6, 133.3, 131.4, 129.6, 128.5, 128.3, 127.7, 127.3, 127.1, 123.8, 116.9, 90.2, 80.6, 52.6, 36.5, 32.7, 21.4; HRMS (ESI) calcd for C₂₉H₂₇ClNO₃S [M+H]⁺: 504.1395; found: 504.1418.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(4-bromo-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1s)

The title compound was prepared according to general procedure A in 35% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 30:1) to afford the product as a colorless solid, mp 130–132 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.80 (s, 1H), 7.96 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.28–7.25 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.61 (s, 1H), 5.97–5.90 (m, 1H), 5.20 (d, *J* = 17.2 Hz, 1H), 5.16 (d, *J* = 10.1 Hz, 1H), 4.39 (s, 2H), 3.97 (s, 2H), 3.08 (d, *J* = 5.9 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.2, 143.9, 136.9, 136.5, 136.3, 135.8, 134.7, 134.6, 133.3, 131.4, 130.2, 129.6, 128.5, 128.3, 127.7, 127.3, 124.2, 123.4, 116.9, 90.4, 80.7, 52.6, 36.5, 32.7, 21.4; HRMS (ESI) calcd for C₂₉H₂₆BrNNaO₃S [M+Na]⁺: 570.0709; found: 570.0737.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(2-formyl-4-methylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1t)

The title compound was prepared according to general procedure A in 48% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a yellow solid, mp 84–86 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.88 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.65 (s, 1H), 7.34–7.30 (m, 3H), 7.30–7.28 (m, 2H), 7.27–7.23 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.12 (d, *J* = 7.9 Hz, 1H), 6.64 (s, 1H), 5.98–5.92 (m, 1H), 5.22 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.4 Hz, 1H), 4.40 (s, 2H), 3.99 (s, 2H), 3.10 (d, *J* = 6.0 Hz, 2H), 2.39 (s, 3H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 143.8, 139.3, 136.4, 135.8,

135.6, 134.6, 134.4, 133.3, 133.3, 131.3, 129.6, 128.5, 128.3, 127.6, 127.4, 127.2, 122.8, 116.9, 88.1, 81.7, 52.4, 36.5, 32.7, 21.3, 21.2; **HRMS (ESI)** calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1919.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(5-fluoro-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1u)

The title compound was prepared according to general procedure A in 48% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford the product as a pale-yellow solid, mp 103–104 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.88 (s, 1H), 7.87 (dd, *J* = 8.7, 5.9 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 2H), 7.27–7.24 (m, 3H), 7.11 (td, *J* = 8.3, 2.3 Hz, 1H), 6.80 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.63 (s, 1H), 5.98–5.92 (m, 1H), 5.22 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.4 Hz, 1H), 4.41 (s, 2H), 3.99 (s, 2H), 3.10 (d, *J* = 6.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 188.9, 165.3 (d, *J* = 257.2 Hz), 143.9, 136.2, 135.8, 134.5, 133.2, 132.5 (d, *J* = 2.8 Hz), 131.3, 129.9 (d, *J* = 10.1 Hz), 129.6, 128.4, 128.2, 127.8 (d, *J* = 10.9 Hz), 127.6, 127.2, 119.9 (d, *J* = 23.7 Hz), 116.9, 116.7 (d, *J* = 22.0 Hz), 90.2, 80.4, 52.6, 36.4, 32.7, 21.2; ¹⁹F NMR (565 MHz, CDCl₃) δ -103.10 (dd, *J* = 14.4, 8.3 Hz); HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1694.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(5-chloro-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1v)

The title compound was prepared according to general procedure A in 64% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 25:1 to 11:1) to afford the product as a colorless solid, mp 78–80 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (s, 1H), 7.78 (t, *J* = 7.4 Hz, 3H), 7.38 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.30–7.22 (m, 5H), 7.10 (d, *J* = 2.0 Hz, 1H), 6.62 (s, 1H), 5.98–5.91 (m, 1H), 5.21 (dd, *J* = 17.2, 1.5 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.3 Hz, 1H), 4.40 (s, 2H), 3.98 (s, 2H), 3.09 (d, *J* = 6.1 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.3, 143.9, 139.9, 136.2, 135.8, 134.5, 134.1, 133.2, 133.0, 131.4, 129.6, 129.3, 128.5, 128.4, 128.3, 127.7, 127.2, 126.8, 116.9, 90.3, 80.3, 52.6, 36.4, 32.7, 21.3; HRMS (ESI) calcd for C₂₉H₂₇ClNO₃S [M+H]⁺: 504.1395; found: 504.1410.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(5-bromo-2-formylphenyl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1w)

The title compound was prepared according to general procedure A in 63% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a colorless solid, mp 90–92 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.90 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.56 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.30–7.22 (m, 6H), 6.61 (s, 1H), 5.98–5.91 (m, 1H), 5.21 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.18 (dd, *J* = 10.1, 1.2 Hz, 1H), 4.40 (s, 2H), 3.97 (s, 2H), 3.09 (d, *J* = 6.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.6, 144.0, 136.3, 136.0, 135.8, 134.6, 134.5, 133.2, 132.3, 131.5, 129.7, 128.6, 128.5, 128.5, 128.4, 127.8, 127.3, 126.9, 117.0, 90.5, 80.3, 52.6, 36.5, 32.8, 21.5; HRMS (ESI) calcd for C₂₉H₂₇BrNO₃S [M+H]⁺: 548.0890; found: 548.0887.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(2-formyl-5-methylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1x)

The title compound was prepared according to general procedure A in 20% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 11:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.85 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.4 Hz, 2H), 7.26 (d, *J* = 5.3 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 3H), 7.02 (s, 1H), 6.64 (s, 1H), 5.98–5.92 (m, 1H), 5.21 (dd, *J* = 17.2, 1.3 Hz, 1H), 5.17 (d, *J* = 10.1 Hz, 1H), 4.40 (s, 2H), 3.98 (s, 2H), 3.10 (d, *J* = 6.0 Hz, 2H), 2.37 (s, 3H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.3, 144.6, 143.8, 136.4, 135.8, 134.7, 133.7, 133.6, 133.3, 131.4, 129.8, 129.6, 128.5, 128.3, 127.7, 127.2, 125.6, 116.9, 88.5, 81.9, 52.5, 36.6, 32.7, 21.5, 21.4; HRMS (ESI) calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1954.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(1-formylnaphthalen-2-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1y)

The title compound was prepared according to general procedure A in 55% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 15:1) to afford the product as a colorless solid, mp 132–134 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.40 (s, 1H), 9.24 (d, *J* = 8.7 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 2H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.26 (d, *J* = 5.3 Hz, 1H), 7.24–7.22 (m, 3H), 6.66 (s, 1H), 6.00–5.93 (m, 1H), 5.23 (d, *J* =

17.2 Hz, 1H), 5.19 (d, J = 10.0 Hz, 1H), 4.46 (s, 2H), 4.01 (s, 2H), 3.12 (d, J = 6.0 Hz, 2H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 193.2, 143.9, 136.4, 135.8, 134.6, 134.2, 133.3, 133.1, 131.5, 131.4, 129.9, 129.8, 129.7, 129.2, 128.9, 128.5, 128.3, 128.2, 127.7, 127.3, 125.5, 116.9, 91.5, 82.9, 52.7, 36.7, 32.8, 21.3; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 520.1941; found: 520.1964.

(*E*)-*N*-(2-benzylidenepent-4-en-1-yl)-*N*-(3-(2-formylnaphthalen-1-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1z)

The title compound was prepared according to general procedure A in 44% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 15:1) to afford the product as a colorless solid, mp 116–118 °C; **¹H NMR (600 MHz, CDCl**₃) δ 10.11 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.91–7.85 (m, 3H), 7.80 (d, *J* = 7.9 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 2H), 7.27–7.24 (m, 1H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.68 (s, 1H), 6.00–5.94 (m, 1H), 5.24 (d, *J* = 17.2 Hz, 1H), 5.18 (d, *J* = 10.1 Hz, 1H), 4.60 (s, 2H), 4.08 (s, 2H), 3.14 (d, *J* = 5.9 Hz, 2H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 191.0, 143.9, 136.3, 135.7, 135.5, 134.6, 134.3, 133.3, 132.9, 131.4, 129.6, 129.3, 129.1, 128.5, 128.4, 128.3, 127.7, 127.5, 127.2, 126.8, 126.1, 121.7, 116.9, 95.1, 79.5, 52.7, 36.7, 32.7, 21.2; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 520.1941; found: 520.1939.

(*E*)-*N*-(2-(4-(*N*,*N*-dipropylsulfamoyl)benzylidene)pent-4-en-1-yl)-*N*-(3-(2-formylp henyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1aa)

The title compound was prepared according to general procedure A in 31% overall yield over 4 steps from probenecid derived aldehyde.^{S7} It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 6:1) to afford the product as a pale-yellow solid, mp 113–114 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.89 (s, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.78–7.71 (m, 4H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 3H), 6.66 (s, 1H), 5.94–5.88 (m, 1H), 5.18 (d, *J* = 9.3 Hz, 1H), 5.16 (s, 1H), 4.39 (s, 2H), 3.99 (s, 2H), 3.07–3.05 (m, 6H), 2.24 (s, 3H), 1.60–1.48 (m, 4H), 0.86–0.83 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 190.5, 143.9, 140.4, 138.5, 136.2, 135.7, 135.6, 134.1, 133.5, 133.3, 129.6, 129.2, 128.9, 127.6, 127.3, 126.9, 125.2, 88.7, 81.8, 52.3, 49.9, 36.8, 32.9, 21.9, 21.3, 11.1; HRMS (ESI) calcd for C₃₅H₄₁N₂O₅S₂ [M+H]⁺: 633.2451; found: 633.2480.

(*E*)-*N*-(2-allyl-5-(4,5-diphenyloxazol-2-yl)pent-2-en-1-yl)-*N*-(3-(2-formylphenyl)p rop-2-yn-1-yl)-4-methylbenzenesulfonamide (1ab)

The title compound was prepared according to general procedure A in 32% overall yield over 4 steps from oxaprozin derived aldehyde.^{S7} It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 9:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.80 (s, 1H), 7.79 (d, *J* = 7.7

Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.63–7.57 (m, 2H), 7.56–7.51 (m, 2H), 7.40 (td, J = 7.5, 1.2 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.33–7.26 (m, 6H), 7.13 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 5.80–5.74 (m, 1H), 5.61 (t, J = 7.3 Hz, 1H), 5.12 (dd, J = 17.1, 1.4 Hz, 1H), 5.02 (dd, J = 10.0, 0.9 Hz, 1H), 4.21 (s, 2H), 3.79 (s, 2H), 2.94–2.91 (m, 4H), 2.67 (d, J = 7.2 Hz, 1H), 2.65 (d, J = 7.2 Hz, 1H), 2.18 (s, 3H); ¹³**C NMR (150 MHz, CDCl**₃) δ 190.4, 162.3, 145.1, 143.6, 135.6, 135.5, 134.9, 134.4, 133.3, 133.2, 132.6, 132.2, 129.9, 129.3, 128.7, 128.5, 128.4, 128.3, 128.3, 127.8, 127.6, 127.4, 126.8, 126.2, 125.5, 116.1, 88.8, 81.2, 52.1, 35.9, 31.9, 27.8, 25.3, 21.1; **HRMS (ESI)** calcd for C₄₀H₃₇N₂O₄S [M+H]⁺: 641.2469; found: 641.2500.

N-(2-((*E*)-benzylidene)pent-4-en-1-yl)-*N*-(3-((8*R*,9*S*,13*S*,14*S*)-2-formyl-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl) prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1ac)

The title compound was prepared according to general procedure B in 23% yield. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 9:1 to 4:1) to afford the product as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.80 (s, 1H), 7.79 (s, 1H), 7.78 (d, *J* = 2.2 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 7.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 3H), 6.97 (s, 1H), 6.62 (s, 1H), 5.97–5.91 (m, 1H), 5.20 (dd, *J* = 17.2, 1.5 Hz, 1H), 5.16 (dd, *J* = 10.1, 1.3 Hz, 1H), 4.39 (s, 2H), 3.97 (s, 2H), 3.09 (d, *J* = 6.0 Hz, 2H), 2.98–2.83 (m, 2H), 2.55–2.48 (m, 2H), 2.30 (s, 4H), 2.20–2.11 (m, 1H), 2.11–2.03 (m, 2H), 2.03–1.97 (m, 1H), 1.70–1.42 (m, 7H), 0.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.1, 190.5, 143.7, 143.5, 141.3, 136.4, 135.9, 134.7, 133.7, 133.6, 133.3, 131.3, 129.6, 128.5, 128.3, 127.7, 127.2, 124.2, 122.9, 116.9, 87.9, 81.8, 52.5, 50.3, 47.8, 44.2, 37.6, 36.6, 35.7, 32.7, 31.3, 29.4, 25.9, 25.4, 21.5,

21.4, 13.7; **HRMS (ESI)** calcd for C₄₁H₄₃NNaO₄S [M+Na]⁺: 668.2805; found: 668.2827.

(*E*)-4-(3-((*N*-(2-benzylidenepent-4-en-1-yl)-4-methylphenyl)sulfonamido)prop-1-y n-1-yl)-3-formylphenyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (1ad)

The title compound was prepared according to general procedure C in 20% overall yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 9:1 to 5:1) to afford the product as a yellow solid, mp 56–58 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.89 (s, 1H), 8.30 (d, *J* = 8.4 Hz, 2H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 2.4 Hz, 1H), 7.40 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.34–7.30 (m, 3H), 7.28 (d, *J* = 7.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 3H), 6.63 (s, 1H), 5.98–5.91 (m, 1H), 5.21 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.2 Hz, 1H), 4.41 (s, 2H), 3.99 (s, 2H), 3.15–3.12 (m, 4H), 3.09 (d, *J* = 6.0 Hz, 2H), 2.30 (s, 3H), 1.59–1.53 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 7H); ¹³C NMR (150 MHz, CDCl₃) δ 189.4, 163.2, 150.7, 145.3, 143.9, 137.1, 136.3, 135.8, 134.7, 134.6, 133.2, 131.8, 131.3, 130.8, 129.6, 128.4, 128.3, 127.6, 127.2, 127.2, 127.0, 123.3, 120.0, 116.9, 89.5, 80.7, 52.6, 49.8, 36.5, 32.7, 21.8, 21.3, 11.1; HRMS (ESI) calcd for C₄₂H₄₄N₂NaO₇S₂ [M+Na]⁺: 775.2482; found: 775.2496.

(*E*)-4-(3-((*N*-(2-benzylidenepent-4-en-1-yl)-4-methylphenyl)sulfonamido)prop-1-y n-1-yl)-3-formylphenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl) acetate (1ae)

The title compound was prepared according to general procedure C in 25% overall yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 9:1 to 5:1) to afford the product as a yellow solid, mp 64–66 °C; ¹**H NMR (600 MHz, CDCl₃)** δ 9.83 (s, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.54 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28 (s, 1H), 7.27 (s, 1H), 7.23 (d, *J* = 1.3 Hz, 3H), 7.22 (s, 1H), 7.02 (d, *J* = 2.4 Hz, 1H), 6.89 (d, *J* = 9.0 Hz, 1H), 6.71 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.61 (s, 1H), 5.97–5.91 (m, 1H), 5.20 (dd, *J* = 17.2, 1.5 Hz, 1H), 5.17 (dd, *J* = 10.1, 1.3 Hz, 1H), 4.39 (s, 2H), 3.97 (s, 2H), 3.92 (s, 2H), 3.85 (s, 3H), 3.09 (d, *J* = 6.0 Hz, 2H), 2.46 (s, 3H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.5, 168.7, 168.3, 156.1, 150.8, 143.9, 139.4, 137.0, 136.4, 136.3, 135.8, 134.6, 134.6, 133.7, 133.3, 131.3, 131.2, 130.8, 130.3, 129.6, 129.2, 128.5, 128.3, 127.7, 127.3, 127.0, 123.1, 119.9, 116.9, 115.0, 111.7, 111.3, 101.2, 89.3, 80.8, 55.7, 52.6, 36.5, 32.7, 30.4, 21.4, 13.4; HRMS (ESI) calcd for C₄₈H₄₁ClN₂NaO₇S [M+Na]⁺: 847.2215; found: 847.2217.

(E)-2-(3-((2-benzylidenepent-4-en-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1af)

The title compound was prepared according to general procedure D in 49% overall yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 25:1) to afford the product as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.55 (s, 1H), 7.93 (d, *J* = 7.6 Hz, 1H), 7.59–7.57 (m, 1H), 7.56 (td, *J* = 7.4, 1.2 Hz, 1H), 7.47–7.44 (m, 1H), 7.35–7.31 (m, 4H), 7.26–7.24 (m, 1H), 6.72 (s, 1H), 5.97–5.90 (m, 1H), 5.18–5.13 (m, 2H), 4.49 (s, 2H), 4.23 (s, 2H), 3.09 (d, *J* = 6.1 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.4, 136.8, 136.1, 135.6, 135.3, 133.7, S24

133.5, 129.5, 128.8, 128.6, 128.2, 127.2, 126.9, 126.1, 116.4, 92.5, 81.9, 73.6, 57.8, 33.0; **HRMS (ESI)** calcd for C₂₂H₂₁O₂ [M+H]⁺: 317.1536; found: 317.1542.

3. General procedure for BrettPhosAuNTf2-catalyzed 6-endo-dig oxycyclization/[3 + 2] cycloaddition/cyclopropanation

To a solution of **1** (0.15 mmol) and 4 Å MS (150 mg) in anhydrous toluene (3 mL) was added BrettPhosAuNTf₂ (5 mol %) under an argon atmosphere. The reaction mixture was stirred at 60 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc) to give the product **2**.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-phenyl-3-tosyl-3,4,11,11a-tetrahydro-1*H*, 2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrr ole (2a)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2a** in 87% yield (61 mg); colorless solid, mp 153–155 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.31–7.26 (m, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.12–7.10 (m, 3H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.61 (d, *J* = 7.4 Hz, 2H), 5.42 (d, *J* = 7.3 Hz, 1H), 3.89 (d, *J* = 7.3 Hz, 1H), 3.74

(dd, J = 10.4, 7.1 Hz, 2H), 3.30 (d, J = 11.6 Hz, 1H), 2.88 (d, J = 9.2 Hz, 1H), 2.45 (s, 3H), 2.15 (dd, J = 8.8, 6.8 Hz, 1H), 1.44 (t, J = 6.0 Hz, 1H), 1.40 (dd, J = 14.2, 7.2 Hz, 1H), 1.32 (dd, J = 14.2, 4.0 Hz, 1H), 0.84–0.71 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 142.0, 137.5, 136.6, 133.1, 129.7, 129.1, 128.4, 128.2, 127.6, 127.0, 126.5, 124.6, 120.3, 99.0, 84.3, 76.7, 57.7, 57.6, 52.2, 36.7, 34.0, 29.9, 21.5, 21.3; HRMS (ESI) calcd for C₂₉H₂₈NO₃S [M+H]⁺: 470.1784; found: 470.1795.

(1aS*,4aS*,6S*,10bR*,11aR*,12R*)-3-tosyl-12-(4-(trifluoromethyl)phenyl)-3,4,11 ,11a-tetrahydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cy clopenta[1,2-*c*]pyrrole (2b)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2b** in 60% yield (48 mg); colorless solid, mp 200–201 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.36 (t, *J* = 8.2 Hz, 4H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 7.3 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.1 Hz, 2H), 5.43 (d, *J* = 7.3 Hz, 1H), 3.92 (d, *J* = 7.3 Hz, 1H), 3.75 (d, *J* = 3.5 Hz, 1H), 3.73 (s, 1H), 3.30 (d, *J* = 11.7 Hz, 1H), 2.88 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.18–2.15 (m, 1H), 1.46 (t, *J* = 6.0 Hz, 1H), 1.35 (d, *J* = 5.4 Hz, 2H), 0.77–0.73 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.78, 141.4, 140.9, 137.4, 133.1, 129.8, 129.5, 129.2, 128.8, 127.6, 126.5, 125.2, 125.1, 124.8, 123.0, 120.5, 99.2, 84.1, 57.5, 57.4, 52.1, 36.7, 33.9, 29.8, 21.6, 21.4; ¹⁹F NMR (565 MHz, CDCl3) δ -62.70; HRMS (ESI) calcd for C₃₀H₂₇F₃NO₃S [M+H]⁺: 538.1658; found: 538.1649.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(4-fluorophenyl)-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2c)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2c** in 91% yield (66 mg); colorless solid, mp 188–190 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.31–7.26 (m, 1H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.03 (d, *J* = 7.3 Hz, 1H), 6.92 (d, *J* = 7.5 Hz, 1H), 6.79 (t, *J* = 8.3 Hz, 2H), 6.60–6.51 (m, 2H), 5.39 (d, *J* = 7.2 Hz, 1H), 3.86 (d, *J* = 7.2 Hz, 1H), 3.74–3.70 (m, 2H), 3.29 (d, *J* = 11.6 Hz, 1H), 2.84 (d, *J* = 9.1 Hz, 1H), 2.44 (s, 3H), 2.15 (t, *J* = 7.8 Hz, 1H), 1.44 (t, *J* = 5.8 Hz, 1H), 1.38 (dd, *J* = 14.1, 7.1 Hz, 1H), 1.33 (dd, *J* = 14.3, 3.5 Hz, 1H), 0.78–0.73 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 161.7 (d, *J* = 246.7 Hz), 143.7, 141.6, 137.5, 133.1, 132.2 (d, *J* = 3.4 Hz), 130.7 (d, *J* = 7.7 Hz), 129.8, 128.6, 127.6, 126.5, 124.7, 120.4, 115.1 (d, *J* = 21.0 Hz), 99.1, 84.3, 76.6, 57.5, 56.9, 52.2, 36.7, 33.9, 29.8, 21.6, 21.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -115.16; HRMS (ESI) calcd for C₂₉H₂₆FKNO₃S [M+K]⁺: 526.1249; found: 526.1263.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(4-bromophenyl)-3-tosyl-3,4,11,11a-tetra hydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrrole (2d)

Column chromatography (petroleum ether/EtOAc = 50:1 to 20:1) to give the product 2d in 77% yield (63 mg); colorless solid, mp 209–210 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.92 (d, *J* =

7.6 Hz, 1H), 6.46 (d, J = 8.4 Hz, 2H), 5.39 (d, J = 7.3 Hz, 1H), 3.81 (d, J = 7.3 Hz, 1H), 3.71 (dd, J = 12.2, 10.7 Hz, 2H), 3.28 (d, J = 11.7 Hz, 1H), 2.83 (d, J = 9.2 Hz, 1H), 2.44 (s, 3H), 2.15 (dd, J = 8.6, 7.2 Hz, 1H), 1.44 (t, J = 6.0 Hz, 1H), 1.39 (dd, J = 14.3, 7.1 Hz, 1H), 1.34 (dd, J = 14.3, 4.1 Hz, 1H) 0.76–0.72 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.7, 141.5, 137.5, 135.6, 133.1, 131.4, 130.9, 129.8, 128.7, 127.6, 126.5, 124.7, 121.1, 120.4, 99.1, 84.2, 76.7, 57.5, 57.1, 52.2, 36.7, 34.0, 29.8, 21.6, 21.4; HRMS (ESI) calcd for C₂₉H₂₇BrNO₃S [M+H]⁺: 548.0890; found: 548.0905.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-([1,1'-biphenyl]-4-yl)-3-tosyl-3,4,11,11a-te trahydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopen ta[1,2-*c*]pyrrole (2e)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2e** in 62% yield (51 mg); colorless solid, mp 143–145 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 4H), 7.32–7.29 (m, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 6.8 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.68 (d, *J* = 8.3 Hz, 2H), 5.45 (d, *J* = 7.3 Hz, 1H), 3.93 (d, *J* = 7.3 Hz, 1H), 3.77 (s, 1H), 3.75 (d, *J* = 1.8 Hz, 1H), 3.32 (d, *J* = 11.6 Hz, 1H), 2.90 (d, *J* = 9.2 Hz, 1H), 2.46 (s, 3H), 2.17 (dd, *J* = 8.8, 6.9 Hz, 1H), 1.51–1.45 (m, 2H), 1.37–1.34 (m, 1H), 0.86–0.82 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 141.9, 140.3, 139.8, 137.5, 135.6, 133.1, 129.8, 129.6, 128.7, 128.5, 127.6, 127.3, 126.8, 126.5, 124.6, 120.3, 99.1, 84.3, 57.6, 57.5, 52.2, 36.7, 34.1, 29.9, 21.6, 21.4; HRMS (ESI) calcd for C₃₅H₃₂NO₃S [M+H]⁺: 546.2097; found: 546.2109.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(4-methoxyphenyl)-3-tosyl-3,4,11,11a-tetr ahydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta [1,2-*c*]pyrrole (2f)

Column chromatography (petroleum ether/EtOAc = 20:1 to 7:1) to give the product **2f** in 56% yield (42 mg); colorless solid, mp 122–125 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.28–7.25 (m, 1H), 7.10 (td, *J* = 7.4, 0.8 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 8.8 Hz, 2H), 6.50 (d, *J* = 8.7 Hz, 2H), 5.38 (d, *J* = 7.4 Hz, 1H), 3.83 (d, *J* = 7.4 Hz, 1H), 3.73– 3.69 (m, 5H), 3.28 (d, *J* = 11.6 Hz, 1H), 2.83 (d, *J* = 9.2 Hz, 1H), 2.44 (s, 3H), 2.14 (dd, *J* = 8.9, 6.8 Hz, 1H), 1.44–1.40 (m, 2H), 1.31 (dd, *J* = 14.2, 4.0 Hz, 1H), 0.80– 0.76 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 158.5, 143.6, 142.1, 137.6, 133.2, 130.3, 129.8, 128.4, 128.4, 127.6, 126.5, 124.6, 120.3, 113.6, 99.1, 84.4, 76.6, 57.6, 57.1, 55.1, 52.3, 36.7, 34.1, 29.9, 21.6, 21.3; HRMS (ESI) calcd for C₃₀H₃₀NO4S [M+H]⁺: 500.1890; found: 500.1876.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(*p*-tolyl)-3-tosyl-3,4,11,11a-tetrahydro-1*H* ,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrr ole (2g)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2g** in 81% yield (58 mg); colorless solid, mp 143–144 °C; ¹H NMR (600 MHz,

CDCl₃) δ 7.73 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.28–7.26 (m, 1H), 7.10 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 6.93–6.91 (m, 3H), 6.48 (d, J = 8.0 Hz, 2H), 5.39 (d, J = 7.3 Hz, 1H), 3.85 (d, J = 7.3 Hz, 1H), 3.72 (dd, J = 13.9, 10.4 Hz, 2H), 3.29 (d, J = 11.6 Hz, 1H), 2.85 (d, J = 9.2 Hz, 1H), 2.45 (s, 3H), 2.24 (s, 3H), 2.15 (dd, J = 8.7, 7.0 Hz, 1H), 1.44–1.40 (m, 2H), 1.31 (dd, J = 14.2, 4.0 Hz, 2H), 0.81–0.77 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 142.1, 137.5, 136.7, 133.4, 133.1, 129.7, 129.1, 128.9, 128.4, 127.6, 126.5, 124.5, 120.3, 99.1, 84.4, 76.6, 57.6, 57.5, 52.3, 36.7, 34.1, 29.9, 21.5, 21.3, 20.8; HRMS (ESI) calcd for C₃₀H₂₉KNO₃S [M+K]⁺: 522.1500; found: 522.1522.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(naphthalen-2-yl)-3-tosyl-3,4,11,11a-tetra hydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrrole (2h)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2h** in 79% yield (62 mg); colorless solid, mp 181–184 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.42–7.33 (m, 6H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 7.3 Hz, 1H), 7.01 (s, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 8.5 Hz, 1H), 5.50 (d, *J* = 7.3 Hz, 1H), 4.06 (d, *J* = 7.3 Hz, 1H), 3.80 (d, *J* = 9.1 Hz, 1H), 3.76 (d, *J* = 11.5 Hz, 1H), 3.34 (d, *J* = 11.6 Hz, 1H), 2.95 (d, *J* = 9.1 Hz, 1H), 2.46 (s, 3H), 2.17 (dd, *J* = 8.6, 7.1 Hz, 1H), 1.45 (t, *J* = 6.1 Hz, 1H), 1.40 (dd, *J* = 14.2, 7.2 Hz, 1H), 1.32 (dd, *J* = 14.3, 4.1 Hz, 1H), 0.82–0.78 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.7, 142.2, 137.7, 134.1, 133.2, 132.9, 132.3, 129.8, 128.7, 127.8, 127.7, 127.7, 127.4, 126.6, 126.1, 125.9, 124.7, 120.4, 99.3, 84.34, 57.7, 52.3, 36.8, 34.3, 30.0, 21.6, 21.5; HRMS (ESI) calcd for C₃₃H₂₉NNaO₃S [M+Na]⁺: 542.1760; found: 542.1784.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**)-3-tosyl-3,4,11,11a-tetrahydro-1*H*,2*H*,6*H*-1a,6-met hanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrrole (2j)

Column chromatography (petroleum ether/EtOAc = 20:1 to 7:1) to give the product **2j** in 93% yield (56 mg); colorless solid, mp 167–168 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.18–7.15 (m, 1H), 7.08–7.05 (m, 2H), 6.87 (d, *J* = 7.5 Hz, 1H), 5.15 (dd, *J* = 7.9, 1.4 Hz, 1H), 3.63 (d, *J* = 9.5 Hz, 1H), 3.59 (d, *J* = 11.8 Hz, 1H), 3.35 (d, *J* = 11.8 Hz, 1H), 2.76 (d, *J* = 9.5 Hz, 1H), 2.54 (dd, *J* = 13.4, 7.9 Hz, 1H), 2.43 (s, 3H), 2.21 (dd, *J* = 8.8, 6.9 Hz, 1H), 2.03 (dd, *J* = 13.7, 7.1 Hz, 1H), 1.74 (dd, *J* = 13.4, 1.6 Hz, 1H), 1.42 (dd, *J* = 6.6, 5.3 Hz, 1H), 1.39 (dd, *J* = 13.7, 4.4 Hz, 1H), 1.08–1.04 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 143.4, 137.8, 133.6, 129.6, 127.7, 127.4, 124.4, 123.9, 120.3, 97.4, 79.7, 72.1, 54.7, 50.7, 41.1, 34.2, 34.1, 32.1, 22.5, 21.5; HRMS (ESI) calcd for C₂₃H₂₃KNO₃S [M+K]⁺: 432.1030; found: 432.1049.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-hexyl-3-tosyl-3,4,11,11a-tetrahydro-1*H*,2 *H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrrol e (2k)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2k** in 77% yield (56 mg); colorless solid, mp 114–115 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 6.8 Hz, 1H), 7.09–7.04 (m, 2H), 6.83 (d, *J* = 7.5 Hz, 1H), 5.21 (d, *J* = 7.3 Hz, 1H), 3.64 (t, *J* = 10.6 Hz, 2H), 3.27 (d, *J* = 11.7 Hz, 1H), 2.67 (d, *J* = 9.4 Hz, 1H), 2.46–2.43 (m, 4H), 2.15–2.13 (m, 1H), 2.01 (dd, *J* = 14.2, 7.2 Hz, 1H), 1.43–1.40 (m, 2H), 1.29–1.10 (m, 10H), S31

0.84 (t, J = 7.1 Hz, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 140.4, 137.9, 133.4, 129.6, 127.9, 127.5, 126.2, 124.1, 119.9, 98.5, 84.6, 74.2, 56.9, 51.6, 49.5, 35.4, 34.8, 31.5, 29.2, 29.0, 28.9, 28.2, 22.4, 22.2, 21.5, 13.9; HRMS (ESI) calcd for C₂₉H₃₅KNO₃S [M+K]⁺: 516.1969; found: 516.1993.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-phenethyl-3-tosyl-3,4,11,11a-tetrahydro-1 *H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]py rrole (2l)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **21** in 67% yield (50 mg); colorless solid, mp 199–201 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.23–7.13 (m, 5H), 7.09 (t, *J* = 7.3 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 2H), 6.83 (d, *J* = 7.5 Hz, 1H), 5.28 (d, *J* = 7.2 Hz, 1H), 3.63 (dd, *J* = 10.4, 3.6 Hz, 2H), 3.28 (d, *J* = 11.7 Hz, 1H), 2.67 (d, *J* = 9.4 Hz, 1H), 2.64–2.59 (m, 1H), 2.54–2.49 (m, 1H), 2.41 (s, 3H), 2.12 (t, *J* = 7.7 Hz, 1H), 2.00 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.59–1.53 (m, 1H), 1.41–1.38 (m, 2H), 1.15–1.08 (m, 1H), 0.82–0.78 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.4, 141.3, 139.9, 137.9, 133.4, 129.6, 128.4, 128.1, 128.1, 127.4, 126.2, 125.9, 124.1, 120.1, 98.5, 84.4, 74.2, 56.7, 51.5, 48.7, 35.3, 35.2, 34.7, 30.6, 28.9, 22.3, 21.5; HRMS (ESI) calcd for C₃₁H₃₁NNaO₃S [M+Na]⁺: 520.1917; found: 520.1934.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-((*E*)-styryl)-3-tosyl-3,4,11,11a-tetrahydro -1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*] pyrrole (2m)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2m** in 53% yield (39 mg); colorless solid, mp 236–238 °C; **¹H NMR (400 MHz, CDCl3**) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.26–7.19 (m, 4H), 7.09 (d, *J* = 6.5 Hz, 1H), 7.06 (d, *J* = 7.3 Hz, 1H), 7.02 (d, *J* = 6.7 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 6.45 (d, *J* = 15.6 Hz, 1H), 5.35 (dd, *J* = 15.6, 10.2 Hz, 1H), 5.26 (d, *J* = 7.5 Hz, 1H), 3.68 (dd, *J* = 10.5, 8.2 Hz, 2H), 3.41–3.34 (m, 2H), 2.82 (d, *J* = 9.4 Hz, 1H), 2.44 (s, 3H), 2.22–2.18 (m, 1H), 2.07–2.02 (m, 1H), 1.47 (t, *J* = 6.3 Hz, 1H), 1.39 (dd, *J* = 14.2, 4.3 Hz, 1H), 0.91–0.84 m, 1H); ¹³C NMR (100 MHz, CDCl3) δ 143.6, 140.4, 137.5, 136.6, 134.6, 133.4, 129.7, 128.5, 128.2, 127.6, 127.5, 126.5, 126.2, 125.9, 124.5, 120.1, 98.3, 84.4, 56.1, 53.8, 51.5, 35.4, 34.3, 29.3, 21.9, 21.6; HRMS (ESI) calcd for C₃₁H₃₀NO₃S [M+H]⁺: 496.1941; found: 496.1939.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(phenylethynyl)-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2n)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2n** in 83% yield (62 mg); colorless solid, mp 225–228 °C; **¹H NMR (400 MHz, CDCl3)** δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.23–7.08 (m, 6H), 6.90 (d, *J* = 7.8 Hz, 2H), 6.85 (d, *J* = 7.5 Hz, 1H), 5.41 (d, *J* = 7.5 Hz, 1H), 3.72 (d, *J* = 9.5 Hz, 1H), 3.67–3.65 (m, 2H), 3.38 (d, *J* = 11.8 Hz, 1H), 2.78 (d, *J* = 9.5 Hz, 1H), 2.44 (s, 3H), 2.41 (t, *J* = 7.1 Hz, 1H), 2.17 (t, *J* = 7.8 Hz, 1H), 1.44–1.37 (m, 2H), 1.26 (s,

1H), 1.03–0.97 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 140.4, 137.6, 133.5, 131.3, 129.7, 128.2, 128.1, 127.9, 127.5, 125.9, 124.2, 122.7, 119.9, 98.5, 86.1, 85.9, 83.9, 75.7, 55.3, 51.1, 43.5, 35.6, 34.5, 30.2, 22.2, 21.6; HRMS (ESI) calcd for C₃₁H₂₇NNaO₃S [M+Na]⁺: 516.1604; found: 516.1625.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-7-fluoro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (20)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **20** in 62% yield (45 mg); colorless solid, mp 210–211 °C; ¹H NMR (600 MHz, **CDCl**₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.25–7.22 (m, 1H), 7.18–7.16 (m, 1H), 7.13 (t, *J* = 7.3 Hz, 2H), 6.83 (t, *J* = 8.6 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.66 (d, *J* = 7.3 Hz, 2H), 5.83 (d, *J* = 7.3 Hz, 1H), 3.90 (d, *J* = 7.4 Hz, 1H), 3.74 (d, *J* = 7.4 Hz, 1H), 3.72 (d, *J* = 4.9 Hz, 1H), 3.27 (d, *J* = 11.6 Hz, 1H), 2.83 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.14 (dd, *J* = 8.9, 6.9 Hz, 1H), 1.48 (t, *J* = 6.1 Hz, 1H), 1.46 (t, *J* = 7.3 Hz, 1H), 1.36 (dd, *J* = 14.3, 4.0 Hz, 1H), 0.85–0.81 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 158.7 (d, *J* = 246.8 Hz), 143.8, 140.3, 136.3, 132.9, 129.8, 129.6 (d, *J* = 8.3 Hz), 128.9 (d, *J* = 16.0 Hz), 128.5, 128.5, 127.6, 127.3, 116.0, 111.8 (d, *J* = 21.6 Hz), 99.2, 57.7, 57.3, 52.3, 36.9, 34.3, 29.9, 21.7, 21.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -123.22 (dd, *J* = 9.0, 5.7 Hz); HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1699.

(1aS*,4aS*,6S*,10bR*,11aR*,12R*)-12-phenyl-3-tosyl-8-(trifluoromethyl)-3,4,11, 11a-tetrahydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cy clopenta[1,2-*c*]pyrrole (2p)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2p** in 64% yield (51 mg); colorless solid, mp 151–152 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.30 (s, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 7.4 Hz, 2H), 5.45 (d, *J* = 7.3 Hz, 1H), 3.91 (d, *J* = 7.4 Hz, 1H), 3.75 (d, *J* = 11.7 Hz, 1H), 3.73 (d, *J* = 9.2 Hz, 1H), 3.28 (d, *J* = 11.7 Hz, 1H), 2.84 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.20 (dd, *J* = 8.9, 7.0 Hz, 1H), 1.54 (d, *J* = 6.4 Hz, 1H), 1.44 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.38 (dd, *J* = 14.3, 4.1 Hz, 1H), 0.90–0.86 (m, 1H); ¹³C **NMR (150 MHz, CDCl3)** δ 143.8, 142.7, 142.1, 136.0, 135.9, 133.0, 130.5, 129.8, 128.9, 128.5, 127.6, 127.4, 125.6 (d, *J* = 3.5 Hz), 123.1 (d, *J* = 3.5 Hz), 120.7, 99.3, 84.0, 76.9, 57.9, 57.6, 52.2, 37.2, 34.9, 29.8, 21.8, 21.6; ¹⁹F NMR (565 MHz, CDCl3) δ -62.03; HRMS (ESI) calcd for C₃₀H₂₆F₃KNO₃S [M+K]⁺: 576.1217; found: 576.1244.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-8-fluoro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2q)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2q** in 83% yield (60 mg); colorless solid, mp 195–198 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.19–7.16 (m, 1H), 7.14–7.11 (m, 2H), 6.97 (td, *J* = 8.7, 2.6 Hz, 1H), 6.87 (dd, *J* = 8.4, 5.2 Hz, 1H), 6.81 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.61–6.60 (m, 2H), 5.36 (d, *J* = 7.4 Hz, 1H), 3.87 (d, *J* = 7.4 Hz, 1H), 3.73 (d, *J* = 5.0 Hz, 1H), 3.71 (d, *J* = 2.5 Hz, 1H), 3.27 (d, *J* = 11.7 Hz, 1H), 2.84 S35

(d, J = 9.2 Hz, 1H), 2.45 (s, 3H), 2.11 (dd, J = 8.9, 6.9 Hz, 1H), 1.43 (dd, J = 6.4, 5.4 Hz, 1H), 1.40 (dd, J = 14.3, 7.2 Hz, 1H), 1.31 (dd, J = 14.3, 4.1 Hz, 1H), 0.80–0.76 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 160.2 (d, J = 244.4 Hz), 144.1 (d, J = 6.6 Hz), 143.7, 136.2, 133.3 (d, J = 2.6 Hz), 133.1, 129.8, 129.1, 128.4, 127.6, 127.3, 121.8 (d, J = 8.1 Hz), 114. (d, J = 21.5 Hz), 113.9 (d, J = 22.3 Hz), 99.1, 83.9, 76.7, 57.8, 57.6, 52.1, 36.2, 33.8, 29.8, 21.6, 21.4; HRMS (ESI) calcd for C₂₉H₂₆FKNO₃S [M+K]⁺: 526.1249; found: 526.1255.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-8-chloro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2r)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2r** in 81% yield (62 mg); colorless solid, mp 211–212 °C; **¹H** NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.26–7.24 (m, 1H), 7.19–7.13 (m, 3H), 7.06 (s, 1H), 6.85 (d, *J* = 8.1 Hz, 1H), 6.60 (d, *J* = 7.4 Hz, 2H), 5.35 (d, *J* = 7.3 Hz, 1H), 3.87 (d, *J* = 7.3 Hz, 1H), 3.72 (dd, *J* = 10.4, 5.3 Hz, 2H), 3.27 (d, *J* = 11.7 Hz, 1H), 2.84 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.11 (t, *J* = 8.3 Hz, 1H), 1.46 (t, *J* = 6.0 Hz, 1H), 1.40 (dd, *J* = 14.2, 7.2 Hz, 1H), 1.32 (dd, *J* = 14.3, 3.9 Hz, 1H), 0.84–0.79 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.8, 143.7, 136.3, 136.1, 133.0, 130.3, 129.8, 129.0, 128.4, 128.4, 127.6, 127.3, 126.6, 121.7, 99.2, 83.8, 76.7, 57.8, 57.5, 52.1, 36.5, 34.2, 29.8, 21.6, 21.5; HRMS (ESI) calcd for C₂₉H₂₆ClKNO₃S [M+K]⁺: 542.0954; found: 542.0959.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-8-bromo-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2s)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2s** in 86% yield (71 mg); colorless solid, mp 199–202 °C; **¹H NMR (600 MHz, CDCl3**) δ 7.72 (d, *J* = 7.9 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.20 (s, 1H), 7.18 (d, *J* = 6.9 Hz, 1H), 7.14 (t, *J* = 7.3 Hz, 2H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.60 (d, *J* = 7.5 Hz, 2H), 5.34 (d, *J* = 7.3 Hz, 1H), 3.87 (d, *J* = 7.3 Hz, 1H), 3.72 (d, *J* = 7.2 Hz, 1H), 3.70 (d, *J* = 4.6 Hz, 1H), 3.27 (d, *J* = 11.7 Hz, 1H), 2.83 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.11 (t, *J* = 7.9 Hz, 1H), 1.46 (t, *J* = 6.0 Hz, 1H), 1.40 (dd, *J* = 14.4, 7.3 Hz, 1H), 1.34–1.26 (m, 3H), 0.84–0.80 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 144.2, 143.7, 136.8, 136.1, 133.0, 131.4, 129.8, 129.4, 129.1, 128.5, 127.6, 127.3, 122.1, 118.2, 99.2, 83.7, 57.9, 57.5, 52.2, 36.6, 34.3, 29.8, 21.6, 21.5; HRMS (ESI) calcd for C₂₉H₂₆BrNNaO₃S [M+Na]⁺: 570.0709; found: 570.0717.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-8-methyl-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2t)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2t** in 77% yield (56 mg); colorless oil; **¹H NMR (600 MHz, CDCl**₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.17–7.15 (m, 1H), 7.12 (t, *J* = 7.3 Hz, 2H), 7.08 (dd, *J* = 7.6, 0.7 Hz, 1H), 6.89 (s, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.62 (d, *J* = 7.3 Hz, 2H), 5.37 (d, *J* = 7.3 Hz, 1H), 3.87 (d, *J* = 7.3 Hz, 1H), 3.72 (d, *J* = 5.2 Hz, 1H), 3.71 (d, *J* = 2.7 Hz, 1H), 3.29 (d, *J* = 11.6 Hz, 1H), 2.87 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.29 (s, 3H), 2.10 (dd, *J* = 8.9, 6.8 Hz, 1H), 1.40–1.35 (m, 2H), 1.29 (dd, *J* = 14.3, 4.1 Hz, 1H), 0.77–0.72 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 142.0, 136.7, S37 134.4, 134.2, 133.2, 129.7, 129.2, 128.9, 128.2, 127.6, 127.4, 127.0, 120.2, 99.1, 84.3, 76.7, 57.7, 57.6, 52.2, 36.3, 33.7, 29.9, 21.6, 21.3, 21.0; **HRMS (ESI)** calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1940.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-9-fluoro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2u)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2u** in 66% yield (48 mg); colorless solid, mp 160–162 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 2H), 7.00 (dd, *J* = 8.2, 5.5 Hz, 1H), 6.79 (td, *J* = 8.6, 2.5 Hz, 1H), 6.63 (dd, *J* = 9.2, 2.5 Hz, 1H), 6.59 (d, *J* = 7.4 Hz, 2H), 5.40 (d, *J* = 7.3 Hz, 1H), 3.86 (d, *J* = 7.3 Hz, 1H), 3.73 (d, *J* = 7.3 Hz, 1H), 3.71 (d, *J* = 4.8 Hz, 1H), 3.28 (d, *J* = 11.7 Hz, 1H), 2.84 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.09 (dd, *J* = 8.9, 7.0 Hz, 1H), 1.48 (t, *J* = 6.5 Hz, 1H), 1.41 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.33 (dd, *J* = 14.3, 4.1 Hz, 1H), 0.88–0.83 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 163.1 (d, *J* = 246.0 Hz), 143.7, 140.3 (d, *J* = 8.2 Hz), 137.8 (d, *J* = 3.0 Hz), 136.4, 133.1, 129.8, 129.1, 128.4, 127.8 (d, *J* = 8.7 Hz), 127.7, 127.6, 127.2, 111.0 (d, *J* = 21.6 Hz), 108.1 (d, *J* = 23.1 Hz), 98.8, 83.8, 57.8, 57.6, 52.2, 37.0, 34.5, 29.9, 21.8, 21.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -112.83 (td, *J* = 9.0, 5.7 Hz); HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1684.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-9-chloro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2v)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **2v** in 61% yield (46 mg); colorless solid, mp 190–193 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 2H), 7.08 (dd, *J* = 7.9, 1.9 Hz, 1H), 6.98 (d, *J* = 7.9 Hz, 1H), 6.90 (d, *J* = 1.7 Hz, 1H), 6.60 (d, *J* = 7.4 Hz, 2H), 5.38 (d, *J* = 7.3 Hz, 1H), 3.87 (d, *J* = 7.3 Hz, 1H), 3.72 (d, *J* = 5.8 Hz, 2H), 3.71 (d, *J* = 3.4 Hz, 1H), 3.27 (d, *J* = 11.7 Hz, 1H), 2.83 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.12 (dd, *J* = 8.8, 7.0 Hz, 1H), 1.47 (t, *J* = 6.2 Hz, 1H), 1.41 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.33 (dd, *J* = 14.3, 4.1 Hz, 1H), 0.88–0.84 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.7, 140.5, 139.8, 136.2, 134.1, 133.1, 129.8, 129.1, 128.4, 127.6, 127.6, 127.3, 124.6, 120.9, 98.9, 83.8, 57.8, 57.6, 52.2, 36.8, 34.5, 29.8, 21.6, 21.5; HRMS (ESI) calcd for C₂₉H₂₇ClNO₃S [M+H]⁺: 504.1395; found: 504.1418.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-9-bromo-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2w)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **2w** in 75% yield (62 mg); colorless solid, mp 195–198 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.24 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 2H), 7.05 (d, *J* = 1.7 Hz, 1H), 6.92 S39

(d, J = 7.9 Hz, 1H), 6.60 (d, J = 7.3 Hz, 2H), 5.37 (d, J = 7.3 Hz, 1H), 3.86 (d, J = 7.3 Hz, 1H), 3.72 (d, J = 4.6 Hz, 1H), 3.70 (d, J = 2.0 Hz, 1H), 3.26 (d, J = 11.7 Hz, 1H), 2.83 (d, J = 9.2 Hz, 1H), 2.45 (s, 3H), 2.12 (dd, J = 8.9, 7.0 Hz, 1H), 1.47 (t, J = 6.4 Hz, 1H), 1.41 (dd, J = 14.3, 7.2 Hz, 1H), 1.33 (dd, J = 14.3, 4.1 Hz, 1H), 0.88–0.84 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.7, 141.0, 140.0, 136.2, 133.0, 129.8, 129.1, 128.4, 127.9, 127.6, 127.5, 127.3, 123.8, 122.3, 99.1, 83.8, 57.8, 57.6, 52.2, 36.8, 34.5, 29.8, 21.6; HRMS (ESI) calcd for C₂₉H₂₆BrNNaO₃S [M+Na]⁺: 570.0709; found: 570.0734.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-9-methyl-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-*c*]pyrrole (2x)

Column chromatography (petroleum ether/EtOAc = 15:1 to 9:1) to give the product **2x** in 67% yield (48 mg); colorless solid, mp 128–130 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.17–7.14 (m, 1H), 7.11 (t, *J* = 7.3 Hz, 2H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.91 (dd, *J* = 7.5, 0.6 Hz, 1H), 6.73 (s, 1H), 6.63 (d, *J* = 7.2 Hz, 2H), 5.38 (d, *J* = 7.3 Hz, 1H), 3.85 (d, *J* = 7.3 Hz, 1H), 3.71 (d, *J* = 5.7 Hz, 1H), 3.29 (t, *J* = 11.8 Hz, 1H), 2.86 (d, *J* = 9.2 Hz, 1H), 2.45 (s, 3H), 2.34 (s, 3H), 2.13 (dd, *J* = 8.9, 6.7 Hz, 1H), 1.42–1.38 (m, 2H), 1.31 (dd, *J* = 14.3, 4.1 Hz, 1H), 0.80–0.75 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 139.1, 138.2, 137.2, 136.8, 133.2, 129.7, 129.2, 128.2, 127.6, 127.0, 126.4, 125.2, 121.2, 98.9, 84.1, 57.7, 57.6, 52.3, 36.7, 33.9, 29.9, 21.6, 21.5, 21.2; HRMS (ESI) calcd for C₃₀H₂₉KNO₃S [M+K]⁺: 522.1500; found: 522.1518.

(3a*S**,4a*R**,5a*R**,12*S**,13a*S**,14*R**)-14-phenyl-2-tosyl-2,3,4a,5-tetrahydro-1*H*,4*H* ,12*H*-3a,12-methanobenzo[7',8']isochromeno[3',4':1,5]cyclopropa[4,5]cyclopenta [1,2-*c*]pyrrole (2y)

Column chromatography (petroleum ether/EtOAc = 15:1 to 7:1) to give the product **2y** in 65% yield (51 mg); colorless solid, mp 184–185 °C; **¹H NMR** (600 MHz, **CDCl**₃) δ 7.82 (t, *J* = 6.8 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.38–7.33 (m, 4H), 7.12 (d, *J* = 8.4 Hz, 1H), 7.05 (t, *J* = 7.3 Hz, 1H), 6.96 (t, *J* = 7.7 Hz, 2H), 6.54 (d, *J* = 7.6 Hz, 2H), 6.28 (d, *J* = 7.3 Hz, 1H), 4.09 (d, *J* = 7.3 Hz, 1H), 3.80 (d, *J* = 3.8 Hz, 1H), 3.78 (s, 1H), 3.33 (d, *J* = 11.6 Hz, 1H), 2.94 (d, *J* = 9.1 Hz, 1H), 2.45 (s, 3H), 2.26 (dd, *J* = 8.8, 7.0 Hz, 1H), 1.53 (t, *J* = 6.3 Hz, 1H), 1.44–1.37 (m, 2H), 0.84–0.80 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.7, 137.8, 136.5, 134.9, 133.1, 131.0, 130.3, 129.8, 128.8, 128.1, 128.7, 128.3, 127.6, 126.9, 126.6, 124.7, 121.5, 119.4, 98.6, 79.3, 58.1, 57.7, 52.2, 37.4, 33.4, 29.9, 21.9, 21.6; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 520.1941; found: 520.1959.

(3a*S**,5*S**,11c*R**,12a*R**,13a*S**,14*R**)-14-phenyl-2-tosyl-2,3,12a,13-tetrahydro-1*H* ,5*H*,12*H*-5,13a-methanobenzo[5',6']isochromeno[3',4':1,5]cyclopropa[4,5]cyclope nta[1,2-c]pyrrole (2z)

Column chromatography (petroleum ether/EtOAc = 15:1 to 9:1) to give the product **2z** in 61% yield (48 mg); colorless solid, mp 188–191 °C; **¹H NMR (600 MHz, CDCl3)** δ 8.21 (d, *J* = 7.7 Hz, 1H), 7.86–7.84 (m, 1H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.46–7.44 (m, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.17 (dd, *J* = 7.7, 5.4 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 2H), 6.71 (d, *J* = 7.5 Hz, 2H), 5.50 (d, *J* = 7.2 Hz, 1H), S41

3.94 (d, J = 11.4 Hz, 1H), 3.90 (d, J = 7.3 Hz, 1H), 3.75 (d, J = 9.0 Hz, 1H), 3.30 (d, J = 11.4 Hz, 1H), 2.85 (d, J = 9.0 Hz, 1H), 2.74 (dd, J = 9.3, 7.0 Hz, 1H), 2.46 (s, 3H), 1.84 (t, J = 6.2 Hz, 1H), 1.44–1.37 (m, 2H), 0.94–0.88 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.7, 142.2, 136.5, 134.3, 132.9, 132.4, 129.8, 129.3, 129.1, 128.9, 128.3, 127.7, 127.2, 125.5, 125.3, 125.2, 125.1, 123.8, 100.5, 85.4, 76.0, 57.9, 57.6, 52.9, 37.6, 32.8, 30.2, 26.9, 21.6; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 520.1941; found: 520.1950.

N,*N*-dipropyl-4-((1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-3-tosyl-3,4,11,11a-tetrahydr o-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrrol-12-yl)benzenesulfonamide (2aa)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **2aa** in 60% yield (53 mg); colorless solid, mp 102–104 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 (td, *J* = 7.6, 1.1 Hz, 1H), 7.12 (td, *J* = 7.5, 1.0 Hz, 1H), 7.04 (d, *J* = 7.3 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 2H), 5.42 (d, *J* = 7.3 Hz, 1H), 3.91 (d, *J* = 7.3 Hz, 1H), 3.73 (s, 1H), 3.72 (d, *J* = 2.7 Hz, 1H), 3.29 (d, *J* = 11.7 Hz, 1H), 3.03–3.00 (m, 4H), 2.86 (d, *J* = 9.3 Hz, 1H), 2.44 (s, 3H), 2.16 (dd, *J* = 8.9, 6.9 Hz, 1H), 1.52–1.46 (m, 4H), 1.46–1.44 (m, 1H), 1.37–1.33 (m, 1H), 1.30–1.28 (m, 1H), 0.82 (t, *J* = 7.4 Hz, 6H), 0.73–0.69 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.8, 141.5, 141.3, 139.0, 137.3, 133.0, 129.8, 129.7, 128.8, 127.6, 126.9, 126.5, 124.8, 120.5, 99.1, 84.0, 57.4, 57.2, 52.1, 49.8, 36.7, 33.9, 29.8, 21.9, 21.5, 21.4, 11.1; HRMS (ESI) calcd for C₃₅H₄₀N₂NaO₅S₂ [M+Na]⁺: 655.2271; found: 655.2303.

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-(2-(4,5-diphenyloxazol-2-yl)ethyl)-3-tosyl-3,4,11,11a-tetrahydro-1*H*,2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4': 2,3]cyclopenta[1,2-*c*]pyrrole (2ab)

Column chromatography (petroleum ether/EtOAc = 20:1 to 6:1) to give the product **2ab** in 71% yield (68 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.37–7.30 (m, 8H), 7.22–7.18 (m, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 5.34 (d, *J* = 7.3 Hz, 1H), 3.68 (s, 1H), 3.66 (d, *J* = 3.3 Hz, 1H), 3.30 (d, *J* = 11.8 Hz, 1H), 2.90–2.77 (m, 2H), 2.69 (d, *J* = 9.4 Hz, 1H), 2.64–2.59 (m, 1H), 2.42 (s, 3H), 2.17 (t, *J* = 7.8 Hz, 1H), 2.10 (dd, *J* = 14.5, 7.2 Hz, 1H), 1.90–1.82 (m, 1H), 1.50–1.39 (m, 3H), 0.92–0.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 145.3, 143.5, 139.8, 137.9, 135.1, 133.3, 132.3, 129.7, 128.8, 128.6, 128.6, 128.5, 128.3, 128.1, 127.8, 127.5, 126.5, 126.2, 124.4, 120.2, 98.7, 84.2, 74.3, 56.7, 51.5, 48.6, 35.4, 34.7, 28.9, 27.3, 25.7, 22.4, 21.5; HRMS (ESI) calcd for C₄₀H₃₇N₂O₄S [M+H]⁺: 641.2469; found: 641.2501.

(1a*S**,4a**S*,6*S**,7b*S*,9a*S*,12a*S*,12b*R*,15b*R**,16a*R**,17*R**)-9a-methyl-17-phenyl-3-t osyl-3,4,7b,8,9,9a,11,12,12a,12b,13,14,16,16a-tetradecahydro-1*H*,2*H*-1a,6-methan ocyclopenta[5'',6'']naphtho[2'',1'':6',7']isochromeno[3',4':1,5]cyclopropa[4,5]cycl openta[1,2-*c*]pyrrol-10(6*H*)-one (2ac)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **2ac** in 57% yield (56 mg) as an inseparable mixture of diastereomers in a ratio of 3:1, colorless solid, mp 206–209 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.17–7.12 (m, 3H), 6.99 (s, 1H), 6.67–6.63 (m, 3H), 5.36 (dd, *J* = 14.1, 7.3 Hz, 1H), 3.85 (d, *J* = 7.2 Hz, 1H), 3.72– 3.70 (m, 2H), 3.27 (t, *J* = 9.9 Hz, 1H), 2.91–2.89 (m, 2H), 2.85 (d, *J* = 9.2 Hz, 1H), 2.49 (dd, *J* = 19.1, 8.8 Hz, 1H), 2.44 (s, 3H), 2.29–2.26 (m, 2H), 2.15–2.01 (m, 4H), 1.92–1.86 (m, 1H), 1.66–1.26 (m, 10H), 0.89 (d, *J* = 17.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.8, 143.6, 139.6, 136.9, 136.6, 136.1, 134.7, 133.3, 129.7, 129.2, 128.3, 128.2, 127.6, 127.0, 124.0, 123.5, 121.0, 99.1, 84.4, 76.7, 57.6, 57.6, 52.3, 50.4, 47.9, 44.3, 38.3, 36.4, 35.8, 33.6, 31.5, 30.1, 29.6, 26.3, 26.2, 21.6, 21.2, 13.9; HRMS (ESI) calcd for C₄₁H₄₄NO₄S [M+H]⁺: 646.2986; found: 646.3018.

(1aS*,4aS*,6S*,10bR*,11aR*,12R*)-12-phenyl-3-tosyl-3,4,11,11a-tetrahydro-1*H*, 2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrr ol-8-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (2ad)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **2ad** in 73% yield (83 mg); colorless solid, mp 179–181 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, *J* = 8.5 Hz, 2H), 7.91 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.2 Hz, 2H),

7.36 (d, J = 8.1 Hz, 2H), 7.17–7.14 (m, 4H), 6.98 (d, J = 8.3 Hz, 1H), 6.96 (d, J = 2.3 Hz, 1H), 6.65 (s, 1H), 6.64 (d, J = 1.4 Hz, 1H), 5.41 (d, J = 7.3 Hz, 1H), 3.90 (d, J = 7.3 Hz, 1H), 3.73 (t, J = 10.5 Hz, 2H), 3.30 (d, J = 11.6 Hz, 1H), 3.12–3.10 (m, 4H), 2.86 (d, J = 9.3 Hz, 1H), 2.45 (s, 3H), 2.16 (dd, J = 8.8, 7.0 Hz, 1H), 1.58–1.51 (m, 4H), 1.49–1.47 (m, 1H), 1.43 (dd, J = 14.2, 7.3 Hz, 1H), 1.33 (dd, J = 14.3, 4.0 Hz, 1H), 0.87 (t, J = 7.4 Hz, 7H); ¹³C NMR (150 MHz, CDCl₃) δ 163.9, 147.6, 144.9, 143.8, 143.6, 136.2, 135.8, 133.1, 132.8, 130.7, 129.8, 129.2, 128.5, 127.7, 127.3, 127.2, 121.4, 121.3, 119.9, 99.3, 76.8, 57.9, 57.7, 52.2, 49.9, 36.6, 34.2, 29.9, 21.9, 21.6, 11.2; HRMS (ESI) calcd for C₄₂H₄₄N₂NaO₇S₂ [M+Na]⁺: 775.2482; found: 775.2485.

(1aS*,4aS*,6S*,10bR*,11aR*,12R*)-12-phenyl-3-tosyl-3,4,11,11a-tetrahydro-1*H*, 2*H*,6*H*-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-*c*]pyrr ol-8-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (2ae)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **2ae** in 63% yield (78 mg); yellow solid, mp 117–119 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.16–7.11 (m, 3H), 7.01 (d, *J* = 2.4 Hz, 1H), 6.99 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.90–6.87 (m, 2H), 6.81 (d, *J* = 2.2 Hz, 1H), 6.67 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.61 (d, *J* = 7.2 Hz, 2H), 5.35 (d, *J* = 7.4 Hz, 1H), 3.87–3.85 (m, 3H), 3.78 (s, 3H), 3.72 (d, *J* = 5.6 Hz, 1H), 3.71 (d, *J* = 3.0 Hz, 1H), 3.28 (d, *J* = 11.7 Hz, 1H), 2.84 (d, *J* = 9.2 Hz, 1H), 2.44 (s, 3H), 2.42 (s, 3H), 2.12 (dd, *J* = 8.6, 7.0 Hz, 1H), 1.45–1.43 (m, 1H), 1.39 (dd, *J* = 14.2, 7.2 Hz, 1H), 1.31 (dd, *J* = 14.3, 4.0 Hz, 1H), 0.82–0.77 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 168.2, 156.0, 147.7, 143.7, 143.3, 139.3, 136.2, 136.1, 135.3, 133.8, 133.1, 131.1, 130.8, 130.4, 129.7, 129.1, 129.1, 128.4, 127.6,

127.2, 121.2, 121.1, 119.8, 114.9, 111.9, 111.7, 101.1, 99.1, 83.8, 76.7, 57.8, 57.5, 55.6, 52.1, 36.4, 34.1, 30.4, 29.8, 21.5, 21.5, 13.4; **HRMS (ESI)** calcd for C₄₈H₄₁ClN₂NaO₇S [M+Na]⁺: 848.2215; found: 848.2219.

Column chromatography (petroleum ether/EtOAc = 50:1 to 20:1) to give an inseparable mixture of **2af** and **3af** in a ratio of 1:1.3 in overall yields of 88% yield; colorless oil;

Minor isomer (2af):

(1a*S**,4a*S**,6*S**,10b*R**,11a*R**,12*R**)-12-phenyl-11,11a-dihydro-1*H*,2*H*,4*H*,6*H*-1a, 6-methanocyclopropa[2,3]furo[3',4':1,5]cyclopenta[1,2-*c*]isochromene

¹**H** NMR (600 MHz, CDCl₃) δ 7.33–7.29 (m, 2H), 7.29–7.23 (m, 1H), 7.17–7.10 (m, 4H), 6.96 (d, J = 7.5 Hz, 1H), 6.70 (s, 1H), 5.64 (d, J = 7.1 Hz, 1H), 4.11–4.07 (m, 1H), 4.03 (d, J = 7.2 Hz, 1H), 4.01 (d, J = 10.7 Hz, 1H), 3.94 (d, J = 8.4 Hz, 1H), 3.64 (d, J = 8.4 Hz, 1H), 2.17 (dd, J = 9.0, 6.7 Hz, 1H), 1.51 (dd, J = 6.4, 5.6 Hz, 1H), 1.46 (dd, J = 14.2, 7.3 Hz, 1H), 1.34 (dd, J = 14.2, 4.1 Hz, 1H), 1.28–1.27 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 142.5, 138.1, 137.0, 129.4, 128.3, 128.2, 126.9, 126.7, 124.4, 120.2, 102.1, 86.0, 80.6, 77.0, 71.7, 56.2, 36.3, 34.7, 29.9, 21.3. Major isomer (3af):

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-4,5,7,11b-tetrahydro-1*H*,3*H*,6*H*-7,1 1c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]oxepine

¹**H** NMR (600 MHz, CDCl₃) δ 7.34–7.31 (m, 3H), 7.29 (dd, J = 7.3, 1.2 Hz, 1H), 7.28–7.24 (m, 3H), 7.19 (td, J = 7.3, 1.5 Hz, 1H), 7.14 (d, J = 7.3 Hz, 1H), 6.69 (s, 1H), 5.09 (d, J = 6.0 Hz, 1H), 4.37 (d, J = 12.5 Hz, 1H), 4.33 (d, J = 12.9 Hz, 1H),

4.18 (d, *J* = 12.9 Hz, 1H), 4.10 (d, *J* = 12.4 Hz, 1H), 3.01 (d, *J* = 13.9 Hz, 1H), 2.93 (d, *J* = 13.9 Hz, 1H), 2.65 (s, 1H), 2.14 (dd, *J* = 11.5, 6.0 Hz, 1H), 1.28 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 136.8, 136.7, 135.6, 132.7, 132.2, 128.6, 128.4, 127.8, 127.1, 126.7, 124.8, 122.2, 81.0, 75.9, 69.7, 66.3, 33.6, 30.7, 26.3, 25.6.

4. General procedure for SIMesAuNTf₂-catalyzed 6-endo-dig oxycyclization/[3 +
2] cycloaddition/C(sp³)–H bond insertion

To a solution of **1** (0.15 mmol, 1 equiv) and 4 Å MS (150 mg) in anhydrous $(CH_2Cl)_2$ (3 mL) was added SIMesAuNTf₂ (5 mol %) under an argon atmosphere. The reaction mixture was stirred at 60 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc) to give the product **3**.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1*H*, 6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3a)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **3a** in 81% yield (57 mg); colorless solid, mp 180–181 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.33–7.29 (m, 4H), 7.26–7.22 (m, 2H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 6.5 Hz, 1H), 7.16 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.08 (d, *J* = 7.3 Hz, 1H), 6.69 (s, 1H), 4.96 (d, *J* = 5.9 Hz, 1H), 4.33 (d, *J* = 14.1 Hz, 1H), 3.98 (d, *J* =

14.4 Hz, 1H), 3.86 (d, J = 14.4 Hz, 1H), 3.67 (d, J = 14.1 Hz, 1H), 2.86 (s, 2H), 2.45 (s, 1H), 2.44 (s, 1H), 1.88 (dd, J = 11.6, 6.0 Hz, 1H), 1.15 (d, J = 11.6 Hz, 1H); ¹³C **NMR (150 MHz, CDCl₃)** δ 143.4, 136.6, 135.3, 134.5, 132.4, 131.6, 129.7, 128.5, 128.4, 127.8, 127.3, 127.2, 126.8, 124.9, 122.1, 75.6, 64.8, 58.5, 48.4, 33.5, 30.2, 26.1, 26.0, 21.5; **HRMS (ESI)** calcd for C₂₉H₂₈NO₃S [M+H]⁺: 470.1784; found: 470.1789.

(5a*R**,7*S**,11b*S**,11c*S**)-2-tosyl-4-((*E*)-4-(trifluoromethyl)benzylidene)-2,3,4,5,7, 11b-hexahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3b)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3b** in 63% yield (51 mg); colorless solid, mp 182–184 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.75 (d, *J* = 7.7 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 2H), 7.32 (t, *J* = 8.7 Hz, 4H), 7.28–7.25 (m, 1H), 7.20–7.16 (m, 2H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.72 (s, 1H), 4.97 (d, *J* = 5.8 Hz, 1H), 4.38 (d, *J* = 14.3 Hz, 1H), 4.04 (d, *J* = 14.3 Hz, 1H), 3.81 (d, *J* = 14.3 Hz, 1H), 3.63 (d, *J* = 14.3 Hz, 1H), 2.86 (d, *J* = 14.2 Hz, 1H), 2.83 (d, *J* = 14.2 Hz, 1H), 2.45 (s, 4H), 1.88 (dd, *J* = 11.5, 5.9 Hz, 1H), 1.15 (d, *J* = 11.6 Hz, 1H); ¹³C **NMR (150 MHz, CDCl**₃) δ 143.5, 140.2, 136.8, 136.5, 135.2, 132.2, 130.1, 129.7, 128.8, 127.9, 127.3, 126.7, 125.4, 125.3, 125.1, 124.9, 122.1, 75.5, 64.6, 58.1, 48.5, 33.5, 30.3, 26.1, 25.9, 21.5; ¹⁹F **NMR (565 MHz, CDCl**₃) δ -62.54; **HRMS (ESI)** calcd for C₃₀H₂₇F₃NO₃S [M+H]⁺: 538.1658; found: 538.1662.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-4-fluorobenzylidene)-2-tosyl-2,3,4,5,7,11b-hexahy dro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3c)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3c** in 82% yield (60 mg); colorless solid, mp 150–152 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.27–7.25 (m, 1H), 7.19–7.16 (m, 4H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.99 (t, *J* = 8.6 Hz, 2H), 6.65 (s, 1H), 4.96 (d, *J* = 5.9 Hz, 1H), 4.33 (d, *J* = 14.1 Hz, 1H), 3.99 (d, *J* = 14.3 Hz, 1H), 3.83 (d, *J* = 14.3 Hz, 1H), 3.63 (d, *J* = 14.1 Hz, 1H), 2.83 (s, 2H), 2.45 (s, 3H), 2.43 (s, 1H), 1.88 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.15 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl3) δ 161.8 (d, *J* = 247.0 Hz), 143.4, 136.6, 135.3, 134.6, 132.6 (d, *J* = 3.4 Hz), 132.3, 130.5, 130.2 (d, *J* = 7.9 Hz), 129.7, 127.8, 127.3, 126.7, 125.0, 122.1, 115.4 (d, *J* = 21.5 Hz), 75.6, 64.7, 58.3, 48.4, 33.5, 30.2, 26.1, 25.9, 21.5; HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1676.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-4-bromobenzylidene)-2-tosyl-2,3,4,5,7,11b-hexah ydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3d)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **3d** in 68% yield (56 mg); colorless solid, mp 142–145 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.27–7.25 (m, 1H), 7.19–7.16 (m, 2H), 7.08 (t, *J* = 7.9 Hz, 3H), 6.61 (s, 1H), 4.96 (d, *J* = 5.9 Hz, 1H), 4.33 (d, *J* = 14.2 Hz, 1H), 4.00 (d, *J* = 14.3 Hz, 1H), 3.83 (d, *J* = 14.3 Hz, 1H), 3.63 (d, *J* = 14.2 Hz, 1H), 2.84 (d, *J* = 14.1 Hz, 1H), 2.81 (d, *J* = 14.1 Hz, 1H), 2.81 (d, *J* = 14.1 Hz, 1H), 3.63 (d, *J* = 14.2 Hz, 1H), 2.84 (d, *J* = 14.1 Hz, 1H), 2.81 (d, *J* = 14.1 Hz, 1H), 3.83 (d, *J* = 14.1 Hz), 3.83 (d, *J* = 14.

1H), 2.45 (s, 3H), 2.42 (s, 1H), 1.87 (dd, J = 11.6, 6.0 Hz, 1H), 1.15 (d, J = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 136.5, 135.5, 135.4, 135.2, 132.2, 131.5, 130.3, 130.1, 129.7, 127.8, 127.2, 126.7, 125.0, 122.1, 121.1, 75.5, 64.7, 58.3, 48.4, 33.5, 30.2, 26.0, 25.9, 21.5; HRMS (ESI) calcd for C₂₉H₂₆BrNNaO₃S [M+Na]⁺: 570.0709; found: 570.0729.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-([1,1'-biphenyl]-4-ylmethylene)-2-tosyl-2,3,4,5,7,11b -hexahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3e)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3e** in 66% yield (54 mg); colorless solid, mp 217–218 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 1.1 Hz, 1H), 7.57 (s, 1H), 7.55 (s, 1H), 7.54 (s, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 3H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.27–7.24 (m, 1H), 7.20–7.16 (m, 2H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.72 (s, 1H), 4.98 (d, *J* = 6.0 Hz, 1H), 4.35 (d, *J* = 14.1 Hz, 1H), 3.99 (d, *J* = 14.4 Hz, 1H), 3.88 (d, *J* = 14.4 Hz, 1H), 3.70 (d, *J* = 14.1 Hz, 1H), 2.93 (d, *J* = 14.1 Hz, 1H), 2.90 (d, *J* = 11.7 Hz, 1H), 2.46 (s, 1H), 2.46 (s, 3H), 1.92 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.19 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.4, 140.4, 139.9, 136.6, 135.6, 135.3, 134.6, 132.4, 131.3, 129.7, 129.0, 128.8, 127.8, 127.4, 127.3, 127.1, 126.9, 126.8, 124.9, 122.1, 75.6, 64.8, 58.6, 48.4, 33.6, 30.4, 26.2, 26.1, 21.5; HRMS (ESI) calcd for C₃₅H₃₂NO₃S [M+H]⁺: 546.2097; found: 546.2095.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-4-methoxybenzylidene)-2-tosyl-2,3,4,5,7,11b-hexa hydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3f)

Column chromatography (petroleum ether/EtOAc = 20:1 to 7:1) to give the product **3f** in 48% yield (36 mg); pale-yellow solid, mp 162–164 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.27–7.24 (m, 1H), 7.18– 7.14 (m, 4H), 7.09 (d, *J* = 7.0 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.62 (s, 1H), 4.96 (d, *J* = 5.9 Hz, 1H), 4.29 (d, *J* = 14.0 Hz, 1H), 3.95 (d, *J* = 14.4 Hz, 1H), 3.87 (d, *J* = 14.4 Hz, 1H), 3.79 (s, 3H), 3.67 (d, *J* = 14.0 Hz, 1H), 2.88 (d, *J* = 14.1 Hz, 1H), 2.83 (d, *J* = 14.1 Hz, 1H), 2.45 (s, 3H), 2.43 (s, 1H), 1.89 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.17 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 158.7, 143.3, 136.6, 135.4, 132.8, 132.5, 131.3, 129.8, 129.7, 129.1, 127.8, 127.3, 126.8, 124.9, 122.1, 113.8, 75.6, 64.9, 58.7, 55.2, 48.3, 33.6, 30.2, 26.2, 25.9, 21.5; HRMS (ESI) calcd for C₃₀H₃₀NO₄S [M+H]⁺: 500.1890; found: 500.1891.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-4-methylbenzylidene)-2-tosyl-2,3,4,5,7,11b-hexah ydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3g)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3g** in 78% yield (57 mg); colorless solid, mp 185–187 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.26–7.24 (m, 1H), 7.18–7.15 (m, 2H), 7.11–7.08 (m, 5H), 6.65 (s, 1 H), 4.95 (d, *J* = 6.0 Hz, 1H), 4.30 (d, *J* =

14.1 Hz, 1H), 3.95 (d, J = 14.4 Hz, 1H), 3.87 (d, J = 14.4 Hz, 1H), 3.68 (d, J = 14.0 Hz, 1H), 2.87 (d, J = 14.2 Hz, 1H), 2.84 (d, J = 14.2 Hz, 1H), 2.45 (s, 3H), 2.42 (s, 1H), 2.32 (s, 3H), 1.88 (dd, J = 11.6, 6.0 Hz, 1H), 1.15 (d, J = 11.6 Hz, 1H); ¹³C **NMR (150 MHz, CDCl₃)** δ 143.3, 136.9, 136.6, 135.3, 133.7, 132.5, 131.7, 129.7, 129.1, 128.5, 127.8, 127.3, 126.8, 124.9, 122.1, 75.6, 64.8, 58.6, 48.4, 33.5, 30.2, 26.2, 26.1, 21.5, 21.1; **HRMS (ESI)** calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1960.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-(naphthalen-2-ylmethylene)-2-tosyl-2,3,4,5,7,11b-he xahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3h)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3h** in 81% yield (63 mg); colorless solid, mp 153–155 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.81–7.78 (m, 4H), 7.72–7.70 (m, 1H), 7.68 (s, 1H), 7.47–7.44 (m, 2H), 7.36–7.33 (m, 3H), 7.27–7.25 (m, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.18 (td, *J* = 7.4, 1.1 Hz, 1H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.84 (s, 1 H), 4.97 (d, *J* = 6.0 Hz, 1H), 4.40 (d, *J* = 14.1 Hz, 1H), 4.02 (d, *J* = 14.4 Hz, 1H), 3.91 (d, *J* = 14.4 Hz, 1H), 3.75 (d, *J* = 14.1 Hz, 1H), 2.96 (d, *J* = 14.1 Hz, 1H), 2.91 (d, *J* = 14.1 Hz, 1H), 2.51 (s, 1H), 2.46 (s, 3H), 1.90 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.13 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 136.6, 135.3, 134.9, 134.1, 133.2, 132.3, 131.5, 129.7, 127.9, 127.9, 127.8, 127.6, 127.5, 127.3, 126.7, 126.6, 126.2, 126.0, 124.9, 122.1, 75.5, 64.8, 58.4, 48.5, 33.5, 30.3, 26.3, 26.2, 21.5; HRMS (ESI) calcd for C₃₃H₂₉NNaO₃S [M+Na]⁺: 542.1760; found: 542.1770.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-(naphthalen-1-ylmethylene)-2-tosyl-2,3,4,5,7,11b-he xahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3i)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3i** in 68% yield (53 mg); colorless solid, mp 200–201 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.93 (d, *J* = 7.9 Hz, 1H), 7.86–7.85 (m, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.56–7.51 (m, 2H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 7.1 Hz, 1H), 7.21 (td, *J* = 7.5, 1.0 Hz, 1H), 7.13–7.09 (m, 3H), 7.02 (d, *J* = 7.2 Hz, 1H), 4.88 (d, *J* = 6.0 Hz, 1H), 4.54 (d, *J* = 14.2 Hz, 1H), 4.11 (d, *J* = 14.2 Hz, 1H), 3.87 (d, *J* = 14.2 Hz, 1H), 3.75 (d, *J* = 14.1 Hz, 1H), 2.79 (d, *J* = 14.2 Hz, 1H), 2.70 (d, *J* = 14.2 Hz, 1H), 2.48 (s, 3H), 2.46 (s, 1H), 1.76 (dd, *J* = 11.6, 6.0 Hz, 1H), 0.92 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl3) δ 143.4, 136.7, 136.5, 135.2, 133.8, 133.5, 132.4, 131.9, 129.9, 129.8, 128.4, 127.8, 127.7, 127.3, 126.7, 126.2, 126.1, 125.9, 125.2, 124.8, 121.9, 75.5, 64.8, 57.7, 48.6, 33.4, 30.5, 25.9, 21.5; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 519.1868; found: 519.1862.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-heptylidene-2-tosyl-2,3,4,5,7,11b-hexahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3k)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **3k** in 58% yield (42 mg); colorless solid, mp 127–129 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.27–7.24 (m, 1H), 7.21 (d, *J* = 7.1 Hz, 1H), 7.16 (td, *J* = 7.4, 1.2 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 5.53 (t, *J* = 7.3 Hz, 1H), 4.93 (d, *J* = 6.0 Hz, 1H), 3.97 (d, *J* = 13.7 Hz, 1H), 3.91 (s, 1H), 3.74 (d, *J* = 14.6 Hz, 1H), 3.67 (d, *J* = 13.7 Hz, 1H), 2.72 (d, *J* = 14.1 Hz, 1H), 2.48 (d, *J* = \$53

14.1 Hz, 1H), 2.44 (s, 3H), 2.34 (s, 1H), 2.07–1.97 (m, 2H), 1.88 (dd, J = 11.4, 6.0 Hz, 1H), 1.36–1.26 (m, 8H), 1.17 (d, J = 11.5 Hz, 1H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.2, 136.6, 135.3, 132.6, 132.3, 131.3, 129.5, 127.6, 127.4, 126.6, 124.8, 122.1, 75.4, 65.0, 58.3, 48.3, 33.1, 31.7, 29.5, 29.4, 29.0, 28.1, 27.1, 25.9, 22.6, 21.5, 14.1; HRMS (ESI) calcd for C₂₉H₃₆NO₃S [M+H]⁺: 478.2410; found: 478.2430.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-(3-phenylpropylidene)-2-tosyl-2,3,4,5,7,11b-hexahyd ro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3l)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **31** in 70% yield (53 mg); colorless solid, mp 135–138 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.32–7.30 (m, 4H), 7.27–7.24 (m, 1H), 7.22–7.20 (m, 2H), 7.18–7.15 (m, 3H), 7.08 (d, *J* = 7.3 Hz, 1H), 5.59 (t, *J* = 7.2 Hz, 1H), 4.92 (d, *J* = 6.0 Hz, 1H), 3.98 (d, *J* = 13.8 Hz, 1H), 3.90 (d, *J* = 14.5 Hz, 1H), 3.73 (d, *J* = 14.5 Hz, 1H), 3.67 (d, *J* = 13.8 Hz, 1H), 2.71–2.67 (m, 3H), 2.45 (s, 3H), 2.41 (d, *J* = 14.2 Hz, 1H), 2.40–2.35 (m, 2H), 2.33 (s, 1H), 1.83 (dd, *J* = 11.4, 6.0 Hz, 1H), 1.15 (d, *J* = 11.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.2, 141.3, 136.5, 135.2, 132.5, 132.4, 130.8, 129.5, 128.4, 128.4, 127.7, 127.3, 126.6, 126.0, 124.9, 122.0, 75.4, 64.9, 58.0, 48.3, 35.7, 33.0, 30.1, 29.5, 27.3, 25.8, 21.5; HRMS (ESI) calcd for C₃₁H₃₂NO₃S [M+H]⁺: 498.2097; found: 498.2077.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-((*E*)-3-phenylallylidene)-2-tosyl-2,3,4,5,7,11b-hexah ydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3m)

Column chromatography (petroleum ether/EtOAc = 20:1 to 6:1) to give the product **3m** in 91% yield (68 mg); colorless solid, mp 205–207 °C; **¹H** NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.40 (d, *J* = 7.3 Hz, 2H), 7.34–7.31 (m, 4H), 7.26–7.25 (m, 3H), 7.18–7.15 (m, 1H), 7.09 (d, *J* = 7.1 Hz, 1H), 6.95–6.88 (m, 1H), 6.62 (d, *J* = 15.4 Hz, 1H), 6.27 (d, *J* = 10.8 Hz, 1H), 4.94 (d, *J* = 5.7 Hz, 1H), 4.13 (d, *J* = 13.8 Hz, 1H), 3.90–3.79 (m, 2H), 3.76 (d, *J* = 14.2 Hz, 1H), 3.01 (d, *J* = 14.1 Hz, 1H), 2.66 (d, *J* = 14.1 Hz, 1H), 2.45 (s, 4H), 1.97 (dd, *J* = 10.9, 5.9 Hz, 1H), 1.26 (d, *J* = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 137.0, 136.3, 135.2, 134.3, 133.9, 132.4, 130.4, 129.6, 128.7, 127.9, 127.7, 127.3, 126.7, 126.4, 124.9, 123.6, 122.1, 75.5, 64.8, 58.2, 48.3, 32.8, 29.9, 27.4, 26.2, 21.5; HRMS (ESI) calcd for C₃₁H₃₀NO₃S [M+H]⁺: 496.1941; found: 496.1939.

(5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-(3-phenylprop-2-yn-1-ylidene)-2-tosyl-2,3,4,5,7,11bhexahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3n)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **3n** in 80% yield (59 mg); colorless solid, mp 171–174 °C; **¹H** NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.37 (s, 2H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.28–7.25 (m, 5H), 7.16 (t, *J* = 6.7 Hz, 1H), 7.08 (d, *J* = 6.7 Hz, 1H), 5.75 (s, 1H), 4.94 (d, *J* = 5.5 Hz, 1H), 4.17 (d, *J* = 14.4 Hz, 1H), 3.88 (d, *J* = 14.4 Hz, 1H), 3.79 (d, *J* = 14.4 Hz, 1H), 3.74 (d, *J* = 14.4 Hz, 1H), 3.28 (d, *J* = 13.7 Hz, 1H), 2.62 (d, *J* = 13.7 Hz, 1H), 2.53 (s, 1H), 2.44 (s, 3H), 2.17 (dd, *J* = 11.2, 5.7 Hz, 1H), 1.26 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 146.2, 143.6, 135.9, 135.2, 132.4, 131.3, 129.7, 128.3, 127.8, 127.3, 126.8, 124.9, 122.9, 122.1, 109.9, 93.9, 85.9, 75.6, 64.4, 56.6, 48.4, 32.8, 32.1, 28.0, 25.8, 21.5; HRMS (ESI) calcd for C₃₁H₂₈NO₃S [M+H]⁺: 494.1784; found: 494.1796.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-8-fluoro-2-tosyl-2,3,4,5,7,11b-hexah ydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (30)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **30** in 65% yield (48 mg); colorless solid, mp 168–169 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.34–7.30 (m, 4H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 7.4 Hz, 2H), 7.19–7.16 (m, 1H), 6.97 (d, *J* = 7.5 Hz, 1H), 6.87 (t, *J* = 8.7 Hz, 1H), 6.70 (s, 1H), 5.38 (d, *J* = 6.0 Hz, 1H), 4.35 (d, *J* = 14.1 Hz, 1H), 4.00 (d, *J* = 14.4 Hz, 1H), 3.83 (d, *J* = 14.4 Hz, 1H), 3.65 (d, *J* = 14.1 Hz, 1H), 2.88 (d, *J* = 14.1 Hz, 1H), 2.85 (d, *J* = 14.1 Hz, 1H), 2.49 (s, 1H), 2.45 (s, 3H), 1.88 (dd, *J* = 11.7, 6.1 Hz, 1H), 1.15 (d, *J* = 11.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 156.1 (d, *J* = 245.8 Hz), 143.5, 136.5, 135.5 (d, *J* = 5.7 Hz), 134.2, 131.7, 129.7, 128.7 (d, *J* = 8.0 Hz), 128.5, 128.4, 127.3, 127.2, 122.4 (d, *J* = 3.0 Hz), 121.9 (d, *J* = 18.3 Hz), 111.8 (d, *J* = 21.0 Hz), 68.6, 65.0, 58.4, 48.2, 32.9, 30.0, 26.4, 25.8, 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -126.59 – -126.67 (m); HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1701.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-2-tosyl-9-(trifluoromethyl)-2,3,4,5,7, 11b-hexahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3p)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3p** in 92% yield (74 mg); colorless solid, mp 188–190 °C; ¹H NMR (**600 MHz**, **CDCl**₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.51 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.34–7.29 (m, 6H), 7.25–7.23 (m, 1H), 7.20 (d, *J* = 7.4 Hz, 2H), 6.72 (s, 1H), 5.01 (d, *J* = 6.0 Hz, 1H), 4.37 (d, *J* = 14.1 Hz, 1H), 4.02 (d, *J* = 14.4 Hz, 1H), 3.81 (d, *J* = 14.4 Hz, 1H), 3.64 (d,

J = 14.1 Hz, 1H), 2.89 (s, 2H), 2.56 (s, 1H), 2.46 (s, 3H), 1.93 (dd, J = 11.8, 6.0 Hz, 1H), 1.14 (d, J = 11.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 136.7, 136.5 (d, J = 2.1 Hz), 135.5, 134.1, 131.9, 129.8, 128.5, 128.4, 127.3, 127.2, 127.2, 127.1, 127.0, 125.3, 124.75 (d, J = 3.8 Hz), 119.1 (d, J = 3.8 Hz), 75.1, 65.4, 58.5, 48.1, 33.1, 29.9, 26.8, 26.0, 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -61.84; HRMS (ESI) calcd for C₃₀H₂₇F₃NO₃S [M+H]⁺: 538.1658; found: 538.1661.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-9-fluoro-2-tosyl-2,3,4,5,7,11b-hexah ydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3q)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3q** in 93% yield (68 mg); colorless solid, mp 198–199 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.76 (d, *J* = 7.9 Hz, 2H), 7.33–7.29 (m, 4H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.20 (d, *J* = 7.7 Hz, 2H), 7.12 (dd, *J* = 8.2, 5.1 Hz, 1H), 6.95 (td, *J* = 9.0, 2.5 Hz, 1H), 6.82 (dd, *J* = 8.2, 2.5 Hz, 1H), 6.69 (s, 1H), 4.91 (d, *J* = 6.0 Hz, 1H), 4.32 (d, *J* = 14.1 Hz, 1H), 3.97 (d, *J* = 14.4 Hz, 1H), 3.84 (dd, *J* = 14.4, 2.6 Hz, 1H), 3.67 (d, *J* = 14.1 Hz, 1H), 2.88 (d, *J* = 14.1 Hz, 1H), 2.82 (d, *J* = 14.1 Hz, 1H), 2.45 (s, 4H), 1.87 (dd, *J* = 11.7, 6.0 Hz, 1H), 1.12 (d, *J* = 6.9 Hz), 136.6, 136.5, 134.3, 131.6, 129.7, 128.5, 128.4, 128.0 (d, *J* = 1.8 Hz), 127.9 (d, *J* = 7.8 Hz), 127.3, 127.2, 114.3 (d, *J* = 21.6 Hz), 109.6 (d, *J* = 22.4 Hz), 99.9, 75.0, 64.7, 58.5, 48.3, 33.2, 29.9, 25.9, 25.5, 21.5; **HRMS (ESI)** calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1693.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-9-chloro-2-tosyl-2,3,4,5,7,11b-hexah ydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3r)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3r** in 77% yield (59 mg); colorless solid, mp 198–200 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.33–7.29 (m, 4H), 7.25–7.21 (m, 2H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 1.2 Hz, 1H), 6.69 (s, 1H), 4.90 (d, *J* = 6.0 Hz, 1H), 4.33 (d, *J* = 14.1 Hz, 1H), 3.98 (d, *J* = 14.3 Hz, 1H), 3.81 (d, *J* = 14.3 Hz, 1H), 3.63 (d, *J* = 14.1 Hz, 1H), 2.87 (d, *J* = 14.1 Hz, 1H), 2.84 (d, *J* = 14.1 Hz, 1H), 2.45 (s, 4H), 1.88 (dd, *J* = 11.7, 6.0 Hz, 1H), 1.12 (d, *J* = 11.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 136.6, 136.5, 134.2, 131.7, 130.9, 130.7, 129.7, 128.5, 128.4, 128.0, 127.7, 127.3, 127.2, 122.5, 75.0, 64.9, 58.5, 48.2, 33.3, 29.9, 26.3, 25.5, 21.5; HRMS (ESI) calcd for C₂₉H₂₆ClNNaO₃S [M+Na]⁺: 526.1214; found: 526.1238.

(5a*R**,7*S**,12a*S**)-4-((*E*)-benzylidene)-9-bromo-2-tosyl-2,3,4,5,5a,6,7,12-octahydr o-1*H*-7,12a-epoxybenzo[5,6]cyclohepta[1,2-*c*]azepine (3s)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **3s** in 74% yield (62 mg); colorless solid, mp 193–194 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.37 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.33–7.29 (m, 4H), 7.26–7.22 (m, 2H), 7.19 (d, *J* = 7.4 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.69 (s, 1H), 4.90 (d, *J* = 6.0 Hz, 1H), 4.34 (d, *J* = 14.1 Hz, 1H), 3.98 (d, *J* = 14.3 Hz, 1H), 3.81 (d, *J* = 14.3 Hz, 1H), 3.63 (d, *J* = 14.1 Hz, 1H), 2.87 (d, *J* = 14.2 Hz, 1H), 2.84 (d, *J* = 14.2 Hz, 1H), 2.45 (s, 3H), 2.44 (s, 1H), 1.88 (dd, *J* = 11.7, 6.0 Hz, 1H), 1.12 (d, *J* = 11.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 136.9, 136.5, 134.2, 131.7, 131.5, 130.6, 129.7, 128.5, 128.4, 128.4, 127.3, 127.2, 125.3, 118.6, 74.9, 64.9, 58.4, 48.2, 33.2, 29.9, 26.2, 25.6, 21.5; HRMS (ESI) calcd for C₂₉H₂₆BrNNaO₃S [M+Na]⁺:

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-9-methyl-2-tosyl-2,3,4,5,7,11b-hexa hydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3t)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3t** in 56% yield (41 mg); colorless solid, mp 190–192 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.32–7.28 (m, 4H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.20 (d, *J* = 7.4 Hz, 2H), 7.08–7.05 (m, 2H), 6.91 (s, 1H), 6.69 (s, 1H), 4.91 (d, *J* = 6.0 Hz, 1H), 4.33 (d, *J* = 14.1 Hz, 1H), 3.97 (d, *J* = 14.3 Hz, 1H), 3.85 (d, *J* = 14.3 Hz, 1H), 3.66 (d, *J* = 14.1 Hz, 1H), 2.86 (d, *J* = 14.1 Hz, 1H), 2.82 (d, *J* = 14.1 Hz, 1H), 2.45 (s, 3H), 2.39 (s, 1H), 2.33 (s, 3H), 1.87 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.15 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.3, 136.6, 136.6, 135.3, 134.6, 134.5, 131.6, 129.7, 129.3, 128.5, 128.4, 127.3, 127.1, 126.6, 122.9, 75.6, 64.8, 58.4, 48.5), 33.7, 30.3, 26.1, 25.7, 21.5, 21.1; HRMS (ESI) calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1941.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-10-fluoro-2-tosyl-2,3,4,5,7,11b-hexa hydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3u)

Column chromatography (petroleum ether/EtOAc = 20:1 to 9:1) to give the product **3u** in 71% yield (53 mg); colorless solid, mp 192–194 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.33–7.30 (m, 4H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.03 (dd, *J* = 7.9, 5.5 Hz, 1H), 6.86–6.82 (m, 2H), 6.70 (s, 1H), 4.95 (d, *J* = 5.9 Hz, 1H), 4.37 (d, *J* = 14.2 Hz, 1H), 4.00 (d, *J* = 14.4 Hz, 1H), 3.84 (d,

J = 14.4 Hz, 1H), 3.65 (d, J = 14.1 Hz, 1H), 2.88–2.83 (m, 2H), 2.46 (s, 3H), 2.37 (s, 1H), 1.89 (dd, J = 11.6, 6.0 Hz, 1H), 1.12 (d, J = 11.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 162.5 (d, J = 244.3 Hz), 143.5 (s), 136.7, 136.5, 134.7 (d, J = 8.6 Hz), 134.2, 131.8, 131.2 (d, J = 2.7 Hz), 129.7, 128.5, 128.4, 127.3, 127.2, 123.6 (d, J = 8.8 Hz), 113.8 (d, J = 22.4 Hz), 111.5 (d, J = 21.9 Hz), 74.9, 64.8, 58.4, 48.2, 33.7, 30.1, 26.5, 26.1, 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -114.34 (td, J = 9.1, 5.5 Hz); HRMS (ESI) calcd for C₂₉H₂₇FNO₃S [M+H]⁺: 488.1690; found: 488.1700.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-10-chloro-2-tosyl-2,3,4,5,7,11b-hexa hydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3v)

Column chromatography (petroleum ether/EtOAc = 20:1 to 7:1) to give the product **3v** in 77% yield (58 mg); colorless solid, mp 218–219 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.33–7.31 (m, 4H), 7.24 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 1H), 7.08 (s, 1H), 7.01 (d, *J* = 7.9 Hz, 1H), 6.72 (s, 1H), 4.94 (d, *J* = 5.9 Hz, 1H), 4.40 (d, *J* = 14.2 Hz, 1H), 4.01 (d, *J* = 14.5 Hz, 1H), 3.84 (d, *J* = 14.5 Hz, 1H), 3.64 (d, *J* = 14.2 Hz, 1H), 2.88 (d, *J* = 14.1 Hz, 1H), 2.47 (s, 3H), 2.30 (s, 1H), 1.90 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.12 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 136.8, 136.5, 134.4, 134.2, 133.7, 133.3, 131.9, 129.8, 128.5, 128.5, 127.3, 126.8, 124.9, 123.4, 74.9, 65.0, 58.4, 48.1, 33.5, 30.1, 26.5, 25.6, 21.5; HRMS (ESI) calcd for C₂₉H₂₇ClNO₃S [M+H]⁺: 504.1395; found: 504.1405.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-10-bromo-2-tosyl-2,3,4,5,7,11b-hexa hydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3w)

Column chromatography (petroleum ether/EtOAc = 20:1 to 11:1) to give the product **3w** in 73% yield (60 mg); colorless solid, mp 219–221 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.33–7.31 (m, 4H), 7.29 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.25–7.23 (m, 2H), 7.19 (d, *J* = 7.3 Hz, 2H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.72 (s, 1H), 4.94 (d, *J* = 6.0 Hz, 1H), 4.41 (d, *J* = 14.2 Hz, 1H), 4.02 (d, *J* = 14.5 Hz, 1H), 3.84 (d, *J* = 14.5 Hz, 1H), 3.63 (d, *J* = 14.2 Hz, 1H), 2.88 (d, *J* = 14.1 Hz, 1H), 2.83 (d, *J* = 14.1 Hz, 1H), 2.48 (s, 3H), 2.29 (s, 1H), 1.90 (dd, *J* = 11.7, 6.0 Hz, 1H), 1.12 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 136.8, 136.5, 134.8, 134.1, 132.0, 129.7, 129.6, 128.5, 128.4, 127.9, 127.3, 123.7, 121.3, 74.9, 65.1, 58.4, 48.0, 33.3, 30.0, 26.5, 25.4, 21.6; HRMS (ESI) calcd for C₂₉H₂₆BrNNaO₃S [M+Na]⁺: 570.0709; found: 570.0741.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-10-methyl-2-tosyl-2,3,4,5,7,11b-hexa hydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepine (3x)

Column chromatography (petroleum ether/EtOAc = 15:1 to 9:1) to give the product **3x** in 69% yield (50 mg); colorless solid, mp 197–199 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.33–7.30 (m, 4H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 7.4 Hz, 2H), 6.99–6.97 (m, 3H), 6.70 (s, 1H), 4.93 (d, *J* = 5.9 Hz, 1H), 4.36 (d, *J* = 14.1 Hz, 1H), 4.00 (d, *J* = 14.3 Hz, 1H), 3.84 (d, *J* = 14.3 Hz, 1H), 3.64 (d, *J* = 14.1 Hz, 1H), 2.88 (d, *J* = 14.1 Hz, 1H), 2.82 (d, *J* = 14.1 Hz, 1H), 2.46 (s, 3H), 2.38 (s, 1H), 2.34 (s, 3H), 1.87 (dd, *J* = 11.5, 6.0 Hz, 1H), 1.15 (d, *J* = 11.6 Hz, 1H); ¹³C **NMR (150 MHz, CDCl3)** δ 143.3, 137.5, 136.7, 136.6, 134.5, 132.6, 132.4, 131.7, 129.7, 128.5, 128.4, 127.4, 127.3, 127.1, 125.5, 121.9, 77.2, 77.0, 76.8, 75.3, 64.7, S61

58.5, 48.4, 33.9, 30.3, 26.2, 25.8, 21.5, 21.4; **HRMS (ESI)** calcd for C₃₀H₃₀NO₃S [M+H]⁺: 484.1941; found: 484.1961.

(5a*S**,5b*S**,12*S**,13a*R**)-2-((*E*)-benzylidene)-4-tosyl-2,3,4,5,5b,12-hexahydro-1*H*, 13*H*-5a,12-epoxyphenanthro[2',1':2,3]cyclopropa[1,2-*c*]azepine (3y)

Column chromatography (petroleum ether/EtOAc = 15:1 to 7:1) to give the product **3y** in 18% yield (14 mg); colorless solid, mp 156–159 °C; **¹H NMR (600 MHz, CDCl3**) δ 7.98 (d, *J* = 8.5 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.77 (dd, *J* = 11.3, 8.3 Hz, 3H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 3H), 7.31–7.28 (m, 2H), 7.24–7.21 (m, 3H), 6.72 (s, 1H), 5.84 (d, *J* = 6.1 Hz, 1H), 4.38 (d, *J* = 14.2 Hz, 1H), 4.03 (d, *J* = 14.3 Hz, 1H), 3.91 (d, *J* = 14.4 Hz, 1H), 3.70 (d, *J* = 14.1 Hz, 1H), 2.94 (d, *J* = 14.1 Hz, 1H), 2.90 (d, *J* = 14.1 Hz, 1H), 2.59 (s, 1H), 2.47 (s, 3H), 2.00 (dd, *J* = 11.6, 6.1 Hz, 1H), 1.12 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 144.9, 143.4, 136.6, 134.6, 131.7, 130.1, 130.0, 129.7, 128.7, 128.6, 128.4, 127.5, 127.3, 127.2, 126.2, 125.7, 124.5, 121.3, 81.9, 70.8, 64.8, 58.5, 48.3, 33.0, 30.1, 26.6, 21.5; HRMS (ESI) calcd for C₃₃H₃₀NO₃S [M+H]⁺: 520.1941; found: 520.1960.

(5a*R**,7*S**,13c*S**,13d*S**)-4-((*E*)-benzylidene)-2-tosyl-2,3,4,5,7,13c-hexahydro-1*H*, 6*H*-7,13d-epoxyphenanthro[3',4':2,3]cyclopropa[1,2-*c*]azepine (3z)

Column chromatography (petroleum ether/EtOAc = 15:1 to 9:1) to give the product **3z** in 30% yield (24 mg); colorless solid, mp 169–170 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 1H), 7.85–7.84 (m, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.48–7.44 (m, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.29–7.25 (m, 6H),

7.20 (t, J = 6.9 Hz, 1H), 6.76 (s, 1H), 5.12 (d, J = 5.9 Hz, 1H), 4.35 (d, J = 14.0 Hz, 1H), 3.98 (d, J = 14.5 Hz, 1H), 3.93 (d, J = 14.4 Hz, 1H), 3.79 (d, J = 14.0 Hz, 1H), 3.30 (s, 1H), 3.01 (d, J = 14.0 Hz, 1H), 2.94 (d, J = 14.0 Hz, 1H), 2.44 (s, 3H), 1.92 (dd, J = 11.6, 5.9 Hz, 1H), 1.16 (d, J = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.4, 136.6, 136.5, 134.5, 133.3, 131.9, 131.8, 130.9, 129.7, 128.7, 128.6, 128.5, 128.3, 127.3, 127.2, 126.1, 125.4, 124.9, 122.5, 121.3, 75.8, 65.1, 58.7, 48.4, 33.4, 30.1, 26.0, 22.4, 21.5; HRMS (ESI) calcd for C₃₃H₂₉KNO₃S [M+K]⁺: 558.1500; found: 558.1508.

N,N-dipropyl-4-((E)-((5aR*,7S*,11bS*,11cS*)-2-tosyl-2,3,7,11b-tetrahydro-1H,6 H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepin-4(5H)-ylidene)methyl)b enzenesulfonamide (3aa)

Column chromatography (petroleum ether/EtOAc = 6:1 to 4:1) to give the product **3aa** in 77% yield (68 mg); colorless solid, mp 166–168 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74–7.72 (m, 4H), 7.32 (d, *J* = 8.0 Hz, 4H), 7.27–7.25 (m, 1H), 7.20–7.16 (m, 2H), 7.09 (d, *J* = 7.3 Hz, 1H), 6.70 (s, 1H), 4.97 (d, *J* = 5.9 Hz, 1H), 4.37 (d, *J* = 14.3 Hz, 1H), 4.03 (d, *J* = 14.3 Hz, 1H), 3.79 (d, *J* = 14.3 Hz, 1H), 3.62 (d, *J* = 14.3 Hz, 1H), 3.07 (dd, *J* = 8.7, 6.3 Hz, 4H), 2.86 (d, *J* = 14.2 Hz, 1H), 2.83 (d, *J* = 14.2 Hz, 1H), 2.45 (s, 1H), 2.44 (s, 3H), 1.87 (dd, *J* = 11.6, 6.0 Hz, 1H), 1.57–1.50 (m, 4H), 1.14 (d, *J* = 11.6 Hz, 1H), 0.85 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 140.6, 138.7, 137.2, 136.4, 135.2, 132.1, 129.9, 129.7, 128.9, 127.8, 127.2, 127.1, 126.7, 125.1, 75.5, 64.6, 58.1, 49.9, 48.4, 33.5, 30.3, 26.0, 25.9, 21.9, 21.5, 11.1; HRMS (ESI) calcd for C₃₅H₄₀N₂NaO₅S₂ [M+Na]⁺: 655.2271 ; found:655.2288. (5a*R**,7*S**,11b*S**,11c*S**,*E*)-4-(3-(4,5-diphenyloxazol-2-yl)propylidene)-2-tosyl-2,3, 4,5,7,11b-hexahydro-1*H*,6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]azepi ne (3ab)

Column chromatography (petroleum ether/EtOAc = 20:1 to 6:1) to give the product **3ab** in 64% yield (62 mg); colorless solid, mp 131–133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.9 Hz, 2H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.39–7.29 (m, 8H), 7.24–7.21 (m, 2H), 7.17–7.13 (m, 1H), 7.07 (d, *J* = 7.3 Hz, 1H), 5.65 (t, *J* = 7.1 Hz, 1H), 4.90 (d, *J* = 5.9 Hz, 1H), 4.03 (d, *J* = 13.8 Hz, 1H), 3.87 (d, *J* = 14.5 Hz, 1H), 3.78 (d, *J* = 14.5 Hz, 1H), 3.66 (d, *J* = 13.8 Hz, 1H), 2.92 (t, *J* = 7.5 Hz, 2H), 2.80 (d, *J* = 14.2 Hz, 1H), 2.66–2.61 (m, 2H), 2.52 (d, *J* = 14.2 Hz, 1H), 2.43 (s, 3H), 2.38 (s, 1H), 1.89 (dd, *J* = 11.4, 6.0 Hz, 1H), 1.19 (d, *J* = 11.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 145.3, 143.3, 136.3, 135.2, 135.1, 133.6, 132.4, 129.6, 129.3, 128.9, 128.6, 128.5, 128.4, 128.0, 127.8, 127.7, 127.3, 126.7, 126.4, 124.9, 122.0, 75.4, 64.8, 57.9, 48.3, 33.1, 29.5, 27.9, 27.2, 25.8, 25.6, 21.5; HRMS (ESI) calcd for C₄₀H₃₇N₂O₄S [M+H]⁺: 641.2469; found: 641.2498.

(5a*R**,7*S**,8b*S*,10a*S*,13a*S*,13b*R*,16b*S**,16c*S**)-4-((*E*)-benzylidene)-10a-methyl-2-t osyl-2,3,4,5,7,8b,9,10,10a,12,13,13a,13b,14,15,16b-hexadecahydro-1*H*-7,16c-epox ycyclopenta[3',4']tetrapheno[9',8':2,3]cyclopropa[1,2-*c*]azepin-11(6*H*)-one (3ac)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **3ac** in 50% yield (48 mg) as an inseparable mixture of diastereomers in a ratio of 1:1; colorless solid, mp 209–211 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 7.0 Hz, 2H), 7.32–7.29 (m, 4H), 7.24–7.20 (m, 3H), 7.05 (s, 1H), 6.93 (d, *J* = 9.2 Hz, 1H), 6.71 (s, 1H), 4.92 (d, *J* = 5.3 Hz, 1H), 4.39 (dd, *J* = 19.8, 14.5 Hz, 1H), 4.02 (t, *J* = 14.0 Hz, 1H), 3.79 (d, *J* = 12.9 Hz, 1H), 3.58 (dd, *J* = 13.4, 10.2 Hz, 1H), 2.94–2.92 (m, 3H), 2.77 (dd, *J* = 13.8, 4.5 Hz, 1H), 2.53–2.29 (m, 7H), 2.16–1.88 (m, 5H), 1.64–1.43 (m, 6H), 1.20 (dd, *J* = 22.3, 11.6 Hz, 1H), 0.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.8, 220.8, 143.3, 136.8, 136.7, 136.6, 136.5, 136.4, 136.1, 134.5, 134.4, 133.1, 133.0, 131.9, 131.9, 129.9, 129.8, 129.7, 128.5, 128.4, 127.3, 127.3, 127.1, 119.3, 119.1, 75.7, 75.6, 64.9, 64.8, 58.6, 58.5, 50.5, 50.4, 48.3, 48.2, 47.9, 44.4, 44.3, 38.3, 38.1, 35.8, 34.2, 34.1, 31.6, 31.5, 30.4, 30.4, 29.5, 29.4, 26.5, 26.4, 26.4, 26.3, 26.0, 25.8, 24.9, 24.8, 21.6, 21.5, 13.8, 13.7; HRMS (ESI) calcd for C₄₁H₄₃NNaO₄S [M+Na]⁺: 668.2805; found: 668.2834.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1*H*, 6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepin-9-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (3ad)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **3ad** in 66% yield (75 mg); colorless solid, mp 135–137 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.31 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.32 (t, *J* = 8.4 Hz, 4H), 7.25–7.23 (m, 2H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.10 (dd, *J* = 8.1, 2.3 Hz, 1H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.71 (s, 1H), 4.96 (d, *J* = 5.9 Hz, 1H), 4.34 (d, *J* = 14.0 Hz, 1H), 4.00 (d, *J* = 14.3 Hz, 1H), 3.84 (d, *J* = 14.3 Hz, 1H), 3.65 (d, *J* = 14.0

Hz, 1H), 3.15–3.11 (m, 4H), 2.90 (d, J = 14.1 Hz, 1H), 2.86 (d, J = 14.1 Hz, 1H), 2.51 (s, 1H), 2.45 (s, 3H), 1.91 (dd, J = 11.7, 6.0 Hz, 1H), 1.60–1.54 (m, 4H), 1.21 (d, J = 11.8 Hz, 1H), 0.89 (t, J = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 164.1, 148.1, 144.9, 143.5, 136.6, 136.6, 136.4, 134.3, 132.9, 131.9, 130.8, 130.7, 129.8, 128.6, 128.5, 127.8, 127.3, 127.2, 120.6, 115.7, 75.2, 65.0, 58.6, 49.9, 48.3, 33.3, 30.1, 26.3, 25.5, 21.9, 21.6, 11.2; HRMS (ESI) calcd for C₄₂H₄₄N₂NaO₇S₂ [M+Na]⁺: 775.2482; found: 775.2485.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1*H*, 6*H*-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepin-9-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (3ae)

Column chromatography (petroleum ether/EtOAc = 9:1 to 4:1) to give the product **3ae** in 47% yield (57 mg); yellow solid, mp 175–177 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.32–7.29 (m, 4H), 7.23 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 8.2 Hz, 1H), 7.06 (d, J = 2.3 Hz, 1H), 6.94 (dd, J = 8.1, 2.2 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 6.71–6.69 (m, 2H), 4.90 (d, J = 6.0 Hz, 1H), 4.33 (d, J = 14.1 Hz, 1H), 3.97 (d, J = 14.4 Hz, 1H), 3.89 (s, 2H), 3.84 (s, 3H), 3.82 (d, J = 14.4 Hz, 1H), 2.45 (s, 1H), 2.44 (s, 6H), 1.86 (dd, J = 11.7, 6.0 Hz, 1H), 1.15 (d, J = 11.7 Hz, 1H); 1¹³C NMR (150 MHz, CDCl₃) δ 169.4, 168.3, 156.1, 148.1, 143.4, 139.3, 136.5, 136.5, 136.1, 136.1, 134.2, 133.8, 131.8, 131.2, 130.8, 130.5, 130.2, 129.7, 129.1, 128.5, 128.4, 127.5, 127.3, 127.2, 120.5, 115.6, 114.9, 112.0, 111.8, 101.2, 75.1, 64.9,

58.5, 55.7, 48.2, 33.3, 30.5, 30.1, 26.2, 25.4, 21.5, 13.4; **HRMS (ESI)** calcd for C₄₈H₄₁ClN₂NaO₇S [M+Na]⁺: 847.2215; found: 847.2219.

(5a*R**,7*S**,11b*S**,11c*S**)-4-((*E*)-benzylidene)-4,5,7,11b-tetrahydro-1*H*,3*H*,6*H*-7,1 1c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-*c*]oxepine (3af)

Column chromatography (petroleum ether/EtOAc = 25:1 to 20:1) to give the product **3af** in 72% yield (34 mg); colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.31 (m, 3H), 7.29 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.28–7.24 (m, 3H), 7.19 (td, *J* = 7.3, 1.5 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 1H), 6.69 (s, 1H), 5.09 (d, *J* = 6.0 Hz, 1H), 4.37 (d, *J* = 12.5 Hz, 1H), 4.33 (d, *J* = 12.9 Hz, 1H), 4.18 (d, *J* = 12.9 Hz, 1H), 4.10 (d, *J* = 12.4 Hz, 1H), 3.01 (d, *J* = 13.9 Hz, 1H), 2.93 (d, *J* = 13.9 Hz, 1H), 2.65 (s, 1H), 2.14 (dd, *J* = 11.5, 6.0 Hz, 1H), 1.28 (d, *J* = 11.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 136.8, 136.7, 135.6, 132.7, 132.2, 128.6, 128.4, 127.8, 127.1, 126.7, 124.8, 122.2, 81.0, 75.9, 69.7, 66.3, 33.6, 30.7, 26.3, 25.6; HRMS (ESI) calcd for C₂₂H₂₁O₂ [M+H]⁺: 317.1536; found: 317.1539.

5. Gram-scale synthesis of 2a and 3a and selective transformations

5.1. Gram-scale synthesis of 2a

1a (1.08 g, 2.3 mmol)

2a (950 mg, 88% yield, 16:1)

To a solution of **1a** (1.08 g, 2.3 mmol) and 4 Å MS (2.3 g) in anhydrous toluene (46 mL) was added BrettPhosAuNTf₂ (5 mol %) under an argon atmosphere. The reaction mixture was stirred at 60 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with CH_2Cl_2

and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 20:1 to 11:1) to give the product **2a** (950 mg, 88%).

5.2. Gram-scale synthesis of 3a

To a solution of **1a** (1.08 g, 2.3 mmol) and 4 Å MS (2.3 g) in anhydrous $(CH_2Cl)_2$ (46 mL) was added SIMesAuNTf₂ (5 mol %) under an argon atmosphere. The reaction mixture was stirred at 60 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through Celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 20:1 to 9:1) to give the product **3a** (756 mg, 70%).

5.3. Synthetic applications of 2a

In a 25 mL Schlenk flask, **2a** (46.9 mg, 0.1 mmol, 1.0 equiv) was dissolved in anhydrous (CH₂Cl)₂ (2 mL) under argon atmosphere. The solution was cooled to -30 °C and then BBr₃ (1.0 M in CH₂Cl₂, 0.15 mL, 1.5 equiv) was added dropwise to the mixture. After stirring at -30 °C for 1 h, the reaction was warmed to room temperature and stirred for another 1 h. The reaction was quenched with saturated NaHCO₃, extracted with CH₂Cl₂ twice, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 9:1 to 4:1) to afford **4** in 54% yield (25.2 mg) as

a colorless solid, mp 167–169 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.36–7.30 (m, 5H), 7.24 (d, J = 8.0 Hz, 2H), 7.21–7.15 (m, 3H), 7.03 (d, J = 6.8 Hz, 1H), 6.57 (s, 1H), 3.79 (dd, J = 11.3, 2.0 Hz, 1H), 3.48 (d, J = 11.3 Hz, 1H), 3.38 (d, J = 10.0 Hz, 1H), 2.91 (dd, J = 14.0, 7.7 Hz, 1H), 2.77 (d, J = 9.9 Hz, 1H), 2.53 (d, J = 1.7 Hz, 1H), 2.37 (s, 3H), 1.80 (dd, J = 14.0, 5.3 Hz, 1H), 1.76–1.72 (m, 2H), 1.66–1.62 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 143.2, 142.2, 137.8, 137.4, 134.2, 132.7, 131.5, 129.5, 129.2, 128.4, 127.7, 127.6, 127.3, 127.3, 126.9, 83.3, 74.4, 54.9, 51.8, 40.3, 37.1, 28.1, 25.9, 21.5; HRMS (ESI) calcd for C₂₉H₂₈NO₃S [M+H]⁺: 470.1784; found: 470.1786.

In a 10 mL round-bottomed flask, **2a** (46.9 mg, 0.1 mmol, 1.0 equiv) and TBATB (144.7 mg, 3 equiv) were dissolved in MeOH or EtOH (4 mL) and stirred at room temperature for 12 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was quenched with saturated NaHCO₃, extracted with EtOAc, washed with water, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 11:1 to 6:1) to give **5** (55.2 mg) and **6** (39.8 mg) in 95% and 67% yields, respectively.

Product **5**: colorless solid, mp 229–230 °C; ¹H NMR (**600** MHz, CDCl₃) δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.3 Hz, 1H), 7.51–7.49 (m, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.29 (td, *J* = 7.4, 1.2 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 2H), 6.90 (d, *J* = 7.5 Hz, 1H), 6.37 (d, *J* = 7.5 Hz, 2H), 5.21 (d, *J* = 6.8 Hz, 1H), 4.29 (d, *J* = 12.0 Hz, 1H), 3.65 (d, *J* = 4.3 Hz, 1H), 3.64 (d, *J* = 1.9 Hz, 1H), 3.35–3.29 (m, 2H), 3.16 (d, *J* = 9.0 Hz, 1H), 2.97 (s, 3H), 2.74–2.71 (m, 1H), 2.46 (s, 3H), 2.17 (t, *J* = 13.0 Hz, 1H), 1.75–1.71 (m, 1H), 1.66–1.62 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.9, S69

139.1, 134.9, 132.9, 132.9, 129.9, 129.8, 129.6, 128.4, 127.8, 127.7, 127.7, 127.2, 126.9, 94.6, 83.0, 75.9, 65.3, 60.0, 58.4, 53.5, 53.0, 46.0, 42.3, 39.9, 21.6; **HRMS** (**ESI**) calcd for C₃₀H₃₁BrNO₄S [M+H]⁺: 580.1152; found: 580.1152.

Product **6**: colorless solid, mp 206–207 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.50–7.48 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.29–7.26 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 7.4 Hz, 1H), 6.37 (d, *J* = 7.5 Hz, 2H), 5.19 (d, *J* = 6.8 Hz, 1H), 4.31 (d, *J* = 11.9 Hz, 1H), 3.64 (d, *J* = 2.4 Hz, 1H), 3.63 (s, 1H), 3.36–3.26 (m, 3H), 3.15 (d, *J* = 9.0 Hz, 1H), 2.94–2.86 (m, 1H), 2.77–2.74 (m, 1H), 2.46 (s, 3H), 2.19 (t, *J* = 13.0 Hz, 1H), 1.73 (t, *J* = 13.3 Hz, 1H), 1.65–1.62 (m, 1H), 1.01 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.9, 138.7, 135.0, 133.7, 132.9, 129.9, 129.8, 129.5, 128.4, 127.7, 127.7, 127.0, 126.9, 94.7, 83.1, 75. 8, 65.3, 60.9, 60.1, 58.3, 53.1, 46.3, 42.3, 39.9, 21.6, 15.8; HRMS (ESI) calcd for C₃₁H₃₃BrNO₄S [M+H]⁺: 594.1308; found: 594.1309.
5.4. Synthetic application of 3a

In a 10 mL round-bottom flask, Pd/C (4.7 mg, 10 wt%) was added to a solution of **3a** (46.9 mg, 0.1 mmol) in EtOAc (2.0 mL) under argon atmosphere. Then the reaction system was filled with H₂ and stirred at room temperature. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtered through a pad of Celite. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 20:1 to 11:1) to afford the desired product **7** (22.3 mg) and its isomer **7**' (12.7 mg) in 47% and 27% yield, respectively.

Product **7**: colorless solid, mp 149–150 °C; ¹H NMR (**400** MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.28 (dd, *J* = 7.4, 5.9 Hz, 4H), 7.34–7.20 (m, 1H), 7.13–7.11 (m, 2H), 7.10–7.07 (m, 3H), 7.02–7.00 (m, 1H), 4.45 (dd, *J* = 17.3, 1.7 Hz, 1H), 3.70 (d, *J* = 14.0 Hz, 1H), 3.51 (d, *J* = 17.3 Hz, 1H), 3.24 (d, *J* = 16.4 Hz, 1H), 2.80–2.76 (m, 2H), 2.55 (s, 1H), 2.51 (s, 3H), 2.43 (s, 3H), 2.40–2.35 (m, 1H), 2.33–2.25 (m, 2H), 1.82 (d, *J* = 14.7 Hz, 1H), 1.30–1.23 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 209.9, 143.8, 138.6, 134.9, 134.7, 129.9, 129.3, 128.9, 128.5, 128.4, 126.9, 126.5, 125.8, 125.8, 58.7, 54.4, 50.7, 40.4, 39.1, 38.3, 27.0, 25.9, 21.5; HRMS (ESI) calcd for C₂₉H₃₂NO₃S [M+H]⁺: 474.2097; found: 474.2100.

Product **7**': colorless solid, mp 153–155 °C; ¹H NMR (**400** MHz, CDCl₃) δ 7.52 (d, *J* = 8.3 Hz, 2H), 7.30–7.27 (m, 4H), 7.24–7.20 (m, 1H), 7.16–7.13 (m, 1H), 7.12–7.09 (m, 4H), 7.02–7.00 (m, 1H), 4.08 (dd, *J* = 16.2, 1.5 Hz, 1H), 3.75 (d, *J* = 16.0 Hz, 1H), 3.57 (d, *J* = 11.4 Hz, 1H), 3.49 (d, *J* = 16.2 Hz, 1H), 2.91–2.84 (m, 1H), 2.80–2.72 (m, 2H), 2.60–2.54 (m, 1H), 2.47–2.37 (m, 6H), 2.26–2.19 (m, 1H), 1.70–1.64 (m, 2H), 1.40–1.34 (m, 1H); ¹³C NMR (**150** MHz, CDCl₃) δ 209.7, 143.8, 138.6, 135.3, 134.7, 134.0, 129.9, 129.6, 128.9, 128.6, 128.5, 127.0, 126.4, 126.2, 125.8, 58.2, 53.6, 50.8,

42.6, 40.5, 38.3, 35.2, 32.4, 25.7, 21.5; **HRMS (ESI)** calcd for C₂₉H₃₁NNaO₃S [M+Na]⁺: 496.1917; found: 496.1917.

6. ¹H, ¹³C and ¹⁹F NMR Spectra

Figure S1 ¹H NMR (600 MHz, CDCl₃) of 1a

Figure S5¹⁹F NMR (565 MHz, CDCl₃) of 1b

Figure S13 ¹³C NMR (150 MHz, CDCl₃) of 1f

Figure S15 ¹³C NMR (150 MHz, CDCl₃) of 1g

Figure S16 ¹H NMR (600 MHz, CDCl₃) of 1h

Figure S17 ¹³C NMR (150 MHz, CDCl₃) of 1h

Figure S19 ¹³C NMR (150 MHz, CDCl₃) of 1i

S84

Figure S27 ¹³C NMR (100 MHz, CDCl₃) of 1m

Figure S29 ¹³C NMR (150 MHz, CDCl₃) of 1n

Figure S32 ¹⁹F NMR (565 MHz, CDCl₃) of 10

-116.5764 -116.5764 -116.5859 -116.5947

Figure S34 ¹³C NMR (150 MHz, CDCl₃) of 1p

Figure S39 ¹³C NMR (150 MHz, CDCl₃) of 1r

Figure S40 ¹H NMR (600 MHz, CDCl₃) of 1s

Figure S41 ¹³C NMR (150 MHz, CDCl₃) of 1s

Figure S42 ¹H NMR (600 MHz, CDCl₃) of 1t

-0.000 -0.0000 -1.7779 -1.7779 -1.7779 -1.7201 -1.7

Figure S45 ¹³C NMR (150 MHz, CDCl₃) of 1u

Figure S48 ¹³C NMR (150 MHz, CDCl₃) of 1v

Figure S52 ¹³C NMR (150 MHz, CDCl₃) of 1x

Figure S61 ¹H NMR (600 MHz, CDCl₃) of 1ac

Figure S63 ¹H NMR (600 MHz, CDCl₃) of 1ad

110 100 90 f1 (ppm) 80 70

60 50

140 130

160 150

170

120

20

30

10

Figure S67 ¹H NMR (600 MHz, CDCl₃) of 1af

Figure S69 ¹H NMR (600 MHz, CDCl₃) of 2a

Figure S71 ¹H NMR (600 MHz, CDCl₃) of 2b

Figure S73 ¹⁹F NMR (565 MHz, CDCl₃) of 2b

Figure S76¹⁹F NMR (565 MHz, CDCl₃) of 2c

Figure S77 ¹H NMR (600 MHz, CDCl₃) of 2d

Figure S79 ¹H NMR (600 MHz, CDCl₃) of 2e

Figure S80 ¹³C NMR (150 MHz, CDCl₃) of 2e

Figure S81 ¹H NMR (600 MHz, CDCl₃) of 2f

Figure S83 ¹H NMR (600 MHz, CDCl₃) of 2g

110 100 90 **f**1 (**ppm**)

Figure S87 ¹H NMR (600 MHz, CDCl₃) of 2j

Figure S88 ¹³C NMR (150 MHz, CDCl₃) of 2j

Figure S93 ¹H NMR (400 MHz, CDCl₃) of 2m 7.7355 7.7151 7.73296 7.1970 7.1970 6.4345 6.4349 5.3780 5.3525 5.3390 5.3134 5.2475 2.03652 3.4675 3.4675 3.4675 3.4675 3.4675 3.4675 3.4675 2.8978 2.1978 2.1978 2.1978 2.1978 2.1978 2.1978 1.14715 1.28 2 8 2.03--66.0 3.05 - 1.04 - 1.15 ő 🖣 8 ^{5.5} ^{5.0} ^{4.5} f1 (ppm) 7.0 7.5 6.5 3.5 1.5 10.0 9.5 9.0 8.5 8.0 6.0 4.0 3.0 2.5 2.0 1.0 0.5 0.0 Figure S94 ¹³C NMR (100 MHz, CDCl₃) of 2m -143.55 -140.44 -135.61 -136.61 -134.62 -134.62 -128.48 -128.20 -127.61 -128.20 -127.49 -125.99 -125.99 -125.99 -125.99 -125.91 -125.91 -125.91 -125.91 -125.91 -125.91 -125.92 -125.9 --98.32 84.42 77.32 76.68 76.51 56.07 53.81 51.54 35.36 34.28 29.26 21.92

¹¹⁰ ¹⁰⁰ ⁹⁰ **f**1 (**ppm**)

80

70

50

60

140

150

160

170

180

200

130 120

S119

20

10

Figure S97 ¹H NMR (600 MHz, CDCl₃) of 20

Figure S101 ¹³C NMR (150 MHz, CDCl₃) of 2p

Figure S102 ¹⁹F NMR (565 MHz, CDCl₃) of 2p

Figure S106 ¹³C NMR (150 MHz, CDCl₃) of 2r

Figure S107 ¹H NMR (600 MHz, CDCl₃) of 2s

Figure S109 ¹H NMR (600 MHz, CDCl₃) of 2t

Figure S111 ¹H NMR (600 MHz, CDCl₃) of 2u

Figure S113 ¹⁹F NMR (565 MHz, CDCl₃) of 2u

Figure S115 ¹³C NMR (150 MHz, CDCl₃) of 2v

Figure S118 ¹H NMR (600 MHz, CDCl₃) of 2x

Figure S119 ¹³C NMR (150 MHz, CDCl₃) of 2x

Figure S121 ¹³C NMR (150 MHz, CDCl₃) of 2y

Figure S125 ¹³C NMR (150 MHz, CDCl₃) of 2aa

Figure S129 ¹³C NMR (150 MHz, CDCl₃) of 2ac

Figure S131 ¹³C NMR (150 MHz, CDCl₃) of 2ad

Figure S134 ¹H NMR (600 MHz, CDCl₃) of 2af and 3af

Figure S135 ¹³C NMR (150 MHz, CDCl₃) of 2af and 3af

Figure S137 ¹³C NMR (150 MHz, CDCl₃) of 3a

Figure S139 ¹³C NMR (150 MHz, CDCl₃) of 3b

Figure S140 ¹⁹F NMR (565 MHz, CDCl₃) of 3b

Figure S142 ¹³C NMR (150 MHz, CDCl₃) of 3c

¹¹⁰ ¹⁰⁰ ⁹⁰ **f**1 (**ppm**)

80 70

50

190

180

170 160

200

150 140

130 120

Figure S145 ¹H NMR (600 MHz, CDCl₃) of 3e

Figure S147 ¹H NMR (600 MHz, CDCl₃) of 3f

Figure S149 ¹H NMR (600 MHz, CDCl₃) of 3g

Figure S157 ¹H NMR (600 MHz, CDCl₃) of 3l

Figure S158 ¹³C NMR (150 MHz, CDCl₃) of 3l

Figure S161 ¹H NMR (600 MHz, CDCl₃) of 3n

Figure S163 ¹H NMR (600 MHz, CDCl₃) of 30

Figure S167 ¹³C NMR (150 MHz, CDCl₃) of 3p

110 100 90 f1 (ppm)

80 70

60 50

40

150 140

130 120

200

190

180

170

160

Figure S169 ¹H NMR (600 MHz, CDCl₃) of 3q

20

10

30

Figure S174 ¹³C NMR (150 MHz, CDCl₃) of 3s

Figure S175 ¹H NMR (600 MHz, CDCl₃) of 3t

Figure S177 ¹H NMR (600 MHz, CDCl₃) of 3u

Figure S181 ¹³C NMR (150 MHz, CDCl₃) of 3v

Figure S183 ¹³C NMR (150 MHz, CDCl₃) of 3w

Figure S186 ¹H NMR (600 MHz, CDCl₃) of 3y

7,7/338

7,7/338

7,7/331

7,7/331

7,7/331

7,7/331

7,7/331

7,7/331

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/427

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

7,1/428

Figure S187 ¹³C NMR (150 MHz, CDCl₃) of 3y

1.00

8.5 8.0 7.5

9.0

9.5

10.0

1.05

7.0 6.5

0.99

6.0

1.02

2.0 1.5

3.01

2.5

1.02

1.0 0.5

1.01

1.01

4.5 4.0

ş

5.5 f1 (ppm)

9.1 1.0 1.0 1.0

3.5 3.0

0.0

Figure S189 ¹³C NMR (150 MHz, CDCl₃) of 3z

Figure S191 ¹³C NMR (150 MHz, CDCl₃) of 3aa

Figure S193 ¹³C NMR (100 MHz, CDCl₃) of 3ab

Figure S195 ¹³C NMR (150 MHz, CDCl₃) of 3ac

Figure S196 ¹H NMR (600 MHz, CDCl₃) of 3ad

Figure S197 ¹³C NMR (150 MHz, CDCl₃) of 3ad

Figure S199 ¹³C NMR (150 MHz, CDCl₃) of 3ae

1.2903

Figure S204 ¹H NMR (600 MHz, CDCl₃) of 5

Figure S205 ¹³C NMR (150 MHz, CDCl₃) of 5

Figure S207 ¹³C NMR (150 MHz, CDCl₃) of 6

Figure S209 ¹³C NMR (150 MHz, CDCl₃) of 7

Figure S210 ¹H NMR (400 MHz, CDCl₃) of 7'

7,5348 7,73848 7,73848 7,73848 7,73848 7,731804 7,731804 7,731804 7,731804 7,741137

7. X-ray crystal structures of 2a, 3m, 4, 6, and 7'

Crystal preparation: Compound **2a**, **3m**, **4**, **6** and **7'** (30 mg) were dissolved in hexane/EA = 9:1 (10 mL) in 25 mL round bottom flask and the resultant solution were allowed to slowly evaporate at room temperature to get pure crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2174040 (2a), 2174041 (3m), 2174042 (4), 2174043 (6), and 2174044 (7') respectively.

Figure S206. ORTEP Drawing of **2a** with Thermal Ellipsoids at 30% Probability

Levels (CCDC 2174040).

Table S1 Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	C ₂₉ H ₂₇ NO ₃ S
Formula weight	469.57
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c

a/Å	40.961(4)
b/Å	7.1221(7)
c/Å	16.3787(13)
α/°	90
β/°	94.020(8)
$\gamma/^{\circ}$	90
Volume/Å ³	4766.4(7)
Z	8
$\rho_{calc}g/cm^3$	1.309
µ/mm ⁻¹	0.168
F(000)	1984.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
Radiation	Mo Kα (λ = 0.71073)
20 range for data collection/°	4.986 to 49.982
Index ranges	$-48 \le h \le 42, -8 \le k \le 8, -19 \le l \le 19$
Reflections collected	13061
Independent reflections	4165 [$R_{int} = 0.0561, R_{sigma} = 0.0678$]
Data/restraints/parameters	4165/7/308
Goodness-of-fit on F ²	1.059
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0560, wR_2 = 0.1137$
Final R indexes [all data]	$R_1 = 0.1028, wR_2 = 0.1395$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.27

Figure S207. ORTEP Drawing of **3m** with Thermal Ellipsoids at 30% Probability Levels (CCDC 2174041).

Table S2 Cryst	al data and	l structure	refinement	for 3m.
----------------	-------------	-------------	------------	---------

Identification code	3m
Empirical formula	C ₃₁ H ₂₉ NO ₃ S
Formula weight	495.61
Temperature/K	179.99(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.9025(7)
b/Å	17.1335(8)
c/Å	13.3176(9)
$\alpha/^{\circ}$	90
β/°	108.457(7)
$\gamma/^{\circ}$	90
Volume/Å ³	2576.2(3)
Z	4
$\rho_{calc}g/cm^3$	1.278

μ/mm^{-1}	0.159
F(000)	1048.0
Crystal size/mm ³	$0.15 \times 0.12 \times 0.09$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.32 to 49.998
Index ranges	$-14 \le h \le 14, -19 \le k \le 20, -15 \le l \le 12$
Reflections collected	12542
Independent reflections	4542 [$R_{int} = 0.0324$, $R_{sigma} = 0.0403$]
Data/restraints/parameters	4542/0/326
Goodness-of-fit on F ²	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0427, wR_2 = 0.0996$
Final R indexes [all data]	$R_1 = 0.0542, wR_2 = 0.1066$
Largest diff. peak/hole / e Å ⁻³	0.27/-0.33

Figure S208. ORTEP Drawing of **4** with Thermal Ellipsoids at 30% Probability

Levels (CCDC 2174042).

Table S3 Crystal data and structure refinement for 4.

Identification code	4
Empirical formula	C ₂₉ H ₂₇ NO ₃ S
Formula weight	469.57

Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	9.866(3)
b/Å	10.368(3)
c/Å	13.134(3)
$\alpha/^{\circ}$	67.204(6)
β/°	78.549(7)
$\gamma/^{\circ}$	76.355(7)
Volume/Å ³	1194.8(6)
Z	2
$\rho_{calc}g/cm^3$	1.305
μ/mm^{-1}	0.167
F(000)	496.0
Crystal size/mm ³	0.14 imes 0.11 imes 0.09
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	5.132 to 50.05
Inday ranges	$-11 \le h \le 11, -12 \le k \le 12, -15 \le l \le$
index ranges	15
Reflections collected	28658
Independent reflections	4187 [$R_{int} = 0.0726$, $R_{sigma} = 0.0575$]
Data/restraints/parameters	4187/0/304
Goodness-of-fit on F ²	1.030
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0521, wR_2 = 0.0956$
Final R indexes [all data]	$R_1 = 0.0938, wR_2 = 0.1129$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.23

Figure S209. ORTEP Drawing of **6** with Thermal Ellipsoids at 30% Probability Levels (CCDC 2174043).

Table S4 Crystal data and structure refinement for 6.

Identification code	6
Empirical formula	C ₃₁ H ₃₂ BrNO ₄ S
Formula weight	594.54
Temperature/K	170.01(19)
Crystal system	monoclinic
Space group	I2/a
a/Å	15.7774(2)
b/Å	10.1799(2)
c/Å	41.4812(7)
$\alpha/^{\circ}$	90
β/°	97.329(2)
$\gamma/^{\circ}$	90
Volume/Å ³	6607.96(19)
Z	8
$\rho_{calc}g/cm^3$	1.195

μ/mm^{-1}	2.538
F(000)	2464.0
Crystal size/mm ³	$0.15 \times 0.12 \times 0.1$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	8.596 to 148.546
Index ranges	$\text{-19} \le h \le 11, \text{-11} \le k \le 12, \text{-47} \le l \le$
	51
Reflections collected	13010
Independent reflections	6548 [$R_{int} = 0.0299, R_{sigma} = 0.0373$]
Data/restraints/parameters	6548/0/345
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0380, wR_2 = 0.1048$
Final R indexes [all data]	$R_1 = 0.0418, wR_2 = 0.1085$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.58

Figure S210. ORTEP Drawing of 7' with Thermal Ellipsoids at 30% Probability

Levels (CCDC 2174044).

Table S5 Crystal data and structure refinement for 7'.

Identification code	7'
Empirical formula	$C_{29}H_{31}NO_3S$
Formula weight	473.61
Temperature/K	200.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.5942(2)
b/Å	10.2077(2)
c/Å	13.7721(3)
α/°	85.391(2)
β/°	77.094(2)
$\gamma^{\prime \circ}$	66.714(2)
Volume/Å ³	1207.56(5)
Z	2
$\rho_{calc}g/cm^3$	1.303
μ/mm ⁻¹	1.438
F(000)	504.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	6.584 to 143.25
T 1	$-11 \le h \le 11, -11 \le k \le 12, -12 \le l \le$
nidex failges	16
Reflections collected	11822
Independent reflections	4575 [$R_{int} = 0.0117$, $R_{sigma} = 0.0130$]
Data/restraints/parameters	4575/0/308
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0349$, $wR_2 = 0.0920$

Final R indexes [all data]

Largest diff. peak/hole / e Å⁻³

 $R_1 = 0.0356, wR_2 = 0.0926$

0.23/-0.47

8. References

- S1. L. Ricard and F. Gagosz, Organometallics 2007, 26, 4704–4707.
- S2. a) K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M.
- R. V. Finlay and Z. Yang, J. Am. Chem. Soc., 1997, 119, 7974–7991; b) M. Zahel, Y.
 Wang, A. Jäger and P. Metz, Eur. J. Org. Chem., 2016, 5881–5886.
- S3. J.-S. Poh, S. Makai, T. von Keutz, D. N. Tran, C. Battilocchio, P. Pasau and S. V. Ley, *Angew. Chem. Int. Ed.*, 2017, **56**, 1864–1868.
- S4. T. Suda, K. Noguchi and K. Tanaka, *Angew. Chem. Int. Ed.*, 2011, **123**, 4567–4571.
- S5. a) Ø. W. Akselsen and T. V. Hansen, *Tetrahedron* 2011, **67**, 7738–7742; b) Y. H.
- Yu, L. Y. Ma, J. J. Xia, L. T. Xin, L. Zhu and X. L. Huang, *Angew. Chem. Int. Ed.*, 2020, **59**, 18261–18266.
- S6. R. Shen, K. Chen, Q. Deng, J. Yang and L. Zhang, Org. Lett., 2014, 16, 1208–1211.
- S7. H. Q. Cao, H. N. Liu, Z. Y. Liu, B. K. Qiao, F. G. Zhang and J. A. Ma, Org. Lett. 2020, 22, 6414–6419.