Divergent Synthesis of 5- and 4-(2,1-Azaborine) Substituted Isoxazoles via

Regioselective [3+2] Cycloadditions of Nitrile Oxides and

B-Ethynyl-1,2-Azaborines

Yong He, ^a Hao Wang, ^a Yao Zhou, ^b Kai Yang*, ^a Qiuling Song*^{a,c,d}

^aKey Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108 (China).

^bHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, (China).

^cInstitute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University 668

Jimei Boulevard, Xiamen, Fujian, 361021 (China).

^dSchool of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 (China).

E-mail: kyang@fzu.edu.cn, qsong@hqu.edu.cn.

Contents

1. General Information	2
2. Synthesis of B-ethynyl-2,1-borazaronaphthalene	2
3. Synthesis of oxime chlorides	7
4. General procedure for the regioselective [3+2] cycloadditions Reaction	12
5. Synthetic transformations	27
6. Crystal structure of compound 3a and 4i	30
7. References	33
8. NMR Spectra	34

1. General Information

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using Bruker 400M and JEOL 500M spectrometers, chemical shifts (in ppm) were referenced to CDCl₃ ($\delta = 7.26$ ppm) and DMSO- d_6 ($\delta = 2.50$ ppm) as internal standards. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.0$ ppm) and DMSO- d_6 ($\delta = 39.5$ ppm). Data for ¹H NMR are recorded as following abbreviations: multiplicity (s = singlet, d = doublet, t = triplet, q = quarter, m = multiplet), coupling constant (*J*, Hz). High resolution mass spectroscopy (HRMS) analysis was performed at an Exactive Plus (Thermo Scientific) or Agilent 8890-7250.

2. Synthesis of B-ethynyl-2,1-borazaronaphthalene

By analogy to a modified literature procedure¹, substituted vinylaniline (5 mmol, 1.0 equiv) was dissolved in 10 mL anhydrous toluene in a Schlenk flask. Borontrichloride solution (1.0 M in toluene; 10 mL, 10 mmol, 2.0 equiv) was added dropwise via syringe to the vigorously stirring solution of amine in toluene. At the conclusion of the addition, the reaction mixture was heated at reflux for 18 h. At the end of the reaction, volatiles were removed under reduced pressure to afford the corresponding B-Cl intermediate 2-chloro-1-aza-2-boranaphthalene as an air- and moisture-sensitive oil, which could be used as is in the next step without further purification. To the Schlenk flask containing the 2-chloro-2,1-borazaronaphthalene was added 10 mL anhydrous THF and the resulting solution was cooled to -30 °C. The ethynylmagnesium bromide solution (0.5 M in THF; 30 mL, 15 mmol, 3.0 equiv) was added dropwise using a syringe, and then the reaction mixture was allowed to warm to room temperature and stirred for 12 h. At the end of the reaction, the mixture was concentrated under reduced pressure, and the remaining residue was purified by flash column ethyl afford chromatography (petroleum ether and acetate) to the corresponding B-ethynyl-2,1-borazaronaphthalene 1a-1n.

2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1a)

The general procedure was followed by using 2-vinylaniline (5 mmol) to afford the desired product **1a** (85%) as a white solid (mp: 66-68 °C). $R_f = 0.6$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.20 (s, 1H), 8.11 (d, J = 11.4 Hz, 1H), 7.67 (dd, J = 7.7, 1.4 Hz, 1H), 7.53 – 7.42 (m, 1H), 7.30 – 7.22 (m, 2H), 6.97 (dd, J = 11.4, 1.8 Hz, 1H), 2.96 (s, H). ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 139.3, 129.4, 128.6, 125.3, 121.6, 118.0, 93.1. ¹¹B NMR (160 MHz, CDCl₃) δ 25.1 (s). HRMS (EI) calcd for C₁₀H₈BN: 153.0750, found: 153.0743

2-ethynyl-6-fluoro-1,2-dihydrobenzo[e][1,2]azaborinine (1b)

The general procedure was followed by using 4-fluoro-2-vinylaniline (5 mmol) to afford the desired product **1b** (71%) as a white solid (mp: 66-68 °C). $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 7.99 (d, J = 11.5 Hz, 1H), 7.30 (dd, J = 8.9, 2.4 Hz, 1H), 7.24 – 7.15 (m, 2H), 7.03 – 6.90 (m, 1H), 2.92 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4 (d, J = 240.2 Hz), 144.7 (d, J = 3.3 Hz), 135.8, 131.2, 125.8 (d, J = 8.3 Hz), 119.2 (d, J = 8.5 Hz), 116.8 (d, J = 24.7 Hz), 113.8 (d, J = 21.7 Hz), 93.3. ¹¹B NMR (160 MHz, CDCl₃) δ 24.9 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -121.23 (s). HRMS (EI) calcd for C₁₀H₇BFN: 171.0656, found: 171.0657

2-ethynyl-6-methyl-1,2-dihydrobenzo[e][1,2]azaborinine (1c)

The general procedure was followed by using 4-methyl-2-vinylaniline (5 mmol) to afford the desired product **1c** (45%) as a white solid (mp: 66-68 °C). $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1). ¹H NMR NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 8.02 (d, *J* = 11.5 Hz, 1H), 7.43 (d, *J* = 1.8 Hz, 1H), 7.27 (dd, *J* = 8.0, 2.2 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 6.92 (dd, *J* = 11.4, 1.9 Hz, 1H), 2.92 (s, 1H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.3, 137.4, 130.9, 130.0, 129.1, 125.3, 117.8, 92.8, 20.8. ¹¹B NMR (160 MHz, CDCl₃) δ 24.9 (s). HRMS (EI) calcd for C₁₁H₁₀BN: 167.0906, found: 167.0903

2-ethynyl-5-methyl-1,2-dihydrobenzo[e][1,2]azaborinine (1d)

The general procedure was followed by using 3-methyl-2-vinylaniline (5 mmol) to afford the desired product **1d** (60%) as a colorless oil. $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.35 (d, *J* = 11.7 Hz, 1H), 8.208.14 (s, 1H), 7.33 (dd, *J* = 8.2, 7.3 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.98 (dd, *J* = 11.7, 2.0 Hz, 1H), 2.948.14 (s, 1H), 2.628.14 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 139.8, 136.5, 128.4, 124.1, 123.4, 116.8, 93.2, 19.6. ¹¹B NMR (160 MHz, CDCl₃) δ 22.6 (s). HRMS (EI) calcd for C₁₁H₁₀BN: 167.0906, found: 167.0906

6-chloro-2-ethynyl-8-fluoro-1,2-dihydrobenzo[e][1,2]azaborinine (1e)

The general procedure was followed by using 4-chloro-2-fluoro-6-vinylaniline (5 mmol) to afford the desired product **1e** (74%) as a white solid (mp: 106-108 °C). $R_f = 0.4$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 7.95 (dd, J = 11.7, 1.8 Hz, 1H), 7.40 (d, J = 1.7 Hz, 1H), 7.23 (dd, J = 10.3, 2.1 Hz, 1H), 7.03 (dd, J = 11.5, 1.9 Hz, 1H), 2.96 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ

151.0 (d, J = 247.5 Hz), 143.6 (d, J = 3.0 Hz), 127.2 (d, J = 3.8 Hz), 127.1 (d, J = 12.6 Hz), 125.5 (d, J = 10.3 Hz), 123.9 (d, J = 3.6 Hz), 114.1 (d, J = 21.2 Hz), 94.0. ¹¹B NMR (160 MHz, CDCl₃) δ 25.2 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -133.52 (s). HRMS (EI) calcd for C₁₀H₆BClFN: 205.0266, found: 205.0273

2-ethynyl-6-methoxy-1,2-dihydrobenzo[e][1,2]azaborinine (1f)

The general procedure was followed by using 4-methoxy-2-vinylaniline (5 mmol) to afford the desired product **1f** (44%) as a white solid (mp: 105-107 °C). $R_f = 0.3$ (silica gel, PE:EtOAc = 20:1). **¹H NMR NMR (500 MHz, CDCl**₃) δ 8.14 (s, 1H), 8.01 (d, *J* = 11.4 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 7.12 – 7.03 (m, 2H), 6.94 (dd, *J* = 11.5, 1.9 Hz, 1H), 3.86 (s, 3H), 2.90 (s, 1H). **¹³C NMR (126 MHz, CDCl**₃) δ 154.1, 145.0, 134.1, 130.4, 125.8, 119.0, 118.1, 110.3, 92.8, 55.5. **¹¹B NMR (160 MHz, CDCl**₃) δ 22.2 (s). **HRMS**

(EI) calcd for C₁₁H₁₀BNO: 183.0855, found: 183.0859

2-ethynyl-7-fluoro-1,2-dihydrobenzo[e][1,2]azaborinine (1g)

The general procedure was followed by using 5-fluoro-2-vinylaniline (5 mmol) to afford the desired product **1g** (54%) as a white solid (mp: 51-52 °C). $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 8.03 (d, J = 11.4 Hz, 1H), 7.59 (dd, J = 8.6, 6.0 Hz, 1H), 7.04 – 6.91 (m, 2H), 6.87 (dd, J = 11.4, 2.0 Hz, 1H), 2.94 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (d, J = 247.7 Hz), 145.1, 140.5 (d, J = 10.9 Hz), 131.2 (d, J = 10.2 Hz), 122.1, 110.1 (d, J = 23.0 Hz), 103.8 (d, J = 23.7 Hz), 93.7. ¹¹B NMR (160 MHz, CDCl₃) δ 25.5 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.05 (s). HRMS (EI) calcd for C₁₀H₇BFN: 171.0656, found: 171.0663

6-chloro-2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1h)

The general procedure was followed by using 4-chloro -2-vinylaniline (5 mmol) to afford the desired product **1h** (65%) as a white solid (mp: 113-115 °C). $R_f = 0.4$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 7.96 (d, J = 11.4 Hz, 1H), 7.60 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 8.6, 2.3 Hz, 1H), 7.18 (d, J = 8.6 Hz, 1H), 6.97 (dd, J = 11.5, 1.9 Hz, 1H), 2.94 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.4, 137.7, 128.7, 128.4, 126.6, 126.1, 119.2, 93.7. ¹¹B NMR (160 MHz, CDCl₃) δ 25.2 (s). HRMS (EI) calcd for C10H7BCIN: 187.0360, found: 187.0362

2-ethynyl-6-(trifluoromethoxy)-1,2-dihydrobenzo[e][1,2]azaborinine (1i)

The general procedure was followed by using 4-trifluoromethoxy-2-vinylaniline (5 mmol) to afford the desired product **1i** (54%) as a white solid (mp: 38-39 °C). $R_f = 0.3$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.21 (s, 1H), 8.02 (d, *J* = 11.5 Hz, 1H), 7.49 (d, *J* = 2.5 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.26 (d, *J* = 8.9 Hz, 1H), 7.00 (dd, *J* = 11.5, 1.8 Hz, 1H), 2.94 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.8, 143.2, 137.8, 125.6, 122.1, 121.1, 120.6 (q, *J*=257.0 Hz), 119.2, 93.7. ¹¹B NMR (160 MHz, CDCl₃) δ 25.3 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -58.04 (s). HRMS (EI) calcd for C₁₁H₇BF₃NO: 237.0573, found: 237.0570

2-ethynyl-4-methyl-1,2-dihydrobenzo[e][1,2]azaborinine (1j)

The general procedure was followed by using 2-isopropenylaniline (5 mmol) to afford the desired product **1j** (65%) as a white solid (mp: 66-68 °C). $R_f = 0.6$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.83 (dt, J = 8.6, 1.1 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.28 – 7.22 (m, 2H), 6.78 (t, J = 1.6 Hz, 1H), 2.91 (s, 1H), 2.61 (d, J = 1.2 Hz, 3H)). ¹³C NMR (126 MHz, CDCl₃) δ 152.2, 139.7, 128.3, 125.7, 125.5, 121.5, 118.6, 92.6, 22.7. ¹¹B NMR (160 MHz, CDCl₃) δ 22.6 (s). HRMS (EI) calcd for C₁₀H₈BN: 167.0906, found: 167.0911

6-bromo-2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1k)

The general procedure was followed by using 4-bromo-2-vinylaniline (5 mmol) to afford the desired product **1k** (37%) as a white solid (mp: 122-123 °C). $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1). ¹H NMR NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 7.95 (d, *J* = 11.5 Hz, 1H), 7.76 (d, *J* = 2.3 Hz, 1H), 7.50 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 1H), 6.96 (dd, *J* = 11.5, 2.0 Hz, 1H), 2.94 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.3, 138.0, 131.5, 131.3, 126.7, 119.5, 114.0, 93.6. ¹¹B NMR (160 MHz, CDCl₃) δ 23.0 (s). HRMS (EI) calcd for C₁₀H₇BBrN: 230.9855, found: 230.9846

2-ethynyl-4-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine (11)

The general procedure was followed by using 2-(1-phenylvinyl)aniline (5 mmol) to afford the desired product **11** (53%) as a white solid (mp: 90-92 °C). $R_f = 0.4$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.22 (s, 1H), 7.65 – 7.61 (m, 1H), 7.50 – 7.40 (m, 6H), 7.32 (dd, J = 8.2, 1.2 Hz, 1H), 7.17 – 7.11 (m, 1H), 6.87 (d, J = 1.9 Hz, 1H), 2.93 (s, 1H). ¹³C NMR (126 MHz, CDCl₃)156.9, 141.9, 140.0, 128.9, 128.5, 128.2, 128.1, 127.5, 124.5, 121.5, 118.5, 93.0. ¹¹B NMR (160 MHz, CDCl₃) δ 22.8 (s). HRMS (EI) calcd for C₁₆H₁₂BN: 229.1063, found: 229.1058

2-ethynyl-1-isopropyl-1,2-dihydrobenzo[e][1,2]azaborinine (1m)

The general procedure was followed by using N-isopropyl-2-vinylaniline (5 mmol) to afford the desired product **1m** (65%) as a colorless oil. $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1). ¹H NMR NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 11.3 Hz, 1H), 7.94 – 7.73 (m, 1H), 7.69 (dd, J = 7.8, 1.7 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 11.3 Hz, 1H), 5.36 (d, J = 362.2 Hz, 1H), 3.24 (s, 1H), 1.78 (d, J = 7.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 130.9, 127.6, 120.7, 118.4, 114.2, 99.0, 96.1, 53.8, 49.6, 23.0, 21.6. ¹¹B NMR (160 MHz, CDCl₃) δ 22.5 (s). HRMS (EI) calcd for C₁₃H₁₄BN: 195.1219, found: 195.1213

1-benzyl-2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1n)

The general procedure was followed by using N-benzyl-2-vinylaniline (5 mmol) to afford the desired product **1n** (65%) as a white solid (mp: 75- 76 °C). $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1).

¹**H** NMR NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 11.4 Hz, 1H), 7.68 (dd, J = 7.8, 1.5 Hz, 1H), 7.42 – 7.35 (m, 2H), 7.31 (dd, J = 8.2, 6.8 Hz, 2H), 7.27 – 7.17 (m, 4H), 7.07 (d, J = 11.4 Hz, 1H), 5.68(s, 2H), 3.07(s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 140.8, 138.2, 130.3, 128.7, 128.6, 127.1, 127.0, 126.0, 121.3, 116.4, 96.0, 53.56. ¹¹B NMR (160 MHz, CDCl₃) δ 24.9 (s). HRMS (EI) calcd for C₁₇H₁₄BN: 243.1219, found: 243.1228

2-(hex-1-yn-1-yl)-1,2-dihydrobenzo[e][1,2]azaborinine (10)

By analogy to a modified literature procedure¹, o-vinylaniline (5 mmol, 1.0 equiv) was dissolved in 10 mL anhydrous toluene in a Schlenk flask. Borontrichloride solution (1.0 M in toluene; 10 mL, 10 mmol, 2.0 equiv) was added dropwise via syringe to the vigorously stirring solution of amine in toluene. At the conclusion of the addition, the reaction mixture was heated at reflux for 18 h. At the end of the reaction, volatiles were removed under reduced pressure to afford the corresponding B–Cl intermediate 2-chloro-1-aza-2-boranaphthalene as an air- and moisture-sensitive oil, which could be used as is in the next step without further purification. To the Schlenk flask containing the 2-chloro-2,1-borazaronaphthalene was added 10 mL anhydrous THF and the resulting solution was cooled to -78 °C. The hexynyllithium (6.5 mmol, 1.3 equiv), prepared from hexyne and *n*-butyllithium, was added dropwise using a syringe, and then the reaction mixture was concentrated under reduced pressure, and the remaining residue was purified by flash column chromatography (petroleum ether and ethyl acetate) to afford the desired product **10** (50%) as a colorless oil. R_f = 0.5 (silica gel, PE:EtOAc = 20:1).

¹**H NMR NMR (500 MHz, CDCl₃)** δ 8.04 (d, *J* = 11.4 Hz, 2H), 7.62 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.24 – 7.13 (m, 2H), 6.92 (dd, *J* = 11.5, 1.9 Hz, 1H), 2.44 (t, *J* = 7.1 Hz, 2H), 1.68 – 1.60 (m, 2H), 1.58 –

1.49 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.0, 139.7, 129.3, 128.3, 125.2, 121.1, 117.8, 107.9, 30.8, 22.0, 19.7, 13.6. ¹¹B NMR (160 MHz, CDCl₃) δ 25.4 (s). HRMS (EI) calcd for C₁₄H₁₆BN: 209.1376, found: 209.1373

6-ethynyl-5,6-dihydrodibenzo[c,e][1,2]azaborinine (5)

By analogy to a modified literature procedure, ^{1,2} to the stirring solution of 2-aminodiphenyl (5 mmol, 1 equiv) in 10 mL dry CH₂Cl₂ at 0 °C was added BBr₃ (1.0M in CH₂Cl₂, 3 equiv) drop-wise under argon atmosphere. Then the solution was warmed to room temperature and then stirred at 45 °C for 12 h. At the conclusion of the reaction, volatiles were removed under reduced pressure to afford the corresponding B–Br intermediate as an air- and moisture-sensitive oil, which could be used as is in the next step without further purification.the mixture was concentrated under reduced pressure and reused argon protection. To the Schlenk flask containing the B–Br intermediate was added 10 mL anhydrous THF and the resulting solution was cooled to -30 °C. The ethynylmagnesium bromide solution (0.5 M in THF; 30 mL, 15 mmol, 3.0 equiv) was added dropwise using a syringe, and then the reaction mixture was allowed to warm to room temperature and stirred for 12 h. At the end of the reaction, the mixture was concentrated under reduced pressure to afford the zone temperature and stirred for 12 h. At the end of the reaction, the mixture was concentrated under reduced pressure to a springe, and then the reaction mixture was concentrated under reduced pressure, and the remaining residue was purified by flash column chromatography (petroleum ether and ethyl acetate) to afford the desired product **5** (30%) as a white solid (mp: 92- 94 °C). R_f = 0.4 (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.51 – 8.34 (m, 3H), 7.93 (s, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 3.12 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 138.3, 138.0, 135.8, 131.5, 128.0, 126.2, 123.9, 123.4, 122.1, 121.9, 119.0, 95.0. ¹¹B NMR (160 MHz, CDCl₃) δ 25.2 (s). HRMS (EI) calcd for C₁₄H₁₀BN: 203.0906, found: 203.0915

3. Synthesis of oxime chlorides

The oxime chloride 2a-2r were prepared according to the reference.^{3,4}

A 100 mL round-bottomed flask was charged with aldehyde (5 mmol, 1 equiv), hydroxylamine hydrochloride (10 mmol, 2 equiv), 2.5 mL H₂O and 22.5 mL methanol. Then, CH₃CO₂Na (10 mmol, 2 equiv) was added to the solution. The reaction was stirred at room temperature for 2 h. Upon completion, methanol was removed, aqueous layers was extracted with ethyl acetate thrice. The combine organic layers were dried over anhydrous Na₂SO₄. After removal of the solvent, the crude aldoxime was used in the next step.

A 100 mL round-bottomed flask was charged with the crude aldoxime of the first step and 15 mL DMF. Then, N-chlorosuccinimide (5.5 mmol, 1.1 equiv) in 15 mL DMF was added dropwise over a period of 20 minutes to the solution. The reaction was stirred for 2 hours at room temperature. Upon completion, the reaction mixture was diluted with 5% LiCl (aq), extracted with ethyl acetate thrice, the combine organic layers were washed with 5% LiCl (aq) and brine and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue purified on silica gel (petroleum ether: ethyl acetate = 30:1-5:1) to afford desired oxime chloride.

N-hydroxy-4-methoxybenzimidoyl chloride (2a)

The general procedure was followed by using 4-methoxybenzaldehyde (4 mmol) to afford the desired product 2a (85%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 7.89 – 7.66 (m, 2H), 6.95 – 6.89 (m, 2H), 3.85 (s, 3H).

N-hydroxybenzimidoyl chloride (2b)

The general procedure was followed by using benzaldehyde (4 mmol) to afford the desired product **2b** (71%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 7.91 – 7.79 (m, 2H), 7.49 – 7.37 (m, 3H).

N-hydroxy-4-phenoxybenzimidoyl chloride (2c)

The general procedure was followed by using 4-phenoxy benzaldehyde (4 mmol) to afford the desired product 2c (95%) as a white solid. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl₃)** δ 8.47 (s, 1H), 7.83 – 7.76 (m, 2H), 7.38 (dd, *J* = 8.6, 7.4 Hz, 2H), 7.21 – 7.15 (m, 1H), 7.10 – 7.04 (m, 2H), 7.03 – 6.99 (m, 2H).

N-hydroxy-4-methylbenzimidoyl chloride (2d)

The general procedure was followed by using 4-methylbenzaldehyde (4 mmol) to afford the desired product 2d (80%) as a white solid. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl**₃) δ 8.34 (s, 1H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 2.39.

N-hydroxy-3-methylbenzimidoyl chloride (2e)

The general procedure was followed by using 3-methylbenzaldehyde (4 mmol) to afford the desired product 2e (85%) as a colorless oil. Known compound.⁴

¹**H NMR NMR (400 MHz, CDCl₃)** δ 8.88 (s, 1H), 7.65 (d, J = 8.3 Hz, 2H), 7.34 – 7.24 (m, 2H), 2.40 (s, 3H).

N-hydroxy-3,4-dimethylbenzimidoyl chloride (2f)

The general procedure was followed by using 3,4-dimethylbenzaldehyde (4 mmol) to afford the desired product 2f (80%) as a white solid. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl**₃) δ 8.51 (s, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.56 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 2.30 (s, 6H).

N-hydroxy-2,4,6-trimethylbenzimidoyl chloride (2g)

The general procedure was followed by using 2,4,6-trimethylbenzaldehyde (4 mmol) to afford the desired product 2g (75%) as a colorless oil. Known compound.⁴

¹H NMR (400 MHz, CDCl₃) δ 6.90 (s, 2H), 2.41 (s, 6H), 2.30 (s, 3H).

N-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzimidoyl chloride (2h)

The general procedure was followed by using 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (4 mmol) to afford the desired product **2h** (55%) as a colorless oil. Known compound.⁴ **¹H NMR NMR (500 MHz, CDCl**₃) δ 8.79 (s, 1H), 7.88 – 7.79 (m, 4H), 1.37 (s, 12H).

N-hydroxy-3-(trifluoromethoxy)benzimidoyl chloride (2i)

The general procedure was followed by using 3-(trifluoromethoxy)benzaldehyde (4 mmol) to afford the desired product 2i (55%) as a colorless oil. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl₃)** δ 8.51 (s, 1H), 7.81 – 7.76 (m, 1H), 7.71 (s, 1H), 7.44 (t, *J* = 8.1 Hz, 1H), 7.33 – 7.27 (m, 1H).

N-hydroxy-3-iodobenzimidoyl chloride (2j)

The general procedure was followed by using 3-iodobenzaldehyde (4 mmol) to afford the desired product 2j (65%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.19 (s, 1H), 7.82 – 7.74 (m, 2H), 7.14 (t, *J* = 7.9 Hz, 1H).

3-bromo-N-hydroxybenzimidoyl chloride (2k)

The general procedure was followed by using 3-bromobenzaldehyde (4 mmol) to afford the desired product 2k (75%) as a white solid. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl₃)** δ 8.33 (s, 1H), 8.00 (t, *J* = 1.9 Hz, 1H), 7.79 – 7.76 (m, 1H), 7.60 – 7.55 (m, 1H), 7.28 (t, *J* = 8.0 Hz, 1H).

3-fluoro-N-hydroxybenzimidoyl chloride (21)

The general procedure was followed by using 3-fluorobenzaldehyde (4 mmol) to afford the desired product 21 (73%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃) δ 8.32 (s, 1H), 7.69 – 7.62 (m, 1H), 7.60 – 7.52 (m, 1H), 7.41 – 7.35 (m, 1H), 7.19 – 7.10 (m, 1H).

2-bromo-4-chloro-N-hydroxybenzimidoyl chloride (2m)

The general procedure was followed by using 2-bromo-4-chlorobenzaldehyde (4 mmol) to afford the desired product **2m** (80%) as a white solid (mp: 94-96 °C). $R_f = 0.5$ (silica gel, PE:EtOAc = 20:1).

¹H NMR NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 7.66 (d, *J* = 2.0 Hz, 1H), 7.42 – 7.34 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 137.4, 137.0, 133.2, 132.9, 131.8, 127.8, 122.7. HRMS (ESI) calcd for C₇H₅BrCl₂NO [M+H]⁺: 267.8932, found: 267.8931.

methyl 4-(chloro(hydroxyimino)methyl)benzoate (2n)

The general procedure was followed by using methyl 4-formylbenzoate (4 mmol) to afford the desired product 2n (81%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃) δ 8.84 (s, 1H), 8.06 (d, *J* = 8.6 Hz), 7.91 (d, *J* = 8.4 Hz), 3.95 (s, 3H).

N-hydroxy-1-naphthimidoyl chloride (20)

The general procedure was followed by using 1-naphthaldehyde (4 mmol) to afford the desired product 20 (65%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃)δ 8.63 (s, 1H), 8.24 (d, *J* = 8.2 Hz, 1H), 7.97 – 7.87 (m, 2H), 7.72 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.61 – 7.48 (m, 3H).

N-hydroxy-2-naphthimidoyl chloride (2p)

The general procedure was followed by using 2-naphthaldehyde (4 mmol) to afford the desired product 2p (60%) as a white solid. Known compound.⁴

¹H NMR NMR (500 MHz, CDCl₃) δ 8.65 (s, 1H), 8.34 (s, 1H), 7.96 – 7.81 (m, 4H), 7.60 – 7.48 (m, 2H).

N-hydroxycinnamimidoyl chloride (2q)

The general procedure was followed by using cinnamaldehyde (4 mmol) to afford the desired product 2q (61%) as a colorless oil. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl₃)** δ 8.67 (s, 1H), 7.52 – 7.47 (m, 2H), 7.41 – 7.30 (m, 4H), 6.88 (d, *J* = 15.7 Hz, 1H).

N-hydroxy-3-(4-methoxyphenyl)acrylimidoyl chloride (2r)

The general procedure was followed by using 3-(4-methoxyphenyl)acrylaldehyde (4 mmol) to afford the desired product 2r (65%) as a brown solid. Known compound.⁴

¹**H NMR NMR (500 MHz, CDCl₃)** δ 8.79 (s, 1H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.26 (d, *J* = 15.7 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.74 (d, *J* = 15.6 Hz, 1H), 3.83 (s, 3H).

$$\underbrace{\begin{array}{c} 0 \\ 0 \end{array}}_{O} \underbrace{\begin{array}{c} HCI \\ NaNO_2 (2 \text{ equiv}) \end{array}}_{O} \underbrace{\begin{array}{c} 0 \\ 0 \end{array}}_{O} \underbrace{\begin{array}{c} 0 \\ N \end{array}}_{O} \underbrace{\begin{array}{c} 0 \\ O \end{array}}_{O} \underbrace{\begin{array}{c} 0 \\O \end{array}}_{O} O \end{array}}_{O} \underbrace{\begin{array}{c} 0 \\O \end{array}}_{O} \underbrace{\begin{array}{c} 0 \\O \end{array}}_{O} \underbrace{O \end{array}}_{O} O \end{array}}_{O} \underbrace{O \end{array}}_{O} O \end{array}_{O} \underbrace{O \end{array}}_{O} \underbrace{O \end{array}}_{O} \underbrace{O \end{array}}_{O} O \end{array}_{O} \underbrace{O \end{array}}_{O} O \end{array}$$
}_{O} \underbrace{O \end{array}_{O} O \end{array}}_{O} \underbrace{O \end{array}_{O} O \end{array}}_{O} \underbrace{O }O \end{array}_{O} \underbrace{O }O \end{array}_{O} O \end{array}}_{O} \underbrace{O }O \end{array}

The oxime chloride 2u were prepared according to the reference.⁵

To a solution of glycine ester hydrochloride (2 g, 14 mmol) in 3 mL water was added conc.HCl (1.2 mL). Upon completion of addition, the resulting solution was cooled to -5 °C and then a solution of sodium nitrite (1 g, 14 mmol) in water (1.4 mL) was added. The resulting mixture was stirred at 0 °C for 10 min and then another a sodium nitrite (1 g, 14 mmol) in water (1.4 mL) was added. The resulting mixture was stirred at 0 °C for 45 min. Upon completion, a brine solution was added. The reaction mixture was extracted with ether thrice, dried over anhydrous Na₂SO₄, evaporated under reduced pressure to yield oxime chloride **2u**, was taken to the next step immediately without further purification.

4. General procedure for the regioselective [3+2] cycloaddition reaction A. Synthesis of 5-(2,1-azaborine) substituted isoxazoles

In air, a 25 mL schlenk tube was charged with 1 or 5 (0.2 mmol, 2 equiv) and 2 (0.3 mmol, 1.5 equiv). The tube was evacuated and filled with argon for three cycles. Then, DCE (2 mL) and DIPEA (0.3 mmol, 1.5 equiv) were added under argon. The reaction was allowed to stir at room temperature for 12 hours. Upon completion, proper amount of silica gel was added to the reaction mixture. After removal of the solvent, the crude reaction mixture was purified on silica gel (petroleum ether and ethyl acetate) to afford the desired products 3 or 6.

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3a)

White solid, mp: 185-186 °C. Yield: 85%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.08 (s, 1H), 8.28 (d, *J* = 11.4 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 2H), 7.78 (dd, *J* = 14.0, 8.0 Hz, 2H), 7.67 (s, 1H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.8, 160.6, 146.6, 140.2, 129.4, 128.9, 128.18, 125.5, 121.5, 121.2, 119.0, 114.6, 110.8, 55.3. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.1 (s). HRMS (EI) calcd for C₁₈H₁₅BN₂O₂: 302.1227, found: 302.1232

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-phenylisoxazole (3b)

White solid, mp: 166-168 °C. Yield: 87%. $R_f = 0.6$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.11 (s, 1H), 8.29 (d, J = 11.5 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.82 – 7.76 (m, 2H), 7.74 (s, 1H), 7.60 – 7.48 (m, 4H), 7.30 – 7.22 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.2, 146.6, 140.2, 130.0, 129.4, 129.2, 129.2, 128.9, 126.7, 125.5, 121.6, 119. 21, found: 272.11120, 111.0. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.3(s). HRMS (EI) calcd for C₁₇H₁₃BN₂O: 272.11

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-phenoxyphenyl)isoxazole (3c)

White solid, mp: 100-102 °C. Yield: 90%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.10 (s, 1H), 8.28 (d, J = 11.5 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.78 (dd, J = 11.5, 8.1 Hz, 2H), 7.70 (s, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.30 – 7.18 (m, 3H), 7.13 (dd, J = 13.4, 8.2 Hz, 4H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.6, 158.4, 155.83, 146.6, 140.2, 130.2, 129.4, 128.9, 128.6, 125.5, 124.2, 123.7, 121.5, 119.4, 119.0, 118.6, 110.9. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 28.3 (s). HRMS (EI) calcd for C_{23H17}BN₂O₂: 364.1383, found: 364.1385

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3d)

White solid, mp: 169-171 °C. Yield: 91%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.09 (s, 1H), 8.28 (d, J = 11.4 Hz, 1H), 7.84 (d, J = 7.8 Hz, 2H), 7.78 (dd, J = 13.0, 8.0 Hz, 2H), 7.70 (s, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.35 (d, J = 7.7 Hz, 2H), 7.30 – 7.21 (m, 2H), 2.37 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.1, 146.6, 140.2, 139.6, 129.7, 129.4, 128.9, 126.6, 126.0, 125.5, 121.5, 119.0, 110.9, 20.9. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.3 (s). HRMS (EI) calcd for C₁₈H₁₅BN₂O : 286.1277, found: 286.1276

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3e)

White solid, mp: 233-234 °C. Yield: 92%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.09 (s, 1H), 8.29 (d, *J* = 11.4 Hz, 1H), 7.82 – 7.71 (m, 5H), 7.60 – 7.49 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.21 (m, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.2, 146.6, 140.2, 138.5, 130.6, 129.4, 129.1, 128.9, 128.7, 127.21, 125.5, 123.9, 121.5, 119.0, 111.1, 20.9. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 26.9. HRMS (EI) calcd for C₁₈H₁₅BN₂O : 286.1277, found: 286.1273

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3,4-dimethylphenyl)isoxazole (3f)

White solid, mp: 157-159 °C. Yield: 91%. R_f = 0.6 (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.08 (s, 1H), 8.28 (d, *J* = 11.4 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.69 (s, 1H), 7.65 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.29 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.22 (m, 2H), 2.31 (s, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.1, 146.6, 140.2, 138.4, 137.1, 130.2, 129.4, 128.9, 127.6, 126.3, 125.5, 124.2, 121.5, 119.0, 111.0, 19.4, 19.3. ¹¹B NMR (160 MHz, DMSO- *d*₆) δ 27.0 (s). HRMS (EI) calcd for C₁₉H₁₇BN₂O: 300.1434, found: 300.1431

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-mesitylisoxazole (3g)

White solid, mp: 210-212 °C. Yield: 48%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.02 (s, 1H), 8.24 (d, *J* = 11.4 Hz, 1H), 7.86 – 7.62 (m, 2H), 7.60 – 7.40 (m, 1H), 7.26 – 7.16 (m, 3H), 6.96 (s, 2H), 2.25 (s, 3H), 2.06 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.6, 146.6, 140.2, 138.1, 136.5, 129.4, 129.0, 128.3, 126.3, 125.5, 121.6, 119.0, 114.2, 20.7, 20.0. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.5 (s). HRMS (EI) calcd for C₂₀H₁₉BN₂O: 314.1590, found: 314.1586

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isoxazole (3h)

White solid, mp: 200-201 °C. Yield: 93%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.11 (s, 1H), 8.29 (d, *J* = 11.4 Hz, 1H), 7.98 (d, *J* = 7.9 Hz, 2H), 7.85 (d, *J* = 7.8 Hz, 2H), 7.82 – 7.73 (m, 3H), 7.64 – 7.44 (m, 1H), 7.38 – 7.09 (m, 2H), 1.31 (s, 12H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.0, 146.7, 140.2, 135.2, 131.5, 129.4, 129.0, 126.1, 125.5, 121.6, 119.0, 111.1, 83.9, 24.7. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.3 (s). HRMS (ESI) calcd for C₂₃H₂₅B₂N₂O₃ [M+H]⁺: 399.2051, found: 399.2042

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-(trifluoromethoxy)phenyl)isoxazole (3i)

White solid, mp: 109-110 °C. Yield: 92%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.13 (s, 1H), 8.29 (d, J = 11.4 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.91 (s, 1H), 7.84 (s, 1H), 7.78 (dd, J = 11.0, 8.0 Hz, 2H), 7.70 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.1 Hz, 2H), 7.33 – 7.18 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.09, 148.91, 146.69, 140.16, 131.42, 131.07, 129.38, 128.97, 125.85, 125.55, 122.50, 121.59, 120.1 (q, J = 257.04 Hz), 119.13, 119.03, 111.23. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 26.2 (s). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -56.69 (s). HRMS (EI) calcd for C₁₈H₁₂BF₃N₂O₂: 356.0944, found: 356.0942

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-iodophenyl)isoxazole (3j)

White solid, mp: 163-164 °C. Yield: 93%. R_f = 0.3 (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.10 (s, 1H), 8.33 – 8.24 (m, 2H), 7.97 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.81 – 7.72 (m, 3H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.28 – 7.20 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.0, 146.7, 140.2, 138.6, 135.0, 131.3, 131.0, 129.4, 129.0, 126.1, 125.6, 121.7, 119.1, 111.2, 95.5. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.2 (s). HRMS (EI) calcd for C₁₇H₁₂BIN₂O: 398.0087, found: 398.0078

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-bromophenyl)isoxazole (3k)

White solid, mp: 163-165 °C. Yield: 86%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.11 (s, 1H), 8.29 (d, *J* = 11.5 Hz, 1H), 8.13 (t, *J* = 1.9 Hz, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.82 (s, 1H), 7.81 – 7.74 (m, 2H), 7.72 (dd, *J* = 8.0, 1.9 Hz, 1H), 7.58 – 7.46 (m, 2H), 7.29 – 7.20 (m,2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.0, 146.7, 140.2, 132.8, 131.4, 131.1, 129.4, 129.2, 129.0, 125.7, 125.5, 122.4, 121.6, 119.0, 111.2. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.2 (s). HRMS (EI)

calcd for C17H12BBrN2O: 350.0226, found: 350.0220

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-fluorophenyl)isoxazole(3l)

White solid, mp: 167-168 °C. Yield: 94%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆)δ 11.12 (s, 1H), 8.29 (d, J = 11.4 Hz, 1H), 7.85 – 7.74 (m, 5H), 7.65 – 7.57 (m, 1H), 7.57 – 7.51 (m, 1H), 7.41 – 7.33 (m, 1H), 7.30 – 7.20 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.5 (d, J = 243.2 Hz), 160.3 (d, J = 2.9 Hz), 146.7, 140.2, 131.4 (d, J = 8.4 Hz), 131.1 (d, J = 8.4 Hz), 129.4, 128.9, 125.5, 122.9 (d, J = 2.9 Hz), 121.6, 119.0, 116.8 (d, J = 21.1 Hz), 113.5 (d, J = 23.0 Hz), 111.2. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.6 (s). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -111.99 (s). HRMS (EI) calcd for C₁₇H₁₂BFN₂O: 290.1027, found: 290.1021

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(2-bromo-4-chlorophenyl)isoxazole (3m)

White solid, mp: 181-182 °C. Yield: 85%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.14 (s, 1H), 8.29 (d, *J* = 11.5 Hz, 1H), 7.99 (d, *J* = 2.1 Hz, 1H), 7.77 (dd, *J* = 8.2, 2.2 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.59 – 7.50 (m, 1H), 7.32 – 7.19 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.5, 146.7, 140.2, 132.8, 132.6, 129.4, 129.4, 129.0, 128.3, 125.5, 122.4, 121.6, 119.0, 113.6, 113.6. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.3 (s). HRMS (EI) calcd for C₁₇H₁₁BBrClN₂O: 383.9836, found: 383.9834

methyl 3-(5-(benzo[e][1,2]azaborinin-2(1H)-yl)isoxazol-3-yl)benzoate (3n)

White solid, mp: 225-226 °C. Yield: 80%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.12 (s, 1H), 8.29 (d, *J* = 11.5 Hz, 1H), 8.10 (q, *J* = 8.1 Hz, 4H), 7.78 (dd, *J* = 18.0, 8.9 Hz, 3H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.7, 160.4, 146.7, 140.2, 133.1, 130.7, 130.0, 129.4, 129.0, 127.0, 125.6, 121.6, 119.0, 111.2, 52.3. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 26.3 (s). HRMS (EI) calcd for C₁₉H₁₅BN₂O₃: 330.1176 found: 330.1175

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(naphth654-alen-1-yl)isoxazole (30)

White solid, mp: 141-143 °C. Yield: 88%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-d₆) δ 11.16 (s, 1H), 8.46 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 11.5 Hz, 1H), 8.17 – 8.00 (m, 2H), 7.88 (d, J = 6.9 Hz, 1H), 7.79 (t, J = 7.7 Hz, 2H), 7.74 – 7.60 (m, 4H), 7.56 (t, J = 7.6 Hz, 1H), 7.36 – 7.22 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.3, 146.7, 140.2, 133.5, 130.36, 130.1, 129.4, 129.0, 128.6, 128.0, 127.3, 126.6, 126.4, 125.6, 125.6, 125.4, 121.6, 119.0, 114.1. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.3 (s). HRMS (ESI) calcd for C₂₁H₁₆BN₂O [M+H]⁺: 323.1356, found: 323.1357

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(naphthalen-2-yl)isoxazole (3p)

White solid, mp: 204-206 °C. Yield: 84%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.15 (s, 1H), 8.54 (s, 1H), 8.31 (d, *J* = 11.4 Hz, 1H), 8.08 (dd, *J* = 8.6, 3.8 Hz, 3H), 8.04 – 7.96 (m, 1H), 7.90 (s, 1H), 7.80 (dd, *J* = 19.3, 8.0 Hz, 2H), 7.65 – 7.53 (m, 3H), 7.36 – 7.21 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.2, 146.6, 140.2, 133.5, 132.9, 129.4, 129.0, 128.8, 128.4, 127.8, 127.1, 126.9, 126.4, 126.3, 125.5, 124.0, 121.5, 119.0, 111.3. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.2 (s). HRMS (EI) calcd for C₂₁H₁₅BN₂O: 322.1277, found: 322.1275

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-styrylisoxazole (3q)

White solid, mp: 184-186 °C. Yield: 90%. R_f = 0.2 (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.08 (s, 1H), 8.28 (d, *J* = 11.5 Hz, 1H), 7.83 – 7.74 (m, 2H), 7.74 – 7.67 (m, 2H), 7.64 (s, 1H), 7.57 – 7.32 (m,6H), 7.29 – 7.19 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.8, 146.6, 140.2, 135.8, 135.8, 129.3, 128.9, 128.9, 128.9, 127.1, 125.5, 121.5, 119.0, 115.9, 110.3. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.4 (s). HRMS (EI) calcd for C₁₉H₁₅BN₂O: 298.1277, found: 298.1278

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxystyryl)isoxazole (3r)

White solid, mp: 189-190 °C. Yield: 93%. $R_f = 0.1$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (**500** MHz, DMSO-*d*₆)δ 11.06 (s, 1H), 8.28 (d, *J* = 11.5 Hz,1H), 7.82 – 7.73 (m,2H), 7.68 – 7.62 (m, 2H), 7.60 (s, 1H), 7.56 – 7.50 (m, 1H), 7.41 (d, *J* = 16.5 Hz, 1H), 7.29 – 7.17 (m,3H), 7.02 – 6.95 (m, 2H), 3.79 (s, 3H). ¹³C NMR (**126** MHz, DMSO *d*₆) δ 171.0, 159.9, 146.6, 140.2, 135.5, 129.3, 128.9, 128.6, 128.4, 125.5, 121.5, 119.0, 114.3, 113.4, 110.2, 55.2. ¹¹B NMR (**160** MHz, DMSO-*d*₆) δ 26.9 (s). HRMS (EI) calcd for C₂₀H₁₇BN₂O₂: 328.1383, found: 328.1382

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-phenethylisoxazole (3s)

White solid, mp: 159-161 °C. Yield: 75%. $R_f = 0.6$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 8.20 (d, J = 11.5 Hz, 1H), 7.69 (d, J = 7.9 Hz,1H), 7.50 (t, J = 7.7 Hz,1H), 7.40 (d, J = 8.3 Hz, 1H), 7.37 – 7.20 (m, 6H), 7.13 (d, J = 11.4 Hz, 1H), 6.72 (s, 1H), 3.32 – 2.86 (m, J = 4.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 162.5, 146.8, 140.7, 139.4, 129.6, 129.0, 128.5, 128.4, 126.3, 125.9, 121.8, 118.6, 112.6, 34.7, 27.6. ¹¹B NMR (160 MHz, CDCl₃) δ 27.0 (s). HRMS (EI) calcd for C₁₉H₁₇BN₂O: 300.1434, found: 300.1426

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-bromoisoxazole (3t)

White solid, mp: 186-188 °C. Yield: 26%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ δ 11.12 (s, 1H), 8.29 (d, *J* = 11.4 Hz, 1H), 7.82 – 7.70 (m, 2H), 7.58 – 7.52 (m, 1H), 7.48 (s, 1H), 7.31 – 7.24 (m, 1H), 7.19 (dd, *J* = 11.4, 1.8 Hz,1H). ¹³C NMR (126 MHz, DMSO -*d*₆) δ 146.9, 140.0, 139.8, 129.4, 129.1, 125.6, 121.8, 119.0, 115.8. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 26.82 (s). HRMS (EI) calcd for C₁₁H₈BBrN₂O: 273.9913, found: 273.9908

ethyl 5-(benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole-3-carboxylate (3u)

White solid, mp: 114-115 °C. Yield: 28%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 8.24 (d, *J* = 11.6 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.34 – 7.23 (m, 2H), 7.17 (d, *J* = 11.7 Hz, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.45 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 160.3, 156.0, 147.3, 139.2, 129.7, 129.2, 126.0, 122.2, 118.7, 113.0, 62.2, 14.2. ¹¹B NMR (160 MHz, CDCl₃) δ 24.6 (s). HRMS (EI) calcd for C₁₄H₁₃BN₂O₃: 268.1019, found: 268.1014

5-(6-methoxybenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3v)

White solid, mp: 204-205 °C. Yield: 86%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1)

¹**H** NMR NMR (**500** MHz, **DMSO**-*d*₆) δ 10.99 (s, 1H), 8.24 (d, *J* = 11.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.6 (s, 1H), 7.28 (d, *J* = 3.0 Hz, 1H), 7.26 – 7.16 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 3.83 (s, 6H). ¹³**C** NMR (**126** MHz, **DMSO**-*d*₆) δ 160.7, 160.5, 153.9, 146.0, 134.9, 128.2, 126.1, 121.3, 120.1, 118.6, 114.6, 110.4, 110.1, 55.3, 55.3. ¹¹**B** NMR (**160** MHz, **DMSO**-*d*₆) δ 24.4 (s). **HRMS (EI)** calcd for C₁₉H₁₇BN₂O₃: 332.1332, found: 332.1328

5-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3w)

White solid, mp: 215-216 °C. Yield: 91%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹**H NMR NMR (500 MHz, DMSO-***d*₆) δ 11.15 (s, 1H), 8.26 (d, *J* = 11.5 Hz, 1H), 7.93 – 7.85 (m, 2H), 7.81 (dd, *J* = 9.1, 5.1 Hz, 1H), 7.66 (s, 1H), 7.61 (dd, *J* = 9.6, 3.0 Hz, 1H), 7.50 – 7.38 (m, 1H), 7.30 (dd, *J* = 11.5, 1.7 Hz, 1H), 7.17 – 7.01 (m, 2H), 3.82 (s, 3H). ¹³**C NMR (126 MHz, DMSO-***d*₆) δ 160.7 (d, *J* = 26.7 Hz),

157.8, 155.9, 145.8, 136.9, 128.2, 126.01 (d, J = 8.6 Hz), 121.2, 120.7 (d, J = 8.4 Hz), 117.2 (d, J = 24.2 Hz), 114.6, 113.5 (d, J = 21.5 Hz), 111.0. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 27.4 (s). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -121.41 (s). HRMS (EI) calcd for C₁₈H₁₄BFN₂O₂: 320.1132, found: 320.1129

5-(7-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3x)

White solid, mp: 213-214 °C. Yield: 83%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.16 (s, 1H), 8.28 (d, *J* = 11.5 Hz, 1H), 7.91 – 7.85 (m, 2H), 7.83 (dd, *J* = 8.8, 6.4 Hz, 1H), 7.67 (s, 1H), 7.55 (dd, *J* = 10.7, 2.6 Hz, 1H), 7.19 (dd, *J* = 11.4, 1.7 Hz, 1H), 7.16 – 7.07 (m, 3H), 3.82 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.1, 161.1, 160.7 (d, *J* = 30.9 Hz), 146.2, 141.4 (d, *J* = 12.0 Hz), 131.6 (d, *J* = 10.2 Hz), 128.2, 122.6, 121.1, 114.6, 111.2, 110.0 (d, *J* = 23.2 Hz), 104.4 (d, *J* = 24.1 Hz), 55.3. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 25.6 (s). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -110.98 (s). HRMS (EI) calcd for C₁₈H₁₄BFN₂O₂: 320.1132, found: 320.1140

3-(4-methoxyphenyl)-5-(6-(trifluoromethoxy)benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (3y)

White solid, mp: 186-187 °C. Yield: 85%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-d₆) δ 11.27 (s, 1H), 8.33 (d, J = 11.4 Hz, 1H), 7.88 (d, J = 8.5 Hz, 3H), 7.83 (d, J = 2.7 Hz, 1H), 7.69 (s, 1H), 7.55 (dd, J = 8.8, 2.7 Hz, 1H), 7.33 (dd, J = 11.3, 1.6 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆) δ 160.8, 160.6, 146.0, 142.3, 139.0, 128.2, 125.8, 122.3, 121.1, 120.3 (q, J = 256.4 Hz), 120.9, 120.7, 114.6, 111.3, 55.3. ¹¹B NMR (160 MHz, DMSO-d₆) δ 27.4 (s). ¹⁹F NMR (471 MHz, DMSO-d₆) δ -57.58 (s). HRMS (EI) calcd for C₁₉H₁₄BF₃N₂O₃: 386.1050, found: 386.1058

5-(6-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3z)

White solid, mp: 208-210 °C. Yield: 95%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹**H NMR NMR (500 MHz, DMSO-***d*₆) δ 11.00(s, 1H), 8.20 (d, *J* = 11.4 Hz, 1H), 7.83 (d, *J* = 7.7 Hz, 2H), 7.67 (d, *J* = 10.7 Hz, 2H), 7.53(s, 1H), 7.35 (t, *J* = 6.6 Hz. 3H), 7.21 (d, *J* = 11.4 Hz, 1H), 2.39(s, 3H), 2.37(s, 3H). ¹³**C NMR (126 MHz, DMSO-***d*₆) δ 161.0, 146.3, 139.7, 138.3, 130.4, 130.3, 129.7, 128.8, 126.6, 126.1, 125.5, 118.9, 110.7, 21.0, 20.5. ¹¹**B NMR (160 MHz, DMSO-***d*₆) δ 25.5 (s). **HRMS (EI)** calcd for C₁₉H₁₇BN₂O: 300.1434, found: 300.1439.

5-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3aa)

White solid, mp: 197-199 °C. Yield: 94%. $R_f = 04$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 10.67 (s, 1H), 8.26 (d, J = 11.5 Hz, 1H), 7.91 (s, 1H), 7.82 – 7.71 (m, 3H), 7.63 (d, J = 10.7 Hz, 1H), 7.36 (dd, J = 22.9, 9.6 Hz, 3H), 2.36 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.0, 152.6, 150.7, 145.1, 139.6, 129.7, 129.6, 127.9, 127.4 (d, J = 13.6 Hz), 126.5, 126.0, 124.5 (d, J = 9.4 Hz), 124.3, 114.6 (d, J = 22.5 Hz), 111.5, 21.0. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 26.2 (s). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -129.14 (s). HRMS (EI) calcd for C₁₈H₁₃BClFN₂O: 338.0793, found: 338.0801

5-(4-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3ab)

White solid, mp: 156-158 °C. Yield: 90%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 10.87 (s, 1H), 7.88 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 2H), 7.81 – 7.76 (m, 1H), 7.66 (s, 1H), 7.57 – 7.50 (m, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.30 – 7.24 (m, 1H), 7.07 (s, 1H), 2.63 (s, 3H), 2.37 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.0, 152.9, 140.5, 139.6, 129.7, 128.6, 126.6, 126.1, 125.6, 125.3, 121.4, 119.5, 110.7, 22.8, 21.0. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 25.1 (s). HRMS (EI) calcd for C₁₉H₁₇BN₂O: 300.1434, found: 300.1430

5-(4-phenylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3ac)

White solid, mp: 224-225 °C. Yield: 92%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-d₆) δ 11.15 (s, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.75 (s, 1H), 7.59 – 7.51 (m, 4H), 7.51 – 7.43 (m, 3H), 7.34 (d, J = 8.0 Hz, 2H), 7.22 – 7.16 (m, 1H), 7.12 (d, J = 1.9 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆) δ 161.1, 157.3, 141.8, 141.0, 139.6, 129.7, 128.9, 128.7, 128.4, 127.8, 127.4, 126.6, 126.0, 124.2, 121.5, 119.7, 111.2, 20.9. ¹¹B NMR (160 MHz, DMSO-d₆) δ 25.3 (s). HRMS (EI) calcd for C₂₄H₁₉BN₂O: 362.1590, found: 362.1591

5-(5-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3ad)

White solid, mp: 130-131 °C. Yield: 89%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 11.05 (s, 1H), 8.48 (d, *J* = 11.7 Hz, 1H), 7.78 (s, 1H), 7.76 – 7.71 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.42 (dt, *J* = 10.0, 7.6 Hz, 2H), 7.36 – 7.25 (m, 2H), 7.10 (d, *J* = 7.2 Hz, 1H), 2.60 (s, 3H), 2.41 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.2, 142.7, 140.4, 138.5, 135.7, 130.6, 129.1,

128.8, 128.5, 127.2, 127.2, 123.9, 122.9, 117.5, 111.0, 21.0, 19.1. ¹¹**B NMR (160 MHz, DMSO-***d***₆)** δ 27.1 (s). **HRMS (EI)** calcd for C₁₉H₁₇BN₂O: 300.1434, found: 300.1432

5-(1-benzylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3ae)

White solid, mp: 138-140 °C. Yield: 88%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹**H** NMR NMR (500 MHz, DMSO-*d*₆) δ 8.33 (d, *J* = 11.5 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.74 (s, 1H), 7.72 – 7.66 (m, 2H), 7.60 (d, *J* = 8.7 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 8.3 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 4H), 7.25 – 7.16 (m, 3H), 5.79 (s, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.1, 146.8, 140.5, 138.4, 138.3, 130.7, 130.5, 129.4, 129.0, 128.7, 128.4, 127.3, 127.2, 127.0, 125.8, 123.9, 122.0, 116.9, 113.0, 51.9, 21.0. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 30.3 (s). HRMS (EI) calcd for C₂₅H₂₁BN₂O: 376.1747, found: 376.1744

5-(1-isopropylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole(3af)

White solid, mp: 96-98 °C. Yield: 55%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 8.18 (d, J = 11.3 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.91 – 7.86 (m, 2H), 7.83 (dd, J = 8.0, 1.7 Hz, 1H), 7.65 – 7.57 (m, 1H), 7.55 (s, 1H), 7.32 (dd, J = 16.4, 7.8 Hz, 3H), 7.11 (d, J = 11.2 Hz, 1H), 5.25 (m, 1H), 2.37 (s, 3H), 1.68 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 160.9, 146.3, 139.6, 131.0, 129.6, 128.2, 127.9, 126.8, 125.9, 121.5, 118.6, 114.1, 111.2, 52.1, 21.9, 21.0, 20.94. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 29.3 (s). HRMS (EI) calcd for C₂₁H₂₁BN₂O: 328.1747, found: 328.1741

5-(dibenzo[c,e][1,2]azaborinin-6(5H)-yl)-3-(p-tolyl)isoxazole (6)

White solid, mp: 164-165 °C. Yield: 50%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 10.71 (s, 1H), 8.68 (t, *J* = 7.4 Hz, 2H), 8.59 (d, *J* = 8.2 Hz,1H), 7.95 – 7.84 (m, 4H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.43 – 7.30 (m, 3H), 2.39 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 161.0, 139.8, 139.0, 138.7, 135.0, 131.8, 129.8, 128.4, 126.8, 126.5, 126.0, 124.0, 123.0, 122.7, 122.3, 119.9, 111.6, 21.00. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 29.5 (s). HRMS (EI) calcd for C₂₂H₁₇BN₂O: 336.1434, found: 336.1445

B. Synthesis of 4-(2,1-azaborine) substituted isoxazoles

In air, a 25 mL schlenk tube was charged with 1 (0.2 mmol, 2 equiv), 2 (0.24 mmol, 1.2 equiv), AgOTf (5 mol%), [Cp*RuCl(cod)] (5 mol%). The tube was evacuated and filled with argon for three cycles. Then, DCM (2 mL) and DIPEA (0.24mmol, 1.2 equiv) were added under argon. The reaction was allowed to stir at room temperature for 12 hours. Upon completion, proper amount of silica gel was added to the reaction mixture. After removal of the solvent, the crude reaction mixture was purified on silica gel (petroleum ether and ethyl acetate) to afford the desired products.

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4a)

White solid, mp: 120-122 °C. Yield: 72%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 9.07 (s, 1H), 8.02 (d, *J* = 11.5 Hz, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 3H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.56 (d, *J* = 11.4 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 164.0, 163.6, 160.3, 144.9, 140.6, 129.8, 129.2, 128.5, 124.9, 122.2, 121.0, 118.5, 114.1, 55.2. ¹¹B NMR (160 MHz, DMSO-*d*₆) δ 30.8 (s). HRMS (EI) calcd for C₁₈H₁₅BN₂O₂: 302.1227, found: 302.1227

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-phenylisoxazole (4b)

White solid, mp: 104-106 °C. Yield: 81%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.07 (d, *J* = 11.6 Hz, 1H), 7.78 (s, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.53 (dd, *J* = 11.7, 6.9 Hz, 3H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 9.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 164.0, 145.6, 139.5, 130.3, 129.9, 129.5, 128.9, 128.5, 125.3, 121.4, 118.1. ¹¹B NMR (160 MHz, CDCl₃) δ 28.52 (s). HRMS (EI) calcd for C₁₇H₁₃BN₂O: 272.1121, found: 272.1123

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-phenoxyphenyl)isoxazole(4c)

White solid, mp: 200-201 °C. Yield: 65%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, CDCl₃) δ 8.75 – 8.68 (m, 1H), 8.08 (d, J = 11.6 Hz, 1H), 7.85 (s, 1H), 7.71 – 7.66 (m, 2H), 7.64 (dd, J = 8.0, 1.3 Hz, 1H), 7.45 – 7.36 (m, 3H), 7.24 – 7.14 (m, 2H), 7.14 – 7.09 (m, 3H), 7.07 (d, J = 8.3 Hz, 1H), 6.96 (dd, J = 11.4, 1.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.9, 163.8, 159.0, 156.3, 145.7, 139.5, 130.4, 129.9, 129.5, 128.6, 125.3, 124.8, 124.0, 121.5, 119.5, 118.6, 118.1. ¹¹B NMR (160 MHz, CDCl₃) δ 28.58 (s). HRMS (EI) calcd for C₂₃H₁₇BN₂O₂: 364.1383, found: 364.1384

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4d)

White solid, mp: 215-216 °C. Yield: 70%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, CDCl₃) δ 8.7 (s, 1H), 8.07 (d, J = 11.5 Hz, 1H), 7.82 (s, 1H), 7.62 (dd, J = 12.6, 7.7 Hz, 3H), 7.38 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 6.99 (dd, J = 18.9, 9.8 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 164.0, 145.5, 139.9, 139.5, 129.6, 129.5, 128.7, 128.5, 127.3, 125.3, 121.4, 118.1, 21.4. ¹¹B NMR (160 MHz, CDCl₃) δ 28.4 (s). HRMS (EI) calcd for C₁₈H₁₅BN₂O: 286.1277, found: 286.1280

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(naphthalen-2-yl)isoxazole (4e)

White solid, mp: 92-94 °C. Yield: 79%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.25 (d, J = 1.5 Hz, 1H), 8.07 (d, J = 11.5 Hz, 1H), 7.95 (dd, J = 17.3, 8.2 Hz, 2H), 7.90 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.81 (dd, J = 8.4, 1.8 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.61 – 7.53 (m, 1H), 7.37 – 7.29 (m, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.07 – 6.87 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 164.1, 145.6, 139.5, 133.8, 133.1, 129.4, 128.6, 128.5, 128.5, 128.4, 127.8, 127.6, 1271, 126.8, 125.9, 125.3, 121.4, 118.1. ¹¹B NMR (160 MHz, CDCl₃) δ 27.6 (s). HRMS (EI) calcd for C₂₁H₁₅BN₂O: 322.1277, found: 322.1277

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-iodophenyl)isoxazole (4f)

White solid, mp: 116-117 °C. Yield: 68%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.14 (d, J = 2.2 Hz, 1H), 8.08 (d, J = 11.5 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.83 (s, 1H), 7.65 (d, J = 7.9 Hz, 2H), 7.42 (t, J = 7.7 Hz, 1H), 7.21 (t, J = 7.7 Hz, 2H), 7.10 (d, J = 8.2 Hz, 1H), 6.92 (dd, J = 11.5, 2.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 162.8, 145.5, 139.2, 138.5, 137.2, 132.0, 130.1, 129.3, 128.4, 127.8, 125.1, 121.3, 117.9, 94.2. ¹¹B NMR (160 MHz, CDCl₃) δ 30.5 (s). HRMS (EI) calcd for C₁₇H₁₂BIN₂O: 398.0087, found: 398.0078

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-bromophenyl)isoxazole (4g)

White solid, mp: 97-98 °C. Yield: 80%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.08 (d, J = 11.5 Hz, 1H), 7.93 (s, 1H), 7.84 (s, 1H), 7.72 – 7.56 (m, 3H), 7.42 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.9 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 6.92 (d, J = 11.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.95, 163.19, 145.8, 139.5, 132.8, 132.3, 131.7, 130.3, 129.5, 128.7, 127.4, 125.4, 122.9, 121.6, 118.2. ¹¹B NMR (160 MHz, CDCl₃) δ 30.1 (s). HRMS (EI) calcd for C₁₇H₁₂BBrN₂O: 350.0226, found: 350.0229

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-fluorophenyl)isoxazole (4h)

White solid, mp: 83-84 °C. Yield: 79%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 8.08 (d, J = 11.5 H, 1Hz), 7.83 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.54 – 7.35 (m, 4H), 7.22 (q, J = 7.4 Hz, 2H), 7.08 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 11.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 163.4, 161.8, 145.8, 139.5, 132.3 (d, J = 8.4 Hz), 130.5 (d, J = 8.2 Hz), 129.5, 128.7, 125.4, 124.6, 121.6, 118.2, 116.8 (d, J = 21.4 Hz), 115.9 (d, J = 22.9 Hz). ¹¹B NMR (160 MHz, CDCl₃) δ 30.4 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.51 (s). HRMS (EI) calcd for C₁₇H₁₂BFN₂O: 290.1027, found: 290.1028

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(2-bromo-4-chlorophenyl)isoxazole (4i)

White solid, mp: 136-138 °C. Yield: 75%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.01 (d, *J* = 11.5 Hz, 1H), 7.78 (d, *J* = 1.3 H, 1Hz), 7.68 – 7.54 (m, 2H), 7.48 (d, *J* = 1.5 Hz, 2H), 7.43 – 7.35 (m, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.76 (dd, *J* = 11.5, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.4, 163.2, 145.8, 139.4, 136.5, 133.0, 132.3, 130.5, 129.5, 128.6, 128.0, 125.3, 123.9, 121.5, 118.1. ¹¹B NMR (160 MHz, CDCl₃) δ 27.6 (s). HRMS (EI) calcd for C₁₇H₁₁BBrClN₂O: 383.9836, found: 383.9836

methyl 4-(4-(benzo[e][1,2]azaborinin-2(1H)-yl)isoxazol-3-yl)benzoate (4j)

White solid, mp: 151-153 °C. Yield: 80%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 8.14 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 11.5 Hz, 1H), 7.88 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 8.1 Hz, 1H), 6.94 - 6.84 (m, 1H), 3.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 163.7, 163.6, 145.8, 139.5, 134.6, 131.2, 130.0, 129.5, 128.8, 128.6, 125.3, 121.6, 118.2, 52.3. ¹¹B NMR (160 MHz, CDCl₃) δ 28.4 (s). HRMS (EI) calcd for C₁₉H₁₅BN₂O₃: 330.1176, found: 330.1181

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-styrylisoxazole (4k)

White solid, mp: 96-97 °C. Yield: 75%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 8.18 (d, J = 11.0 Hz, 2H), 7.72 (d, J = 7.8 Hz, 1H), 7.50 (dd, J = 15.5, 8.4 Hz, 3H), 7.46 – 7.30 (m, 5H), 7.30 – 7.22 (m, 2H), 7.11 (d, J = 11.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3, 162.1, 145.9, 139.7, 136.6, 136.0, 129.6, 128.8, 128.8, 128.8, 127.0, 125.5, 121.6, 118.2, 116.2, 77.3, 77.0, 76.8. ¹¹B NMR (160 MHz, CDCl₃) δ 28.6 (s). HRMS (EI) calcd for C₁₉H₁₅BN₂O: 298.1277, found: 298.1279

4-(6-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4l)

White solid, mp: 94-95 °C. Yield: 95%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.00 (d, *J* = 11.5 Hz, 1H), 7.78 (s, 1H), 7.64 – 7.56 (m, 2H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.21 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.97 – 6.89 (m, 2H), 2.46 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 163.8, 145.3, 139.9, 137.6, 130.7, 129.8, 129.5, 129.1, 128.7, 127.3, 125.3, 117.9, 21.4, 20.8. ¹¹B NMR (160 MHz, CDCl₃) δ 28.0 (s). HRMS (EI) calcd for C₁₉H₁₇BN₂O: 300.1434, found: 300.1438

4-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4m)

White solid, mp: 105-106 °C. Yield: 83%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.71 (s, 1H), 7.98 (d, J = 11.5 Hz, 1H), 7.87 (s, 1H), 7.58 (d, J = 7.9 Hz, 2H), 7.35 – 7.26 (m, 3H), 7.15 – 7.09 (m, 1H), 7.04 – 6.94 (m, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃ δ 164.4, 163.9, 157.3 (d, J = 239.9 Hz), 144.6 (d, J = 3.3 Hz), 140.0, 136.0, 129.6, 128.6, 127.2, 125.7 (d, J = 8.1 Hz), 119.3 (d, J = 8.2 Hz), 116.5 (d, J = 24.6 Hz), 113.8 (d, J = 21.5 Hz), 21.4. ¹¹B NMR (160 MHz,

CDCl₃) δ 28.2 (s). ¹⁹**F NMR (471 MHz, CDCl₃)** δ -123.91 (s). **HRMS (EI)** calcd for C₁₈H₁₄BFN₂O: 304.1183, found: 304.1186

4-(6-bromobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4n)

White solid, mp: 114-115 °C. Yield: 76%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1) ¹H NMR NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 7.94 (d, J = 11.6 Hz, 1H), 7.84 (s, 1H), 7.75 (d, J = 2.3 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.44 (dd, J = 8.5, 2.2 Hz, 1H), 7.06 – 6.96 (m, 3H), 6.91 (d, J = 8.6 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 160.9, 144.3, 138.3, 131.5, 131.3, 130.1, 126.7, 122.2, 119.7, 114.3, 113.8, 55.4. ¹¹B NMR (160 MHz, CDCl₃) δ 28.5 (s). HRMS (EI) calcd for C₁₈H₁₄BBrN₂O₂: 380.0332, found: 380.0332

4-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (40)

White solid, mp: 118-120 °C. Yield: 84%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.06 (s, 1H), 7.93 (dd, J = 11.8, 1.7 Hz, 1H), 7.56 (d, J = 7.8 Hz, 2H), 7.39 (s, 1H), 7.33 (d, J = 7.8 Hz, 2H), 7.16 (dd, J = 10.3, 2.2 Hz, 1H), 7.08 (dd, J = 11.7, 2.0 Hz, 1H), 2.46 (s, 3H). ¹¹³C NMR (126 MHz, CDCl₃) δ 164.5, 152.3, 150.4, 143.6 (d, J = 3.3 Hz), 140.1, 129.8, 128.6, 127.0, 127.2 (d, J = 3.8 Hz), 127.3 (d, J = 13.9 Hz), 125.2 (d, J = 9.8 Hz), 123.9 (d, J = 3.6 Hz), 114.0 (d, J = 21.6 Hz), 21.4. ¹¹B NMR (160 MHz, CDCl₃) δ 28.3 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -134.41 (s). HRMS (EI) calcd for C₁₈H₁₃BClFN₂O: 1 338.0793, found: 338.0797

4-(7-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4p)

White solid, mp: 106-107 °C. Yield: 90%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.01 (d, J = 11.6 Hz, 1H), 7.83 (s, 1H), 7.57 (dd, J = 8.1, 5.4 Hz, 3H), 7.31 (d, J = 7.8 Hz, 2H), 6.99 – 6.82 (m, 2H), 6.69 (dd, J = 9.9, 2.5 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.3 (d, J = 21.5 Hz), 163.8, 161.3, 145.0, 140.7 (d, J = 11.1 Hz), 140.1, 131.1 (d, J = 10.0 Hz), 129.6, 128.7, 127.1, 122.0, 109.8 (d, J = 23.2 Hz), 104.0 (d, J = 24.1 Hz), 21.4. ¹¹B NMR (160 MHz, CDCl₃) δ 28.8 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.45 (s). HRMS (EI) calcd for C₁₈H₁₄BFN₂O: 304.1183, found: 304.1185

White solid, mp: 86-87 °C. Yield: 82%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.01 (d, J = 11.6 Hz, 1H), 7.91 (s, 1H), 7.61 – 7.55 (m, 2H), 7.48 (d, J = 2.4 Hz, 1H), 7.31 (d, J = 7.8 Hz, 2H), 7.28 – 7.21 (m, 1H), 7.07 – 6.98 (m, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 164.2, 144.7, 143.1, 140.1, 138.0, 129.6, 128.7, 127.1, 125.5, 122.0, 121.1, 119.3, 21.41. ¹¹B NMR (160 MHz, CDCl₃) δ 28.6 (s). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.14 (s). HRMS (EI) calcd for C₁₉H₁₄BF₃N₂O₂: 370.1100, found: 370.1105

4-(4-phenylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4r)

White solid, mp: 157-159 °C. Yield: 90%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H), 7.86 (s, 1H), 7.71 – 7.63 (m, 2H), 7.63 – 7.59 (m, 1H), 7.52 – 7.46 (m, 2H), 7.46 – 7.42 (m, 3H), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.15 – 7.08 (m, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 164.2, 156.9, 142.12, 140.1, 140.0, 129.6, 128.9, 128.7, 128.45, 128.2, 127.5, 127.3, 124.4, 121.2, 118.6, 21.4. ¹¹B NMR (160 MHz, CDCl₃) δ 27.8 (s). HRMS (EI) calcd for C₂₄H₁₉BN₂O: 362.1590, found: 362.1592

3-(4-methoxyphenyl)-4-(4-methylbenzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (4s)

White solid, mp: 115-116 °C. Yield: 95%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.68 (s, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.70 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.02 (dd, *J* = 8.3, 4.6 Hz, 3H), 6.81 (s, 1H), 3.89 (s, 3H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.7, 160.7, 152.0, 139.8, 130.1, 128.2, 125.7, 125.3, 122.5, 121.3, 118.7, 114.2, 55.3, 22.9. ¹¹B NMR (160 MHz, CDCl₃) δ 28.2 (s). HRMS (EI) calcd for C₁₉H₁₇BN₂O₂: 316.1383, found: 316.1385

White solid, mp: 133-135 °C. Yield: 92%. $R_f = 0.2$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 8.07 (d, J = 11.4 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 4.0 Hz, 2H), 7.35 – 7.21 (m, 4H), 7.04 (d, J = 7.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 11.5 Hz, 1H), 5.40 (s, 2H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 160.5, 160.1, 145.3, 141.2, 138.2, 130.4, 129.6, 128.8, 128.8, 127.3, 127.1, 125.4, 122.4, 121.5, 116.8, 114.0, 55.2, 52.5. ¹¹B NMR (160 MHz, CDCl₃) δ 32.2 (s). HRMS (EI) calcd for C₂₅H₂₁BN₂O₂: 392.1696, found: 392.1702

4-(dibenzo[c,e][1,2]azaborinin-6(5H)-yl)-3-(4-methoxyphenyl)isoxazole (7)

White solid, mp: 167-169 °C. Yield: 80%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1)

¹H NMR NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 8.49 (dd, J = 22.9, 8.2 Hz, 2H), 8.00 (dd, J = 7.8, 1.5 Hz, 1H), 7.81 – 7.74 (m, 1H), 7.66 (s, 1H), 7.64 – 7.59 (m, 2H), 7.50 – 7.40 (m, 2H), 7.36 – 7.29 (m, 1H), 7.13 (dd, J = 7.9, 1.3 Hz, 1H), 6.88 – 6.79 (m, 2H), 3.77 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 162.3, 160.6, 138.8, 138.2, 135.7, 131.5, 129.8, 128.2, 126.4, 123.9, 123.4, 122.3, 122.1, 122.0 119.2, 114.1, 55.2. ¹¹B NMR (160 MHz, CDCl₃) δ 32.1 (s). HRMS (EI) calcd for C₁₈H₁₄BBrN₂O₂: 380.0332, found: 380.0332

5. Synthetic transformations

5-(3-iodobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (8)

In air, a 100 mL schlenk flask was charged with 3e (1.5 mmol, 1 equiv), NIS (1.8 mmol, 1.2 equiv) and AgOTf (10 mol%). The flask was evacuated and filled with argon for three cycles. 15 mL of dry DCM was added under argon. The reaction was allowed to stir at room temperature for 12 h. Upon completion, after removal of the solvent, the crude reaction mixture was purified on column chromatography (petroleum ether and ethyl acetate) to afford the desired product **8**.

White solid, mp: 178 - 180 °C. Yield: 82%. R_f = 0.5 (silica gel, PE:EtOAc = 10:1).

¹H NMR (500 MHz, CDCl₃) δ 8.85 (s, 1H), 8.78 (s, 1H), 7.84 (s, 1H), 7.76 (s, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.45 – 7.36 (m, 2H), 7.31 – 7.25 (m, 2H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 155.1, 138.7, 138.6, 130.6, 129.6, 128.8, 128.7, 128.6, 127.6, 126.3, 124.2,

122.4, 118.6, 112.4, 21.4. ¹¹**B** NMR (160 MHz, CDCl₃) δ 26.9 (s). HRMS (EI) calcd for C₁₈H₁₄BIN₂O: 412.0244, found: 412.0239

5-(3-((3-methoxyphenyl)ethynyl)benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (9)

In air, a 25 mL schlenk tude was charged with **8** (0.2 mmol, 1 equiv), CuI (5 mol%) and PdCl₂(PPh₃)₂ (5 mol%). The flask was evacuated and filled with argon for three cycles. 1.35 mL Et₃N , 0.65 mL THF and 3-ethynylanisole (0.6 mmol, 3 equiv) was added under argon. The reaction was allowed to stir at room temperature for 12 h. Upon completion, after removal of the solvent, the crude reaction mixture was purified on column chromatography (petroleum ether and ethyl acetate) to afford the desired product **9**. White solid, mp: 169 – 170 °C. Yield: 81%. $R_f = 0.3$ (silica gel, PE:EtOAc = 10:1).

¹**H NMR** (500 **MHz**, **CDCl**₃) δ 8.85 (s, 1H), 8.39 (s, 1H), 7.81(s, 1H), 7.72 (s, 1H), 7.68 (dd, J = 13.1, 7.7 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.38 – 7.30 (m, 2H), 7.27 (d, J = 6.9 Hz, 2H), 7.22 (d, J = 7.5 Hz, 1H), 7.15 (s, 1H), 6.99 – 6.90 (m, 1H), 3.83 (s, 3H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, **CDCl**₃) δ 162.1, 159.5, 149.6, 138.8, 138.6, 130.6, 129.9, 129.7, 129.6, 129.1, 128.8, 127.6, 125.0, 124.9, 124.1, 123.9, 122.5, 118.5, 116.1, 114.8, 112.9, 94.6, 91.8, 55.2, 21.3. ¹¹**B NMR** (160 MHz, **CDCl**₃) δ 26.1 (s). **HRMS** (ESI) calcd for C₂₇H₂₂BN₂O₂ [M+H]⁺: 417.1774, found: 417.1777

5-(3-(3-methoxyphenyl)benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (10)

In glove box, a 25 mL schlenk tude was charged with $ZnCl_2$ (0.32 mmol, 1.6 equiv), 3-Methoxymagnesium bromide (1.0M in THF; 0.32 mL, 0.32 mmol, 1.6 equiv) and 1 mL THF. The reaction was allowed to stir at room temperature for 20 min. Then, **8** (0.2 mmol, 1 equiv), NMI (1.2 equiv), Pd₂(dba)₃ (2 mol%), PCy₃ (8 mol%) and 1 mL NMP were added to the tube. The reaction was allowed to stir at room temperature for 16 h. Upon completion, after removal of the solvent, the crude reaction mixture was purified on column chromatography (petroleum ether and ethyl acetate) to afford the desired product **10**.

White solid, mp: 99 – 101 °C. Yield: 80%. $R_f = 0.5$ (silica gel, PE:EtOAc = 10:1).

¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 8.08 (s, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.61 (s, 1H), 7.57 – 7.44 (m, 3H), 7.38 (t, J = 7.9 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.24 (t, J = 7.9 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.03 (t, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.1, 2.6 Hz, 1H), 6.61 (s, 1H), 3.86 (s, 3H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 159.5, 145.2, 144.7, 138.8, 138.5, 130.5, 129.7, 129.0, 129.1, 128.9, 128.7, 127.5, 125.3, 124.1, 122.3, 121.1, 118.3, 113.8, 112.5, 112.1, 55.3, 21.3. ¹¹B NMR (160 MHz, CDCl₃) δ 27.0 (s). HRMS (ESI) calcd for C₂₅H₂₂BN₂O₂ [M+H]⁺: 393.1774, found: 393.1777

ethyl 4-(2-(3-(m-tolyl)isoxazol-5-yl)-1,2-dihydrobenzo[e][1,2]azaborinin-3-yl)butanoate (11)

In air, a 25 mL schlenk tude was charged with **8** (0.2 mmol, 1 equiv), Mn (0.4 mmol, 2 equiv), NaBF₄ (0.1 mmol, 0.5 equiv), NiCl₂.glyme (10 mol%), 4,4'-Dimethyl-2,2'-bipyridyl (10 mol%). The tube was evacuated and filled with argon for three cycles. 1.5 mL Cyclohexane, 0.5 mL DMA and ethyl 4-Iodobutyrate (0.24 mmol, 1.2 equiv) was added under argon. The reaction was allowed to stir at 40 °C for 16 h. Upon completion, after removal of the solvent, the crude reaction mixture was purified on column chromatography (petroleum ether and ethyl acetate) to afford the desired product **11**.

White solid, mp: 70 – 72 °C. Yield: 85%. $R_f = 0.4$ (silica gel, PE:EtOAc = 10:1).

¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 7.92 (s, 1H), 7.81 (s, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.42 – 7.33 (m, 3H), 7.32 – 7.19 (m, 2H), 4.16 (q, J = 7.1 Hz, 2H), 2.92 (t, J = 7.9 Hz, 2H), 2.56 – 2.32 (m, 5H), 2.11 – 1.89 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 162.2, 144.1, 138.6, 138.4, 130.5, 129.1, 128.9, 128.8, 128.2, 127.7, 125.5, 124.1, 121.9, 118.1, 111.2, 60.3, 34.9, 33.8, 26.2, 21.4, 14.2. ¹¹B NMR (160 MHz, CDCl₃) δ 27.6 (s). HRMS (EI) calcd for C₂₄H₂₅BN₂O₃: 400.1958, found: 400.1965

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-N-ethylisoxazole-3-carboxamide (12)

In air, a 25 mL schlenk tude was charged with 3t (0.1 mmol, 1 equiv) and LiBr (10 mol%). The tube was evacuated and filled with argon for three cycles. Ethylamine (2.0 M in THF; 0.5 mL, 1 mmol, 10 equiv) and 1 mLTHF was added under argon. The reaction was allowed to stir at room temperature for 12 h. Upon completion, after removal of the solvent, the crude reaction mixture was purified on column chromatography (petroleum ether and ethyl acetate) to afford the desired product **12**.

White solid, mp: 204 - 206 °C. Yield: 90%. $R_f = 0.3$ (silica gel, PE:EtOAc = 5:1).

¹H NMR (500 MHz, CDCl₃) δ 8.68 (s, 1H), 8.22 (d, *J* = 11.5 Hz, 1H), 7.70 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.35, 7.30 – 7.24 (m, 1H), 7.18 (dd, *J* = 11.4, 1.9 Hz, 1H), 6.92 (s, 1H), 3.61 – 3.39 (m, 2H), 1.27 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 158.2, 147.2, 139.2, 129.8, 129.1, 126.1, 122.1, 118.6, 112.1, 34.5, 14.7. ¹¹B NMR (160 MHz, CDCl₃) δ 27.1 (s). HRMS (ESI) calcd for C₁₄H₁₅BN₃O₂ [M+H]⁺: 268.1257, found: 268.1260

6. Crystal structure of compound 3a and 4i

 Space group
 P -1
 P -1

 Hall group
 -P 1
 -P 1

 Moiety formula
 C18 H16 B N2 O2
 C18 H16 B N2 O2

 Sum formula
 C18 H16 B N2 O2
 C18 H16 B N2 O2

 Mr
 303.14
 303.14

 Dx,g cm-3
 1.350
 1.350

Z	2	2
Mu (mm-1)	0.088	0.088
F000	318.0	318.0
F000'	318.13	
h,k,lmax	6,11,20	6,11,20
Nref	2626	2614
Tmin,Tmax	0.987,0.989	0.623,0.747
Tmin'	0.987	

Correction method= # Reported T Limits: Tmin=0.623 Tmax=0.747 AbsCorr = MULTI-SCAN

Data completeness= 0.995

Theta(max)= 25.022

R(reflections)= 0.0658(1564)

wR2(reflections)= 0.1873(2614)

S = 1.028

Npar= 209

-	-
-2	γ
J	2
_	

-P 2yn

385.45

1.570

2.688

768.0

4

C17 H11 B Br Cl N2 O

?

Hall group

Dx,g cm-3

Mu (mm-1)

Mr

Ζ

F000

Moiety formula Sum formula -P 2yn

385.44

1.570

2.688

768.0

4

C17 H11 B Br Cl N2 O

C17 H11 B Br Cl N2 O

F000'	767.69		
h,k,lmax	10,20,12	10,20,12	
Nref	2861	2860	
Tmin,Tmax			
Tmin'			
Correction method= Not g	iven		
Data completeness= 1.000		Theta(max)= 24.999	
R(reflections)= 0.0519(23	(53)	wR2(reflections)= 0.13	45(2860)
S = 1.091	Npar= 209		

7. References

(1) I. Valencia, P. García-García, D. Sucunza, F. Mendicuti and J. J. Vaquero, 1,10a-Dihydro-1-aza-10a-boraphenanthrene and 6a,7-Dihydro-7-aza-6a-boratetraphene: Two New Fluorescent BN-PAHs, *J. Org. Chem.*, 2021, **86**, 16259-16267.

(2) J. Yang, J.-W. Zhang, W. Bao, S.-Q. Qiu, S. Li, S.-H. Xiang, J. Song, J. Zhang and B. Tan, Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond, *J. Am. Chem. Soc.*, 2021, **143**, 12924-12929.

(3) R. J. B. Schäfer, M. R. Monaco, M. Li, A. Tirla, P. Rivera-Fuentes and H. Wennemers, The Bioorthogonal Isonitrile–Chlorooxime Ligation, *J. Am. Chem. Soc.*, 2019, **141**, 18644-18648.

(4) K. Yang, F. Zhang, T. Fang, G. Zhang and Q. Song, Stereospecific 1,4-metallate shift enables stereoconvergent synthesis of ketoximes. *Angew. Chem., Int. Ed.*, 2019, **58**, 13421–13426.

(5) A. L. Rousseau, S. R. Buddoo, G. E. R. Gordon, S. Beemadu, B. G. Kupi, M. J. Lepuru, M. C. Maumela, A. Parsoo, D. M. Sibiya and D. Brady, Scale-Up of a Chemo-Biocatalytic Route to (2R,4R)- and (2S,4S)-Monatin, *Org. Process Res. Dev.*, 2011, **15**, 249-257.

8. NMR Spectra

2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1a)

2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1a)

2-ethynyl-6-fluoro-1,2-dihydrobenzo[e][1,2]azaborinine (1b)

##

2-ethynyl-7-fluoro-1,2-dihydrobenzo[e][1,2]azaborinine (1g)

2-ethynyl-7-fluoro-1,2-dihydrobenzo[e][1,2]azaborinine (1g)

6-chloro-2-ethynyl-1,2-dihydrobenzo[e][1,2]azaborinine (1h)

2-ethynyl-6-(trifluoromethoxy)-1,2-dihydrobenzo[e][1,2]azaborinine (1i)

2-ethynyl-6-(trifluoromethoxy)-1,2-dihydrobenzo[e][1,2]azaborinine (1i)

2-ethynyl-4-phenyl-1,2-dihydrobenzo[e][1,2]azaborinine (11)

120 110 100

90 80 70

f1 (ppm)

2-(hex-1-yn-1-yl)-1,2-dihydrobenzo[e][1,2]azaborinine (10)

N-hydroxy-3-methylbenzimidoyl chloride (2e)

N-hydroxy-3,4-dimethylbenzimidoyl chloride (2f)

N-hydroxy-2,4,6-trimethylbenzimidoyl chloride (2g)

N-hydroxy-1-naphthimidoyl chloride (20)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3a)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-phenylisoxazole (3b)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-phenoxyphenyl)isoxazole (3c)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3d)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3e)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3,4-dimethylphenyl)isoxazole (3f)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3,4-dimethylphenyl)isoxazole (3f)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-mesitylisoxazole (3g)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-mesitylisoxazole (3g)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isoxazole (3h)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isoxazole (3h)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isoxazole (3h)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-(trifluoromethoxy)phenyl)isoxazole (3i)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-(trifluoromethoxy)phenyl)isoxazole (3i)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-iodophenyl)isoxazole (3j)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-bromophenyl)isoxazole (3k)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-fluorophenyl)isoxazole(3l)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(2-bromo-4-chlorophenyl)isoxazole (3m)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(2-bromo-4-chlorophenyl)isoxazole (3m)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(2-bromo-4-chlorophenyl)isoxazole (3m)

methyl 3-(5-(benzo[e][1,2]azaborinin-2(1H)-yl)isoxazol-3-yl)benzoate (3n)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(naphth654-alen-1-yl)isoxazole (30)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(naphth654-alen-1-yl)isoxazole (30)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(naphthalen-2-yl)isoxazole (3p)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-styrylisoxazole (3q)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxystyryl)isoxazole (3r)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-phenethylisoxazole (3s)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-bromoisoxazole (3t)

ethyl 5-(benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole-3-carboxylate (3u)

5-(6-methoxybenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3v)

5-(6-methoxybenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3v)

5-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3w)

5-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3w)

5-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3w)

5-(7-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (3x)

3-(4-methoxyphenyl)-5-(6-(trifluoromethoxy)benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (3y)

3-(4-methoxyphenyl)-5-(6-(trifluoromethoxy)benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (3y)

3-(4-methoxyphenyl)-5-(6-(trifluoromethoxy)benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (3y)

5-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3aa)

5-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3aa)

5-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3aa)

5-(4-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3ab)

5-(4-phenylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3ac)

5-(4-phenylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (3ac)

5-(5-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3ad)

5-(5-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3ad)

5-(1-benzylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (3ae)

5-(1-isopropylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole(3af)

5-(dibenzo[c,e][1,2]azaborinin-6(5H)-yl)-3-(p-tolyl)isoxazole (6)

5-(dibenzo[c,e][1,2]azaborinin-6(5H)-yl)-3-(p-tolyl)isoxazole (6)

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4a)

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4a)

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-bromophenyl)isoxazole (4g)

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-fluorophenyl)isoxazole (4h)

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(3-fluorophenyl)isoxazole (4h)

50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 f1 (ppm) -250

-230

-210

-190

150

130

110

90

70

4-(benzo[e][1,2]azaborinin-2(1H)-yl)-3-(2-bromo-4-chlorophenyl)isoxazole (4i)

4-(6-methylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4l)

4-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4m)

4-(6-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4m)

4-(6-bromobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4n)

4-(6-bromobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4n)

4-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (40)

4-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (40)
4-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (40)

4-(6-chloro-8-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (40)

4-(7-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4p)

4-(7-fluorobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(p-tolyl)isoxazole (4p)

3-(p-tolyl)-4-(6-(trifluoromethoxy)benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (4q

3-(p-tolyl)-4-(6-(trifluoromethoxy)benzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (4q)

3-(4-methoxyphenyl)-4-(4-methylbenzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (4s)

3-(4-methoxyphenyl)-4-(4-methylbenzo[e][1,2]azaborinin-2(1H)-yl)isoxazole (4s)

4-(1-benzylbenzo[e][1,2]azaborinin-2(1H)-yl)-3-(4-methoxyphenyl)isoxazole (4t)

4-(dibenzo[c,e][1,2]azaborinin-6(5H)-yl)-3-(4-methoxyphenyl)isoxazole (7)

4-(dibenzo[c,e][1,2]azaborinin-6(5H)-yl)-3-(4-methoxyphenyl)isoxazole (7)

5-(3-iodobenzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (8)

5-(3-((3-methoxyphenyl)ethynyl)benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole~(9)

5-(3-((3-methoxyphenyl)ethynyl)benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole~(9)

5-(3-(3-methoxyphenyl)benzo[e][1,2]azaborinin-2(1H)-yl)-3-(m-tolyl)isoxazole (10)

ethyl 4-(2-(3-(m-tolyl)isoxazol-5-yl)-1,2-dihydrobenzo[e][1,2]azaborinin-3-yl)butanoate (11)

ethyl 4-(2-(3-(m-tolyl)isoxazol-5-yl)-1,2-dihydrobenzo[e][1,2]azaborinin-3-yl)butanoate (11)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-N-ethylisoxazole-3-carboxamide (12)

⁵⁻⁽benzo[e][1,2]azaborinin-2(1H)-yl)-N-ethylisoxazole-3-carboxamide (12)

5-(benzo[e][1,2]azaborinin-2(1H)-yl)-N-ethylisoxazole-3-carboxamide (12)

