Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supporting Information

Fundamental Curiosity of Multivicinal Inter-Halide Stereocenters

Olivier Lessard, Danny Lainé, Charles-Émile Fecteau, Paul A. Johnson, Denis Giguère*

Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6, PROTEO

E-Mail: <u>denis.giguere@ulaval.ca</u>

Table of contents

I.	Experimental section	S2
II.	Crystal structure determination	S28
III.	NMR spectra of compounds	S 30
IV.	Solution-state conformation	S97
V.	Log P determination using ¹⁹ F NMR	S101
VI.	Density functional theory calculations on Pitolisant and analogues	S112
VII.	References	S117

I. Experimental section

General methods

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry dichloromethane (CH_2Cl_2) was obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns using a Vacuum Atmospheres Inc. Solvent Purification System. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reagents were purchased at the highest commercial quality available and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and charring with a KMnO₄ solution (1.5 g of KMnO₄, 10 g K₂CO₃, and 1.25 mL 10 % NaOH in 200 mL of water), a phenol solution (3 g of phenol in 95 mL of EtOH and 5 mL of sulfuric acid), or a phenol/Ac₂O solution (3 g of phenol in 95 mL of Ac₂O and 5 mL of sulfuric acid) followed by heating with a heatgun as developing agents. SiliaFlash® P60 (particle size 40–63 mm, 230–400 mesh) was used for flash column chromatography. NMR spectra were recorded on an Agilent DD2 spectrometer (at 500 MHz for ¹H, 470 MHz for ¹⁹F, and 126 MHz for ¹³C) and calibrated using residual undeuterated solvent peaks (CDCl₃ ¹H δ = 7.26 ppm, ¹³C $\delta = 77.16$ ppm; acetone-d₆: ¹H $\delta = 2.05$ ppm, ¹³C $\delta = 29.84$ ppm) as an internal reference. ¹⁹F NMR spectra were calibrated using hexafluorobenzene, which gives a signal at ¹⁹F $\delta = -162.29$ ppm with respect to that of the reference compound CFCl₃. Coupling constants (J) are reported in Hertz (Hz), and the following abbreviations were used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, br = broad. Assignments of NMR signals were made by homonuclear (COSY) and heteronuclear (HSQC, HMBC, and ¹⁹F gc2HSQC) two-dimensional correlation spectroscopy. Infrared (IR) spectra were recorded using an ABB MB3000 Spectrometer with a diamond crystal plate, or Bomem MB100 Arid zone with a NaCl disk. The absorptions are given in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were measured with an Agilent 6210 LC Time of Flight mass spectrometer in electrospray mode (ESI). Either protonated molecular ions $[M + nH]^{n+}$, sodium adducts $[M + Na]^{+}$, ammonium adducts $[M + NH_4]^+$ or deprotonated molecular ions $[M - nH]^{n-}$ were used for empirical formula confirmation. Optical rotations were recorded on a JASCO DIP-360 digital polarimeter at 589 nm and are reported in units of 10^{-1} (deg cm² g⁻¹). Melting points were measured on a Stanford Research System OptiMelt MPA100 151 automated melting point apparatus.

General procedures

General procedure I: Hydrolysis of 1,6-anhydro-difluorohalogenohexopyranose analogues

To a stirred solution of the starting 1,6-anhydro-difluorohalohexopyranose in a specified volume of CH_2Cl_2 at 0 °C, was added dropwise a specified volume of a 1 M solution of BCl_3 in CH_2Cl_2 . The mixture was stirred, under an argon atmosphere, at room temperature for 2 h. The reaction mixture was cooled at 0 °C, a specified volume of H_2O was added, and the organic solvent was removed under reduced pressure. The resulting mixture was stirred at room temperature for 1 h, and the remaining water was evaporated under a gentle stream of air.

General procedure II: Reduction of difluorohalogenohexopyranose analogues

A specified amount of NaBH₄ was added to a stirred solution of the starting difluorohalogenohexopyranose in anhydrous EtOH. The resulting mixture was stirred at room temperature for 1 h and was neutralized to $pH \approx 7$ with acidic resin. The mixture was filtered and concentrated under reduced pressure.

1,6-Anhydro-2,3,4-trideoxy-3-chloro-2,4-difluoro-\beta-D-allopyranose (7). To a solution of 1,6-anhydro-2,4-difluoro-2,4-difluoro- β -D-glucopyranose **4**¹ (390.6 mg, 2.351 mmol, 1.0 equiv.) in CH₂Cl₂ (11.8 mL, 0.2 M) at 0 °C under an argon atmosphere was added pyr-idine (0.76 mL, 9.404 mmol, 4.0 equiv.) and Tf₂O (0.79 mL, 4.702 mmol, 2.0 equiv.). The mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ and the combined organic phases were successively washed with aqueous 1 M HCl solution and brine. The

organic solution was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude triflate 5 was used for the next step without further purification and dissolved in MeCN (1.1 mL, 0.2 M) in a sealed tube. Me₄NCl (236 mg, 2.151 mmol, 10 equiv.) was added, and the tube was sealed and stirred at 100 °C for 7 days. After cooling down to room temperature, the mixture was quenched with H₂O and extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1:3 \rightarrow 1:1$) to give 7 as a white amorphous solid $(30.2 \text{ mg}, 0.1636 \text{ mmol}, 73 \% \text{ yield over 2 steps}): R_f = 0.38 \text{ (silica, EtOAc/hexanes 2:3);}$ $[\alpha]_{D}^{25} = -73.1$ (c 0.4, CHCl₃); IR (ATR, diamond crystal) v 2978, 2916, 1327, 1134, 1057, 748 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.66 (dd, J = 1.9, 1.9 Hz, 1H, H1), 4.88 (ddd, *J* = 6.0, 5.9, 2.7 Hz, 1H, H5), 4.60 (ddd, *J* = 47.6, 3.2, 3.2 Hz, 1H, H4), 4.49 (ddd, *J* = 48.6, 3.4, 3.1 Hz, 1H, H2), 4.14 (dddd, *J* = 29.0, 27.2, 3.8, 3.8 Hz, 1H, H3), 3.86 (dddd, *J* = 8.2, 5.2, 5.2, 2.5 Hz, 1H, H6a), 3.78 (ddd, J = 8.6, 1.0, 1.0 Hz, 1H, H6b) ppm; ¹³C {¹H} NMR $(126 \text{ MHz}, \text{CDCl}_3) \delta 99.0 \text{ (d, } J = 24.8 \text{ Hz}, 1\text{C}, \text{C1}), 86.9 \text{ (dd, } J = 193.2, 1.0 \text{ Hz}, 1\text{C}, \text{C4}),$ 85.9 (dd, J = 194.1, 1.0 Hz, 1C, C2), 74.6 (d, J = 19.6 Hz, 1C, C5), 64.1 (d, J = 6.1 Hz, 1C, C6), 51.2 (dd, J = 19.5, 19.1 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -194.93 (dddddd, J = 47.0, 29.0, 6.4, 6.3, 6.2, 1.0 Hz, 1F, F4), -198.04 (dddd, J = 48.8, 27.0, 8.4)2.3 Hz, 1F, F2) ppm; the compound does not ionize.

1,6-Anhydro-2,3,4-trideoxy-3-bromo-2,4-difluoro-\beta-D-allopyranose (8). To a solution of 1,6-anhydro-2,4-difluoro-2,4-difluoro- β -D-glucopyranose **4** (101.8 mg, 0.6128 mmol, 1.0 equiv.) in CH₂Cl₂ (3.0 mL, 0.2 M) at 0 °C under an argon atmosphere was added pyridine (0.20 mL, 2.452 mmol, 4.0 equiv.) and Tf₂O (0.21 mL, 1.226 mmol, 2.0 equiv.). The mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ and the combined organic phases were successively washed with aqueous 1 M HCl solution and brine. The organic solution was dried over MgSO₄, filtered, and concentrated under reduced pressure.

The crude triflate **5** was used for the next step without further purification and dissolved in DMF (2.6 mL, 0.22 M) in a sealed tube. Bu₄NBr (1.882 g, 5.840 mmol, 10 equiv.) was added, and the tube was sealed and stirred at 120 °C for 16 h. After cooling down to room temperature, the mixture was quenched with H₂O, and extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1:2 \rightarrow 2:3$) to give 8 as a pale yellow amorphous solid $(124.0 \text{ mg}, 0.5414 \text{ mmol}, 88 \% \text{ yield over 2 steps}): R_f = 0.40 \text{ (silica, EtOAc/hexanes 2:3);}$ $[\alpha]_D^{25} = -58.1$ (c 0.3, CHCl₃); IR (ATR, diamond crystal) v 2970, 2916, 2854, 1335, 1126, 1057 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.65 (dd, J = 2.6, 1.2 Hz, 1H, H1), 4.89 (dddd, J = 6.0, 5.6, 2.9, 0.6 Hz, 1H, H5), 4.57 (ddd, J = 47.2, 3.1, 3.1 Hz, 1H, H4), 4.46 (ddd, *J* = 48.4, 3.2, 2.9 Hz, 1H, H2), 4.21 (dddd, *J* = 30.6, 28.7, 3.8, 3.8 Hz, 1H, H3), 3.87 (dddd, J = 10.8, 5.2, 3.1, 2.4 Hz, 1H, H6b), 3.81 (ddd, J = 8.5, 1.1, 1.1 Hz, 1H, H6a) ppm: ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 99.2 (d, J = 25.8 Hz, 1C, C1), 86.9 (dd, J = 192.4, 1.0 Hz, 1C, C4), 86.0 (dd, J = 193.0, 1.2 Hz, 1C, C2), 74.8 (d, J = 20.3 Hz, 1C, C5), 64.2 (d, J = 5.9 Hz, 1C, C6), 41.3 (dd, J = 20.0, 20.0 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz. 28.6, 7.4, 2.5 Hz, 1F, F2) ppm; the compound does not ionize.

1,6-Anhydro-2,3,4-trideoxy-2,4-difluoro-3-iodo-\beta-D-allopyranose (9). To a solution of 1,6-anhydro-2,4-difluoro-2,4-difluoro- β -D-glucopyranose **4** (390.7 mg, 2.352 mmol, 1.0 equiv.) in CH₂Cl₂ (11.8 mL, 0.2 M) at 0 °C under an argon atmosphere was added pyr-idine (0.76 mL, 9.408 mmol, 4.0 equiv.) and Tf₂O (0.79 mL, 4.704 mmol, 2.0 equiv.). The mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ and the combined organic phases were successively washed with aqueous 1 M HCl solution and brine. The organic solution was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude triflate **5** was used for the next step without further purification and dissolved in

DMF (11 mL, 0.2 M) in a sealed tube. Bu₄NI (8.881 g, 22.41 mmol, 10 equiv.) was added, and the tube was sealed and stirred at 120 °C for 16 h. After cooling down to room temperature, the mixture was quenched with H₂O, and extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1:3 \rightarrow 1:1$) to give 9 as a pale yellow amorphous solid (558.0 mg, 2.022 mmol, 86 % yield over 2 steps): $R_f = 0.46$ (silica, EtOAc/hexanes 2:3); $[\alpha]_D^{25} = -56.6$ (c 0.5, CHCl₃); IR (ATR, diamond crystal) v 2978, 2916, 1327, 1126, 1041, 987 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.59 (dd, J = 2.3, 0.7 Hz, 1H, H1), 4.83 (dddd, J = 6.3, 5.0, 2.5, 0.8 Hz, 1H, H5), 4.46 (ddd, J = 46.8, 3.3, 3.3 Hz, 1H, H4), 4.40 (dddd, J = 33.0, 31.3, 3.9, 3.5 Hz, 1H, H3), 4.35 (dddd, J = 47.5, 3.2, 3.2, 0.7 Hz, 1H, H2), 3.88 (dddd, J = 8.3, 7.5, 5.0, 2.5 Hz, 1H, H6b), 3.85 (ddd, J = 8.1, 0.6, 0.6 Hz, 1H, H6a) ppm;¹³C {¹H} NMR (126 MHz, CDCl₃) δ 98.9 (d, J = 27.1 Hz, 1C, C1), 87.5 (dd, J = 190.5, 1.3 Hz, 1C, C4), 86.6 (dd, J = 191.0, 0.8 Hz, 1C, C2), 74.7 (d, J = 20.9 Hz, 1C, C5), 64.4 (d, J = 6.3 Hz, 1C, C6), 17.4 (dd, J = 21.2, 21.2 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -178.25 (dddddd, J = 46.4, 33.2, 5.7, 5.0, 5.0, 0.9 Hz, 1F, F4), -182.60 (dddd, J = 47.5, 31.3, 5.7, 2.3 Hz, 1F, F2) ppm; the compound does not ionize.

2,3,4-Trideoxy-2,3,4-trifluoro-\alpha/\beta-D-allopyranose (10). The known 1,6-anhydro-2,3,4-trideoxy-2,3,4-trifluoro- β -D-allopyranose **6**¹ (218.3 mg, 1.299 mmol, 1.0 equiv.) was hydrolysed with BCl₃ (1 M in CH₂Cl₂, 6.5 mL, 6.495 mmol, 5.0 equiv.) in CH₂Cl₂ (13 mL, 0.1 M) and water (46 mL, 2.554 mmol, 2.0 equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 4:1) to give an anomeric mixture of **10** (α/β 1:13) as a white amorphous solid (232.1 mg, 1.247 mmol, 96 % yield). The spectroscopic data derived from compound **10** match those reported in the literature.¹

2,3,4-Trideoxy-3-chloro-2,4-difluoro- α/β -D-allopyranose (11). 1,6-Anhydro-2,3,4trideoxy-3-chloro-2,4-difluoro-β-D-allopyranose 7 (78.0 mg, 0.4226 mmol, 1.0 equiv.) was hydrolysed with BCl₃ (1 M in CH₂Cl₂, 2.2 mL, 2.113 mmol, 5.0 equiv.) in CH₂Cl₂ (4.2 mL, 0.1 M) and water (15 mL, 0.8304 mmol, 2.0 equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 3:2 \rightarrow 4:1) to give an anomeric mixture of **11** (α/β 1:19) as a white amorphous solid (60.0 mg, 0.2962 mmol, 70 % yield): $R_f = 0.39$ (silica, EtOAc/hexanes 4:1); $[\alpha]_D^{25} = -9.34$ (c 0.4, MeOH); IR (ATR, diamond crystal) v 3340, 3117, 2901, 1342, 1142, 1018, 656 cm⁻¹; only the β anomer has been attributed in ¹H NMR, ¹³C NMR, and ¹⁹F NMR; ¹H NMR (500 MHz, Acetone- d_6) δ 6.37 (d, J = 6.3 Hz, 1H, OH1), 5.16 (ddd, *J* = 7.2, 6.3, 1.3 Hz, 1H, H1), 5.09 (dddd, *J* = 7.3, 7.3, 3.5, 3.5 Hz, 1H, H3), 4.92 (dddd, J = 46.2, 8.7, 3.5, 1.4 Hz, 1H, H4), 4.48 (dddd, J = 46.9, 7.2, 3.5, 1.5 Hz, 1H, H2), 3.98 (ddd, J = 7.4, 4.6, 4.4, 2.5 Hz, 1H, H5), 3.96 (dd, J = 6.5, 6.5 Hz, 1H, OH6), 3.83 (dddd, J = 12.3, 5.6, 2.3, 2.3 Hz, 1H, H6b), 3.67 (dddd, J = 12.2, 7.1, 4.3, 2.2 Hz, 1H, H6a) ppm; ¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 92.0 (d, J = 22.9 Hz, 1C, C1), 87.3 (dd, J = 194.4, 3.9 Hz, 1C, C2), 83.7 (dd, J = 190.8, 3.7 Hz, 1C, C4), 72.6 (d, J = 23.1 Hz, 1C, C5), 60.4 (d, J = 1.1 Hz, 1C, C6), 59.9 (dd, J = 17.4, 17.4 Hz, 1C, C3) ppm; ¹⁹F NMR $(470 \text{ MHz}, \text{ Acetone-}d_6) \delta -194.85 \text{ (dddd}, J = 47.0, 7.5, 3.9, 1.2 \text{ Hz}, 1\text{F}, \text{F1}), -196.25$ (ddddd, J = 46.0, 7.3, 4.6, 2.3, 2.2 Hz, 1F, F4) ppm; HRMS calcd for C₆H₈ClF₂O₃⁻ [M - H]⁻ 201.0136 found 201.0140.

2,3,4-Trideoxy-3-bromo-2,4-difluoro-\alpha/\beta-D-allopyranose (12). 1,6-Anhydro-2,3,4-trideoxy-3-bromo-2,4-difluoro- β -D-allopyranose **8** (165.00 mg, 0.7205 mmol, 1.0 equiv.) was hydrolysed with BCl₃ (1 M in CH₂Cl₂, 3.6 mL, 3.602 mmol, 5.0 equiv.) in CH₂Cl₂ (7.2 mL, 0.1 M) and water (25.5 mL, 1.416 mmol, 2.0 equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel,

EtOAc/hexanes 3:2 → 4:1) to give an anomeric mixture of **12** (α/β 1:17) as a white amorphous solid (160.0 mg, 0.6477 mmol, 90 % yield): $R_f = 0.42$ (silica, EtOAc/hexanes 4:1); $[\alpha]_D^{25} = -10.5$ (c 0.5, MeOH); IR (ATR, diamond crystal) *v* 3340, 2932, 1443, 1080, 1030, 1011 cm⁻¹; only the β anomer has been attributed in ¹H NMR, ¹³C NMR, and ¹⁹F NMR; ¹H NMR (500 MHz, Acetone-*d*₆) δ 6.38 (d, *J* = 6.5 Hz, 1H, OH1), 5.18 (ddd, *J*₂ = 6.8, 6.7, 1.4 Hz, 1H, H1), 5.14 (dddd, *J* = 7.4, 7.4, 3.6, 3.6 Hz, 1H, H3), 4.78 (dddd, *J* = 46.5, 8.6, 3.5, 1.2 Hz, 1H, H4), 4.37 (dddd, *J* = 47.4, 6.9, 3.5, 1.5 Hz, 1H, H2), 3.99 (ddd, *J* = 8.6, 3.8, 3.3 Hz, 1H, H5), 3.98 (dd, *J* = 6.7, 5.5 Hz, 1H, OH6), 3.82 (dddd, *J* = 12.2, 5.1, 5.0, 2.3 Hz, 1H, H6a), 3.68 (dddd, *J* = 12.2, 6.5, 4.3, 2.2 Hz, 1H, H6b) ppm; ¹³C {¹H} NMR (126 MHz, Acetone-*d*₆) δ 93.7 (d, *J* = 22.6 Hz, 1C, C1), 87.7 (dd, *J* = 193.6, 4.2 Hz, 1C, C2), 84.2 (dd, *J* = 17.5, 17.5 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone-*d*₆) δ -189.77 (dddd, *J* = 47.4, 7.6, 3.9, 1.4 Hz, 1F, F2), -190.73 (dddd, *J* = 46.6, 7.4, 2.3, 2.2 Hz, 1F, F4) ppm; HRMS calcd for C₆H₈BrF₂O₃⁻ [M - H]⁻ 244.9630 found 244.9636.

2,3,4-Trideoxy-2,4-difluoro-3-iodo-α/β-D-allopyranose (**13**). 1,6-Anhydro-2,3,4-trideoxy-2,4-difluoro-3-iodo-β-D-allopyranose **9** (100.5 mg, 0.3641 mmol, 1.0 equiv.) was hydrolysed with BCl₃ (1 M in CH₂Cl₂, 2.9 mL, 2.113 mmol, 8.0 equiv.) in CH₂Cl₂ (3.6 mL, 0.1 M) and water (12.9 mL, 0.7155 mmol, 2.0 equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $3:2 \rightarrow 4:1$) to give an anomeric mixture of **13** (α/β 1:16) as a white amorphous solid (85.4 mg, 0.2904 mmol, 80 % yield): R_f = 0.46 (silica, EtOAc/hexanes 4:1); [α]_D²⁵ = -13.5 (c 0.5, MeOH); IR (ATR, diamond crystal) *v* 3340, 2925, 1327, 1095, 1080, 1026 cm⁻¹; only the β anomer has been attributed in ¹H NMR, ¹³C NMR, and ¹⁹F NMR; ¹H NMR (500 MHz, Acetone-*d*₆) δ 6.38 (d, *J* = 6.4 Hz, 1H, OH1), 5.17 (dddd, *J* = 9.4, 9.4, 3.8, 3.8 Hz, 1H, H3), 5.14 (ddd, *J* = 6.4, 6.3, 2.3 Hz, 1H, H1), 4.26 (dddd, *J* = 47.2, 7.6, 3.8, 1.1 Hz, 1H, H4), 4.01 (dd, *J* = 6.7, 5.5 Hz, 1H, OH6), 3.94 (dddd, *J* = 7.8, 4.6, 4.3, 3.2 Hz, 1H, H5), 3.92 (dddd, *J* = 48.0, 6.3, 3.9, 1.1 Hz, 1H, H2), 3.82 (dddd, *J* = 12.2, 5.5, 3.5, 1.7 Hz, 1H, H6a), 3.69 (dddd, J = 12.2, 6.8, 4.4, 2.3 Hz, 1H, H6a) ppm; ¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 94.9 (d, J = 23.2 Hz, 1C, C1), 87.7 (dd, J = 191.4, 4.0 Hz, 1C, C2), 84.6 (dd, J = 188.5, 3.9 Hz, 1C, C4), 76.6 (d, J = 21.9 Hz, 1C, C5), 61.5 (s, 1C, C6), 33.2 (dd, J = 18.1, 18.1 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -181.06 (dddddd, J = 47.3, 9.4, 4.6, 4.4, 2.3, 1.7 Hz, 1F, F4), -181.31 (dddd, J = 48.4, 9.3, 4.4, 2.0 Hz, 1F, F2) ppm; HRMS calcd for C₆H₈F₂IO₃⁻ [M - H]⁻ 292.9492 found 292.9495.

2,3,4-Trideoxy-2,3,4-trifluoro-D-allitol (14). 2,3,4-Trideoxy-2,3,4-trifluoro- α/β -D-allopyranose **10** (192 mg, 1.032 mmol, 1.0 equiv.) was reduced with NaBH₄ (68.3 mg, 1.805 mmol, 1.75 equiv.) in anhydrous EtOH (10 mL, 0.1 M) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂ 1:9) to give **14** as a colorless oil (180.5 mg, 0.9593 mmol, 93 % yield). The spectroscopic data derived from compound **14** match those reported in the literature.²

2,3,4-Trideoxy-3-chloro-2,4-difluoro-D-allitol (15). 2,3,4-Trideoxy-3-chloro-2,4difluoro- α/β -D-allopyranose **11** (21.5 mg, 0.1061 mmol, 1.0 equiv.) was reduced with NaBH₄ (20.0 mg, 0.5306 mmol, 5.0 equiv.) in anhydrous EtOH (1.0 mL, 0.1 M) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂ 1:9) to give **15** as a colorless oil (20.0 mg, 0.0978 mmol, 92 % yield): $R_f = 0.49$ (silica, MeOH/CH₂Cl₂ 1:9); $[\alpha]_D^{25} = -2.63$ (c 0.8, MeOH); IR (ATR, diamond crystal) *v* 3323, 2926, 2854, 1456, 1242, 1030, 885 cm⁻¹; ¹H NMR (500 MHz, Acetone-*d*₆) δ 4.97 (dddd, *J* = 46.4, 8.0, 4.4, 2.4, 1H, H2), 4.86 (ddd, *J* = 45.8, 8.4, 2.5 Hz, 1H, H4), 4.76 (dddd, *J* = 22.0, 8.0, 6.9, 2.5 Hz, 1H, H3), 4.34 (d, *J* = 6.4 Hz, 1H, OH5), 4.24 (dd, *J* = 6.0, 6.0 Hz, 1H, OH1), 4.01 (ddddd, *J* = 8.4, 7.4, 5.3, 4.0, 3.0 Hz, 1H, H5), 3.97 - 3.92 (m, 1H, OH6), 3.92 (dddd, *J* = 26.0, 13.0, 6.0, 2.4 Hz, 1H, H1b), 3.90 (dddd, *J* = 29.7, 13.0, 6.0, 4.7 Hz, 1H, H1a), 3.76 (dddd, *J* = 11.5, 5.3, 3.1, 3.1 Hz, 1H, H6a), 3.67 (dddd, J = 11.2, 7.0, 4.3, 2.6 Hz, 1H, H6b) ppm; ¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 93.4 (dd, J = 175.6, 5.6 Hz, 1C, C2), 93.0 (dd, J = 178.7, 3.4 Hz, 1C, C4), 71.2 (dd, J = 25.5, 3.2 Hz, 1C, C5), 63.3 (d, J = 3.1 Hz, 1C, C6), 62.1 (dd, J = 20.9, 2.2 Hz, 1C, C1), 58.4 (dd, J = 25.1, 21.6 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -187.73 (dddd, J = 46.3, 29.8, 26.5, 6.9 Hz, 1F, F2), -198.57 (ddddd, J = 45.1, 21.8, 6.5, 2.5, 2.0 Hz, 1F, F4) ppm; HRMS calcd for C₆H₁₀ClF₂O₃⁻ [M - H]⁻ 203.0292 found 203.0295.

2,3,4-Trideoxy-3-bromo-2,4-difluoro-D-allitol (16). 2,3,4-Trideoxy-3-bromo-2,4difluoro- α/β -D-allopyranose **12** (217.3 mg, 0.8796 mmol, 1.0 equiv.) was reduced with NaBH₄ (58.2 mg, 1.539 mmol, 1.75 equiv.) in anhydrous EtOH (8.8 mL, 0.1 M) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂ 1:9) to give 16 as a colorless oil (214.3 mg, 0.8605 mmol, 98 % yield): $R_f = 0.49$ (silica, MeOH/CH₂Cl₂ 1:9); $[\alpha]_D^{25} = -1.69$ (c 0.9, MeOH); IR (ATR, diamond crystal) v 3371, 2924, 2854, 1373, 1273, 1072 cm⁻¹; ¹H NMR (500 MHz, Acetone d_6) δ 5.00 (dddd, J = 46.5, 8.0, 4.5, 2.3 Hz, 1H, H2), 4.86 (ddd, J = 45.7, 8.3, 2.5 Hz, 1H, H4), 4.82 (dddd, J = 23.0, 8.0, 7.3, 2.5 Hz, 1H, H3), 4.35 (d, J = 3.8 Hz, 1H, OH5), 4.24 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, 1H, OH1), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, IH), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, IH), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, IH), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, IH), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz, IH), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz), 1.00 + 3.87 (m, 4H, H1a, H1b, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz), 1.00 + 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, J = 6.1, 6.1 Hz), 1.00 + 3.87 (m, 4H, H1a, H1b, H1a, H1b, H5), 1.00 + 3.87 (m, 4H, H1a, H1b, H1a), 1.00 + 3.87 (m, 4H, H1a), 1.00J = 11.5, 3.0 Hz, 1H, H6b), 3.67 (dd, J = 11.2, 1.5 Hz, 1H, H6a) ppm; ¹³C {¹H} NMR $(126 \text{ MHz}, \text{Acetone-}d_6) \delta 93.4 (dd, J = 176.7, 4.7 \text{ Hz}, 1C, C2), 93.2 (dd, J = 178.6, 4.0 \text{ Hz}, 12.6 \text{ Hz})$ 1C, C4), 72.2 (dd, J = 25.6, 3.0 Hz, 1C, C5), 63.3 (d, J = 2.8 Hz, 1C, C6), 63.1 (dd, J = 20.9, 2.1 Hz, 1C, C1), 50.5 (dd, J = 23.3, 21.4 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -183.16 (dddd, J = 46.7, 28.4, 28.3, 7.1 Hz, 1F, F2), -196.03 (ddd, J = 45.2, 16.322.1, 3.5 Hz, 1F, F4) ppm; HRMS calcd for $C_6H_{10}BrF_2O_3^{-1}$ [M - H]⁻ 246.9787 found 246.9792.

2,3,4-Trideoxy-3-iodo-2,4-difluoro-D-allitol (17). 2,3,4-Trideoxy-2,4-difluoro-3-iodo- α/β -D-allopyranose **13** (10.8 mg, 0.03673 mmol, 1.0 equiv.) was reduced with NaBH₄ (2.4 mg, 0.06344 mmol, 1.73 equiv.) in anhydrous EtOH (0.37 mL, 0.1 M) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂ 1:9) to give 17 as a colorless oil (9.8 mg, 0.03310 mmol, 90 % yield): $R_f = 0.50$ (silica, MeOH/CH₂Cl₂ 1:9); $[\alpha]_D^{25} = 3.86$ (c 0.7, MeOH); IR (ATR, diamond crystal) v 3337, 2930, 2881, 1452, 1234, 1022, 878 cm⁻¹; ¹H NMR (500 MHz, Acetone- d_6) δ 4.89 (dddd, J = 24.3, 8.2, 8.2, 2.8 Hz, 1H, H3), 4.83 (dddd, J = 46.4, 8.1, 4.9,2.1 Hz, 1H, H2), 4.65 (ddd, J = 45.1, 8.2, 2.4 Hz, 1H, H4), 4.32 (d, J = 6.5 Hz, 1H, OH5), 4.21 (dd, *J* = 6.0, 6.0 Hz, 1H, OH1), 4.04 (dddd, *J* = 28.0, 13.0, 5.7, 2.1 Hz, 1H, H1b), 3.98 (ddddd, *J* = 8.2, 6.6, 6.4, 4.6, 3.1 Hz, 1H, H5), 3.97 (dddd, *J* = 28.2, 13.0, 6.0, 4.9 Hz, 1H, H1a), 3.94 (dd, J = 6.0, 5.8 Hz, 1H, OH6), 3.75 (dddd, J = 11.5, 5.8, 3.1, 3.1 Hz, 1H, H6b), 3.67 (dddd, J = 11.2, 6.0, 4.6, Hz, 1H, H6a). ¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 94.0 (dd, J = 177.9, 5.2 Hz, 1C, C4), 93.8 (dd, J = 177.0, 4.3 Hz, 1C, C2), 73.7 (dd, J = 25.8, 2.5 Hz, 1C, C5), 64.9 (dd, J = 20.9, 2.3 Hz, 1C, C1), 63.3 (d, J = 2.9 Hz, 1C, C6), 29.9 (dd, J = 20.7, 20.7 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -177.62 (dddd, *J* = 47.3, 28.2, 28.0, 8.1 Hz, 1F, F2), -190.63 (ddd, *J* = 45.3, 23.6, 6.6 Hz, 1F, F4) ppm; HRMS calcd for $C_6H_{15}F_2IO_3^+$ [M + NH₄]⁺ 314.0059 found 314.0052.

2,3,4-Trideoxy-2,4-difluoro-D-allitol (18). To a stirred solution of 2,3,4-trideoxy-2,4difluoro-3-iodo- α/β -D-allopyranose **13** (12.5 mg, 0.04251 mmol, 1.0 equiv.) in anhydrous EtOH (0.43 mL, 0.1 M) was added NaBH₄ (12.9 mg, 0.3401 mmol, 8.0 equiv.). The mixture was stirred at 50 °C for 1 h. After the mixture was cooled down to room temperature, 1 mL of MeOH was added, and the mixture was neutralized to pH \approx 7 with acidic resin. The mixture was filtered and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂ 1:9) to give **18** as a colorless oil (4.8 mg, 0.02821 mmol, 66 % yield): $R_f = 0.52$ (silica, MeOH/CH₂Cl₂ 3:17); [α] $_D^{25} = -6.91$ (c 0.5, MeOH); IR (ATR, diamond crystal) *v* 3350, 2926, 2856, 1441, 1230, 1051, 860 cm⁻¹; ¹H NMR (500 MHz, Acetone-*d*₆) δ 4.75 (ddddd, *J* = 48.8, 6.0, 6.0, 6.0, 3.4 Hz, 1H, H2), 4.65 (dddd, *J* = 48.1, 9.0, 6.0, 3.4 Hz, 1H, H4), 4.14 (d, *J* = 5.5 Hz, 1H, OH5), 4.05 (dd, *J* = 6.0, 6.0 Hz, 1H, OH1), 3.79 (dd, *J* = 5.9, 5.1 Hz, 1H, OH6), 3.76 – 3.63 (m, 4H, H1a, H1b, H5, H6b), 3.59 (ddd, *J* = 11.2, 5.2, 5.1 Hz, 1H, H6a), 2.21 (ddddd, *J* = 34.2, 21.9, 15.2, 6.1, 3.5 Hz, 1H, H3b), 2.07 (ddddd, *J* = 18.6, 18.5, 15.0, 8.5, 6.3 Hz, 1H, H3a) ppm; ¹³C {¹H} NMR (126 MHz, Acetone-*d*₆) δ 93.1 (dd, *J* = 169.3, 2.9 Hz, 1C, C2), 91.6 (dd, *J* = 169.6, 5.9 Hz, 1C, C4), 73.8 (d, *J* = 23.6 Hz, 1C, C5), 64.5 (dd, *J* = 22.8, 1.1 Hz, 1C, C1), 63.3 (d, *J* = 5.9 Hz. 1C, C6), 33.5 (dd, *J* = 21.1, 21.1 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone-*d*₆) δ -188.01 (dddddd, *J* = 48.8, 25.0, 24.0, 21.9, 18.4, 3.5 Hz, 1F, F2), -189.96 (ddddd, *J* = 48.1, 34.2, 19.0, 11.2, 1.8 Hz, 1F, F4) ppm; the compound does not ionize.

1,6-Bis-*O***-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol (22)** 2,3,4-Trideoxy-3-bromo-2,4-difluoro-D-allitol **16** (32.9 mg, 0.1321 mmol, 1.0 equiv.) was diluted in pyridine (1.3 mL, 0.1 M), and PivCl (32.4 μ L, 0.2642 mmol, 2.0 equiv.) was added. The reaction mixture was heated at 60 °C for 18 h. The mixture was then cooled down to room temperature, quenched with a saturated solution of NaHCO₃, and extracted with CH₂Cl₂.

22

The combined organic phase was washed with 1 M HCl, dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:9) to give 22 as a white amorphous solid (30.4 mg, 0.07285 mmol, 55 % yield): $R_f = 0.47$ (silica, EtOAc/hexanes 1:3); $[\alpha]_D^{25} = -1.70$ (c 0.9, MeOH); IR (ATR, diamond crystal) v 3485, 2974, 2876, 1732, 1396, 1283, 1149 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.17 (dddd, J = 46.1, 8.9, 4.6, 2.1 Hz, 1H, H2), 4.77 (ddd, J = 45.2, 8.4, 2.6 Hz, 1H, H4), 4.60 (dddd, J = 20.6, 9.1, 6.5, 2.6 Hz, 1H, H3), 4.54 (dddd, J = 24.3, 13.0, 1.9, 0.9 Hz, 1H, H1b), 4.45 (ddd, J = 29.7, 13.0, 4.6 Hz, 1H, H1a), 4.44 (ddd, J = 12.1, 2.1, 2.1, Hz, 1H, H6b), 4.27 (dddd, J = 8.4, 5.5, 4.8, 2.1 Hz, 1H, H5), 4.25 (ddd, J = 12.1, 4.8, 2.1 Hz, 1H, H6a), 2.85 (sbr, 1H, OH5), 1.24 – 1.23 (m, 18H, $2 \times COC(CH_3)_3$ ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 179.8 (s, 1C, COC(CH₃)₃), 178.1 (s, 1C, COC(CH₃)₃), 90.8 (dd, *J* = 180.9, 3.0 Hz, 1C, C4), 89.5 (dd, J = 179.9, 6.0 Hz, 1C, C2), 70.4 (dd, J = 26.6, 3.4 Hz, 1C, C5), 65.5 (d, J = 2.6 Hz, 1C, C6), 64.0 (dd, J = 20.9, 1.8 Hz, 1C, C1), 47.7 (dd, J = 23.1, 21.7 Hz, 1C, C3), 39.2 (s, 1C, COC(CH₃)₃), 39.1 (s, 1C, COC(CH₃)₃), 27.3 (s, 3C, COC(CH₃)₃), 27.2 (s, 3C, COC(*C*H₃)₃) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -181.72 (dddd, *J* = 46.1, 30.2, 24.1, 6.5 Hz, 1F, F2), -194.70 (ddd, J = 44.1, 20.6, 5.5 Hz, 1F, F4) ppm; HRMS calcd for $C_{16}H_{28}BrF_{2}O_{5}^{+}$ [M + H]⁺ 417.1083 found 417.1097.

1,6-Bis-*O***-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-5-chloro-2,4-difluoro-L-talitol** (23). To a stirred solution of 1,6-bis-*O*-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol **22** (59.3 mg, 0.1421 mmol, 1.0 equiv.) in pyridine (1.4 mL, 0.1 M) at 0 °C was added PPh₃ (372.7 mg, 1.421 mmol, 10.0 equiv.) and CCl₄ (0.14 mL, 1.421 mmol, 10.0 equiv.). The reaction mixture was stirred at room temperature for 18 h. The mixture was diluted with CH₂Cl₂ and the organic phase was washed with 1 M HCl, saturated NaHCO₃, and brine before being dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:4) to give 23 as a white amorphous solid (61.1 mg, 0.1402 mmol, 99 % yield): $R_f = 0.54$

(silica, EtOAc/hexanes 1:4); $[\alpha]_{D}^{25} = 2.61$ (c 1.0, CHCl₃); IR (ATR, diamond crystal) ν 1972, 2874, 1718, 1283, 1157, 638 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.06 (dddd, J = 46.3, 6.7, 3.7, 3.0 Hz, 1H, H2), 4.96 (ddd, J = 46.3, 9.7, 1.7 Hz, 1H, H4), 4.62 (dddd, J = 27.0, 7.8, 6.3, 1.7 Hz, 1H, H5), 4.54 (dddd, J = 17.2, 9.7, 5.3, 3.0 Hz, 1H, H3), 4.46 (ddd, J = 11.4, 6.4, 1.3 Hz, 1H, H6b), 4.44 (dddd, J = 17.4, 12.6, 6.7, 1.9 Hz, 1H, H1b), 4.36 (dddd, J = 26.1, 12.6, 3.7, 0.5 Hz, 1H, H1a), 4.27 (dd, J = 11.5, 7.7 Hz, 1H, H5), 1.23 (s, 9H, COC(CH₃)₃), 1.22 (s, 9H, COC(CH₃)₃) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 178.1 (s, 1C, COC(CH₃)₃), 177.7 (s, 1C, COC(CH₃)₃), 90.7 (dd, J = 182.1, 2.4 Hz, 1C, C2), 89.0 (dd, J = 188.2, 5.5 Hz, 1C, C4), 64.0 (dd, J = 25.5, 6.0 Hz, 1C, C1), 63.5 (d, J = 5.2 Hz, 1C, C6), 57.1 (d, J = 19.6 Hz, 1C, C5), 47.2 (dd, J = 22.6, 22.6 Hz, 1C, C3), 38.99 (s, 1C, COC(CH₃)₃), 38.95 (s, 1C, COC(CH₃)₃), 27.22 (s, 3C, COC(CH₃)₃), 27.21 (s, 3C, COC(CH₃)₃) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -189.87 (ddddd, J = 46.5, = 27.0, 5.3, 3.5, 1.3 Hz, 1F, F4), -192.02 (dddddd, J = 46.3, 27.0, 17.4, 17.4, 3.5, 2.1 Hz, 1F, F2) ppm; HRMS calcd for C₁₆H₃₀BrClF₂NO₄⁺ [M + NH₄]⁺ 452.1009 found 452.1026.

2,3,4,5-Tetradeoxy-3-bromo-5-chloro-2,4-difluoro-L-talitol (24). To a stirred solution of 1,6-bis-*O*-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-5-chloro-2,4-difluoro-L-talitol **23** (57.0 mg, 0.1308 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (1.3 mL, 0.1 M) at -78 °C under an argon atmosphere was added DIBAL (0.57 M in THF, 1.8 mL, 1.046 mmol, 8.0 equiv.). The reaction mixture was stirred between -60 and -40 °C for 8 h. The mixture was quenched with EtOAc, warmed to room temperature, and the organic phase was washed with 1 M HCl, saturated NaHCO₃, and brine before being dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:9 \rightarrow 3:2). The resulting product was recrystallized from acetone to give **24** as a colorless crystal (22.8 mg, 0.08524 mmol, 65 % yield): $R_f = 0.31$ (silica, EtOAc/hexanes 1:1); $[\alpha]_D^{25} = 26.4$ (c 0.6, MeOH); IR (ATR, diamond crystal) *v* 3350, 2951, 2885, 1462, 1248, 1047, 849 cm⁻¹; H NMR (500 MHz, Acetone-*d*₆) δ 5.30 (ddd, *J* = 45.7, 9.3, 2.1 Hz, 1H, H4), 4.96 (dddd, *J* = 46.4, 5.9, 4.4, 3.5 Hz,

1H, H2), 4.67 (dddd, J = 15.8, 9.4, 7.8, 3.4 Hz, 1H, H3), 4.63 (dd, J = 6.1, 6.1 Hz, 1H, OH6), 4.53 (dddd, J = 26.9, 8.0, 6.0, 2.1 Hz, 1H, H5), 4.37 (dd, J = 6.1, 6.1 Hz, 1H, OH6), 4.00 – 3.80 (m, 4H, H1a, H1b, H6a, H6b) ppm; ¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 94.5 (dd, J = 178.7, 2.0 Hz, 1C, C2), 90.0 (dd, J = 184.4, 5.7 Hz, 1C, C4), 63.1 (d, J = 5.2 Hz, 1C, C6), 62.9 (dd, J = 24.2, 4.2 Hz, 1C, C1), 62.1 (dd, J = 19.4, 1.2 Hz, 1C, C5), 49.3 (dd, J = 23.5, 22.3 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -191.75 (dddddd, J = 46.5, 23.7, 18.9, 15.8, 4.7, 4.3 Hz, 1F, F2), -193.11 (dddd, J = 45.6, 26.9, 7.8, 4.3 Hz, 1F, F4) ppm; HRMS calcd for C₆H₉BrClF₂O₂⁻ [M - H]⁻ 264.9448 found 264.9458.

1,6-Bis-O-pivaloyl-2,3,4,5-tetradeoxy-3,5-dibromo-2,4-difluoro-L-talitol (25). To a stirred solution of 1,6-bis-O-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol 22 (24.5 mg, 0.05871 mmol, 1.0 equiv.) in pyridine (0.6 mL, 0.1 M) at 0 °C was added PPh₃ (153.9 mg, 0.5871 mmol, 10.0 equiv.) and CBr₄ (195 mg, 0.5871 mmol, 10.0 equiv.). The reaction mixture was stirred at room temperature for 4 days. The mixture was diluted with CH₂Cl₂ and the organic phase was washed with 1 M HCl, saturated NaHCO₃, and brine before being dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:4) to give 25 as a white amorphous solid (23.3 mg, 0.04852 mmol, 83 % yield): $R_f = 0.66$ (silica, EtOAc/hexanes 1:9); $[\alpha]_D^{25} = 7.05$ (c 0.5, CHCl₃); IR (ATR, diamond crystal) v 2974, 1732, 1481, 1281, 1215, 1148 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.05 (dddd, J = 46.3, 6.7, 3.7, 2.9 Hz, 1H, H2), 4.81 (ddd, J = 46.6, 9.7, 1.6 Hz, 1H, H4), 4.65 (dddd, *J* = 28.3, 8.0, 6.1, 1.6 Hz, 1H, H5), 4.54 (ddd, *J* = 11.3, 5.9, 1.1 Hz, 1H, H6b), 4.52 (dddd, *J* = 17.4, 9.7, 5.1, 3.0 Hz, 1H, H3), 4.44 (dddd, *J* = 17.4, 12.6, 6.8, 2.0 Hz, 1H, H1b), 4.36 (ddd, J = 26.3, 12.6, 3.7 Hz, 1H, H1a), 4.30 (dd, J = 11.5, 8.3 Hz, 1H, H6a), 1.23 (s, 9H, $COC(CH_3)_3$, 1.22 (s, 9H, $COC(CH_3)_3$) ppm; ¹³C {¹H} NMR (126 MHz, $CDCl_3$) δ 178.1 (s, 1C, COC(CH₃)₃), 177.6 (s, 1C, COC(CH₃)₃), 90.7 (dd, *J* = 182.1, 2.5 Hz, 1C, C2), 88.5 (dd, J = 187.6, 5.5 Hz, 1C, C4), 64.0 (dd, J = 25.6, 6.0 Hz, 1C, C1), 63.8 (d, J = 4.1 Hz, 1C, C6), 49.1 (d, J = 19.7 Hz, 1C C5), 48.8 (dd, J = 22.4, 22.4 Hz, 1C, C3), 39.00 (s, 1C,

COC(CH₃)₃), 38.95 (s, 1C, COC(CH₃)₃), 27.23 (s, 3C, COC(CH₃)₃), 27.22 (s, 3C, COC(CH₃)₃) ppm; 19F NMR (470 MHz, CDCl₃) δ -185.64 (dddd, *J* = 46.7, 28.3, 5.1, 3.5 Hz, 1F, F4), -191.86 (ddddd, *J* = 46.3, 26.0, 17.4, 17.4, 3.5 Hz, 1F, F2) ppm; HRMS calcd for C₁₆H₃₀Br₂F₂NO₄⁺ [M + NH₄]⁺ 496.0504 found 496.0519.

2,3,4,5-Tetradeoxy-3,5-dibromo-2,4-difluoro-L-talitol (26). To a stirred solution of 1,6bis-O-pivaloyl-2,3,4,5-tetradeoxy-3,5-dibromo-2,4-difluoro-L-talitol 25 (23.3 mg, 0.04852 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (0.5 mL, 0.1 M) at -78 °C under an argon atmosphere was added DIBAL (0.57 M in THF, 0.68 mL, 0.3882 mmol, 8.0 equiv.). The reaction mixture was stirred between -60 and -40 $^{\circ}$ C for 6 h. The mixture was guenched with EtOAc, warmed to room temperature, and the organic phase was washed with 1 M HCl, saturated NaHCO₃, and brine before being dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1:9 \rightarrow 3:2$) to give 26 as a white amorphous solid (9.5 mg, 0.03045 mmol, 63 % yield): $R_f = 0.47$ (silica, EtOAc/hexanes 3:2); $[\alpha]_D^{25} = 28.4$ (c 0.5, MeOH); IR (ATR, diamond crystal) v 3352, 2941, 2853, 1456, 1379, 1067, 856 cm⁻¹; ¹H NMR (500 MHz, Acetone- d_6) δ 5.18 (ddd, J = 45.9, 9.4, 2.0 Hz, 1H, H4), 4.96 (dddd, J = 46.4, 6.2, 4.3, 3.3 Hz, 1H, H2), 4.69 (ddd, J = 6.7, 5.6, 0.8 Hz, 1H, OH6), 4.64 (dddd, J = 16.0, 9.4, 7.5, 3.4 Hz, 1H, H3), 4.61 (dddd, J = 28.3, 8.7, 5.8, 2.0 Hz, 1H, H5),4.37 (ddd, J = 6.0, 5.9, 1.2 Hz, 1H, OH1), 3.99 - 3.84 (m, 4H, H1a, H1b, H6a, H6b) ppm;¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 94.4 (dd, J = 178.8, 2.3 Hz, 1C, C2), 89.4 (dd, *J* = 183.9, 5.7 Hz, 1C, C4), 63.6 (d, *J* = 4.3 Hz, 1C, C6), 63.0 (dd, *J* = 24.3, 4.3 Hz, 1C, C1), 55.4 (dd, J = 19.6, 1.1 Hz, 1C, C5), 50.9 (dd, J = 22.7, 22.7 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -188.91 (dddd, J = 45.9, 28.3, 7.5, 4.8 Hz, 1F, F4), -191.63 (ddddd, J = 46.4, 24.0, 19.5 16.0, 4.9 Hz, 1F, F2) ppm; HRMS calcd for C₆H₉Br₂F₂O₂⁻¹ [M - H]⁻ 308.8943 found 308.8942.

1,6-Bis-O-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-2,4-difluoro-5-iodo-L-talitol (27). To a stirred solution of 1,6-bis-O-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol 22 (24.2 mg, 0.05799 mmol, 1.0 equiv.) in pyridine (0.6 mL, 0.1 M) at 0 °C was added PPh₃ (136.7 mg, 0.5799 mmol, 10.0 equiv.) and I₂ (152.0 mg, 0.5799 mmol, 10.0 equiv.). The reaction mixture was stirred at room temperature for 5 days. The mixture was diluted with CH₂Cl₂ and the organic phase was washed with 1 M HCl, saturated NaHCO₃, and brine before being dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:19) and repurified by flash column chromatography (silica gel, Et2O/pentane 1:25 \rightarrow 1:9) to give 27 as a white amorphous solid (16.8 mg, 0.03187 mmol, 55 % yield): $R_f = 0.56$ (silica, EtOAc/hexanes 1:9); $[\alpha]_D^{25} = 5.19$ (c 0.1, CHCl₃); IR (ATR, diamond crystal) v 2972, 2934, 1732, 1479, 1279, 1134 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.04 (dddd, *J* = 46.3, 6.7, 3.3, 3.3 Hz, 1H, H2), 4.75 (dddd, *J* = 30.9, 9.3, 5.8, 1.6 Hz, 1H, H5), 4.59 (ddd, *J* = 11.5, 5.8, 1.0 Hz, 1H, H6b), 4.44 (dddd, *J* = 17.5, 12.5, 6.8, 2.0 Hz, 1H, H1b), 4.40 (dddd, J = 17.2, 9.8, 4.6, 3.4 Hz, 1H, H3), 4.36 (ddd, J = 25.9, 12.5, 3.7 Hz, 1H, H1a), 4.27 (dd, J = 11.5, 9.2 Hz, 1H, H6a), 4.22 (ddd, J = 47.4, 9.7, 1.6 Hz, 1H, H4), 1.23 (s, 9H, $COC(CH_3)_3$, 1.23 (s, 9H, $COC(CH_3)_3$) ppm; ¹³C {¹H} NMR (126 MHz, $CDCl_3$) δ 178.1 (s, 1C, COC(CH₃)₃), 177.5 (s, 1C, COC(CH₃)₃), 90.6 (dd, *J* = 182.2, 2.4 Hz, 1C, C2), 88.5 (dd, J = 186.4, 5.6 Hz, 1C, C4), 65.6 (d, J = 2.6 Hz, 1C, C6), 64.1 (dd, J = 25.5, 6.0 Hz, 1C, C1), 51.8 (dd, J = 21.6, 21.6 Hz, 1C, C3), 39.01 (s, 1C, COC(CH₃)₃), 38.96 (s, 1C, $COC(CH_3)_3$, 29.3 (d, J = 20.1 Hz, 1C, C5), 27.26 (s, 3C, $COC(CH_3)_3$), 27.24 (s, 3C, COC(*C*H₃)₃) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -177.77 (dddd, *J* = 47.6, 30.9, 4.6, 2.9 Hz, 1F, F4), -191.38 (ddddd, J = 46.4, 25.9, 17.2, 17.2, 2.9 Hz, 1F, F2) ppm. HRMS calcd for $C_{16}H_{30}BrF_{2}INO_{4}^{+}$ [M + NH₄]⁺ 544.0365 found 544.0369.

2,3,4,5-Tetradeoxy-3-bromo-2,4-difluoro-5-iodo-L-talitol (28). To a stirred solution of 1,6-bis-O-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-2,4-difluoro-5-iodo-L-talitol 27 (15.8 mg, 0.02997 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (0.3 mL, 0.1 M) at -78 °C under an argon atmosphere was added DIBAL (0.57 M in THF, 0.42 mL, 0.2398 mmol, 8.0 equiv.). The reaction mixture was stirred between -60 and -40 $^{\circ}$ C for 6 h. The mixture was guenched with EtOAc, warmed to room temperature, and the organic phase was washed with 1 M HCl, saturated NaHCO₃, and brine before being dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1:9 \rightarrow 3:2$) to give 28 as a white amorphous solid (7.1 mg, 0.01978 mmol, 66 % yield): $R_f = 0.56$ (silica, EtOAc/hexanes 3:2); $[\alpha]_D^{25} = 19.1$ (c 0.3, MeOH); IR (ATR, diamond crystal) v 3360, 2920, 2851, 1462, 1379, 1063, 856 cm⁻¹; ¹H NMR (500 MHz, Acetone- d_6) δ 4.95 (dddd, J = 46.5, 6.3, 4.4, 3.1 Hz, 1H, H2), 4.75 (ddd, J = 6.8, 5.4, 1.0 Hz, 1H, OH6), 4.70 (dddd, J = 31.0, 9.7, 5.5, 2.0 Hz, 1H, H5), 4.64 (ddd, *J* = 46.0, 9.5, 1.9 Hz, 1H, H4), 4.54 (dddd, *J* = 15.8, 9.5, 7.5, 3.2 Hz, 1H, H3), 4.36 (ddd, *J* = 5.7, 5.7, 1.1 Hz, 1H, OH1), 3.98 (ddd, *J* = 11.3, 5.4, 5.2 Hz, 1H, H6b), 4.00 -3.86 (m, 2H, H1a, H1b), 3.86 (ddd, J = 11.4, 9.6, 7.0 Hz, 1H, H6a) ppm; ¹³C {¹H} NMR $(126 \text{ MHz}, \text{Acetone-}d_6) \delta 94.4 \text{ (dd}, J = 178.9, 2.0 \text{ Hz}, 1\text{C}, \text{C2}), 89.1 \text{ (dd}, J = 182.5, 5.9 \text{ Hz},$ 1C ,C4), 65.5 (d, J = 3.0 Hz, 1C, C6), 63.1 (dd, J = 24.6, 4.3 Hz, 1C, C1), 53.8 (dd, J = 22.1, 22.1 Hz, 1C, C3), 37.0 (dd, J = 20.0, 0.6 Hz, 1C, C5) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -181.43 (dddd, J = 46.0, 31.4, 7.5, 5.5 Hz, 1F, F4), -191.32 (dddddd, J = 46.5, 23.5, 19.0, 15.8, 4.4, 1.5 Hz, 1F, F2) ppm; HRMS calcd for C₆H₉BrF₂IO₂⁻¹ [M - H]⁻ 356.8804 found 356.8791.

(*3R*,4*S*,5*S*)-*3*,4,5-Trifluorotetrahydro-*2H*-pyran-2-ol (29). To a stirred solution of 2,3,4-trideoxy-2,3,4-trifluoro-D-allitol **14** (185.7 mg, 0.9589 mmol, 1.0 equiv.) in water (15 mL, 0.064 M) room temperature was added NaIO₄ (316.3 mg, 1.479 mmol, 1.5 equiv.). The

reaction mixture was stirred at room temperature for 3 h. The water was evaporated under reduced pressure, and the crude was dissolved in acetone and CH₂Cl₂, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:1) to give an anomeric mixture of **29** (α/β 1:15) as a white amorphous solid (138.3 mg, 0.8859 mmol, 90 % yield): $R_f = 0.41$ (silica, EtOAc/hexanes 3:2); $[\alpha]_D^{25} = 67.54$ (c 0.4, CHCl₃); IR (ATR, diamond crystal) v 3381, 2957, 1690, 1636, 1258, 1101, 1068 cm⁻¹; only the β anomer has been attributed in ¹H NMR, ¹³C NMR, and ¹⁹F NMR; ¹H NMR (500 MHz, Acetone- d_6) δ 6.20 (dd, J = 5.0, 1.6 Hz, 1H, OH), 5.29 (dddd, J = 6.5, 6.0, 5.0, 3.9 Hz, 1H, H1), 5.03 (ddddd, J = 45.7, 25.5, 24.5, 2.8, 2.8 Hz, 1H, H3), 4.93 (dddddd, J = 49.1, 11.2, 4.2, 2.7, 2.7, 1.2 Hz, 1H, H4), 4.66 (ddddd, J = 49.4, 11.9, 3.9, 3.0, 1.2 Hz, 1H, H2), 4.10 (ddd, J = 29.1, 13.0, 2.2 Hz, 1H, H5a), 3.89 (dddd, J = 13.0, 11.1, 6.5, 4.3 Hz, 1H, H5b) ppm; ¹³C {¹H} NMR $(126 \text{ MHz}, \text{Acetone-}d_6) \delta 93.4 \text{ (dd}, J = 27.5, 6.5 \text{ Hz}, 1\text{C}, \text{C1}), 87.6 \text{ (ddd}, J = 185.4, 16.2, 16.2)$ 1.7 Hz, 1C, C2), 86.6 (ddd, J = 186.2, 17.0, 1.0 Hz, 1C, C4), 85.9 (ddd, J = 187.9, 16.4, 16.4 Hz, 1C, C3), 61.2 (dd, J = 22.2, 5.4 Hz, 1C, C5) ppm; ¹⁹F NMR (470 MHz, Acetone d_6) δ -204.60 (ddddd, J = 49.4, 25.5, 20.1, 13.8, 6.1 Hz, 1F, F2), -206.54 (dddddd, J = 49.0, 15.5, 15.5, 10.5,29.2, 24.0, 20.3, 12.6, 11.4 Hz, 1F, F4), -211.64 (ddddd, J = 45.7, 20.3, 20.3, 11.9, 11.2 Hz) ppm; HRMS calcd for $C_5H_7F_3O_2Na^+$ [M + Na]⁺ 179.0294 found 179.0296.

(3*R*,4*S*,5*S*)-4-Bromo-3,5-difluorotetrahydro-2*H*-pyran-2-ol (30). To a stirred solution of 2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol 16 (337.2 mg, 1.354 mmol, 1.0 equiv.) in water (21 mL, 0.064 M) room temperature was added NaIO₄ (434.4 mg, 2.031 mmol, 1.5 equiv.). The reaction mixture was stirred at room temperature for 3 h. The water was evaporated under reduced pressure, and the crude was dissolved in acetone and CH₂Cl₂, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 2:3 \rightarrow 1:1) to give an anomeric mixture of 30 (α/β 1:10) as a white amorphous solid (252.7 mg, 1.164 mmol, 85 % yield): $R_f = 0.36$ (silica, EtOAc/hexanes 1:1); [α]_D²⁵ = 7.44 (c 0.3, MeOH); IR (ATR, diamond

crystal) *v* 3221, 2949, 2837, 1653, 1410, 1113, 1014 cm⁻¹; only the β anomer has been attributed in ¹H NMR, ¹³C NMR, and ¹⁹F NMR; ¹H NMR (500 MHz, CDCl₃) δ 5.43 (dd, J = 6.7, 2.2 Hz, 1H, H1), 4.68 (ddddd, J = 46.4, 2.6, 2.4, 1.5, 1.2 Hz, 1H, H4), 4.59 (dddd, J = 46.6, 2.5, 2.4, 1.2 Hz, 1H, H2), 4.43 (dddd, J = 31.5, 29.9, 2.8, 2.8 Hz, 1H, H3), 4.20 (ddd, J = 37.0, 13.3, 1.5 HZ, 1H, H5a), 4.08 (ddd, J = 13.0, 13.0, 2.4 Hz, 1H, H5b) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 92.0 (d, J = 31.8 Hz, 1C, C1), 87.2 (d, J = 185.5 Hz, 1C, C2), 86.7 (d, J = 189.0 Hz, 1C, C4), 61.9 (d, J = 21.5 Hz, 1C, C5), 43.0 (dd, J = 18.6, 18.6 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -192.28 (ddddd, J = 46.9, 36.7, 30.0, 22.6, 12.4 Hz, 1F, F4), -193.17 (dddd, J = 47.1, 31.9, 22.6, 6.6 Hz, 1F, F2) ppm; HRMS calcd for C₅H₁₁BrF₂NO⁺ [M + NH₄]⁺ 233.9936 found 233.9941.

(2R,3s,4S)-2,3,4-Trifluoropentane-1,5-diol (31). (3R,4S,5S)-3,4,5-Trifluorotetrahydro-2H-pyran-2-ol 29 (126.2 mg, 0.8084 mmol, 1.0 equiv.) was reduced with NaBH₄ (53.5 mg, 1.415 mmol, 1.75 equiv.) in anhydrous EtOH (8 mL, 0.1 M) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 3:2) to give **31** as a colorless oil (116.9 mg, 0..7343 mmol, 91 % yield): $R_f = 0.36$ (silica, EtOAc/hexanes 3:2); IR (ATR, diamond crystal) v 3344, 2953, 1691, 1456, 1259, 1043, 868 cm⁻¹; ¹H NMR (500 MHz, Acetone- d_6) δ 5.01 (dtt, J = 45.8, 14.7, 14.7, 4.8, 4.8 Hz, 1H, H3), 4.85 (dddddd, *J* = 47.5, 15.9, 5.6, 4.7, 3.5, 0.8 Hz, 2H, H2, H4), 4.28 (dd, J = 5.9, 5.9 Hz, 2H, OH1, OH5), 3.89 (dddddd, J = 26.4, 12.8, 5.9, 3.3, 1.6, 0.9 Hz, 2H, H1a, H5a), 3.83 (dddddd, J = 30.5, 12.7, 5.8, 5.8, 2.3, 0.9 Hz, 2H, H1b, H5b) ppm; ${}^{13}C$ { ${}^{1}H$ } NMR (126 MHz, Acetone- d_6) δ 92.6 (ddd, J = 173.7, 24.4, 4.3 Hz, 2C, C2, C4), 89.4 (dt, J = 174.1, 25.1, 25.1 Hz, 1C, C3), 60.9 (ddd, J = 22.4, 6.8 Hz, 2.7 Hz, 2C, C1, C5) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -201.42 (dddddd, J = 48.2, 27.0, 25.6, 14.6, 12.1, 1.4 Hz, 2F, F2, F4), -206.16 (dtttt, J = 45.8, 15.9, 15.9, 12.1, 12.1, 2.0, 2.0, 1.9, 1.9 Hz, 1F, F3) ppm; HRMS calcd for $C_5H_8F_3O_2^-$ [M - H]⁻ 157.0482 found 157.0480.

(2R,3s,4S)-3-Bromo-2,4-difluoropentane-1,5-diol (32). (3*R*,4*S*,5*S*)-4-Bromo-3,5difluorotetrahydro-2H-pyran-2-ol **30** (252.7 mg, 1.164 mmol, 1.0 equiv.) was reduced with NaBH₄ (77 mg, 2.038 mmol, 1.75 equiv.) in anhydrous EtOH (12 mL, 0.1 M) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $3:7 \rightarrow 1:1$) to give 32 as a colorless oil (198.9 mg, 0.9081 mmol, 78 % yield): $R_f = 0.46$ (silica, EtOAc/hexanes 3:2); IR (ATR, diamond crystal) v 3325, 2943, 1636, 1425, 1234, 1030, 862 cm⁻¹; ¹H NMR (500 MHz, Acetone- d_6) δ 4.88 (dddd, J = 46.9, 6.0, 4.2, 4.2 Hz, 2H, H2, H4), 4.65 (tt, J = 11.9, 11.9, 6.0, 6.0 Hz, 1H, H3), 4.31 (dd, *J* = 5.9, 5.9 Hz, 2H, OH1, OH5), 3.94 (ddd, *J* = 26.1, 5.9, 4.2 Hz, 2H, H1b, H5b), 3.94 (ddd, J = 25.0, 5.9, 4.2 Hz, 2H, H1a, H5a) ppm; ¹³C {¹H} NMR (126 MHz, Acetone- d_6) δ 94.0 (dd, J = 117.4, 4.8 Hz, 2C, C2, C4), 62.8 (dd, J = 22.4, 2.4 Hz, 2C, C1, C5), 49.0 (t, J = 22.7, 22.7 Hz, 1C, C3) ppm; ¹⁹F NMR (470 MHz, Acetone- d_6) δ -188.09 (ddddd, J = 46.9, 26.1, 25.0, 11.9, 1.1 Hz, 2F, F2, F4) ppm; HRMS calcd for $C_5H_{13}BrF_2NO_2^+$ [M + NH₄]⁺ 236.0092 found 236.0094.

(2*R*,3*s*,4*S*)-2,3,4-Trifluoropentane-1,5-diyl dimethanesulfonate (33). To a solution of (2*R*,3*s*,4*S*)-2,3,4-trifluoropentane-1,5-diol **31** (28.8 mg, 0.1821 mmol, 1.0 equiv.) in CH₂Cl₂ (1.8 mL, 0.1 M) at 0 °C was added Et₃N (0.13 mL, 0.9105 mmol, 5.0 equiv.). MsCl (70.4 μ L, 0.9105 mmol, 5.0 equiv.) was added dropwise. The reaction mixture was stirred at 0 °C for 30 min and at room temperature for 5.5 h. The precipitate was filtered out and the organic phase was concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 2:3) to give **33** as a colorless oil (49.2 mg, 0.1565 mmol, 86 % yield): $R_f = 0.45$ (silica, EtOAc/hexanes 3:2); IR (NaCl) *v* 2925, 2854, 1462, 1377, 1176, 961, 801 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.08 (ddddd, *J* = 46.9, 12.6, 5.4, 5.4, 2.9 Hz, 2H, H2, H4), 4.92 (dtt, *J* = 44.7, 13.2, 13.2, 5.3, 5.3 Hz, 1H, H3), 4.55 (dddd, *J* = 24.3, 12.4, 3.0, 1.1 Hz, 2H, H1a, H5a),

4.49 (dddd, J = 24.8, 12.4, 5.5, 1.9 Hz, 2H, H1b, H5b), 3.10 (s, 6H, 2×SO₂CH₃) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 87.7 (ddd, J = 181.3, 26.0, 4.1 Hz, 2C, C2, C4), 86.6 (dt, J = 180.2, 25.8, 25.8 Hz, 1C, C3), 66.2 (ddd, J = 23.7, 6.7, 3.5 Hz, 2C, C1, C5), 38.0 (s, 2C, 2×SO₂CH₃) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -201.05 (dddddd, J = 46.9, 24.8, 24.2, 13.2, 13.2, 1.9 Hz, 2F, F2, F4), -203.39 (dttt, J = 44.8, 13.2, 13.2, 12.6, 12.6, 1.9, 1.9, 1.1, 1.1 Hz, 1F, F3) ppm; HRMS calcd for C₇H₁₇F₃NO₆S₂⁺ [M + NH₄]⁺ 332.0444 found 332.0451.

(2R,3s,4S)-3-Bromo-2,4-difluoropentane-1,5-diyl dimethanesulfonate (34). To a solution of (2R,3s,4S)-3-bromo-2,4-difluoropentane-1,5-diol **32** (28.1 mg, 0.1283 mmol, 1.0 equiv.) in CH₂Cl₂ (1.3 mL, 0.1 M) at 0 °C was added Et₃N (89.4 µL, 0.6415 mmol, 5.0 equiv.). MsCl (49.6 µL, 0.6415 mmol, 5.0 equiv.) was added dropwise. The reaction mixture was stirred at 0 °C for 30 min and at room temperature for 5.5 h. The precipitate was filtered out and the organic phase was concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 2:3) to give **34** as a colorless oil (47.0 mg, 0.1253 mmol, 98 % yield): $R_f = 0.51$ (silica, EtOAc/hexanes 3:2); IR (ATR, diamond crystal) v 2958, 2924, 2854, 1462, 1356, 1174, 1014 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.09 (dddd, J = 46.1, 6.2, 5.0, 2.9 Hz, 2H, H2, H4), 4.62 (dddd, J = 23.9, 12.3, 5.0, 1.1 Hz, 2H, H1a, H5a), 4.58 (ddd, J = 23.3, 12.3, 3.0 Hz, 2H, H1b, H5b), 4.40 (tt, J = 12.2, 12.2, 6.3, 6.3 Hz, 1H, H3), 3.10 (s, 6H, $2 \times SO_2 CH3$) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 89.7 (dd, J = 184.4, 3.9 Hz, 2C, C2, C4), 68.1 (dd, J = 23.8, 3.8 Hz, 2C, C1, C5), 44.2 (t, J = 22.9, 22.9 Hz, 1C, C3), 38.0 (s, 2C, 2×SO₂*C*H3) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -186.49 (dddd, *J* = 46.6, 23.9, 23.7, 12.1 Hz, 2F, F2, F4) ppm; HRMS calcd for $C_7H_{17}BrF_2NO_6S_2^+$ [M + NH₄]⁺ 391.9643 found 391.9651.

Synthesis of amine 35

3-Azidopropan-1-ol (**S6**). To a solution of 3-bromopropan-1-ol **S5** (1.0099 g, 7.266 mmol, 1.0 equiv.) in water (7.2 mL, 1.0 M) was added NaN₃ (945 mg, 14.54 mmol, 2.0 equiv.). The mixture was stirred at 60 °C for 3 days. After cooling down to room temperature extracted with Et₂O. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, Et₂O/pentane 1:1) to give **S2** as a colorless oil (578.4 mg, 5.723 mmol, 79 % yield). The spectroscopic data derived from compound **S2** match those reported in the literature.³

3-(4-Chlorophenyl)propyl methanesulfonate (S8). To a solution of 3-(4-chlorophenyl)propan-1-ol **S7** (250 mg, 1.465 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (4.4 mL, 0.33 M) at 0 °C was added Et₃N (0.27 mL, 1.949 mmol, 1.33 equiv.) and MsCl (0.14 mL, 1.758 mmol, 1.2 equiv.). The mixture was stirred at 0 °C for 30 min and room temperature for 3 h. The reaction mixture was then diluted with CH₂Cl₂, and the organic phase was washed with water, 1 M HCl, and brine. The organic phase was dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:5 \rightarrow 3:7) to give **S4** as a colorless oil

(320.3 mg, 1.288 mmol, 88 % yield). The spectroscopic data derived from compound **S4** match those reported in the literature.⁴

1-(3-(3-Azidopropoxy)propyl)-4-chlorobenzene (S9). To a solution of 3-azidopropan-1ol S6 (106.2 mg, 1.051 mmol, 1.0 equiv.) in N,N-dimethylacetamide (3.5 mL, 0.3 M) was added 60 % NaH in mineral oil (126 mg, 3.153 mmol, 3 equiv.). The mixture was heated at 50 °C for 1 h. The reaction mixture was cooled to room temperature and a solution of 3-(4-chlorophenyl)propyl methanesulfonate **S8** (300 mg, 1.206 mmol, 1.15 equiv.) in N,Ndimethylacetamide (1.8 mL) was added. The mixture was stirred at room temperature for 5 h, quenched with a mixture of water/brine (1:1), then extracted with toluene. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash chromatography (silica gel, Et₂O/pentane 0:1 \rightarrow 3:17) to give S5 as a colorless oil (205.5 mg, 0.8099 mmol, 77 % yield): $R_f = 0.53$ (silica, Et₂O/pentane 1:9); IR (NaCl) v 3027, 2945, 2865, 2097, 1492, 1119, 801 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.3 Hz, 2H, H_o-Cl), 7.11 (d, J = 8.5 Hz, 2H, H_{m-Cl}), 3.48 (t, J = 6.0, 6.0 Hz, 2H, -O-CH₂-CH₂-CH₂-N₃), 3.41 (t, J = 6.4, 6.4 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 3.40 (t, J = 6.5, 6.5 Hz, 2H, -O-CH₂-CH₂-CH₂-N₃), 2.66 (t, J = 7.5, 7.5 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.86 (tt, J = 7.5, 7.5, 6.4, 6.4 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.85 (tt, J = 6.5, 6.5, 6.0, 6.0 Hz, 2H, -O-CH₂-CH₂-CH₂-N₃) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 140.5 (s, 1C, C_{p-Cl}), 131.6 (s, 1C, C-Cl), 129.9 (s, 2C, C_{m-Cl}), 128.6 (s, 2C, C_{o-Cl}), 70.0 (s, 1C, Ar-CH₂-CH₂-CH₂-O-), 67.5 (s, 1C, -O-CH₂-CH₂-CH2-N3), 48.7 (s, 1C, -O-CH2-CH2-CH2-N3), 31.8 (s, 1C, Ar-CH2-CH2-CH2-O-), 31.3 (s, 1C, Ar-CH₂-CH₂-CH₂-O-), 29.4 (s, 1C, -O-CH₂-CH₂-CH₂-N₃) ppm; HRMS calcd for $C_{12}H_{17}ClN_3O^+$ [M + H]⁺254.1055 found 254.1058.

3-(3-(4-Chlorophenyl)propoxy)propan-1-amine (35). To a solution of 1-(3-(3-azidopropoxy)propyl)-4-chlorobenzene **S5** (145.3 mg, 0.5727 mmol, 1.0 equiv.) in dry THF S24

(5.7 mL, 0.1 M) was added PPh₃ (225.3 mg, 0.8590 mmol, 1.5 equiv.). After stirring at room temperature for 2 h, water (0.27 mL, 14.60 mmol, 25.5 equiv.) was added, and the mixture was stirred for 68 h at room temperature. The reaction mixture was evaporated to dryness and the obtained crude was purified by flash column chromatography (silica gel, MeOH/CH₂Cl₂ 1:19 \rightarrow 1:4) to give 35 as a colorless oil (105.1 mg, 0.4615 mmol, 81 % yield): $R_f = 0.40$ (silica, MeOH/CH₂Cl₂ 1:5); IR (NaCl) v 3406, 2927, 2866, 1492, 1112, 1015, 801 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.4 Hz, 2H, H_o-Cl), 7.11 (d, J = 8.5 Hz, 2H, H_{m-Cl}), 3.49 (t, J = 6.1, 6.1 Hz, 2H, -O-CH₂-CH₂-CH₂-NH₂), 3.40 (t, J = 6.4, 6.4 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 3.15 - 2.94 (m, 2H, NH₂), 2.89 (t, J = 6.8, 6.7 Hz, 2H, -O-CH₂-CH₂-CH₂-NH₂), 2.64 (t, *J* = 7.9, 7.5 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.89 - 1.82 (m, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.81 - 1.76 (m, 2H, -O-CH₂-CH NH₂) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 140.5 (s, 1C, C_{*p*-Cl}), 131.6 (s, 1C, C-Cl), 129.9 (s, 2C, C_{m-Cl}), 128.5 (s, 2C, C_{o-Cl}), 70.1 (s, 1C, Ar-CH₂-CH₂-CH₂-O-), 69.1 (s, 1C, -O-CH2-CH2-CH2-NH2), 39.6 (s, 1C, -O-CH2-CH2-CH2-NH2), 32.1 (s, 1C, -O-CH2-CH2-CH2-CH2-NH2), 31.8 (s, 1C, Ar-CH2-CH2-CH2-O-), 31.3 (s, 1C, Ar-CH2-CH2-CH2-O-) ppm; HRMS calcd for $C_{12}H_{19}CINO^+$ [M + H]⁺ 228.1150 found 228.1155.

(3*R*, 4*s*, 5*S*)-1-(3-(3-(4-Chlorophenyl)propoxy)propyl)-3,4,5-trifluoropiperidine (36). To a solution of (2*R*,3*s*,4*S*)-2,3,4-trifluoropentane-1,5-diyl dimethanesulfonate 33 (23.5 mg, 0.07477 mmol, 1.0 equiv.) in anhydrous EtOH (0.75 mL, 0.1 M) in a sealed tube was added 3-(3-(4-chlorophenyl)propoxy)propan-1-amine 35 (39.6 mg, 0.1739 mmol, 2.3 equiv.). The reaction mixture was stirred at 90 °C for 17 h. After being cooled down to room temperature, the volatiles were evaporated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:9 \rightarrow 1:1) which permitted to recover 11.5 mg of 33. The unclean fraction containing the desired product was then purified by flash column chromatography (silica gel, acetone/toluene 1:99 \rightarrow 1:49) to give 35 as a colorless oil (5.0 mg, 0.01429 mmol, 19 % yield, 37 % yield brsm): $R_f = 0.38$ (silica, EtOAc/hexanes 2:3); IR (NaCl) *v* 2927, 2851, 1743, 1491, 1460, 1118, 1095 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 8.1 Hz, 2H, H_{o-Cl}), 7.11 (d, *J* = 8.0 Hz, 2H, H_m-Cl), 5.11 (dbr, *J* = 55.2 Hz, 1H, -CHF-CHF-CHF-), 4.63 (sbr, 2H, -N-CH₂-CHF-), 3.44 (t, *J* = 6.2, 6.2 Hz, 2H, -O-CH₂-CH₂-CH₂-N-), 3.39 (t, *J* = 6.3, 6.3 Hz, 2H, Ar-CH₂-CH₂-CH₂-CH₂-O-), 3.09 – 2.85 (m, 2H, -O-CH₂-CH₂-CH₂-N-), 2.80 – 2.47 (m, 4H, 2×-N-CH₂-CHF-), 2.65 (t, *J* = 7.7, 7.7 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.85 (tt, *J* = 6.8, 6.8, 6.8, 6.8 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.95 – 1.70 (m, 2H, -O-CH₂-CH₂-CH₂-N-) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 140.4 (s, 1C, C_{*p*-Cl}), 131.7 (s, 1C, C-Cl), 129.9 (s, 2C, C_{*m*-Cl}), 128.6 (s, 2C, C_{*o*-Cl}), 87.8 (s, 1C, -CHF-CHF-CHF-), 86.4 (s, 2C, 2×-N-CH₂-CHF-), 70.1 (s, 1C, Ar-CH₂-CH₂-CH₂-O-), 68.5 (s, 1C, O-CH₂-CH₂-CH₂-N-), 54.3 (s, 1C, -N-CH₂-CHF-), 50.2 (s, 1C, -O-CH₂-CH₂-N-), 31.9 (s, 1C, Ar-CH₂-CH₂-O-), 31.2 (s, 1C, Ar-CH₂-CH₂-O-), 27.0 (s, 1C, -O-CH₂-CH₂-N-) ppm; ¹⁹F NMR (470 MHz, CDCl₃) δ -199.48 – -200.77 (m, 3F) ppm; HRMS calcd for C₁₇H₂₄ClF₃NO⁺ [M + H]⁺ 350.1493 found 350.1508.

(3R, 4s, 5S)-4-Bromo-1-(3-(3-(4-chlorophenyl)propoxy)propyl)-3,5-difluoropiperi**dine (37).** To a solution of (2R,3s,4S)-3-bromo-2,4-difluoropentane-1,5-diyl dimethanesulfonate 34 (25.5 mg, 0.06796 mmol, 1.0 equiv.) in anhydrous EtOH (0.7 mL, 0.1 M) in a sealed tube was added 3-(3-(4-chlorophenyl)propoxy)propan-1-amine 35 (38.7 mg, 0.1699 mmol, 2.5 equiv.). The reaction mixture was stirred at 90 °C for 24 h. After being cooled down to room temperature, the volatiles were evaporated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1:9 \rightarrow 1:1$) which permitted to recover 10.7 mg of **34** and 5.0 mg of an elimination product. The unclean fraction containing the desired product was then purified by flash column chromatography (silica gel, acetone/toluene $1:99 \rightarrow 1:49$) to give **36** as a colorless oil (5.0 mg, 0.01217 mmol, 18 % yield, 31 % yield brsm, 78 % purity): $R_f = 0.40$ (silica, acetone/toluene 1:9); IR (NaCl) v 2925, 2854, 1744, 1492, 1463, 1116, 1092 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 2H, H_{*a*-Cl}), 7.11 (d, J = 8.5 Hz, 2H, H_{*m*-Cl}), 4.84 - 4.51 (m, 3H, 2×CHF, CHBr), 3.44 (t, J = 6.2, 6.2 Hz, 2H, -O-CH₂-CH₂-CH₂-N-), 3.39 (t, J = 6.3, 6.3 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 3.01 - 2.68 (m, 4H, 2×N-CH₂-CHF), 2.65 (dd, J = 8.5, 6.8 Hz, 2H, Ar-CH₂-CH₂-CH₂-O-), 1.89 - 1.81 (m, 2H Ar-CH₂-CH

CH₂-O-), 1.81 - 1.74 (m, 2H, -O-CH₂-CH₂-CH₂-N-), 1.72 - 1.65 (m, 2H, -O-CH₂-CH₂-CH₂-CH₂-CH₂-N-) ppm; ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 140.5 (s, 1C, C_{*p*-Cl}), 131.7 (s, 1C, C-Cl), 129.9 (s, 2C, C_{*m*-Cl}), 128.6 (s, 2C, C_{*o*-Cl}), 86.2 (s, 2C, 2×CHF), 84.9 (s, 1C, CHBr), 70.1 (s, 1C, Ar-CH₂-CH₂-CH₂-O-), 68.6 (s, 1C, O-CH₂-CH₂-CH₂-N-), 68.3 (s, 2C, N-CH₂), 54.4 (s, 1C, O-CH₂-CH₂-CH₂-N), 52.6 (s, 1C, O-CH₂-CH₂-CH₂-N-), 31.8 (s, 1C, Ar-CH₂-CH

II. Crystal structure determination Table S1. Crystal data and structure refinement for compound tritosyl-14

X-ray-derived ORTEP

Extended packing arrangement

Empirical formula	$C_{27}H_{29}F_{3}O_{9}S_{3}$
Formula weight	650.38
Temperature [K]	100
Crystal system	monoclinic
Space group (number)	<i>P</i> 2 ₁ (4)
<i>a</i> [Å]	11.1881(7)
<i>b</i> [Å]	9.6923(6)
<i>c</i> [Å]	27.0368(16)
α [°]	90
β [°]	94.553(3)
γ [°]	90
Volume [Å ³]	2922.6(3)
Ζ	4
$ ho_{ m calc} [m g cm^{-3}]$	1.479
$\mu \text{ [mm^{-1}]}$	2.954
<i>F</i> (000)	1352
Crystal size [mm ³]	0.157×0.091×0.085
Crystal colour	clear light colourless
Crystal shape	Block
Radiation	Cu K_{α} (λ =1.54178 Å)
2 Θ range [°]	3.28 to 140.57 (0.82 Å)
	$-13 \le h \le 13$
Index ranges	$-10 \le k \le 11$
	$-32 \le l \le 32$
Reflections collected	35261
	9642
Independent reflections	$R_{\rm int} = 0.0351$
	$R_{\mathrm{sigma}} = 0.0329$
Completeness to $\theta = 67.679^{\circ}$	99.3 %
Data / Restraints / Parameters	9642 / 1 / 763
Goodness-of-fit on F^2	1.039
Final <i>R</i> indexes	$R_1 = 0.0494$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1288$
Final <i>R</i> indexes	$R_1 = 0.0517$
[all data]	$wR_2 = 0.1309$
Largest peak/hole [eA ⁻³]	0.99/-0.37
Flack X parameter	0.000(13)

Empirical formula	$C_6H_{10}BrClF_2O_2$
Formula weight	267.50
Temperature [K]	150
Crystal system	orthorhombic
Space group (number)	$P2_{1}2_{1}2$ (18)
<i>a</i> [Å]	10.7019(6)
<i>b</i> [Å]	17.3028(10)
<i>c</i> [Å]	4.9473(3)
α [°]	90
β[°]	90
γ [°]	90
Volume [Å ³]	916.11(9)
Ζ	4
$ ho_{ m calc} [m gcm^{-3}]$	1.939
$\mu \text{ [mm}^{-1}\text{]}$	5.839
<i>F</i> (000)	528
Crystal size [mm ³]	0.03×0.07×0.21
Crystal colour	clear light colourless
Crystal shape	plate
Radiation	Ga K_{α} (λ =1.34139 Å)
2 Θ range [°]	8.45 to 112.92 (0.80 Å)
	$-12 \le h \le 13$
Index ranges	$-20 \le k \le 21$
	$-5 \le 1 \le 5$
Reflections collected	8226
	1770
Independent reflections	$R_{\rm int} = 0.0504$
	$R_{\rm sigma} = 0.0391$
Completeness to $\theta = 53.594^{\circ}$	100.0 %
Data / Restraints / Parameters	1770 / 0 / 112
Goodness-of-fit on F^2	1.093
Final <i>R</i> indexes	$R_1 = 0.0299$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.0676$
Final <i>R</i> indexes	$R_1 = 0.0367$
[all data]	$wR_2 = 0.0699$
Largest peak/hole [eA ⁻³]	0.74/-0.40
Flack X parameter	0.09(5)

 Table S2. Crystal data and structure refinement for compound 24

III. NMR spectra of compounds

C13 (ppm) $\frac{1}{40}$

1194.82 119

90 C13 (ppm)

183 -184 -185 -186 -187 -188 -189 -190 -191 -192 -193 -194 -195 -196 -197 -198 -199 -200 -201 -202 -203 -204 -205 -206 -207 F19 (ppm)

10 200 110 100 Ċ C13 (ppm)

F19 (ppm)

10 200 150 140 130 120 110 100 C13 (ppm)

-175 -176 -177 -178 -179 -180 -181 -182 -183 -184 -185 -186 -187 -188 -189 -190 -191 -192 -193 -194 -195 -196 -197 -198 -199 -200 -201 -202 -203 F19 (ppm)

110 100 Ċ C13 (ppm)

10 200 150 140 110 100 Ċ C13 (ppm)

C. 1992 <liC. 1992 <liC. 1992 <liC. 1992 <li

10 200 150 140 110 100 Ċ C13 (ppm)

10 200 150 140 110 100 Ċ C13 (ppm)

S81

S91

IV. Solution-state conformation

Figure S1. Solution state conformation of compound 15 in acetone-*d*₆

$H_2 \xrightarrow{C_1} C_3 \\ H_{1b} \xrightarrow{F_2} OH$	$\begin{array}{c} H_2 \\ H_2 \\ C_4 \\ F_2 \end{array} \begin{array}{c} C_1 \\ C_2 \\ H_3 \end{array}$	$\begin{array}{c} C_{5} \\ C_{2} \\ C_{2} \\ H_{4} \end{array} F_{4} \\ H_{3} \end{array}$	$ \begin{array}{c} $	ų
C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis	
³ JH _{1a} - F ₂ 29.7 Hz	³ J F ₂ -H ₃ 6.7 Hz	³ JH ₃ -H ₄ 2.5 Hz	³ JF ₄ -H ₅ 5.3 Hz	H-
³ JH _{1b} -F ₂ 26.0 Hz	³ JH ₂ -H ₃ 8.0 Hz	³ <i>J</i> H ₃ -F ₄ 22.0 Hz	³ <i>J</i> H ₄ -H ₅ 8.3 Hz	ОН
³ JH _{1b} -H ₂ 2.4 Hz				[3-chloro-2 4-

Figure S2. Solution state conformation of compound 16 in acetone-d₆

$H_2 \xrightarrow{H_{1a}} C_3 \xrightarrow{H_{1b}} OH$	$H_2 \xrightarrow{C_2} C_1$ $C_4 \xrightarrow{F_2} H_3$		$ \begin{array}{c} C_6\\ F_4\\ H_5\\ C_4\\ C_3\\ OH \end{array} $
C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis
³ JH _{1a} -F ₂ 28.4 Hz ³ JH _{1b} -F ₂ 28.4 Hz ³ JH _{1a} -H ₂ 4.5 Hz ³ JH _{1b} -H ₂ 2.3 Hz	³ JF ₂ -H ₃ 7.1 Hz ³ JH ₂ -H ₃ 8.0 Hz	³ JH ₃ -H ₄ 2.5 Hz ³ JH ₃ -F ₄ 22.0 Hz	³ JF ₄ -H ₅ 5.3 Hz ³ JH ₄ -H ₅ 8.3 Hz

Figure S3. Solution state conformation of compound 17 in acetone- d_6

Figure S4. Solution state conformation of compound 18 in acetone-d₆

$H_2 \xrightarrow{F_2} C_1 C_3 \\ H_{1b} \xrightarrow{F_2} OH$	$H_{2} \xrightarrow{C_{4}}_{F_{2}} H_{3a} \xrightarrow{C_{4}}_{F_{2}} H_{3b}$ $H_{2} \xrightarrow{C_{2}}_{F_{2}} H_{3b}$ $H_{3a} \xrightarrow{C_{4}}_{F_{2}} C_{4}$	$ \begin{array}{c} F_{4} \\ F_{3a} \\ C_{5} \\ F_{4} \\ F_{3a} \\ C_{5} \\ F_{4} \\ F_{4$	$ \begin{array}{c} H_5\\ H_6\\ H_6\\ C_3\\ C_4\\ C_6\\ H_4\\ H_5\\ H_5\\ H_4 \end{array} $
C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis
³ JH _{1a} -F ₂ 25.0 Hz ³ JH _{1b} -F ₂ 24.0 Hz ³ JH _{1a} -H ₂ 6.0 Hz ³ JH _{1b} -H ₂ 6.0 Hz	³ JF ₂ -H _{3a} 18.4 Hz ³ JF ₂ -H _{3b} 21.9 Hz ³ JH ₂ -H _{3a} 6.0 Hz ³ JH ₂ -H _{3b} 3.4 Hz	³ JH _{3a} -H ₄ 8.5 Hz ³ JH _{3b} -H ₄ 6.1 Hz ³ JH _{3a} -F ₄ 18.6 Hz ³ JH _{3b} -F ₄ 34.2 Hz	³ JF ₄ -H ₅ 11.2 Hz ³ JH ₄ -H ₅ 3.4 Hz

Conformor	Energy	Enthalpy	Gibbs' Free	Dipole moment			
Comormer	(Ha)	(Ha)	Energy (Ha)	v	(D) V	7	Total
٨	661 195074	661 185020	(Па)	A 0.909225	I	1 02905	1 76072
A	-001.163974	-001.183029	-001.236374	-0.898223	-1.11111	1.02895	1.70072
B	-661.181079	-661.180134	-661.233960	0.820353	1.20611	2.87256	3.19769

Table S3. Thermochemistry for conformers of molecule 18 in vacuum (B3LYP/6-311+G*)

Table S4. Optimized geometry of conformer A in vacuum (B3LYP/6-311+G*)

Contor	Atomio	Atomio		Coordinates		
Numbor	Numbor	Tumo		(Å)		
number	Number	гуре	Χ	Y	Ζ	
1	6	0	-2.739324000	-0.556899000	0.080528000	
2	1	0	-2.485386000	-0.900462000	-0.920834000	
3	1	0	-2.553508000	-1.388229000	0.774312000	
4	6	0	-1.854185000	0.617749000	0.477744000	
5	1	0	-2.261887000	1.082257000	1.384395000	
6	6	0	-0.378090000	0.304442000	0.719134000	
7	1	0	0.095557000	1.232021000	1.054503000	
8	1	0	-0.276497000	-0.409589000	1.541262000	
9	6	0	0.383988000	-0.206614000	-0.492493000	
10	1	0	0.178749000	0.408501000	-1.372543000	
11	6	0	1.893323000	-0.358928000	-0.311596000	
12	1	0	2.285016000	-0.805233000	-1.234682000	
13	6	0	2.645011000	0.945311000	-0.067485000	
14	1	0	2.444690000	1.658246000	-0.869951000	
15	1	0	2.319621000	1.392590000	0.880618000	
16	8	0	-4.117589000	-0.219417000	0.036300000	
17	1	0	-4.430396000	0.001750000	0.921969000	
18	9	0	-1.932793000	1.610289000	-0.520346000	
19	9	0	-0.096350000	-1.509817000	-0.810500000	
20	8	0	2.207912000	-1.206740000	0.797030000	
21	1	0	1.935037000	-2.109133000	0.592271000	
22	8	0	4.044527000	0.729078000	-0.058558000	
23	1	0	4.228136000	0.039305000	0.593135000	

Conton	Atomio	Atomio			
Venter Nh	Atomic	T		(Å)	
Number	Number	1 ype	X	Y	Z
1	6	0	-2.739324000	-0.556899000	0.080528000
2	1	0	-2.485386000	-0.900462000	-0.920834000
3	1	0	-2.553508000	-1.388229000	0.774312000
4	6	0	-1.854185000	0.617749000	0.477744000
5	1	0	-2.261887000	1.082257000	1.384395000
6	6	0	-0.378090000	0.304442000	0.719134000
7	1	0	0.095557000	1.232021000	1.054503000
8	1	0	-0.276497000	-0.409589000	1.541262000
9	6	0	0.383988000	-0.206614000	-0.492493000
10	1	0	0.178749000	0.408501000	-1.372543000
11	6	0	1.893323000	-0.358928000	-0.311596000
12	1	0	2.285016000	-0.805233000	-1.234682000
13	6	0	2.645011000	0.945311000	-0.067485000
14	1	0	2.444690000	1.658246000	-0.869951000
15	1	0	2.319621000	1.392590000	0.880618000
16	8	0	-4.117589000	-0.219417000	0.036300000
17	1	0	-4.430396000	0.001750000	0.921969000
18	9	0	-1.932793000	1.610289000	-0.520346000
19	9	0	-0.096350000	-1.509817000	-0.810500000
20	8	0	2.207912000	-1.206740000	0.797030000
21	1	0	1.935037000	-2.109133000	0.592271000
22	8	0	4.044527000	0.729078000	-0.058558000
23	1	0	4.228136000	0.039305000	0.593135000

Table S5. Optimized geometry of conformer B in vacuum (B3LYP/6-311+G*)

Figure S5. Solution state conformation of compound 24 in acetone- d_6

$H_2 \xrightarrow[F_2]{H_{1a}} C_3$	$H_2 \xrightarrow{C_4} C_1 \\ H_3 \xrightarrow{F_2} Br_3$	$ \begin{array}{c} C_2 \\ F_4 \\ H_3 \\ C_5 \end{array} $ $ \begin{array}{c} C_2 \\ H_4 \\ Br_3 \end{array} $	$ \begin{array}{c} F_4 \\ Cl_5 \\ Cl_5 \\ Cl_5 \\ C_3 \end{array} \\ H_5 \end{array} $	
C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis	$F = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 6 \\ H \end{bmatrix}$
³ JH _{1a} -F ₂ 23.7 Hz ³ JH _{1b} -F ₂ 18.9 Hz ³ JH _{1a} -H ₂ 5.9 Hz ³ JH _{1b} -H ₂ 4.4 Hz	³ JF ₂ -H ₃ 15.8 Hz ³ JH ₂ -H ₃ 3.5 Hz	³ JH ₃ -H ₄ 9.4 Hz ³ JH ₃ -F ₄ 7.8 Hz	³ ЈҒ ₄ -Н ₅ 26.9 Hz ³ ЈН ₄ -Н ₅ 2.1 Hz	I3-bromo-5-chloro-2.4-difluoro-L-talitoli

Figure S6. Solution state conformation of compound 26 in acetone-d₆

Figure S7. Solution state conformation of compound 28 in acetone- d_6

$H_2 + H_{1a} + C_3 + H_{1b} + C_3 $	$H_2 \xrightarrow{C_4} C_1$ $H_3 \xrightarrow{F_2} Br_3$	$ \begin{array}{c} C_2 \\ F_4 \\ H_3 \\ C_5 \end{array} $ $ \begin{array}{c} C_2 \\ H_4 \\ Br_3 \end{array} $	$F_4 \underbrace{C_4}_{I_5} H_4 \\ H_5 \underbrace{C_4}_{C_3} H_5$
C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis
³ JH _{1a} -F ₂ 23.5 Hz ³ JH _{1b} -F ₂ 20.0 Hz ³ JH _{1a} -H ₂ 4.4 Hz ³ JH _{1b} -H ₂ 6.3 Hz	³ JF ₂ -H ₃ 15.8 Hz ³ JH ₂ -H ₃ 3.1 Hz	³ JH ₃ -H ₄ 9.5 Hz ³ JH ₃ -F ₄ 7.5 Hz	³ JF ₄ -H ₅ 31.0 Hz ³ JH ₄ -H ₅ 1.9 Hz

[3-bromo-5-iodo-2,4-difluoro-L-talitol]

V. Log P determination using ¹⁹F NMR⁵

Equations:

Eq. 1)

$$\rho_{oct} = \frac{I_{oct}^{X}}{I_{oct}^{ref}} \qquad \qquad \rho_{H_20} = \frac{I_{H_20}^{X}}{I_{H_20}^{ref}}$$
Eq. 2)
Eq. 3)

$$P^{X} = P^{ref} \left(\frac{\rho_{oct}}{\rho_{H_20}}\right)$$

(
$$\rho_{H_2o}$$
)
Eq. 4) $\log P^X = \log P^{ref} + \log \left(\frac{\rho_{0ct}}{\rho_{H_2o}}\right)$

ρ: Partition of compound X in the phase; I: Sum of all integration in the phase (ref = 100); *P*: *n*-octanol/H₂O partition; X: compound with unknown log *P*; ref: 2,2,2-trifluoroethanol (log *P* = 0.36)

Compounds	I_{Oct}^X	ρ_{oct}	$I_{H_2O}^X$	$ ho_{H_2O}$	log P ^X
11	10.03	0.1103	22.76	0.2276	0.00
12	12.02	0.1202	18.83	0.1883	0.17
13	13.46	0.1346	12.42	0.1242	0.40
15	5.30	0.0530	37.70	0.3770	-0.49
16	2.04	0.0204	10.56	0.1056	-0.35
17	2.84	0.0284	8.79	0.0879	-0.13
18	0.71	0.0071	46.02	0.4602	-1.45
24	16.31	0.1631	3.96	0.0396	0.975
26	7.04	0.0704	1.10	0.0110	1.17
28	3.59	0.0359	0.19	0.0019	1.64

Log P ¹⁹F NMR spectra Compound 11

S103

OH ΟH CI ÓН 15 H₂O Sample ¹⁹F NMR Spectrum (Acetone-d₆, 470 MHz) ٣٥ ¥ ¥ 273 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -21 F19 (ppm) OН ŌН ĒΙ ÓН 15 *n*-Octanol Sample ¹⁹F NMR Spectrum (Acetone- d_6 , 470 MHz) ۳ Y 10 8 2.62 0 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -2 F19 (ppm) S105

ŌН Ο̈́Η Ē̈́r ÓН 16 H₂O Sample ¹⁹F NMR Spectrum (Acetone- d_6 , 470 MHz) Ψ ٧ ۲ 0000 E 52 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -20 F19 (ppm) ОН E E ŌH Ēr όн 16 *n*-Octanol Sample ¹⁹F NMR Spectrum (Acetone-d₆, 470 MHz) ٧ Ť 1.03 5 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -2 F19 (ppm) S106

Compound 18

OH Ōн óн 18 H₂O Sample ¹⁹F NMR Spectrum (Acetone- d_6 , 470 MHz) ۳. 4.4 23.04 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -24 F19 (ppm) ΟН Ōн όн 18 n-Octanol Sample ¹⁹F NMR Spectrum (Acetone- d_6 , 470 MHz)

 '0
 -75
 -80
 -85
 -90
 -95
 -100
 -110
 -115
 -120
 -125
 -130
 -135
 -140
 -145
 -150
 -155
 -160
 -165
 -170
 -175
 -180
 -185
 -190
 -195
 -20

 F19 (ppm)

Compound 26

Compound 28

S111

v1. Density functional theory calculations on Pitolisant and analog

	Dipole moment						
Compound	(D)						
	X	Y	Z	Total			
Pitolisant	-1.54814	0.556954	1.96880	2.56576			
36	-1.02685	-0.563209	-3.04759	3.26488			
37	-1.19564	-0.503006	-2.86493	3.14452			

-1-

Table S7. Optimize	ed geometry	of Pitolisant in vacuum	(B3LYP/6-31+G*)
			· · · · · /

Center	Atomic	Atomic		Coordinates	
Number	Number	Type		(Å)	
Nullibel	INUITIDEI	Type	X	Y	Z
1	6	0	-7.517217000	1.915124000	-0.000123000
2	6	0	-7.242639000	1.083479000	-1.261527000
3	6	0	-5.838300000	0.468788000	-1.214683000
4	7	0	-5.662949000	-0.327443000	0.000004000
5	6	0	-5.838367000	0.468873000	1.214628000
6	6	0	-7.242710000	1.083561000	1.261352000
7	1	0	-5.683788000	-0.188245000	-2.079949000
8	1	0	-5.088357000	1.283651000	-1.287810000
9	1	0	-5.683900000	-0.188101000	2.079947000
10	1	0	-5.088430000	1.283742000	1.287738000
11	6	0	-4.476808000	-1.182234000	0.000067000
12	1	0	-4.548381000	-1.836353000	0.880816000
13	1	0	-4.548339000	-1.836415000	-0.880639000
14	6	0	-3.098784000	-0.484468000	0.000073000
15	1	0	-2.992983000	0.159083000	-0.881858000
16	1	0	-2.993012000	0.159125000	0.881976000
17	6	0	-1.960587000	-1.496759000	0.000119000
18	1	0	-2.021828000	-2.148656000	0.889486000
19	1	0	-2.021793000	-2.148694000	-0.889221000
20	8	0	-0.720802000	-0.802052000	0.000127000
21	6	0	0.408293000	-1.660636000	0.000048000
22	1	0	0.383481000	-2.315052000	0.889534000
23	1	0	0.383442000	-2.314933000	-0.889522000
24	6	0	1.673102000	-0.809740000	0.000078000
25	1	0	1.662607000	-0.154829000	-0.880259000
26	1	0	1.662639000	-0.154939000	0.880496000
27	6	0	2.954368000	-1.668357000	-0.000003000

28	1	0	2.949514000	-2.325774000	0.880020000
29	1	0	2.949459000	-2.325695000	-0.880083000
30	6	0	5.965876000	0.364896000	1.213096000
31	6	0	6.531546000	0.756372000	-0.000025000
32	6	0	4.816788000	-0.428956000	1.201600000
33	1	0	4.380441000	-0.736831000	2.149721000
34	6	0	5.966090000	0.364567000	-1.213136000
35	6	0	4.220765000	-0.837928000	-0.000011000
36	1	0	6.418953000	0.670976000	-2.150830000
37	6	0	4.816998000	-0.429283000	-1.201626000
38	1	0	4.380816000	-0.737415000	-2.149740000
39	1	0	6.418576000	0.671559000	2.150785000
40	17	0	7.983080000	1.753323000	-0.000032000
41	1	0	-7.340085000	1.703684000	-2.162489000
42	1	0	-6.863343000	2.800802000	-0.000133000
43	1	0	-7.340212000	1.703827000	2.162268000
44	1	0	-7.980525000	0.273474000	-1.338551000
45	1	0	-8.550148000	2.286691000	-0.000164000
46	1	0	-7.980598000	0.273559000	1.338388000

	Table S8.	Optimized	geometry of con	pound 36 in va	cuum (B3LYP/6-31+G ³	٢)
--	-----------	-----------	-----------------	-----------------------	---------------------------------	----

Contor	Atomio	Atomio		Coordinates	
Venter	Atomic	Atomic		(Å)	
Number	Number	Туре	X	Y	Z
1	6	0	-6.512364000	1.570658000	0.003918000
2	6	0	-6.185147000	0.810506000	-1.276089000
3	6	0	-4.745031000	0.293278000	-1.213823000
4	7	0	-4.522979000	-0.475604000	-0.001394000
5	6	0	-4.747077000	0.284990000	1.215874000
6	6	0	-6.187318000	0.801739000	1.279232000
7	1	0	-5.890275000	2.477523000	0.007560000
8	1	0	-6.316621000	1.472616000	-2.140134000
9	9	0	-7.066409000	-0.255858000	-1.455851000
10	1	0	-4.573715000	-0.351370000	-2.082315000
11	1	0	-4.065839000	1.166954000	-1.312592000
12	1	0	-4.577197000	-0.365562000	2.080233000
13	1	0	-4.068094000	1.158001000	1.321758000
14	1	0	-6.320301000	1.457891000	2.147580000
15	9	0	-7.068843000	-0.265863000	1.450139000
16	6	0	-3.338684000	-1.329789000	-0.003345000

17	1	0	-3.411734000	-1.986527000	0.874167000
18	1	0	-3.410698000	-1.981112000	-0.884974000
19	6	0	-1.971440000	-0.615032000	-0.000394000
20	1	0	-1.874740000	0.033131000	-0.880746000
21	1	0	-1.875960000	0.028288000	0.883638000
22	6	0	-0.815186000	-1.607739000	-0.002394000
23	1	0	-0.865934000	-2.262394000	0.885379000
24	1	0	-0.865508000	-2.258288000	-0.893207000
25	8	0	0.407727000	-0.886993000	-0.000467000
26	6	0	1.557015000	-1.721213000	-0.001998000
27	1	0	1.545557000	-2.376793000	0.886460000
28	1	0	1.545455000	-2.373663000	-0.892755000
29	6	0	2.801940000	-0.841942000	-0.000562000
30	1	0	2.776811000	-0.186139000	-0.879936000
31	1	0	2.776884000	-0.189053000	0.880980000
32	6	0	4.102396000	-1.671287000	-0.001985000
33	1	0	4.112755000	-2.329837000	0.877099000
34	1	0	4.112463000	-2.327263000	-0.883000000
35	6	0	7.065573000	0.430084000	1.213680000
36	6	0	7.621108000	0.837433000	0.001045000
37	6	0	5.935716000	-0.390863000	1.201252000
38	1	0	5.507770000	-0.711332000	2.149041000
39	6	0	7.064584000	0.434366000	-1.212573000
40	6	0	5.349025000	-0.811333000	-0.000940000
41	1	0	7.509851000	0.752863000	-2.149863000
42	6	0	5.934741000	-0.386614000	-1.202124000
43	1	0	5.506026000	-0.703740000	-2.150691000
44	1	0	7.511596000	0.745276000	2.151727000
45	17	0	9.048037000	1.868595000	0.002278000
46	9	0	-7.840887000	1.993512000	0.004238000

Table S9. Optimized cartesian coordinates of compound 37 in vacuum (B3LYP/6-31+G*)

Center	Atomic	Atomic	Coordinates (Å)		
Tumber	Tuinoei	турс	X	Y	Z
1	6	0	5.522894000	0.944885000	-0.000184000
2	6	0	5.152138000	0.202565000	1.279030000
3	6	0	3.683090000	-0.230185000	1.212171000
4	7	0	3.416616000	-0.983104000	0.000161000
5	6	0	3.683170000	-0.230707000	-1.212156000

6	6	0	5.152222000	0.202013000	-1.279103000
7	35	0	7.397875000	1.530147000	-0.000250000
8	1	0	4.953616000	1.879555000	-0.000406000
9	1	0	5.311027000	0.855162000	2.144675000
10	9	0	5.961903000	-0.917189000	1.467932000
11	1	0	3.473437000	-0.863252000	2.081034000
12	1	0	3.059580000	0.684080000	1.309967000
13	1	0	3.473575000	-0.864147000	-2.080761000
14	1	0	3.059667000	0.683517000	-1.310388000
15	1	0	5.311173000	0.854237000	-2.145018000
16	9	0	5.961998000	-0.917825000	-1.467467000
17	6	0	2.181431000	-1.761977000	0.000289000
18	1	0	2.213171000	-2.419353000	-0.879194000
19	1	0	2.213131000	-2.419003000	0.880037000
20	6	0	0.862237000	-0.962483000	0.000101000
21	1	0	0.806865000	-0.311843000	0.882163000
22	1	0	0.806914000	-0.312171000	-0.882206000
23	6	0	-0.353481000	-1.881223000	0.000242000
24	1	0	-0.343240000	-2.535940000	-0.888902000
25	1	0	-0.343258000	-2.535644000	0.889604000
26	8	0	-1.529754000	-1.086916000	0.000099000
27	6	0	-2.727612000	-1.849848000	0.000206000
28	1	0	-2.755744000	-2.503486000	-0.889306000
29	1	0	-2.755744000	-2.503238000	0.889901000
30	6	0	-3.916856000	-0.896699000	0.000077000
31	1	0	-3.852125000	-0.244940000	0.880430000
32	1	0	-3.852161000	-0.245204000	-0.880474000
33	6	0	-5.265115000	-1.645774000	0.000208000
34	1	0	-5.315103000	-2.301348000	-0.879743000
35	1	0	-5.315064000	-2.301103000	0.880349000
36	6	0	-8.095840000	0.632058000	-1.213194000
37	6	0	-8.626024000	1.070672000	-0.000116000
38	6	0	-7.017519000	-0.255509000	-1.201651000
39	1	0	-6.609518000	-0.600071000	-2.149782000
40	6	0	-8.095023000	0.633335000	1.213073000
41	6	0	-6.457490000	-0.712060000	0.000096000
42	1	0	-8.520464000	0.976946000	2.150701000
43	6	0	-7.016715000	-0.254240000	1.201743000
44	1	0	-6.608081000	-0.597806000	2.149964000
45	1	0	-8.521906000	0.974681000	-2.150899000

46	17	0	-9.988340000	2.185793000	-0.000241000

VII. References

¹ Denavit, V.; Lainé, D.; St-Gelais, J.; Johnson, P. A.; Giguère, D. *Nat. Commun.* **2018**, *9*, 4721.

² Lainé, D.; Lessard, O.; St-Gelais, J.; Giguère, D. Chem. Eur. J. 2021, 27, 3799-3805.

³ Wolf, N.; Kersting, L.; Herok, C.; Mihm, C.; Seibel, J. J. Org. Chem. **2020**, 85, 9751-9760.

⁴ Goosen, A.; Marais, C. F.; McCleland, C. W.; Rinaldi, F. C. *J. Chem. Soc., Perkin Trans.* 2 **1995**, 1227-1236.

⁵ Linclau, B.; Wang, Z.; Compain, G.; Paumelle, V.; Fontenelle, C. Q.; Wells, N.; Wey-mouth-Wilson, A. *Angew. Chem. Int. Ed.* **2016**, *55*, 674-678.