Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electrooxidation-induced Selective Cleavage of C–N Bonds of Tertiary Amines to Access Thioureas, Selenoureas, and 2-Aminated Benzoselenazoles

Ting Zeng, ^a Jianjing Yang,*^a Kelu Yan, ^a Shibo Wang, ^b Shuyun Zhu, ^a Xian-En Zhao, ^a Dandan Li^a Jiangwei Wen*^a

^{*a*} Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, 273165, P. R. China.

^b Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hanzhou 310018, P. R. China.

^c Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China.

E-mail: wenjy@qfnu.edu.cn

Contents

 General information S2
General procedure for electrooxidation-induced selective cleavage of C-N bonds of tertiary amines to access asymmetric thioureas, selenoureas, and 2-aminealkylated benzoselenazole derivatives.

		S2
3.	Large-scale synthesis of 1c and synthesis with battery	S3
4.	Preliminary mechanistic studies	S4
	(1) Radical trapping experiments	S4
	(2) CV experiments	S5
5.	References	S5
6.	Detail descriptions for products	S 6
7.	Copies of product NMR and HRMS Spectra	S19

1. General information

All glassware was oven dried at 100 °C for hours and cooled down under vacuum. Isoselenocyanatobenzene and 1-iodo-2-isoselenocyanatobenzene derivatives were prepared according to reported procedures.¹ All the reaction prepared using the solvent of CH₃CN, DCM, and acetone (AR, 99.0%) was purchased from Macklin. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B or SS-L303SPD) (made in China), the carbon rod ($\phi = 6$ mm), Pt plates (1 x 1 cm²), and Ni plates (1 x 1 cm²) was purchased from Xuzhou Xinke Instrument and Meter Co. LTD. The thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (b. p. 60-90 °C). ¹H, ¹³C and ¹⁹F NMR data were recorded with Bruker Advance III (400 or 500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and *d*-solvent peaks (77.00 ppm, chloroform, 40.0 ppm, DMSO-*d*₀), respectively.

2. General procedure for electrooxidation-induced selective cleavage of C-N bonds of tertiary amines to access asymmetric thioureas, selenoureas, and 2-aminealkylated benzoselenazole derivatives.

$$R^{1}$$
-NCS + R^{3} R^{2} R^{2}

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **a** (0.5 mmol), **b** (1.5 mmol), and "Bu₄NBF₄ (1.0 mmol, 330.0 mg) were combined. The flask was equipped with a carbon rods ($\phi = 6$ mm) as the anode and Pt plates (1.0 × 1.0 cm²) as the cathode. Under the air, CH₃CN (8.0 mL) and H₂O (0.6 mL) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA under room temperature for 6 h. When the reaction was finished, the reaction mixture was washed with water and extracted with CH₂Cl₂ (10 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **1d** (0.5 mmol, 91.5 mg), **b** (1.5 mmol), and *ⁿ*Bu₄NBF₄ (1.0 mmol, 330.0 mg) were combined. The flask was equipped with a carbon rods ($\phi = 6$ mm) as the anode and Pt plates (1.0 × 1.0 cm²) as the cathode. Under the air, acetone

(8.0 mL) and H_2O (0.6 mL) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under room temperature for 3 h. When the reaction was finished, the reaction mixture was washed with water and extracted with CH₂Cl₂ (10 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **d** (0.5 mmol), **b** (1.5 mmol), and ${}^{n}Bu_{4}NBF_{4}$ (1.0 mmol, 330.0 mg) were combined. The flask was equipped with a carbon rods ($\phi = 6$ mm) as the anode and Pt plates (1.0 × 1.0 cm²) as the cathode. Under the air, aceton (8.0 mL) and H₂O (0.6 mL) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 4 h. When the reaction was finished, the reaction mixture was washed with water and extracted with CH₂Cl₂ (10 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel.

3. Large-scale synthesis of 1c and synthesis with battery

In an oven-dried beaker (500 mL) equipped with a stir bar, **1a** (20.0 mmol, 2.70 g), **1b** (30.0 mmol, 3.03 g), and *n*Bu₄NBF₄ (40.0 mmol, 13.2 g) were combined. The beaker was equipped with a carbon felt (2.0 \times 2.0 cm²) as the anode and Pt plates (1.0 \times 1.0 cm²) as the cathode. Under the air, CH₃CN (320.0 mL) and H₂O (24.0 mL) were slowly injected into the reaction system. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA under room temperature for 96 h. When the reaction was finished, the reaction mixture was concentrated, and then extracted with CH₂Cl₂ (10 mL \times 3). The organic layers were combined, dried over Na₂SO₄, and concentrated again. The pure product **1c** was obtained in a yield of 68% by flash column chromatography on silica gel.

In an oven-dried beaker (25 mL) equipped with a stir bar, 1a (0.5 mmol, 67.5 mg), b (1.5 mmol, 151.1

mg), and ${}^{n}Bu_{4}NBF_{4}$ (1.0 mmol, 330.0 mg) were combined. The beaker was equipped with a carbon rods ($\phi = 6 \text{ mm}$) as the anode and Pt plates ($1.0 \times 1.0 \text{ cm}^{2}$) as the cathode. Under the air, CH₃CN (8.0 mL) and H₂O (0.6 mL) were slowly injected into the reaction system. The reaction mixture was stirred and electrolyzed at 1.5-volt battery as the sole power supply under room temperature for 20 h. When the reaction was finished, the pure product **1c** was obtained in a yield of 71% by flash column chromatography on silica gel.

4. Preliminary mechanistic studies

4.1 Radical trapping experiments

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **1a** (0.5 mmol, 67.5 mg), **1b** (1.5 mmol, 151.1 mg) ^{*n*}Bu₄NBF₄ (1.0 mmol, 330.0 mg), and BHT (1.5 mmol, 330.0 mg) or DPE (1.5 mmol, 270.0 mg) were combined. The flask was equipped with a carbon rods ($\phi = 6$ mm) as the anode and Pt plates (1.0 × 1.0 cm²) as the cathode. Under the air, CH₃CN (8.0 mL) and H₂O (0.6 mL) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA under room temperature for 6 h. When the reaction was finished, the solution was concentrated in a vacuum and not detected the desired product **1c**. The compounds **1g-3g** can be detected by HRMS.

Figure S1. HRMS results of 1g.

Figure S2. HRMS results of 2g.

Figure S3. HRMS results of 3g.

4.2 CV experiments

Fig. S4. Cyclic voltammograms at grass carbon as work electrode, Ag/AgCl as the reference electrode, Pt (1 x 1 cm ²) as counter electrode in 0.1 M ^{*n*}Bu₄NBF₄, **C** (0.25 mM), **1b** (0.25 mM), **1a** (0.25 mM) in CH₃CN, scan rate 100 mV/s.

5. References

(1) (a) Takemoto, Y.; Nanjo, T.; Tsukano, C, *Synlett.* 2014, 25, 1473-1477; (b) Zhou, M.; Ji, S.; Wu, Z.; Li, Y.; Zheng, W.; Zhou, H.; Chen, T., *Eur. J. Med. Chem.* 2015, 96, 92-7.

(2) (a) Angyal, A.; Demjén, A.; Wölfling, J.; Puskás, L. G.; Kanizsai, I., *Tetrahedron Letters* 2018, *59*, 54-57; (b) Bhattacharjee, J.; Das, S.; Kottalanka, R. K.; Panda, T. K., *Dalton Trans* 2016, *45*, 17824-17832; (c) Ding, C.; Wang, S.; Sheng, Y.; Dai, Q.; Zhao, Y.; Liang, G.; Song, Z., *RSC Adv* 2019, *9*, 26768-26772; (d) Fujiwara, S.-i.; Asanuma, Y.; Shin-ike, T.; Kambe, N., *J. Org. Chem.* 2007, *72*, 8087-8090; (e) Halimehjani, A. Z.; Pourshojaei, Y.; Saidi, M. R., *Tetrahedron Lett.* 2009, *50*, 32-34; (f) Kim, T.

H.; Min, J. K.; Lee, G.-J., *Tetrahedron Lett.* 1999, 40, 8201-8204; (g) Koohgard, M.; Sarvestani, A. M.; Hosseini-Sarvari, M., N. J. Chem. 2020, 44, 14505-14512; (h) Li, L.; Wu, J.; Wei, L.; Lu, J.; Jiang, X., J Org Chem 2021, 86, 446-454; (i) Ramadas, K.; Srinivasan, N., Synth. Commun. 1995, 25, 3381-3387; (j) Sudha, L. V.; Sathyanarayana, D. N., J. Mol. Struct. 1985, 127, 313-317; (k) Sugimoto, H.; Makino, I.; Hirai, K., J. Org. Chem. 1988, 53, 2263-2267; (l) Tavakol, H.; Mahmoudi, A.; Ranjbari, M.-A., J. Sulfur Chem. 2018, 40, 113-123; (m) Yonemoto, K.; Shibuya, I., Chem. Soc.Japan 1988, 61, 4043-4049; (n) Zakrzewski, J.; Krawczyk, M., Phosphorus, Sulfur, and Silicon and the Related Elements 2009, 184, 1880-1903; (o) Souldozi, A.; Ramazani, A.; Dadrass, A. R.; lepokura, a.; Lis, T., Helvetica Chimica Acta 2012, 95, 339-348.

6. Detail descriptions for products

1,1-diethyl-3-phenylthiourea (1c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 85% isolated yield (88.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.35 (m, 4H), 7.19 (t, *J* = 7.0 Hz, 1H), 7.09 (s, 1H), 3.73 (q, *J* = 7.1 Hz, 4H), 1.28 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.7, 139.8, 128.6, 125.9, 125.8, 45.7, 12.7. 85

1,1-diethyl-3-(p-tolyl)thiourea (2c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 71% isolated yield (78.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (q, J = 8.4 Hz, 4H), 6.98 (s, 1H), 3.73 (q, J = 7.1 Hz, 4H), 2.32 (s, 3H), 1.27 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 137.2, 135.8, 129.4, 126.3, 45.7, 21.1, 12.7.

1,1-diethyl-3-(4-methoxyphenyl)thiourea (3c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 69% isolated yield (82.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 8.8 Hz, 2H), 7.02 (s, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 3.73 (q, *J* = 7.0 Hz, 4H), 1.28 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 181.0, 157.8, 132.7, 128.2, 113.8, 55.4, 45.6, 12.7.

3-(4-(tert-butyl)phenyl)-1,1-diethylthiourea (4c): yellow oil was obtained by column chromatography

(eluent: EtOAc/petroleum ether = 1/7) with 60% isolated yield (79.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (m, 1H), 7.35 (m, 1H), 7.24 (d, J = 2.0 Hz, 1H), 7.22 (d, J = 2.1 Hz, 1H), 6.98 (s, 1H), 3.74 (q, J = 7.2 Hz, 4H), 1.30 (s, 9H), 1.29 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.7, 148.7, 137.1, 125.7, 125.4, 45.7, 34.5, 31.4, 12.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₅H₂₄N₂S: 265.1733; found: 265.1733.

1,1-diethyl-3-(4-fluorophenyl)thiourea (5c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 76% isolated yield (86.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 8.7, 4.9 Hz, 2H), 7.06 (m, 3H), 3.73 (q, J = 7.1 Hz, 4H), 1.27 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.9, 160.7 (d, J = 245.5 Hz), 135.8 (d, J = 3.1 Hz), 128.4 (d, J = 8.3 Hz), 115.5 (d, J = 22.6 Hz), 45.7, 12.7. ¹⁹FNMR (376 MHz, CDCl₃) δ -115.9. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₁H₁₅FN₂S: 227.1013; found: 227.1013.

3-(4-chlorophenyl)-1,1-diethylthiourea (6c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 79% isolated yield (95.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 4H), 7.00 (s, 1H), 3.72 (q, *J* = 7.1 Hz, 4H), 1.27 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.5, 138.3, 131.3, 128.7, 127.4, 45.8, 12.7.

3-(4-bromophenyl)-1,1-diethylthiourea (7c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 84% isolated yield (120.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (m, 2H), 7.19 (m, 2H), 7.02 (s, 1H) , 3.70 (q, *J* = 7.1 Hz, 4H), 1.25 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 138.9, 131.6, 127.7, 119.0, 45.8, 12.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₅BrN₂S: 287.0212; found: 287.0212.

1,1-diethyl-3-(4-iodophenyl)thiourea (8c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 66% isolated yield (110.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (m, 2H), 7.09 (m, 2H), 6.99 (s, 1H), 3.72 (q, *J* = 7.1 Hz, 4H), 1.27 (t, *J* = 7.2 Hz, 6H). ¹³C NMR

(101 MHz, CDCl₃) δ 180.3, 139.6, 137.6, 127.8, 121.9, 45.8, 12.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₅IN₂S: 335.0073; found: 335.0073.

1,1-diethyl-3-(4-(trifluoromethyl)phenyl)thiourea (9c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 63% isolated yield (86.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.12 (s, 1H), 3.77 (q, *J* = 7.1 Hz, 4H), 1.31 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.1, 143.0, 128.6, 126.9 (q, *J* = 32.7 Hz), 125.6 (q, *J* = 3.7 Hz), 124.9, 124.1 (q, *J* = 271.7 Hz), 119.1, 45.8, 12.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.1. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₅F₃N₂S: 277.0981; found: 277.0981.

1,1-diethyl-3-(4-(trifluoromethoxy)phenyl)thiourea (10c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 72% isolated yield (105.2 mg). m. p. = 74-76°C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (m, 2H), 7.45 (m, 2H), 7.11 (s, 1H) , 3.75 (q, *J* = 7.1 Hz, 4H), 1.29 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.4, 146.5, 138.3, 127.2, 121.0, 120.4 (q, *J* = 257.1 Hz), 45.7, 12.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₅F₃N₂OS: 293.0930; found: 2293.0930.

1,1-diethyl-3-(4-nitrophenyl)thiourea (11c): yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 38% isolated yield (48.1 mg). m. p. = 60-62 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.06 (d, *J* = 8.5 Hz, 2H), 6.88 (s, 1H), 6.66 (d, *J* = 8.5 Hz, 2H), 3.76 (q, *J* = 7.1 Hz, 4H), 1.30 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 181.4, 144.9, 130.8, 128.1, 115.2, 45.6, 12.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₅N₃O₂S: 254.0958; found: 254.0958.

3-(4-cyanophenyl)-1,1-diethylthiourea (12c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3) with 39% isolated yield (45.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (m, 2H), 6.97 (s, 1H), 6.89 (m, 2H), 3.75 (q, *J* = 7.1 Hz, 4H), 1.29 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 181.1, 157.8, 132.7, 128.1, 126.9, 113.9, 45.6, 12.7. HRMS (ESI) *m/z:* [M+H] ⁺

calcd for C12H15N3S: 234.1059; found: 234.1059.

1,1-diethyl-3-(m-tolyl)thiourea (13c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 88% isolated yield (97.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (m, 1H), 7.11 (m, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 3.72 (q, *J* = 7.1 Hz, 4H), 2.32 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.8, 139.7, 138.6, 128.5, 126.7, 126.6, 123.1, 45.7, 21.4, 12.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₈N₂S: 223.1263; found: 223.1263.

1,1-diethyl-3-(3-fluorophenyl)thiourea (14c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 85% isolated yield (96.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.24 (td, *J* = 8.1, 6.6 Hz, 1H), 7.18 (s, 1H), 7.14 (dt, *J* = 10.4, 2.2 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.85 (td, *J* = 8.3, 2.2 Hz, 1H), 3.71 (q, *J* = 7.1 Hz, 4H), 1.25 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.0, 162.4 (d, *J* = 245.2 Hz), 141.4 (d, *J* = 10.5 Hz), 129.4 (d, *J* = 9.3 Hz), 121.2 (d, *J* = 2.4 Hz), 113.1 (d, *J* = 24.1 Hz), 112.2 (d, *J* = 21.1 Hz), 45.7, 12.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.5. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₁H₁₅FN₂S: 227.1013; found: 227.1013.

3-(3-chlorophenyl)-1,1-diethylthiourea (15c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 80% isolated yield (97.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 2.0 Hz, 1H), 7.24 (m, 1H), 7.18 (dt, *J* = 8.1, 1.7 Hz, 1H), 7.12 (dt, *J* = 7.5, 1.8 Hz, 1H), 7.07 (s, 1H), 3.70 (q, *J* = 7.1 Hz, 4H), 1.25 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 141.0, 133.9, 129.5, 125.9, 125.7, 124.1, 45.8, 12.7. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₁H₁₅ClN₂S: 243.0717; found: 243.0717.

1,1-diethyl-3-(3-(trifluoromethyl)phenyl)thiourea (16c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 62% isolated yield (85.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (m, 2H), 7.45 (m, 2H), 7.11 (s, 1H), 3.75 (q, *J* = 7.1 Hz, 4H), 1.29 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.3, 140.3, 130.8 (q, *J* = 32.5 Hz), 129.2, 128.9, 123.8 (q, *J* = 272.9 Hz), 122.3 (q, *J* = 3.8 Hz), 122.1 (q, *J* = 3.8 Hz), 45.7, 12.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₅F₃N₂S: 277.0981; found: 277.0981.

1,1-diethyl-3-(o-tolyl)thiourea (17c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 79% isolated yield (87.7mg). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (dd, J = 6.8, 4.6 Hz, 2H), 7.19 (m, 2H), 6.86 (s, 1H), 3.72 (q, J = 7.0 Hz, 4H), 2.25 (s, 3H), 1.27 (t, J = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.8, 138.5, 135.1, 130.6, 128.2, 127.0, 126.3, 45.6, 18.2, 12.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₈N₂S: 223.1263; found: 223.1263.

1,1-diethyl-3-(2-fluorophenyl)thiourea (18c): yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 76% isolated yield (85.9mg). m. p. = 42-45°C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (m, 1H), 7.16 (m, 3H), 6.95 (s, 1H), 3.77 (q, *J* = 7.2 Hz, 4H), 1.31 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 155.8 (d, *J* = 244.7 Hz), 127.9 (d, *J* = 0.7 Hz), 127.8 (d, *J* = 10.7 Hz), 126.5 (d, *J* = 7.9 Hz), 123.8 (d, *J* = 3.7 Hz), 115.4 (d, *J* = 20.0 Hz), 45.9, 12.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.6. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₁H₁₅FN₂S: 227.1013; found: 227.1013.

3-(2-chlorophenyl)-1,1-diethylthiourea (19c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/7) with 72% isolated yield (87.4mg). m. p. = 97-99°C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.36 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.25 (td, *J* = 7.8, 1.5 Hz, 1H), 7.21 (s, 1H), 7.09 (td, *J* = 7.7, 1.6 Hz, 1H), 3.77 (q, *J* = 7.1 Hz, 4H), 1.32 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 136.7, 129.1, 127.4, 127.4, 126.8, 126.0, 45.8, 12.7. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₁H₁₅ClN₂S: 243.0717; found: 243.0717.

3-(2-bromophenyl)-1,1-diethylthiourea (20c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/7) with 96% isolated yield (118.7mg). m. p. = 102-104°C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.28 (q, *J* = 7.8 Hz, 1H), 7.18 (s, 1H), 7.02 (t, *J* = 7.7 Hz, 1H), 3.77 (q, *J* = 7.1 Hz, 4H), 1.33 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 138.0, 132.3, 127.7, 127.4, 126.5, 118.3, 45.8, 12.8. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₁H₁₅BrN₂S: 287.0212; found: 287.0212.

3-(3,5-dimethylphenyl)-1,1-diethylthiourea (21c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/7) with 80% isolated yield (94.4mg). ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 1H), 6.89 (s, 2H), 6.82 (s, 1H), 3.72 (q, *J* = 7.1 Hz, 4H), 2.28 (s, 6H), 1.27 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.9, 139.6, 138.4, 127.8, 123.8, 45.7, 21.3, 12.7. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₃H₂₀N₂S: 237.1420; found: 237.1420.

1,1-diethyl-3-mesitylthiourea (22c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/7) with 53% isolated yield (66.2mg). m. p. = $105-107^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 6.90 (s, 2H), 6.52 (s, 1H), 3.78 (q, *J* = 7.1 Hz, 4H), 2.27 (s, 3H), 2.20 (s, 6H), 1.31 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.6, 137.2, 136.3, 134.6, 129.0, 45.6, 21.1, 18.5, 13.0. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₄H₂₂N₂S: 251.1576; found: 251.1576.

1,1-diethyl-3-(naphthalen-1-yl)thiourea (23c):² yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 68% isolated yield (87.7mg). m. p. = 90-92°C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (m, 1H), 7.87 (m, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.53 (m, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.43 (m, 1H), 7.17 (s, 1H), 3.77 (q, *J* = 7.1 Hz, 4H), 1.31 (t, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 182.2, 136.1, 134.3, 130.5, 128.5, 127.4, 126.6, 126.2, 125.5, 125.4, 122.6, 46.0, 12.8.

1,1-diethyl-3-(pyridin-3-yl)thiourea (24c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 64% isolated yield (67.0mg). ¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, J = 1.8 Hz, 1H), 8.31 (d, J = 4.3 Hz, 1H), 7.88 (m, 2H), 7.25 (dd, J = 8.1, 4.8 Hz, 1H), 3.77 (q, J = 7.0 Hz, 4H), 1.28 (t, J = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.4, 146.8, 146.0, 137.1, 134.3, 123.0, 45.8, 12.6.

N-(benzyl(methyl)carbamothioyl)benzamide (25c):² yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 52% isolated yield (73.8mg). ¹H NMR (500 MHz, CDCl₃) δ 8.98 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 6.0 Hz, 3H), 7.38 – 7.34 (m, 3H), 7.29 (t, *J* = 7.3 Hz, 2H), 5.26 (s, 2H), 3.12 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 181.7, 163.8, 134.9, 133.0, 132.4, 129.6, 129.0, 128.8, 128.1, 127.8, 59.4, 40.2.

1-benzyl-1-methyl-3-phenethylthiourea (26c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/7) with 88% isolated yield (125.0mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (m, 5H), 7.23 (m, 5H), 5.43 (S, 1H), 4.97 (S, 2H), 4.00 (m, 2H), 3.02 (S, 1H), 2.92 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.3, 138.8, 136.4, 128.9, 128.8, 127.7, 127.1, 126.6, 56.5, 47.1, 35.2. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₇H₂₀N₂S: 285.1420; found: 285.1420.

1-benzyl-1,3-dimethylthiourea (27c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3) with 81% isolated yield (78.6mg). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (m, 2H), 7.28 (m, 3H), 5.64 (S, 1H), 5.04 (S, 2H), 3.13 (d, *J* = 4.5 Hz, 3H), 3.10 (S, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.4, 136.6, 128.9, 127.7, 127.1, 56.7, 37.3, 33.2.

1-benzyl-3-ethyl-1-methylthiourea (28c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5) with 95% isolated yield (98.8mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 2H), 7.28 (m, 3H), 5.41 (s, 1H), 5.04 (s, 2H), 3.67 (m, 2H), 3.11 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.3, 136.6, 128.9, 127.7, 127.1, 56.6, 41.3, 37.3, 14.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₆N₂S: 209.1107; found: 207.1107.

1-benzyl-3-isopropyl-1-methylthiourea (29c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/10 with 95% isolated yield (105.4mg). m. p. = $66-68^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, J = 7.2 Hz, 2H), 7.30 (m, 3H), 5.22 (s, 1H), 5.04 (s, 2H), 4.70 (m, 1H), 3.13 (s, 3H), 1.22 (s, 3H), 1.21 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 181.2, 136.6, 128.8, 127.6, 127.0, 56.4,

47.8, 37.4, 22.8. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₈N₂S: 223.1263; found: 223.1263.

1-benzyl-3-(tert-butyl)-1-methylthiourea (30c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/10 with 71% isolated yield (83.8mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (m, 2H), 7.29 (m, 3H), 5.37 (s, 1H), 4.98 (s, 2H), 3.15 (s, 3H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 136.8, 128.9, 127.7, 127.0, 56.1, 54.3, 38.2, 29.2.

3-((3R,5R)-adamantan-1-yl)-1-benzyl-1-methylthiourea (31c): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/20 with 75% isolated yield (117.7mg). m. p. = 49-52°C. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 2H), 7.28 (m, 3H), 5.23 (s, 1H), 4.96 (s, 2H), 3.13 (s, 3H), 2.22 (d, *J* = 2.8 Hz, 6H), 2.07 (s, 3H), 1.65 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 136.8, 128.9, 127.6, 127.0, 56.0, 54.9, 41.8, 38.2, 36.4, 29.7. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₉H₂₆N₂S: 315.1889; found: 315.1889.

1-benzyl-1-methyl-3-phenylthiourea (32c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5 with 60% isolated yield (77.9mg). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (m, 2H), 7.31 (dd, *J* = 9.0, 3.9 Hz, 5H), 7.25 (d, *J* = 6.7 Hz, 2H), 7.22 (m, 2H), 5.07 (s, 2H), 3.22 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.5, 159.7, 157.3, 152.9, 150.6, 144.6, 131.6, 130.4, 129.4, 128.2, 127.4, 115.4, 114.7, 55.6, 29.7.

1,1-dimethyl-3-phenylthiourea (33c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3 with 80% isolated yield (72.0mg). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, *J* = 7.8 Hz, 2H), 7.25 (t, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 2H), 3.30 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 182.4, 139.8, 128.8, 125.5, 124.9, 41.5.

1,1-diisopropyl-3-phenylthiourea (34c):² yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/7 with 56% isolated yield (66.2mg). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (dd, J = 8.6, 1.0 Hz, 2H), 7.29 (m, 2H), 7.03 (m, 1H), 6.20 (s, 1H), 3.99 (dt, J = 13.8, 6.9 Hz, 2H),

1.34 (s, 6H), 1.32 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 139.3, 128.8, 122.7, 119.7, 45.4, 21.5.

1-ethyl-1-(2-hydroxyethyl)-3-phenylthiourea (35c):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1 with 55% isolated yield (61.7mg). ¹H NMR (500 MHz, DMSO-d₆) δ 9.48 (s, 1H), 7.29 (m, 4H), 7.08 (t, J = 7.1 Hz, 1H), 5.59 (s, 1H), 3.82 (q, J = 7.0 Hz, 2H), 3.72 (s, 4H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO-d₆) δ 181.5, 141.3, 128.3, 125.2, 124.4, 60.4, 52.7, 46.7, 12.5.

1-dodecyl-1-methyl-3-phenylthiourea (36c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5 with 94% isolated yield (77.9mg). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 2H), 7.25 (m, 2H), 7.17 (m, 2H), 3.76 (t, J = 7.68 Hz, 2H), 3.16 (s, 3H), 1.65 (m, 2H), 1.26 (m, 18H), 0.88 (t, J = 7.12 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 181.7 , 140.0 , 128.7 , 125.6 , 125.4 , 54.2 , 39.1 , 32.0 , 29.7 , 29.7 , 29.6 , 29.6 , 29.5 , 29.4 , 27.3 , 26.9 , 22.7 , 14.2 . HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₂₀H₃₄N₂S: 335.2515; found: 335.2507.

N-phenylmorpholine-4-carbothioamide (37c):² white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3 with 60% isolated yield (66.6mg). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 5.4 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.15 (dd, J = 17.2, 7.8 Hz, 3H), 3.78 (dd, J = 6.4, 3.1 Hz, 4H), 3.69 (dd, J = 5.6, 3.9 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 183.5, 139.8, 129.1, 125.4, 123.3, 66.1, 49.6.

1,1,3-triphenylthiourea (38c): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/4 with 24% isolated yield (36.5mg). ¹H NMR (500 MHz, CDCl₃) δ 8.88 (s, 1H), 8.69 (d, J = 10.4 Hz, 1H), 8.32 (s, 1H), 8.08 (d, J = 29.3 Hz, 1H), 7.54 (d, J = 7.9 Hz, 2H), 7.37 (m, 5H), 7.19 (m, 1H), 7.15 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 163.0, 159.6, 159.6, 137.0, 136.8, 136.8, 129.7, 129.0, 125.3, 124.8, 120.1, 120.1, 118.8. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₉H₁₆N₂S: 305.1107; found: 305.1107.

1,1-diethyl-3-phenylselenourea (1e): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/2 with 56% isolated yield (71.7mg). ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.28 (m, 2H), 3.82 (d, *J* = 5.2 Hz, 4H), 1.30 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.5, 140.5, 128.7, 126.7, 126.4, 41.6, 12.5. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₆N₂Se: 257.0551; found: 257.0551.

1,1-dimethyl-3-phenylselenourea (2e):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/2 with 37% isolated yield (42.0mg). ¹H NMR (500 MHz, CDCl₃) δ 7.46 (s, 1H), 7.35 (t, J = 7.8 Hz, 2H), 7.21 (t, J = 8.0 Hz, 3H), 3.35 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 182.4, 140.3, 128.9, 126.0, 125.2, 36.4.

1,1-diisopropyl-3-phenylselenourea (3e): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/5 with 42% isolated yield (59.4mg). m. p. = $112-114^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.3 Hz, 2H), 7.27 (dd, *J* = 9.9, 5.6 Hz, 2H), 6.99 (dd, *J* = 10.8, 3.9 Hz, 1H), 6.22 (s, 1H), 3.98 (dt, *J* = 13.7, 6.9 Hz, 2H), 1.33 (s, 6H), 1.31 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 154.6, 139.3, 128.8, 122.6, 119.6, 45.4, 21.5. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₃H₂₀N₂Se: 285.0864; found: 285.0864.

1-dodecyl-1-methyl-3-phenylselenourea (4e): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3 with 88% isolated yield (167.6mg). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (s, 1H), 7.36 (m, 2H), 7.21 (t, *J* = 8.5 Hz, 3H), 3.84 (s, 2H), 3.20 (s, 3H), 1.73 (m, 2H), 1.28 (d, *J* = 18.3 Hz, 18H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 181.5, 140.5, 128.7, 126.1, 125.9, 49.1, 34.6, 31.9, 29.6, 29.6, 29.5, 29.5, 29.3, 29.3., 27.1, 26.8, 22.6, 14.1. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₂₀H₃₄N₂Se: 383.1960; found: 383.1960.

N-phenylmorpholine-4-carboselenoamide (5e):² yellow solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/2 with 26% isolated yield (34.9mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.35 (dd, J = 10.8, 5.0 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 7.5 Hz, 2H), 3.90 (m, 4H), 3.74 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 183.8, 140.0, 129.4, 125.7, 122.9,

66.0, 52.1.

1-ethyl-1-(2-hydroxyethyl)-3-phenylselenourea (6e): red oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3 with 40% isolated yield (54.2mg). ¹H NMR (500 MHz, CDCl₃) δ 9.45 (s, 1H), 7.39 (m, 5H), 7.17 (t, *J* = 7.3 Hz, 1H), 3.96 (d, *J* = 6.8 Hz, 2H), 3.86 (m, 2H), 3.74 (d, *J* = 5.0 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 182.4, 141.0, 128.5, 125.4, 125.2, 61.5, 48.6, 42.6, 12.2. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₆N₂OSe: 273.0501; found: 273.0501.

1-benzyl-1-methyl-3-phenylselenourea (7e): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/4 with 33% isolated yield (50.04mg). ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.39 (m, 7H), 7.26 (m, 3H), 5.18 (s, 2H), 3.20 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 183.0, 140.4, 135.4, 129.0, 128.9, 128.8, 128.0, 127.4, 127.3, 126.4, 126.2, ,123.2, 120.1, 52.3, 34.8. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₅H₁₆N₂Se: 305.0551; found: 305.0551.

N,N-diethylbenzo[d][1,3]selenazol-2-amine (1f):² yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/20 with 60% isolated yield (76.2mg). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.46 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.21 (m, 1H), 6.88 (td, *J* = 7.7, 1.2 Hz, 1H), 3.46 (q, *J* = 7.1 Hz, 4H), 1.21 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 155.1, 133.3, 126.1, 123.8, 120.8, 119.8, 46.5, 13.0.

6-chloro-N,N-diethylbenzo[d][1,3]selenazol-2-amine (2f): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/10 with 74% isolated yield (106.43mg). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 2.2 Hz, 1H), 7.41 (d, J = 8.6 Hz, 1H), 7.21 (dd, J = 8.6, 2.2 Hz, 1H), 3.52 (q, J = 7.1 Hz, 4H), 1.28 (t, J = 7.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.5, 153.7, 134.3, 126.4, 125.7, 123.4, 120.3, 46.6, 12.9. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₁H₁₃ClN₂Se: 289.0005; found: 289.0005.

N,N-diethyl-5-methylbenzo[d][1,3]selenazol-2-amine (3f): yellow oil was obtained by column

chromatography (eluent: EtOAc/petroleum ether = 1/10 with 64% isolated yield (86.4mg). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.9 Hz, 1H), 7.38 (s, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 3.53 (q, *J* = 7.1 Hz, 4H), 2.37 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 6H). 13C NMR (126 MHz, CDCl₃) δ 167.7, 155.3, 135.9, 129.7, 123.3, 122.0, 120.4, 46.4, 21.4, 13.0. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₁₆N₂Se: 269.0551; found: 269.0551.

N,N-diethyl-6-fluorobenzo[d][1,3]selenazol-2-amine (4f): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/10 with 65% isolated yield (88.1mg). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 8.8, 4.8 Hz, 1H), 7.32 (dd, J = 8.0, 2.7 Hz, 1H), 6.98 (td, J = 8.9, 2.7 Hz, 1H), 3.52 (q, J = 7.1 Hz, 4H), 1.28 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 157.5 (d, J = 240.4 Hz), 151.5 (d, J = 1.6 Hz), 133.7 (d, J = 9.6 Hz), 119.9 (d, J = 8.3 Hz), 113.4 (d, J = 23.4 Hz), 110.5 (d, J = 26.1 Hz), 46.4, 13.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -122.6. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₁H₁₃FN₂Se: 273.0301; found: 273.0301.

N,N-dimethylbenzo[d][1,3]selenazol-2-amine (5f): white solid was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/10 with 34% isolated yield (38.2mg). m. p. = 110-112°C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.28 (dd, *J* = 11.9, 4.6 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 3.19 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 155.0, 133.8, 126.2, 123.9, 121.0, 120.1, 41.0. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₉H₁₀N₂Se: 227.0082; found: 227.0082.

2-(benzo[d][1,3]selenazol-2-yl(ethyl)amino)ethan-1-ol (6f): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3 with 39% isolated yield (52.4mg). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, J = 7.8, 0.5 Hz, 1H), 7.52 (m, 1H), 7.30 (m, 1H), 6.99 (td, J = 7.8, 1.0 Hz, 1H), 4.84 (s, 1H), 3.94 (m, 2H), 3.79 (m, 2H), 3.46 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.7, 153.6, 132.8, 126.3, 123.9, 121.5, 119.9, 62.9, 54.1, 50.8, 12.9. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₁H₁₄N₂OSe: 271.0344; found: 271.0344.

N-dodecyl-N-methylbenzo[d][1,3]selenazol-2-amine (7f): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/10 with 65% isolated yield (123.2mg). ¹H NMR

(500 MHz, CDCl₃) δ 7.62 (td, J = 7.9, 1.2 Hz, 1H), 7.5 (m, 1H), 7.28 (m, 1H), 6.96 (td, J = 7.7, 1.1 Hz, 1H), 3.48 (m, 2H), 3.17 (s, 3H), 1.72 (m, 2H), 1.32 (m, 18H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 155.0, 139.0, 126.1, 123.8, 120.9, 119.9, 54.9, 38.6, 31.9, 29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 27.3, 26.8, 22.7, 14.1. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₂₀H₃₂N₂Se: 381.1803; found: 381.1803.

7. Copies of product NMR Spectra

¹H NMR

2c

¹³C NMR

¹H NMR

¹H NMR

Et

έt

N H

101 MHz, CDCl₃

4c

22

Et

Ėτ

N

-1.2869 -1.2689 -1.2510

5c

¹³C NMR

60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

¹H NMR

8c

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ---62.1464

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

---62.4596

00	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200
							f1	(ppm)							

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR

¹⁹F NMR

Et H 471 MHz, CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---62.4596

376 MHz, CDCl₃

90	70	50	30	10	-10	-30	-50 f1 (pp	-70 om)	-90	-110	-130	-150	-170	-190	-210

Et I Et 37 Ĥ 376 MHz, CDCl_3

				50	70				450	470	100				070
30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-250	-270
							f1 (ppm)							

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR

48

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 20 10 0 30 40

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

100 90 f1 (ppm) 150 140 130 120

-21.5572

¹³C NMR

L 163.1359 L 163.0931 159.6765 159.5961 159.5961 137.0569 137.0569 137.0569 137.0568 1	136.8305 129.7525 129.7552 125.3055 125.3055 1124.8021 124.8021 1120.1596 118.8300	77.3881 77.1340 76.8798
---	--	-------------------------------

1e

¹H NMR

2e

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

5e

7e

2f

3f

1.2910 1.2767 1.2625

-2.3691

¹³C NMR

.7261	33322	5.9526 3.7754 3.3848 3.3848 5.3848 5.3848 3.4805	3164 0622 8081	4692	4003
- 167	- 155	12222	$\left\{ \frac{77}{76} \right\}$	-46.	21.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

5f

6f

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR

7f

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)