Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Metal-free homo/cross anion-cation coupling of cyclic diaryl λ^3 -bromanes

Yiwen Wang, Ya-Nan Tian, Shiyan Ren, Ruijie Zhu, Bin Huang, Yanqiong Wen and Shiqing Li*

Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.

E-mail: <u>lisq@glut.edu.cn</u>

Table of Contents

1. General remarks	S2
2. General procedures	S2
2.1 General procedure for the synthesis of cyclic diaryl λ^3 -bromanes	S2
2.2 General procedure for the homo anion-cation coupling	S3
2.3 General procedure for competition experiments	S7
2.4 General procedure for the cross anion-cation coupling	S9
3. Isotope labeling experiments	S10
4. Experimental data for the described substances	S15
5. References	S29
6. Copies of ¹ H and ¹³ C spectra	S30

1. General remarks

NMR spectra were obtained on a BRUKER Ascend500. The ¹H NMR (500 MHz) chemical shifts were measured relative to CDCl₃ or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$ ppm; DMSO- d_6 : $\delta = 2.50$ ppm). The ¹³C NMR (125 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO- d_6 : $\delta = 39.52$ ppm). High-resolution mass spectra (HRMS) were recorded on an Agilent QTOF 6550 or Shimadzu LCMS-9030 instruments under ESI in positive ionization mode detection. Melting points were determined with SGW_® X-4 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. 2-iodoanilines, 2-bromophenylboronic acids, Cs₂CO₃ were purchased from Beijing Innochem Chemical Engineering Reagent (China) Co., Ltd and Energy Chemical.

2. General procedures

2.1 General procedure for the synthesis of cyclic diaryl λ^3 -bromanes

Compounds **1a**-OTs, **1a**-OMs, **1a**-OTf and **1a**-BF₄ were prepared according to the modified literature procedures.¹ Compounds **1a**-OBs, **1a**-OCs, **1a**-ONs, **1b**-OTs, **1c**-OTs, **1d**-OTs, **1e**-OTs, **1f**-OTs, and **1g**-OTs were prepared as follows:

To a dry round bottom flask was added 2'-bromo-[1,1'-biphenyl]-2-amine 1 (1 mmol) and MeCN (10 mL). The solution was cooled to 0 °C before *t*-BuONO (2 equiv) was added dropwise. After that, acid HX (2 equiv) was added in portions. The mixture was stirred at 0 °C for 1 hour and then heated to 65 °C for 1 hour. The cooled mixture was purged in Et₂O where a solid precipitate. The product was collected through filtration, washed with Et₂O and dried under high vacuum.

dibenzo[b,d]bromol-5-ium 4-methylbenzenesulfonate (1a-OTs)

White solid (371 mg, 92% yield). ¹H NMR (500MHz, DMSO-*d*₆): δ = 8.60 (d, *J* = 8 Hz, 2H), 8.50 (d, *J* = 8.5 Hz, 2H), 7.94 (t, *J* = 7.3 Hz, 2H), 7.84 (t, *J* = 7.3 Hz, 2H), 7.50 (d, *J* = 8 Hz, 2H), 7.11 (d, *J* = 8 Hz, 2H), 2.28 (s, 3H) ppm.

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 145.47, 137.84, 136.61, 135.39, 131.84, 131.25, 128.14, 126.35, 125.70, 125.56, 20.83 ppm. Data in accordance with the literature.¹

dibenzo[b,d]bromol-5-ium 4-chlorobenzenesulfonate (1a-OCs)

White solid (381 mg, 90% yield). M.p.: 217–219 °C. ¹H NMR (500MHz, DMSO-*d*₆): δ = 8.59–8.56 (m, 2H), 8.50 (d, *J* = 8.5 Hz, 2H), 7.95–7.90 (m, 2H), 7.84–7.81 (m, 2H), 7.64–7.61 (m, 2H), 7.38 (d, *J* = 8.5 Hz, 2H) ppm. ¹³C

NMR (125 MHz, DMSO-*d*₆): $\delta = 147.18$, 136.54, 135.32, 133.00, 131.80, 131.20, 127.72, 127.49, 126.30, 125.60 ppm. HRMS (ESI) *m/z*: calcd for C₁₂H₈Br⁺ (M–OCs⁻) 230.9804, found 230.9808.

dibenzo[b,d]bromol-5-ium benzenesulfonate (1a-OBs)

Yellow solid (331 mg, 85% yield). M.p.: 195–197 °C. ¹H NMR (500MHz, DMSO-*d*₆): δ = 8.58 (d, *J* = 7.5 Hz, 2H), 8.51 (d, *J* = 8.5 Hz, 2H), 7.93 (t, *J* = 7.3 Hz, 2H), 7.83 (t, *J* = 7.8 Hz, 2H), 7.64 (d, *J* = 6.5 Hz, 2H), 7.34–7.30 (m, 3H) ppm.

¹³C NMR (125 MHz, DMSO-d₆): δ = 148.24, 136.56, 135.34, 131.81, 131.22, 128.49, 127.70, 126.31, 125.64, 125.51 ppm. HRMS (ESI) *m/z*: calcd for C₁₂H₈Br⁺ (M–OBs⁻) 230.9804, found 230.9805.

dibenzo[b,d]bromol-5-ium naphthalene-2-sulfonate (1a-ONs)

White solid (308 mg, 70% yield). M.p.: 200–202 °C. ¹H NMR (500MHz, DMSO- d_6): $\delta = 8.58$ (d, J = 7.0 Hz, 2H), 8.50 (d, J = 8.0 Hz, 2H), 8.17 (s, 1H), 7.95–7.84 (m, 7H), 7.74–7.73 (m, 1H), 7.52 (s, 2H) ppm. ¹³C NMR

(125 MHz, DMSO-*d*₆): δ = 145.58, 136.56, 135.34, 132.73, 132.15, 131.81, 131.21, 128.45, 127.46, 127.33, 126.44, 126.30, 125.61, 124.07, 123.99 ppm. HRMS (ESI) *m/z*: calcd for C₁₂H₈Br⁺ (M–ONs⁻) 230.9804, found 230.9805.

dibenzo[*b*,*d*]bromol-5-ium methanesulfonate (1a-OMs)

White solid (294 mg, 90% yield). ¹H NMR (500MHz, DMSO-*d*₆): $\delta = 8.60$ (d, J = 8 Hz, 2H), 8.53 (d, J = 8.5 Hz, 2H), 7.95 (t, J = 7.3 Hz, 2H), 7.85 (t, J = 7.3 Hz, 2H), 2.33 (s, 3H) ppm. ¹³C NMR (125

MHz, DMSO-*d*₆**):** $\delta = 136.65, 135.39, 131.82, 131.23, 126.31, 125.71, 39.77$ ppm. Data in accordance with the literature.¹

dibenzo[b,d]bromol-5-ium trifluoromethanesulfonate (1a-OTf)

White solid (228 mg, 60% yield). ¹H NMR (500MHz, DMSOd₆): $\delta = 8.59$ (d, J = 7.5 Hz, 2H), 8.47 (d, J = 8.5 Hz, 2H), 7.94 (t, J = 7.5 Hz, 2H), 7.85 (t, J = 8.0 Hz, 2H) ppm. ¹³C NMR (125 **MHz, DMSO-***d*₆): $\delta = 136.61, 135.40, 131.89, 131.27, 126.35, 125.62 \text{ ppm}.$ ¹⁹**F NMR** (471 MHz, DMSO-d₆): $\delta = -78.18$ (s) ppm. Data in accordance with the literature.¹

dibenzo[b,d]bromol-5-ium tetrafluoroborate (1a-BF₄)

White solid (239 mg, 75% yield). ¹H NMR (500MHz, DMSO- d_6): δ = 8.66 (d, J = 8.5 Hz, 4H), 8.00 (t, J = 7.3 Hz, 2H), 7.95 (t, J = 8.0Hz, 2H) ppm. ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 140.04, 132.03,$ 131.75, 125.51, 122.95 ppm. ¹⁹F NMR (471 MHz, DMSO- d_6): $\delta = -148.88$ (s), -148.14 (s) ppm. Data in accordance with the literature.¹

3-methyldibenzo[b,d/bromol-5-ium 4-methylbenzenesulfonate (1b-OTs)

Orange solid (376 mg, 90% yield). M.p.: 174-176 °C. ¹H NMR (500MHz, DMSO-*d*₆): $\delta = 8.51-8.43$ (m, 3H), 8.29 (s, 1H), 7.90 (t, *J* = 7.5 Hz, 1H), 7.79 (t, *J* = 7.3 Hz, 1H), 7.73 (d, *J* = 8 Hz, 1H),

7.51 (d, J = 7.5 Hz, 2H), 7.12 (d, J = 7.5 Hz, 2H), 2.51 (s, 3H), 2.28 (s, 3H) ppm. ¹³C **NMR** (125 MHz, DMSO-*d*₆): δ = 145.58, 142.54, 137.78, 136.60, 136.41, 135.33, 132.68, 132.09, 131.33, 131.19, 128.14, 125.98, 125.80, 125.63, 125.53, 125.28, 21.43, 20.81 ppm. HRMS (ESI) *m/z*: calcd for C₁₃H₁₀Br⁺ (M-OTs⁻) 244.9961, found 244.9960.

2-methoxydibenzo[b,d]bromol-5-ium 4-methylbenzenesulfonate (1c-OTs)

Yellow solid (443 mg, 92% yield). M.p.: 218–220 °C. ¹H NMR (500MHz, DMSO- d_6): $\delta = 8.64$ (d, J = 7.5, 1H), 8.48 (d, J = 8.5Hz, 1H), 8.34 (d, J = 9.5 Hz, 1H), 8.15 (d, J = 1.5 Hz, 1H), 7.92

(t, J = 7.3 Hz, 1H), 7.83 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.40 (dd, J = 9.0),2.0 Hz, 1H), 7.11 (d, J = 7.5 Hz, 2H), 3.95 (s, 3H), 2.28 (s, 3H) ppm. ¹³C NMR (125) **MHz**, **DMSO-***d*₆): δ = 162.02, 146.15, 138.13, 137.43, 137.31, 135.75, 132.32, 131.58, 128.55, 127.33, 127.05, 126.77, 126.14, 125.97, 119.23, 110.83, 56.93, 21.25 ppm. **HRMS (ESI)** *m/z*: calcd for C₁₃H₁₀BrO⁺ (M–OTs⁻) 260.9910, found 260.9907.

2-(trifluoromethyl)dibenzo[b,d]bromol-5-ium 4-methylbenzenesulfonate (1d-OTs)

White solid (188 mg, 40% yield). M.p.: 223–225 °C. ¹H NMR (500MHz, DMSO- d_6): δ = 9.08 (s, 1H), 8.82 (d, J = 8.0 Hz, 1H), 8.73 (d, J = 8.5 Hz, 1H), 8.54 (d, J = 8.5 Hz, 1H), 8.22 (d, J = 9.0 Hz, 1H), 7.98 (t, J = 6.0 Hz, 1H), 7.90 (t, J = 8.0 Hz, 1H), 7.50 (d,

J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 2.28 (s, 3H) ppm. ¹³C NMR (125 MHz, DMSO-*d*₆): 145.67, 139.43, 137.71 (d, $J_{C-F}= 3.3$ Hz), 137.51, 136.84, 134.48, 132.65, 131.79 (q, $J_{C-F}= 32.6$ Hz), 131.33, 128.11, 128.04 (d, $J_{C-F}= 3.4$ Hz), 127.12, 127.02, 125.62, 125.53, 123.50 (q, $J_{C-F}= 271.8$ Hz), 123.49, 20.80 ppm. ¹⁹F NMR (471 MHz, DMSO-*d*₆): $\delta = -60.80$ (s) ppm. HRMS (ESI) *m/z*: calcd for C₁₃H₇BrF₃⁺ (M–OTs⁻) 298.9678, found 298.9678.

3-(methoxycarbonyl)dibenzo[*b,d*]bromol-**5-ium 4-methylbenzenesulfonate** (1e-OTs)

(d, J = 8.0 Hz, 1H), 7.96 (t, J = 7.0 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 3.95 (s, 3H), 2.28 (s, 3H) ppm. ¹³C NMR (125 MHz, **DMSO-***d*₆): $\delta = 164.29$, 145.67, 139.50, 137.79, 137.69, 136.29, 134.34, 132.90, 131.82, 131.54, 131.42, 128.10, 127.19, 126.58, 126.29, 125.77, 125.52, 53.06, 20.80 ppm. HRMS (ESI) *m/z*: C₁₄H₁₀BrO₂⁺ (M–OTs⁻) 288.9859, found 288.9860.

2,8-dichlorodibenzo[b,d]bromol-5-ium 4-methylbenzenesulfonate (1f-OTs)

White solid (283 mg, 60% yield). M.p.: 185–187 °C. ¹H NMR (500MHz, DMSO-d₆): δ = 8.84 (s, 2H), 8.67 (d, J = 9.0 Hz, 2H), 7.93 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 7.5 Hz, 2H), 7.11 (d, J = 7.5 Hz, 2H), 2.28 (s, 3H) ppm. ¹³C NMR (125 MHz, DMSO-

 d_6): $\delta = 145.74, 137.63, 136.45, 136.34, 135.67, 131.66, 128.07, 127.42, 126.22, 125.51, 126.22, 125.51, 126.22,$

20.80 ppm. **HRMS (ESI)** *m*/*z*: calcd for C₁₂H₆BrCl₂⁺ (M–OTs⁻) 298.9025, found 298.9025.

4-methyldibenzo[*b*,*d*]bromol-5-ium 4-methylbenzenesulfonate (1g-OTs)

White solid (355 mg, 85% yield). M.p.: 226–228. ¹H NMR (500MHz, DMSO-d₆): $\delta = 8.61$ (d, J = 8.0 Hz, 2H), 8.44 (d, J = 7.5Hz, 1H), 7.97 (t, J = 7.3 Hz, 1H), 7.87 (t, J = 7.8 Hz, 2H), 7.72 (d, J= 7.5 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.5 Hz, 2H), 2.75 (s, 3H), 2.27 (s, 3H) ppm. ¹³C NMR (125 MHz, DMSO-d₆): $\delta = 145.72$, 138.46, 137.65, 135.85, 135.09, 134.51, 132.65, 132.19, 131.57, 128.08, 127.14, 125.84, 125.50, 124.06, 21.45, 20.80 ppm. HRMS (ESI) m/z: calcd for C₁₃H₁₀Br⁺ (M–OTs⁻) 244.9960, found 244.9964.

2.2 General procedure for the homo anion-cation coupling

To a dry Schlenk tube was added **1** (0.1 mmol), Cs_2CO_3 (3 equiv), and dichloromethane (DCM, 1 mL). The mixture was stirred at room temperature under air for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford products **2**.

2.3 General procedure for competition experiments

The mixture of **1a-**BF₄ (0.1 mmol), NaOMe (1 equiv), NaOAc (1 equiv), NaOTs (1 equiv), Cs₂CO₃ (3 equiv) and CH₂Cl₂ (1 mL) was stirred at room temperature for 1 or

1.5 hours, then the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1 to 10/1, v/v) to afford the mixture of **2a**, **3a** and **4a**. The mixture and DMAP (12.2 mg, 0.1 mmol) were added to a NMR tube for ¹H NMR analysis.

Figure S1. ¹H NMR (500 MHz, CDCl₃) of the mixture of 2a/3a/4a after 1 h

Figure S2.¹H NMR (500 MHz, CDCl₃) of the mixture of 2a/3a/4a after 1.5 h

2.4 General procedure for the cross anion-cation coupling

To a dry Schlenk tube was added **1-OTs** (0.1 mmol), alcohol/phenol/water (ROH, 5 equiv), Cs_2CO_3 (3 equiv) and DCM (1 mL). The mixture was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1 \rightarrow 5/1, v/v) to afford products **3**, and **5-8**.

3. Isotope labeling experiments

The mixture of **1a**-OTs (0.1 mmol), methanol- d_4 (2 equiv), Cs₂CO₃ (3 equiv) and DCM (1 mL) was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford deuterium *d*-3a. ¹H NMR analysis showed that 50% hydrogen at the *ortho* position of the biphenyl was deuterated.

The mixture of **1a**-OTs (0.1 mmol), methanol- d_4 (2 equiv), Cs₂CO₃ (3 equiv), 4Å MS (30 mg) and DCM (1 mL) was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford corresponding deuterium *d*-3a. ¹H NMR analysis showed that 60% hydrogen at the *ortho* position of the biphenyl was deuterated.

The mixture of **1a**-OTs (0.1 mmol), methanol (2 equiv), D_2O (10 equiv), Cs_2CO_3 (3 equiv) and DCM (0.1 mL) was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford corresponding deuterium *d*-3a. ¹H NMR analysis showed that 80% hydrogen at the *ortho* position of the biphenyl was deuterated.

The mixture of **1a**-OTs (0.1 mmol), D₂O (5 equiv), Cs₂CO₃ (3 equiv) and DCM (1 mL) was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford deuterium *d*-di-3q (23 mg, 95% yield). ¹H NMR analysis showed that > 90% hydrogen at the *ortho* position of the biphenyl was deuterated.

The mixture of **1a**-OTs (0.1 mmol), methanol-d4 (5 equiv), Cs₂CO₃ (3 equiv) and DCM (1 mL) was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford corresponding deuterium *d*-3a. ¹H NMR analysis showed that 100% (> 95%) hydrogen at the *ortho* position of the biphenyl was deuterated.

The mixture of **1a**-OTs (0.1 mmol), methanol-d4 (5 equiv), methanol (5 equiv), Cs₂CO₃ (3 equiv) and DCM (1 mL) was stirred at room temperature for 12 hours. After the reaction was completed, the mixture was passed through a silica gel column (200–300 mesh), eluting with petroleum ether/EtOAc (40/1, v/v) to afford deuterium *d*-3a. ¹H NMR analysis showed that 50% hydrogen at the *ortho* position of the biphenyl was deuterated and 57% hydrogen of the methoxy group was deuterated.

4. Experimental data for the described substances

2'-bromo-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (2a)

2H), 7.08 (dd, J = 8.5 Hz, 1.5 Hz, 1H), 7.00 (s, 1H), 2.44 (s, 3H) ppm. ¹³C NMR (125)

MHz, CDCl₃): δ = 149.30, 145.51, 142.72, 141.08, 133.29, 132.45, 131.21, 129.96, 129.37, 129.35, 128.78, 128.26, 127.57, 123.62, 122.46, 121.80, 21.84 ppm. HRMS
(ESI) *m/z*: calcd for C₁₉H₁₆BrO₃S (M+H) 403.0004, found 403.0006.

2'-bromo-[1,1'-biphenyl]-3-yl benzenesulfonate (2b)

Br O-S Yellow oil (27) O-S O-S

Yellow oil (27 mg, 69% yield, m:o > 20:1). ¹H NMR (500MHz, CDCl₃): $\delta = 7.87$ (d, J = 7.5 Hz, 2H), 7.67– 7.61 (m, 2H), 7.53 (t, J = 7.3 Hz, 2H), 7.37–7.31 (m, 2H),

7.27 (d, J = 8.5 Hz, 1H, cover the solvent), 7.20 (t, J = 8.5 Hz, 2H), 7.08 (d, J = 8.0 Hz, 1H), 7.00 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 149.23$, 142.80, 141.01, 135.47, 134.35, 133.30, 131.18, 129.39, 129.35, 128.75, 128.37, 127.59, 123.55, 122.46, 121.75 ppm. HRMS (ESI) *m/z*: calcd for C₁₈H₁₄BrO₃S (M+H) 388.9847, found 388.9843.

2'-bromo-[1,1'-biphenyl]-3-yl 4-chlorobenzenesulfonate (2c)

Yellow oil (28 mg, 66% yield, m:o > 20:1). ¹H NMR (500MHz, CDCl₃): $\delta = 7.80$ (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.38– 7.33 (m, 2H), 7.29 (d, J = 7.5 Hz, 1H), 7.22–7.19 (m, 2H), 7.08 (d, J = 8.5 Hz, 1H), 7.02 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 149.08$, 142.96, 141.21, 140.90, 133.85, 133.35, 131.18, 130.17, 129.73, 129.55, 129.50, 128.55, 127.66, 123.49, 122.42, 121.65. HRMS (ESI) *m/z*: calcd for C₁₈H₁₃BrClO₃S (M+H) 422.9457, found 422.9459.

2'-bromo-[1,1'-biphenyl]-3-yl naphthalene-2-sulfonate (2d)

Yellow oil (28 mg, 60% yield, m:o > 20:1). ¹H NMR (500MHz, CDCl₃): $\delta = 8.38$ (s, 1H), 7.99 (d, J = 9.0Hz, 1H), 7.93 (t, J = 7.3 Hz, 2H), 7.88 (d, J = 9.0 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.25–7.23 (m, 2H), 7.16–7.12 (m, 2H), 7.06 (d, J = 7.5 Hz, 1H), 6.97 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 149.27$, 142.73, 140.92, 135.61, 133.21, 132.17, 131.99, 131.14, 130.84, 129.77, 129.74, 129.59, 129.43, 129.30, 128.34, 128.13, 128.00, 127.50, 123.53, 123.08, 122.33, 121.84 ppm. HRMS (ESI) *m/z*: calcd for C₂₂H₁₆BrO₃S (M+H) 439.0004, found 439.0005.

2'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (2e) and 2'-bromo-5'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (2e')

Yellow oil (38 mg, 75% yield, **2e:2e'** =15:1, *m:o* > 20:1). ¹H NMR (500MHz, CDCl₃, major): δ = 7.75 (d, *J* = 8.0 Hz, 2H), 7.66 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 7.55 (s, 1H), 7.37–7.34 (m, 3H), 7.27–7.26 (m, 3H, cover the solvent), 7.24–7.21 (m, 1H), 2.54 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃, major): δ = 149.27, 146.10, 143.60, 139.66, 133.49, 131.99 (q, *J*_{C-F} = 33.0 Hz), 131.92, 131.09,

130.14, 130.07, 128.77, 127.85, 127.21, 125.09 (q, $J_{C-F} = 3.4$ Hz), 123.22 (q, $J_{C-F} = 271.3$ Hz), 122.25, 119.03 (q, $J_{C-F} = 3.5$ Hz), 21.83 ppm. ¹⁹F NMR (471 MHz, CDCl₃, major): $\delta = -62.69$ (s) ppm. HRMS (ESI) *m*/*z*: calcd for C₂₀H₁₅BrF₃O₃S (M+H) 470.9877, found 470.9878.

2-bromo-3'-methoxy-1,1'-biphenyl (3a)²

Yellow oil (25 mg, 97% yield, m:o = 15:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67$ (d, J = 8.0 Hz,

1H), 7.36–7.35 (m, 3H), 7.22–7.20 (m, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.96–6.94 (m, 2H), 3.85 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 159.24$, 142.57, 142.55,

133.25, 131.33, 129.14, 128.91, 127.46, 122.67, 121.95, 115.18, 113.35, 55.43 ppm. HRMS (ESI) *m/z*: calcd for C₁₃H₁₂BrO (M+H) 263.0072, found 263.0074. The NMR data are consistent with the reference.²

2-bromo-3'-(methoxy-d₃)-1,1'-biphenyl-2'-d (d-3a)

Yellow oil (26 mg, 97% yield), purification via a silica (200-300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67$ (d, J = 8.0 Hz, 1H), 7.36–7.33 (m, 3H), 7.22–7.20 (m, 1H), 6.99 (d, J = 7.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 159.22$ (d, $J_{C-D} = 5.6$ Hz), 142.52 ($J_{C-D} =$ 9.3 Hz), 142.48, 133.26, 131.34, 129.14, 128.92, 127.47, 122.69, 121.92, 115.20 (J_{C-D} = 3.8 Hz), 113.41, 55.31 ppm. **HRMS (ESI)** m/z: calcd for C₁₃H₈D₄BrO₃ (M+H) 267.0323, found 267.0325.

2-bromo-3'-methoxy-4'-methyl-1,1'-biphenyl (3b) and 2-bromo-3'-methoxy-4methyl-1,1'-biphenyl (3b')

Me

purification via a silica (200-300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500) **MHz, CDCl₃, isomers):** δ = 7.67 (d, J = 8.0 Hz, 1H), 7.50 OMe (s, 0.67H), 7.35–7.33 (m, 2.67H), 7.23–7.17 (m, 3.33H), 6.98 (d, J = 8.0 Hz, 0.67H), 6.95–6.89 (m, 3.33H), 3.86

Yellow oil (29 mg, 70% yield, **3b**:**3b'** = 3:2, *m*:*o*>20:1),

(s, 3H), 3.85 (s, 2H), 2.38 (s, 2H), 2.28 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃, isomers): $\delta = 159.21, 157.27, 142.85, 142.50, 139.94, 139.61, 139.08, 133.68, 133.25,$ 131.44, 131.04, 130.29, 129.07, 128.71, 128.29, 127.45, 126.18, 122.81, 122.34, 122.07, 121.32, 115.29, 113.17, 111.49, 55.51, 55.42, 20.85, 16.23 ppm. HRMS (ESI) *m/z*: calcd for C₁₄H₁₄BrO (M+H) 277.0228, found 277.0226.

2-bromo-3',5'-dimethoxy-1,1'-biphenyl (3c) and 2-bromo-3',5-dimethoxy-1,1'biphenyl (3c')

= 2.0 Hz, 0.5H), 3.85 (s, 3H), 3.83 (s, 3H), 3.81 (s, 4.2H) ppm. ¹³C NMR (125 MHz, CDCl₃, isomers): δ = 160.29, 159.12, 158.77, 143.24, 143.00, 142.53, 142.46, 133.72, 133.14, 131.11, 129.05, 128.84, 127.31, 122.45, 121.73, 116.58, 114.99, 114.83, 113.30, 112.98, 107.62, 99.77, 55.56, 55.44, 55.32 ppm. HRMS (ESI) *m/z*: calcd for C₁₄H₁₄BrO₂ (M+H) 293.0177, found 293.0177.

2-bromo-3'-methoxy-5'-(trifluoromethyl)-1,1'-biphenyl (3d) and 2-bromo-3'methoxy-5-(trifluoromethyl)-1,1'-biphenyl (3d')

Yellow oil (32 mg, 96% yield, 3d:3d' = 10:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃, major): δ = 7.69 (d, J = 8.0 Hz, 1H), 7.40–7.37 (m, 1H), 7.34–7.32 (m, 1H), 7.26–7.23 (m, 2H, cover the solvent), 7.16 (s, 1H), 7.14 (s, 1H), 3.89 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃, major): δ = 159.46, 143.19, 141.18, 133.43, 131.67

(q, $J_{C-F} = 32.1 \text{ Hz}$), 131.21, 129.55, 127.68, 124.04 (q, $J_{C-F} = 270.9 \text{ Hz}$), 122.45, 118.82, 118.73 (q, $J_{C-F} = 3.8 \text{ Hz}$), 110.11 (q, $J_{C-F} = 3.6 \text{ Hz}$), 55.77 ppm. ¹⁹F NMR (471 MHz, CDCl₃, major): $\delta = -62.56$ (s) ppm. HRMS (ESI) *m/z*: calcd for C₁₄H₁₁BrF₃O (M+H) 330.9945, found 330.9947.

methyl 2'-bromo-3-methoxy-[1,1'-biphenyl]-4-carboxylate (m-3e)

Yellow oil (23.7 mg, 74% yield), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 20/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 7.86 (d,

J = 7.5 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.34–7.32 (m, 1H), 7.24 (t, J = 7.5 Hz, 1H, cover the solvent), 7.03 (s, 1H), 7.01 (d, J = 8.0 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.53$, 158.69, 146.35, 141.60, 133.31, 131.48, 130.96, 129.35, 127.49, 122.20, 121.25, 119.02, 113.48, 56.14, 52.11 ppm. HRMS (ESI) *m/z*: calcd for C₁₅H₁₄BrO₂ (M+H) 321.0121, found 321.0122.

methyl 2'-bromo-2-methoxy-[1,1'-biphenyl]-4-carboxylate (*o*-3e) and methyl 2bromo-3'-methoxy-[1,1'-biphenyl]-4-carboxylate (3e')

Yellow oil (7.8 mg, 25% yield, *o*-3e:3e' = 5:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃, major): δ = 7.72 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.67–7.65 (m, 2H), 7.37 (td, *J* = 7.5, 1.0 Hz, 1H), 7.28–7.23 (m, 3H, cover the solvent), 3.95 (s, 3H), 3.85 (s, 3H) ppm. ¹³C NMR (125 MHz,

CDCl₃, major): δ = 167.01, 156.71, 139.05, 135.03, 132.70, 131.32, 131.26, 130.98, 129.25, 127.24, 123.85, 121.91, 111.90, 55.94, 52.39 ppm. **HRMS (ESI)** *m/z*: calcd for C₁₅H₁₄BrO₃ (M+H) 321.0126, found 321.0125.

2-bromo-3',5-dichloro-5'-methoxy-1,1'-biphenyl (3f)

Yellow oil (19.3 mg, 58% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 7.58 (d, J = 8.5 Hz, 1H), 7.30 (d, J = 2.5 Hz, 1H), 7.20 (dd,

J = 2.5 Hz, 8.5 Hz, 1H), 6.96–6.93 (m, 2H), 6.81–6.80 (m, 1H), 3.84 (s, 3H) ppm. ¹³C

NMR (125 MHz, CDCl₃): δ = 159.81, 143.65, 141.07, 133.22, 131.04, 129.26, 127.45, 124.77, 122.33, 122.27, 116.38, 114.45, 55.62 ppm. HRMS (ESI) *m/z*: calcd for C₁₃H₁₀BrCl₂O (M+H) 330.9287, found 330.9285.

2-bromo-3'-ethoxy-1,1'-biphenyl (3g)

Br OEt Yellow oil (27 mg, 97% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67$ (d, J = 8.5 Hz, 1H), 7.37–7.32 (m, 3H), 7.22–7.19 (m, 1H), 6.99–6.92 (m, 3H), 4.08 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 158.60$, 142.64, 142.51, 133.23, 131.34, 129.11, 128.87, 127.44, 122.68, 121.80, 115.67, 113.99, 63.60, 15.01 ppm. HRMS (ESI) m/z: calcd for C₁₄H₁₄BrO (M+H) 277.0228, found 277.0226.

2-bromo-3'-ethoxy-3-methyl-1,1'-biphenyl (3h)

Br OEt Colourless oil (20.5 mg, 70% yield, m:o = 5:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v) ¹H NMR (500 MHz, CDCl₃): $\delta = 7.33$ (t, J = 8.0 Hz, 1H), 7.25–7.24 (m, 2H), 7.15 (t, J = 4.5 Hz, 1H), 6.96–6.92 (m, 3H), 4.08 (q, J = 7.0 Hz, 1H), 2.50 (s, 1H), 1.44 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): 158.54, 143.49, 143.38, 138.94, 129.82, 129.00, 128.70, 126.83, 125.37, 121.83, 115.68, 113.80, 63.55, 24.38, 15.01 ppm. HRMS (ESI) m/z: calcd for C₁₅H₁₆BrO (M+H) 291.0385, found 291.0383.

2-bromo-3'-butoxy-1,1'-biphenyl (3i)

Yellow oil (20 mg, 66% yield, m:o = 13:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 7.66 (d, J = 8.5 Hz, 1H), 7.37–7.31 (m, 3H), 7.21–7.19

(m, 1H), 6.98–6.92 (m, 3H), 4.00 (t, J = 6.3 Hz, 2H), 1.82–1.76 (m, 2H), 1.53–1.47 (m,

2H), 0.98 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 158.84$, 142.67, 142.51, 133.23, 131.35, 129.08, 128.86, 127.44, 122.69, 121.74, 115.70, 114.03, 67.88, 31.50, 19.41, 14.03 ppm. **HRMS (ESI)** m/z: calcd for C₁₆H₁₈BrO (M+H) 305.0541, found 305.0544.

2-bromo-3'-(2,2,2-trifluoroethoxy)-1,1'-biphenyl (3j)

Yellow oil (28 mg, 85% yield, m:o > 20:1), purification via a silica (200-300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ

= 7.67 (d, J = 8.0 Hz, 1H), 7.40-7.35 (m, 2H), 7.33-7.31 (m, 1H), 7.24-7.21 (m, 1H),7.09 (d, J = 7.5 Hz, 1H), 6.99–6.97 (m, 2H), 4.41–4.37 (m, 2H) ppm. ¹³C NMR (125) **MHz, CDCl₃**): $\delta = 157.05, 142.89, 141.95, 133.32, 131.27, 129.48, 129.19, 127.57,$ 123.79, 123.47 (q, $J_{C-F} = 276.1 \text{ Hz}$), 122.56, 116.10, 114.38, 66.02 (q, $J_{C-F} = 35.3 \text{ Hz}$) ppm. ¹⁹F NMR (471 MHz, CDCl₃): $\delta = -73.91$ (s) ppm. HRMS (ESI) *m/z*: calcd for C₁₄H₁₁BrF₃O (M+H) 330.9945, found 330.9946.

2-bromo-3'-isopropoxy-1,1'-biphenyl (3k)

Yellow oil (28 mg, 99% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹**H NMR (500 MHz, CDCl₃):** δ = 7.67 (d, J = 7.5 Hz, 1H), 7.35–7.32 (m, 3H), 7.22–7.19 (m, 1H), 6.97–6.92 (m, 3H), 4.62–4.57 (m, 1H), 1.38 (d, J = 6.0 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 157.56, 142.67, 142.51,$ 133.23, 131.35, 129.15, 128.84, 127.44, 122.67, 121.68, 116.91, 115.53, 70.06, 22.24 ppm. HRMS (ESI) *m/z*: calcd for C₁₅H₁₆BrO (M+H) 291.0385, found 291.0388.

2-bromo-3'-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-1,1'-biphenyl (31) and 2bromo-2'-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)-1,1'-biphenyl (o-3l)

Yellow oil (34 mg, 85% yield, m:o = 3:1), purification via a silica (200–300 meshes)

gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃, isomers): δ = 7.68 (d, J = 7.0 Hz, 1.33 H), 7.42 (t, J = 8.0 Hz, 1H), 7.39–7.36 (m, 1.66H), 7.32–7.29 (m, 1.33H), 7.26–7.20 (m, 2.66H), 7.15 (s, 1H), 7.11 (dd, J = 8.5 Hz, 1.5Hz, 1H), 7.04–7.01 (m, 0.66H), 5.01–4.96 (m, 0.33H), 4.87–4.83 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃, isomers): δ = 157.27, 143.23, 142.97, 141.70, 141.39, 133.42, 133.36, 131.25, 131.22, 129.84, 129.54, 129.40, 129.25, 127.67, 125.94,

123.80 (q, $J_{C-F} = 311.5 \text{ Hz}$), 122.38, 118.64, 116.67, 116.32, 114.54, 76.69 (heptet, $J_{C-F} = 33.0 \text{ Hz}$, cover the solvent) ppm. ¹⁹F NMR (471 MHz, CDCl₃, isomers): $\delta = -64.58$ (d), -73.48 (t) ppm. HRMS (ESI) *m/z*: calcd for C₁₅H₁₀BrF₆O (M+H) 398.9819, found 398.9818.

2-bromo-3'-(cyclohexyloxy)-1,1'-biphenyl (3m)

Yellow oil (20 mg, 60% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃):

 δ = 7.66 (d, *J* = 8.0 Hz, 1H), 7.34–7.30 (m, 3H), 7.21–7.19 (m, 1H), 7.15–7.10 (m, 1H), 6.94–6.92 (m, 2H), 4.30–4.25 (m, 1H), 2.04–2.02 (m, 2H), 1.83–1.80 (m, 2H), 1.37– 1.34 (m, 4H), 1.29 (s, 1H), 1.26 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 157.46, 142.68, 142.47, 133.23, 131.38, 129.12, 128.84, 127.45, 122.70, 121.67, 117.04, 115.68, 32.00, 25.78, 23.95 ppm. HRMS (ESI) *m*/*z*: calcd for C₁₈H₂₀BrO (M+H) 331.0698, found 331.0696.

2-bromo-3'-(*tert*-butoxy)-1,1'-biphenyl (3n)

Yellow oil (30 mg, 77% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 7.66 (d, J =

8.0 Hz, 1H), 7.33–7.30 (m, 3H), 7.21–7.20 (m, 1H), 7.10–7.07 (m, 2H), 7.02–7.01 (m, 1H), 1.38 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 155.04, 142.47, 141.99, 133.21, 131.34, 128.85, 128.57, 127.46, 125.43, 124.42, 123.56, 122.76, 78.96, 29.07 ppm. HRMS (ESI) *m/z*: calcd for C₁₆H₁₈BrO (M+H) 305.0541, found 305.0544.

2-bromo-3'-(*tert*-pentyloxy)-1,1'-biphenyl (30)

Br O

Yellow oil (23 mg, 70% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ

= 7.66 (d, J = 8.0 Hz, 1H), 7.35–7.29 (m, 3H), 7.21–7.18 (m, 1H), 7.08 (d, J = 8.0 Hz, 1H), 7.05 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 1.71 (q, J = 7.3 Hz, 2H), 1.30 (s, 6H), 1.02 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 155.13$, 142.49, 141.98, 133.21, 131.35, 128.85, 128.58, 127.46, 125.25, 124.22, 123.40, 122.77, 81.38, 34.68, 26.35, 8.85 ppm. HRMS (ESI) *m*/*z*: calcd for C₁₇H₂₀BrO (M+H) 319.0698, found 319.0700.

2-bromo-3'-phenoxy-1,1'-biphenyl (3p)

Yellow oil (29 mg, 90% yield, m:o = 10:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.65$ (d, J = 7.5 Hz,

1H), 7.41–7.33 (m, 5H), 7.21–7.18 (m, 1H), 7.13 (t, J = 8.5 Hz, 2H), 7.09–7.04 (m, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 157.16$, 156.94, 142.83, 142.00, 133.27, 131.27, 129.91, 129.47, 129.06, 127.51, 124.36, 123.50, 122.62, 120.01, 119.16, 118.13 ppm. HRMS (ESI) *m*/*z*: calcd for C₁₈H₁₄BrO (M+H) 325.0228, found 325.0224.

3',3'''-oxybis(2-bromo-1,1'-biphenyl) (di-3q)

Yellow oil (23 mg, 96% yield, *m,m:others* = 5:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃, major): δ = 7.64 (d, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.34–7.33 (m, 4H), 7.20–7.18 (m,

2H), 7.15–7.09 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, major): δ = 156.77, 142.88, 141.98, 133.26, 131.30, 129.51, 129.07, 127.50, 124.51, 122.64, 120.19, 118.27 ppm. C₁₈H₁₄BrO (M+H) 325.0228, found 325.0224. HRMS (ESI) *m/z*: calcd for C₂₄H₁₇Br₂O (M+H) 480.9626, found 480.9636.

3',3'''-oxybis(2-bromo-1,1'-biphenyl-2'-*d*) (*d*-di-3q)

Br

Yellow oil (24 mg, 95% yield), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500 MHz, CDCl₃): δ = 7.64 (d, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.36–7.33 (m, 4H), 7.21–7.18 (m, 2H), 7.14–7.13 (m, 2H), 7.10 (d, *J* = 8.5 Hz,

2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 156.78 (d, J_{C-D} = 6.3 Hz), 142.86 (d, J_{C-D} = 11.0 Hz), 142.00 (d, J_{C-D} = 3.8 Hz), 133.28, 131.30, 129.51, 129.07, 127.51, 124.52, 122.66, 120.21, 118.28 ppm. HRMS (ESI) *m/z*: calcd for C₂₄H₁₅D₂Br₂O (M+H) 482.9746, found 482.9744.

2'-bromo-[1,1'-biphenyl]-3-ol (mono-3q)

Colourless oil (12 mg, 48% yield). ¹H NMR (500MHz, CDCl₃): δ = 7.66 (d, J = 8.0 Hz, 1H), 7.37–7.29 (m, 3H), 7.20 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 7.5 Hz, 2H), 6.88–6.86 (m, 2H), 4.99 (s, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 155.16, 142.79, 142.23, 133.24,

131.29, 129.40, 128.97, 127.47, 122.59, 122.15, 116.58, 114.72 ppm. **HRMS (ESI)** *m/z*: calcd for C₁₂H₁₀BrO (M+H) 248.9915, found 248.9910.

4-((2'-bromo-[1,1'-biphenyl]-3-yl)oxy)-2-methylbutan-2-ol (3r)

Yellow oil (30 mg, 90% yield, m:o = 15:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 10/1, v/v). ¹H NMR (500 MHz, CDCl₃):

δ = 7.66 (d, *J* =8.0 Hz, 1H), 7.35–7.34 (m, 3H), 7.22–7.19 (m, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.97–6.94 (m, 2H), 4.23 (t, *J* = 5.8 Hz, 2H), 2.35 (s, 1H), 2.02 (t, *J* = 6.0 Hz, 2H), 1.32 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 158.11, 142.50, 142.34, 133.14, 131.21, 129.08, 128.84, 127.37, 122.52, 122.18, 115.61, 113.92, 70.45, 65.24, 41.69, 29.63 ppm. HRMS (ESI) *m/z*: calcd for C₁₇H₂₀BrO (M+H) 335.0647, found 335.0645.

1-(2'-bromo-[1,1'-biphenyl]-3-yl)piperidin-4-ol (N-3s) and 4-((2'-bromo-[1,1'biphenyl]-3-yl)oxy)piperidine (O-3s)

Yellow oil (20 mg, 60% yield, N-3r:O-3r = 10:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 10/1, v/v). ¹H NMR (500 MHz, CDCl₃, major): δ = 7.66 (d, J = 8.0 Hz, 1H), 7.34–7.29 (m, 3H), 7.21–7.17 (m, 1H), 6.97–6.96 (m, 2H), 6.86 (d, J = 7.5 Hz, 1H), 3.89–3.83 (m, 1H), 3.63– 3.60 (m, 2H), 2.99–2.94 (m, 2H), 2.03–2.01 (m, 2H),

1.72–1.67 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃, major): δ = 150.85, 143.15, 142.05, 133.18, 131.35, 128.83, 128.73, 127.41, 122.76, 120.55, 117.93, 115.70, 68.08, 65.72, 47.37, 34.30, 19.32, 13.88 ppm. HRMS (ESI) *m/z*: calcd for C₁₇H₁₉BrNO (M+H) 332.0650, found 332.0653.

4-((1*R*)-((2'-bromo-[1,1'-biphenyl]-3-yl)oxy)(5-vinylbicyclo[2.2.2]octan-2yl)methyl)-6-methoxyquinoline (5)

Yellow oil (50 mg, 91% yield, m:o > 20:1), purification via a silica (200–300 meshes)

gel column (petroleum ether/EtOAc = 5/1, v/v). ¹**H NMR (500 MHz, CDCl₃):** δ = 8.75 (d, *J* = 4.0 Hz, 1H), 8.07 (d, *J* = 9.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.42 (dd, *J* = 9.3 Hz, 2.3 Hz, 1H), 7.34 (d, *J* = 4.0 Hz, 2H), 7.31 (d, *J* = 4.5 Hz, 2H), 7.20–7.17 (m, 1H), 6.95 (s, 2H),

6.86 (d, J = 7.5 Hz, 1H), 6.23–6.15 (m, 1H), 5.30 (s, 1H), 5.19–5.16 (m, 2H), 4.17 (s, 1H), 3.97 (s, 3H), 3.68–3.63 (m, 2H), 3.09 (d, J = 12.0 Hz, 1H), 3.05–3.04 (m, 1H), 2.93–2.88 (m, 1H), 2.60 (d, J = 5.0 Hz, 1H), 2.05–2.00 (m, 2H), 1.83–1.81 (m, 2H), 1.65–1.60 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 158.15$, 151.76, 148.11, 144.05, 143.17, 142.02, 141.93, 137.49, 133.21, 131.90, 131.37, 128.77, 128.73, 127.56, 127.42, 122.78, 121.75, 120.59, 118.08, 117.26, 117.00, 115.93, 101.18, 61.43, 55.88, 55.77, 55.57, 49.15, 43.54, 37.02, 35.84, 29.84, 28.60 ppm. HRMS (ESI) *m/z*: calcd for C₃₃H₃₃BrNO₂ (M+H) 554.1695, found 554.1699.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-3-((2'-bromo-[1,1'-biphenyl]-3-yl)oxy)-10,13dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1*H*-cyclopenta[a]phenanthrene (6)

Yellow oil (23 mg, 38% yield, m:o > 20:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc

= 10/1, v/v). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.66 (d, *J* = 7.0 Hz, 1H), 7.42–7.30 (m, 3H), 7.21–7.18 (m, 1H), 7.14–7.09 (m, 1H), 6.95–6.91 (m, 2H), 5.40–5.38 (m, 1H), 4.62–4.60 (m, 1H), 2.31 (d, *J* = 7.0 Hz, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.02–1.95 (m, 3H), 1.86–1.84 (m, 3H), 1.61–1.54 (m, 8H), 1.16–1.06 (m, 12H), 1.02 (s, 1H), 0.91 (d, *J* = 6.5 Hz, 3H), 0.86 (d, *J* = 4.5 Hz, 6H), 0.68 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 173.50, 157.38, 131.36, 129.19, 128.85, 127.45, 124.51, 122.73, 121.76, 120.20, 118.27, 116.88, 115.58, 73.81, 56.82, 56.26, 50.15, 42.45, 39.87, 39.66, 38.80, 37.14, 36.74, 36.32, 35.94, 32.08, 32.05, 32.00, 28.38, 28.16, 27.96, 24.43, 23.97, 22.98,

22.71, 21.17, 19.47, 18.86, 12.00 ppm. **HRMS (ESI)** *m*/*z*: calcd for C₃₉H₅₄BrO (M+H) 617.3358, found 617.3355.

2-bromo-3'-(dodecyloxy)-1,1'-biphenyl (7)

Colorless oil (23 mg, 40% yield, m:o = 15:1), purification via a silica (200–300 meshes) gel column (petroleum ether/EtOAc = 40/1, v/v). ¹H NMR (500

MHz, CDCl₃): δ = 7.66 (d, J = 8.0 Hz, 1H), 7.37–7.31 (m, 3H), 7.22–7.18 (m, 1H), 6.97 (d, J = 7.5 Hz, 1H), 6.94–6.92 (m, 2H), 3.99 (d, J = 6.5 Hz, 2H), 1.82–1.77 (m, 2H), 1.49–1.43 (m, 1H), 1.26 (s, 8H), 0.88 (t, J = 6.8 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 158.84, 142.69, 142.50, 133.23, 131.35, 129.08, 128.85, 127.43, 122.70, 121.73, 115.71, 114.05, 68.21, 32.07, 29.81, 29.79, 29.75, 29.74, 29.56, 29.50, 29.44, 26.21, 22.84, 14.27 ppm. HRMS (ESI) *m/z*: calcd for C₂₄H₃₄BrO (M+H) 417.1793, found 417.1795.

(8*R*,9*S*,13*S*,14*S*)-3-((2'-bromo-[1,1'-biphenyl]-3-yl)oxy)-13-methyl-

6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one (8)

Yellow oil (40 mg, 80% yield, m:o > 20:1). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.65$ (d, J = 7.5 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.34–

7.31 (m, 2H), 7.25 (s, 1H), 7.21–7.18 (m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 7.05–7.03 (m, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.82 (s, 1H), 2.90–2.87 (m, 2H), 2.54–2.48 (m, 1H), 2.42–2.39 (m, 1H), 2.31–2.26 (m, 1H), 2.19–2.11 (m, 1H), 2.08–1.96 (m, 4H), 1.54–1.42 (m, 5H), 0.93 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCI₃): $\delta = 157.03$, 154.79, 142.60, 141.98, 138.24, 134.88, 133.11, 131.14, 129.28, 128.89, 127.35, 126.65, 123.91, 122.54, 119.62, 119.12, 117.83, 116.52, 53.43, 50.44, 47.99, 44.11, 38.19, 35.87, 31.57, 29.52, 26.45, 25.85, 21.59, 13.86 ppm. HRMS (ESI) *m/z*: calcd for C₃₀H₃₀BrO₂ (M+H) 501.1429, found 501.1425.

5. References

[1] M. Lanzi, Q. Dherbassy, J. Wencel-Delord, Cyclic Diaryl λ^3 -Bromanes as Original Aryne Precursors, *Angew. Chem.*, *Int. Ed.*, **2021**, *60*, 14852–14857.

 [2] Z. Jiang, K. Sekine, Y. Kuninobu, Synthesis of Fluorenes and Their Related Compounds from Biaryls and Meldrum's Acid Derivatives, *Chem. Commun.*, 2022, 58, 843–846.

6. Copies of ¹H and ¹³C spectra

¹H NMR (500 MHz, DMSO- d_6) of **1a**-OTs

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

¹H NMR (500 MHz, DMSO-d₆) of **1a-**OBs

¹³C NMR (125 MHz, DMSO-d₆) of **1a-**OBs

48.240 36.558 35.339 31.215 28.490 27.696 25.309 25.507 25.507	0.020 9.853 9.520 9.520 9.520 9.353 9.186
	4000000

⊕ O₃S

¹³C NMR (125 MHz, DMSO-d₆) of **1a-**OCs

180 319 319 319 319 485 296 5296 5296	19 88 19 19
256.7.7.1	0.08.09.09.00
	4000000

¹³C NMR (125 MHz, DMSO-d₆) of 1a-OMs

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 fl (ppm)

¹³C NMR (125 MHz, DMSO-*d*₆) of **1a-**BF₄

 -131.746	—125.512 ≻122.951	(40.021 (-40.021 (-39.854 (-39.568 (-39.587 (-39.186

$^{19}\mathrm{F}\,\mathrm{NMR}$ (471 MHz, DMSO- $d_6)$ of $\mathbf{1a}\text{-}\mathrm{BF}_4$

¹³C NMR (125 MHz, DMSO-*d*₆) of **1c-**OTs

^{13}C NMR (125 MHz, DMSO- $d_6) of 1d-OTs$

¹⁹F NMR (471 MHz, DMSO-*d*₆) of **1d-**OTs

-90 -110 fl (ppm) 10 -10 -20 -30 -40 -50 -60 -70 -80 -130 -150 -170 -190 0

¹³C NMR (125 MHz, DMSO-*d*₆) of **1e-**OTs

¹³C NMR (125 MHz, DMSO-d₆) of **1f-**OTs

¹³C NMR (125 MHz, DMSO-*d*₆) of **1g-**OTs

-2.436 -1.554 7.353 7.342 7.337 7.337 7.335 7.335 7.335 7.335 7.335 7.275 7.275 7.193 7.193 7.1093 7.076 7.727 7.632 7**.**8 6.9 7.7 7.6 7.5 7.1 7.0 7.4 7.3 fl (ppm) 7.2 2.05 1.05 2.08 2.08 2.08 1.00 3.00--6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm) 12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0

¹³C NMR (125 MHz, CDCl₃) of 2a

¹H NMR (500 MHz, CDCl₃) of **2b**

¹³C NMR (125 MHz, CDCl₃) of 2c

¹H NMR (500 MHz, CDCl₃) of 2e

¹³C NMR (125 MHz, CDCl₃) of 2e

¹⁹F NMR (471 MHz, CDCl₃) of **2e**

 ^{13}C NMR (125 MHz, CDCl₃) of 3a

¹³C NMR (125 MHz, CDCl₃) of *d*-3a

^{13}C NMR (125 MHz, CDCl_3) of **3b and 3b'**

¹H-¹H NOESY of **3b and 3b'**

¹³C NMR (125 MHz, CDCl₃) of 3c and 3c'

¹H NMR (500 MHz, CDCl₃) of **3d**

7, 805 7, 778 7, 778 7, 679 7, 679 7, 679 7, 1465 7, 1465 7, 1465 7, 1465 7, 1465 7, 1465 7, 1465 7, 1465 7, 1465 7, 1, 133 7, 1, 233 7, 2,

^{13}C NMR (125 MHz, CDCl₃) of 3d

(159.464 (159.456 (139.426 (143.379 (143.379 (141.3796 (121.735 (125.126 (121.735 (125.126 (121.735 (125.126 (121.735 (125.126 (121.735) (121.735 (121.735)

¹⁹F NMR (471 MHz, CDCl₃) of **3d**

¹H-¹H NOESY of **3d**

¹H NMR (500 MHz, CDCl₃) of *m*-3e

¹³C NMR (125 MHz, CDCl₃) of *m*-3e

166.528	158.690	146.355 141.605	131.476 127.491	119.022 113.478	77.300 77.046 76.792	56.142 52.110
1	1	T T	11	TT		11

¹H NMR (500 MHz, CDCl₃) of *o*-3e and 3e'

¹³C NMR (125 MHz, CDCl₃) of *o*-3e and 3e'

¹H NMR (500 MHz, CDCl₃) of **3f**

¹H NMR (500 MHz, CDCl₃) of **3i**

¹H NMR (500 MHz, CDCl₃) of **3j**

7.689 7.664 7.664 7.582 7.382 7.382 7.382 7.382 7.382 7.335 7.7355 7.7355 7.7355 7.7355 7.7355 7.7355 7.7355 7.7555 7

¹³C NMR (125 MHz, CDCl₃) of **3j**

¹⁹F NMR (471 MHz, CDCl₃) of **3**j

$\begin{array}{c} \mathbb{Z}_{7.680}^{7.680} \\ \mathbb{Z}_{7.665}^{7.665} \\ \mathbb{Z}_{7.231}^{7.7} \\ \mathbb{Z}_{7.188}^{7.7} \\ \mathbb{Z}_{6.918}^{7.7} \\ \mathbb{Z}_{6.918}^{7.60} \\ \mathbb{Z}_{6.918}^{4.607} \\ \mathbb{Z}_{6.918}^{4.607} \\ \mathbb{Z}_{7.571}^{4.607} \\$

¹⁹F NMR (471 MHz, CDCl₃) of **3**l

L-64.561 -64.605 -73.463 -73.481 -73.493

S69

¹H NMR (500 MHz, CDCl₃) of **3m**

150 140 130 120 110 100 fl (ppm) 210 200 -10

¹H NMR (500 MHz, CDCl₃) of **3n**

77.667 77.331 77.331 77.392 77.292 77.292 77.293 77.293 77.293 77.213 77.213 77.213 77.213 77.213 77.213 77.071 77.071 77.071 77.009 76.933 $\begin{bmatrix} 1.734\\ -1.719\\ -1.575\\ -1.305\\ -1.305\\ -1.305\\ 1.003\\ 1.009 \end{bmatrix}$ ~7.651 7.350 7.331 7.338 7.308 7.292 7.292 7.198 7.087 7.071 7.047 7.009 6.993 W 7.7 7.4 7.3 fl (ppm) 7.6 7.5 7.2 7.1 7.0 6.00-≖ 3.00-≖ 1.00-<u></u> 1.00 2.00 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm) 13.5 12.5 11.5 10.5 ¹³C NMR (125 MHz, CDCl₃) of **30**
 -142.491

 -141.981

 -133.214

 133.214

 133.214

 133.214

 133.250

 128.577

 127.462

 125.250

 123.401

 122.765
-155.128 -81.376 -77.414 -77.160 -76.906 --8.846

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (125 MHz, CDCl₃) of di-3q

2.1.672 7.5724 7.298 7.7189 7.7189 6.938 6.938 6.938 6.938 6.938 4.238 4.237 4.237 −2.348 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.238 −2.338 −2.338 −2.338 −2.338 −2.338 −2.347 −2.34

¹H-¹H NOESY of **3r**

¹³C NMR (125 MHz, CDCl₃) of N-3s

2.8.756 2.8.756 2.8.74 2.8.756 2.8.74 2.8.056 2.8.74 2.8.056 2.8.77 7.1311 2.7.1311 7.1311 2.5.296 2.8.14 2.5.296 2.5.296 2.5.161 2.5.296 2.5.161 2.5.296 2.5.296 2.5.296 2.5.297 2.5.295 2.5.297 2.5.295 2.5.5.295 2.5.295 2.5.295 2.5.295 2.5.295 2.5.295 2.5.295 2.5.205 2.

 1 H NMR (500 MHz, CDCl₃) of **6**

¹³C NMR (125 MHz, CDCl₃) of 6

7.653 7.638 7.538 7.538 7.538 7.538 7.533 7.533 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.735 7.735 7.735 7.735 7.735 7.737 7.747

 $\begin{array}{c} \begin{array}{c} 2.386 \\ \hline 2.376 \\ 2.876 \\ 2.376 \\ \hline 2.286 \\ \hline 2.286 \\ \hline 1.957 \\ \hline 1.429 \\ \hline 1.429 \\ 0.925 \end{array}$

