Supplementary Information for

Ligand-Controlled Chemoselectivity in Gold Catalyzed Cascade Cyclization of 1,4-Diene-Tethered 2-Alkynylbenzaldehydes

Jichao Chen, ${ }^{a}$ Rui Hu, ${ }^{\text {a }}$ Qing Bao, ${ }^{a}$ Dandan Shang, ${ }^{\text {a }}$ Lei Yu, ${ }^{\text {b }}$ Philip Wai Hong Chan, ${ }^{*, b}$ and Weidong Rao ${ }^{*, a}$
${ }^{\text {a }}$ Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
${ }^{\mathrm{b}}$ School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
E-mail: weidong@njfu.edu.cn (W.R.); phil.chan@monash.edu (P.W.H.C.)

Table of Contents

1. General information S1
2. Preparation and characterization of starting materials S1
3. General procedure for BrettPhosAuNTf ${ }_{2}$-catalyzed 6-endo-dig S25oxycyclization/[3+2] cycloaddition/cyclopropanation
4. General procedure for SIMesAuNTf $_{2}$-catalyzed 6-endo-dig S47
oxycyclization/[3+2] cycloaddition/C(sp $\left.^{3}\right)-\mathrm{H}$ bond insertion
5. Gram-scale synthesis of 2a and 3a and selective transformations S67
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra S73
7. X-ray crystal structures of $\mathbf{2 a}, \mathbf{3 m}, \mathbf{4}, \mathbf{6}$, and $\mathbf{7 '}^{\prime}$ S179
8. References S188

1. General information

All commercial chemicals were used without additional purification, unless otherwise stated. All (phosphine) AuNTf_{2} and (NHC) AuNTf f_{2} catalysts were prepared following literature procedures. ${ }^{\text {S1 }}$ THF and toluene were dried over $\mathrm{Na} /$ benzophenone and 1,2-dichloroethanne was dried over CaH_{2}. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV-vis light (254 nm). Flash column chromatography was performed using silica gel and gradient solvent system (petroleum ether: EtOAc as eluent). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a 400 or 600 MHz spectrometer in CDCl_{3}. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (n) for a given resonance is indicated by $n \mathrm{H}$ and coupling constants are reported as a J value in Hz. High resolution mass spectra (HRMS) were obtained on a LC/HRMS TOF mass spectrometer using simultaneous electrospray (ESI). Melting points were determined using a digital melting point apparatus.

2. Preparation and characterization of starting materials

2.1. General procedure A

Step 1: To a 100 mL round-bottom flask equipped with a reflux condenser and stirring bar were added methyl 2-(triphenyl-phosphanylidene)pent-4-enoate S1 (9.735 $\mathrm{g}, 26 \mathrm{mmol}, 1.3$ equiv), aldehyde derivative ($20 \mathrm{mmol}, 1.0$ equiv) and $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(60$ mL). The reaction mixture was allowed to stir at $80{ }^{\circ} \mathrm{C}$ for $3-15 \mathrm{~h}$ until full consumption of the aldehyde, as indicated by TLC analysis. ${ }^{52}$ The resulting mixture was cooled to room temperature and concentrated under reduced pressure. The
residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford $\mathbf{S 2}$.

Step 2: To a solution of the resulting 1,4-diene ester $\mathbf{S 2}$ (1 equiv) in anhydrous THF $(0.25 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H (1.0 M in hexanes, 2.5 equiv) dropwise and the reaction mixture was stirred $-78{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was quenched carefully with hydrochloric acid (1 N) and ethyl acetate and vigorously stirred for 1 h , extracted with EtOAc and the combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to give the 1,4-dienol S3.

Step 3: To a solution of triphenylphosphine (1.3 equiv), 1,4-dienol S3 (1.0 equiv) and 4-methyl- N-(prop-2-yn-1-yl)benzenesulfonamide (1.1 equiv) in anhydrous THF (0.4 $\mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added diisopropyl azodicarboxylate (DIAD, 1.3 equiv) dropwise. The mixture was warmed to room temperature and stirred for $12 \mathrm{~h} .{ }^{53}$ The mixture was concentrated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the 1,4-diene-ynes $\mathbf{S 4}$.

Step 4: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo(bromo)-benzaldehyde derivatives (1.1 equiv), 1,4-diene-ynes $\mathbf{S 4}$ (1.0 equiv, if solid, added at this time), $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$ and $\mathrm{CuI}(2 \mathrm{~mol} \%)$ in anhydrous THF (0.2 M) was added diisopropylamine (${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$, 4.0 equiv) under an argon atmosphere at $0{ }^{\circ} \mathrm{C} .1,4$-diene-ynes $\mathbf{S 4}$ (if liquid, dissolved in THF and added at this time by a syringe). The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford 1a-1ab and

1ad-1ae.

2.2. General procedure B

Following a slightly modified reported procedure, to a solution of $\mathbf{S 5}(860 \mathrm{mg}, 2$ mmol) and the above S4a ($877 \mathrm{mg}, 2.4 \mathrm{mmol}$) in DMF (5 mL) were added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(70.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(8.8 \mathrm{mmol}, 4.4$ equiv) under argon atmosphere at room temperature. ${ }^{\mathrm{S}, 55}$ The resulting mixture was then heated at $90{ }^{\circ} \mathrm{C}$ for 12 h overnight. The reaction was cooled to room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(15 \mathrm{~mL})$, extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with saturated brine (10 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to afford 1ac (297 $\mathrm{mg}, 23 \%$) as a pale-yellow oil.

2.3. General procedure \mathbf{C}

Step 1: Following a slightly modified reported procedure, ${ }^{56}$ to a solution of 2-bromo-5-hydroxybenzaldehyde ($402 \mathrm{mg}, 2.0 \mathrm{mmol}$), acid derivatives (2.0 mmol) and DMAP ($12.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added dropwise a solution of EDC (N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride) (2.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. The reaction mixture was stirred at room temperature for 5 h . Upon completion, based on monitoring by TLC analysis, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 10 mL). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to provide $\mathbf{S 7}$.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added

S7 (1.1 equiv), 1,4-diene-ynes S4a (1.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$ and $\mathrm{CuI}(2$ $\mathrm{mol} \%$) in anhydrous THF (0.2 M) was added diisopropylamine (${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}, 4.0$ equiv) under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford 1ad-1ae.

2.4. General procedure D

Step 1: To a solution of S3a ($348 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(136 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{NaOH}(240 \mathrm{mg}, 6 \mathrm{mmol})$ in Toluene $-\mathrm{H}_{2} \mathrm{O}(9 \mathrm{~mL}, 2: 1$, v:v) was added dropwise propargylic bromide ($0.4 \mathrm{~mL}, 2$ equiv) at room temperature. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford $\mathbf{S 8}$.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo-benzaldehyde derivatives (1.1 equiv), $\mathbf{S 8}$ (1.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (2 mol \%) and $\mathrm{CuI}(2 \mathrm{~mol} \%)$ in anhydrous THF (0.2 M) was added diisopropylamine (${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$, 4.0 equiv) under an argon atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to
afford 1af.

(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-met

 hylbenzenesulfonamide (1a)

The title compound was prepared according to general procedure A in 56% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a colorless solid, $\mathrm{mp} 80-82^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}$, $3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 190.6,143.9,136.4,135.9,135.8,134.7,133.6$, $133.4,133.3,131.4,129.6,128.8,128.5,128.3,127.7,127.3,127.2,125.6,116.9$, 89.1, 81.7, 52.6, 36.6, 32.8, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 470.1784; found: 470.1788.
(E)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl- N-(2-(4-(trifluoromethyl)ben zylidene)pent-4-en-1-yl)benzenesulfonamide (1b)

The title compound was prepared according to general procedure A in 49% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a yellow solid, $\mathrm{mp} 104-106{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
7.38 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.96-5.90(\mathrm{~m}, 1 \mathrm{H})$, $5.22-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.6,144.0,140.0,135.9,135.8,135.7,134.2,133.6$, 133.4, 129.7, 129.6, 129.2, 128.9, 128.8, 127.7, 127.4, 125.4, 125.3, 125.2, 117.2, 88.8, 81.9, 52.3, 36.8, 32.9, 21.3; ${ }^{19}$ F NMR ($565 \mathbf{~ M H z , ~ C D C l ~} 3$) δ-62.50; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 538.1658; found: 538.1678 .

(E)- N -(2-(4-fluorobenzylidene)pent-4-en-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1

 -yl)-4-methylbenzenesulfonamide (1c)

The title compound was prepared according to general procedure A in 43% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a pale-yellow solid, $\mathrm{mp} 87-90^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 5 \mathrm{H})$, 7.01 (t, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.96-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~s}$, 2H), 3.97 ($\mathrm{s}, 2 \mathrm{H}$), $3.06(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 190.6,162.7,161.1,143.9,135.8(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 134.5,133.6,133.4(\mathrm{~d}, J=9.2 \mathrm{~Hz})$, $132.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 130.2,130.2,129.6,128.9,127.7,127.3,125.5,116.9,115.3$, 115.2, 88.9, 81.7, 52.5, 36.6, 32.7, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 488.1690$; found: 488.1695.
(E)- N-(2-(4-bromobenzylidene)pent-4-en-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1d)

The title compound was prepared according to general procedure A in 35% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a yellow solid, $\mathrm{mp} 126-127^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.95-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.14(\mathrm{~m}, 2 \mathrm{H})$, $4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 190.6,143.9,135.8,135.3,134.3,134.3,133.6,133.4,131.4,130.1,129.9$, 129.6, 128.9, 127.7, 127.3, 125.5, 121.2, 117.1, 88.9, 81.8, 52.4, 36.7, 32.8, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 548.0890$; found: 548.0909.

(E)-N-(2-([1,1'-biphenyl]-4-ylmethylene)pent-4-en-1-yl)-N-(3-(2-formylphenyl)pr op-2-yn-1-yl)-4-methylbenzenesulfonamide (1e)

The title compound was prepared according to general procedure A in 50% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to 20:1) to afford the product as a pale-yellow solid, mp 100$102{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.03-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (150 MHz, $\mathbf{C D C l}_{3}$) δ 190.6, 143.9, 140.5, 139.9, 135.8, 135.8, 135.4, 134.6, $133.5,133.5,133.4,130.9,129.6,128.9,128.8,128.8,127.7,127.3,127.2,126.9$, 126.9, 125.6, 116.9, 89.0, 81.7, 52.7, 36.6, 32.9, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 546.2097; found: 546.2120.
(\boldsymbol{E})- N-(3-(2-formylphenyl)prop-2-yn-1-yl)- N-(2-(4-methoxybenzylidene)pent-4-en -1-yl)-4-methylbenzenesulfonamide (1f)

The title compound was prepared according to general procedure A in 38% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=25: 1$ to $11: 1$) to afford the product as a yellow oil; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ $(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=13.8,8.1 \mathrm{~Hz}, 5 \mathrm{H}), 6.86$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (dd, $J=10.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 190.6,158.7,143.8,135.8$, 135.7, 134.7, 133.5, 133.3, 131.4, 130.9, 129.8, 129.6, 128.9, 128.8, 127.6, 127.1, 125.6, 116.7, 113.7, 89.1, 81.6, 55.2, 52.7, 36.4, 32.6, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{KNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 538.1449$; found: 538.1475.
(E)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl- N-(2-(4-methylbenzylidene)p ent-4-en-1-yl)benzenesulfonamide (1g)

The title compound was prepared according to general procedure A in 36% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.14$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.21$ (d, $J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$) δ 190.6, 143.8, 137.1, 135.9, 135.8, 134.7, 133.6, 133.5, 133.4, 132.5, 131.4, 129.6, 129.0, 128.8, 128.5, 127.7, 127.1, 125.7, 116.9, 89.1, 81.6, 52.7, 36.5, 32.8, 21.3, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 484.1941$; found: 484.1962.
(E)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl- N-(2-(naphthalen-2-ylmethyl ene)pent-4-en-1-yl)benzenesulfonamide (1h)

The title compound was prepared according to general procedure A in 33% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a brown solid, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=8.0$ Hz, 5H), 7.76 ($\mathrm{s}, 1 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.79$ (s, 1H), 6.05$5.98(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.05$ (s, 2H), 3.18 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l 3) ~} \delta 190.6$, $143.9,135.9,135.8,134.7,133.9,133.8,133.6,133.4,133.2,132.4,131.3,129.6$, $128.8,127.9,127.8,127.7,127.6,127.5,127.2,126.7,126.2,126.0,125.6,117.1$, 89.1, 81.7, 52.6, 36.7, 32.9, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{KNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}$: 558.1500; found: 558.1505.
(E)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl- N-(2-(naphthalen-1-ylmethyl ene)pent-4-en-1-yl)benzenesulfonamide (1i)

The title compound was prepared according to general procedure A in 29% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=25: 1$ to $15: 1$) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.0$ Hz, 1H), 7.51-7.45 (m, 4H), 7.43-7.40 (m, 2H), 7.29 (d, J = 7.7 Hz, 1H), 7.27-7.24 (m, 2H), $7.16(\mathrm{~s}, 1 \mathrm{H}), 5.96-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J$ $=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 190.3,143.8,135.6,135.5,135.1,134.9,133.5,133.4$, 133.3, 133.2, 131.6, 129.5, 129.4, 128.7, 128.3, 127.7, 127.5, 127.1, 126.0, 125.9, 125.7, 125.2, 125.1, 124.3, 116.9, 88.8, 81.8, 51.7, 36.7, 32.9, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 519.1868; found: 519.1872.
N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl- N-(2-methylenepent-4-en-1-yl)be nzenesulfonamide ($\mathbf{1 j}$)

The title compound was prepared according to general procedure A in 24% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to 20:1) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.48 (td, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.88-$ $5.81(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$,
$2 \mathrm{H}), 2.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 190.6$, $143.8,141.5,135.7,134.9,133.5,133.3,129.6,128.8,127.6,127.0,125.6,117.2$, $115.9,88.9,81.5,51.5,37.4,36.4,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{KNO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{K}]^{+}$: 432.1030; found: 432.1039.
(E)- N-(2-allylnon-2-en-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenz enesulfonamide ($1 \mathbf{k}$)

The title compound was prepared according to general procedure A in 23% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.86(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12 \mathrm{~m}, 3 \mathrm{H})$, $5.82-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}$, $J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$, 2.08 (dd, $J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{dt}, J=10.4,7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 190.7,143.7,135.9,135.8,134.9,133.5,133.3,133.1$, $130.5,129.5,128.7,127.7,126.9,125.8,116.1,89.3,81.3,52.6,36.1,32.2,31.6,29.4$, 28.9, 27.9, 22.6, 21.3, 14.0; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 478.2410$; found: 478.2429.
(E)- N-(2-allyl-5-phenylpent-2-en-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-m ethylbenzenesulfonamide (11)

The title compound was prepared according to general procedure A in 21% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum
ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a colorless oil; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.50 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22$ (m, 2H), 7.20-7.07 (m, 6H), 5.74-5.64 (m, 1H), $5.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{dd}, J=10.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}$, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 190.7, 143.7, 141.4, 135.8, 135.7, 134.7, 133.5, 133.3, 131.6, 131.5, 129.5, 128.7, 128.4, 128.3, 127.6, 127.0, 125.9, 125.8, 116.1, 89.2, 81.4, 52.4, 36.0, 35.5, 32.1, 29.6, 213; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 498.2097$; found: 498.2099.

N-((2E,4E)-2-allyl-5-phenylpenta-2,4-dien-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1m)

The title compound was prepared according to general procedure A in 13% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $20: 1$) to afford the product as a yellow solid, $\mathrm{mp} 120-121^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}$) $\delta 9.91(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{dd}, J=$ $15.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.83(\mathrm{~m}$, $1 \mathrm{H}), 5.19(\mathrm{dd}, J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$, $3.92(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 190.7, 143.8, 137.1, 135.9, 135.8, 134.7, 134.2, 133.6, 133.4, 133.4, 130.8, 129.6, $128.8,128.6,127.9,127.7,127.1,126.5,125.7,123.8,116.7,89.1,81.6,52.6,36.6$, 32.9, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 496.1941$; found: 496.1944.

(E)-N-(2-allyl-5-phenylpent-2-en-4-yn-1-yl)- N-(3-(2-formylphenyl)prop-2-yn-1-yl

)-4-methylbenzenesulfonamide (1n)

The title compound was prepared according to general procedure A in 9% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $20: 1$) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.49 (td, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41$ (m, 3H), 7.33-7.31 (m, 3H), $7.22(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 3 \mathrm{H}), 5.94-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J$ $=10.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 190.4,145.8,143.9,135.6,135.5,133.7,133.4,133.3$, $131.3,129.5,128.8,128.2,127.5,127.1,125.2,122.9,117.3,110.4,94.4,88.5,85.7$, 81.8, 50.9, 36.8, 35.3, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 494.1784$; found: 494.1802.
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(3-fluoro-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (10)

The title compound was prepared according to general procedure A in 43% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to 20:1) to afford the product as a colorless solid, $\mathrm{mp} 108-110^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23$ (m, 1H), $7.21(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.92(\mathrm{~m}, 1 \mathrm{H})$, $5.21(\mathrm{dd}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H})$,
$3.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 186.9(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}), 162.7(\mathrm{~d}, J=262.3 \mathrm{~Hz}), 143.6,136.5,135.9,134.7$, $134.6(\mathrm{~d}, J=10.5 \mathrm{~Hz})$, 133.3, 131.5, 129.8 (d, $J=3.6 \mathrm{~Hz}$), 129.5, 128.5, 128.3, 127.7, 127.2, 125.6 (d, $J=$ $3.2 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 117.0,116.9,89.7,81.8,52.5,36.5,32.7,21.3 ;{ }^{19} \mathbf{F}$ NMR (565 MHz, CDCl $_{3}$) $\delta-116.60(\mathrm{dd}, J=10.4,5.4 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{FKNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 526.1249$; found: 526.1265.
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(2-formyl-4-(trifluoromethyl)phenyl)pr op-2-yn-1-yl)-4-methylbenzenesulfonamide (1p)

The title compound was prepared according to general procedure A in 49% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=25: 1$ to $11: 1$) to afford the product as a colorless solid, $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25$ $(\mathrm{m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 189.1, 143.9, 136.3, 136.0, 135.8, 134.6, 133.9, 133.2, 131.5, 130.9 (d, $J=34.0 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 129.7,128.7,128.5$, $128.3,127.7,127.3,124.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.0,117.0,92.1,80.5,52.7,36.5,32.7$, 21.3; ${ }^{19}$ F NMR (565 MHz, CDCl ${ }_{3}$) $\delta-63.22$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 538.1658$; found: 538.1664.
(E)-N-(2-benzylidenepent-4-en-1-yl)-N-(3-(4-fluoro-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1q)

The title compound was prepared according to general procedure A in 51% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $20: 1$) to afford the product as a pale-yellow solid, $\mathrm{mp} 87-89^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.83(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52 (dd, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26$ (m, 3H), 7.25-7.19 $(\mathrm{m}, 4 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J$ $=10.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 189.4,162.4(\mathrm{~d}, J=253.8 \mathrm{~Hz}), 143.9,137.8(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}), 136.3,135.9,135.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 134.6,133.3,131.4,129.6,128.5,128.3$, 127.7, 127.3, $121.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 116.9,113.6(\mathrm{~d}, J=22.9$ $\mathrm{Hz}), 88.9,80.6,52.6,36.5,32.8,21.4$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 488.1690; found: 488.1705 .
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(4-chloro-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1r)

The title compound was prepared according to general procedure A in 54% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $20: 1$) to afford the product as a pale-yellow solid, mp 121$123{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J=$ $8.9,5.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H})$, 5.97-5.90 (m, 1H), $5.20(\mathrm{dd}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 189.3,143.9,136.9,136.3,135.9,135.4,134.6,134.5,133.6,133.3,131.4$, $129.6,128.5,128.3,127.7,127.3,127.1,123.8,116.9,90.2,80.6,52.6,36.5,32.7$, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 504.1395$; found: 504.1418.
(E)- N -(2-benzylidenepent-4-en-1-yl)- N -(3-(4-bromo-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1s)

The title compound was prepared according to general procedure A in 35% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $30: 1$) to afford the product as a colorless solid, $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 189.2,143.9,136.9,136.5,136.3,135.8$, 134.7, 134.6, 133.3, 131.4, 130.2, 129.6, 128.5, 128.3, 127.7, 127.3, 124.2, 123.4, 116.9, $90.4,80.7,52.6,36.5,32.7,21.4$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 570.0709$; found: 570.0737.
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(2-formyl-4-methylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1t)

The title compound was prepared according to general procedure A in 48% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to 20:1) to afford the product as a yellow solid, $\mathrm{mp} 84-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.34-$ 7.30 (m, 3H), 7.30-7.28 (m, 2H), 7.27-7.23 (m, 2H), 7.22 (d, J=8.1 Hz, 1H), 7.12 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dd, $J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, 3H), $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 190.8,143.8,139.3,136.4,135.8$,
135.6, 134.6, 134.4, 133.3, 133.3, 131.3, 129.6, 128.5, 128.3, 127.6, 127.4, 127.2, 122.8, 116.9, 88.1, 81.7, 52.4, 36.5, 32.7, 21.3, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 484.1941$; found: 484.1919.
(\boldsymbol{E})- N -(2-benzylidenepent-4-en-1-yl)- N -(3-(5-fluoro-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1u)

The title compound was prepared according to general procedure A in 48% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to 20:1) to afford the product as a pale-yellow solid, mp 103$104{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.11(\mathrm{td}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, 5.98-5.92 (m, 1H), 5.22 (dd, $J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 188.9,165.3(\mathrm{~d}, J=257.2 \mathrm{~Hz}), 143.9,136.2,135.8,134.5,133.2,132.5(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}), 131.3,129.9(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 129.6,128.4,128.2,127.8(\mathrm{~d}, J=10.9 \mathrm{~Hz})$, 127.6, 127.2, $119.9(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 116.9,116.7(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 90.2,80.4,52.6$, 36.4, 32.7, 21.2; ${ }^{19}$ F NMR ($565 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-103.10(\mathrm{dd}, J=14.4,8.3 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 488.1690; found: 488.1694.
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(5-chloro-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1v)

The title compound was prepared according to general procedure A in 64% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum
ether/EtOAc $=25: 1$ to $11: 1$) to afford the product as a colorless solid, $\mathrm{mp} 78-80^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{dd}, J=8.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 189.3,143.9,139.9,136.2,135.8,134.5,134.1,133.2$, 133.0, 131.4, 129.6, 129.3, 128.5, 128.4, 128.3, 127.7, 127.2, 126.8, 116.9, 90.3, 80.3, 52.6, 36.4, 32.7, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 504.1395; found: 504.1410.
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(5-bromo-2-formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1w)

The title compound was prepared according to general procedure A in 63% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a colorless solid, $\mathrm{mp} 90-92{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 6 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=10.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 189.6,144.0,136.3,136.0,135.8,134.6,134.5,133.2$, $132.3,131.5,129.7,128.6,128.5,128.5,128.4,127.8,127.3,126.9,117.0,90.5,80.3$, 52.6, 36.5, 32.8, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 548.0890$; found: 548.0887.
(E)-N-(2-benzylidenepent-4-en-1-yl)-N-(3-(2-formyl-5-methylphenyl)prop-2-yn-1 -yl)-4-methylbenzenesulfonamide (1x)

The title compound was prepared according to general procedure A in 20% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=25: 1$ to $11: 1$) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (s, 3H), 2.28 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 190.3,144.6,143.8,136.4,135.8$, 134.7, 133.7, 133.6, 133.3, 131.4, 129.8, 129.6, 128.5, 128.3, 127.7, 127.2, 125.6, $116.9,88.5,81.9,52.5,36.6,32.7,21.5,21.4$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 484.1941; found: 484.1954.
(E)- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(1-formylnaphthalen-2-yl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1y)

The title compound was prepared according to general procedure A in 55% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=25: 1$ to $15: 1$) to afford the product as a colorless solid, $\mathrm{mp} 132-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 9.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$
$17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 2H), 2.21 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$) δ 193.2, 143.9, 136.4, 135.8, 134.6, $134.2,133.3,133.1,131.5,131.4,129.9,129.8,129.7,129.2,128.9,128.5,128.3$, 128.2, 127.7, 127.3, 125.5, 116.9, 91.5, 82.9, 52.7, 36.7, 32.8, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 520.1941; found: 520.1964.
(\boldsymbol{E})- N-(2-benzylidenepent-4-en-1-yl)- N-(3-(2-formylnaphthalen-1-yl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1z)

The title compound was prepared according to general procedure A in 44% overall yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $15: 1$) to afford the product as a colorless solid, $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 10.11(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}$, $3 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 191.0,143.9,136.3,135.7,135.5,134.6,134.3,133.3,132.9,131.4,129.6$, $129.3,129.1,128.5,128.4,128.3,127.7$, 127.5, 127.2, 126.8, 126.1, 121.7, 116.9, 95.1, 79.5, 52.7, 36.7, 32.7, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 520.1941; found: 520.1939.
(E)- N-(2-(4-(N, N-dipropylsulfamoyl)benzylidene)pent-4-en-1-yl)-N-(3-(2-formylp henyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1aa)

The title compound was prepared according to general procedure A in 31% overall yield over 4 steps from probenecid derived aldehyde. ${ }^{\text {S7 }}$ It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20: 1$ to $6: 1$) to afford the product as a pale-yellow solid, mp 113-114 ${ }^{\circ} \mathbf{C}$; $\mathbf{1}^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.89$ $(\mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.94-$ 5.88 (m, 1H), 5.18 (d, J = 9.3 Hz, 1H), 5.16 (s, 1H), 4.39 (s, 2H), 3.99 (s, 2H), 3.07$3.05(\mathrm{~m}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 4 \mathrm{H}), 0.86-0.83(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 190.5,143.9,140.4,138.5,136.2,135.7,135.6,134.1,133.5,133.3$, 129.6, 129.2, 128.9, 128.9, 127.6, 127.3, 126.9, 125.2, 88.7, 81.8, 52.3, 49.9, 36.8, 32.9, 21.9, 21.3, 11.1; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 633.2451$; found: 633.2480.
(E)-N-(2-allyl-5-(4,5-diphenyloxazol-2-yl)pent-2-en-1-yl)-N-(3-(2-formylphenyl)p rop-2-yn-1-yl)-4-methylbenzenesulfonamide (1ab)

The title compound was prepared according to general procedure A in 32% overall yield over 4 steps from oxaprozin derived aldehyde. ${ }^{\text {S7 }}$ It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to afford the product as a yellow oil; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7$
$\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=$ $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=$ $17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=10.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.94-$ $2.91(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 190.4,162.3,145.1,143.6,135.6,135.5,134.9,134.4$, 133.3, 133.2, 132.6, 132.2, 129.9, 129.3, 128.7, 128.5, 128.4, 128.3, 128.3, 127.8, 127.6, 127.4, 126.8, 126.2, 125.5, 116.1, 88.8, 81.2, 52.1, 35.9, 31.9, 27.8, 25.3, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 641.2469$; found: 641.2500.
N-(2-((E)-benzylidene)pent-4-en-1-yl)-N-(3-((8R,9S,13S,14S)-2-formyl-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl) prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1ac)

The title compound was prepared according to general procedure B in 23% yield. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to afford the product as a pale-yellow oil; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.80$ (s, 1H), $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.20$ (dd, $J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H})$, $3.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 4 \mathrm{H}), 2.20-$ $2.11(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.42(\mathrm{~m}, 7 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,190.5,143.7,143.5,141.3,136.4,135.9,134.7$, 133.7, 133.6, 133.3, 131.3, 129.6, 128.5, 128.3, 127.7, 127.2, 124.2, 122.9, 116.9, $87.9,81.8,52.5,50.3,47.8,44.2,37.6,36.6,35.7,32.7,31.3,29.4,25.9,25.4,21.5$,
21.4, 13.7; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 668.2805$; found: 668.2827.
(E)-4-(3-((N-(2-benzylidenepent-4-en-1-yl)-4-methylphenyl)sulfonamido)prop-1-y n-1-yl)-3-formylphenyl 4-(N, N-dipropylsulfamoyl)benzoate (1ad)

The title compound was prepared according to general procedure C in 20% overall yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=9: 1$ to $5: 1$) to afford the product as a yellow solid, $\mathrm{mp} 56-58{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.89$ ($\mathrm{s}, 1 \mathrm{H}$), $8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.79$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.70 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $5.98-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $1.59-1.53(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 7 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 189.4$, $163.2,150.7,145.3,143.9,137.1,136.3,135.8,134.7,134.6,133.2,131.8,131.3$, $130.8,129.6,128.4,128.3,127.6,127.2,127.2,127.0,123.3,120.0,116.9,89.5,80.7$, $52.6,49.8,36.5,32.7,21.8,21.3,11.1$; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{2}$ [M+Na]+: 775.2482; found: 775.2496.
(E)-4-(3-((N-(2-benzylidenepent-4-en-1-yl)-4-methylphenyl)sulfonamido)prop-1-y n-1-yl)-3-formylphenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl) acetate (1ae)

The title compound was prepared according to general procedure C in 25% overall yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=9: 1$ to $5: 1$) to afford the product as a yellow solid, $\mathrm{mp} 64-66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), 7.54 ($\mathrm{s}, 1 \mathrm{H}$), 7.49 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.27$ (s, 1H), 7.23 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dd}$, $J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.92$ $(\mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDClı) $\delta 189.5,168.7,168.3,156.1,150.8,143.9,139.4,137.0,136.4$, $136.3,135.8,134.6,134.6,133.7,133.3,131.3,131.2,130.8,130.3,129.6,129.2$, $128.5,128.3,127.7,127.3,127.0,123.1,119.9,116.9,115.0,111.7,111.3,101.2$, 89.3, 80.8, 55.7, 52.6, 36.5, 32.7, 30.4, 21.4, 13.4; HRMS (ESI) calcd for $\mathrm{C}_{48} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 847.2215$; found: 847.2217.

(E)-2-(3-((2-benzylidenepent-4-en-1-yl)oxy)prop-1-yn-1-yl)benzaldehyde (1af)

The title compound was prepared according to general procedure D in 49% overall yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $25: 1$) to afford the product as a yellow oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{td}, J$ $=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}$, $1 \mathrm{H}), 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 191.4,136.8,136.1,135.6,135.3,133.7$,
$133.5,129.5,128.8,128.6,128.2,127.2,126.9,126.1,116.4,92.5,81.9,73.6,57.8$, 33.0; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 317.1536$; found: 317.1542.
3. General procedure for BrettPhosAuNTf 2 -catalyzed 6-endo-dig oxycyclization/[3+2] cycloaddition/cyclopropanation

X = NTs, O
1

$4 \AA \mathrm{MS}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$

2

To a solution of $1(0.15 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(150 \mathrm{mg})$ in anhydrous toluene (3 mL) was added BrettPhosAuNTf 2 ($5 \mathrm{~mol} \%$) under an argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc) to give the product 2.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{aS}{ }^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-phenyl-3-tosyl-3,4,11,11a-tetrahydro-1H, $\mathbf{2 H , 6 H - 1 a , 6 - m e t h a n o c y c l o p r o p a}[3,4]$ isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrr ole (2a)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 2a in 87% yield (61 mg); colorless solid, mp $153-155{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.15$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$
(dd, $J=10.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 2.15(\mathrm{dd}, J=8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.32$ (dd, $J=14.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $0.84-0.71(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 143.6,142.0,137.5,136.6,133.1,129.7,129.1,128.4,128.2,127.6,127.0$, $126.5,124.6,120.3,99.0,84.3,76.7,57.7,57.6,52.2,36.7,34.0,29.9,21.5,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 470.1784$; found: 470.1795 .
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-3-tosyl-12-(4-(trifluoromethyl)phenyl)-3,4,11 ,11a-tetrahydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cy clopenta[1,2-c]pyrrole (2b)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{2 b}$ in 60% yield (48 mg); colorless solid, $\mathrm{mp} 200-201{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.18-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.77-0.73(\mathrm{~m}$, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 143.78,141.4,140.9,137.4,133.1,129.8,129.5$, $129.2,128.8,127.6,126.5,125.2,125.1,124.8,123.0,120.5,99.2,84.1,57.5,57.4$, 52.1, 36.7, 33.9, 29.8, 21.6, 21.4, ${ }^{19}$ F NMR ($565 \mathbf{M H z}$, CDCl3 $_{3}$) -62.70; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 538.1658; found: 538.1649.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(4-fluoropheny) $)$-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2c)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to 11:1) to give the product 2c in 91% yield (66 mg); colorless solid, mp 188-190 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.10$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60-6.51$ (m, 2H), 5.39 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-$ $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{dd}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=$ $14.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-0.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.7(\mathrm{~d}, J=$ $246.7 \mathrm{~Hz}), 143.7,141.6,137.5,133.1,132.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 130.7$ (d, $J=7.7 \mathrm{~Hz})$, $129.8,128.6,127.6,126.5,124.7,120.4,115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 99.1,84.3,76.6,57.5$, 56.9, 52.2, 36.7, 33.9, 29.8, 21.6, 21.3; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($565 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta-115.16$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{FKNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 526.1249$; found: 526.1263.
$\left(1 \mathrm{aS} S^{*}, 4 \mathrm{aS}{ }^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(4-bromophenyl)-3-tosyl-3,4,11,11a-tetra hydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrrole (2d)

Column chromatography (petroleum ether/EtOAc $=50: 1$ to 20:1) to give the product 2d in 77% yield (63 mg); colorless solid, mp 209-210 ${ }^{\circ} \mathrm{C}$; $\mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}\right) \delta 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71$ (dd, $J=12.2,10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{dd}, J=8.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{dd}, J=$ $14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}) 0.76-0.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 143.7,141.5,137.5,135.6,133.1,131.4,130.9,129.8,128.7,127.6$, $126.5,124.7,121.1,120.4,99.1,84.2,76.7,57.5,57.1,52.2,36.7,34.0,29.8,21.6$, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 548.0890$; found: 548.0905 .
($1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}$)-12-([1,1'-biphenyl]-4-yl)-3-tosyl-3,4,11,11a-te trahydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopen ta[1,2-c]pyrrole (2e)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to 11:1) to give the product 2e in 62% yield (51 mg); colorless solid, mp $143-145{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}$, CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (s, 3H), 2.17 (dd, $J=8.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.37-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $143.6,141.9,140.3,139.8,137.5,135.6,133.1,129.8,129.6,128.7,128.5,127.6$, $127.3,126.8,126.8,126.5,124.6,120.3,99.1,84.3,57.6,57.5,52.2,36.7,34.1,29.9$, 21.6, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 546.2097; found: 546.2109.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a}^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(4-methoxyphenyl)-3-tosyl-3,4,11,11a-tetr ahydro- $1 \mathrm{H}, 2 \mathrm{H}, 6 \mathrm{H}-1 \mathrm{a}, 6$-methanocyclopropa[3,4]isochromeno[$\left.3^{\prime}, 4^{\prime}: 2,3\right]$ cyclopenta [1,2-c]pyrrole (2f)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $7: 1$) to give the product $\mathbf{2 f}$ in 56% yield (42 mg); colorless solid, mp $122-125^{\circ} \mathrm{C}$; $\mathbf{~}^{\mathbf{H}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=$ $7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-$ $3.69(\mathrm{~m}, 5 \mathrm{H}), 3.28(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.14$ $(\mathrm{dd}, J=8.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dd}, J=14.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.80-$ $0.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.5,143.6,142.1,137.6,133.2$, $130.3,129.8,128.4,128.4,127.6,126.5,124.6,120.3,113.6,99.1,84.4,76.6,57.6$, 57.1, 55.1, 52.3, 36.7, 34.1, 29.9, 21.6, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}$ [M+H]+: 500.1890; found: 500.1876.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(p-tolyl)-3-tosyl-3,4,11,11a-tetrahydro-1H ,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[$\left.3^{\prime}, 4^{\prime}: 2,3\right]$ cyclopenta[1,2-c]pyrr ole (2g)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{2 g}$ in 81% yield (58 mg); colorless solid, $\mathrm{mp} 143-144{ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$,

CDCl $_{3}$) $\delta 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.10$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.39$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=13.9,10.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.29(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $2.15(\mathrm{dd}, J=8.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dd}, J=14.2,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $0.81-0.77(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 143.6, 142.1, 137.5, 136.7, 133.4, 133.1, 129.7, 129.1, 128.9, 128.4, 127.6, 126.5, 124.5, 120.3, 99.1, 84.4, 76.6, 57.6, 57.5, 52.3, 36.7, 34.1, 29.9, 21.5, 21.3, 20.8; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{KNO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{K}]^{+}: 522.1500$; found: 522.1522.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(naphthalen-2-yl)-3-tosyl-3,4,11,11a-tetra hydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrrole (2h)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 2h in 79% yield (62 mg); colorless solid, mp $181-184{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}\right) \delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, J=8.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $0.82-0.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.7,142.2,137.7,134.1,133.2$, 132.9, 132.3, 129.8, 128.7, 127.8, 127.7, 127.7, 127.4, 126.6, 126.1, 125.9, 124.7, 120.4, 99.3, 84.34, 57.7, 52.3, 36.8, 34.3, 30.0, 21.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 542.1760$; found: 542.1784.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}\right)$-3-tosyl-3,4,11,11a-tetrahydro-1H,2H,6H-1a,6-met hanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrrole (2j)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $7: 1$) to give the product $\mathbf{2 j}$ in 93% yield (56 mg); colorless solid, mp 167-168 ${ }^{\circ} \mathrm{C} ; \mathbf{~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}$, $J=13.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=8.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=13.7$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=13.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dd}, J=6.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{dd}$, $J=13.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.5$, $143.4,137.8,133.6,129.6,127.7,127.4,124.4,123.9,120.3,97.4,79.7,72.1,54.7$, 50.7, 41.1, 34.2, 34.1, 32.1, 22.5, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{KNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}$: 432.1030; found: 432.1049 .
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{aS}{ }^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-hexyl-3-tosyl-3,4,11,11a-tetrahydro-1H,2 H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrrol e(2k)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product $\mathbf{2 k}$ in 77% yield (56 mg); colorless solid, mp $114-115{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}$, CDCl $_{3}$) $\delta 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=10.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.15-$ $2.13(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.10(\mathrm{~m}, 10 \mathrm{H})$,
$0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.4,140.4,137.9,133.4$, $129.6,127.9,127.5,126.2,124.1,119.9,98.5,84.6,74.2,56.9,51.6,49.5,35.4,34.8$, 31.5, 29.2, 29.0, 28.9, 28.2, 22.4, 22.2, 21.5, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{KNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 516.1969$; found: 516.1993.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-phenethyl-3-tosyl-3,4,11,11a-tetrahydro-1 H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]py rrole (21)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $2 \mathbf{2 l}$ in 67% yield (50 mg); colorless solid, mp 199-201 ${ }^{\circ} \mathrm{C} ; \mathbf{~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\mathrm{dd}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.08(\mathrm{~m}$, $1 \mathrm{H}), 0.82-0.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.4,141.3,139.9,137.9$, $133.4,129.6,128.4,128.1,128.1,127.4,126.2,125.9,124.1,120.1,98.5,84.4,74.2$, 56.7, 51.5, 48.7, 35.3, 35.2, 34.7, 30.6, 28.9, 22.3, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 520.1917$; found: 520.1934.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-((E)-styryl)-3-tosyl-3,4,11,11a-tetrahydro $-1 H, 2 H, 6 H-1 a, 6-m e t h a n o c y c l o p r o p a[3,4]$ isochromeno $\left[3^{\prime}, 4^{\prime}: 2,3\right]$ cyclopenta[1,2-c] pyrrole (2m)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product $\mathbf{2 m}$ in 53% yield (39 mg); colorless solid, mp 236-238 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.09$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=15.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68$ (dd, $J=10.5,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{dd}$, $J=14.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.91-0.84 \mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.6$, $140.4,137.5,136.6,134.6,133.4,129.7,128.5,128.2,127.6,127.5,126.5,126.2$, 125.9, 124.5, 120.1, 98.3, 84.4, 56.1, 53.8, 51.5, 35.4, 34.3, 29.3, 21.9, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 496.1941$; found: 496.1939.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{aS} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(phenylethynyl)-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2n)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 2n in 83% yield (62 mg); colorless solid, mp 225-228 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.90$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=9.5$ Hz, 1H), 3.67-3.65 (m, 2H), 3.38 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ ($\mathrm{s}, 3 \mathrm{H}$), $2.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}$,
$1 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.6,140.4,137.6,133.5$, 131.3, 129.7, 128.2, 128.1, 127.9, 127.5, 125.9, 124.2, 122.7, 119.9, 98.5, 86.1, 85.9, 83.9, 75.7, 55.3, 51.1, 43.5, 35.6, 34.5, 30.2, 22.2, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 516.1604$; found: 516.1625.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-7-fluoro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (20)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 2 o in 62% yield (45 mg); colorless solid, mp 210-211 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, CDCl $_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{dd}, J=14.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.7(\mathrm{~d}, J=246.8 \mathrm{~Hz}), 143.8,140.3,136.3,132.9,129.8$, $129.6(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 128.5,128.5,127.6,127.3,116.0,111.8$ (d, $J=21.6 \mathrm{~Hz}$), $99.2,57.7,57.3,52.3,36.9,34.3,29.9,21.7,21.6 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (565 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta-123.22\left(\mathrm{dd}, J=9.0,5.7 \mathrm{~Hz}\right.$); HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 488.1690$; found: 488.1699 .
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-phenyl-3-tosyl-8-(trifluoromethyl)-3,4,11, 11a-tetrahydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cy clopenta[1,2-c]pyrrole (2p)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 2p in 64% yield (51 mg); colorless solid, mp $151-152{ }^{\circ} \mathrm{C}$; $\mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl3 $_{3} \delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45$ (s, 3H), $2.20(\mathrm{dd}, J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44$ (dd, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) $\delta 143.8,142.7,142.1,136.0,135.9,133.0,130.5,129.8$, 128.9, 128.5, 127.6, 127.4, 125.6 (d, $J=3.5 \mathrm{~Hz}$), 123.1 (d, $J=3.5 \mathrm{~Hz}$), 120.7, 99.3, 84.0, 76.9, 57.9, 57.6, 52.2, 37.2, 34.9, 29.8, 21.8, 21.6; ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R ~ (5 6 5 ~ M H z , ~ C D C l ~} \mathbf{N O}_{3}$) δ-62.03; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{KNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}$: 576.1217; found: 576.1244.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{aS}{ }^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-8-fluoro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,

2-c]pyrrole (2q)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 2q in 83% yield (60 mg); colorless solid, mp $195-198{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ 7.11 (m, 2H), 6.97 (td, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, J $=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.60(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$
(d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=6.4,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{dd}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.80-0.76$ (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 160.2(\mathrm{~d}, J=244.4 \mathrm{~Hz}$), $144.1(\mathrm{~d}, J=6.6$ $\mathrm{Hz}), 143.7,136.2,133.3(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 133.1,129.8,129.1,128.4,127.6,127.3$, $121.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 114 .(\mathrm{d}, J=21.5 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 99.1,83.9,76.7$, 57.8, 57.6, 52.1, 36.2, 33.8, 29.8, 21.6, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{FKNO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{K}]^{+}: 526.1249$; found: 526.1255.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-8-chloro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2r)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to 11:1) to give the product $\mathbf{2 r}$ in 81% yield (62 mg); colorless solid, mp $211-212{ }^{\circ} \mathrm{C}$; $\mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl3) $\delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.4,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{dd}, J=14.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.84-$ $0.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.8,143.7,136.3,136.1,133.0$, $130.3,129.8,129.0,128.4,128.4,127.6,127.3,126.6,121.7,99.2,83.8,76.7,57.8$, 57.5, 52.1, 36.5, 34.2, 29.8, 21.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{ClKNO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{K}]^{+}: 542.0954$; found: 542.0959.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{aS} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-8-bromo-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2s)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 2s in 86% yield (71 mg); colorless solid, $\mathrm{mp} 199-202{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}\right) \delta 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{dd}, J$ $=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 3 \mathrm{H}), 0.84-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 5 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 144.2,143.7,136.8,136.1,133.0,131.4,129.8,129.4,129.1,128.5,127.6$, 127.3, 122.1, 118.2, 99.2, 83.7, 57.9, 57.5, 52.2, 36.6, 34.3, 29.8, 21.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}$ [M+Na] ${ }^{+}$: 570.0709; found: 570.0717.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-8-methyl-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2t)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{2 t}$ in 77% yield (56 mg); colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.73$ (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (dd, $J=7.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.37$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{dd}, J=8.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{dd}, J=14.3,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.6,142.0,136.7$,
$134.4,134.2,133.2,129.7,129.2,128.9,128.2,127.6,127.4,127.0,120.2,99.1,84.3$, 76.7, 57.7, 57.6, 52.2, 36.3, 33.7, 29.9, 21.6, 21.3, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 484.1941$; found: 484.1940.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-9-fluoro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2u)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{2 u}$ in 66% yield (48 mg); colorless solid, mp $160-162{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}$, CDCl $_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{td}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{dd}, J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.48(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 163.1(\mathrm{~d}, J=246.0 \mathrm{~Hz})$, $143.7,140.3(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 137.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 136.4,133.1,129.8,129.1,128.4$, $127.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 127.7,127.6,127.2,111.0(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 108.1(\mathrm{~d}, J=23.1$ $\mathrm{Hz}), 98.8,83.8,57.8,57.6,52.2,37.0,34.5,29.9,21.8,21.6 ;{ }^{19}$ F NMR (565 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta-112.83(\mathrm{td}, J=9.0,5.7 \mathrm{~Hz}) ; \mathbf{H R M S}(\mathbf{E S I})$ calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 488.1690; found: 488.1684.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-9-chloro-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2v)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 2v in 61% yield (46 mg); colorless solid, mp 190-193 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl3) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.83 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.84$ (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.7,140.5,139.8,136.2,134.1,133.1$, $129.8,129.1,128.4,127.6,127.6,127.3,124.6,120.9,98.9,83.8,57.8,57.6,52.2$, 36.8, 34.5, 29.8, 21.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 504.1395$; found: 504.1418.
($1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}$)-9-bromo-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2w)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product $\mathbf{2 w}$ in 75% yield (62 mg); colorless solid, mp $195-198{ }^{\circ} \mathrm{C} ; \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$
(d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.84$ (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ 143.7, 141.0, 140.0, 136.2, 133.0, 129.8, 129.1, 128.4, 127.9, 127.6, 127.5, 127.3, 123.8, 122.3, 99.1, 83.8, 57.8, 57.6, 52.2, 36.8, 34.5, 29.8, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 570.0709$; found: 570.0734.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-9-methyl-12-phenyl-3-tosyl-3,4,11,11a-tetrah ydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1, 2-c]pyrrole (2x)

Column chromatography (petroleum ether/EtOAc $=15: 1$ to $9: 1$) to give the product 2x in 67% yield (48 mg); colorless solid, mp $128-130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{dd}, J=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.38(\mathrm{~m}, 2 \mathrm{H})$, $1.31(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.80-0.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 143.6, 139.1, 138.2, 137.2, 136.8, 133.2, 129.7, 129.2, 128.2, 127.6, 127.0, 126.4, 125.2, 121.2, 98.9, 84.1, 57.7, 57.6, 52.3, 36.7, 33.9, 29.9, 21.6, 21.5, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{KNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 522.1500$; found: 522.1518 .
$\left(3 \mathrm{aS} *, 4 \mathrm{a} R^{*}, 5 \mathrm{a} R^{*}, 12 S^{*}, 13 \mathrm{aS}{ }^{*}, 14 R^{*}\right.$)-14-phenyl-2-tosyl-2,3,4a,5-tetrahydro-1H,4H ,12H-3a,12-methanobenzo[7',8']isochromeno[3',4':1,5]cyclopropa[4,5]cyclopenta [1,2-c]pyrrole (2y)

Column chromatography (petroleum ether/EtOAc $=15: 1$ to $7: 1$) to give the product $\mathbf{2 y}$ in 65% yield (51 mg); colorless solid, $\mathrm{mp} 184-185{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl $\left._{3}\right) \delta 7.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.37$ $(\mathrm{m}, 2 \mathrm{H}), 0.84-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.7,137.8,136.5$, $134.9,133.1,131.0,130.3,129.8,128.8,128.1,128.7,128.3,127.6,126.9,126.6$, 124.7, 121.5, 119.4, 98.6, 79.3, 58.1, 57.7, 52.2, 37.4, 33.4, 29.9, 21.9, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 520.1941 ; found: 520.1959.
$\left(3 \mathrm{a} S^{*}, 5 S^{*}, 11 \mathrm{c} R^{*}, 12 \mathrm{a} R^{*}, 13 \mathrm{a} S^{*}, 14 R^{*}\right)$-14-phenyl-2-tosyl-2,3,12a, 13-tetrahydro-1H ,5H,12H-5,13a-methanobenzo[5',6']isochromeno[3',4':1,5]cyclopropa[4,5]cyclope nta[1,2-c]pyrrole (2z)

Column chromatography (petroleum ether/EtOAc $=15: 1$ to $9: 1$) to give the product $\mathbf{2 z}$ in 61% yield (48 mg); colorless solid, mp $188-191{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=7.7,5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.94(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, $1.84(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 143.7,142.2,136.5,134.3,132.9,132.4,129.8,129.3,129.1,128.9,128.3$, 127.7, 127.2, 125.5, 125.3, 125.2, 125.1, 123.8, 100.5, 85.4, 76.0, 57.9, 57.6, 52.9, 37.6, 32.8, 30.2, 26.9, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 520.1941; found: 520.1950.
N, N-dipropyl-4-($\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-3-tosyl-3,4,11,11a-tetrahydr o-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrrol-12-yl)benzenesulfonamide (2aa)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product 2aa in 60% yield (53 mg); colorless solid, mp $102-104{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-$ $3.00(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.52-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.73-0.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.8,141.5$, $141.3,139.0,137.3,133.0,129.8,129.7$, 128.8, 127.6, 126.9, 126.5, 124.8, 120.5, 99.1, 84.0, 57.4, 57.2, 52.1, 49.8, 36.7, 33.9, 29.8, 21.9, 21.5, 21.4, 11.1; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 655.2271; found: 655.2303.
(1aS* $\left., 4 S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-(2-(4,5-diphenyloxazol-2-yl)ethyl)-3-tosyl-3,4,11,11a-tetrahydro-1H,2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4': 2,3]cyclopenta[1,2-c]pyrrole (2ab)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $6: 1$) to give the product 2ab in 71% yield (68 mg); colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.68(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 8 \mathrm{H})$, $7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.77$ $(\mathrm{m}, 2 \mathrm{H}), 2.69(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{dd}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 3 \mathrm{H}), 0.92-$ $0.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.2,145.3,143.5,139.8,137.9$, 135.1, 133.3, 132.3, 129.7, 128.8, 128.6, 128.6, 128.5, 128.3, 128.1, 127.8, 127.5, $126.5,126.2,124.4,120.2,98.7,84.2,74.3,56.7,51.5,48.6,35.4,34.7,28.9,27.3$, 25.7, 22.4, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 641.2469; found: 641.2501 .
$\left(1 \mathrm{aS}{ }^{*}, 4 \mathrm{a} * S, 6 S^{*}, 7 \mathrm{bS}, 9 \mathrm{a} S, 12 \mathrm{a} S, 12 \mathrm{~b}, 15 \mathrm{~b} R^{*}, 16 \mathrm{a} R^{*}, 17 R^{*}\right)$-9a-methyl-17-phenyl-3-t osyl-3,4,7b,8,9,9a,11,12,12a,12b,13,14,16,16a-tetradecahydro-1H,2H-1a,6-methan ocyclopenta[5', $\left.6^{\prime \prime}\right]$ naphtho[2',1' $: 6^{\prime}, 7$ ']isochromeno[3',4':1,5]cyclopropa[4,5]cycl openta $[1,2-c]$ pyrrol-10(6H)-one (2ac)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product $\mathbf{2 a c}$ in 57% yield (56 mg) as an inseparable mixture of diastereomers in a ratio of 3:1, colorless solid, mp 206-209 ${ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.34 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 3 \mathrm{H})$, 5.36 (dd, $J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72-3.70 (m, 2H), 3.27 (t, J $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=19.1,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.26(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 220.8$, 143.6, 139.6, 136.9, 136.6, 136.1, 134.7, 133.3, 129.7, 129.2, 128.3, 128.2, 127.6, $127.0,124.0,123.5,121.0,99.1,84.4,76.7,57.6,57.6,52.3,50.4,47.9,44.3,38.3$, 36.4, 35.8, 33.6, 31.5, 30.1, 29.6, 26.3, 26.2, 21.6, 21.2, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 646.2986$; found: 646.3018 .
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-phenyl-3-tosyl-3,4,11,11a-tetrahydro-1H, $\mathbf{2 H}, \mathbf{6 H}-1 \mathrm{a}, 6$-methanocyclopropa[3,4]isochromeno[$\left.3^{\prime}, 4^{\prime}: 2,3\right]$ cyclopenta[1,2-c]pyrr ol-8-yl 4-(N, N-dipropylsulfamoyl)benzoate (2ad)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product 2ad in 73% yield (83 mg); colorless solid, mp $179-181^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl3 $\left._{3}\right) \delta 8.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$,
7.36 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.10(\mathrm{~m}, 4 \mathrm{H})$, $2.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}$, $4 \mathrm{H}), 1.49-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=14.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 7 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 163.9,147.6,144.9$, $143.8,143.6,136.2,135.8,133.1,132.8,130.7,129.8,129.2,128.5,127.7,127.3$, $127.2,121.4,121.3,119.9,99.3,76.8,57.9,57.7,52.2,49.9,36.6,34.2,29.9,21.9$, 21.6, 11.2; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 775.2482$; found: 775.2485.
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-phenyl-3-tosyl-3,4,11,11a-tetrahydro-1H, 2H,6H-1a,6-methanocyclopropa[3,4]isochromeno[3',4':2,3]cyclopenta[1,2-c]pyrr ol-8-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2ae)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product 2ae in 63% yield (78 mg); yellow solid, mp $117-119{ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.72$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=8.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.43(\mathrm{~m}, 1 \mathrm{H})$, $1.39(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{dd}, J=14.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.82-0.77(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,168.2,156.0,147.7,143.7,143.3,139.3,136.2$, 136.1, 135.3, 133.8, 133.1, 131.1, 130.8, 130.4, 129.7, 129.1, 129.1, 128.4, 127.6,
127.2, 121.2, 121.1, 119.8, 114.9, 111.9, 111.7, 101.1, 99.1, 83.8, 76.7, 57.8, 57.5, 55.6, 52.1, 36.4, 34.1, 30.4, 29.8, 21.5, 21.5, 13.4; HRMS (ESI) calcd for $\mathrm{C}_{48} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 848.2215$; found: 848.2219.

Column chromatography (petroleum ether/EtOAc $=50: 1$ to $20: 1$) to give an inseparable mixture of 2af and 3af in a ratio of 1:1.3 in overall yields of 88% yield; colorless oil;

Minor isomer (2af):
$\left(1 \mathrm{a} S^{*}, 4 \mathrm{a} S^{*}, 6 S^{*}, 10 \mathrm{~b} R^{*}, 11 \mathrm{a} R^{*}, 12 R^{*}\right)$-12-phenyl-11,11a-dihydro-1H,2H,4H,6H-1a, 6-methanocyclopropa[2,3]furo[3',4':1,5]cyclopenta[1,2-c]isochromene

${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}\right.$, CDCl $\left._{3}\right) \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}$, $4 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}$, $1 \mathrm{H}), 4.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dd}, J=6.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ (dd, $J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{dd}, J=14.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 142.5, 138.1, 137.0, 129.4, 128.3, 128.2, 126.9, 126.7, $124.4,120.2,102.1,86.0,80.6,77.0,71.7,56.2,36.3,34.7,29.9,21.3$.

Major isomer (3af):
(5aR* $\left.{ }^{*} \mathbf{S}^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-4,5,7,11b-tetrahydro-1H,3H,6H-7,1 1c-epoxynaphtho[$\left.2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa $[1,2-c]$ oxepine

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (s, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.18(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}$, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=11.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 136.8,136.7,135.6,132.7,132.2,128.6,128.4$, $127.8,127.1,126.7,124.8,122.2,81.0,75.9,69.7,66.3,33.6,30.7,26.3,25.6$.
4. General procedure for SIMesAuNTf 2 -catalyzed 6-endo-dig oxycyclization/[3 + 2] cycloaddition/ $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond insertion

To a solution of $\mathbf{1}\left(0.15 \mathrm{mmol}, 1\right.$ equiv) and $4 \AA \mathrm{MS}(150 \mathrm{mg})$ in anhydrous $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ (3 mL) was added $\operatorname{SIMesAuNTf}_{2}(5 \mathrm{~mol} \%)$ under an argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc) to give the product 3 .
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1H, 6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3a)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 3a in 81% yield (57 mg); colorless solid, $\mathrm{mp} 180-181{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=$
$14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.45$ $(\mathrm{s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCli3) $\delta 143.4,136.6,135.3,134.5,132.4,131.6,129.7,128.5$, $128.4,127.8,127.3,127.2,126.8,124.9,122.1,75.6,64.8,58.5,48.4,33.5,30.2,26.1$, 26.0, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 470.1784$; found: 470.1789 .
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}\right)$-2-tosyl-4-((E)-4-(trifluoromethyl)benzylidene)-2,3,4,5,7, 11b-hexahydro-1H,6H-7,11c-epoxynaphtho[$\left.2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepine (3b)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3b in 63% yield (51 mg); colorless solid, mp 182-184 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.97$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 4 \mathrm{H}), 1.88(\mathrm{dd}, J=11.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) δ 143.5, 140.2, 136.8, 136.5, 135.2, 132.2, 130.1, 129.7, $128.8,127.9,127.3,126.7,125.4,125.3,125.1,124.9,122.1,75.5,64.6,58.1,48.5$, 33.5, 30.3, 26.1, 25.9, 21.5; ${ }^{19}$ F NMR ($565 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta-62.54$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 538.1658$; found: 538.1662.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-4-fluorobenzylidene)-2-tosyl-2,3,4,5,7,11b-hexahy dro-1H,6H-7,11c-epoxynaphtho $\left[2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepine (3c)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3c in 82% yield (60 mg); colorless solid, mp $150-152{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ 7.16 (m, 4H), 7.09 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.96$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 1.88$ (dd, J $\left.=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 5 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.8$ $(\mathrm{d}, J=247.0 \mathrm{~Hz}), 143.4,136.6,135.3,134.6,132.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 132.3,130.5$, 130.2 (d, $J=7.9 \mathrm{~Hz}$), 129.7, 127.8, 127.3, 126.7, 125.0, 122.1, 115.4 (d, $J=21.5 \mathrm{~Hz}$), 75.6, 64.7, 58.3, 48.4, 33.5, 30.2, 26.1, 25.9, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 488.1690$; found: 488.1676.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)-4-b r o m o b e n z y l i d e n e)-2-t o s y l-2,3,4,5,7,11 \mathrm{~b}-\mathrm{hexah}$ ydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3d)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 3d in 68% yield (56 mg); colorless solid, mp 142-145 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}$, CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=14.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.87$ (dd, $J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.4,136.5,135.5,135.4,135.2,132.2,131.5$, $130.3,130.1,129.7,127.8,127.2,126.7,125.0,122.1,121.1,75.5,64.7,58.3,48.4$, 33.5, 30.2, 26.0, 25.9, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 570.0709; found: 570.0729.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{bS} S^{*}, 11 \mathrm{c} S^{*}, E\right)-4-([1,1$ '-biphenyl]-4-ylmethylene)-2-tosyl-2,3,4,5,7,11b -hexahydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3e)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3e in 66% yield (54 mg); colorless solid, $\mathrm{mp} 217-218{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, 1H), 2.46 (s, 1H), 2.46 ($\mathrm{s}, 3 \mathrm{H}$), 1.92 (dd, $J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, ${ }^{1 H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.4,140.4,139.9,136.6,135.6,135.3,134.6$, $132.4,131.3,129.7,129.0,128.8,127.8,127.4,127.3,127.1,126.9,126.8,124.9$, 122.1, 75.6, 64.8, 58.6, 48.4, 33.6, 30.4, 26.2, 26.1, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 546.2097; found: 546.2095.
(5aR** $\left.7 S^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-4-methoxybenzylidene)-2-tosyl-2,3,4,5,7,11b-hexa hydro-1H,6H-7,11c-epoxynaphtho[$\left.2^{\prime}, 11^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepine (3f)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $7: 1$) to give the product $\mathbf{3 f}$ in 48% yield (36 mg); pale-yellow solid, mp $162-164{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.14(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.67 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (d, J $=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.7,143.3,136.6,135.4,132.8$, $132.5,131.3,129.8,129.7,129.1,127.8,127.3,126.8,124.9,122.1,113.8,75.6,64.9$, 58.7, 55.2, 48.3, 33.6, 30.2, 26.2, 25.9, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 500.1890$; found: 500.1891.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)-4-m e t h y l b e n z y l i d e n e)-2-t o s y l-2,3,4,5,7,11 \mathrm{~b}-h e x a h$ ydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3g)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{3 g}$ in 78% yield (57 mg); colorless solid, $\mathrm{mp} 185-187{ }^{\circ} \mathrm{C}$; $\mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=$
$14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.3,136.9,136.6,135.3,133.7,132.5,131.7,129.7$, $129.1,128.5,127.8,127.3,126.8,124.9,122.1,75.6,64.8,58.6,48.4,33.5,30.2,26.2$, 26.1, 21.5, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 484.1941; found: 484.1960.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}, E\right)$-4-(naphthalen-2-ylmethylene)-2-tosyl-2,3,4,5,7,11b-he xahydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3h)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3h in 81% yield (63 mg); colorless solid, mp $153-155{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $\left._{3}\right) \delta 7.81-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}$, 3 H), 1.90 (dd, $J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 143.4,136.6,135.3,134.9,134.1,133.2,132.3,131.5,129.7,127.9,127.9$, $127.8,127.6,127.5,127.3,126.7,126.6,126.2,126.0,124.9,122.1,75.5,64.8,58.4$, 48.5, 33.5, 30.3, 26.3, 26.2, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 542.1760; found: 542.1770.
$\left(5 a R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}, E\right)$-4-(naphthalen-1-ylmethylene)-2-tosyl-2,3,4,5,7,11b-he xahydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3i)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{3 i}$ in 68% yield (53 mg); colorless solid, mp 200-201 ${ }^{\circ} \mathrm{C}$; $\mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.92(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.4,136.7,136.5$, 135.2, 133.8, 133.5, 132.4, 131.9, 129.9, 129.8, 128.4, 127.8, 127.7, 127.3, 126.7, $126.2,126.1,125.9,125.2,124.8,121.9,75.5,64.8,57.7,48.6,33.4,30.5,25.9,21.5$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 519.1868$; found: 519.1862.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}, E\right)$-4-heptylidene-2-tosyl-2,3,4,5,7,11b-hexahydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3k)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to 11:1) to give the product 3k in 58% yield (42 mg); colorless solid, mp 127-129 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (td, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=$
$14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 8 \mathrm{H}), 1.17(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 143.2, 136.6, 135.3, 132.6, 132.3, 131.3, 129.5, 127.6, 127.4, $126.6,124.8,122.1,75.4,65.0,58.3,48.3,33.1,31.7,29.5,29.4,29.0,28.1,27.1$, 25.9, 22.6, 21.5, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 478.2410$; found: 478.2430 .
($\left.5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{bS} S^{*}, 11 \mathrm{c} S^{*}, E\right)$-4-(3-phenylpropylidene)-2-tosyl-2,3,4,5,7,11b-hexahyd ro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3I)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 31 in 70% yield (53 mg); colorless solid, mp $135-138{ }^{\circ} \mathrm{C}$; $\mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.2,141.3,136.5,135.2,132.5$, 132.4, 130.8, 129.5, 128.4, 128.4, 127.7, 127.3, 126.6, 126.0, 124.9, 122.0, 75.4, 64.9, 58.0, 48.3, 35.7, 33.0, 30.1, 29.5, 27.3, 25.8, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 498.2097$; found: 498.2077 .
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}, E\right)-4-((E)-3-p h e n y l a l l y l i d e n e)-2-t o s y l-2,3,4,5,7,11 \mathrm{~b}-h e x a h$ ydro-1H,6H-7,11c-epoxynaphtho[$\left.2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c $]$ azepine (3 m)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $6: 1$) to give the product $\mathbf{3 m}$ in 91% yield (68 mg); colorless solid, mp 205-207 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.75$ (d, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}$, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ $(\mathrm{d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 4 \mathrm{H}), 1.97(\mathrm{dd}, J=10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.4,137.0,136.3,135.2,134.3,133.9$, $132.4,130.4,129.6,128.7,127.9,127.7,127.3,126.7,126.4,124.9,123.6,122.1$, 75.5, 64.8, 58.2, 48.3, 32.8, 29.9, 27.4, 26.2, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 496.1941$; found: 496.1939 .
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}, E\right)$-4-(3-phenylprop-2-yn-1-ylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3n)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 3n in 80% yield (59 mg); colorless solid, $\mathrm{mp} 171-174{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl3 $\left._{3}\right) \delta 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 7.16(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, J=11.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 146.2, 143.6, 135.9, 135.2, 132.4, 131.3, 129.7, 128.3, 127.8, $127.3,126.8,124.9,122.9,122.1,109.9,93.9,85.9,75.6,64.4,56.6,48.4,32.8,32.1$, 28.0, 25.8, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 494.1784; found: 494.1796.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)$-benzylidene)-8-fluoro-2-tosyl-2,3,4,5,7,11b-hexah ydro-1H,6H-7,11c-epoxynaphtho $\left[2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepine (3o)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to 11:1) to give the product 30 in 65% yield (48 mg); colorless solid, mp $168-169{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{dd}, J=11.7,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 156.1(\mathrm{~d}, J=245.8$ $\mathrm{Hz}), 143.5,136.5,135.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 134.2,131.7,129.7,128.7(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, 128.5, 128.4, 127.3, 127.2, 122.4 (d, $J=3.0 \mathrm{~Hz}$), $121.9(\mathrm{~d}, J=18.3 \mathrm{~Hz}), 111.8(\mathrm{~d}, J=$ $21.0 \mathrm{~Hz}), 68.6,65.0,58.4,48.2,32.9,30.0,26.4,25.8,21.5 ;{ }^{19}$ F NMR (565 MHz , $\mathbf{C D C l}_{3}$) δ-126.59 - -126.67 (m); HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 488.1690; found: 488.1701 .
($\left.5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-2-tosyl-9-(trifluoromethyl)-2,3,4,5,7, 11b-hexahydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3p)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3p in 92% yield (74 mg); colorless solid, mp $188-190{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 6 \mathrm{H})$, $7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}$,
$J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, J=11.8,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.14(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.5,136.7,136.5(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}), 135.5,134.1,131.9,129.8,128.5,128.4,127.3,127.2,127.2,127.1$, $127.0,125.3,124.75(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 119.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 75.1,65.4,58.5,48.1,33.1$, 29.9, 26.8, 26.0, 21.5; ${ }^{19}$ F NMR (565 MHz, CDCl 3) δ-61.84; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 538.1658$; found: 538.1661.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)$-benzylidene)-9-fluoro-2-tosyl-2,3,4,5,7,11b-hexah ydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3q)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3q in 93% yield (68 mg); colorless solid, mp $198-199{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97$ (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=14.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 4 \mathrm{H}), 1.87(\mathrm{dd}, J=$ $11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 5 0 ~ M H z , ~ C D C l} 3$) $\delta 160.8(\mathrm{~d}$, $J=243.7 \mathrm{~Hz}), 143.4,136.7(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 136.6,136.5,134.3,131.6,129.7,128.5$, $128.4,128.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 127.3,127.2,114.3(\mathrm{~d}, J=21.6$ Hz), 109.6 (d, $J=22.4 \mathrm{~Hz}$), 99.9, 75.0, 64.7, 58.5, 48.3, 33.2, 29.9, 25.9, 25.5, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 488.1690$; found: 488.1693.
(5aR** $\left.\mathbf{R}^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-9-chloro-2-tosyl-2,3,4,5,7,11b-hexah ydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3r)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $\mathbf{3 r}$ in 77% yield (59 mg); colorless solid, mp 198-200 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl3) $\delta 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45$ (s, 4H), 1.88 (dd, $J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl $\mathbf{C D}_{3}$) 143.5, 136.6, 136.5, 134.2, 131.7, 130.9, 130.7, 129.7, $128.5,128.4,128.0,127.7,127.3,127.2,122.5,75.0,64.9,58.5,48.2,33.3,29.9,26.3$, 25.5, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{ClNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 526.1214 ; found: 526.1238 .
(5aR*, $\left.\mathbf{S S}^{*}, 12 \mathrm{aS}{ }^{*}\right)$-4-((E)-benzylidene)-9-bromo-2-tosyl-2,3,4,5,5a,6,7,12-octahydr o-1H-7,12a-epoxybenzo[5,6]cyclohepta[1,2-c $]$ azepine (3s)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product 3s in 74% yield (62 mg); colorless solid, mp 193-194 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, 4.90 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.5,136.9,136.5,134.2,131.7$, $131.5,130.6,129.7,128.5,128.4,128.4,127.3,127.2,125.3,118.6,74.9,64.9,58.4$, 48.2, 33.2, 29.9, 26.2, 25.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$:
570.0709; found: 570.0725.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)$-benzylidene $)-9-m e t h y l-2-t o s y l-2,3,4,5,7,11 \mathrm{~b}-h e x a$ hydro-1H,6H-7,11c-epoxynaphtho[$\left.2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepine (3t)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product $3 t$ in 56% yield (41 mg); colorless solid, mp $190-192{ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.76$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, 2.39 (s, 1H), 2.33 (s, 3H), 1.87 (dd, $J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0}^{\mathbf{M H z}, ~ \mathbf{C D C l}_{3} \text {) } \delta 143.3,136.6,136.6,135.3,134.6,134.5,131.6,129.7, ~}$ $129.3,128.5,128.4,127.3,127.1,126.6,122.9,75.6,64.8,58.4,48.5), 33.7,30.3$, 26.1, 25.7, 21.5, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 484.1941$; found: 484.1941.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-10-fluoro-2-tosyl-2,3,4,5,7,11b-hexa hydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3u)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $9: 1$) to give the product 3u in 71% yield (53 mg); colorless solid, mp 192-194 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (dd, $J=7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H})$, $4.95(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}$,
$J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$, $1 \mathrm{H}), 1.89(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 5 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 162.5(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 143.5(\mathrm{~s}), 136.7,136.5,134.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 134.2$, 131.8, $131.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 129.7,128.5,128.4,127.3,127.2,123.6(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, $113.8(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 111.5(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 74.9,64.8,58.4,48.2,33.7,30.1,26.5$, 26.1, 21.5; ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{5 6 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-114.34(\mathrm{td}, J=9.1,5.5 \mathrm{~Hz}) ;$ HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 488.1690$; found: 488.1700 .
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)$-benzylidene $)-10-c h l o r o-2-t o s y l-2,3,4,5,7,11 \mathrm{~b}-$ hexa hydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3v)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $7: 1$) to give the product 3v in 77% yield (58 mg); colorless solid, $\mathrm{mp} 218-219{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.12(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.5,136.8,136.5,134.4$, 134.2, 133.7, 133.3, 131.9, 129.8, 128.5, 128.5, 127.3, 126.8, 124.9, 123.4, 74.9, 65.0, 58.4, 48.1, 33.5, 30.1, 26.5, 25.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNO}_{3} \mathrm{~S}$ [M+H]+: 504.1395; found: 504.1405.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-10-bromo-2-tosyl-2,3,4,5,7,11b-hexa hydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3w)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $11: 1$) to give the product $\mathbf{3 w}$ in 73% yield (60 mg); colorless solid, mp $219-221^{\circ} \mathrm{C}$; $\mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}$, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.5,136.8,136.5,134.8,134.1$, 132.0, 129.7, 129.6, 128.5, 128.4, 127.9, 127.3, 123.7, 121.3, 74.9, 65.1, 58.4, 48.0, 33.3, 30.0, 26.5, 25.4, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 570.0709; found: 570.0741.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-10-methyl-2-tosyl-2,3,4,5,7,11b-hexa hydro-1H,6H-7,11c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]azepine (3x)

Column chromatography (petroleum ether/EtOAc $=15: 1$ to $9: 1$) to give the product 3x in 69% yield (50 mg); colorless solid, mp 197-199 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.38$ ($\mathrm{s}, 1 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=11.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 143.3,137.5,136.7,136.6,134.5,132.6,132.4,131.7$, 129.7, 128.5, 128.4, 127.4, 127.3, 127.1, 125.5, 121.9, 77.2, 77.0, 76.8, 75.3, 64.7,
58.5, 48.4, 33.9, 30.3, 26.2, 25.8, 21.5, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 484.1941; found: 484.1961.
$\left(5 \mathrm{aS}{ }^{*}, 5 \mathrm{~b} S^{*}, 12 S^{*}, 13 \mathrm{a} R^{*}\right)$-2-((E)-benzylidene)-4-tosyl-2,3,4,5,5b,12-hexahydro-1H, 13H-5a,12-epoxyphenanthro[2',1':2,3]cyclopropa[1,2-c]azepine (3y)

Column chromatography (petroleum ether/EtOAc $=15: 1$ to $7: 1$) to give the product 3y in 18% yield (14 mg); colorless solid, mp $156-159{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (600 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=11.3,8.3 \mathrm{~Hz}$, $3 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.31-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}), 2.00(\mathrm{dd}, J=11.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 144.9,143.4,136.6,134.6,131.7,130.1,130.0,129.7,128.7,128.6,128.4$, $127.5,127.3,127.2,126.2,125.7,124.5,121.3,81.9,70.8,64.8,58.5,48.3,33.0,30.1$, 26.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 520.1941$; found: 520.1960.
$\left(5 a R^{*}, 7 S^{*}, 13 \mathrm{c} S^{*}, 13 \mathrm{~d} S^{*}\right)-4-((E)$-benzylidene)-2-tosyl-2,3,4,5,7,13c-hexahydro-1H, 6H-7,13d-epoxyphenanthro[3',4':2,3]cyclopropa[1,2-c]azepine (3z)

Column chromatography (petroleum ether/EtOAc $=15: 1$ to $9: 1$) to give the product $\mathbf{3 z}$ in 30% yield (24 mg); colorless solid, mp $169-170{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 6 \mathrm{H})$,
$7.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.92$ (dd, $J=11.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $143.4,136.6,136.5,134.5,133.3,131.9,131.8,130.9,129.7,128.7,128.6,128.5$, $128.3,127.3,127.2,126.1,125.4,124.9,122.5,121.3,75.8,65.1,58.7,48.4,33.4$, 30.1, 26.0, 22.4, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{KNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 558.1500$; found: 558.1508 .
N, N-dipropyl-4-($(E)-\left(\left(5 a R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)\right.$-2-tosyl-2,3,7,11b-tetrahydro-1H,6 H-7,11c-epoxynaphtho[$2^{\prime}, 1$ ':2,3]cyclopropa[1,2-c]azepin-4(5H)-ylidene)methyl)b enzenesulfonamide (3aa)

Column chromatography (petroleum ether/EtOAc $=6: 1$ to $4: 1$) to give the product 3aa in 77% yield (68 mg); colorless solid, $\mathrm{mp} 166-168{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}$, CDCl $_{3}$) $\delta 7.74-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16$ (m, 2H), 7.09 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=8.7,6.3 \mathrm{~Hz}, 4 \mathrm{H}$), 2.86 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 4 \mathrm{H})$, $1.14(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $143.5,140.6,138.7,137.2,136.4,135.2,132.1,129.9,129.7$, 128.9, 127.8, 127.2, 127.1, 126.7, 125.1, 75.5, 64.6, 58.1, 49.9, 48.4, 33.5, 30.3, 26.0, 25.9, 21.9, 21.5, 11.1; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 655.2271$; found:655.2288.
(5aR* $\left.{ }^{*}, 7 S^{*}, 11 \mathrm{bS}{ }^{*}, 11 \mathrm{c} S^{*}, E\right)$-4-(3-(4,5-diphenyloxazol-2-yl)propylidene)-2-tosyl-2,3, 4,5,7,11b-hexahydro-1H,6H-7,11c-epoxynaphtho[$\left.2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepi ne (3ab)

Column chromatography (petroleum ether/EtOAc $=20: 1$ to $6: 1$) to give the product 3ab in 64% yield (62 mg); colorless solid, mp 131-133 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $\left._{3}\right) \delta 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.39-7.29 (m, 8H), 7.24-7.21 (m, 2H), 7.17-7.13 (m, 1H), 7.07 (d, J = 7.3 Hz, 1H), $5.65(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (s, 3H), $2.38(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 162.3,145.3,143.3,136.3,135.2,135.1,133.6,132.4$, 129.6, 129.3, 128.9, 128.6, 128.5, 128.4, 128.0, 127.8, 127.7, 127.3, 126.7, 126.4, 124.9, 122.0, 75.4, 64.8, 57.9, 48.3, 33.1, 29.5, 27.9, 27.2, 25.8, 25.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 641.2469; found: 641.2498.
(5aR*, $\left.7 S^{*}, 8 \mathrm{bS}, 10 \mathrm{aS}, 13 \mathrm{aS}, 13 \mathrm{bR}, 16 \mathrm{~b} S^{*}, 16 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-10a-methyl-2-t osyl-2,3,4,5,7,8b,9,10,10a,12,13,13a,13b,14,15,16b-hexadecahydro-1H-7,16c-epox ycyclopenta[3',4']tetrapheno[9',8':2,3]cyclopropa[1,2-c]azepin-11(6H)-one (3ac)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product 3ac in 50% yield (48 mg) as an inseparable mixture of diastereomers in a ratio of $1: 1$; colorless solid, mp 209-211 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 2H), 7.32-7.29 (m, 4H), 7.24-7.20(m, 3H), $7.05(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=19.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=13.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.92$ $(\mathrm{m}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.29(\mathrm{~m}, 7 \mathrm{H}), 2.16-1.88(\mathrm{~m}, 5 \mathrm{H}), 1.64-$ $1.43(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{dd}, J=22.3,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 220.8,220.8,143.3,136.8,136.7,136.6,136.5,136.4,136.1,134.5,134.4$, 133.1, 133.0, 131.9, 131.9, 129.9, 129.8, 129.7, 128.5, 128.4, 127.3, 127.3, 127.1, $119.3,119.1,75.7,75.6,64.9,64.8,58.6,58.5,50.5,50.4,48.3,48.2,47.9,44.4,44.3$, $38.3,38.1,35.8,34.2,34.1,31.6,31.5,30.4,30.4,29.5,29.4,26.5,26.4,26.4,26.3$, 26.0, 25.8, 24.9, 24.8, 21.6, 21.5, 13.8, 13.7; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NNaO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 668.2805$; found: 668.2834.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1H, 6H-7,11c-epoxynaphtho $\left[2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepin-9-yl

4-(N, N-dipropylsulfamoyl)benzoate (3ad)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product 3ad in 66% yield (75 mg); colorless solid, mp $135-137{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J$ $=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.0$
$\mathrm{Hz}, 1 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 4 \mathrm{H}), 2.90(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ ($\mathrm{s}, 1 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 164.1, 148.1, $144.9,143.5,136.6,136.6,136.4,134.3,132.9,131.9,130.8,130.7,129.8,128.6$, $128.5,127.8,127.3,127.3,127.2,120.6,115.7,75.2,65.0,58.6,49.9,48.3,33.3,30.1$, 26.3, 25.5, 21.9, 21.6, 11.2; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 775.2482 ; found: 775.2485 .
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)$-4-((E)-benzylidene)-2-tosyl-2,3,4,5,7,11b-hexahydro-1H, 6H-7,11c-epoxynaphtho $\left[2^{\prime}, 1^{\prime}: 2,3\right]$ cyclopropa[1,2-c]azepin-9-yl

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (3ae)

Column chromatography (petroleum ether/EtOAc $=9: 1$ to $4: 1$) to give the product 3ae in 47% yield (57 mg); yellow solid, mp $175-177{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-$ 7.29 (m, 4H), 7.23 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 1.86(\mathrm{dd}, J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 169.4,168.3,156.1,148.1,143.4,139.3,136.5$, $136.5,136.1,136.1,134.2,133.8,131.8,131.2,130.8,130.5,130.2,129.7,129.1$, $128.5,128.4,127.5,127.3,127.2,120.5,115.6,114.9,112.0,111.8,101.2,75.1,64.9$,
58.5, 55.7, 48.2, 33.3, 30.5, 30.1, 26.2, 25.4, 21.5, 13.4; HRMS (ESI) calcd for $\mathrm{C}_{48} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 847.2215$; found: 847.2219.
$\left(5 \mathrm{a} R^{*}, 7 S^{*}, 11 \mathrm{~b} S^{*}, 11 \mathrm{c} S^{*}\right)-4-((E)$-benzylidene $)-4,5,7,11 \mathrm{~b}-t$ tetrahydro-1H,3H,6H-7,1

1c-epoxynaphtho[2',1':2,3]cyclopropa[1,2-c]oxepine (3af)

Column chromatography (petroleum ether/EtOAc $=25: 1$ to 20:1) to give the product 3af in 72% yield (34 mg); colorless oil; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.34-7.31$ (m, $3 \mathrm{H}), 7.29$ (dd, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=11.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 136.8,136.7$, 135.6, 132.7, 132.2, 128.6, 128.4, 127.8, 127.1, 126.7, 124.8, 122.2, 81.0, 75.9, 69.7, 66.3, 33.6, 30.7, 26.3, 25.6; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 317.1536$; found: 317.1539.
5. Gram-scale synthesis of $2 a$ and $3 a$ and selective transformations

5.1. Gram-scale synthesis of 2a

To a solution of $\mathbf{1 a}(1.08 \mathrm{~g}, 2.3 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(2.3 \mathrm{~g})$ in anhydrous toluene (46 mL) was added BrettPhosAuNTf 2 ($5 \mathrm{~mol} \%$) under an argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: $\mathrm{EtOAc}=20: 1$ to 11:1) to give the product $\mathbf{2 a}(950 \mathrm{mg}, 88 \%)$.

5.2. Gram-scale synthesis of 3a

To a solution of $\mathbf{1 a}(1.08 \mathrm{~g}, 2.3 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(2.3 \mathrm{~g})$ in anhydrous $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(46$ mL) was added SIMesAuNTf $_{2}(5 \mathrm{~mol} \%)$ under an argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was cooled down to room temperature and filtered through Celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: $\mathrm{EtOAc}=20: 1$ to 9:1) to give the product $\mathbf{3 a}(756 \mathrm{mg}, 70 \%)$.

5.3. Synthetic applications of 2a

In a 25 mL Schlenk flask, $\mathbf{2 a}$ ($46.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(2 \mathrm{~mL})$ under argon atmosphere. The solution was cooled to -30 ${ }^{\circ} \mathrm{C}$ and then $\mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.15 \mathrm{~mL}, 1.5$ equiv) was added dropwise to the mixture. After stirring at $-30{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was warmed to room temperature and stirred for another 1 h . The reaction was quenched with saturated NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=9: 1$ to $4: 1$) to afford $\mathbf{4}$ in 54% yield $(25.2 \mathrm{mg})$ as
a colorless solid, mp $167-169{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2 H), 7.36-7.30 (m, 5H), 7.24 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21-7.15 (m, 3H), 7.03 (d, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57$ ($\mathrm{s}, 1 \mathrm{H}$), 3.79 (dd, $J=11.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=14.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J=14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 2 \mathrm{H})$, 1.66-1.62 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 143.6,143.2,142.2,137.8,137.4$, 134.2, 132.7, 131.5, 129.5, 129.2, 128.4, 127.7, 127.6, 127.3, 127.3, 126.9, 83.3, 74.4, 54.9, 51.8, 40.3, 37.1, 28.1, 25.9, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 470.1784; found: 470.1786 .

In a 10 mL round-bottomed flask, $\mathbf{2 a}(46.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and TBATB ($144.7 \mathrm{mg}, 3$ equiv) were dissolved in MeOH or $\mathrm{EtOH}(4 \mathrm{~mL}$) and stirred at room temperature for 12 h . After the reaction was complete (monitored by TLC), the crude reaction mixture was quenched with saturated NaHCO_{3}, extracted with EtOAc, washed with water, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc $=11: 1$ to $6: 1)$ to give $5(55.2 \mathrm{mg})$ and $\mathbf{6}(39.8 \mathrm{mg})$ in 95% and 67% yields, respectively.

Product 5: colorless solid, $\mathrm{mp} 229-230{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.79(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{t}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.9$,
139.1, 134.9, 132.9, 132.9, 129.9, 129.8, 129.6, 128.4, 127.8, 127.7, 127.7, 127.2, $126.9,94.6,83.0,75.9,65.3,60.0,58.4,53.5,53.0,46.0,42.3,39.9,21.6$; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 580.1152$; found: 580.1152.

Product 6: colorless solid, mp 206-207 ${ }^{\circ} \mathrm{C}$; $\mathbf{1}^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.78(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94-2.86(m, 1H), 2.77-2.74 (m, 1H), 2.46(s, 3H), 2.19(t, J=13.0 Hz, 1H), $1.73(\mathrm{t}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 143.9,138.7,135.0,133.7,132.9,129.9,129.8,129.5,128.4,127.7,127.7$, $127.0,126.9,94.7,83.1,75.8,65.3,60.9,60.1,58.3,53.1,46.3,42.3,39.9,21.6,15.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 594.1308$; found: 594.1309.

5.4. Synthetic application of 3a

In a 10 mL round-bottom flask, $\mathrm{Pd} / \mathrm{C}(4.7 \mathrm{mg}, 10 \mathrm{wt} \%)$ was added to a solution of $\mathbf{3 a}$ $(46.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{EtOAc}(2.0 \mathrm{~mL})$ under argon atmosphere. Then the reaction system was filled with H_{2} and stirred at room temperature. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtered through a pad of Celite. After the solvent was concentrated under reduced pressure, the crude product was purified by silica gel column chromatography (eluent: petroleum ether $/ \mathrm{EtOAc}=20: 1$ to $11: 1$) to afford the desired product $7(22.3 \mathrm{mg})$ and its isomer $7^{\prime}(12.7 \mathrm{mg})$ in 47% and 27% yield, respectively.

Product 7: colorless solid, mp 149-150 ${ }^{\circ} \mathrm{C}$, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.54(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=7.4,5.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 2 \mathrm{H})$, $2.55(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}$, $\left.J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 5 0 ~ M H z , ~ C D C l} 3\right) ~ \delta 209.9,143.8$, 138.6, 134.9, 134.7, 129.9, 129.3, 128.9, 128.5, 128.4, 126.9, 126.5, 125.8, 125.8, 58.7, 54.4, 50.7, 40.4, 39.1, 38.3, 27.0, 25.9, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 474.2097$; found: 474.2100 .

Product 7': colorless solid, mp $153-155{ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.52(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.09$ (m, 4H), 7.02-7.00 (m, 1H), $4.08(\mathrm{dd}, J=16.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.57 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}$, $2 H), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 6 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H})$, 1.40-1.34 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 209.7,143.8,138.6,135.3,134.7$, $134.0,129.9,129.6,128.9,128.6,128.5,127.0,126.4,126.2,125.8,58.2,53.6,50.8$,
42.6, 40.5, 38.3, 35.2, 32.4, 25.7, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 496.1917$; found: 496.1917.
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

Figure S1 ${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 a}$

Figure S2 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 1a

Figure S3 ${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 b}$

Figure S4 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 b}$

$\stackrel{\circ}{i}$
$\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$

Figure S5 ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1b

Figure S6 ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 c

Figure $\mathbf{S 7}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1c

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{1}$

©
i
$\stackrel{\text { m }}{\stackrel{\pi}{i}}$

Figure S8 $^{1}{ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of $\mathbf{1 d}$

Figure $\mathrm{S}^{13}{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1d

Figure $\mathrm{SN}_{10}{ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 e

Figure $\mathrm{S}_{12}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 f

Figure $\mathrm{S13}^{13}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of if

Figure S14 ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 g
(

Figure $\mathbf{S 1 5}^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{1 g}$

Figure S16 ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 h

Figure $\mathrm{S}_{17}{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$
$\begin{array}{r}\circ \\ \stackrel{\circ}{\circ} \\ \hline\end{array}$

し
$\stackrel{\sim}{i}$
$\stackrel{m}{\stackrel{m}{1}}$

Figure S18 $^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 i}$

Figure $\mathbf{S 1 9}^{13}{ }^{13}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 i

Figure S20 ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 j}$
~~N

Figure $\mathbf{S 2 1}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 j}$

Figure $\mathrm{S} 22{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 k}$

Figure $\mathbf{S 2 3}^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 k}$

Figure S24 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{1 1}$

Figure $\mathbf{S 2 5}^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 11

Figure S26 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$ of $\mathbf{1 m}$

Figure $\mathbf{S 2 7}^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 m}$

Figure S28 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 n}$
(

Figure S29 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0}^{\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { of } \mathbf{1 n}, ~}$

Figure S30 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 10

Figure $\mathrm{SH1}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 10

Figure $\mathrm{S}_{32}{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 o

Figure $\mathbf{S 3 3}^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 p}$

Figure $\mathrm{S}_{34}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 p}$

Figure $\mathbf{S 3 5}^{19} \mathbf{F}$ NMR ($\mathbf{5 6 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{1 p}$

Figure $\mathbf{S 3 6}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 q}$

Figure $\mathbf{S 3 7 ~}^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 q}$

Figure $\mathrm{SHS}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 r}$

Figure $\mathrm{S}_{\mathbf{4}}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 s

Figure $\mathrm{S}_{\mathbf{2}}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 t}$

Figure $\mathbf{S 4 3}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 1 t

Figure $\mathrm{S} 44^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 u

Figure $\mathbf{S 4 5}^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ of $\mathbf{1 u}$

Figure $\mathrm{S}_{\mathbf{4}}{ }^{19} \mathrm{~F}$ NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 u}$

Figure $\mathbf{S 4 7}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 v

```
@/~
```


Figure $\mathrm{S}_{48}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 v}$

Figure $\mathbf{S 4 9}^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 w}$

Figure $\mathrm{S50}^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 w

Figure $\mathrm{S51}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 x

Figure $\mathrm{S}_{52}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 x}$

Figure $\mathrm{S53}^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 y

Figure S54 ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{1 y}$

$\stackrel{\square}{\square}$	$\stackrel{\text { a }}{\substack{\text { m }}}$		$\frac{\bar{n}}{\square}$		-	-

Figure $\mathrm{S55}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 z}$

Figure $\mathbf{S 5 6}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 z}$

Figure $\mathrm{S}_{5}{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 aa

Figure $\mathrm{S58}^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1aa

Figure S59 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1ab

Figure $\mathrm{S}_{60}{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 ab

Figure S61 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1ac

Figure $\mathbf{S 6 2}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1ac

[^0]Figure $\mathrm{S}^{2}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 ad

Figure S64 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 a d}$

Figure S65 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1ae

Figure S66 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1ae

Figure $\mathrm{S}_{67}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1af

Figure $\mathrm{S}_{68}{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 af

Figure S69 ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2a

Figure $\mathrm{S70}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2a

Figure $\mathbf{S 7 1}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$

Figure $\mathrm{S}_{72}{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$

Figure $\mathbf{S 7 3}^{19}{ }^{19}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2b

Figure $574{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 c

Figure $\mathrm{S}_{\mathbf{7} 5}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2c

$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & f_{1}(\mathrm{ppm})\end{array} 90$
Figure $\mathrm{S}_{\mathbf{7}}{ }^{19}$ F NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 c
(90

Figure $\mathbf{S 7 7}^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 d}$

Figure $\mathrm{S}_{78}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 d}$

Figure S79 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 e

Figure $\mathrm{SBO}^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 e

Figure $\mathbf{S 8 1}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 f

Figure $\mathrm{SB2}^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 f

Figure $\mathrm{S83}^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 g

Figure $\mathrm{S}_{84}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$

200
180
$60 \quad 150$
$140 \quad 130$
${ }^{110} \mathrm{ff}_{1}(\mathrm{Pppm}){ }^{100}{ }^{90}$

Figure $\mathbf{S 8 5}^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$

Figure $\mathrm{S}_{66}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 h

Figure $\mathbf{S 8 7}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$

Figure $\mathrm{S88}^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$

Figure S89 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 k}$

-

Figure S90 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 k}$

Figure S91 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 21

Figure $\mathrm{S}_{22}{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 21

Figure $\mathbf{S 9 3}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 m}$

Figure S94 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{2 m}$

Figure $\mathbf{S 9 5}^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 n

Figure S96 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 n

Figure $597{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 o

Figure $\mathrm{S} 98^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 o

Figure $\mathbf{S 9 9}^{19}$ F NMR ($\mathbf{5 6 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{2 0}$

```
%~N~O
```


Figure S100 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 p}$

Figure S101 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 p

Figure S102 ${ }^{19}$ F NMR ($\left.565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 p}$

Figure S103 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 q}$

Figure S104 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{2 q}$

Figure $\mathbf{S 1 0 5}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 r}$

Figure $\mathrm{S}_{106}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 r シ

Figure $\mathrm{S}_{107}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 s

Figure S108 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2s

Figure S109 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 t}$

Figure S110 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 t

Figure S111 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 u}$

Figure $\mathbf{S 1 1 2}{ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 u}$

Figure S113 ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 u}$

Figure S114 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 v}$

Figure S115 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 v

Figure S116 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 w}$

Figure $\mathrm{S}_{117}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 w

Figure S118 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 x}$

Figure S119 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 x}$

Figure $\mathrm{S}_{120}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2 y

Figure $\operatorname{S121}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 y

Figure S122 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 z}$

Figure S123 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 z}$

Figure $\mathrm{S}_{124}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2aa

Figure $\mathbf{S 1 2 5}^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 2aa

Figure S126 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a b}$

Figure $\mathbf{S 1 2 7}^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ab

Figure $\mathrm{SN}^{28}{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2 ac

Figure S129 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ac

Figure S130 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ad

Figure $\mathbf{S 1 3 1}^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of 2ad

Figure S132 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ae

Figure $\mathrm{S}_{133}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 2ae

Figure S134 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 2af and 3af

1:1.3

Figure $\mathbf{S 1 3 5}^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 2af and 3af

1:1.3

Figure S136 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a

```
<<<
```


Figure S138 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3b

Figure S139 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 3b

Figure S140 ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3b

Figure S141 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3c

Figure $\mathrm{S}_{142}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 c

```
\~0.0
```


Figure S143 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3d

Figure S144 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 d}$

Figure S145 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 e

Figure S146 ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 e

Figure S147 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 f

Figure S148 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 f

Figure S149 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 g}$

Figure $\mathrm{S}_{150}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 g}$

Figure S151 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of $\mathbf{3 h}$

Figure S152 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 h}$

Figure S153 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 i}$

Figure S154 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3i

Figure S155 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 k}$

Figure S156 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 k}$

Figure $\mathrm{S}_{157}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 31

Figure S158 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 31

둗

Figure S159 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 m}$

Figure S160 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 m}$

Figure S161 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 n}$

Figure S162 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 n}$

Figure $\mathbf{S 1 6 3}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 o

Figure S164 ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 o
ion
为
त्ธ
ín

Figure S165 ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 o

Figure S166 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3p

Figure S167 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 3p
in

Figure S168 ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 p}$

Figure S169 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 q}$

Figure S170 ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 q}$

Figure S171 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 r}$

Figure $\mathrm{SH}_{172}{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 r}$

Figure S173 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 s

Figure S174 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 s

Figure S175 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 t}$

Figure $\mathrm{S}_{176}{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 t

Figure S177 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3u

Figure S178 ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 u}$
Ă

Figure S179 ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 u}$

Figure S180 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 v}$

Figure S181 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 v}$

Figure S182 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 w}$

Figure S183 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 w}$
|

Figure S184 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 x}$

Figure S185 ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 x}$

Figure S186 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 y

易

Figure S187 ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 y

Figure S188 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 z}$

Figure S189 ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 z}$

Figure $\mathrm{SN}_{190}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 aa

Figure S191 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 3aa

Figure S192 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ab

Figure $\mathbf{S 1 9 3}^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ab

Figure S194 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ac

Figure S195 ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 3ac

Figure $\mathrm{S1}^{196}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ad

Figure S197 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of 3ad

Figure S198 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ae

Figure S199 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0}^{\mathrm{MHz}, \mathrm{CDCl}_{3} \text {) of 3ae }}$

Figure S200 ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 af

Figure $\mathbf{S 2 0 1}^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3af

Figure S202 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4

Figure $\mathrm{S}_{203}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 4

Figure $\mathbf{S 2 0 4}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5

Figure S205 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 5

Figure $\mathrm{S}_{2} \mathrm{SO}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6

Figure $\mathrm{S}_{207}{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 6

Figure S208 ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 7

Figure $\mathbf{S 2 0 9}{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of 7
$\stackrel{\rightharpoonup}{\text { à }}$

-

Figure S210 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 ,

Figure S211 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 ,

7. X-ray crystal structures of $\mathbf{2 a}, \mathbf{3 m}, \mathbf{4 , 6}$, and $7{ }^{\prime}$

Crystal preparation: Compound 2a, 3m, 4, 6 and $\mathbf{7}^{\prime}(30 \mathrm{mg})$ were dissolved in hexane/EA $=$ 9:1 $(10 \mathrm{~mL})$ in 25 mL round bottom flask and the resultant solution were allowed to slowly evaporate at room temperature to get pure crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using $\mathrm{Cu} \mathrm{K} \alpha$ radiation. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2174040 (2a), 2174041 (3m), 2174042 (4), 2174043 (6), and 2174044 (7') respectively.

Figure S206. ORTEP Drawing of 2a with Thermal Ellipsoids at 30\% Probability Levels (CCDC 2174040).

Table S1 Crystal data and structure refinement for 2a.

Identification code

Empirical formula

Formula weight

Temperature/K
Crystal system
Space group

2a
$\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{~S}$
469.57

293(2)
monoclinic

C2/c

a/Å	40.961(4)
b/Å	7.1221(7)
c/Å	16.3787(13)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.020(8)
$\gamma{ }^{\circ}$	90
Volume/A ${ }^{3}$	4766.4(7)
Z	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.309
μ / mm^{-1}	0.168
$F(000)$	1984.0
Crystal size/mm ${ }^{3}$	$0.14 \times 0.13 \times 0.12$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.986 to 49.982
Index ranges	$-48 \leq \mathrm{h} \leq 42,-8 \leq \mathrm{k} \leq 8,-19 \leq 1 \leq 19$
Reflections collected	13061
Independent reflections	$4165\left[\mathrm{R}_{\mathrm{int}}=0.0561, \mathrm{R}_{\text {sigma }}=0.0678\right]$
Data/restraints/parameters	4165/7/308
Goodness-of-fit on F^{2}	1.059
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0560, \mathrm{wR}_{2}=0.1137$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1028, \mathrm{wR}_{2}=0.1395$
Largest diff. peak/hole / e \AA^{-3}	0.16/-0.27

Figure S207. ORTEP Drawing of $\mathbf{3 m}$ with Thermal Ellipsoids at 30\% Probability Levels (CCDC 2174041).

Table S2 Crystal data and structure refinement for 3m.

Identification code	$\mathbf{3 m}$
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	495.61
Temperature/K	$179.99(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{n}$
a/A	$11.9025(7)$
b/A	$17.1335(8)$
c / \AA	$13.3176(9)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$108.457(7)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2576.2(3)$
Z	4
$\rho_{\text {calcg } / \mathrm{cm}^{3}}$	1.278

$\begin{array}{ll}\mu / \mathrm{mm}^{-1} & 0.159\end{array}$
$\mathrm{F}(000)$
1048.0
Crystal size $/ \mathrm{mm}^{3}$
$0.15 \times 0.12 \times 0.09$
Radiation
Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$
4.32 to 49.998
Index ranges
$-14 \leq \mathrm{h} \leq 14,-19 \leq \mathrm{k} \leq 20,-15 \leq 1 \leq 12$
Reflections collected
12542
Independent reflections
$4542\left[\mathrm{R}_{\mathrm{int}}=0.0324, \mathrm{R}_{\text {sigma }}=0.0403\right]$
Data/restraints/parameters
4542/0/326
Goodness-of-fit on F^{2}
1.024
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
$\mathrm{R}_{1}=0.0427, \mathrm{wR}_{2}=0.0996$
Final R indexes [all data]
$\mathrm{R}_{1}=0.0542, \mathrm{wR}_{2}=0.1066$
Largest diff. peak/hole / e \AA^{-3}
$0.27 /-0.33$

Figure S208. ORTEP Drawing of 4 with Thermal Ellipsoids at 30% Probability Levels (CCDC 2174042).

Table S3 Crystal data and structure refinement for 4.

Identification code

Empirical formula
Formula weight

4
$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$
469.57

Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
$\mathrm{a} / \AA{ }^{\text {a }}$	9.866(3)
b/Å	10.368(3)
c/Å	13.134(3)
$\alpha /^{\circ}$	67.204(6)
$\beta /{ }^{\circ}$	78.549(7)
$\gamma /{ }^{\circ}$	76.355(7)
Volume/A ${ }^{3}$	1194.8(6)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.305
μ / mm^{-1}	0.167
$F(000)$	496.0
Crystal size $/ \mathrm{mm}^{3}$	$0.14 \times 0.11 \times 0.09$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	5.132 to 50.05
Index ranges	$-11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 12,-15 \leq 1 \leq$
	15
Reflections collected	28658
Independent reflections	$4187\left[\mathrm{R}_{\text {int }}=0.0726, \mathrm{R}_{\text {sigma }}=0.0575\right]$
Data/restraints/parameters	4187/0/304
Goodness-of-fit on F^{2}	1.030
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0521, \mathrm{wR}_{2}=0.0956$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0938, \mathrm{wR}_{2}=0.1129$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.23

Figure S209. ORTEP Drawing of $\mathbf{6}$ with Thermal Ellipsoids at 30\% Probability Levels (CCDC 2174043).

Table S4 Crystal data and structure refinement for 6.

Identification code	$\mathbf{6}$
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{~S}$
Formula weight	594.54
Temperature/K	$170.01(19)$
Crystal system	monoclinic
Space group	$\mathrm{I} 2 / \mathrm{a}$
a/A	$15.7774(2)$
b / \AA	$10.1799(2)$
c/A	$41.4812(7)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$97.329(2)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$6607.96(19)$
Z	8
$\rho_{\text {calc }}$ g/cm ${ }^{3}$	1.195

μ / mm^{-1} 2.538
$\mathrm{F}(000)$

Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$

Index ranges

Reflections collected

Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
2464.0
$0.15 \times 0.12 \times 0.1$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
8.596 to 148.546
$-19 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 12,-47 \leq 1 \leq$
51

13010
$6548\left[\mathrm{R}_{\mathrm{int}}=0.0299, \mathrm{R}_{\text {sigma }}=0.0373\right]$
6548/0/345
1.037
$\mathrm{R}_{1}=0.0380, \mathrm{wR}_{2}=0.1048$
$\mathrm{R}_{1}=0.0418, \mathrm{wR}_{2}=0.1085$
$0.33 /-0.58$

Figure S210. ORTEP Drawing of 7' with Thermal Ellipsoids at 30\% Probability Levels (CCDC 2174044).

Table S5 Crystal data and structure refinement for 7'.

Identification code	7'
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	473.61
Temperature/K	200.00(10)
Crystal system	triclinic
Space group	P-1
$\mathrm{a} / \AA{ }^{\text {a }}$	9.5942(2)
b/Å	10.2077(2)
c/Å	13.7721(3)
$\alpha /{ }^{\circ}$	85.391(2)
$\beta /{ }^{\circ}$	77.094(2)
$\gamma /{ }^{\circ}$	66.714(2)
Volume/A ${ }^{3}$	1207.56(5)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.303
μ / mm^{-1}	1.438
$F(000)$	504.0
Crystal size/ mm^{3}	$0.14 \times 0.12 \times 0.11$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	6.584 to 143.25
Index ranges	$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 12,-12 \leq 1 \leq$
	16
Reflections collected	11822
Independent reflections	$4575\left[\mathrm{R}_{\mathrm{int}}=0.0117, \mathrm{R}_{\text {sigma }}=0.0130\right]$
Data/restraints/parameters	4575/0/308
Goodness-of-fit on F^{2}	1.065
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0349, \mathrm{wR}_{2}=0.0920$

Final R indexes [all data]	$\mathrm{R}_{1}=0.0356, \mathrm{wR}_{2}=0.0926$
Largest diff. peak/hole / e \AA^{-3}	$0.23 /-0.47$

8. References

S1. L. Ricard and F. Gagosz, Organometallics 2007, 26, 4704-4707.
S2. a) K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M. R. V. Finlay and Z. Yang, J. Am. Chem. Soc., 1997, 119, 7974-7991; b) M. Zahel, Y. Wang, A. Jäger and P. Metz, Eur. J. Org. Chem., 2016, 5881-5886.

S3. J.-S. Poh, S. Makai, T. von Keutz, D. N. Tran, C. Battilocchio, P. Pasau and S. V. Ley, Angew. Chem. Int. Ed., 2017, 56, 1864-1868.

S4. T. Suda, K. Noguchi and K. Tanaka, Angew. Chem. Int. Ed., 2011, 123, 45674571.

S5. a) Ø. W. Akselsen and T. V. Hansen, Tetrahedron 2011, 67, 7738-7742; b) Y. H. Yu, L. Y. Ma, J. J. Xia, L. T. Xin, L. Zhu and X. L. Huang, Angew. Chem. Int. Ed., 2020, 59, 18261-18266.

S6. R. Shen, K. Chen, Q. Deng, J. Yang and L. Zhang, Org. Lett., 2014, 16, 1208-1211.

S7. H. Q. Cao, H. N. Liu, Z. Y. Liu, B. K. Qiao, F. G. Zhang and J. A. Ma, Org. Lett. 2020, 22, 6414-6419.

[^0]: $\begin{array}{lllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

