Supporting Information

Synthesis of α-pyrones via gold-catalyzed cycloisomerization/[2+1] cycloaddition/rearrangement of enyne-amides and sulfur ylides

Jinhang Yu, \dagger Xinyuan Wang, \dagger Mengjiao Xu, Bei Zhang, Zuping Xiong, Hui Mao, Xin Lv,* and Liejin Zhou*
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
E-mail: lvxin@zjnu.cn, ljzhou@zjnu.cn

Table of Contents

1. General Information S2
2. Some Optimization of Reaction Conditions S3
3. General Procedure for the Synthesis of Products S4
4. General Procedure for the Transformations of 3a S5
5. Reference S6
6. Crystal Structures of 3a, 3e, 8 and 9 S7
7. Characterization of Products S12
8. Spectra of the New Compounds S23

1. General Information

Commercially available materials purchased from Bidepharm or Energy Chemical was used as received. DCE was newly distilled over CaH_{2}, THF was distilled over sodium, and CHCl_{3} was newly distilled over CaH_{2}. Other solvents were dried over $4 \AA$ molecular sieve prior use. Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in 10 mL Schlenk tube.
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were measured at 400 MHz and 151 MHz in CDCl_{3}. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}\right.$: 77.16 ppm$)$. High-resolution mass spectrometry (HRMS) analysis was carried out using a TOF MS instrument with ESI or APCI source.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-300 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. Ynamides were prepared according to previous literature procedures. ${ }^{[1,2]}$ Various sulfur ylide salts were prepared from dimethyl sulfide and the different substituents of bromoacetophenone according to the literature. ${ }^{[3]}$

2. Some Optimization of Reaction Conditions

3. General Procedure for the Synthesis of Products

In a dried and nitrogen filled Schlenk flask, a mixture of $\mathrm{PPh}_{3} \mathrm{AuCl}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{AgPF}_{6}$ $(2.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in DCE (2 mL) was stirred at room temperature under for 15 mins to generate the gold catalyst. Ynamide $\mathbf{1 a}(80.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the above catalyst solution under nitrogen, stirred for 0.5 h . Then sulfur ylide salt $2(52.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{LiOH}{ }^{\prime} \mathrm{H}_{2} \mathrm{O}(33.6 \mathrm{mg}$, 0.8 mmol) were quickly added to the system. The resulting solution was stirred at room temperature for another 12 hours. When the reaction was completed (monitored by TLC), the mixture was directly concentrated under reduced pressure. The resulting crude residue was purified via column chromatography on silica gel, to give the pure products $\mathbf{3 a}$ in 69% yield (50.5 mg).

Products $\mathbf{3}$ or $\mathbf{4}$ were performed in the above procedure.

4. General Procedure for the Transformations of 3aa

To a dry Schlenk tube with a magnetic stir bar, was added 3a ($36.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) and ultra-dry methanol $(1.5 \mathrm{~mL})$. Then, $\mathrm{NaBH}_{4}(7.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the solution. The mixture was stirred at room temperature for 3 h until the $\mathbf{3 a}$ was complete consumed (monitored by TLC). The mixture was directly concentrated under reduced pressure. The resulting crude residue was purified via column chromatography on silica gel (petroleum ether/ethyl acetate $=8: 1$) to afford the desired product 5 with 82% (30.2 mg) yield.

To a dry sealed tube with a magnetic stir bar, was added 3a ($36.6 \mathrm{mg}, 0.10 \mathrm{mmol}$), CsF ($19 \mathrm{mg}, 0.12$ mmol) and anhydrous $\mathrm{MeCN}(1.0 \mathrm{~mL})$. Immediately afterwards, 2-(trimethylsilyl)phenyl trifluoromethanesulfonate ($1.2 \mathrm{eq} ., 30 \mu \mathrm{~L}$) was slowly added to the above system. After that, the reaction was stirred overnight at $100^{\circ} \mathrm{C}$. After the reaction mixture was cooled to room temperature. The mixture was directly concentrated under reduced pressure. The resulting crude residue was purified via column chromatography on silica gel (petroleum ether/ethyl acetate $=100: 1$) to afford the desired product $\mathbf{6}$ with 75% (29.9 mg) yield.

To a dry sealed tube with a magnetic stir bar, a mixture of 3a($36.6 \mathrm{mg}, 0.10 \mathrm{mmol}$), diethyl but-2ynedioate ($85.0 \mathrm{mg}, 0.50 \mathrm{mmol}$) in xylene (2 mL) was stirred at $200^{\circ} \mathrm{C}$ for 1.5 days. After the reaction mixture was cooled to room temperature. The mixture was directly concentrated under reduced pressure The resulting crude residue was purified via column chromatography on silica gel (petroleum ether/ethyl acetate $=18: 1$) to afford the desired product 7 with $42 \%(18.7 \mathrm{mg})$ yield.

5. Reference

[1] R. Rossi, F. Bellina, C. Bechini, L. Mannina, P. Vergamini, Tetrahedron 1998, 54, 135.
[2] Y. Luo, K.-M. Qiu, X. Lu, K. Liu, J. Fu, H.-L. Zhu, Bioorg. Med. Chem. 2011, 19, 4730.
[3] P. Y. Ushakov, E. A. Khatuntseva, Y. V. Nelyubina, A. A. Tabolin, S. L. Ioffe, A. Y. Sukhorukov, Adv. Synth. Catal. 2019, 361, 5322.
6. Crystal structures of $3 \mathrm{a}, 3 \mathrm{e}, 8$ and 9

20

6
\therefore

9 (CCDC: 2111140)

Crystal data and structure refinement for 3a.

CCDC number
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2117411
$3 \mathbf{a}$
$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3}$
366.39
160.00
triclinic
P-1
9.8356(9)
9.8517(9)
11.1746(11)
63.911(3)
75.454(3)
86.025(3)
940.24(15)

2
1.294
0.084
384.0
$0.12 \times 0.11 \times 0.1$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.68 to 54.962
$-12 \leq \mathrm{h} \leq 12,-12 \leq \mathrm{k} \leq 11,-14 \leq 1 \leq 14$
19071
$19071\left[\mathrm{R}_{\mathrm{int}}=?, \mathrm{R}_{\text {sigma }}=0.0545\right]$
19071/0/254
1.045
$\mathrm{R}_{1}=0.0552, \mathrm{wR}_{2}=0.1474$
$\mathrm{R}_{1}=0.0775, \mathrm{wR}_{2}=0.1652$
0.17/-0.15

Crystal data and structure refinement for 3e.

CCDC number
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$\mathrm{F}(000)$
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2111301
3e
$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{4}$
396.42
304.00
triclinic
P-1
9.5757(4)
10.4391(5)
11.0084(5)
103.768(2)
99.482(2)
104.612(2)
1004.22(8)

2

1.311
0.088
416.0
$0.12 \times 0.11 \times 0.1$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.846 to 54.992
$-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-14 \leq 1 \leq 14$
21021
$4578\left[\mathrm{R}_{\text {int }}=0.0263, \mathrm{R}_{\text {sigma }}=0.0200\right]$
4578/0/272
1.023
$\mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.1013$
$\mathrm{R}_{1}=0.0492, \mathrm{wR}_{2}=0.1073$
0.22/-0.14

Crystal data and structure refinement for 8.

CCDC number
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2111107
8
$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClO}_{4}$
430.86
303.00
monoclinic
P2 ${ }_{1} / n$
11.1283(5)
8.4980(3)
23.7973(10)

90
94.591(2)

90
2243.25(16)

4
1.276
0.200
896.0
$0.13 \times 0.12 \times 0.11$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
5.092 to 54.976
$-14 \leq \mathrm{h} \leq 14,-11 \leq \mathrm{k} \leq 10,-30 \leq 1 \leq 30$
34156
$5107\left[\mathrm{R}_{\text {int }}=0.0404, \mathrm{R}_{\text {sigma }}=0.0246\right]$
5107/0/281
1.026
$\mathrm{R}_{1}=0.0454, \mathrm{wR}_{2}=0.1028$
$\mathrm{R}_{1}=0.0687, \mathrm{wR}_{2}=0.1179$
0.13/-0.21

Crystal data and structure refinement for 9.

CCDC number
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2111140
9
$\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$
519.59
160.15
monoclinic
P2 ${ }_{1} / \mathrm{c}$
12.3788(8)
21.0408(11)
10.8677(7)

90
106.544(2)

90
2713.4(3)

4
1.272
0.157
1088.0
$0.12 \times 0.11 \times 0.1$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.814 to 54.964
$-15 \leq \mathrm{h} \leq 16,-26 \leq \mathrm{k} \leq 27,-13 \leq 1 \leq 14$
25686
$6192\left[\mathrm{R}_{\text {int }}=0.0488, \mathrm{R}_{\text {sigma }}=0.0405\right]$
6192/0/344
1.026
$\mathrm{R}_{1}=0.0508, \mathrm{wR}_{2}=0.1183$
$\mathrm{R}_{1}=0.0864, \mathrm{wR}_{2}=0.1401$
0.17/-0.27

7. Characterization of Products

3-(2-Oxo-2-phenylethyl)-4,6-diphenyl-2H-pyran-2-one (3a)

Isolated in 69% yield $(50.5 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 165.2-168.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.34(\mathrm{~m}, 10 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.98,163.37,157.89$, $154.96,137.60,136.76,133.40,131.55,130.76,129.36,129.04,129.02,128.70,128.43,127.54,125.68$, 118.14, 104.63, 38.43. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 367.1329$, found: 367.1328.

3-(2-Oxo-2-phenylethyl)-6-phenyl-4-(o-tolyl)-2H-pyran-2-one (3b)

Isolated in 73% yield $(55.5 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 145.5-147.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.26$ (m, 2H), $7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.15,163.23,157.82,155.49,136.98,136.81,134.69,133.24$, 131.52, 130.77, 130.75, 129.04, 128.61, 128.29, 127.53, 126.28, 125.66, 119.17, 104.47, 37.91, 19.83. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 381.1485$, found: 381.1463 .

3-(2-Oxo-2-phenylethyl)-6-phenyl-4-(m-tolyl)-2H-pyran-2-one (3c)

Isolated in 60% yield $(45.6 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 165.4-168.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.01,163.39,157.79,155.07,138.85,137.58,136.85,133.32$, $131.60,130.70,130.07,129.02,128.88,128.68,128.38,128.09,125.67,124.60,118.09,104.68,38.44$, 21.53. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 381.1485$, found: 381.1507 .

3-(2-Oxo-2-phenylethyl)-6-phenyl-4-(p-tolyl)-2H-pyran-2-one (3d)

Isolated in 67% yield (50.9 mg) as yellow solid, mp $157.7-159.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.04,163.42,157.75,154.97,139.49,136.83,134.70,133.34,131.63,130.67,129.66$, 129.01, 128.68, 128.42, 127.50, 125.66, 117.93, 104.76, 38.52, 21.41. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}$ [$\left.\mathrm{M}+\mathrm{H}^{+}\right]: 381.1485$, found: 381.1473 .

4-(2-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3e)

Isolated in 56% yield (44.4 mg) as yellow solid, $\mathrm{mp} 138.0-142.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.43$, $163.40,157.26,155.86,152.33,136.94,133.14,131.78,130.83,130.48,129.50,128.94,128.61,128.28$, 126.03, 125.64, 121.02, 119.60, 111.27, 105.47, 55.62, 38.60. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 397.1434, found: 397.1408.

4-(3-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3f)

Isolated in 61% yield (48.3 mg) as yellow solid, $\mathrm{mp} 208.5-210.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.03,163.33,159.89,157.90,154.85,138.92,136.79,133.39$, $131.55,130.75,130.18,129.04,128.71,128.41,125.68,119.72,118.16,115.24,112.74,104.52,55.42$, 38.50. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 397.1434$, found: 397.1409.

4-(4-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3g)

Isolated in 55% yield (43.6 mg) as yellow solid, $\mathrm{mp} 187.3-188.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.82$
($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.21,163.49,160.51,157.69,154.63,136.86,133.38,131.67$, 130.67, 129.84, 129.12, 129.02, 128.71, 128.45, 125.67, 117.69, 114.41, 104.83, 55.50, 38.62. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 397.1434$, found: 397.1427.

4-(4-Isopropylphenyl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3h)

Isolated in 58% yield $(47.3 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 168.4-168.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.06-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.10, 163.46, 157.69, 154.95, 150.34, 136.85, 135.00, $133.34,131.63,130.65,129.00,128.67,128.45,127.62,127.07,125.64,117.93,104.81,38.51,34.07$, 23.95. HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 409.1798$, found: 409.1776.

4-(4-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3i)

Isolated in 49% yield (39.2 mg) as yellow solid, $\mathrm{mp} 168.1-168.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.88,163.11,158.16,153.80,136.65,135.98,135.60,133.55,131.41$, 130.91, 129.32, 129.08, 128.98, 128.77, 128.44, 125.71, 118.37, 104.21, 38.35. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 401.0939$, found: 401.0964 .

3-(2-Oxo-2-phenylethyl)-6-phenyl-4-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one (3j)

Isolated in 40% yield (34.7 mg) as yellow solid, $\mathrm{mp} 168.3-169.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.71,162.94,158.41,153.56,141.15,136.56,133.63,131.49(\mathrm{q}, J=32.9 \mathrm{~Hz})$, $131.29,131.03,129.13,128.79,128.45,128.06,126.07(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.73,123.86(\mathrm{q}, J=272.4 \mathrm{~Hz})$, 118.70, 103.91, 38.21. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 435.1203, found: 435.1184.

4-(4-Nitrophenyl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3k)

Isolated in 28% yield $(23.0 \mathrm{mg})$ as brown solid, $\mathrm{mp} 222.5-224.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55$ $(\mathrm{m}, 3 \mathrm{H}) ., 7.52-7.43(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.52, 162.70, $158.74,152.78,148.39,143.89,136.41,133.78,131.22,131.13,129.18,128.86,128.78,128.46,125.78$, 124.32, 118.88, 103.40, 38.14. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 412.1179$, found: 412.1162 .

3-(2-Oxo-2-phenylethyl)-6-phenyl-4-(thiophen-2-yl)-2H-pyran-2-one (3I)

Isolated in 52% yield (38.8 mg) as brown solid, $\mathrm{mp} 139.2-141.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.60,163.40,157.72,155.83,147.19,138.41,136.72,133.51,131.49,130.85,129.06$, 129.03, 128.79, 128.53, 128.10, 125.74, 117.36, 104.41, 39.01. HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 373.0893$, found: 373.0875 .

4-(Naphthalen-1-yl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3m)

Isolated in 42% yield $(35.0 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 74.2-75.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.50$ (m, 2H), $7.49-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.33, 163.17, 157.66, 154.33, 136.72, 134.76, 133.77, $133.22,131.48,130.79,130.05,129.47,129.05,128.74,128.56,128.27,127.20,126.69,125.73,125.58$, 125.49, 125.22, 120.22, 105.30, 38.34. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 417.1485$, found: 417.1472 .

4-(Naphthalen-2-yl)-3-(2-oxo-2-phenylethyl)-6-phenyl-2H-pyran-2-one (3n)

Isolated in 41% yield (34.1 mg) as yellow solid, mp $181.7-183.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 5 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 6 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.07, 163.38, $157.96,154.98,136.83,134.99,133.39,133.09,131.60,130.79,129.07,128.93,128.70,128.49,128.42$, 127.93, 127.25, 127.10, 127.05, 125.74, 124.98, 118.42, 104.74, 38.55. HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 417.1485$, found: 417.1455.

3-(2-Oxo-2-(p-tolyl)ethyl)-4,6-diphenyl-2H-pyran-2-one (30)

Isolated in 54% yield (41.1 mg) as yellow solid, mp $155.7-157.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}$, $1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.52,163.36,157.80,154.82,144.19$, $137.63,134.28,131.57,130.70,129.35,129.30,129.01,128.97,128.53,127.54,125.65,118.30,104.62$, 38.30, 21.80. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 381.1485$, found: 381.1456.

3-(2-(4-Methoxyphenyl)-2-oxoethyl)-4,6-diphenyl-2H-pyran-2-one (3p)

Isolated in 60% yield $(47.5 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 158.2-160.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.33(\mathrm{~m}, 8 \mathrm{H}), 6.91$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.39$, $163.71,163.37,157.72,154.75,137.61,131.55,130.69,130.66,129.79,129.27,128.98,128.94,127.56$, $125.62,118.38,113.79,104.62,55.58,38.02$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 397.1434$, found: 397.1395.

3-(2-(4-Bromophenyl)-2-oxoethyl)-4,6-diphenyl-2H-pyran-2-one (3q)

Isolated in 48% yield $(42.6 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 98.8-101.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.39$ - $7.31(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.08,163.31,158.03,155.11$, $137.51,135.51,132.02,131.47,130.83,129.95,129.44,129.06,128.59,127.50,125.70,117.82,104.60$, 38.31. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{BrO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 445.0434, found: 445.0392 .

3-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-4,6-diphenyl-2H-pyran-2-one (3r)

Isolated in 50% yield (43.4 mg) as yellow solid, $\mathrm{mp} 60.9-62.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $196.28,163.29,158.14,155.28,139.50,137.45,134.64(q, J=32.8 \mathrm{~Hz}), 131.42,130.90,129.51,129.11$, $129.08,128.75,127.47,125.80(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.71,123.70(\mathrm{q}, ~ J=272.7 \mathrm{~Hz}), 117.59,104.58,38.62$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 435.1203, found: 435.1189 .

3-(2-Oxohexyl)-4,6-diphenyl-2H-pyran-2-one (3s)

Isolated in 47% yield (32.5 mg) as yellow solid, $\mathrm{mp} 51.5-53.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}$, $1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.06,163.39,157.73,154.75,137.58,131.51,130.75,129.35$, 129.03, 128.95, 127.58, 125.64, 118.17, 104.56, 43.13, 41.85, 25.99, 22.39, 13.99. HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 347.1642 , found: 347.1636 .

3-(2-Oxo-2-phenylethyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one (4a)

Isolated in 57% yield (43.3 mg) as yellow solid, $\mathrm{mp} 174.3-176.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.32$ $(\mathrm{m}, 7 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $197.03,163.45,158.16,155.10,141.20,137.73,136.83,133.34,129.76,129.29,128.98,128.82,128.68$, $128.41,127.53,125.62,117.58,103.99,38.39,21.58$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 381.1485, found: 381.1493 .

6-(2-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4b)

Isolated in 55% yield $(43.6 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 173.9-175.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~s}$, 1 H), 7.07 (td, $J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.13,163.66,157.49,155.29,154.83,138.12,136.89,133.31,131.58,129.24$, 129.12, 128.91, 128.67, 128.43, 127.66, 121.08, 120.38, 117.82, 111.55, 109.66, 55.77, 38.39. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 397.1434, found: 397.1413.

6-(3-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4c)

Isolated in 62% yield $(49.1 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 137.1-138.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.99$ (ddd, $J=8.1,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.94$, $163.30,160.17,157.72,154.90,137.59,136.80,133.38,132.94,130.06,129.36,129.02,128.70,128.41$, 127.54, 118.29, 118.13, 116.95, 110.69, 104.90, 55.64, 38.43. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 397.1434, found: 397.1448.

6-(4-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4d)

Isolated in 58% yield $(46.0 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 172.6-173.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 1 \mathrm{H})$, $7.50-7.31(\mathrm{~m}, 7 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.09,163.51,161.73,158.06,155.27,137.83,136.85,133.32,129.25,128.96,128.67$, 128.40, 127.52, 127.35, 124.14, 116.81, 114.46, 103.23, 55.56, 38.35. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NaO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 419.1254$, found: 419.1215.

6-(4-Fluorophenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4e)

Isolated in 60% yield $(46.1 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 139.5-142.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.33$ $(\mathrm{m}, 7 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.90,164.24$ (d, $J=251.9 \mathrm{~Hz}$), 163.15, 156.94, 154.92, 137.51, 136.74, 133.40, 129.40, 129.03, 128.70, 128.40, $127.86,127.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 127.49,118.06,116.23(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 104.37(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 38.38$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{FO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 347.1234$, found: 385.1268.

6-(3-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4f)

Isolated in 53% yield $(42.4 \mathrm{mg})$ as yellow solid, mp $168.5-168.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=7.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 9 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.81,162.95,156.25,154.68,137.34,136.73,136.70,135.27,133.46,133.44,133.30,133.29$, $130.68,130.34,129.49,129.08,128.72,128.42,127.51,125.70,123.73,119.04,105.32,38.45$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 401.0939$, found: 401.0903.

6-(4-Chlorophenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4g)

Isolated in 49% yield $(39.2 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 136.3-137.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.32(\mathrm{~m}, 9 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.86,163.06,156.72$, $154.81,137.43,136.87,136.73,133.44,130.04,129.45,129.36,129.06,128.72,128.42,127.50,126.92$, 118.57, 104.81, 38.42. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 401.0939$, found: 401.0902 .

3-(2-Oxo-2-phenylethyl)-4-phenyl-6-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one (4h)

Isolated in 45% yield (39.1 mg) as yellow solid, $\mathrm{mp} 142.6-145.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.33(\mathrm{~m}, 7 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.76,162.85,156.03$, 154.56, 137.22, 136.66, 134.79, 133.52, 132.27 ($q, J=32.8 \mathrm{~Hz}$), 129.56, 129.12, 128.75, 128.43, 127.51, $126.06(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.91,123.86(\mathrm{q}, J=272.3 \mathrm{~Hz}), 119.63,105.97,38.49$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 457.1022$, found: 457.0957 .

6-(3,4-Dichlorophenyl)-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4i)

Isolated in 56% yield (48.6 mg) as yellow solid, $\mathrm{mp} 168.2-169.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.71,162.72,155.30,154.58,137.18,136.64,134.91,133.65,133.49,131.42$, $131.10,129.55,129.10,128.73,128.40,127.48,127.39,124.63,119.30,105.43,38.47$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 435.0549, found: 435.0543 .

3-(2-Oxo-2-phenylethyl)-4-phenyl-6-(thiophen-2-yl)-2H-pyran-2-one (4j)

Isolated in 65% yield (48.4 mg) as yellow solid, mp $189.5-190.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.92,162.69,155.03,153.65,137.39,136.77,135.24,133.36,129.38,129.01,128.68$, 128.66, 128.43, 128.38, 127.48, 127.31, 117.56, 103.70, 38.43. HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 373.0893$, found: 373.0887 .

6-Methyl-3-(2-oxo-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4k)

Isolated in 54% yield (32.8 mg) as yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.08,164.12,159.49,154.89,137.47,136.78,133.35,129.24,128.91,128.68,128.40$, 127.46, 116.72, 106.82, 38.20, 19.93. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 305.1172$, found: 305.1187.

6-(tert-Butyl)-3-(2-ox0-2-phenylethyl)-4-phenyl-2H-pyran-2-one (4I)

Isolated in 59% yield $(40.8 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 98.5-99.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $197.15,169.93,164.00,154.81,137.94,136.87,133.31,129.16,128.90,128.66,128.40,127.52,116.82$, $102.79,38.21,36.14,28.17$. HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 347.1642$, found: 347.1652.

3-(2-Hydroxy-2-phenylethyl)-4,6-diphenyl-2H-pyran-2-one (5)

Isolated in 82% yield (30.2 mg) as white solid, mp $169.4-170.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 7 \mathrm{H}), 6.64(\mathrm{~s}$, 1 H), 5.10 (dd, $J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (s, 1H), 2.99 (dd, $J=14.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89 (dd, $J=14.0,4.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.38,157.35,155.52,144.50,137.66,131.26,130.86,129.09$, $128.98,128.78,128.44,127.85,127.43,125.66,125.61,120.76,105.26,73.79,38.15$. HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 369.1485$, found: 369.1479 .

2-(2,4-Diphenylnaphthalen-1-yl)-1-phenylethan-1-one (6)

Isolated in 75% yield (29.9 mg) as white solid, $\mathrm{mp} 53.4-55.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 10 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.36,142.11,140.74,140.41,139.74,136.85,133.47,133.09,131.41$, $130.38,129.40,129.32,128.87,128.45,128.43,128.38,127.99,127.42,127.41,127.06,126.73,125.74$, 124.81, 40.78. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 399.1743$, found: 399.1778 .

Ethyl 1-oxo-3,5,7-triphenyl-1H-isochromene-8-carboxylate (7)

Isolated in 42% yield $(18.7 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 157.3-159.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.37(\mathrm{~m}, 13 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 4.31$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.25,160.85,153.89$, $140.14,139.50,138.59,138.17,137.41,134.98,134.64,131.78,130.31,129.73,129.08,128.99,128.97$, 128.52, 128.49, 128.34, 125.48, 117.83, 99.43, 61.94, 13.96. HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{O}_{4}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$: 447.1591, found: 447.1586.

6-(4-Chlorophenyl)-4-(4-methoxyphenyl)-3-(2-oxo-2-phenylethyl)-2H-pyran-2-one (8)

Isolated in 54% yield $(46.5 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 185.9-189.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.39$ $(\mathrm{m}, 4 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.10,163.20,160.57,156.50,154.49,136.79,136.77,133.43,130.13,129.63$, $129.33,129.09,128.72,128.44,126.90,118.06,114.45,105.01,55.50,38.63$. HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 431.1045$, found: 431.1039 .
\mathbf{N}-(1-Benzoyl-2,6-diphenyl-5-oxaspiro[2.4]hept-6-en-4-ylidene)-4-methylbenzenesulfonamide (9)

Isolated in 65% yield $(67.8 \mathrm{mg})$ as yellow solid, $\mathrm{mp} 165.1-168.2{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 4 \mathrm{H})$, $7.42-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.15,169.23,155.16,143.31$, $138.25,136.59,134.37,131.00,130.02,129.90,129.16,129.11,128.88,128.68,128.38,128.05,127.43$, 127.16, 124.91, 101.94, 46.80, 43.40, 40.15, 21.70. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 520.1577, found: 520.1574.

The diastereomer of 9
Isolated in 25% yield (26.0 mg) as yellow solid, mp $164.3-167.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.35-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.90,169.41,156.20,143.16,138.25,136.30,134.28,133.72$, $130.29,129.20,129.07,129.03,128.92,128.50,128.35,128.25,127.27,127.03,125.12,100.76,44.78$, 42.23, 40.06, 21.70. HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 520.1577, found: 520.1541.

8. Spectra of the New Compounds

$\begin{aligned} & \stackrel{\pi}{0} \\ & \stackrel{\circ}{6} \\ & \stackrel{y}{\top} \end{aligned}$			$\stackrel{\stackrel{\circ}{6}}{\stackrel{\circ}{1}}$	嵩

$\begin{array}{lllll}10 & 200 & 190 & 180 & 170\end{array}$

$\left.\begin{array}{llllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

$\begin{array}{lllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}$

(19) \square

$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$		¢			$\begin{aligned} & \text { O} \\ & \stackrel{6}{7} \\ & \hline \end{aligned}$	+

[^0]

[^1]

$\begin{aligned} & \text { N } \\ & \text { No } \\ & \text { O } \end{aligned}$	 		$\begin{aligned} & \text { O} \\ & \stackrel{\text { ®N }}{1} \end{aligned}$	$\begin{aligned} & \overline{\widetilde{N}} \\ & \text { N్ల } \end{aligned}$	※

$\begin{array}{llllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^2]

$\stackrel{\text {-1 }}{\sim}$			$\begin{aligned} & \text { O} \\ & \infty \\ & \text { M } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \stackrel{0}{2} \\ & \stackrel{1}{\top} \end{aligned}$	$\begin{aligned} & \text { JN } \\ & \text { N } \\ & \underset{N}{0} \end{aligned}$

4b

$\begin{aligned} & \text { に0 } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$		స్ 	$\begin{aligned} & \text { O} \\ & \stackrel{6}{7} \\ & \hline \end{aligned}$

[^3]
4j
 1

$\left.\begin{array}{llllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

$$
\stackrel{\stackrel{0}{0}}{\substack{\infty \\ \vdots}}
$$

$$
\stackrel{\underset{\infty}{\infty}}{\stackrel{\infty}{m}}
$$

					$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{\circ}{7} \end{aligned}$	

[^4]

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\Gamma}{\dot{G}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { N } \\ & \text { O } \\ & \underset{T}{2} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { in } \end{aligned}$	 	$\begin{aligned} & \hline 8 \\ & \stackrel{0}{7} \\ & \underset{\sim}{1} \end{aligned}$	

| 0 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{array}{l}100 \\ f 1(\mathrm{ppm})\end{array}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | |
| :--- |

The diastereomer of $\mathbf{9}$

[^0]: $\begin{array}{llllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^2]: $\begin{array}{llllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^3]: $\begin{array}{lllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & & & \end{array}$

[^4]:

