Supporting Information

Organocatalytic asymmetric [3+3] annulations of 3carboxamide oxindoles with β, γ-unsaturated α-keto esters: facile access to chiral spiro- δ-lactam oxindoles

Zheng-Bing Zhang*§, Qiuzuo He ${ }^{\text { }}$, Ting Wang, Guoqin Wang, Dan Yang*, Pan Han and Linhai Jing*

[^0]
Table of Contents

1. General information S2
2. Preparation of new squaramide catalyst C 7 S3
3. Preparation of substrates $\mathbf{1 1}$ and $\mathbf{1 m}$. S4
4. Reaction optimization S6
5. Chiral squaramide-catalyzed asymmetric [3+3] annulation S8
6. Scale-up and transformation of product 3 S20
7. X-ray structures of 1c, 3ca and 3cf S23
8. References S28
9. NMR spectra S29
10. HPLC spectra S56

1. General information

Unless otherwise indicated, all reactions were carried out under an argon atmosphere using standard Schlenk-Lines. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. ${ }^{1}$ H NMR spectra were recorded at 400 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz (Bruker Avance II 400) with CDCl_{3} or DMSO- d_{6} as solvents. Chemical shifts are reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (J) are reported in Hz and refer to apparent peak multiplications. HRMS was recorded on a Bruker micrOTOF-Q II mass spectrometer and a Waters UPLC-QTOT-MS (Xevo G2-XS). Enantiomeric excess (ee) were determined by HPLC analysis on a Shimadzu LC-20A. Optical rotation data were examined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $25^{\circ} \mathrm{C}$.

All solvents were purified by using standard methods prior to use. 3-Carboxamide oxindoles $\mathbf{1 a} \mathbf{- 1 k}$ were prepared by previously reported method. ${ }^{[1]} \beta, \gamma$-Unsaturated α keto esters 2 were prepared according to the reported procedure. ${ }^{[2]}$ Catalysts C1, C2, C4 and C12-C14 were purchased from commercial sources. Thiourea catalysts C3 and C9-C11 were prepared according to the method reported in the literature. ${ }^{[3]}$ Squaramide catalysts C5, C6, C8 and C15-C18 were prepared according to the method previously described. ${ }^{[4]}$ All other reagents were purchased from commercial sources and used without further purification.

2. Preparation of new squaramide catalyst C7

To a solution of 3,4-dimethoxycyclobut-3-ene-1,2-dione ($213.2 \mathrm{mg}, 1.5 \mathrm{mmol}$) in MeOH (5 mL) was added p-chloroaniline ($190.5 \mathrm{mg}, 1.5 \mathrm{mmol}$) in MeOH (2 mL). The reaction mixture was stirred at room temperature for 48 h and then concentrated in vacuo to afford the intermediate \mathbf{A} as a solid without further purification. To a solution of $\mathbf{A}(71.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added a solution of quinidine amine ($106.7 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After 48 h , the reaction mixture was concentrated and the residue was subjected to flash chromatograph (DCM/MeOH 20:1) on silica gel to afford the corresponding squaramide catalyst $\mathbf{C 7}$.

3-((4-chlorophenyl)amino)-4-(((R)-(6-

 methoxyquinolin-4-yl)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)cyclobut-3-ene-1,2-dione (C7): The desired catalyst was obtained as a white solid ($96.8 \mathrm{mg}, 61 \%$ yield); $[\alpha]_{\mathrm{D}}{ }^{25}=+0.726\left(\mathrm{c} 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d \boldsymbol{d}_{6}) $9.74(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.67 (m, 2H), 7.46-7.34 (m, 5H), 6.11-5.82 (m, 2H), $5.21(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.26-$ $2.22(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$) $\delta 184.66,180.25,168.70,163.61,158.35,148.21,144.75$, 143.74, 141.25, 138.21, 131.97, 129.60, 127.94, 127.13, 122.56, 120.24, 119.91, $114.89,101.64,59.26,56.07,56.00,49.45,46.09,38.97,27.68,26.63,25.69$. HRMS $\mathrm{m} / \mathrm{z}(\mathbf{E S I})$: calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{ClN}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 529.2006$, found 529.1977.
3. Preparation of substrates $\mathbf{1 1}$ and $\mathbf{1 m}$

An over-dried round-bottom flask was charged with 2 -oxindole ($1.33 \mathrm{~g}, 10.0$ mmol, 1.0 equiv.) in dry THF (40 mL) under argon atmosphere. After the resultant solution was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}(8.48 \mathrm{~g}, 80 \mathrm{mmol}, 8.0$ equiv. $)$ and $\mathrm{Boc}_{2} \mathrm{O}(3.27 \mathrm{~g}$, $15.0 \mathrm{mmol}, 1.5$ equiv.) were added and the resulted mixture was stirred at $65^{\circ} \mathrm{C}$ for 8 hours. The reaction was quenched with ice-water and diluted with 40 mL of EtOAc. The organic layer was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated after the filtration in a rotary evaporator under vacuum. The residue was purified by flash chromatography to afford the corresponding $\mathbf{S 1}$ as a white solid.

To a stirred suspension of sodium hydride ($0.24 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv., 60% dispersion in mineral oil) in dry DMF (5 mL) at $0^{\circ} \mathrm{C}$ under argon atmosphere was added $\mathbf{S} \mathbf{1}$ ($1.17 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) in small portions. The mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$. Isocyanatobenzene ($0.80 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv.) was slowly added, and this reaction was maintained at $0{ }^{\circ} \mathrm{C}$ for 10 minutes and further stirred at room temperature for 3 h (monitored by TLC). The reaction mixture was then poured into ice-cooled water (100 mL) and was acidized with $\mathrm{HCl}(1 \mathrm{M})$ to $\mathrm{pH} 4-6$. The desired products $\mathbf{S 2}$ were obtained after filtration and washed with ether.

The $\mathbf{S 2}$ ($1.09 \mathrm{~g}, 3 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathbf{1 0} \mathbf{~ m L ~ C H} 2 \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$. TFA ($2.3 \mathrm{~mL}, 30 \mathrm{mmol}, 10.0$ equiv) was added dropwise and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography to afford the ll as white solid ($0.34 \mathrm{~g}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.55(\mathrm{~s}, 1 \mathrm{H})$, $8.87(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}$, $1 \mathrm{H}), 4.35$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) δ 174.44, 166.63, $143.88,139.45,128.82,127.65,127.37,126.93,124.77$, 121.96, 109.90, 53.84, 42.89.

HRMS m / z (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 289.0947$, found 289.0957.

To a 50 mL round bottom flask was added N-Me-indole acetic acid ($1.89 \mathrm{~g}, 10$ mmol, 1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL). Then, $\mathrm{Et}_{3} \mathrm{~N}$ ($3 \mathrm{~mL}, 22 \mathrm{mmol} ; 2.2$ equiv.) was added, followed by EDCI ($2.16 \mathrm{~g}, 12 \mathrm{mmol} ; 1.2$ equiv.). The mixture was allowed to stir for a few minutes, and then the benzylamine ($2 \mathrm{~mL}, 18 \mathrm{mmol}, 1.8$ equiv.) was added. Upon consumption of starting material, the reaction was diluted with water. The mixture was poured into a separatory funnel and washed with 1.0 M NaOH several times and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by flash column chromatography to give $\mathbf{S 3}$.

To a solution of $\mathbf{S 3}$ ($1.06 \mathrm{~g}, 3.8 \mathrm{mmol}, 1.0$ equiv.) in DMSO ($1.3 \mathrm{~mL}, 19 \mathrm{mmol}$, 5.0 equiv.) at ambient temperature was added dropwise $12.1 \mathrm{M} \mathrm{HCl}(10.5 \mathrm{~mL}, 38$ mmol, 10.0 equiv.). After the oxidation was completed, the reaction mixture was neutralized with saturated NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography to give $\mathbf{1 m}$ as a white solid $\left(0.90 \mathrm{~g}, 82 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.32-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.35$ (m, 2H), $3.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (s, 3H), 2.91 (dd, $J=15.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ $(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 177.60,170.12,143.93$, $138.28,128.65,128.30,128.28,127.77,127.39,124.27,122.76,108.17,43.66,42.31$, 37.07, 26.30. HRMS m / z (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 295.1441$, found 295.1439 .

4. Reaction optimization

Table S1. Reaction optimization ${ }^{a}$

Entry	Catalyst	Solvent	temperature	Time	Yield(\%) b	$d r^{c}$	$e e(\%)^{d}$
1	$\mathbf{C 1}$	CHCl_{3}	25	12	78	$>95: 5$	24
2	$\mathbf{C 2}$	CHCl_{3}	25	12	71	$>95: 5$	6
3	$\mathbf{C 3}$	CHCl_{3}	25	12	73	$>95: 5$	54

4	$\mathbf{C 4}$	CHCl_{3}	25	12	67	$>95: 5$	40
5	$\mathbf{C 5}$	CHCl_{3}	25	12	71	$>95: 5$	46
6	$\mathbf{C 6}$	CHCl_{3}	25	12	68	$>95: 5$	61
7	$\mathbf{C} 7$	CHCl_{3}	25	12	75	$>95: 5$	78
8	$\mathbf{C 8}$	CHCl_{3}	25	12	80	$>95: 5$	80
9	$\mathbf{C} 9$	CHCl_{3}	25	12	73	$>95: 5$	52
10	$\mathbf{C 1 0}$	CHCl_{3}	25	12	66	$>95: 5$	8
11	$\mathbf{C 1 1}$	CHCl_{3}	25	12	trace	-	-
12	$\mathbf{C 1 2}$	CHCl_{3}	25	12	64	$>95: 5$	16
13	$\mathbf{C 1 3}$	CHCl_{3}	25	12	75	$>95: 5$	40
14	$\mathbf{C 1 4}$	CHCl_{3}	25	12	70	$>95: 5$	52
15	$\mathbf{C 1 5}$	CHCl_{3}	25	12	77	$>95: 5$	-56
16	$\mathbf{C 1 6}$	CHCl_{3}	25	12	69	$>95: 5$	-58
17	$\mathbf{C 1 7}$	CHCl_{3}	25	12	68	$>95: 5$	-50
18	$\mathbf{C 1 8}$	CHCl_{3}	25	12	71	$>95: 5$	-35
19	$\mathbf{C 8}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	12	77	$>95: 5$	60
20	$\mathbf{C 8}$	THF_{3}	25	12	79	$>95: 5$	49
21	$\mathbf{C 8}$	$\mathrm{CH}_{3} \mathrm{CN}_{3}$	25	12	76	$>95: 5$	18
22	$\mathbf{C 8}$	$\mathrm{CH}_{3} \mathrm{OH}_{3}$	25	12	71	$>95: 5$	12
23	$\mathbf{C 8}$	CHCl_{3}	0	24	77	$>95: 5$	86
24	$\mathbf{C 8}$	CHCl_{3}	-15	72	73	$>95: 5$	89
25	$\mathbf{C 8}$	CHCl_{3}	-40	72	56	$>95: 5$	77
26^{e}	$\mathbf{C 8}$	CHCl_{3}	-15	72	trace	-	-
27^{f}	$\mathbf{C 8}$	CHCl_{3}	-15	72	76	$>95: 5$	65
$\mathbf{2 8}$	$\mathbf{C 8}$	$\mathbf{C H C l}_{3}$	$\mathbf{- 1 5}$	$\mathbf{7 2}$	$\mathbf{7 9}$	$>95: 5$	$\mathbf{9 1}$

${ }^{a}$ Unless otherwise specified, reactions were carried out with $\mathbf{1 a}(0.1 \mathrm{mmol})$, 2a $(0.14 \mathrm{mmol})$, and catalyst ($10 \mathrm{~mol} \%$) in solvent $(1 \mathrm{~mL})$ at the specified temperature for the indicated time. ${ }^{b}$ Yields of isolated products. ${ }^{c}$ The diastereomeric ratio ($d r$) value was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude products. ${ }^{d}$ The enantiomeric excess (ee) value was determined by HPLC analysis. ${ }^{e} 3 \AA$ molecular sieve (50 mg) was used. ${ }^{f} 4 \AA$ molecular sieve (50 mg) was used. ${ }^{g} 5 \AA$ molecular sieve (50 mg) was used.

5. Chiral squaramide-catalyzed asymmetric [3+3] annulation

An argon purged reaction tube was charged with 3-carboxamide oxindoles 1 (0.1 $\mathrm{mmol}), \beta, \gamma$-unsaturated α-keto esters $2(0.14 \mathrm{mmol})$, catalyst $\mathbf{C 8}(0.01 \mathrm{mmol})$ and $5 \AA$ molecular sieve (50 mg). Then, freshly distilled $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added and the reaction mixture was stirred at $-15{ }^{\circ} \mathrm{C}$ for 72 h . After completion of the reaction, the crude product was purified by flash column chromatography on silica gel to afford the corresponding products 3 . The diastereomeric ratio was determined by crude ${ }^{1} \mathrm{H}$ NMR analysis and the enantiomeric excess was determined by chiral-phase HPLC analysis.
(3R,4'R, $6^{\prime} R$)-methyl1, 1^{\prime}-dibenzyl-6'-hydroxy-2,2'-dioxo-4'-phenylspiro[indoline-3, 3'-piperidine]-6'-carboxylate (3aa)

White solid; $43.1 \mathrm{mg}, 79 \%$ yield; $d r>95: 5$; $e e=91 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i-\mathrm{PrOH}$ $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=20.16 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=14.72 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-92.4\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.04$ $(\mathrm{m}, 13 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.39 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}$, $1 \mathrm{H}), 4.48(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 174.27,172.06,168.50,144.23,137.13,136.89,134.76,129.34$, $128.55,128.52,128.22,128.19,128.07,127.87,127.64,127.20,127.03,126.42$, 124.02, 122.33, 110.20, 84.84, 62.30, 53.62, 45.77, 43.74, 41.31, 36.22; HRMS m/z (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 569.2052$, found 569.2035.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} '-benzyl-6'-hydroxy-2,2'-dioxo-1,4'-diphenylspiro[indoline-3,3'-piperidine]-6'-carboxylate (3ba)

White solid; $39.4 \mathrm{mg}, 74 \%$ yield; $d r>95: 5$; ee $=84 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i-\mathrm{PrOH}$ $=92 / 8,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=33.30 \mathrm{~min}, t_{\mathrm{r}}$ (minor) $=18.03 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-47.4\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.04(\mathrm{~m}, 13 \mathrm{H})$, $6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-$ 3.32 ($\mathrm{m}, 4 \mathrm{H}$), 2.22 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 173.48$, $172.05,168.38,145.18,137.17,136.36,133.83,129.46,129.24,128.26,128.22$, 128.10, 127.86, 127.65, 127.57, 127.24, 126.80, 124.06, 122.69, 109.98, 84.86, 62.50, 53.65, 45.82, 41.82, 35.46; HRMS m / z (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 555.1896, found 555.1893.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} 'benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[ind oline-3,3'-piperidine]-6'-carboxylate (3ca)

White solid; $35.3 \mathrm{mg}, 75 \%$ yield; $d r>95: 5$; ee $=99 \%$, determined by HPLC analysis [Chiralpak OD-H, n-hexane/i$\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=13.22 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=17.18 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-68.3\left(c \quad 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.16$ (m, 6H), 7.11-6.98 (m, 4H), 6.83 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=13.6,2.8 \mathrm{~Hz}$, $\left.{ }^{1 H}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 174.25, 172.04, 168.35, 144.84, 137.20, 136.36, $129.30,128.20,128.09,127.92,127.82,127.60,127.45,127.18,123.76,122.26$, 108.68, 84.85, 62.38, 53.60, 45.87, 41.22, 35.43, 26.09; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 493.1793$, found 493.1781.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{1} '-benzyl-5-chloro-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3da)

White solid; $38.8 \mathrm{mg}, 77 \%$ yield; $d r>95: 5$; $e e=96 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=18.09$ $\min , t_{\mathrm{r}}($ minor $\left.)=12.73 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-58.5\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.23 (m, 4H), 7.17 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09-7.04 (m, $3 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (s, 1H), 4.32 (dd, $J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{t}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 173.77,171.82,167.71,143.52,136.94,135.98,129.31,129.16,128.29$, 128.06, 127.85, 127.83, 127.70, 127.47, 127.33, 124.62, 109.51, 84.79, 62.42, 53.61, 45.85, 41.12, 35.46, 26.20; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 527.1350, found 527.1347.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} '-benzyl-5-bromo-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3ea)

White solid; $40.6 \mathrm{mg}, 74 \%$ yield; $d r>95: 5$; ee $=90 \%$, determined by HPLC analysis [Chiralpak OD-H, n hexane $/ i-\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)$ $=14.83 \mathrm{~min}, t_{\mathrm{r}}($ minor $\left.)=10.93 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-57.1(c 0.01$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.40$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 173.60, 171.87, 167.71, 144.02, 136.94, 135.98, 132.04, 129.67, 128.32, 128.07, 127.93, 127.87, 127.74, 127.49, 127.34, 114.67, 110.03, 84.72, 62.31, 53.63, 45.71, 41.13, 35.47, 26.17; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 571.0845$, found 571.0836.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} 'benzyl-6'-hydroxy-1,5-dimethyl-2,2'-dioxo-4'-phenylspiro [indoline-3,3'-piperidine]-6'-carboxylate (3fa)

White solid; $36.3 \mathrm{mg}, 75 \%$ yield; $d r>95: 5$; ee $=99 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}$ (major) $=49.49$ $\min , t_{\mathrm{r}}($ minor $\left.)=25.67 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-60.1\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.17(\mathrm{~m}$, $5 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (dd, $J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~s}$, $3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 174.18, 171.93, 168.46, 142.46, 137.26, 136.48, 131.54, 129.51, 128.13, 128.11, 127.96, 127.78, 127.63, 127.44, 127.19, 124.93, 108.42, 84.96, 62.39, 53.42, 45.77, 41.13, 35.56, 26.11, 21.44; HRMS m/z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 507.1896, found 507.1883.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime}-benzyl-6'-hydroxy-5-methoxy-1-methyl-2,2'-dioxo-4'-phe nylspiro[indoline-3,3'-piperidine]-6'-carboxylate (3ga)

White solid; $39.0 \mathrm{mg}, 78 \%$ yield; $d r=93: 7$; ee $=99 \%$, determined by HPLC analysis [Chiralpak OD-H, n hexane $/ i-\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}$ (major) $=27.66 \mathrm{~min}, t_{\mathrm{r}}($ minor $\left.)=14.53 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-72.7(c 0.01$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.30(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.85$ $(\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 173.92,171.88,168.25,155.60,138.43,137.29,136.38,128.82$, 128.16, 128.13, 127.93, 127.65, 127.47, 127.19, 113.81, 111.47, 108.98, 84.88, 62.68, 55.78, 53.51, 45.74, 41.14, 35.41, 26.16; HRMS m / z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 523.1845$, found 523.1826.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} 'benzyl-6-chloro-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3ha)

White solid; $39.3 \mathrm{mg}, 78 \%$ yield; $d r=93: 7$; ee $=92 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=18.34$ $\min , t_{\mathrm{r}}($ minor $\left.)=11.41 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-47.0\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.22 (m, 4H), 7.16 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.02$ (m, $3 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ $(\mathrm{s}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 174.17,171.94,167.92,146.12,137.03,136.04,135.23,128.66,128.27$, $128.06,127.83,127.69,127.31,126.23,124.57,122.08,109.40,84.72,62.10,53.72$, 45.90, 41.09, 35.40, 26.21; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 527.1350 , found 527.1375 .
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl1'-benzyl-6-bromo-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenyl spiro[indoline-3,3'-piperidine]-6'-carboxylate (3ia)

White solid; $41.1 \mathrm{mg}, 75 \%$ yield; $d r>95: 5$; $e e=92 \%$, determined by HPLC analysis [Chiralpak OD-H, n hexane $/ i-\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)$ $=37.25 \mathrm{~min}, t_{\mathrm{r}}($ minor $\left.)=22.82 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-49.6(c 0.01$, $\mathbf{C H}_{2} \mathrm{Cl}_{2}$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.16$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-$ $7.03(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66$ (s, 1H), 4.31 (dd, $J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (s, $3 \mathrm{H}), 3.24(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 174.18,171.79,167.82,146.18,137.03,136.03,128.26,128.04$, $127.84,127.83,127.70,127.28,126.82,125.09,124.95,123.06,112.20,84.83,62.20$, 53.65, 45.97, 41.01, 35.42, 26.21; HRMS m/z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 571.0845$, found 571.0838 .
(3R,4'R,6'R)-methyl 1'-ethyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[indol ine-3,3'-piperidine]-6'-carboxylate (3ja)

White solid; 29.4mg, 72% yield; $d r>95: 5 ; ~ e e=96 \%$, determined by HPLC analysis [Chiralpak OD-H, n-hexane $/ i$ $\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=13.60 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=12.28 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-77.6\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{3}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J$ $=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=$ 7.6, 7.2 Hz, 2H), $6.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.25$ $(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.23(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, J=$ $13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 174.37$, $172.83,167.29,144.74,136.37,129.15,127.88,127.67,127.57,127.40,123.80$, $122.20,108.50,86.36,62.32,54.35,41.17,40.58,35.96,26.04,13.45$; HRMS m / z (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 431.1583 , found 431.1560 .
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime}-benzyl-4'-(4-fluorophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cb)

White solid; $36.6 \mathrm{mg}, 75 \%$ yield; $d r>95: 5$; ee $=95 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=23.13$ $\min , t_{\mathrm{r}}($ minor $\left.)=19.60 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-92.4\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=$ $7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, J=14.0,3.2$ $\mathrm{Hz}, 1 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 174.20,171.86,168.17,161.99(\mathrm{~d}, J=$ 246.3 Hz), 144.79, 137.11, 132.21 (d, $J=3.4 \mathrm{~Hz}$), 129.55, 129.47, 128.22, 128.06, $127.56,127.21,123.73,122.39,114.51(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 108.86,84.79,62.32,53.62$, 45.88, 40.52, 35.58, 26.14; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 511.1645, found 511.1636.
(3R,4'R, $\boldsymbol{6}^{\prime} R$)-methyl1'-benzyl-4'-(4-bromophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cc)
 White solid; $42.2 \mathrm{mg}, 77 \%$ yield; $d r>95: 5 ; e e=99 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=19.24$ $\min , t_{\mathrm{r}}($ minor $\left.)=9.25 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-55.4\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (dd, $J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 174.10,171.81,168.08$, 144.78, 137.06, 135.51, 130.78, 129.65, 129.57, 128.23, 128.06, 127.41, 127.24, $123.71,122.44,121.55,109.01,84.71,62.08,53.66,45.87,40.67,35.35,26.22$; HRMS $m / z(\mathbf{E S I}):$ calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 571.0845$, found 571.0850.
(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-(p-tolyl)spiro[in doline-3,3'-piperidine]-6'-carboxylate (3cd)

White solid; $37.3 \mathrm{mg}, 77 \%$ yield; $d r>95: 5 ; e e=92 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=33.23$ $\mathrm{min}, t_{\mathrm{r}}($ minor $\left.)=17.93 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-60.2(c 0.01$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta: 7.59(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 3.34-3.27 (m, 4H), $2.93(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.13(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta: 174.41,172.03,168.46,144.87,137.21,136.99,133.35,129.23,128.30$, $128.19,128.07,127.95,127.75,127.15,123.76,122.23,108.73,84.90,62.42,53.56$, 45.89, 40.82, 35.64, 26.13, 20.98; HRMS m / z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 507.1896$, found 507.1883.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} '-benzyl-6'-hydroxy-4'-(4-methoxyphenyl)-1-methyl-2,2'-di oxospiro[indoline-3,3'-piperidine]-6'-carboxylate (3ce)

White solid; $37.0 \mathrm{mg}, 74 \%$ yield; $d r>95: 5$; $e e=97 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}$ (major) $=$ $40.66 \mathrm{~min}, t_{\mathrm{r}}($ minor $\left.)=23.79 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-61.7(c 0.01$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.58(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{dd}$, $J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 174.32,172.12,168.45$, $158.69,144.91,137.22,129.27,128.96,128.56,128.20,128.09,127.89,127.17$, 123.72, 122.20, 112.93, 108.77, 84.83, 62.48, 55.08, 53.59, 45.82, 40.51, 35.77, 26.14; HRMS $m / z(\mathbf{E S I}):$ calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 523.1845$, found 523.1836.
(3R,4'R,6'R)-methyl 1'-benzyl-4'-(3-fluorophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cf)

White solid; $38.1 \mathrm{mg}, 78 \%$ yield; $d r>95: 5$; ee $=98 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i-\mathrm{PrOH}$ $=92 / 8,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=36.80 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=29.42 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-58.9\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.66$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (s, 1H), 7.32-7.10 (m, 8H), 6.92 (dd, $J=8.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.25(\mathrm{~m}, 4 \mathrm{H})$, 2.87 ($\mathrm{s}, 3 \mathrm{H}$), 2.17 (dd, $J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-d_{6}$) δ 174.14, 171.20, 167.54, 163.06, 160.64, 144.78, 140.02 (d, $J=7.4 \mathrm{~Hz}$), 137.80, 129.97 (d, $J=8.1 \mathrm{~Hz}$), 129.77, 128.26, 127.55, 127.05, 124.49, 124.27, 122.77, 114.70 (d, $J=22.7 \mathrm{~Hz}$), 109.38, 86.11, 62.04, 53.11, 47.05, 40.65, 35.11, 26.32; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 511.1645$, found 511.1664.
(3R,4'R, $6^{\prime} R$)-methyl 1^{\prime}-benzyl-4'-(3-chlorophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cg)

White solid; $37.3 \mathrm{mg}, 74 \%$ yield; $d r>95: 5$; ee $=90 \%$, determined by HPLC analysis [Chiralpak OD-H, n-hexane/ i $\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=10.77 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=7.53 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-78.1\left(c \quad 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$
NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21$ (m, 4H), 7.17 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.96$ ($\mathrm{s}, 3 \mathrm{H}$), 2.17 (dd, $J=13.6,2.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 174.13,171.72,168.02,144.70,138.47$, 137.07, 133.49, 129.60, 128.88, 128.22, 128.04, 127.87, 127.66, 127.42, 127.22, 126.38, 123.71, 122.51, 108.91, 84.75, 62.10, 53.64, 45.93, 40.90, 35.27, 26.18; HRMS $m / z(\mathbf{E S I}):$ calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 527.1530$, found 527.1333.
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime}-benzyl-4'-(3-bromophenyl)-6'-hydroxy-1-methyl-2,2'-diox ospiro[indoline-3,3'-piperidine]-6'-carboxylate (3ch)

White solid; $41.1 \mathrm{mg}, 75 \%$ yield; $d r>95: 5$; ee $=99 \%$, determined by HPLC analysis [Chiralpak IA, n-hexane $/ i-\mathrm{PrOH}$ $=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=26.75 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=29.00 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-73.6\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (s, 1H), 7.31-7.12 (m, 8H), 7.03 (dd, $J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (s, 1H), 6.84-6.81 (m, 2H), 4.71 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (dd, $J=14.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (dd, $J=14.4,3.2 \mathrm{~Hz}$, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-d_{6}$) δ 178.87, 175.90, 172.22, 149.49, 144.48, $142.54,135.51,135.47,134.96,134.57,133.02,132.30,132.20,132.08,131.81$, $128.98,127.53,126.08,114.19,90.84,66.77,57.89,51.79,45.49,39.71,31.07$; HRMS m / z (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 571.0845$, found 571.0851.
($3 R, 4$ ' $R, 6^{\prime} R$)-methyl 1^{\prime} '-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-(m-tolyl)spiro[i ndoline-3,3'-piperidine]-6'-carboxylate (3ci)

White solid; $36.8 \mathrm{mg}, 76 \%$ yield; $d r>95: 5$; ee $=98 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i-\mathrm{PrOH}$ $=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=12.37 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=16.48 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-67.2\left(c \quad 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-$ 7.16 (m, 6H), 7.09 (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H})$, 6.63-6.60 (m, 2H), $6.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{br}, 1 \mathrm{H})$, $4.29(\mathrm{dd}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.90(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{dd}, J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $174.36,172.00,168.42,144.85,137.23,137.20,136.30,129.24,128.67,128.19$, 128.10, 128.06, 127.97, 127.41, 127.15, 124.95, 123.77, 122.21, 108.66, 84.93, 62.39, 53.56, 45.92, 41.17, 35.55, 26.07, 21.16; HRMS m / z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$ ${ }^{[\mathrm{M}+\mathrm{Na}]^{+}: 507.1896, \text { found 507.1883. }}$
($3 R, 4^{\prime} R, 6^{\prime} R$)-methyl 1^{\prime} '-benzyl-6'-hydroxy-4'-(3-methoxyphenyl)-1-methyl-2,2'-di oxospiro[indoline-3,3'-piperidine]-6'-carboxylate (3cj)

White solid; $37.0 \mathrm{mg}, 74 \%$ yield; $d r=91: 9 ; e e=93 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i$ $\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=23.42$ $\min , t_{\mathrm{r}}($ minor $\left.)=14.37 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-83.6\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
7.39-7.16 (m, 6H), 7.12 (dd, $J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, J $=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55$ (s, 3H), 3.35 (s, 3H), 3.29 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (s, 3H), 2.20 (dd, $J=$ $13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 174.21,171.97,168.30,158.85$, $144.95,137.95,137.18,129.33,128.61,128.20,128.07,127.97,127.18,123.71$, $122.24,120.69,113.77,112.60,108.79,84.85,62.28,55.12,53.60,45.90,41.20$, 35.63, 26.14; HRMS m / z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 523.1845 , found 523.1857.
(3R,4'R,6'R)-methyl 1'-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-(o-tolyl)spiro[in doline-3,3'-piperidine]-6'-carboxylate (3ck)

White solid; 31.0 mg , 64% yeild; $d r>95: 5$; ee $=98 \%$, determined by HPLC analysis [Chiralpak IB, n-hexane $/ i-\mathrm{PrOH}$ $=93 / 7,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}$ (major) $=38.79 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=26.95 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-53.4\left(c \quad 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.6,7.2, \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=7.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.08$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.14(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=14.0$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta \mathbf{1 7 4 . 2 2}, 172.12,168.80,145.35,137.27$, $137.15,135.39,130.53,129.50,128.30,128.18,128.16,127.18,127.04,126.39$, $124.83,124.21,122.28,108.89,84.82,61.75,53.55,45.67,37.54,35.63,26.17,20.17$; HRMS $m / z(\mathbf{E S I}):$ calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 507.1896$, found 507.1883.
($3 R, 4^{\prime} R, 6^{\prime} R$)-ethyl 1^{\prime}-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[indol ine-3,3'-piperidine]-6'-carboxylate (3cl)

White solid; $33.4 \mathrm{mg}, 69 \%$ yield; $d r>95: 5 ;$ ee $=94 \%$, determined by HPLC analysis [Chiralpak AD-H, n-hexane $/ i$ $\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=22.64 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=25.61 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-92.4\left(c \quad 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.65(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.29-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}$, $1 \mathrm{H}), 4.32$ (dd, $J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.98(\mathrm{~m}, 1 \mathrm{H})$, 3.46-3.21 (m, 2H), 2.90 (s, 3H), 2.18 (dd, $J=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 174.14,171.72,168.36,144.94,137.39,136.36$, 129.31, 128.19, 128.14, 127.91, 127.71, 127.61, 127.47, 127.19, 123.83, 122.02, 108.69, 84.88, 63.66, 62.34, 45.95, 41.25, 35.61, 26.06, 13.51; HRMS m/z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 507.1896$, found 507.1895.
(3R,4'R, $6^{\prime} R$)-isopropyl 1^{\prime} '-benzyl-6'-hydroxy-1-methyl-2,2'-dioxo-4'-phenylspiro[i ndoline-3,3'-piperidine]-6'-carboxylate (3cm)

White solid; $32.9 \mathrm{mg}, 66 \%$ yield; $d r>95: 5$; ee $=87 \%$, determined by HPLC analysis [Chiralpak OD-H, n-hexane/ $i-$ $\operatorname{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=21.19 \mathrm{~min}$, $t_{\mathrm{r}}($ minor $\left.)=13.77 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-71.3\left(c \quad 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.67$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28-7.20$ (m, 6H), 7.08-6.98 (m, 4H), 6.82 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (t, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.88(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta \mathbf{1 7 4 . 1 3}, 171.30,168.38$, 144.94, 137.45, 136.40, 129.30, 128.27, 127.94, 127.91, 127.62, 127.48, 127.15, 123.89, 121.97, 108.69, 85.47, 72.74, 62.37, 46.59, 41.24, 35.70, 26.04, 21.57, 20.88;

HRMS $m / z(\mathbf{E S I}):$ calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 521.2052$, found 521.2059.

Unsuccessful Examples

6. Scale-up and transformation of product 3

(a) Scale-up reaction of 3ga

3-Carboxamide oxindole $\mathbf{1 g}(1.0 \mathrm{mmol}), \beta, \gamma$-unsaturated α-keto ester $\mathbf{2 a}(1.4 \mathrm{mmol})$, catalyst C8 (0.1 mmol) and $5 \AA$ molecular sieve (500 mg) was added to an argon purged vial. Then, freshly distilled $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added and the reaction mixture was stirred at $-15{ }^{\circ} \mathrm{C}$ for 72 h . After completion of the reaction, the crude product was purified by flash column chromatography on silica gel to afford the desired product 3ga as a white solid in 62% yield with $93: 7 \mathrm{dr}$ and $98 \% \mathrm{ee}$.
(b) Transformation of 3ga

To an argon purged reaction tube containing 3ga $(0.1 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.12$ $\mathrm{mmol})$ was added freshly distilled $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$. After the reaction was stirred for 8 hours at room temperature, the resulted mixture was purified by flash column chromatography on silica gel to afford the desired product 4.
(3R,4'R)-methyl 1'-benzyl-5-methoxy-1-methyl-2,2'-dioxo-4'-phenyl-2',4'-dihydro -1'H-spiro[indoline-3,3'-pyridine]-6'-carboxylate (4)

White solid; $43.4 \mathrm{mg}, 90 \%$ yield; $d r>95: 5 ; e e=97 \%$, determined by HPLC analysis [Chiralpak OD-H, n hexane $/ i-\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}$ (major) $=13.25 \mathrm{~min}, t_{\mathrm{r}}($ minor $\left.)=15.63 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=+20.0(c 0.01$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 2 \mathrm{H})$,
7.28-7.25 (m, 3H), 7.12-7.02 (m, 1H), 7.06-7.02 (m, 2H), $6.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93-6.90 (m, 2H), 6.74 (dd, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (d, J $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.75 (d, $J=2.0 \mathrm{~Hz}, 6 \mathrm{H}$), $2.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 173.11, 166.77, 162.83, 155.54, 137.66, 136.62, 135.31, 133.91, 128.76, 128.65, $128.15,127.85,127.71,127.65,126.01,122.13,113.59,112.12,108.73,60.43,55.85$, 52.66, 46.23, 45.72, 26.27; HRMS m / z (ESI): calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 505.1739, found 505.1735.

To an argon purged reaction tube containing 3ga $(0.1 \mathrm{mmol}),\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(0.25$ mmol) and DMAP (0.1 mmol) was added freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After the reaction was stirred for 24 h at room temperature, the resulted mixture was purified by flash column chromatography on silica gel to afford the desired product 5 .
(3R,4'R,6'R)-methyl 6'-acetoxy-1'-benzyl-5-methoxy-1-methyl-2,2'-dioxo-4'-phen ylspiro[indoline-3,3'-piperidine]-6'-carboxylate (5)

White solid; $41.2 \mathrm{mg}, 76 \%$ yield; $d r=93: 7$; ee $=96 \%$, determined by HPLC analysis [Chiralpak AD-H, n hexane $/ i-\mathrm{PrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}$ (major) $=20.16 \mathrm{~min}, t_{\mathrm{r}}($ minor $\left.)=12.40 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{25}=-92.1(c 0.01$, $\mathbf{C H}_{2} \mathrm{Cl}_{2}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.36(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=14.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.62$ (t, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=15.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 173.60,170.11,168.56,165.80,155.72,138.23$, $136.79,135.87,128.33,128.12,127.89,127.72,127.62,127.22,127.04,114.30$, 111.16, 109.16, $90.48,62.68,55.84,53.24,45.95,40.52,29.54,26.20,21.61$; HRMS
m / z (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 565.1951$, found 565.1945.
(c) Transformation of 3 cm

To an argon purged reaction tube containing $\mathbf{3 c m}(0.1 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.22$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{SiH}(0.2 \mathrm{mmol})$ was added freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After the reaction was stirred for 24 h at room temperature, the resulted mixture was purified by flash column chromatography on silica gel to afford the desired product $\mathbf{6}$.

(3S,4'R)-isopropyl 1'-benzyl-1-methyl-2,2'-dioxo-4'-phenylspir o[indoline-3,3'-piperidine]-6'-carboxylate (6)

White solid; $16.4 \mathrm{mg}, 34 \%$ yield; $d r>95: 5$; ee $=90 \%$, determined by HPLC analysis [Chiralpak IA, n-hexane $/ i$ - $\mathrm{PrOH}=$ $85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{r}}($ major $)=39.50 \mathrm{~min}, t_{\mathrm{r}}($ minor $)=$ $15.23 \mathrm{~min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=-77.4\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11-7.04 (m, 2H), 7.00-6.97 (m, 2H), 6.79-6.72 (m, 2H), $6.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{p}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=14.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.37-$ $2.31(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 174.60,171.05,144.90,136.48,135.75,129.18,128.83,128.61,127.80$, $127.70,127.65,127.63,127.48,124.63,122.29,108.37,69.86,61.99,59.09,48.53$, 44.15, 27.82, 25.99, 21.81, 21.65; HRMS m / z (ESI): calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 505.2103$, found 505.2100.

7. X-ray structures of $\mathbf{1 c}$, 3ca and 3cf

The absolute configurations of 1c, 3ca and 3cf were determined by X-ray crystallography. The stereochemistry of 3aa, 3ba, 3da-3ja, 3cb-3ce, 3cg-3cm, and 46 were assigned by analogy.
(a) X-ray structure of substrate 1c

Figure S1. ORTEP diagram (50% probability) of $\mathbf{1 c}$
A single crystal of $\mathbf{1 c}\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$ was obtained from diffusion of hexane into a solution of $\mathbf{1 c}$ in DCM at room temperature. A suitable crystal of $\mathbf{1 c}$ was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using Olex2 ${ }^{4}$, the structure was solved with the ShelXT ${ }^{5}$ structure solution program using Direct Methods and refined with the ShelXL ${ }^{6}$ refinement package using Least Squares minimization. Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of $\mathbf{1 c}$ are summarized in Table S2. Crystallographic data (CCDC 1963639) for 1c can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S2. Parameters for crystallographic analysis of 1c

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
Z
cu_20180303_sanxianan_0ma-auto
$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$
560.63

293(2)
orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
22.2717(14)
14.1714(9)
9.3683(5)

90
96.922(3)

90
2935.3(3)

4

$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.269
μ / mm^{-1}	0.679
$\mathrm{~F}(000)$	1184
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Theta range for data collection $^{\circ}$	7.41 to 120.274
Index ranges	$-25 \leq \mathrm{h} \leq 25,-15 \leq \mathrm{k} \leq 15,-10 \leq 1 \leq 10$
Reflections collected	37447
Independent reflections	$4369\left[\mathrm{R}_{\mathrm{int}}=0.0723, \mathrm{R}_{\text {sigma }}=0.0459\right]$
Data/restraints/parameters	$4369 / 0 / 321$
Goodness-of-fit on F^{2}	1.010
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0467, \mathrm{wR}_{2}=0.1111$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0731, \mathrm{wR}_{2}=0.1260$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.15 /-0.20$

(b) X-ray structure of product 3ca

Figure S2. ORTEP diagram (30\% probability) of 3ca
A single crystal of 3ca $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}\right]$ was obtained from diffusion of hexane into a solution of 3ca in DCM at room temperature. A suitable crystal of 3ca was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using Olex 2^{4}, the structure was solved with the ShelXT 5 structure solution program using Direct Methods and refined with the ShelXL ${ }^{6}$ refinement package using Least Squares minimization.

Refinement of the Flack parameter ${ }^{7}$ for 3ca was refined to the value of $0.00(8)$, which clearly suggests that the absolute configuration of the major isomer of 3ca is $\left(3 R, 4^{\prime} R, 6^{\prime} R\right)$. Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of 3ca are summarized in Table S3. Crystallographic data (CCDC 1963638) for 3ca can be obtained free of charge from
the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

Table S3. Parameters for crystallographic analysis of 3ca

Identification code	Cu_20170607nch3_0m-auto
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$
Formula weight	470.51
Temperature/K	149(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2 \mathrm{l}_{1} \mathrm{~L}_{1}$
a/Å	11.1247(17)
b/Å	11.7728(18)
c/Å	18.015(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/ A 3	2359.4(6)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.325
μ / mm^{-1}	0.746
$\mathrm{F}(000)$	992.0
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178)$
Theta range for data collection/ ${ }^{\circ}$	8.972 to 127.732
Index ranges	$-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-20 \leq 1 \leq 20$
Reflections collected	34236
Independent reflections	$3889\left[\mathrm{R}_{\text {int }}=0.0541, \mathrm{R}_{\text {sigma }}=0.0242\right]$
Data/restraints/parameters	3889/0/321
Goodness-of-fit on F^{2}	1.095
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0293, \mathrm{wR}_{2}=0.0702$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0320, \mathrm{wR}_{2}=0.0717$
Largest diff. peak/hole / e \AA^{-3}	0.14/-0.22
Flack parameter	0.00(8)

(c) X-ray structure of product 3cf

Figure S3. ORTEP diagram (30% probability) of 3cf
A single crystal of $\mathbf{3 c f}\left[\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{5}\right]$ was obtained from diffusion of hexane into a solution of 3cf in DCM at room temperature. A suitable crystal of 3cf was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using Olex 2^{4}, the structure was solved with the ShelXT ${ }^{5}$ structure solution program using Direct Methods and refined with the ShelXL ${ }^{6}$ refinement package using Least Squares minimization.

Refinement of the Flack parameter ${ }^{7}$ for 3 cf was refined to the value of $0.11(7)$, which clearly suggests that the absolute configuration of the major isomer of 3cf is $\left(3 R, 4^{\prime} R, 6^{\prime} R\right)$. Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of 3cf are summarized in Table S4. Crystallographic data (CCDC 1963637) for 3cf can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S4. Parameters for crystallographic analysis of 3cf
Identification code
cu_20170324mf_0m-auto
Empirical formula
$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{5}$
Formula weight
Temperature/K
273(2)
Crystal system
orthorhombic
Space group
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a/Å
11.316(4)
b/Å
c/Å
18.168(3)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ}$
90
$\gamma^{\circ} \quad 90$

Volume $/ \AA^{3}$	$2438.0(11)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.331
μ / mm^{-1}	0.804
$\mathrm{~F}(000)$	1024
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54178)$
theta range for data collection $/{ }^{\circ}$	8.904 to 127.56
Index ranges	$-13 \leq \mathrm{h} \leq 13,-12 \leq \mathrm{k} \leq 13,-21 \leq 1 \leq 21$
Reflections collected	14025
Independent reflections	$3990\left[\mathrm{R}_{\text {int }}=0.0282, \mathrm{R}_{\text {sigma }}=0.0257\right]$
Data/restraints/parameters	$3990 / 0 / 328$
Goodness-of-fit on F^{2}	1.152
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0362, \mathrm{wR}_{2}=0.0983$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.0421, \mathrm{wR}_{2}=0.1076$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.37 /-0.33$
Flack parameter	$0.11(7)$

8. References

[1] Zhao, H.; Zhang, Z.; Lu, W.; Han, P.; Wang, W.; Jing, L., Tetrahedron Lett., 2021, 83, 153426.
[2] a) Hua, Y.-Z.; Liu, M.-M.; Huang, P.-J.; Song, X.; Wang, M.-C.; Chang, J.-B. Chem. Eur. J. 2015, 21, 11994-11998; b) Li, B.-S.; Wang, Y.; Proctor, R. S. J.; Zhang, Y.; Webster, R. D.; Yang, S.; Song, B.; Chi, Y. R. Nat. Commun. 2016, 7, 12933; c) Juste-Navarro, V.; Marqués-López, E.; Herrera, R. P., Thioureacatalyzed addition of indoles to aliphatic β, γ-unsaturated α-ketoesters. Asian J. Org. Chem. 2015, 4, 884-889; d) n, K. H.; Bartenschlager, R.; Klein, C. D., Synthesis and biological evaluation of alpha-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg. Med. Chem. 2011, 19, 4067-4074.
[3] a) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967-969; b) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481-4483; c) Jiang, X.; Zhang, Y.; Liu, X.; Zhang, G.; Lai, L.; Wu, L.; Zhang, J.; Wang, R. J. Org. Chem. 2009, 74, 5562-5567; d) Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 16711-16713; e) Mayr, F.; Brimioulle, R.; Bach, T. J. Org. Chem. 2016, 81, 69656971.
[4] a) Yang, W.; Du, D.-M. Org. Lett. 2010, 12, 5450-5453; b) Dong, Z.; Qiu, G.; Zhou, H.-B.; Dong, C. Tetrahedron: Asymmetry 2012, 23, 1550-1556; c) Xie, X.; Jing, L.; Qin, D.; He, W.; Wu, S.; Jin, L.; Luo, G. RSC Adv. 2014, 4, 11605-11609; d) Rao, K. S.; Ramesh, P.; Trivedi, R.; Kantam, M. L. Tetrahedron Lett. 2016, 57, 1227.
[5] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crys-tallogr. 2009, 42, 339.
[6] Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71, 3.
[7] Sheldrick, G. M. Acta Crystallogr. Sect. C 2015, 71, 3.
[8] Flack, H. D. Acta Crystallogr. Sect. A 1983, 39, 876.

9. NMR spectra

C7, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}):

C7, ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}):

11, ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- \boldsymbol{d}_{6})

11, ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}):

1m, ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$):

$1 \mathrm{~m},{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3aa, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3aa, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ba, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ba, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ca, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ca, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3da, ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$):

3da, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$):

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \\ f 1\end{array}$

3ea, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ea, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

ex	-

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									(ppm)								10	0

3fa, ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$):

3fa, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ga, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$):

3ga, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3ha, ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ha, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ia, ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ia, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

[^1]3ja, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$):

$\mathbf{3 j a},{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

¢	丈 $\sim_{\text {¢ }}^{\sim}$	\%	¢	ल	m		
		-	$\stackrel{m}{\infty}$	M	$\stackrel{\text { ¢in }}{\text { ¢ }}$	Fíg ị̛	-
1く!	\bigcirc -	\|	\|	,	\|	\	।

3cb, ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cb, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$):

3cc, ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$):

3cc, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cd, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cd, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ce, ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$):

3ce, ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cf, ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- d_{6}):

3cf, ${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}):

[^2]3cg, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cg, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ch, ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - ~} d_{6}$):

3ch, ${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}):

3ci, ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$):

3ci, ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$):

No

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

3cj, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cj, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ck, ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3ck, ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3cl, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

3cl, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$):

$\mathbf{3 c m},{ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$3 \mathrm{~cm},{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & \\ f 1\end{array}$

4, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$5,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

5, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

6, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

6, ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10. HPLC spectra

3aa:
mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	13.807	180740	5355	2.828
2	15.042	2074076	72903	32.454
3	16.290	904430	26287	14.152
4	19.641	88573	3035	1.386
5	20.841	2194903	55995	34.344
6	27.470	948162	17551	14.836
Total		6390885	181126	100.000

mV

<Peak Table>
Detector A 254 nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.716	232575	11602	4.408
2	20.163	5043880	126362	95.592
Total		5276455	137963	100.000

3ba:
mV

<Peak Table>

DetectorA 254 nm Peak\# Ret. Time	Area	Height	Area\%
1	11.640	2670766	196488
2	17.392	827247	29048
3	18.210	193766	6509
4	19.122	5621234	147674
5	22.193	2321491	63277
6	26.765	5886607	111282
7	33.231	868690	16366
8	35.083	206255	3302
Total		18596056	573946

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	18.029	3737119	135616	7.829
2	33.303	43994795	579635	92.171
Total		47731914	715251	100.000

3ca:
mV

<Peak Table>

Detector A 254nm			
Peak\#	Ret. Time	Area	Height
1	15.370	6343838	137358
Area\%			
2	18.422	6384155	112728
Total		12727994	250086

mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	13.215	21991475	638147	99.658
2	17.180	75425	2133	0.342
Total		22066900	640280	100.000

3da:
mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	12.499	4187706	139493	14.293
2	14.506	10151156	236859	34.647
3	18.894	4395988	93242	15.004
4	27.840	10564339	118932	36.057
Total		29299190	588525	100.000

mV

<Peak Table>

Detector A 254nm			
Peak\#	Ret. Time	Area	Height
Area\%			
1	12.729	810682	26138
2	18.088	4199090	742036
Total		42719772	768174

3ea:
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	10.824	2504790	109031	25.698
2	12.326	2413784	82158	24.764
3	15.245	2550650	86708	26.168
4	22.382	2277980	48563	23.371
Total		9747205	326460	100.000

mV

<Peak Table>

Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	10.934	2791620	136013	5.186
2	14.831	51040421	1438028	94.814
Total		53832041	1574041	100.000

3fa:
mV

<Peak Table>

| Detector A 254nm | |
| ---: | ---: | ---: | ---: |
| Peak\# Ret. Time Area Height
 1 24.654 825442 9145
 2 27.386 383551 5446
 3 31.762 558329 5476
 4 47.486 761011 8910
 Total 2528333 28977 | 100.083 |

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height 1 25.669 77223 1536 2 49.490 12489729 69476 Total 12566953 71012

3ga:
mV

<Peak Table>

Detector A 254nm Peak\# Ret. Time Area Height	Area\%			
1	9.852	930961	16156	1.165
2	11.946	22727160	446349	28.441
3	14.722	16295081	242199	20.392
4	18.293	867200	16462	1.085
5	19.817	21824229	236308	27.311
6	27.401	17265307	132411	21.606
Total		79909938	1089885	100.000

mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Area\%
1	14.531	117930	2066	0.291
2	27.658	40414366	282578	99.709
Total		40532297	284644	100.000

3ha:

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	11.382	9799804	387368	32.210
2	13.877	5390020	135073	17.716
3	18.602	10275881	233070	33.774
4	27.092	4959402	64913	16.300
Total		30425107	820425	100.000

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height
1	11.407	777371	28052
2	18.335	19419110	398356
Total		20196481	426408

3ia:
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	18.558	7270581	97918	50.988
2	41.627	6988761	29179	49.012
Total		14259343	127098	100.000

mV

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height 1 22.821 343047 6956 2 37.246 7743630 71610$\| 94.242$
Total

3ja:
mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Area\%
1	12.261	14981131	338223	49.414
2	13.396	15336357	310325	50.586
Total		30317488	648548	100.000

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height				
1	12.283	308209	6996				
2	13.602	15220942	236625	$	$	Area $\%$	
---:	:---						
Total							

3cb:
mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	19.255	3380148	57953	9.160
2	23.519	3409593	48638	9.239
3	28.805	15112751	147470	40.953
4	40.082	15000621	86408	40.649
Total		36903113	340469	100.000

mV

<Peak Table>

| Detector A 254nm | |
| ---: | ---: | ---: | ---: |
| Peak\# Ret. Time Area Height
 1 19.597 1675989 39878
 2 23.129 62792622 641258
 Total 64468611 681135 | 100.000 |

3cc:
mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	9.102	5141299	296143	10.788
2	9.530	18334411	554076	38.469
3	19.581	6153513	172497	12.911
4	21.379	18030545	373098	37.832
Total		47659769	1395815	100.000

mV

<Peak Table>

Detector A 254nm			
Peak\# Ret. Time Area Height\% Area\%			
1	9.252	148135	0.874
2	19.239	38268499	99.126
Total		38416634	100.000

3cd:
mV

<Peak Table>

Detector A 254nm Peak\# Ret. Time	Area	Height	Area\%
1	8.902	1175611	48909
2	11.456	7640532	212223
3	13.277	1251899	33318
4	15.930	7510969	148785
Total		17579011	443235

mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	12.366	28641600	691798	99.017
2	16.478	284436	6555	0.983
Total		28926036	698353	100.000

3ce:
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	23.965	1319387	19535	23.200
2	33.432	1562184	14760	27.470
3	44.861	1289532	9144	22.675
4	51.316	1515852	9038	26.655
Total		5686954	52478	100.000

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height
1	23.791	553294	9080
2	40.661	40664865	247186
Total		41218159	256266

3cf:
mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	30.502	383528	3684	28.557
2	39.099	374127	3158	27.857
3	45.511	278739	1654	20.754
4	76.165	306649	1120	22.832
Total		1343043	9616	100.000

mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	29.415	378063	3023	0.849
2	36.796	44130210	285744	99.151
Total		44508273	288767	100.000

3cg:

mV

<Peak Table>

Detecto	Ret. Time	Area		Area\%
1	7.513	27209395	2058693	49.507
2	10.152	27751301	1838571	50.493
Total		54960696	3897265	100.000

<Peak Table>

Detector A $254 n m$ Peak\# Ret. Time	Area	Height	Area\%
1	7.534	2546675	147845
2	10.767	48288364	2859295
Total		50835038	3007141

3ch:

<Peak Table>

Detecto	Ret. Time	Area	Height	Area\%
1	22.262	13211657	285656	46.077
2	23.567	13758889	262602	47.985
3	27.224	868120	18612	3.028
4	29.525	834635	16337	2.911
Total		28673301	583207	100.000

mV

<Peak Table>
Detector A 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$
1	26.752	34742312	733746	99.682
2	28.996	110856	2129	0.318
Total		34853168	735875	100.000

3ci:
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$
1	8.902	1175611	48909	6.688
2	11.456	7640532	212223	43.464
3	13.277	1251899	33318	7.122
4	15.930	7510969	148785	42.727
Total		17579011	443235	100.000

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	12.366	28641600	691798	99.017
2	16.478	284436	6555	0.983
Total		28926036	698353	100.000

3cj:
mV

<Peak Table>

etecto	A 254nm	rea		
1	13.812	6472617	138025	44.948
2	16.182	652915	16503	4.534
3	19.811	631294	15640	4.384
4	24.602	6643562	65749	46.135
Total		14400388	235917	100.000

mV

<Peak Table>

Detector A 254nm			
Peak\#	Ret. Time	Area	Height
1	14.372	1178301	22043
2	23.416	32531497	306667
Total		33709798	328710

3ck:

mV

<Peak Table>

|
 Petector A 254nm
 Peak\# Ret. Time Area
 1 25.317 418326
 Height Area\%
 2 39.188 387694
 3 3879 14.646
 3 43.567 1060782
 4 57.841 28600
 5 62.713 919237
 6 73.151 41534
 Total 2856174 | 316 | 37.140 |
| ---: | ---: | ---: | ---: |

mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	
1	26.949	121323	1456	
2	38.789	12340406	99468	
Total		12461728	100924	

3cl:
mV

<Peak Table>

Detector	Ret. Time	Area	Height	Area\%
1	22.636	893946	23613	15.494
2	23.715	2020190	45579	35.014
3	26.091	912645	19584	15.818
4	29.578	1942879	36314	33.674
Total		5769659	125091	100.000

mV

<Peak Table>

Detector A 254nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	22.636	11935092	291391	96.969
2	25.613	373026	8226	3.031
Total		12308117	299617	100.000

3cm:
mv

<Peak Table>

Detector A 254nm Peak\# Ret. Time	Area	Height	Area\%
1	13.453	13887586	302047
2	21.192	13882287	170868
Total		27769873	472915

mV

<Peak Table>

DetectorA 254 nm					
Peak\#	Ret. Time	Area	Height		
Area\%					
1	13.766	1096206	25070		

4:
mV

<Peak Table>

Detector A 254 nm
$\left.\begin{array}{\|r\|r\|r\|r\|}\hline \text { Peak\# } & \text { Ret. Time } & \text { Area } & \text { Height } \\ \hline 1 & 12.549 & 25282163 & 742498 \\ \hline 2 & 14.461 & 24674099 & 635269\end{array}\right) 40.609$
Total

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	13.246	116923684	3601457	98.331
2	15.632	1984605	53470	1.669
Total		118908290	3654927	100.000

5:

mV

<Peak Table>

Detector A 254nm			
Peak\#	Ret. Time	Area	Height
Area\%			
1	12.689	19314050	534598
2	14.180	2330849	59224
3	19.193	4170095	67792
4	21.049	17766572	250728
Total		43581566	912342

mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Area\%
1	12.402	679670	20242	2.082
2	20.155	31963694	431117	97.918
Total		32643364	451359	100.000

6 :
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	14.851	17281534	604570	48.350
2	20.584	802095	20185	2.244
3	35.004	737510	9898	2.063
4	39.050	16921103	255483	47.342
Total		35742242	890135	100.000

mV

<Peak Table>

Detector A 254nm					Height	Area\%
Peak\#	Ret. Time	Area	Hea			
1	15.226	1171588	42234			
2	39.503	21235384	310945			
Total		22406972	353179			

[^0]: Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, P. R. China. E-mail: zhangzhengbing@cwnu.edu.cn; danyang@cwnu.edu.cn; jlhhxg@cwnu.edu.cn
 ${ }^{\S}$ These authors contributed equally to this work.

[^1]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1(\mathrm{ppm})\end{array}$

