Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Organocatalytic asymmetric [3+3] annulations of 3-carboxamide oxindoles with β , γ -unsaturated α -keto esters: facile access to chiral spiro- δ -lactam oxindoles

Zheng-Bing Zhang*§, Qiuzuo He§, Ting Wang, Guoqin Wang, Dan Yang*, Pan Han and Linhai Jing*

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, P. R. China. E-mail: zhangzhengbing@cwnu.edu.cn; danyang@cwnu.edu.cn; jlhhxg@cwnu.edu.cn

[§]These authors contributed equally to this work.

Table of Contents

1. General information	S2
2. Preparation of new squaramide catalyst C7	S3
3. Preparation of substrates 11 and 1m.	S4
4. Reaction optimization	S6
5. Chiral squaramide-catalyzed asymmetric [3+3] annulation	S8
6. Scale-up and transformation of product 3	S20
7. X-ray structures of 1c, 3ca and 3cf	S23
8. References	S28
9. NMR spectra	S29
10. HPLC spectra	S56

1. General information

Unless otherwise indicated, all reactions were carried out under an argon atmosphere using standard Schlenk-Lines. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 100 MHz (Bruker Avance II 400) with CDCl₃ or DMSO-*d*₆ as solvents. Chemical shifts are reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. HRMS was recorded on a Bruker micrOTOF-Q II mass spectrometer and a Waters UPLC-QTOT-MS (Xevo G2-XS). Enantiomeric excess (*ee*) were determined by HPLC analysis on a Shimadzu LC-20A. Optical rotation data were examined in CH₂Cl₂ solution at 25 °C.

All solvents were purified by using standard methods prior to use. 3-Carboxamide oxindoles **1a-1k** were prepared by previously reported method. [1] β , γ -Unsaturated α -keto esters **2** were prepared according to the reported procedure. [2] Catalysts **C1**, **C2**, **C4** and **C12-C14** were purchased from commercial sources. Thiourea catalysts **C3** and **C9-C11** were prepared according to the method reported in the literature. [3] Squaramide catalysts **C5**, **C6**, **C8** and **C15-C18** were prepared according to the method previously described. [4] All other reagents were purchased from commercial sources and used without further purification.

2. Preparation of new squaramide catalyst C7

To a solution of 3,4-dimethoxycyclobut-3-ene-1,2-dione (213.2 mg, 1.5 mmol) in MeOH (5 mL) was added *p*-chloroaniline (190.5 mg, 1.5 mmol) in MeOH (2 mL). The reaction mixture was stirred at room temperature for 48 h and then concentrated in vacuo to afford the intermediate **A** as a solid without further purification. To a solution of **A** (71.1 mg, 0.3 mmol) in CH₂Cl₂ (4 mL) was added a solution of quinidine amine (106.7 mg, 0.33 mmol) in CH₂Cl₂ (1 mL). After 48 h, the reaction mixture was concentrated and the residue was subjected to flash chromatograph (DCM/MeOH 20:1) on silica gel to afford the corresponding squaramide catalyst **C7**.

3-((4-chlorophenyl)amino)-4-(((R)-(6-methoxyquinolin-4-yl)((IS,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)cyclobut-3-ene-1,2-dione (C7): The desired catalyst was obtained as a white solid (96.8 mg, 61% yield); $[\alpha]_D^{25} = +0.726$ (c 0.01, CH₂Cl₂); ¹H NMR (400

MHz, DMSO- d_6) δ 9.74 (s, 1H), 8.83 (s, 1H), 8.17 (s, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.76-7.67 (m, 2H), 7.46-7.34 (m, 5H), 6.11-5.82 (m, 2H), 5.21 (d, J = 17.6 Hz, 1H), 5.09 (d, J = 10.8 Hz, 1H), 3.95 (s, 3H), 3.20-3.14 (m, 1H), 3.00-2.78 (m, 4H), 2.26-2.22 (m, 1H), 1.57-1.48 (m, 3H), 1.13-1.07 (m, 1H), 0.92-0.83 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 184.66, 180.25, 168.70, 163.61, 158.35, 148.21, 144.75, 143.74, 141.25, 138.21, 131.97, 129.60, 127.94, 127.13, 122.56, 120.24, 119.91, 114.89, 101.64, 59.26, 56.07, 56.00, 49.45, 46.09, 38.97, 27.68, 26.63, 25.69. HRMS m/z (ESI): calcd for $C_{30}H_{30}ClN_4O_3^+$ [M+H]⁺: 529.2006, found 529.1977.

3. Preparation of substrates 11 and 1m

An over-dried round-bottom flask was charged with 2-oxindole (1.33 g, 10.0 mmol, 1.0 equiv.) in dry THF (40 mL) under argon atmosphere. After the resultant solution was cooled to 0° C, Na₂CO₃ (8.48 g, 80 mmol, 8.0 equiv.) and Boc₂O (3.27 g, 15.0 mmol, 1.5 equiv.) were added and the resulted mixture was stirred at 65 $^{\circ}$ C for 8 hours. The reaction was quenched with ice-water and diluted with 40 mL of EtOAc. The organic layer was dried by Na₂SO₄ and concentrated after the filtration in a rotary evaporator under vacuum. The residue was purified by flash chromatography to afford the corresponding S1 as a white solid.

To a stirred suspension of sodium hydride (0.24 g, 6.0 mmol, 1.2 equiv., 60% dispersion in mineral oil) in dry DMF (5 mL) at 0 $^{\circ}$ C under argon atmosphere was added S1 (1.17 g, 5.0 mmol, 1.0 equiv.) in small portions. The mixture was stirred for 30 minutes at 0 $^{\circ}$ C. Isocyanatobenzene (0.80 g, 6.0 mmol, 1.2 equiv.) was slowly added, and this reaction was maintained at 0 $^{\circ}$ C for 10 minutes and further stirred at room temperature for 3 h (monitored by TLC). The reaction mixture was then poured into ice-cooled water (100 mL) and was acidized with HCl (1 M) to pH 4-6. The desired products S2 were obtained after filtration and washed with ether.

The **S2** (1.09 g, 3 mmol, 1.0 equiv.) was dissolved in **10 mL** CH₂Cl₂ and cooled to 0 °C. TFA (2.3 mL, 30 mmol, 10.0 equiv) was added dropwise and the resulting mixture was stirred at 0 °C for 30 min. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography to afford the **II** as white solid (0.34g, 42% yield). ¹H NMR (**400 MHz, DMSO-** d_6) δ 10.55 (s, 1H), 8.87 (dd, J = 6.0, 6.0 Hz, 1H), 7.37-7.30 (m, 4H), 7.27 (dd, J = 9.6, 6.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.95 (dd, J = 7.6, 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 4.46 (s, 1H), 4.35 (d, J = 6.0 Hz, 2H). ¹³C NMR (**100 MHz, DMSO-** d_6) δ 174.44, 166.63, 143.88, 139.45, 128.82, 127.65, 127.37, 126.93, 124.77, 121.96, 109.90, 53.84, 42.89.

HRMS m/z (**ESI**): calcd for $C_{16}H_{14}N_2O_2Na^+$ [M+Na]⁺: 289.0947, found 289.0957.

To a 50 mL round bottom flask was added *N*-Me-indole acetic acid (1.89 g, 10 mmol, 1.0 equiv.) and CH₂Cl₂ (30 mL). Then, Et₃N (3 mL, 22 mmol; 2.2 equiv.) was added, followed by EDCI (2.16 g, 12 mmol; 1.2 equiv.). The mixture was allowed to stir for a few minutes, and then the benzylamine (2 mL, 18 mmol, 1.8 equiv.) was added. Upon consumption of starting material, the reaction was diluted with water. The mixture was poured into a separatory funnel and washed with 1.0 M NaOH several times and brine and dried over Na₂SO₄. The residue was purified by flash column chromatography to give **S3**.

To a solution of **S3** (1.06 g, 3.8 mmol, 1.0 equiv.) in DMSO (1.3 mL, 19 mmol, 5.0 equiv.) at ambient temperature was added dropwise 12.1 M HCl (10.5 mL, 38 mmol, 10.0 equiv.). After the oxidation was completed, the reaction mixture was neutralized with saturated NaHCO₃ and extracted with CH₂Cl₂. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography to give **1m** as a white solid (0.90g, 82% yield). ¹H NMR (**400 MHz, CDCl₃**) δ 7.32-7.22 (m, 7H), 7.06-7.00 (m, 2H), 6.80 (d, J = 7.6 Hz, 1H), 4.51-4.35 (m, 2H), 3.82 (t, J = 6.8 Hz, 1H), 3.14 (s, 3H), 2.91 (dd, J = 15.2, 5.6 Hz, 1H), 2.57 (dd, J = 15.2, 7.6 Hz, 1H). ¹³C NMR (**100 MHz, CDCl₃**) δ 177.60, 170.12, 143.93, 138.28, 128.65, 128.30, 128.28, 127.77, 127.39, 124.27, 122.76, 108.17, 43.66, 42.31, 37.07, 26.30. **HRMS** m/z (**ESI**): calcd for C₁₈H₁₉N₂O₂⁺ [M+H]⁺: 295.1441, found 295.1439.

4. Reaction optimization

Table S1. Reaction optimization a

Entry	Catalyst	Solvent	temperature	Time	Yield(%) ^b	dr^c	$ee(\%)^d$
1	C1	CHCl ₃	25	12	78	>95:5	24
2	C2	CHCl ₃	25	12	71	>95:5	6
3	C3	CHCl ₃	25	12	73	>95:5	54

4	C4	$CHCl_3$	25	12	67	>95:5	40
5	C5	$CHCl_3$	25	12	71	>95:5	46
6	C6	$CHCl_3$	25	12	68	>95:5	61
7	C7	$CHCl_3$	25	12	75	>95:5	78
8	C8	$CHCl_3$	25	12	80	>95:5	80
9	C9	$CHCl_3$	25	12	73	>95:5	52
10	C10	$CHCl_3$	25	12	66	>95:5	8
11	C11	CHCl ₃	25	12	trace	-	-
12	C12	CHCl ₃	25	12	64	>95:5	16
13	C13	CHCl ₃	25	12	75	>95:5	40
14	C14	CHCl ₃	25	12	70	>95:5	52
15	C15	CHCl ₃	25	12	77	>95:5	-56
16	C16	CHCl ₃	25	12	69	>95:5	-58
17	C17	CHCl ₃	25	12	68	>95:5	-50
18	C18	CHCl ₃	25	12	71	>95:5	-35
19	C8	CH_2Cl_2	25	12	77	>95:5	60
20	C8	THF	25	12	79	>95:5	49
21	C8	CH ₃ CN	25	12	76	>95:5	18
22	C8	CH ₃ OH	25	12	71	>95:5	12
23	C8	CHCl ₃	0	24	77	>95:5	86
24	C8	CHCl ₃	-15	72	73	>95:5	89
25	C8	CHCl ₃	-40	72	56	>95:5	77
26 ^e	C8	CHCl ₃	-15	72	trace	-	-
27^f	C8	CHCl ₃	-15	72	76	>95:5	65
28 ^g	C8	CHCl ₃	-15	72	79	>95:5	91

^aUnless otherwise specified, reactions were carried out with **1a** (0.1 mmol), **2a** (0.14 mmol), and catalyst (10 mol%) in solvent (1 mL) at the specified temperature for the indicated time. ^bYields of isolated products. ^cThe diastereomeric ratio (*dr*) value was determined by ¹H NMR analysis of the crude products. ^dThe enantiomeric excess (*ee*) value was determined by HPLC analysis. ^e3Å molecular sieve (50 mg) was used. ^f4Å molecular sieve (50 mg) was used.

5. Chiral squaramide-catalyzed asymmetric [3+3] annulation

An argon purged reaction tube was charged with 3-carboxamide oxindoles **1** (0.1 mmol), β , γ -unsaturated α -keto esters **2** (0.14 mmol), catalyst **C8** (0.01 mmol) and 5Å molecular sieve (50 mg). Then, freshly distilled CHCl₃ (1 mL) was added and the reaction mixture was stirred at -15 °C for 72 h. After completion of the reaction, the crude product was purified by flash column chromatography on silica gel to afford the corresponding products **3**. The diastereomeric ratio was determined by crude ¹H NMR analysis and the enantiomeric excess was determined by chiral-phase HPLC analysis.

(3R,4'R,6'R)-methyl1,1'-dibenzyl-6'-hydroxy-2,2'-dioxo-4'-phenylspiro[indoline-3, 3'-piperidine]-6'-carboxylate (3aa)

White solid; 43.1 mg, 79% yield; dr > 95:5; ee = 91%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 20.16 min, t_r (minor) = 14.72 min]; $[\alpha]_D^{25} = -92.4$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.2 Hz, 1H), 7.29-7.04 (m, 13H), 6.91 (d, J = 7.6 Hz, 2H), 6.55 (d, J = 7.2 Hz, 2H),

6.39 (d, J = 7.6 Hz, 1H), 5.25 (d, J = 16.0 Hz, 1H), 5.04 (d, J = 16.0 Hz, 1H), 4.74 (s, 1H), 4.48 (d, J = 16.4 Hz, 1H), 4.42 (dd, J = 14.4, 2.8 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.39 (t, J = 14.0 Hz, 1H), 3.31 (s, 3H), 2.21 (dd, J = 14.0, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.27, 172.06, 168.50, 144.23, 137.13, 136.89, 134.76, 129.34, 128.55, 128.52, 128.22, 128.19, 128.07, 127.87, 127.64, 127.20, 127.03, 126.42, 124.02, 122.33, 110.20, 84.84, 62.30, 53.62, 45.77, 43.74, 41.31, 36.22; HRMS m/z (ESI): calcd for $C_{34}H_{30}N_2O_5Na^+$ [M+Na]⁺: 569.2052, found 569.2035.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-2,2'-dioxo-1,4'-diphenylspiro[indoline-3,3'-piperidine]-6'-carboxylate (3ba)

White solid; 39.4 mg, 74% yield; dr > 95:5; ee = 84%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 92/8, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 33.30 min, t_r (minor) = 18.03 min]; $[\alpha]_D^{25} = -47.4$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.2 Hz, 1H), 7.40-7.04 (m, 13H), 6.88 (d, J = 7.6 Hz, 4H), 6.45 (d, J = 8.0 Hz, 1H), 5.28 (d, J =

16.0 Hz, 1H), 4.76 (s, 1H), 4.38 (d, J = 14.2 Hz, 1H), 4.15 (d, J = 15.6 Hz, 1H), 3.39-3.32 (m, 4H), 2.22 (d, J = 12.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.48, 172.05, 168.38, 145.18, 137.17, 136.36, 133.83, 129.46, 129.24, 128.26, 128.22, 128.10, 127.86, 127.65, 127.57, 127.24, 126.80, 124.06, 122.69, 109.98, 84.86, 62.50, 53.65, 45.82, 41.82, 35.46; **HRMS** m/z (**ESI**): calcd for $C_{33}H_{28}N_2O_5Na^+$ [M+Na]⁺: 555.1896, found 555.1893.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[ind oline-3,3'-piperidine]-6'-carboxylate (3ca)

White solid; 35.3 mg, 75% yield; dr > 95:5; ee = 99%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 13.22 min, t_r (minor) = 17.18 min]; $[\alpha]_D^{25} = -68.3$ (c = 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 1H), 7.28-7.16 (m, 6H), 7.11-6.98 (m, 4H), 6.83 (d, J = 7.6 Hz, 2H), 6.56 (d, J = 7.6 Hz, 2H)

= 8.0 Hz, 1H), 5.22 (d, J = 15.6 Hz, 1H), 4.80 (s, 1H), 4.34 (dd, J = 14.0, 2.8 Hz, 1H), 4.14 (d, J = 16.0 Hz, 1H), 3.37-3.30 (m, 4H), 2.91 (s, 3H), 2.18 (dd, J = 13.6, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.25, 172.04, 168.35, 144.84, 137.20, 136.36, 129.30, 128.20, 128.09, 127.92, 127.82, 127.60, 127.45, 127.18, 123.76, 122.26, 108.68, 84.85, 62.38, 53.60, 45.87, 41.22, 35.43, 26.09; HRMS m/z (ESI): calcd for $C_{28}H_{26}N_2O_5Na^+$ [M+Na]⁺ : 493.1793, found 493.1781.

(3R,4'R,6'R)-methyl 1'-benzyl-5-chloro-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3da)

White solid; 38.8 mg, 77% yield; dr > 95.5; ee = 96%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 18.09 min, t_r (minor) = 12.73 min]; [α]_D²⁵ = -58.5 (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 2.0 Hz, 1H), 7.29-7.23 (m, 4H), 7.17 (d, J = 7.6 Hz, 2H), 7.09-7.04 (m,

3H), 6.85 (d, J = 7.6 Hz, 2H), 6.50 (d, J = 8.4 Hz, 1H), 5.18 (d, J = 16.0 Hz, 1H), 4.79 (s, 1H), 4.32 (dd, J = 14.0, 2.8 Hz, 1H), 4.16 (d, J = 16.0 Hz, 1H), 3.33 (s, 3H), 3.27 (t, J = 14.0 Hz, 1H), 2.89 (s, 3H), 2.21 (dd, J = 14.0, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.77, 171.82, 167.71, 143.52, 136.94, 135.98, 129.31, 129.16, 128.29, 128.06, 127.85, 127.83, 127.70, 127.47, 127.33, 124.62, 109.51, 84.79, 62.42, 53.61, 45.85, 41.12, 35.46, 26.20; HRMS m/z (ESI): calcd for $C_{28}H_{25}ClN_2O_5Na^+[M+Na]^+$: 527.1350, found 527.1347.

(3R,4'R,6'R)-methyl 1'-benzyl-5-bromo-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3ea)

White solid; 40.6 mg, 74% yield; dr > 95:5; ee = 90%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 14.83 min, t_r (minor) = 10.93 min]; $[\alpha]_D^{25} = -57.1$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.32-7.23 (m, 4H), 7.16 (d, J = 7.6 Hz,

2H), 7.10-7.03 (m, 3H), 6.85 (d, J = 7.2 Hz, 2H), 6.46 (d, J = 8.0 Hz, 1H), 5.21 (d, J = 15.6 Hz, 1H), 4.75 (s, 1H), 4.30 (dd, J = 14.4, 3.2 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.32 (s, 3H), 3.27 (t, J = 14.0 Hz, 1H), 2.88 (s, 3H), 2.21 (dd, J = 14.0, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.60, 171.87, 167.71, 144.02, 136.94, 135.98, 132.04, 129.67, 128.32, 128.07, 127.93, 127.87, 127.74, 127.49, 127.34, 114.67, 110.03, 84.72, 62.31, 53.63, 45.71, 41.13, 35.47, 26.17; HRMS m/z (ESI): calcd for $C_{28}H_{25}BrN_2O_5Na^+$ [M+Na]⁺: 571.0845, found 571.0836.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1,5-dimethyl-2,2'-dioxo-4'-phenylspiro [indoline-3,3'-piperidine]-6'-carboxylate (3fa)

White solid; 36.3 mg, 75% yield; dr > 95:5; ee = 99%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 49.49 min, t_r (minor) = 25.67 min]; $[\alpha]_D^{25} = -60.1$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.28-7.17 (m, 5H), 7.09-7.05 (m, 2H), 7.01 (dd, J = 7.6, 7.2 Hz, 2H), 6.83

(d, J = 7.6 Hz, 2H), 6.46 (d, J = 8.0 Hz, 1H), 5.21 (d, J = 15.6 Hz, 1H), 4.90 (s, 1H), 4.31 (dd, J = 14.4, 3.2 Hz, 1H), 4.15 (d, J = 15.6 Hz, 1H), 3.37-3.31 (m, 4H), 2.88 (s, 3H), 2.38 (s, 3H), 2.18 (dd, J = 14.0, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.18, 171.93, 168.46, 142.46, 137.26, 136.48, 131.54, 129.51, 128.13, 128.11, 127.96, 127.78, 127.63, 127.44, 127.19, 124.93, 108.42, 84.96, 62.39, 53.42, 45.77, 41.13, 35.56, 26.11, 21.44; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_5Na^+$ [M+Na]⁺: 507.1896, found 507.1883.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-5-methoxy-1-methyl-2,2'-dioxo-4'-phe nylspiro[indoline-3,3'-piperidine]-6'-carboxylate (3ga)

White solid; 39.0 mg, 78% yield; dr = 93:7; ee = 99%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 27.66 min, t_r (minor) = 14.53 min]; $[\alpha]_D^{25} = -72.7$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 2.4 Hz, 1H), 7.27-7.18 (m, 5H), 7.09-7.00 (m, 3H), 6.87-6.85

(m, 2H), 6.80 (dd, J = 8.4, 2.4 Hz, 1H), 6.47 (d, J = 8.8 Hz, 1H), 5.25 (d, J = 15.6 Hz, 1H), 4.77 (s, 1H), 4.32 (dd, J = 14.4, 2.8 Hz, 1H), 4.12 (d, J = 15.6 Hz, 1H), 3.81 (s, 3H), 3.36-3.29 (m, 4H), 2.88 (s, 3H), 2.18 (dd, J = 14.0, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.92, 171.88, 168.25, 155.60, 138.43, 137.29, 136.38, 128.82, 128.16, 128.13, 127.93, 127.65, 127.47, 127.19, 113.81, 111.47, 108.98, 84.88, 62.68, 55.78, 53.51, 45.74, 41.14, 35.41, 26.16; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_6Na^+$ [M+Na]⁺: 523.1845, found 523.1826.

(3R,4'R,6'R)-methyl 1'-benzyl-6-chloro-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3ha)

White solid; 39.3 mg, 78% yield; dr = 93:7; ee = 92%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 18.34 min, t_r (minor) = 11.41 min]; $[\alpha]_D^{25} = -47.0$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 1H), 7.30-7.22 (m, 4H), 7.16 (d, J = 7.2 Hz, 2H), 7.10-7.02 (m,

3H), 6.84 (d, J = 7.2 Hz, 2H), 6.57 (d, J = 2.0 Hz, 1H), 5.17 (d, J = 16.0 Hz, 1H), 4.70 (s, 1H), 4.31 (dd, J = 14.0, 2.8 Hz, 1H), 4.14 (d, J = 15.6 Hz, 1H), 3.33 (s, 3H), 3.25 (t, J = 14.0 Hz, 1H), 2.90 (s, 3H), 2.19 (dd, J = 14.0, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.17, 171.94, 167.92, 146.12, 137.03, 136.04, 135.23, 128.66, 128.27, 128.06, 127.83, 127.69, 127.31, 126.23, 124.57, 122.08, 109.40, 84.72, 62.10, 53.72, 45.90, 41.09, 35.40, 26.21; HRMS m/z (ESI): calcd for $C_{28}H_{25}ClN_2O_5Na^+[M+Na]^+$: 527.1350, found 527.1375.

(3R,4'R,6'R)-methyl1'-benzyl-6-bromo-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3ia)

White solid; 41.1mg, 75% yield; dr > 95:5; ee = 92%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 37.25 min, t_r (minor) = 22.82 min]; $[\alpha]_D^{25} = -49.6$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 1H), 7.29-7.22 (m, 4H), 7.16 (d, J = 7.2 Hz, 2H), 7.10-

7.03 (m, 3H), 6.82 (d, J = 7.2 Hz, 2H), 6.72 (d, J = 2.0 Hz, 1H), 5.17 (d, J = 16.0 Hz, 1H), 4.66 (s, 1H), 4.31 (dd, J = 14.4, 2.8 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.32 (s, 3H), 3.24 (t, J = 14.0 Hz, 1H), 2.90 (s, 3H), 2.18 (dd, J = 13.6, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.18, 171.79, 167.82, 146.18, 137.03, 136.03, 128.26, 128.04, 127.84, 127.83, 127.70, 127.28, 126.82, 125.09, 124.95, 123.06, 112.20, 84.83, 62.20, 53.65, 45.97, 41.01, 35.42, 26.21; HRMS m/z (ESI): calcd for $C_{28}H_{25}BrN_2O_5Na^+$ [M+Na]⁺: 571.0845, found 571.0838.

(3R,4'R,6'R)-methyl 1'-ethyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[indol ine-3,3'-piperidine]-6'-carboxylate (3ja)

White solid; 29.4mg, 72% yield; dr > 95:5; ee = 96%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 13.60 min, t_r (minor) = 12.28 min]; $[\alpha]_D^{25} = -77.6$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.4 Hz, 1H), 7.22 (dd, J = 8.0, 7.6 Hz, 1H), 7.05 (dd, J = 7.6, 7.6 Hz, 2H), 6.99 (dd, J = 7.6)

7.6, 7.2 Hz, 2H), 6.80 (d, J = 7.6 Hz, 2H), 6.52 (d, J = 8.0 Hz, 1H), 4.53 (s, 1H), 4.25 (dd, J = 14.4, 2.8 Hz, 1H), 4.07 (s, 3H), 3.35-3.23 (m, 3H), 2.89 (s, 3H), 2.17 (dd, J = 13.6, 2.8 Hz, 1H), 1.19 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.37, 172.83, 167.29, 144.74, 136.37, 129.15, 127.88, 127.67, 127.57, 127.40, 123.80, 122.20, 108.50, 86.36, 62.32, 54.35, 41.17, 40.58, 35.96, 26.04, 13.45; HRMS m/z (ESI): calcd for $C_{23}H_{24}N_2O_5Na^+$ [M+Na]⁺: 431.1583, found 431.1560.

(3R,4'R,6'R)-methyl 1'-benzyl-4'-(4-fluorophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cb)

White solid; 36.6 mg, 75% yield; dr > 95:5; ee = 95%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 23.13 min, t_r (minor) = 19.60 min]; $[\alpha]_D^{25} = -92.4$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.2 Hz, 1H), 7.28-7.21 (m, 4H), 7.16 (d, J = 7.2 Hz, 2H), 7.10 (dd, J = 7.2 Hz, 2H), 7.

7.6, 7.6 Hz, 1H), 6.80 (dd, J = 8.4, 5.6 Hz, 2H), 6.69 (dd, J = 8.8, 8.8 Hz, 2H), 6.60 (d, J = 8.0 Hz, 1H), 5.21 (d, J = 16.0 Hz, 1H), 4.89 (s, 1H), 4.32 (dd, J = 14.4, 2.8 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.32-3.25 (m, 4H), 2.94 (s, 3H), 2.16 (dd, J = 14.0, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.20, 171.86, 168.17, 161.99 (d, J = 246.3 Hz), 144.79, 137.11, 132.21 (d, J = 3.4 Hz), 129.55, 129.47, 128.22, 128.06, 127.56, 127.21, 123.73, 122.39, 114.51 (d, J = 21.2 Hz), 108.86, 84.79, 62.32, 53.62, 45.88, 40.52, 35.58, 26.14; HRMS m/z (ESI): calcd for $C_{28}H_{25}FN_2O_5Na^+$ [M+Na]⁺: 511.1645, found 511.1636.

(3R,4'R,6'R)-methyl1'-benzyl-4'-(4-bromophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cc)

White solid; 42.2 mg, 77% yield; dr > 95:5; ee = 99%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 19.24 min, t_r (minor) = 9.25 min]; $[\alpha]_D^{25} = -55.4$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.2 Hz, 1H), 7.31-7.21 (m, 4H), 7.17-7.08 (m, 5H), 6.71 (d, J = 8.4 Hz,

2H), 6.63 (d, J = 7.6 Hz, 1H), 5.20 (d, J = 16.0 Hz, 1H), 4.86 (s, 1H), 4.29 (dd, J = 14.0, 2.8 Hz, 1H), 4.12 (d, J = 15.6 Hz, 1H), 3.32-3.25 (m, 4H), 2.96 (s, 3H), 2.14 (dd, J = 14.0, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.10, 171.81, 168.08, 144.78, 137.06, 135.51, 130.78, 129.65, 129.57, 128.23, 128.06, 127.41, 127.24, 123.71, 122.44, 121.55, 109.01, 84.71, 62.08, 53.66, 45.87, 40.67, 35.35, 26.22; HRMS m/z (ESI): calcd for $C_{28}H_{25}BrN_2O_5Na^+[M+Na]^+$: 571.0845, found 571.0850.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-(p-tolyl)spiro[in doline-3,3'-piperidine]-6'-carboxylate (3cd)

White solid; 37.3 mg, 77% yield; dr > 95:5; ee = 92%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 33.23 min, t_r (minor) = 17.93 min]; $[\alpha]_D^{25} = -60.2$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.59 (d, J = 7.6 Hz, 1H), 7.28-7.16 (m, 6H), 7.09 (dd, J = 7.6, 7.6 Hz, 1H),

6.80 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 8.0 Hz, 2H), 6.58 (d, J = 8.0 Hz, 1H), 5.20 (d, J = 15.6 Hz, 1H), 4.83 (s, 1H), 4.29 (dd, J = 14.4, 2.8 Hz, 1H), 4.13 (d, J = 16.0 Hz, 1H), 3.34-3.27 (m, 4H), 2.93 (s, 3H), 2.16-2.13 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ :174.41, 172.03, 168.46, 144.87, 137.21, 136.99, 133.35, 129.23, 128.30, 128.19, 128.07, 127.95, 127.75, 127.15, 123.76, 122.23, 108.73, 84.90, 62.42, 53.56, 45.89, 40.82, 35.64, 26.13, 20.98; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_5Na^+$ [M+Na]⁺: 507.1896, found 507.1883.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-4'-(4-methoxyphenyl)-1-methyl-2,2'-di oxospiro[indoline-3,3'-piperidine]-6'-carboxylate (3ce)

White solid; 37.0 mg, 74% yield; dr > 95:5; ee = 97%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 40.66 min, t_r (minor) = 23.79 min]; $[\alpha]_D^{25} = -61.7$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz,CDCl₃) δ 7.58 (d, J = 7.2 Hz, 1H), 7.28-7.21 (m, 4H), 7.18 (d, J = 7.2 Hz, 2H),

7.09 (dd, J = 7.6, 7.6 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 7.6 Hz, 1H), 6.53 (d, J = 8.4 Hz, 2H), 5.21 (d, J = 15.6 Hz, 1H), 4.73 (s, 1H), 4.28 (dd, J = 14.4, 2.8 Hz, 1H), 4.12 (d, J = 16.0 Hz, 1H), 3.67 (s, 3H), 3.31-3.24 (m, 4H), 2.94 (s, 3H), 2.14 (dd, J = 13.6, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.32, 172.12, 168.45, 158.69, 144.91, 137.22, 129.27, 128.96, 128.56, 128.20, 128.09, 127.89, 127.17, 123.72, 122.20, 112.93, 108.77, 84.83, 62.48, 55.08, 53.59, 45.82, 40.51, 35.77, 26.14; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_6Na^+$ [M+Na] $^+$: 523.1845, found 523.1836.

(3R,4'R,6'R)-methyl 1'-benzyl-4'-(3-fluorophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cf)

White solid; 38.1 mg, 78% yield; dr > 95:5; ee = 98%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 92/8, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 36.80 min, t_r (minor) = 29.42 min]; $[\alpha]_D^{25} = -58.9$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, DMSO- d_6) δ 7.66 (d, J = 7.6 Hz, 1H), 7.41 (s, 1H), 7.32-7.10 (m, 8H), 6.92 (dd, J = 8.8, 8.0 Hz, 1H), 6.82

(d, J = 7.6 Hz, 1H), 6.69 (d, J = 7.6 Hz, 1H), 6.53 (d, J = 10.4 Hz, 1H), 4.70 (d, J = 16.0 Hz, 1H), 4.30 (d, J = 16.0 Hz, 1H), 4.17 (d, J = 14.0 Hz, 1H), 3.43-3.25 (m, 4H), 2.87 (s, 3H), 2.17 (dd, J = 14.0, 2.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 174.14, 171.20, 167.54, 163.06, 160.64, 144.78, 140.02 (d, J = 7.4 Hz), 137.80, 129.97 (d, J = 8.1 Hz), 129.77, 128.26, 127.55, 127.05, 124.49, 124.27, 122.77, 114.70 (d, J = 22.7 Hz), 109.38, 86.11, 62.04, 53.11, 47.05, 40.65, 35.11, 26.32; HRMS m/z (ESI): calcd for $C_{28}H_{25}FN_2O_5Na^+[M+Na]^+$: 511.1645, found 511.1664.

(3R,4'R,6'R)-methyl 1'-benzyl-4'-(3-chlorophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cg)

White solid; 37.3 mg, 74% yield; dr > 95:5; ee = 90%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 10.77 min, t_r (minor) = 7.53 min]; $[\alpha]_D^{25} = -78.1$ (c = 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 1H), 7.31-7.21 (m, 4H), 7.17 (d, J = 7.2 Hz, 2H), 7.11 (dd, J = 7.6, 7.6 Hz, 1H),

7.04 (d, J = 8.0 Hz, 1H), 6.96 (dd, J = 8.0, 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 2H), 6.62 (d, J = 7.6 Hz, 1H), 5.20 (d, J = 16.0 Hz, 1H), 4.88 (s, 1H), 4.30 (dd, J = 14.4, 2.8 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.32-3.25 (m, 4H), 2.96 (s, 3H), 2.17 (dd, J = 13.6, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.13, 171.72, 168.02, 144.70, 138.47, 137.07, 133.49, 129.60, 128.88, 128.22, 128.04, 127.87, 127.66, 127.42, 127.22, 126.38, 123.71, 122.51, 108.91, 84.75, 62.10, 53.64, 45.93, 40.90, 35.27, 26.18; HRMS m/z (ESI): calcd for $C_{28}H_{25}CIN_2O_5Na^+[M+Na]^+$: 527.1530, found 527.1333.

(3R,4'R,6'R)-methyl 1'-benzyl-4'-(3-bromophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3ch)

White solid; 41.1 mg, 75% yield; dr > 95:5; ee = 99%, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 26.75 min, t_r (minor) = 29.00 min]; $[\alpha]_D^{25} = -73.6$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, DMSO- d_6) δ 7.64 (d, J = 7.2 Hz, 1H), 7.41 (s, 1H), 7.31-7.12 (m, 8H), 7.03 (dd, J = 8.0, 7.6 Hz, 1H), 6.91

(s, 1H), 6.84-6.81 (m, 2H), 4.71 (d, J = 16.0 Hz, 1H), 4.30 (d, J = 16.0 Hz, 1H), 4.13 (dd, J = 14.0, 2.8 Hz, 1H), 3.39-3.31 (m, 4H), 2.87 (s, 3H), 2.18 (dd, J = 14.4, 3.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 178.87, 175.90, 172.22, 149.49, 144.48, 142.54, 135.51, 135.47, 134.96, 134.57, 133.02, 132.30, 132.20, 132.08, 131.81, 128.98, 127.53, 126.08, 114.19, 90.84, 66.77, 57.89, 51.79, 45.49, 39.71, 31.07; HRMS m/z (ESI): calcd for $C_{28}H_{25}BrN_2O_5Na^+[M+Na]^+$: 571.0845, found 571.0851.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-(m-tolyl)spiro[i ndoline-3,3'-piperidine]-6'-carboxylate (3ci)

White solid; 36.8mg, 76% yield; dr > 95:5; ee = 98%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 12.37 min, t_r (minor) = 16.48 min]; $[\alpha]_D^{25} = -67.2$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 1H), 7.27-7.16 (m, 6H), 7.09 (dd, J = 7.6, 7.6 Hz, 1H), 6.89-6.86 (m, 2H),

6.63-6.60 (m, 2H), 6.56 (d, J = 7.6 Hz, 1H), 5.20 (d, J = 16.0 Hz, 1H), 4.86 (br, 1H), 4.29 (dd, J = 14.4, 2.8 Hz, 1H), 4.14 (d, J = 15.6 Hz, 1H), 3.34-3.27 (m, 4H), 2.90 (s, 3H), 2.17 (dd, J = 13.6, 2.8 Hz, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.36, 172.00, 168.42, 144.85, 137.23, 137.20, 136.30, 129.24, 128.67, 128.19, 128.10, 128.06, 127.97, 127.41, 127.15, 124.95, 123.77, 122.21, 108.66, 84.93, 62.39, 53.56, 45.92, 41.17, 35.55, 26.07, 21.16; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_5Na^+$ [M+Na]⁺: 507.1896, found 507.1883.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-4'-(3-methoxyphenyl)-1-methyl-2,2'-di oxospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cj)

White solid; 37.0mg, 74% yield; dr = 91:9; ee = 93%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 23.42 min, t_r (minor) = 14.37 min]; $[\alpha]_D^{25} = -83.6$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.6 Hz, 1H), 7.39-7.16 (m, 6H), 7.12 (dd, J = 7.6, 7.2 Hz, 1H), 6.96 (dd, J = 7.6)

= 8.0, 8.0 Hz, 1H), 6.65-6.61 (m, 2H), 6.52 (d, J = 7.6 Hz, 1H), 6.30 (s, 1H), 5.21 (d, J = 15.6 Hz, 1H), 4.84 (s, 1H), 4.33 (dd, J = 14.4, 3.2 Hz, 1H), 4.17 (d, J = 16.0 Hz, 1H), 3.55 (s, 3H), 3.35 (s, 3H), 3.29 (d, J = 13.6 Hz, 1H), 2.96 (s, 3H), 2.20 (dd, J = 13.6, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.21, 171.97, 168.30, 158.85, 144.95, 137.95, 137.18, 129.33, 128.61, 128.20, 128.07, 127.97, 127.18, 123.71, 122.24, 120.69, 113.77, 112.60, 108.79, 84.85, 62.28, 55.12, 53.60, 45.90, 41.20, 35.63, 26.14; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_6Na^+$ [M+Na]⁺: 523.1845, found 523.1857.

(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-(o-tolyl)spiro[in doline-3,3'-piperidine]-6'-carboxylate (3ck)

White solid; 31.0 mg, 64% yeild; dr > 95:5; ee = 98%, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 93/7, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 38.79 min, t_r (minor) = 26.95 min]; $[\alpha]_D^{25} = -53.4$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H), 7.36 (dd, J = 8.0, 7.6 Hz, 1H), 7.30-7.11 (m, 6H), 7.06 (d, J = 7.6 Hz,

1H), 6.94 (dd, J = 7.6, 7.2, Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 6.62 (dd, J = 7.6, 7.6 Hz, 1H), 6.21 (d, J = 8.0 Hz, 1H), 5.28 (d, J = 16.0 Hz, 1H), 4.85-4.54 (m, 2H), 4.08 (d, J = 16.0 Hz, 1H), 3.32-3.14 (m, 4H), 2.91 (s, 3H), 2.48 (s, 3H), 2.03 (dd, J = 14.0, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.22, 172.12, 168.80, 145.35, 137.27, 137.15, 135.39, 130.53, 129.50, 128.30, 128.18, 128.16, 127.18, 127.04, 126.39, 124.83, 124.21, 122.28, 108.89, 84.82, 61.75, 53.55, 45.67, 37.54, 35.63, 26.17, 20.17; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_5Na^+$ [M+Na]⁺: 507.1896, found 507.1883.

(3R,4'R,6'R)-ethyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[indol ine-3,3'-piperidine]-6'-carboxylate (3cl)

White solid; 33.4 mg, 69% yield; dr > 95:5; ee = 94%, determined by HPLC analysis [Chiralpak AD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 22.64 min, t_r (minor) = 25.61 min]; $[\alpha]_D^{25} = -92.4$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.6, 1H), 7.29-7.26 (m, 2H), 7.24-7.17 (m, 4H), 7.09-7.04 (m, 2H), 7.02-6.98 (m, 2H),

6.82 (d, J = 7.2 Hz, 2H), 6.57 (d, J = 8.0 Hz, 1H), 5.19 (d, J = 16.0 Hz, 1H), 4.75 (s, 1H), 4.32 (dd, J = 14.4, 3.2 Hz, 1H), 4.14 (d, J = 16.0 Hz, 1H), 4.12-3.98 (m, 1H), 3.46-3.21 (m, 2H), 2.90 (s, 3H), 2.18 (dd, J = 13.6, 2.8 Hz, 1H), 1.09 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.14, 171.72, 168.36, 144.94, 137.39, 136.36, 129.31, 128.19, 128.14, 127.91, 127.71, 127.61, 127.47, 127.19, 123.83, 122.02, 108.69, 84.88, 63.66, 62.34, 45.95, 41.25, 35.61, 26.06, 13.51; HRMS m/z (ESI): calcd for $C_{29}H_{28}N_2O_5Na^+[M+Na]^+$: 507.1896, found 507.1895.

(3R,4'R,6'R)-isopropyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[i ndoline-3,3'-piperidine]-6'-carboxylate (3cm)

White solid; 32.9 mg, 66% yield; dr > 95:5; ee = 87%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 21.19 min, t_r (minor) = 13.77 min]; $[\alpha]_D^{25} = -71.3$ (c 0.01, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.6 Hz, 1H), 7.28-7.20 (m, 6H), 7.08-6.98 (m, 4H), 6.82 (d, J = 7.2 Hz, 2H), 6.56 (d, J

= 8.0 Hz, 1H), 4.95 (d, J = 15.6 Hz, 1H), 4.73-4.67 (m, 2H), 4.34-4.27 (m, 2H), 3.33 (t, J = 14.0 Hz, 1H), 2.88 (s, 3H), 2.18 (dd, J = 14.0, 3.2 Hz, 1H), 1.34 (d, J = 6.4 Hz, 3H), 0.90 (d, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.13, 171.30, 168.38, 144.94, 137.45, 136.40, 129.30, 128.27, 127.94, 127.91, 127.62, 127.48, 127.15, 123.89, 121.97, 108.69, 85.47, 72.74, 62.37, 46.59, 41.24, 35.70, 26.04, 21.57, 20.88; HRMS m/z (ESI): calcd for $C_{30}H_{30}N_2O_5Na^+$ [M+Na]⁺: 521.2052, found 521.2059.

Unsuccessful Examples

6. Scale-up and transformation of product 3

(a) Scale-up reaction of 3ga

3-Carboxamide oxindole **1g** (1.0 mmol), β , γ -unsaturated α -keto ester **2a** (1.4 mmol), catalyst **C8** (0.1 mmol) and 5Å molecular sieve (500 mg) was added to an argon purged vial. Then, freshly distilled CHCl₃ (10 mL) was added and the reaction mixture was stirred at -15 °C for 72 h. After completion of the reaction, the crude product was purified by flash column chromatography on silica gel to afford the desired product **3ga** as a white solid in 62% yield with 93:7 dr and 98% *ee*.

(b) Transformation of 3ga

To an argon purged reaction tube containing **3ga** (0.1 mmol) and BF₃ Et₂O (0.12 mmol) was added freshly distilled CHCl₃ (1 mL). After the reaction was stirred for 8 hours at room temperature, the resulted mixture was purified by flash column chromatography on silica gel to afford the desired product **4**.

(3R,4'R)-methyl 1'-benzyl-5-methoxy-1-methyl-2,2'-dioxo-4'-phenyl-2',4'-dihydro -1'H-spiro[indoline-3,3'-pyridine]-6'-carboxylate (4)

White solid; 43.4 mg, 90% yield; dr > 95:5; ee = 97%, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 13.25 min, t_r (minor) = 15.63 min]; $[\alpha]_D^{25} = +20.0$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.31 (m, 2H),

7.28-7.25 (m, 3H), 7.12-7.02 (m, 1H), 7.06-7.02 (m, 2H), 6.95 (d, J = 2.4 Hz, 1H), 6.93-6.90 (m, 2H), 6.74 (dd, J = 8.8, 2.8 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 6.41 (d, J = 3.2 Hz, 1H), 5.62 (d, J = 14.8 Hz, 1H), 4.82 (d, J = 14.8 Hz, 1H), 4.69 (d, J = 2.8 Hz, 1H), 3.75 (d, J = 2.0 Hz, 6H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.11, 166.77, 162.83, 155.54, 137.66, 136.62, 135.31, 133.91, 128.76, 128.65, 128.15, 127.85, 127.71, 127.65, 126.01, 122.13, 113.59, 112.12, 108.73, 60.43, 55.85, 52.66, 46.23, 45.72, 26.27; HRMS m/z (ESI): calcd for $C_{29}H_{26}N_2O_5Na^+$ [M+Na]⁺: 505.1739, found 505.1735.

To an argon purged reaction tube containing **3ga** (0.1 mmol), (CH₃CO)₂O (0.25 mmol) and DMAP (0.1 mmol) was added freshly distilled CH₂Cl₂ (1 mL). After the reaction was stirred for 24 h at room temperature, the resulted mixture was purified by flash column chromatography on silica gel to afford the desired product **5**.

(3R,4'R,6'R)-methyl 6'-acetoxy-1'-benzyl-5-methoxy-1-methyl-2,2'-dioxo-4'-phen ylspiro[indoline-3,3'-piperidine]-6'-carboxylate (5)

White solid; 41.2 mg, 76% yield; dr = 93:7; ee = 96%, determined by HPLC analysis [Chiralpak AD-H, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 20.16 min, t_r (minor) = 12.40 min]; $[\alpha]_D^{25} = -92.1$ (c 0.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 2.4 Hz, 1H), 7.26-7.17 (m, 3H), 7.10-7.01 (m, 5H), 6.88 (d, J = 2.4

7.2 Hz, 2H), 6.81 (dd, J = 8.4, 2.4 Hz, 1H), 6.48 (d, J = 8.4 Hz, 1H), 5.39 (d, J = 16.0 Hz, 1H), 4.40 (d, J = 16.0 Hz, 1H), 4.04 (dd, J = 14.8, 2.8 Hz, 1H), 3.83 (s, 3H), 3.62 (t, J = 15.2 Hz, 1H), 3.25 (s, 3H), 3.18 (dd, J = 15.6, 2.8 Hz, 1H), 2.89 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.60, 170.11, 168.56, 165.80, 155.72, 138.23, 136.79, 135.87, 128.33, 128.12, 127.89, 127.72, 127.62, 127.22, 127.04, 114.30, 111.16, 109.16, 90.48, 62.68, 55.84, 53.24, 45.95, 40.52, 29.54, 26.20, 21.61; HRMS

m/z (**ESI**): calcd for $C_{31}H_{30}N_2O_7Na^+[M+Na]^+$: 565.1951, found 565.1945.

(c) Transformation of 3cm

To an argon purged reaction tube containing 3cm (0.1 mmol), BF₃ Et₂O (0.22 mmol) and Et₃SiH (0.2 mmol) was added freshly distilled CH₂Cl₂ (1 mL). After the reaction was stirred for 24 h at room temperature, the resulted mixture was purified by flash column chromatography on silica gel to afford the desired product 6.

(3S,4'R)-isopropyl 1'-benzyl-1-methyl-2,2'-dioxo-4'-phenylspir o[indoline-3,3'-piperidine]-6'-carboxylate (6)

White solid; 16.4 mg, 34% yield; dr > 95:5; ee = 90%, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 85/15, 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 39.50 min, t_r (minor) = 15.23 min]; $[\alpha]_D^{25} = -77.4$ (c = 0.01, CH_2Cl_2); ¹H NMR (400 MHz,

CDCl₃) δ 7.75 (d, J = 7.2 Hz, 1H), 7.40-7.32 (m, 5H), 7.23 (dd, J = 7.6, 1.2 Hz, 1H), 7.11-7.04 (m, 2H), 7.00-6.97 (m, 2H), 6.79-6.72 (m, 2H), 6.54 (d, J = 7.2 Hz, 1H), 5.58 (d, J = 14.8 Hz, 1H), 5.15 (p, J = 6.4 Hz, 1H), 4.26 (dd, J = 11.6, 6.4 Hz, 1H), 3.90 (d, J = 14.2 Hz, 1H), 3.74 (dd, J = 14.0, 3.2 Hz, 1H), 2.91-2.81 (m, 4H), 2.37-2.31 (m, 1H), 1.37 (d, J = 6.4 Hz, 3H), 1.28 (d, J = 6.4 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 174.60, 171.05, 144.90, 136.48, 135.75, 129.18, 128.83, 128.61, 127.80, 127.70, 127.65, 127.63, 127.48, 124.63, 122.29, 108.37, 69.86, 61.99, 59.09, 48.53, 44.15, 27.82, 25.99, 21.81, 21.65; **HRMS** m/z (**ESI**): calcd for C₃₀H₃₀N₂O₄Na⁺ [M+Na]⁺: 505.2103, found 505.2100.

7. X-ray structures of 1c, 3ca and 3cf

The absolute configurations of 1c, 3ca and 3cf were determined by X-ray crystallography. The stereochemistry of 3aa, 3ba, 3da-3ja, 3cb-3ce, 3cg-3cm, and 4-6 were assigned by analogy.

(a) X-ray structure of substrate 1c

Figure S1. ORTEP diagram (50% probability) of 1c

A single crystal of **1c** [C₁₇H₁₆N₂O₂] was obtained from diffusion of hexane into a solution of **1c** in DCM at room temperature. A suitable crystal of **1c** was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using Olex2⁴, the structure was solved with the ShelXT⁵ structure solution program using Direct Methods and refined with the ShelXL⁶ refinement package using Least Squares minimization. Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of **1c** are summarized in **Table S2**. Crystallographic data (CCDC 1963639) for **1c** can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S2. Parameters for crystallographic analysis of **1c**

Identification code	cu_20180303_sanxianan_0ma-auto	
Empirical formula	$C_{34}H_{32}N_4O_4$	
Formula weight	560.63	
Temperature/K	293(2)	
Crystal system	orthorhombic	
Space group	$P2_12_12_1$	
a/Å	22.2717(14)	
b/Å	14.1714(9)	
c/Å	9.3683(5)	
$lpha/^{\circ}$	90	
β/°	96.922(3)	
$\gamma/^{\circ}$	90	
Volume/Å ³	2935.3(3)	
Z	4	

$\rho_{\rm calc} g/{\rm cm}^3$	1.269
μ/mm^{-1}	0.679
F(000)	1184
Radiation	$CuK\alpha (\lambda = 1.54178)$
Theta range for data collection/°	7.41 to 120.274
Index ranges	$-25 \le h \le 25$, $-15 \le k \le 15$, $-10 \le l \le 10$
Reflections collected	37447
Independent reflections	4369 [$R_{int} = 0.0723$, $R_{sigma} = 0.0459$]
Data/restraints/parameters	4369/0/321
Goodness-of-fit on F ²	1.010
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0467$, $wR_2 = 0.1111$
Final R indexes [all data]	$R_1 = 0.0731$, $wR_2 = 0.1260$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.20

(b) X-ray structure of product 3ca

Figure S2. ORTEP diagram (30% probability) of 3ca

A single crystal of 3ca [$C_{28}H_{26}N_2O_5$] was obtained from diffusion of hexane into a solution of 3ca in DCM at room temperature. A suitable crystal of 3ca was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using $Olex2^4$, the structure was solved with the ShelXT⁵ structure solution program using Direct Methods and refined with the ShelXL⁶ refinement package using Least Squares minimization.

Refinement of the Flack parameter⁷ for 3ca was refined to the value of 0.00(8), which clearly suggests that the absolute configuration of the major isomer of 3ca is (3R,4'R,6'R). Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of 3ca are summarized in Table S3. Crystallographic data (CCDC 1963638) for 3ca can be obtained free of charge from

the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S3. Parameters for crystallographic analysis of 3ca

	Table S3 . Parameters for crystallographic analysis of 3ca				
Identification code Cu_	20170607nch3_0m-auto				
Empirical formula C ₂₈ I	$H_{26}N_2O_5$				
Formula weight 470.	.51				
Temperature/K 1496	(2)				
Crystal system orth	orhombic				
Space group P2 ₁ 2	$2_{1}2_{1}$				
a/Å 11.1	247(17)				
b/Å 11.7	728(18)				
c/Å 18.0	015(3)				
α/°					
β/°					
γ/°					
Volume/ $Å^3$ 2359	9.4(6)				
Z 4					
$\rho_{\text{calc}} g/\text{cm}^3$ 1.32	25				
μ/mm^{-1} 0.74	16				
F(000) 992.	.0				
Radiation Cuk	$\alpha (\lambda = 1.54178)$				
Theta range for data collection/° 8.97	72 to 127.732				
Index ranges -12:	$\leq h \leq 12, -13 \leq k \leq 13, -20 \leq 1 \leq 20$				
Reflections collected 3423	36				
Independent reflections 3889	9 [$R_{int} = 0.0541$, $R_{sigma} = 0.0242$]				
Data/restraints/parameters 3889	9/0/321				
Goodness-of-fit on F^2 1.09	95				
Final R indexes [I>= 2σ (I)] R ₁ =	$= 0.0293, \text{ wR}_2 = 0.0702$				
Final R indexes [all data] $R_1 =$	$= 0.0320, \text{ wR}_2 = 0.0717$				
Largest diff. peak/hole / e Å ⁻³ 0.14	1/-0.22				
Flack parameter 0.00	0(8)				

(c) X-ray structure of product 3cf

Figure S3. ORTEP diagram (30% probability) of 3cf

A single crystal of **3cf** [C₂₈H₂₅FN₂O₅] was obtained from diffusion of hexane into a solution of **3cf** in DCM at room temperature. A suitable crystal of **3cf** was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using Olex2⁴, the structure was solved with the ShelXT⁵ structure solution program using Direct Methods and refined with the ShelXL⁶ refinement package using Least Squares minimization.

Refinement of the Flack parameter⁷ for **3cf** was refined to the value of 0.11(7), which clearly suggests that the absolute configuration of the major isomer of **3cf** is (3*R*,4'*R*,6'*R*). Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of **3cf** are summarized in **Table S4**. Crystallographic data (CCDC 1963637) for **3cf** can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S4. Parameters for crystallographic analysis of 3cf

Identification code	cu_20170324mf_0m-auto
Empirical formula	$C_{28}H_{25}FN_2O_5$
Formula weight	488.50
Temperature/K	273(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	11.316(4)
b/Å	11.859(4)
c/Å	18.168(3)
α/°	90
β/°	90
γ/°	90

Volume/Å ³ 24	38.0(11)
--------------------------	----------

 $\begin{array}{ccc} Z & & 4 \\ \rho_{calc}g/cm^3 & & 1.331 \\ \mu/mm^{-1} & & 0.804 \\ F(000) & & 1024 \end{array}$

Radiation Cu K α (λ = 1.54178) theta range for data collection/° 8.904 to 127.56

Index ranges $-13 \le h \le 13, -12 \le k \le 13, -21 \le 1 \le 21$

Reflections collected 14025

Independent reflections 3990 [$R_{int} = 0.0282$, $R_{sigma} = 0.0257$]

Data/restraints/parameters 3990/0/328 Goodness-of-fit on F^2 1.152

Largest diff. peak/hole / e $\mbox{Å}^{-3}$ 0.37/-0.33 Flack parameter 0.11(7)

8. References

- [1] Zhao, H.; Zhang, Z.; Lu, W.; Han, P.; Wang, W.; Jing, L., *Tetrahedron Lett.*, 2021, **83**, 153426.
- [2] a) Hua, Y.-Z.; Liu, M.-M.; Huang, P.-J.; Song, X.; Wang, M.-C.; Chang, J.-B. Chem. Eur. J. 2015, 21, 11994-11998; b) Li, B.-S.; Wang, Y.; Proctor, R. S. J.; Zhang, Y.; Webster, R. D.; Yang, S.; Song, B.; Chi, Y. R. Nat. Commun. 2016, 7, 12933; c) Juste-Navarro, V.; Marqués-López, E.; Herrera, R. P., Thiourea-catalyzed addition of indoles to aliphatic β,γ-unsaturated α-ketoesters. Asian J. Org. Chem. 2015, 4, 884-889; d) n, K. H.; Bartenschlager, R.; Klein, C. D., Synthesis and biological evaluation of alpha-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg. Med. Chem. 2011, 19, 4067-4074.
- [3] a) Vakulya, B.; Varga, S.; Cs ámpai, A.; So ós, T. Org. Lett. 2005, 7, 1967-969; b) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481-4483; c) Jiang, X.; Zhang, Y.; Liu, X.; Zhang, G.; Lai, L.; Wu, L.; Zhang, J.; Wang, R. J. Org. Chem. 2009, 74, 5562-5567; d) Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 16711-16713; e) Mayr, F.; Brimioulle, R.; Bach, T. J. Org. Chem. 2016, 81, 6965-6971.
- [4] a) Yang, W.; Du, D.-M. Org. Lett. 2010, 12, 5450-5453; b) Dong, Z.; Qiu, G.; Zhou, H.-B.; Dong, C. Tetrahedron: Asymmetry 2012, 23, 1550-1556; c) Xie, X.; Jing, L.; Qin, D.; He, W.; Wu, S.; Jin, L.; Luo, G. RSC Adv. 2014, 4, 11605-11609; d) Rao, K. S.; Ramesh, P.; Trivedi, R.; Kantam, M. L. Tetrahedron Lett. 2016, 57, 1227.
- [5] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crys-tallogr. 2009, 42, 339.
- [6] Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71, 3.
- [7] Sheldrick, G. M. Acta Crystallogr. Sect. C 2015, 71, 3.
- [8] Flack, H. D. Acta Crystallogr. Sect. A 1983, 39, 876.

9. NMR spectra

C7, 1 H NMR (400 MHz, DMSO- d_{6}):

2.5

1.0

C7, 13 C NMR (100 MHz, DMSO- d_6):

11, 1 H NMR (400 MHz, DMSO- d_{6})

11, 13 C NMR (100 MHz, DMSO- d_6):

1m, ¹H NMR (400 MHz, CDCl₃):

1m, ¹³C NMR (100 MHz, CDCl₃):

3aa, ¹H NMR (400 MHz, CDCl₃):

3aa, 13 C NMR (100 MHz, CDCl₃):

3ba, ¹H NMR (400 MHz, CDCl₃):

3ba, ¹³C NMR (100 MHz, CDCl₃):

3ca, ¹H NMR (400 MHz, CDCl₃):

3ca, ¹³C NMR (100 MHz, CDCl₃):

3da, ¹H NMR (400 MHz, CDCl₃):

3da, 13 C NMR (100 MHz, CDCl₃):

3ea, ¹H NMR (400 MHz, CDCl₃):

3ea, ¹³C NMR (100 MHz, CDCl₃):

3fa, ¹H NMR (400 MHz, CDCl₃):

3fa, ¹³C NMR (100 MHz, CDCl₃):

3ga, ¹H NMR (400 MHz, CDCl₃):

3ga, ^{13}C NMR (100 MHz, CDCl₃):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3ha, ¹H NMR (400 MHz, CDCl₃):

3ha, ¹³C NMR (100 MHz, CDCl₃):

3ia, ¹H NMR (400 MHz, CDCl₃):

3ia, ¹³C NMR (100 MHz, CDCl₃):

3ja, ¹H NMR (400 MHz, CDCl₃):

3ja, ¹³C NMR (100 MHz, CDCl₃):

3cb, ¹H NMR (400 MHz, CDCl₃):

3cb, ¹³C NMR (100 MHz, CDCl₃):

3cc, ¹H NMR (400 MHz, CDCl₃):

3cc, ¹³C NMR (100 MHz, CDCl₃):

3cd, ¹H NMR (400 MHz, CDCl₃):

3cd, 13 C NMR (100 MHz, CDCl₃):

3ce, ¹H NMR (400 MHz,CDCl₃):

3ce, ¹³C NMR (100 MHz, CDCl₃):

3cf, 1 H NMR (400 MHz, DMSO- d_{6}):

3cf, 13 C NMR (100 MHz, DMSO- d_6):

3cg, ¹H NMR (400 MHz, CDCl₃):

3cg, ¹³C NMR (100 MHz, CDCl₃):

3ch, 1 H NMR (400 MHz, DMSO- d_6):

3ch, ¹³C NMR (100 MHz, DMSO-*d*₆):

3ci, ¹H NMR (400 MHz, CDCl₃):

3ci, ¹³C NMR (100 MHz, CDCl₃):

3cj, ¹H NMR (400 MHz, CDCl₃):

3cj, ¹³C NMR (100 MHz, CDCl₃):

3ck, ¹H NMR (400 MHz, CDCl₃):

3ck, ¹³C NMR (100 MHz, CDCl₃)

3cl, ¹H NMR (400 MHz, CDCl₃):

3cl, ¹³C NMR (100 MHz, CDCl₃):

3cm, ¹H NMR (400 MHz, CDCl₃):

3cm, ¹³C NMR (100 MHz, CDCl₃)

4, ¹H NMR (400 MHz, CDCl₃):

4, ¹³C NMR (100 MHz, CDCl₃):

5, ¹H NMR (400 MHz, CDCl₃):

5, ¹³C NMR (100 MHz, CDCl₃):

6, ¹H NMR (400 MHz, CDCl₃):

6, ¹³C NMR (100 MHz, CDCl₃)

10. HPLC spectra

3aa:

<Peak Table>

Detect	<u>or A 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	13.807	180740	5355	2.828
2	15.042	2074076	72903	32.454
3	16.290	904430	26287	14.152
4	19.641	88573	3035	1.386
5	20.841	2194903	55995	34.344
6	27.470	948162	17551	14.836
Total		6390885	181126	100.000

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	14.716	232575	11602	4.408
2	20.163	5043880	126362	95.592
Total		5276455	137963	100.000

3ba:

<Peak Table>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	11.640	2670766	196488	14.362
2	17.392	827247	29048	4.449
3	18.210	193766	6509	1.042
4	19.122	5621234	147674	30.228
5	22.193	2321491	63277	12.484
6	26.765	5886607	111282	31.655
7	33.231	868690	16366	4.671
8	35.083	206255	3302	1.109
Total		18596056	573946	100.000

mV

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	18.029	3737119	135616	7.829
2	33.303	43994795	579635	92.171
Total		47731914	715251	100.000

3ca:

<Peak Table>

-	١.	~4	_		Λ	2	- 4	
	-		O	г.	н	1:	74	н

Detecti	OF A 254NM			
Peak#	Ret. Time	Area	Height	Area%
1	15.370	6343838	137358	49.842
2	18.422	6384155	112728	50.158
Total		12727994	250086	100.000

Detect	<u>or A 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	13.215	21991475	638147	99.658
2	17.180	75425	2133	0.342
Total		22066900	640280	100.000

3da:

<Peak Table> Detector A 254nm

Detector A 254filli				
Peak#	Ret. Time	Area	Height	Area%
1	12.499	4187706	139493	14.293
2	14.506	10151156	236859	34.647
3	18.894	4395988	93242	15.004
4	27.840	10564339	118932	36.057
Total		29299190	588525	100.000

Detector A 254nm					
Peak#	Ret. Time	Area			
1	12 729	810682			

Peak#	Ret. Time	Area	Height	Area%
1	12.729	810682	26138	1.898
2	18.088	41909090	742036	98.102
Total		42719772	768174	100.000

3ea:

m۷

<Peak Table>

Detector A 254nm

Detect	OI A 254IIIII			
Peak#	Ret. Time	Area	Height	Area%
1	10.824	2504790	109031	25.698
2	12.326	2413784	82158	24.764
3	15.245	2550650	86708	26.168
4	22.382	2277980	48563	23.371
Total		9747205	326460	100.000

m۷

<Peak Table>

Detector A 254nm

Detecti	<u> </u>			
Peak#	Ret. Time	Area	Height	Area%
1	10.934	2791620	136013	5.186
2	14.831	51040421	1438028	94.814
Total		53832041	1574041	100.000

3fa:

<Peak Table>

Detector A 254nm

Detect	Detector A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	24.654	825442	9145	32.648
2	27.386	383551	5446	15.170
3	31.762	558329	5476	22.083
4	47.486	761011	8910	30.099
Total		2528333	28977	100.000

<Peak Table>

Detector A 254nm

Detector A 2041IIII					
	Peak#	Ret. Time	Area	Height	Area%
	1	25.669	77223	1536	0.614
	2	49.490	12489729	69476	99.386
	Total		12566953	71012	100.000

3ga:

mV

<Peak Table>

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	9.852	930961	16156	1.165
2	11.946	22727160	446349	28.441
3	14.722	16295081	242199	20.392
4	18.293	867200	16462	1.085
5	19.817	21824229	236308	27.311
6	27.401	17265307	132411	21.606
Total		79909938	1089885	100.000

mV

Detect	<u>or A 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	14.531	117930	2066	0.291
2	27.658	40414366	282578	99.709
Total		40532297	284644	100.000

3ha:

m۷

<Peak Table>

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	11.382	9799804	387368	32.210
2	13.877	5390020	135073	17.716
3	18.602	10275881	233070	33.774
4	27.092	4959402	64913	16.300
Total		30425107	820425	100.000

m۷

<Peak Table>

Detector A 254nm

	Ret. Time	Area	Height	Area%
1	11.407	777371	28052	3.849
2	18.335	19419110	398356	96.151
Total		20196481	426408	100.000

3ia:

<Peak Table>

Detector A 254nm

DCICCI				
Peak#	Ret. Time	Area	Height	Area%
1	18.558	7270581	97918	50.988
2	41.627	6988761	29179	49.012
Total		14259343	127098	100.000

mV

<Peak Table>

Detector A 254nm

DCICCI				
Peak#	Ret. Time	Area	Height	Area%
1	22.821	343047	6956	4.242
2	37.246	7743630	71610	95.758
Total		8086677	78566	100.000

3ja:

<Peak Table>

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.261	14981131	338223	49.414
2	13.396	15336357	310325	50.586
Total		30317488	648548	100.000

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.283	308209	6996	1.985
2	13.602	15220942	236625	98.015
Total		15529151	243621	100.000

3cb:

mV

<Peak Table>

Detector A 254nm

Detecti	ULA 2341111			
Peak#	Ret. Time	Area	Height	Area%
1	19.255	3380148	57953	9.160
2	23.519	3409593	48638	9.239
3	28.805	15112751	147470	40.953
4	40.082	15000621	86408	40.649
Total		36903113	340469	100.000

mV

<Peak Table>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	19.597	1675989	39878	2.600
2	23.129	62792622	641258	97.400
Total		64468611	681135	100.000

3cc:

<Peak Table>

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	9.102	5141299	296143	10.788
2	9.530	18334411	554076	38.469
3	19.581	6153513	172497	12.911
4	21.379	18030545	373098	37.832
Total		47659769	1395815	100.000

Detector A 254nm					
Peak#	Ret. Time	Area	Height%	Area%	
1	9.252	148135	0.874	0.386	
2	19.239	38268499	99.126	99.614	
Total		38416634	100.000	100.000	

3cd:

mV

<Peak Table>

Detector A 254nm

Detector A 2041111					
	Peak#	Ret. Time	Area	Height	Area%
	1	8.902	1175611	48909	6.688
	2	11.456	7640532	212223	43.464
	3	13.277	1251899	33318	7.122
	4	15.930	7510969	148785	42.727
	Total		17579011	443235	100.000

mV

<Peak Table>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	12.366	28641600	691798	99.017
2	16.478	284436	6555	0.983
Total		28926036	698353	100.000

3ce:

<Peak Table>

Detector A 254nm Peak# Ret. Time Height 19535 14760 9144 Area Area% 1319387 1562184 1289532 23.200 27.470 22.675 23.965 33.432 2 3 44.861 1515852 5686954 26.655 100.000 4 51.316 9038 Total 52478

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	23.791	553294	9080	1.342
2	40.661	40664865	247186	98.658
Total		41218159	256266	100.000

3cf:

<Peak Table>

Detecto	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	30.502	383528	3684	28.557
2	39.099	374127	3158	27.857
3	45.511	278739	1654	20.754
4	76.165	306649	1120	22.832
Total		1343043	9616	100.000

Detect	<u>or A 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	29.415	378063	3023	0.849
2	36.796	44130210	285744	99.151
Total		44508273	288767	100.000

3cg:

<Peak Table>

D	etect	or A 254nm			
P	eak#	Ret. Time	Area	Height	Area%
Г	1	7.513	27209395	2058693	49.507
Г	2	10.152	27751301	1838571	50.493
	Total		54960696	3897265	100.000

<u>Detect</u>				
Peak#	Ret. Time	Area	Height	Area%
1	7.534	2546675	147845	5.010
2	10.767	48288364	2859295	94.990
Total		50835038	3007141	100.000

3ch:

<Peak Table>

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	22.262	13211657	285656	46.077
2	23.567	13758889	262602	47.985
3	27.224	868120	18612	3.028
4	29.525	834635	16337	2.911
Total		28673301	583207	100.000

Detector A 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	26.752	34742312	733746	99.682		
2	28.996	110856	2129	0.318		
Total		34853168	735875	100 000		

3ci:

<Peak Table>

Detector A 254nm

Detector / 20 mm					
	Peak#	Ret. Time	Area	Height	Area%
	1	8.902	1175611	48909	6.688
	2	11.456	7640532	212223	43.464
	3	13.277	1251899	33318	7.122
	4	15.930	7510969	148785	42.727
	Total		17579011	443235	100.000

Detector A 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	12.366	28641600	691798	99.017
	2	16.478	284436	6555	0.983
	Total		28926036	698353	100 000

3cj:

m∨

<Peak Table>

Detector A 254nm Peak# Ret. Time Area 6472617 652915 631294 Height 138025 Area% 44.948 13.812 4.534 4.384 2 16.182 16503 19.811 15640 6643562 14400388 65749 235917 46.135 100.000 4 24.602 Total

 mV

<Peak Table>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	14.372	1178301	22043	3.495
2	23.416	32531497	306667	96.505
Tota	I	33709798	328710	100.000

3ck:

<Peak Table>

Detector A 254r

Detect	<u>or a 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	25.317	418326	6672	14.646
2	39.188	387694	3879	13.574
3	43.567	1060782	9390	37.140
4	57.841	28600	316	1.001
5	62.713	919237	6410	32.184
6	73.151	41534	330	1.454
Total		2856174	26997	100.000

Detector A 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	26.949	121323	1456	0.974
	2	38.789	12340406	99468	99.026
	Total		12461728	100924	100.000

3cl:

<Peak Table>

Detector A 254nm
Peak# Ret. Time Area

Peak#	Ret. Time	Area	Height	Area%
1	22.636	893946	23613	15.494
2	23.715	2020190	45579	35.014
3	26.091	912645	19584	15.818
4	29.578	1942879	36314	33.674
Total		5769659	125091	100.000

mV

<Peak Table>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	22.636	11935092	291391	96.969
2	25.613	373026	8226	3.031
Total		12308117	299617	100.000

3cm:

Detect	<u>or A 254nm</u>			
Peak#	Ret. Time	Area	Height	Area%
1	13.453	13887586	302047	50.010
2	21.192	13882287	170868	49.990
Total		27769873	472915	100.000

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	13.766	1096206	25070	6.419
2	21.194	15981615	192199	93.581
Total		17077821	217268	100.000

4:

<Peak Table>

Detector A 254nm

Detector A 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	12.549	25282163	742498	50.609
	2	14.461	24674099	635269	49.391
	Total		49956262	1377768	100.000

m۷

<Peak Table>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	13.246	116923684	3601457	98.331
2	15.632	1984605	53470	1.669
Total		118908290	3654927	100.000

<Peak Table>

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.689	19314050	534598	44.317
2	14.180	2330849	59224	5.348
3	19.193	4170095	67792	9.568
4	21.049	17766572	250728	40.766
Total		43581566	912342	100.000

mV

<Peak Table>

Detector A 254nm Peak# Ret. Time Area% Height Area 1 12.402 679670 20242 2.082 31963694 32643364 97.918 100.000 2 20.155 431117 451359 Total

6:

<Peak Table>

Detector A 254nm

	01 A 25411111			
Peak#	Ret. Time	Area	Height	Area%
1	14.851	17281534	604570	48.350
2	20.584	802095	20185	2.244
3	35.004	737510	9898	2.063
4	39.050	16921103	255483	47.342
Total		35742242	890135	100.000

min

<Peak Table>

Detector A 254nm				
Peak#	Ret. Time	Area	Height	Area%
1	15.226	1171588	42234	5.229
2	39.503	21235384	310945	94.771
Total		22406972	353179	100.000