Fundamental Curiosity of Multivicinal Inter-Halide Stereocenters

Olivier Lessard, Danny Lainé, Charles-Émile Fecteau, Paul A. Johnson, Denis Giguère*
Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada GlV 0A6, PROTEO
E-Mail: denis.giguere@ulaval.ca

Table of contents

I. Experimental section S2
II. Crystal structure determination S28
III. NMR spectra of compounds S30
IV. Solution-state conformation S97
V. $\quad \log P$ determination using ${ }^{19} \mathrm{~F}$ NMR S101
VI. Density functional theory calculations on Pitolisant and analogues S112
VII. References S117

I. Experimental section

General methods

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns using a Vacuum Atmospheres Inc. Solvent Purification System. Yields refer to chromatographically and spectroscopically ($\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right)$ homogeneous materials, unless otherwise stated. Reagents were purchased at the highest commercial quality available and used without further purification, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F254) using UV light as visualizing agent and charring with a KMnO_{4} solution (1.5 g of $\mathrm{KMnO}_{4}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, and $1.25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ in 200 mL of water), a phenol solution (3 g of phenol in 95 mL of EtOH and 5 mL of sulfuric acid), or a phenol $/ \mathrm{Ac}_{2} \mathrm{O}$ solution (3 g of phenol in 95 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 5 mL of sulfuric acid) followed by heating with a heatgun as developing agents. SiliaFlash® P60 (particle size 40-63 mm, 230-400 mesh) was used for flash column chromatography. NMR spectra were recorded on an Agilent DD2 spectrometer (at 500 MHz for ${ }^{1} \mathrm{H}, 470 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$, and 126 MHz for ${ }^{13} \mathrm{C}$) and calibrated using residual undeuterated solvent peaks $\left(\mathrm{CDCl}_{3}{ }^{1} \mathrm{H} \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$ $\delta=77.16 \mathrm{ppm}$; acetone- $\mathrm{d}_{6}:{ }^{1} \mathrm{H} \delta=2.05 \mathrm{ppm},{ }^{13} \mathrm{C} \delta=29.84 \mathrm{ppm}$) as an internal reference. ${ }^{19} \mathrm{~F}$ NMR spectra were calibrated using hexafluorobenzene, which gives a signal at ${ }^{19} \mathrm{~F}$ $\delta=-162.29 \mathrm{ppm}$ with respect to that of the reference compound CFCl_{3}. Coupling constants (J) are reported in Hertz (Hz), and the following abbreviations were used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Assignments of NMR signals were made by homonuclear (COSY) and heteronuclear (HSQC, HMBC, and ${ }^{19} \mathrm{~F}$ gc2HSQC) two-dimensional correlation spectroscopy. Infrared (IR) spectra were recorded using an ABB MB3000 Spectrometer with a diamond crystal plate, or Bomem MB100 Arid zone with a NaCl disk. The absorptions are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were measured with an Ag ilent 6210 LC Time of Flight mass spectrometer in electrospray mode (ESI). Either protonated molecular ions $[\mathrm{M}+n \mathrm{H}]^{\mathrm{n}+}$, sodium adducts $[\mathrm{M}+\mathrm{Na}]^{+}$, ammonium adducts $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$or deprotonated molecular ions $[\mathrm{M}-n \mathrm{H}]^{\mathrm{n}-}$ were used for empirical formula
confirmation. Optical rotations were recorded on a JASCO DIP-360 digital polarimeter at 589 nm and are reported in units of $10^{-1}\left(\mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\right)$. Melting points were measured on a Stanford Research System OptiMelt MPA100 151 automated melting point apparatus.

General procedures

General procedure I: Hydrolysis of 1,6-anhydro-difluorohalogenohexopyranose analogues

To a stirred solution of the starting 1,6-anhydro-difluorohalohexopyranose in a specified volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, was added dropwise a specified volume of a 1 M solution of BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred, under an argon atmosphere, at room temperature for 2 h . The reaction mixture was cooled at $0{ }^{\circ} \mathrm{C}$, a specified volume of $\mathrm{H}_{2} \mathrm{O}$ was added, and the organic solvent was removed under reduced pressure. The resulting mixture was stirred at room temperature for 1 h , and the remaining water was evaporated under a gentle stream of air.

General procedure II: Reduction of difluorohalogenohexopyranose analogues

A specified amount of NaBH_{4} was added to a stirred solution of the starting difluorohalogenohexopyranose in anhydrous EtOH . The resulting mixture was stirred at room temperature for 1 h and was neutralized to $\mathrm{pH} \approx 7$ with acidic resin. The mixture was filtered and concentrated under reduced pressure.

1,6-Anhydro-2,3,4-trideoxy-3-chloro-2,4-difluoro- β-D-allopyranose (7). To a solution of 1,6-anhydro-2,4-difluoro-2,4-difluoro- β-D-glucopyranose 4^{1} ($390.6 \mathrm{mg}, 2.351 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.8 \mathrm{~mL}, 0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere was added pyridine ($0.76 \mathrm{~mL}, 9.404 \mathrm{mmol}, 4.0$ equiv.) and $\mathrm{Tf}_{2} \mathrm{O}(0.79 \mathrm{~mL}, 4.702 \mathrm{mmol}, 2.0$ equiv.). The mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were successively washed with aqueous 1 M HCl solution and brine. The
organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude triflate 5 was used for the next step without further purification and dissolved in $\mathrm{MeCN}(1.1 \mathrm{~mL}, 0.2 \mathrm{M})$ in a sealed tube. $\mathrm{Me}_{4} \mathrm{NCl}(236 \mathrm{mg}, 2.151 \mathrm{mmol}, 10$ equiv.) was added, and the tube was sealed and stirred at $100^{\circ} \mathrm{C}$ for 7 days. After cooling down to room temperature, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 3 \rightarrow 1: 1$) to give 7 as a white amorphous solid ($30.2 \mathrm{mg}, 0.1636 \mathrm{mmol}, 73 \%$ yield over 2 steps): $\mathrm{R}_{f}=0.38$ (silica, EtOAc/hexanes $2: 3$); $[\alpha]_{\mathrm{D}}{ }^{25}=-73.1\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;$ IR (ATR, diamond crystal) v 2978, 2916, 1327, 1134, 1057, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66(\mathrm{dd}, J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.88$ (ddd, $J=6.0,5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.60(\mathrm{ddd}, J=47.6,3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.49$ (ddd, $J=48.6$, $3.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.14 (dddd, $J=29.0,27.2,3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 3.86 (dddd, $J=8.2$, $5.2,5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$), 3.78 (ddd, $J=8.6,1.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 99.0$ (d, $J=24.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 86.9 (dd, $J=193.2,1.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 85.9 (dd, $J=194.1,1.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2), 74.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 64.1(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{C}$, C6), 51.2 (dd, $J=19.5,19.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-194.93$ (dddddd, $J=47.0,29.0,6.4,6.3,6.2,1.0 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -198.04 (dddd, $J=48.8,27.0,8.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2) \mathrm{ppm}$; the compound does not ionize.

1,6-Anhydro-2,3,4-trideoxy-3-bromo-2,4-difluoro- $\boldsymbol{\beta}$-d-allopyranose (8). To a solution of 1,6-anhydro-2,4-difluoro-2,4-difluoro- β-D-glucopyranose 4 ($101.8 \mathrm{mg}, 0.6128 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.2 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ under an argon atmosphere was added pyridine ($0.20 \mathrm{~mL}, 2.452 \mathrm{mmol}, 4.0$ equiv.) and $\mathrm{Tf}_{2} \mathrm{O}(0.21 \mathrm{~mL}, 1.226 \mathrm{mmol}, 2.0$ equiv.). The mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were successively washed with aqueous 1 M HCl solution and brine. The organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure.

The crude triflate $\mathbf{5}$ was used for the next step without further purification and dissolved in DMF ($2.6 \mathrm{~mL}, 0.22 \mathrm{M}$) in a sealed tube. $\mathrm{Bu}_{4} \mathrm{NBr}(1.882 \mathrm{~g}, 5.840 \mathrm{mmol}, 10$ equiv.) was added, and the tube was sealed and stirred at $120^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 2 \rightarrow 2: 3$) to give $\mathbf{8}$ as a pale yellow amorphous solid ($124.0 \mathrm{mg}, 0.5414 \mathrm{mmol}, 88 \%$ yield over 2 steps): $\mathrm{R}_{f}=0.40$ (silica, EtOAc/hexanes 2:3); $[\alpha]_{\mathrm{D}}{ }^{25}=-58.1\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;$ IR (ATR, diamond crystal) v 2970, 2916, 2854, 1335, 1126, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.65(\mathrm{dd}, J=2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1), 4.89$ (dddd, $J=6.0,5.6,2.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.57$ (ddd, $J=47.2,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.46$ (ddd, $J=48.4,3.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.21 (dddd, $J=30.6,28.7,3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 3.87 (dddd, $J=10.8,5.2,3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 3.81$ (ddd, $J=8.5,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 99.2(\mathrm{~d}, J=25.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 86.9(\mathrm{dd}, J=192.4,1.0 \mathrm{~Hz}$, $1 \mathrm{C}, \mathrm{C} 4$), 86.0 (dd, $J=193.0,1.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 74.8 (d, $J=20.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5$), 64.2 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 41.3 (dd, $J=20.0,20.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}) $\delta-188.82$ (ddddd, $\left.J=46.9,30.6,6.2,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4\right),-192.43$ (dddd, $J=48.2$, $28.6,7.4,2.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2) \mathrm{ppm}$; the compound does not ionize.

1,6-Anhydro-2,3,4-trideoxy-2,4-difluoro-3-iodo- β-D-allopyranose (9). To a solution of 1,6-anhydro-2,4-difluoro-2,4-difluoro- β-D-glucopyranose $4 \quad(390.7 \mathrm{mg}, \quad 2.352 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.8 \mathrm{~mL}, 0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere was added pyridine ($0.76 \mathrm{~mL}, 9.408 \mathrm{mmol}, 4.0$ equiv.) and $\mathrm{Tf}_{2} \mathrm{O}(0.79 \mathrm{~mL}, 4.704 \mathrm{mmol}, 2.0$ equiv.). The mixture was stirred at room temperature for 30 min and then quenched with a saturated aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were successively washed with aqueous 1 M HCl solution and brine. The organic solution was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude triflate $\mathbf{5}$ was used for the next step without further purification and dissolved in

DMF ($11 \mathrm{~mL}, 0.2 \mathrm{M}$) in a sealed tube. $\mathrm{Bu}_{4} \mathrm{NI}(8.881 \mathrm{~g}, 22.41 \mathrm{mmol}, 10$ equiv.) was added, and the tube was sealed and stirred at $120{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 3 \rightarrow 1: 1$) to give 9 as a pale yellow amorphous solid ($558.0 \mathrm{mg}, 2.022 \mathrm{mmol}, 86 \%$ yield over 2 steps): $\mathrm{R}_{f}=0.46$ (silica, EtOAc/hexanes 2:3); $[\alpha]_{\mathrm{D}}{ }^{25}=-56.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;$ IR (ATR, diamond crystal) v 2978, 2916, 1327, 1126, 1041, $987 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59$ (dd, $J=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 4.83 (dddd, $J=6.3,5.0,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.46$ (ddd, $J=46.8,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.40$ (dddd, $J=33.0,31.3,3.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.35 (dddd, $J=47.5,3.2,3.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 3.88 (dddd, $J=8.3,7.5,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 3.85$ (ddd, $J=8.1,0.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 98.9(\mathrm{~d}, J=27.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 87.5(\mathrm{dd}, J=190.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 86.6$ (dd, $J=191.0,0.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2), 74.7$ (d, $J=20.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 64.4$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 17.4 (dd, $J=21.2,21.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}) $\delta-178.25$ (dddddd, $J=46.4,33.2,5.7,5.0,5.0,0.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -182.60 (dddd, $J=47.5,31.3,5.7,2.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$) ppm; the compound does not ionize.

$\mathbf{2 , 3 , 4}$-Trideoxy-2,3,4-trifluoro- $\boldsymbol{\alpha} / \boldsymbol{\beta}$-D-allopyranose (10). The known 1,6-anhydro-2,3,4-trideoxy-2,3,4-trifluoro- β-D-allopyranose $\mathbf{6}^{1}$ ($218.3 \mathrm{mg}, 1.299 \mathrm{mmol}, 1.0$ equiv.) was hydrolysed with $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.5 \mathrm{~mL}, 6.495 \mathrm{mmol}$, 5.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL}$, 0.1 M) and water ($46 \mathrm{~mL}, 2.554 \mathrm{mmol}, 2.0$ equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $4: 1)$ to give an anomeric mixture of $\mathbf{1 0}(\alpha / \beta 1: 13)$ as a white amorphous solid (232.1 mg , $1.247 \mathrm{mmol}, 96 \%$ yield). The spectroscopic data derived from compound 10 match those reported in the literature. ${ }^{1}$

2,3,4-Trideoxy-3-chloro-2,4-difluoro- $\boldsymbol{\alpha} / \boldsymbol{\beta}$-D-allopyranose (11). 1,6-Anhydro-2,3,4-trideoxy-3-chloro-2,4-difluoro- β-D-allopyranose $7(78.0 \mathrm{mg}, 0.4226 \mathrm{mmol}, 1.0$ equiv.) was hydrolysed with BCl_{3} (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.2 \mathrm{~mL}, 2.113 \mathrm{mmol}$, 5.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4.2 \mathrm{~mL}, 0.1 \mathrm{M}$) and water ($15 \mathrm{~mL}, 0.8304 \mathrm{mmol}, 2.0$ equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 3:2 $\rightarrow 4: 1$) to give an anomeric mixture of $\mathbf{1 1}(\alpha / \beta 1: 19)$ as a white amorphous solid ($60.0 \mathrm{mg}, 0.2962 \mathrm{mmol}, 70 \%$ yield): $\mathrm{R}_{f}=0.39$ (silica, EtOAc/hexanes 4:1); $[\alpha]_{\mathrm{D}}{ }^{25}=-9.34(\mathrm{c} 0.4, \mathrm{MeOH}) ;$ IR (ATR, diamond crystal) v 3340, 3117, 2901, 1342, 1142, 1018, $656 \mathrm{~cm}^{-1}$, only the β anomer has been attributed in ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 6.37$ (d, J=6.3 Hz, 1H, OH1), 5.16 (ddd, $J=7.2,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 5.09 (dddd, $J=7.3,7.3,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.92 (dddd, $J=46.2,8.7,3.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.48$ (dddd, $J=46.9,7.2,3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 3.98 (ddd, $J=7.4,4.6,4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 3.96 (dd, $J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.83 (dddd, $J=12.3,5.6,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}$), 3.67 (dddd, $J=12.2,7.1,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 92.0(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 87.3$ (dd, $J=194.4,3.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 83.7 (dd, $J=190.8,3.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 72.6$ (d, $J=23.1 \mathrm{~Hz}, 1 \mathrm{C}$, C5), 60.4 (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 59.9 (dd, $J=17.4,17.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19}$ F NMR $\left(470 \mathrm{MHz}\right.$, Acetone- d_{6}) $\delta-194.85$ (dddd, $J=47.0,7.5,3.9,1.2 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 1$), -196.25 (ddddd, $J=46.0,7.3,4.6,2.3,2.2 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$) ppm; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{ClF}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$ 201.0136 found 201.0140.

2,3,4-Trideoxy-3-bromo-2,4-difluoro- $\boldsymbol{\alpha} / \boldsymbol{\beta}$-D-allopyranose (12). 1,6-Anhydro-2,3,4-trideoxy-3-bromo-2,4-difluoro- β-D-allopyranose $\mathbf{8}(165.00 \mathrm{mg}, 0.7205 \mathrm{mmol}, 1.0$ equiv.) was hydrolysed with BCl_{3} (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.6 \mathrm{~mL}, 3.602 \mathrm{mmol}$, 5.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($7.2 \mathrm{~mL}, 0.1 \mathrm{M}$) and water ($25.5 \mathrm{~mL}, 1.416 \mathrm{mmol}, 2.0$ equiv.) following the general procedure I. The obtained crude was purified by flash column chromatography (silica gel,

EtOAc/hexanes 3:2 $\rightarrow 4: 1$) to give an anomeric mixture of $\mathbf{1 2 (\alpha / \beta 1 : 1 7)}$ as a white amorphous solid ($160.0 \mathrm{mg}, 0.6477 \mathrm{mmol}, 90 \%$ yield): $\mathrm{R}_{f}=0.42$ (silica, EtOAc/hexanes 4:1); $[\alpha]_{\mathrm{D}}{ }^{25}=-10.5(\mathrm{c} 0.5, \mathrm{MeOH}) ;$ IR (ATR, diamond crystal) v 3340, 2932, 1443, 1080, 1030, $1011 \mathrm{~cm}^{-1}$; only the β anomer has been attributed in ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 6.38\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1\right.$), 5.18 (ddd, $J_{2}=6.8,6.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 5.14 (dddd, $J=7.4,7.4,3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.78 (dddd, $J=46.5,8.6$, $3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.37 (dddd, $J=47.4,6.9,3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 3.99 (ddd, $J=8.6$, $3.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 3.98 (dd, $J=6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 6$), 3.82 (dddd, $J=12.2,5.1,5.0$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$), 3.68 (dddd, $J=12.2,6.5,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, Acetone- d_{6}) $\delta 93.7$ (d, $J=22.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 87.7 (dd, $J=193.6,4.2 \mathrm{~Hz}, 1 \mathrm{C}$, C2), 84.2 (dd, $J=190.0,3.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 74.7 (d, $J=22.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5$), 61.3 (s, 1C, C6), 53.9 (dd, $J=17.5,17.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone- d_{6}) $\delta-189.77$ (dddd, $J=47.4,7.6,3.9,1.4 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -190.73 (dddd, $J=46.6,7.4,2.3,2.2 \mathrm{~Hz}, 1 \mathrm{~F}$, F4) ppm; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BrF}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M} \mathrm{-} \mathrm{H}]^{-} 244.9630$ found 244.9636 .

2,3,4-Trideoxy-2,4-difluoro-3-iodo- $\boldsymbol{\alpha} / \boldsymbol{\beta}$-D-allopyranose (13). 1,6-Anhydro-2,3,4-tride-oxy-2,4-difluoro-3-iodo- β-D-allopyranose 9 ($100.5 \mathrm{mg}, 0.3641 \mathrm{mmol}, 1.0$ equiv.) was hydrolysed with $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.9 \mathrm{~mL}$, 2.113 mmol , 8.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.6 mL , 0.1 M) and water ($12.9 \mathrm{~mL}, 0.7155 \mathrm{mmol}, 2.0$ equiv.) following the general procedure I . The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 3:2 $\rightarrow 4: 1$) to give an anomeric mixture of $\mathbf{1 3}(\alpha / \beta 1: 16)$ as a white amorphous solid ($85.4 \mathrm{mg}, 0.2904 \mathrm{mmol}, 80 \%$ yield): $\mathrm{R}_{f}=0.46$ (silica, EtOAc/hexanes 4:1); $[\alpha]_{\mathrm{D}}{ }^{25}=-13.5$ (c $0.5, \mathrm{MeOH}$); IR (ATR, diamond crystal) v 3340, 2925, 1327, 1095, 1080, $1026 \mathrm{~cm}^{-1}$; only the β anomer has been attributed in ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 6.38$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1$), 5.17 (dddd, $J=9.4,9.4,3.8$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 5.14 (ddd, $J=6.4,6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 4.26 (dddd, $J=47.2,7.6,3.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.01(\mathrm{dd}, J=6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 6), 3.94$ (dddd, $J=7.8,4.6,4.3,3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 5$), 3.92 (dddd, $J=48.0,6.3,3.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 3.82 (dddd, $J=12.2,5.5,3.5$,
$1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$), 3.69 (dddd, $J=12.2,6.8,4.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, Acetone- d_{6}) $\delta 94.9$ (d, $J=23.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 87.7 (dd, $J=191.4,4.0 \mathrm{~Hz}, 1 \mathrm{C}$, C2), 84.6 (dd, $J=188.5,3.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 76.6$ (d, $J=21.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 61.5$ (s, 1C, C6), 33.2 (dd, $J=18.1,18.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone- d_{6}) $\delta-181.06$ (dddddd, $J=47.3,9.4,4.6,4.4,2.3,1.7 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -181.31 (dddd, $J=48.4,9.3,4.4$, $2.0 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2) \mathrm{ppm}$; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{IO}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 292.9492$ found 292.9495 .

2,3,4-Trideoxy-2,3,4-trifluoro-D-allitol (14). 2,3,4-Trideoxy-2,3,4-trifluoro- α / β-D-allopyranose 10 ($192 \mathrm{mg}, 1.032 \mathrm{mmol}, 1.0$ equiv.) was reduced with NaBH_{4} (68.3 mg , $1.805 \mathrm{mmol}, 1.75$ equiv.) in anhydrous $\mathrm{EtOH}(10 \mathrm{~mL}, 0.1 \mathrm{M})$ following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$) to give 14 as a colorless oil ($180.5 \mathrm{mg}, 0.9593 \mathrm{mmol}, 93 \%$ yield). The spectroscopic data derived from compound $\mathbf{1 4}$ match those reported in the literature. ${ }^{2}$

2,3,4-Trideoxy-3-chloro-2,4-difluoro-D-allitol (15). 2,3,4-Trideoxy-3-chloro-2,4-difluoro- α / β-D-allopyranose 11 ($21.5 \mathrm{mg}, 0.1061 \mathrm{mmol}, 1.0$ equiv.) was reduced with NaBH_{4} ($20.0 \mathrm{mg}, 0.5306 \mathrm{mmol}$, 5.0 equiv.) in anhydrous $\mathrm{EtOH}(1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$) to give 15 as a colorless oil ($20.0 \mathrm{mg}, 0.0978 \mathrm{mmol}, 92 \%$ yield): $\mathrm{R}_{f}=0.49$ (silica, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$); $[\alpha]_{\mathrm{D}}{ }^{25}=-2.63$ (c 0.8, MeOH); IR (ATR, diamond crystal) v 3323, 2926, 2854, 1456, 1242, 1030, $885 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Ac-etone- d_{6}) $\delta 4.97$ (dddd, $J=46.4,8.0,4.4,2.4,1 \mathrm{H}, \mathrm{H} 2$), 4.86 (ddd, $J=45.8,8.4,2.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 4$), 4.76 (dddd, $J=22.0,8.0,6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.34 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 5$), 4.24 (dd, $J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1$), 4.01 (ddddd, $J=8.4,7.4,5.3,4.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 3.97 - 3.92 (m, 1H, OH6), 3.92 (dddd, $J=26.0,13.0,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}$), 3.90 (dddd, $J=29.7,13.0,6.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{a}), 3.76$ (dddd, $J=11.5,5.3,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}), 3.67$
(dddd, $J=11.2,7.0,4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta$ 93.4 (dd, $J=175.6,5.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 93.0 (dd, $J=178.7,3.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 71.2 (dd, $J=25.5,3.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 63.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6), 62.1(\mathrm{dd}, J=20.9,2.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1)$, 58.4 (dd, $J=25.1,21.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone- d_{6}) $\delta-187.73$ (dddd, $J=46.3,29.8,26.5,6.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -198.57 (ddddd, $J=45.1,21.8,6.5,2.5,2.0 \mathrm{~Hz}$, 1F, F4) ppm; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{ClF}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 203.0292$ found 203.0295.

2,3,4-Trideoxy-3-bromo-2,4-difluoro-D-allitol (16). 2,3,4-Trideoxy-3-bromo-2,4-difluoro- α / β-D-allopyranose 12 ($217.3 \mathrm{mg}, 0.8796 \mathrm{mmol}, 1.0$ equiv.) was reduced with NaBH_{4} ($58.2 \mathrm{mg}, 1.539 \mathrm{mmol}, 1.75$ equiv.) in anhydrous $\mathrm{EtOH}(8.8 \mathrm{~mL}, 0.1 \mathrm{M}$) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:9) to give 16 as a colorless oil ($214.3 \mathrm{mg}, 0.8605 \mathrm{mmol}, 98 \%$ yield): $\mathrm{R}_{f}=0.49$ (silica, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$); $[\alpha]_{\mathrm{D}}{ }^{25}=-1.69$ (c 0.9 , MeOH); IR (ATR, diamond crystal) $v 3371,2924,2854,1373,1273,1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone$\left.d_{6}\right) \delta 5.00$ (dddd, $J=46.5,8.0,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.86 (ddd, $J=45.7,8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, H4), 4.82 (dddd, $J=23.0,8.0,7.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.35$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH5}$), 4.24 (dd, $J=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 4.06 - 3.87 (m, 4H, H1a, H1b, H5, OH6), 3.76 (dd, $J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}$), 3.67 (dd, $J=11.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 93.4$ (dd, $J=176.7,4.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 93.2 (dd, $J=178.6,4.0 \mathrm{~Hz}$, 1C, C4), 72.2 (dd, $J=25.6,3.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5$), 63.3 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 63.1 (dd, $J=20.9,2.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 50.5(\mathrm{dd}, J=23.3,21.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3) \mathrm{ppm} ;{ }^{19}$ F NMR (470 MHz , Acetone $-d_{6}$) $\delta-183.16$ (dddd, $J=46.7,28.4,28.3,7.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -196.03 (ddd, $J=45.2$, 22.1, $3.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$) ppm; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{BrF}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 246.9787$ found 246.9792.

2,3,4-Trideoxy-3-iodo-2,4-difluoro-D-allitol (17). 2,3,4-Trideoxy-2,4-difluoro-3-iodoα / β-D-allopyranose $13\left(10.8 \mathrm{mg}, 0.03673 \mathrm{mmol}, 1.0\right.$ equiv.) was reduced with NaBH_{4} ($2.4 \mathrm{mg}, 0.06344 \mathrm{mmol}, 1.73$ equiv.) in anhydrous $\mathrm{EtOH}(0.37 \mathrm{~mL}, 0.1 \mathrm{M}$) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:9) to give $\mathbf{1 7}$ as a colorless oil ($9.8 \mathrm{mg}, 0.03310 \mathrm{mmol}, 90 \%$ yield): $\mathrm{R}_{f}=0.50$ (silica, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 9$); $[\alpha]_{\mathrm{D}}{ }^{25}=3.86$ (c 0.7, MeOH); IR (ATR, diamond crystal) v 3337, 2930, 2881, 1452, 1234, 1022, $878 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Ace-tone- d_{6}) $\delta 4.89$ (dddd, $J=24.3,8.2,8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.83 (dddd, $J=46.4,8.1,4.9$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 4.65$ (ddd, $J=45.1,8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.32$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH5}$), $4.21(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1), 4.04$ (dddd, $J=28.0,13.0,5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}), 3.98$ (ddddd, $J=8.2,6.6,6.4,4.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 3.97$ (dddd, $J=28.2,13.0,6.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, H1a), 3.94 (dd, $J=6.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 6$), 3.75 (dddd, $J=11.5,5.8,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}$), 3.67 (dddd, $J=11.2,6.0,4.6, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 94.0$ (dd, $J=177.9,5.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 93.8 (dd, $J=177.0,4.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 73.7 (dd, $J=25.8$, $2.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 64.9(\mathrm{dd}, J=20.9,2.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 63.3$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 29.9 (dd, $J=20.7,20.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone- d_{6}) $\delta-177.62$ (dddd, $J=47.3,28.2,28.0,8.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -190.63 (ddd, $J=45.3,23.6,6.6 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4) \mathrm{ppm}$; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{IO}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 314.0059$ found 314.0052.

2,3,4-Trideoxy-2,4-difluoro-D-allitol (18). To a stirred solution of 2,3,4-trideoxy-2,4-difluoro-3-iodo- α / β-D-allopyranose 13 ($12.5 \mathrm{mg}, 0.04251 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{EtOH}(0.43 \mathrm{~mL}, 0.1 \mathrm{M})$ was added $\mathrm{NaBH}_{4}(12.9 \mathrm{mg}, 0.3401 \mathrm{mmol}, 8.0$ equiv.). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . After the mixture was cooled down to room temperature, 1 mL of MeOH was added, and the mixture was neutralized to $\mathrm{pH} \approx 7$ with acidic resin. The mixture was filtered and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:9) to give $\mathbf{1 8}$ as a
colorless oil ($4.8 \mathrm{mg}, 0.02821 \mathrm{mmol}, 66 \%$ yield): $\mathrm{R}_{f}=0.52$ (silica, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 17$); $[\alpha]_{\mathrm{D}}{ }^{25}=-6.91(\mathrm{c} 0.5, \mathrm{MeOH}) ;$ IR (ATR, diamond crystal) v 3350, 2926, 2856, 1441, 1230, $1051,860 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 4.75$ (ddddd, $J=48.8,6.0,6.0,6.0$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.65 (dddd, $J=48.1,9.0,6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.14 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, OH5), 4.05 (dd, $J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1$), 3.79 (dd, $J=5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 6$), $3.76-$ 3.63 (m, 4H, H1a, H1b, H5, H6b), 3.59 (ddd, $J=11.2,5.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$), 2.21 (ddddd, $J=34.2,21.9,15.2,6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \mathrm{~b}$), 2.07 (ddddd, $J=18.6,18.5,15.0,8.5,6.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 3 \mathrm{a})$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 93.1$ (dd, $J=169.3,2.9 \mathrm{~Hz}, 1 \mathrm{C}$, C2), 91.6 (dd, $J=169.6,5.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 73.8 (d, $J=23.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5$), 64.5 (dd, $J=22.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 63.3 (d, $J=5.9 \mathrm{~Hz} .1 \mathrm{C}, \mathrm{C} 6$), 33.5 (dd, $J=21.1,21.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$) ppm; ${ }^{19}$ F NMR (470 MHz , Acetone- d_{6}) $\delta-188.01$ (dddddd, $J=48.8,25.0,24.0,21.9,18.4$, $3.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -189.96 (ddddd, $J=48.1,34.2,19.0,11.2,1.8 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$) ppm; the compound does not ionize.

Selective protection of primary hydroxyl groups of 16

1,6-Bis- \boldsymbol{O}-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol (22) 2,3,4-Trideoxy-3-bromo-2,4-difluoro-D-allitol $16(32.9 \mathrm{mg}, 0.1321 \mathrm{mmol}, 1.0$ equiv.) was diluted in pyridine ($1.3 \mathrm{~mL}, 0.1 \mathrm{M}$), and $\operatorname{PivCl}(32.4 \mu \mathrm{~L}, 0.2642 \mathrm{mmol}, 2.0$ equiv.) was added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 18 h . The mixture was then cooled down to room temperature, quenched with a saturated solution of NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The combined organic phase was washed with 1 M HCl , dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:9) to give 22 as a white amorphous solid ($30.4 \mathrm{mg}, \quad 0.07285 \mathrm{mmol}, \quad 55 \%$ yield): $\mathrm{R}_{f}=0.47$ (silica, EtOAc/hexanes 1:3); $[\alpha]_{\mathrm{D}}{ }^{25}=-1.70(\mathrm{c} 0.9, \mathrm{MeOH}) ;$ IR (ATR, diamond crystal) v 3485, 2974, 2876, 1732, 1396, $1283,1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.17$ (dddd, $J=46.1,8.9,4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}$, H2), 4.77 (ddd, $J=45.2,8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.60 (dddd, $J=20.6,9.1,6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, H3), 4.54 (dddd, $J=24.3,13.0,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}), 4.45$ (ddd, $J=29.7,13.0,4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 1 \mathrm{a}$), 4.44 (ddd, $J=12.1,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 4.27$ (dddd, $J=8.4,5.5,4.8,2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 5$), 4.25 (ddd, $J=12.1,4.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}), 2.85$ ($\mathrm{sbr}, 1 \mathrm{H}, \mathrm{OH}$), $1.24-1.23$ (m, $\left.18 \mathrm{H}, 2 \times \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.8(\mathrm{~s}, 1 \mathrm{C}$, $\left.C \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 178.1\left(\mathrm{~s}, 1 \mathrm{C}, \operatorname{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 90.8(\mathrm{dd}, J=180.9,3.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 89.5(\mathrm{dd}$, $J=179.9,6.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2), 70.4(\mathrm{dd}, J=26.6,3.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 65.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{C}$, C6), 64.0 (dd, $J=20.9,1.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 47.7 (dd, $J=23.1,21.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 39.2$ (s, 1C, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.1\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.3$ ($\left.\mathrm{s}, 3 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.2$ (s, 3C, $\left.\operatorname{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-181.72$ (dddd, $J=46.1,30.2,24.1$, $6.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -194.70 (ddd, $J=44.1,20.6,5.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$) ppm; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BrF}_{2} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 417.1083$ found 417.1097.

1,6-Bis-O-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-5-chloro-2,4-difluoro-L-talitol

(23).

To a stirred solution of 1,6-bis-O-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol $22\left(59.3 \mathrm{mg}, 0.1421 \mathrm{mmol}, 1.0\right.$ equiv.) in pyridine ($1.4 \mathrm{~mL}, 0.1 \mathrm{M}$) at $0^{\circ} \mathrm{C}$ was added PPh_{3} ($372.7 \mathrm{mg}, 1.421 \mathrm{mmol}, 10.0$ equiv.) and CCl_{4} ($0.14 \mathrm{~mL}, 1.421 \mathrm{mmol}, 10.0$ equiv.). The reaction mixture was stirred at room temperature for 18 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with 1 M HCl , saturated NaHCO_{3}, and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 4)$ to give 23 as a white amorphous solid ($61.1 \mathrm{mg}, 0.1402 \mathrm{mmol}, 99 \%$ yield): $\mathrm{R}_{f}=0.54$
(silica, EtOAc/hexanes 1:4); $[\alpha]_{\mathrm{D}}{ }^{25}=2.61\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; IR (ATR, diamond crystal) v 1972, 2874, 1718, 1283, 1157, $638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.06$ (dddd, $J=46.3,6.7,3.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.96 (ddd, $J=46.3,9.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.62$ (dddd, $J=27.0,7.8,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.54$ (dddd, $J=17.2,9.7,5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.46$ (ddd, $J=11.4,6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 4.44$ (dddd, $J=17.4,12.6,6.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}$), 4.36 (dddd, $J=26.1,12.6,3.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{a}), 4.27$ (dd, $J=11.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 1.23 (s, 9H, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.1\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 177.7\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 90.7(\mathrm{dd}, J=182.1,2.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2)$, 89.0 (dd, $J=188.2,5.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 64.0 (dd, $J=25.5,6.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 63.5 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6), 57.1(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 47.2$ (dd, $J=22.6,22.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3)$, 38.99 (s, 1C, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 38.95$ (s, 1C, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.22\left(\mathrm{~s}, 3 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.21$ $\left(\mathrm{s}, 3 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-189.87(\mathrm{ddddd}, J=46.5,=27.0$, $5.3,3.5,1.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -192.02 (dddddd, $J=46.3,27.0,17.4,17.4,3.5,2.1 \mathrm{~Hz}, 1 \mathrm{~F}$, F2) ppm; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{BrClF}_{2} \mathrm{NO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 452.1009$ found 452.1026.

2,3,4,5-Tetradeoxy-3-bromo-5-chloro-2,4-difluoro-L-talitol (24). To a stirred solution of 1,6-bis-O-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-5-chloro-2,4-difluoro-L-talitol 23 ($57.0 \mathrm{mg}, 0.1308 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.3 \mathrm{~mL}, 0.1 \mathrm{M}\right.$) at $-78{ }^{\circ} \mathrm{C}$ under an argon atmosphere was added $\operatorname{DIBAL}(0.57 \mathrm{M}$ in THF, $1.8 \mathrm{~mL}, 1.046 \mathrm{mmol}, 8.0$ equiv.). The reaction mixture was stirred between -60 and $-40{ }^{\circ} \mathrm{C}$ for 8 h . The mixture was quenched with EtOAc, warmed to room temperature, and the organic phase was washed with 1 M HCl , saturated NaHCO_{3}, and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 9 \rightarrow 3: 2$). The resulting product was recrystallized from acetone to give 24 as a colorless crystal $(22.8 \mathrm{mg}, 0.08524 \mathrm{mmol}, 65 \%$ yield): $\mathrm{R}_{f}=0.31$ (silica, EtOAc/hexanes 1:1); $[\alpha]_{\mathrm{D}}{ }^{25}=26.4$ (c 0.6, MeOH); IR (ATR, diamond crystal) v 3350, 2951, 2885, 1462, 1248, 1047, $849 \mathrm{~cm}^{-1}$; H NMR (500 MHz , Acetone $-d_{6}$) $\delta 5.30(\mathrm{ddd}, J=45.7,9.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 4.96(\mathrm{dddd}, J=46.4,5.9,4.4,3.5 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{H} 2$), 4.67 (dddd, $J=15.8,9.4,7.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.63 (dd, $J=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, OH6), 4.53 (dddd, $J=26.9,8.0,6.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 4.37 (dd, $J=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 6$), $4.00-3.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 1 \mathrm{a}, \mathrm{H} 1 \mathrm{~b}, \mathrm{H} 6 \mathrm{a}, \mathrm{H} 6 \mathrm{~b}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) δ 94.5 (dd, $J=178.7,2.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 90.0 (dd, $J=184.4,5.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 63.1$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6), 62.9$ (dd, $J=24.2,4.2 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 62.1(\mathrm{dd}, J=19.4,1.2 \mathrm{~Hz}, 1 \mathrm{C}$, C5), 49.3 (dd, $J=23.5,22.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3) \mathrm{ppm} ;{ }^{19}$ F NMR (470 MHz , Acetone- d_{6}) $\delta-191.75$ (dddddd, $J=46.5,23.7,18.9,15.8,4.7,4.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -193.11 (dddd, $J=45.6,26.9,7.8$, $4.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4) \mathrm{ppm}$; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrClF}_{2} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 264.9448$ found 264.9458 .

25
1,6-Bis- O-pivaloyl-2,3,4,5-tetradeoxy-3,5-dibromo-2,4-difluoro-L-talitol (25). To a stirred solution of 1,6-bis- O-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol 22 ($24.5 \mathrm{mg}, 0.05871 \mathrm{mmol}, 1.0$ equiv.) in pyridine $\left(0.6 \mathrm{~mL}, 0.1 \mathrm{M}\right.$) at $0{ }^{\circ} \mathrm{C}$ was added PPh_{3} ($153.9 \mathrm{mg}, 0.5871 \mathrm{mmol}, 10.0$ equiv.) and CBr_{4} ($195 \mathrm{mg}, 0.5871 \mathrm{mmol}, 10.0$ equiv.). The reaction mixture was stirred at room temperature for 4 days. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with 1 M HCl , saturated NaHCO_{3}, and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:4) to give 25 as a white amorphous solid ($23.3 \mathrm{mg}, 0.04852 \mathrm{mmol}, 83 \%$ yield): $\mathrm{R}_{f}=0.66$ (silica, EtOAc/hexanes 1:9); $[\alpha]_{\mathrm{D}}{ }^{25}=7.05\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$; IR (ATR, diamond crystal) v 2974, 1732, 1481, 1281, 1215, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.05$ (dddd, $J=46.3,6.7,3.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.81 (ddd, $J=46.6,9.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.65 (dddd, $J=28.3,8.0,6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 4.54 (ddd, $J=11.3,5.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 4.52$ (dddd, $J=17.4,9.7,5.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.44 (dddd, $J=17.4,12.6,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}), 4.36$ (ddd, $J=26.3,12.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{a}), 4.30(\mathrm{dd}, J=11.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}), 1.23(\mathrm{~s}, 9 \mathrm{H}$, $\left.\operatorname{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1$ (s, 1C, $\left.\operatorname{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 177.6\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 90.7(\mathrm{dd}, J=182.1,2.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2), 88.5$ (dd, $J=187.6,5.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 64.0(\mathrm{dd}, J=25.6,6.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 63.8(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, 1C, C6), 49.1 (d, $J=19.7 \mathrm{~Hz}, 1 \mathrm{C}$ C5), 48.8 (dd, $J=22.4,22.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 39.00(\mathrm{~s}, 1 \mathrm{C}$,
$\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 38.95$ ($\left.\mathrm{s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.23$ (s, 3C, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.22$ ($\mathrm{s}, 3 \mathrm{C}$, $\left.\operatorname{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm}$; 19F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-185.64 (dddd, $J=46.7,28.3,5.1$, $3.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -191.86 (ddddd, $J=46.3,26.0,17.4,17.4,3.5 \mathrm{~Hz}, 1 \mathrm{~F}$, F2) ppm; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{NO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 496.0504$ found 496.0519 .

26
2,3,4,5-Tetradeoxy-3,5-dibromo-2,4-difluoro-L-talitol (26). To a stirred solution of 1,6-bis- O-pivaloyl-2,3,4,5-tetradeoxy-3,5-dibromo-2,4-difluoro-L-talitol $\mathbf{2 5}$ (23.3 mg , $0.04852 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}, 0.1 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ under an argon atmosphere was added DIBAL (0.57 M in THF, $0.68 \mathrm{~mL}, 0.3882 \mathrm{mmol}, 8.0$ equiv.). The reaction mixture was stirred between -60 and $-40^{\circ} \mathrm{C}$ for 6 h . The mixture was quenched with EtOAc, warmed to room temperature, and the organic phase was washed with 1 M HCl , saturated NaHCO_{3}, and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 9 \rightarrow 3: 2$) to give 26 as a white amorphous solid ($9.5 \mathrm{mg}, 0.03045 \mathrm{mmol}, 63 \%$ yield): $\mathrm{R}_{f}=0.47$ (silica, EtOAc/hexanes 3:2); $[\alpha]_{\mathrm{D}}{ }^{25}=28.4$ (c $0.5, \mathrm{MeOH}$); IR (ATR, diamond crystal) v 3352, 2941, 2853, 1456, 1379, 1067, 856 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 5.18$ (ddd, $J=45.9,9.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.96 (dddd, $J=46.4,6.2,4.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.69 (ddd, $J=6.7,5.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 6$), 4.64 (dddd, $J=16.0,9.4,7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.61 (dddd, $J=28.3,8.7,5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 4.37 (ddd, $J=6.0,5.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1$), $3.99-3.84$ (m, 4H, H1a, H1b, H6a, H6b) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 94.4$ (dd, $J=178.8,2.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 89.4 (dd, $J=183.9,5.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 63.6$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6), 63.0(\mathrm{dd}, J=24.3,4.3 \mathrm{~Hz}, 1 \mathrm{C}$, C1), 55.4 (dd, $J=19.6,1.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 50.9(\mathrm{dd}, J=22.7,22.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz, Acetone- d_{6}) $\delta-188.91$ (dddd, $\left.J=45.9,28.3,7.5,4.8 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4\right),-191.63$ (ddddd, $J=46.4,24.0,19.516 .0,4.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$) ppm; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{O}_{2}{ }^{-}$ [$\mathrm{M}-\mathrm{H}]^{-} 308.8943$ found 308.8942.

1,6-Bis-O-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-2,4-difluoro-5-iodo-L-talitol (27). To a stirred solution of 1,6-bis- O-pivaloyl-2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol 22 ($24.2 \mathrm{mg}, 0.05799 \mathrm{mmol}, 1.0$ equiv.) in pyridine $\left(0.6 \mathrm{~mL}, 0.1 \mathrm{M}\right.$) at $0^{\circ} \mathrm{C}$ was added PPh_{3} ($136.7 \mathrm{mg}, 0.5799 \mathrm{mmol}, 10.0$ equiv.) and $\mathrm{I}_{2}(152.0 \mathrm{mg}, 0.5799 \mathrm{mmol}, 10.0$ equiv.). The reaction mixture was stirred at room temperature for 5 days. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with 1 M HCl , saturated NaHCO_{3}, and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:19) and repurified by flash column chromatography (silica gel, Et2O/pentane 1:25 \rightarrow 1:9) to give 27 as a white amorphous solid ($16.8 \mathrm{mg}, 0.03187 \mathrm{mmol}, 55 \%$ yield): $\mathrm{R}_{f}=0.56$ (silica, EtOAc/hexanes 1:9); $[\alpha]_{\mathrm{D}}{ }^{25}=5.19\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$; IR (ATR, diamond crystal) v 2972, 2934, 1732, 1479, 1279, $1134 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.04$ (dddd, $J=46.3,6.7,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 4.75$ (dddd, $J=30.9,9.3,5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.59$ (ddd, $J=11.5,5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 4.44$ (dddd, $J=17.5,12.5,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{~b})$, 4.40 (dddd, $J=17.2,9.8,4.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.36$ (ddd, $J=25.9,12.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1 \mathrm{a}$), 4.27 (dd, $J=11.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}), 4.22$ (ddd, $J=47.4,9.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 1.23$ ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1$ (s, 1C, $\left.\operatorname{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 177.5\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 90.6(\mathrm{dd}, J=182.2,2.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2), 88.5$ (dd, $J=186.4,5.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4), 65.6$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 64.1 (dd, $J=25.5,6.0 \mathrm{~Hz}$, $1 \mathrm{C}, \mathrm{C} 1), 51.8(\mathrm{dd}, J=21.6,21.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 39.01\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 38.96(\mathrm{~s}, 1 \mathrm{C}$, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.3(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5), 27.26$ (s, 3C, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.24$ (s, 3C, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-177.77$ (dddd, $J=47.6,30.9,4.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -191.38 (ddddd, $J=46.4,25.9,17.2,17.2,2.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$) ppm. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{BrF}_{2} \mathrm{INO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 544.0365$ found 544.0369.

2,3,4,5-Tetradeoxy-3-bromo-2,4-difluoro-5-iodo-L-talitol (28). To a stirred solution of 1,6-bis- O-pivaloyl-2,3,4,5-tetradeoxy-3-bromo-2,4-difluoro-5-iodo-L-talitol 27 (15.8 mg , 0.02997 mmol , 1.0 equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL}, 0.1 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$ under an argon atmosphere was added DIBAL (0.57 M in THF, $0.42 \mathrm{~mL}, 0.2398 \mathrm{mmol}, 8.0$ equiv.). The reaction mixture was stirred between -60 and $-40^{\circ} \mathrm{C}$ for 6 h . The mixture was quenched with EtOAc, warmed to room temperature, and the organic phase was washed with 1 M HCl , saturated NaHCO_{3}, and brine before being dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 9 \rightarrow 3: 2$) to give 28 as a white amorphous solid ($7.1 \mathrm{mg}, 0.01978 \mathrm{mmol}, 66 \%$ yield): $\mathrm{R}_{f}=0.56$ (silica, EtOAc/hexanes $3: 2$); $[\alpha]_{\mathrm{D}}{ }^{25}=19.1$ (c 0.3, MeOH); IR (ATR, diamond crystal) v 3360, 2920, 2851, 1462, 1379, 1063, 856 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 4.95$ (dddd, $J=46.5,6.3,4.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.75 (ddd, $J=6.8,5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 4.70 (dddd, $J=31.0,9.7,5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 4.64 (ddd, $J=46.0,9.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.54 (dddd, $J=15.8,9.5,7.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.36 (ddd, $J=5.7,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} 1), 3.98$ (ddd, $J=11.3,5.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}), 4.00$ -3.86 (m, 2H, H1a, H1b), 3.86 (ddd, $J=11.4,9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, Acetone- d_{6}) $\delta 94.4$ (dd, $\left.J=178.9,2.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2\right), 89.1(\mathrm{dd}, J=182.5,5.9 \mathrm{~Hz}$, $1 \mathrm{C}, \mathrm{C} 4), 65.5$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 6$), 63.1 (dd, $J=24.6,4.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 53.8 (dd, $J=22.1,22.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 37.0(\mathrm{dd}, J=20.0,0.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone $-d_{6}$) $\delta-181.43$ (dddd, $J=46.0,31.4,7.5,5.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -191.32 (dddddd, $J=46.5,23.5,19.0,15.8,4.4,1.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2) \mathrm{ppm}$; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrF}_{2} \mathrm{IO}_{2}{ }^{-}$ [$\mathrm{M}-\mathrm{H}]^{-} 356.8804$ found 356.8791 .

(3R,4S,5S)-3,4,5-Trifluorotetrahydro-2H-pyran-2-ol (29). To a stirred solution of 2,3,4-trideoxy-2,3,4-trifluoro-D-allitol 14 ($185.7 \mathrm{mg}, 0.9589 \mathrm{mmol}, 1.0$ equiv.) in water (15 mL , 0.064 M) room temperature was added $\mathrm{NaIO}_{4}(316.3 \mathrm{mg}, 1.479 \mathrm{mmol}, 1.5$ equiv.). The
reaction mixture was stirred at room temperature for 3 h . The water was evaporated under reduced pressure, and the crude was dissolved in acetone and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 1:1) to give an anomeric mixture of 29 (α / β 1:15) as a white amorphous solid ($138.3 \mathrm{mg}, 0.8859 \mathrm{mmol}, 90 \%$ yield): $\mathrm{R}_{f}=0.41$ (silica, $\mathrm{EtOAc} /$ hexanes 3:2); $[\alpha]_{\mathrm{D}}{ }^{25}=67.54$ (c 0.4, CHCl_{3}); IR (ATR, diamond crystal) v 3381, 2957, 1690, 1636, 1258, 1101, $1068 \mathrm{~cm}^{-1}$; only the β anomer has been attributed in ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 6.20$ (dd, $J=5.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 5.29 (dddd, $J=6.5,6.0,5.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 5.03 (ddddd, $J=45.7$, $25.5,24.5,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.93 (dddddd, $J=49.1,11.2,4.2,2.7,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H4), 4.66 (ddddd, $J=49.4,11.9,3.9,3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 4.10 (ddd, $J=29.1,13.0$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{a}$), 3.89 (dddd, $J=13.0,11.1,6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{~b}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 93.4$ (dd, $J=27.5,6.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1$), 87.6 (ddd, $J=185.4,16.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 2$), 86.6 (ddd, $J=186.2,17.0,1.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 85.9 (ddd, $J=187.9,16.4$, $16.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 61.2$ (dd, $J=22.2,5.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5) \mathrm{ppm} ;{ }^{19}$ F NMR (470 MHz , Acetoned_{6}) $\delta-204.60$ (ddddd, $J=49.4,25.5,20.1,13.8,6.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$), -206.54 (dddddd, $J=49.0$, 29.2, 24.0, 20.3, 12.6, $11.4 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4$), -211.64 (ddddd, $J=45.7,20.3,20.3,11.9$, $11.2 \mathrm{~Hz}) \mathrm{ppm} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 179.0294$ found 179.0296.

(3R,4S,5S)-4-Bromo-3,5-difluorotetrahydro-2H-pyran-2-ol (30). To a stirred solution of 2,3,4-trideoxy-3-bromo-2,4-difluoro-D-allitol 16 ($337.2 \mathrm{mg}, 1.354 \mathrm{mmol}, 1.0$ equiv.) in water ($21 \mathrm{~mL}, 0.064 \mathrm{M}$) room temperature was added $\mathrm{NaIO}_{4}(434.4 \mathrm{mg}, 2.031 \mathrm{mmol}$, 1.5 equiv.). The reaction mixture was stirred at room temperature for 3 h . The water was evaporated under reduced pressure, and the crude was dissolved in acetone and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $2: 3 \rightarrow 1: 1$) to give an anomeric mixture of $\mathbf{3 0}(\alpha / \beta 1: 10)$ as a white amorphous solid $(252.7 \mathrm{mg}, 1.164 \mathrm{mmol}, 85 \%$ yield): $\mathrm{R}_{f}=0.36$ (silica, EtOAc/hexanes 1:1); $[\alpha]_{\mathrm{D}}{ }^{25}=7.44$ (c 0.3, MeOH); IR (ATR, diamond
crystal) $v 3221,2949,2837,1653,1410,1113,1014 \mathrm{~cm}^{-1}$; only the β anomer has been attributed in ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.43$ (dd, $J=6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 4.68 (ddddd, $J=46.4,2.6,2.4,1.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 4.59 (dddd, $J=46.6,2.5,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 4.43$ (dddd, $J=31.5,29.9,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.20$ (ddd, $J=37.0,13.3,1.5 \mathrm{HZ}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{a}), 4.08$ (ddd, $J=13.0,13.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{~b}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 92.0(\mathrm{~d}, J=31.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 1), 87.2(\mathrm{~d}, J=185.5 \mathrm{~Hz}$, $1 \mathrm{C}, \mathrm{C} 2$), 86.7 (d, $J=189.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 4$), 61.9 (d, $J=21.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 5$), 43.0 (dd, $J=18.6$, $18.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-192.28$ (ddddd, $J=46.9,36.7,30.0$, $22.6,12.4 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 4)$, -193.17 (dddd, $J=47.1,31.9,22.6,6.6 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 2$) ppm; HRMS calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{BrF}_{2} \mathrm{NO}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 233.9936$ found 233.9941 .

($\mathbf{2 R}, \mathbf{3 s}, \mathbf{4 S}$)-2,3,4-Trifluoropentane-1,5-diol (31). (3R,4S,5S)-3,4,5-Trifluorotetrahydro$2 H$-pyran-2-ol 29 ($126.2 \mathrm{mg}, 0.8084 \mathrm{mmol}, 1.0$ equiv.) was reduced with NaBH_{4} (53.5 mg , $1.415 \mathrm{mmol}, 1.75$ equiv.) in anhydrous $\mathrm{EtOH}(8 \mathrm{~mL}, 0.1 \mathrm{M})$ following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 3:2) to give 31 as a colorless oil ($116.9 \mathrm{mg}, 0 . .7343 \mathrm{mmol}, 91 \%$ yield): $\mathrm{R}_{f}=0.36$ (silica, EtOAc/hexanes 3:2); IR (ATR, diamond crystal) v 3344, 2953, 1691, 1456, 1259, 1043, $868 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) $\delta 5.01$ (dtt, $J=45.8,14.7$, $14.7,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.85 (dddddd, $J=47.5,15.9,5.6,4.7,3.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 4$), 4.28 (dd, $J=5.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{OH} 5$), 3.89 (dddddd, $J=26.4,12.8,5.9,3.3,1.6$, $0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{a}, \mathrm{H} 5 \mathrm{a}$), 3.83 (dddddd, $J=30.5,12.7,5.8,5.8,2.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}$, H5b) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 92.6$ (ddd, $J=173.7,24.4,4.3 \mathrm{~Hz}$, 2C, C2, C4), 89.4 (dt, $J=174.1,25.1,25.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3$), 60.9 (ddd, $J=22.4,6.8 \mathrm{~Hz}$, $2.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C} 1, \mathrm{C} 5$) ppm; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone- d_{6}) $\delta-201.42$ (dddddd, $J=48.2$, $27.0,25.6,14.6,12.1,1.4 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F} 2, \mathrm{~F} 4),-206.16$ (dttt, $J=45.8,15.9,15.9,12.1,12.1$, $2.0,2.0,1.9,1.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 3$) ppm; HRMS calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 157.0482$ found 157.0480.

32
($\mathbf{2 R}, \mathbf{3 s , 4 S}$)-3-Bromo-2,4-difluoropentane-1,5-diol (32). (3R,4S,5S)-4-Bromo-3,5-difluorotetrahydro-2H-pyran-2-ol $\mathbf{3 0}(252.7 \mathrm{mg}, 1.164 \mathrm{mmol}, 1.0$ equiv.) was reduced with NaBH_{4} ($77 \mathrm{mg}, 2.038 \mathrm{mmol}, 1.75$ equiv.) in anhydrous $\mathrm{EtOH}(12 \mathrm{~mL}, 0.1 \mathrm{M}$) following the general procedure II. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $3: 7 \rightarrow 1: 1$) to give 32 as a colorless oil (198.9 mg , $0.9081 \mathrm{mmol}, 78 \%$ yield): $\mathrm{R}_{f}=0.46$ (silica, EtOAc/hexanes 3:2); IR (ATR, diamond crystal) $v 3325,2943,1636,1425,1234,1030,862 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}) δ 4.88 (dddd, $J=46.9,6.0,4.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 4$), 4.65 (tt, $J=11.9,11.9,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, H3), 4.31 (dd, $J=5.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH} 1, \mathrm{OH}$), 3.94 (ddd, $J=26.1,5.9,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}$, H5b), 3.94 (ddd, $J=25.0,5.9,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{a}, \mathrm{H} 5 \mathrm{a}$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , Acetone- d_{6}) $\delta 94.0$ (dd, $\left.J=117.4,4.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 4\right), 62.8(\mathrm{dd}, J=22.4,2.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C} 1$, C5), $49.0(\mathrm{t}, J=22.7,22.7 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , Acetone- d_{6}) $\delta-188.09$ (ddddd, $J=46.9,26.1,25.0,11.9,1.1 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F} 2, \mathrm{~F} 4) \mathrm{ppm} ; ~ H R M S ~ c a l c d ~ f o r ~$ $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{BrF}_{2} \mathrm{NO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 236.0092$ found 236.0094.

($2 R, 3 s, 4 S$)-2,3,4-Trifluoropentane-1,5-diyl dimethanesulfonate (33). To a solution of ($2 R, 3 s, 4 S$)-2,3,4-trifluoropentane-1,5-diol $31(28.8 \mathrm{mg}, 0.1821 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 0.9105 \mathrm{mmol}, 5.0$ equiv.). $\mathrm{MsCl}(70.4 \mu \mathrm{~L}, 0.9105 \mathrm{mmol}, 5.0$ equiv.) was added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 5.5 h . The precipitate was filtered out and the organic phase was concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 2:3) to give 33 as a colorless oil ($49.2 \mathrm{mg}, 0.1565 \mathrm{mmol}, 86 \%$ yield): $\mathrm{R}_{f}=0.45$ (silica, $\mathrm{EtOAc} /$ hexanes 3:2); IR (NaCl) v 2925, 2854, 1462, 1377, 1176, $961,801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.08$ (ddddd, $J=46.9,12.6,5.4,5.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 4$), 4.92 (dtt, $J=44.7$, $13.2,13.2,5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.55 (dddd, $J=24.3,12.4,3.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{a}, \mathrm{H} 5 \mathrm{a}$),
4.49 (dddd, $J=24.8,12.4,5.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}, \mathrm{H} 5 \mathrm{~b}$), $3.10\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{SO}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 87.7$ (ddd, $J=181.3,26.0,4.1 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 4$), 86.6 (dt, $J=180.2,25.8,25.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 66.2$ (ddd, $J=23.7,6.7,3.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C} 1, \mathrm{C} 5), 38.0$ (s, $2 \mathrm{C}, 2 \times \mathrm{SO}_{2} \mathrm{CH}_{3}$) ppm; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-201.05$ (dddddd, $J=46.9$, 24.8, 24.2, 13.2, 13.2, 1.9 Hz, 2F, F2, F4), -203.39 (dttt, $J=44.8,13.2,13.2,12.6,12.6,1.9$, $1.9,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F} 3$) ppm; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 332.0444$ found 332.0451.

($2 R, 3 s, 4 S$)-3-Bromo-2,4-difluoropentane-1,5-diyl dimethanesulfonate (34). To a solution of ($2 R, 3 s, 4 S$)-3-bromo-2,4-difluoropentane-1,5-diol 32 ($28.1 \mathrm{mg}, 0.1283 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(89.4 \mu \mathrm{~L}, 0.6415 \mathrm{mmol}$, 5.0 equiv.). $\mathrm{MsCl}(49.6 \mu \mathrm{~L}, 0.6415 \mathrm{mmol}, 5.0$ equiv.) was added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 5.5 h . The precipitate was filtered out and the organic phase was concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes 2:3) to give 34 as a colorless oil ($47.0 \mathrm{mg}, 0.1253 \mathrm{mmol}, 98 \%$ yield): $\mathrm{R}_{f}=0.51$ (silica, EtOAc/hexanes 3:2); IR (ATR, diamond crystal) v 2958, 2924, 2854, 1462, 1356, 1174, $1014 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.09$ (dddd, $J=46.1,6.2,5.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$, H4), 4.62 (dddd, $J=23.9,12.3,5.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{a}, \mathrm{H} 5 \mathrm{a}$), 4.58 (ddd, $J=23.3,12.3$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}, \mathrm{H} 5 \mathrm{~b}$), 4.40 (tt, $J=12.2,12.2,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 3.10 (s, 6 H , $2 \times \mathrm{SO}_{2} \mathrm{CH} 3$) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 89.7(\mathrm{dd}, J=184.4,3.9 \mathrm{~Hz}, 2 \mathrm{C}$, C2, C4), 68.1 (dd, $J=23.8,3.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C} 1, \mathrm{C} 5), 44.2$ (t, $J=22.9,22.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C} 3), 38.0$ (s, 2C, $2 \times \mathrm{SO}_{2} \mathrm{CH} 3$) ppm; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-186.49$ (dddd, $J=46.6,23.9$, $23.7,12.1 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F} 2$, F4) ppm; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{BrF}_{2} \mathrm{NO}_{6} \mathrm{~S}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 391.9643$ found 391.9651 .

Synthesis of amine 35

3-Azidopropan-1-ol (S6). To a solution of 3-bromopropan-1-ol $\mathbf{S 5}$ (1.0099 g, $7.266 \mathrm{mmol}, 1.0$ equiv.) in water ($7.2 \mathrm{~mL}, 1.0 \mathrm{M}$) was added $\mathrm{NaN}_{3}(945 \mathrm{mg}, 14.54 \mathrm{mmol}$, 2.0 equiv.). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 days. After cooling down to room temperature extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 1$) to give $\mathbf{S} 2$ as a colorless oil ($578.4 \mathrm{mg}, 5.723 \mathrm{mmol}, 79 \%$ yield). The spectroscopic data derived from compound $\mathbf{S} 2$ match those reported in the literature. ${ }^{3}$

S8
3-(4-Chlorophenyl)propyl methanesulfonate (S8). To a solution of 3-(4-chloro-phenyl)propan-1-ol S7 ($250 \mathrm{mg}, 1.465 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4.4 mL , $0.33 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.27 \mathrm{~mL}, 1.949 \mathrm{mmol}, 1.33$ equiv.) and $\mathrm{MsCl}(0.14 \mathrm{~mL}$, $1.758 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and room temperature for 3 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed with water, 1 M HCl , and brine. The organic phase was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 5 \rightarrow 3: 7$) to give $\mathbf{S 4}$ as a colorless oil
($320.3 \mathrm{mg}, 1.288 \mathrm{mmol}, 88 \%$ yield). The spectroscopic data derived from compound $\mathbf{S 4}$ match those reported in the literature. ${ }^{4}$

S9
1-(3-(3-Azidopropoxy)propyl)-4-chlorobenzene (S9). To a solution of 3-azidopropan-1ol S6 ($106.2 \mathrm{mg}, 1.051 \mathrm{mmol}, 1.0$ equiv.) in N, N-dimethylacetamide ($3.5 \mathrm{~mL}, 0.3 \mathrm{M}$) was added $60 \% \mathrm{NaH}$ in mineral oil ($126 \mathrm{mg}, 3.153 \mathrm{mmol}, 3$ equiv.). The mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to room temperature and a solution of 3-(4-chlorophenyl)propyl methanesulfonate $\mathbf{S 8}$ ($300 \mathrm{mg}, 1.206 \mathrm{mmol}, 1.15$ equiv.) in N, N dimethylacetamide (1.8 mL) was added. The mixture was stirred at room temperature for 5 h , quenched with a mixture of water/brine (1:1), then extracted with toluene. The combined organic phases were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained crude was purified by flash chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O} /$ pentane $0: 1 \rightarrow 3: 17$) to give $\mathbf{S 5}$ as a colorless oil ($205.5 \mathrm{mg}, 0.8099 \mathrm{mmol}, 77 \%$ yield): $\mathrm{R}_{f}=0.53$ (silica, $\mathrm{Et}_{2} \mathrm{O} /$ pentane 1:9); $\mathrm{IR}(\mathrm{NaCl}) v 3027,2945,2865,2097,1492$, $1119,801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{o-\mathrm{Cl}}\right.$), $7.11(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{m-\mathrm{Cl}}$), $3.48\left(\mathrm{t}, J=6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}_{3}\right), 3.41(\mathrm{t}, J=6.4$, $\left.6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 3.40\left(\mathrm{t}, J=6.5,6.5 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}_{3}\right)$, 2.66 (t, $\left.J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 1.86$ (tt, $J=7.5,7.5,6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 1.85\left(\mathrm{tt}, J=6.5,6.5,6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}_{3}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}_{p-\mathrm{Cl}}$), 131.6 ($\left.\mathrm{s}, 1 \mathrm{C}, C-\mathrm{Cl}\right), 129.9$ (s, 2C, $\mathrm{C}_{m-\mathrm{Cl}}$), 128.6 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{o-\mathrm{Cl}}$), $70.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 67.5\left(\mathrm{~s}, 1 \mathrm{C},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2}-\mathrm{N}_{3}$), 48.7 ($\mathrm{s}, 1 \mathrm{C},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}_{3}$), 31.8 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), 31.3 (s, $\left.1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 29.4$ (s, 1C, $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}_{3}$) ppm; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 254.1055$ found 254.1058.

35
3-(3-(4-Chlorophenyl)propoxy)propan-1-amine (35). To a solution of 1-(3-(3-az-idopropoxy)propyl)-4-chlorobenzene $\mathbf{S 5}$ ($145.3 \mathrm{mg}, 0.5727 \mathrm{mmol}, 1.0$ equiv.) in dry THF S24
($5.7 \mathrm{~mL}, 0.1 \mathrm{M}$) was added PPh_{3} ($225.3 \mathrm{mg}, 0.8590 \mathrm{mmol}, 1.5$ equiv.). After stirring at room temperature for 2 h , water ($0.27 \mathrm{~mL}, 14.60 \mathrm{mmol}$, 25.5 equiv.) was added, and the mixture was stirred for 68 h at room temperature. The reaction mixture was evaporated to dryness and the obtained crude was purified by flash column chromatography (silica gel, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 19 \rightarrow 1: 4$) to give 35 as a colorless oil ($105.1 \mathrm{mg}, 0.4615 \mathrm{mmol}, 81 \%$ yield): $\mathrm{R}_{f}=0.40$ (silica, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 5$); $\mathrm{IR}(\mathrm{NaCl}) v 3406,2927,2866,1492,1112$, 1015, $801 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{o-\mathrm{Cl}}\right.$), $7.11(\mathrm{~d}$, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{m-\mathrm{Cl}}\right), 3.49\left(\mathrm{t}, J=6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right), 3.40(\mathrm{t}$, $\left.\left.J=6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 3.15-2.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH})_{2}\right), 2.89(\mathrm{t}, J=6.8$, $\left.6.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right), 2.64\left(\mathrm{t}, J=7.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right.$), $1.89-1.82$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), $1.81-1.76$ (m, $2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\left.\mathrm{NH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}_{p-\mathrm{Cl}}\right.$), $131.6(\mathrm{~s}, 1 \mathrm{C}, C-\mathrm{Cl})$, 129.9 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{m-\mathrm{Cl}}$), 128.5 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{o-\mathrm{Cl}}$), 70.1 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{Ar}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), 69.1 ($\mathrm{s}, 1 \mathrm{C},-$ $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$), 39.6 (s, $1 \mathrm{C},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$), 32.1 (s, $1 \mathrm{C},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{NH}_{2}$), 31.8 (s, $1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), 31.3 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$) ppm; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 228.1150$ found 228.1155.

($3 R, 4 s, 5 S$)-1-(3-(3-(4-Chlorophenyl)propoxy)propyl)-3,4,5-trifluoropiperidine (36). To a solution of $(2 R, 3 s, 4 S)$-2,3,4-trifluoropentane-1,5-diyl dimethanesulfonate 33 ($23.5 \mathrm{mg}, 0.07477 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{EtOH}(0.75 \mathrm{~mL}, 0.1 \mathrm{M}$) in a sealed tube was added 3-(3-(4-chlorophenyl)propoxy)propan-1-amine 35 ($39.6 \mathrm{mg}, 0.1739 \mathrm{mmol}$, 2.3 equiv.). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 17 h . After being cooled down to room temperature, the volatiles were evaporated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 9 \rightarrow 1: 1$) which permitted to recover 11.5 mg of $\mathbf{3 3}$. The unclean fraction containing the desired product was then purified by flash column chromatography (silica gel, acetone/toluene $1: 99 \rightarrow 1: 49)$ to give 35 as a colorless oil ($5.0 \mathrm{mg}, 0.01429 \mathrm{mmol}, 19 \%$ yield, 37% yield brsm): $\mathrm{R}_{f}=0.38$ (silica, EtOAc/hexanes 2:3); IR (NaCl) v 2927, 2851, 1743, 1491, 1460, $1118,1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{o-\mathrm{Cl}}\right), 7.11(\mathrm{~d}$,
$\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{m-\mathrm{Cl}}\right), 5.11(\mathrm{dbr}, J=55.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHF}-\mathrm{CHF}-\mathrm{CHF}-), 4.63(\mathrm{sbr}, 2 \mathrm{H},-\mathrm{N}-$ CH_{2}-CHF-), 3.44 (t, $J=6.2,6.2 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-$), $3.39(\mathrm{t}, J=6.3,6.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), $3.09-2.85\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right), 2.80-2.47(\mathrm{~m}, 4 \mathrm{H}$, $2 \times-\mathrm{N}-\mathrm{CH}_{2}$-CHF-), 2.65 (t, $J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), 1.85 (tt, $J=6.8,6.8$, $\left.6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 1.95-1.70\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{O}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}_{p-\mathrm{Cl}}$), 131.7 ($\left.\mathrm{s}, 1 \mathrm{C}, \mathrm{C}-\mathrm{Cl}\right), 129.9(\mathrm{~s}, 2 \mathrm{C}$, $\mathrm{C}_{m-\mathrm{Cl}}$, 128.6 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{o-\mathrm{Cl}}$), 87.8 ($\mathrm{s}, 1 \mathrm{C},-\mathrm{CHF}-C H F-\mathrm{CHF}$), 86.4 ($\mathrm{s}, 2 \mathrm{C}, 2 \times-\mathrm{N}^{2} \mathrm{CH}_{2}-\mathrm{CHF}$), 70.1 ($\left.\mathrm{s}, 1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 68.5\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right), 54.3\left(\mathrm{~s}, 1 \mathrm{C},-\mathrm{N}-\mathrm{CH}_{2}-\right.$ CHF-), 50.2 ($\left.\mathrm{s}, 1 \mathrm{C},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right), 31.9\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 31.2(\mathrm{~s}, 1 \mathrm{C}$, Ar- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), 27.0 (s, 1C, $\left.-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}) δ-199.48--200.77 (m, 3F) ppm; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 350.1493 found 350.1508 .

(3R, 4s, 5S)-4-Bromo-1-(3-(3-(4-chlorophenyl)propoxy)propyl)-3,5-difluoropiperidine (37). To a solution of $(2 R, 3 s, 4 S)$-3-bromo-2,4-difluoropentane-1,5-diyl dimethanesulfonate 34 ($25.5 \mathrm{mg}, 0.06796 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{EtOH}(0.7 \mathrm{~mL}, 0.1 \mathrm{M})$ in a sealed tube was added 3-(3-(4-chlorophenyl)propoxy)propan-1-amine 35 (38.7 mg , $0.1699 \mathrm{mmol}, 2.5$ equiv.). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 24 h . After being cooled down to room temperature, the volatiles were evaporated under reduced pressure. The obtained crude was purified by flash column chromatography (silica gel, EtOAc/hexanes $1: 9 \rightarrow 1: 1$) which permitted to recover 10.7 mg of $\mathbf{3 4}$ and 5.0 mg of an elimination product. The unclean fraction containing the desired product was then purified by flash column chromatography (silica gel, acetone/toluene $1: 99 \rightarrow 1: 49$) to give $\mathbf{3 6}$ as a colorless oil ($5.0 \mathrm{mg}, 0.01217 \mathrm{mmol}, 18 \%$ yield, 31% yield brsm, 78% purity): $\mathrm{R}_{f}=0.40$ (silica, acetone/toluene 1:9); IR (NaCl) v 2925, 2854, 1744, 1492, 1463, 1116, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{o-\mathrm{Cl}}\right), 7.11\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{m-\mathrm{Cl}}\right)$, $4.84-4.51(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{CHF}, \mathrm{CHBr}), 3.44\left(\mathrm{t}, J=6.2,6.2 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right.$), 3.39 (t, $\left.J=6.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right), 3.01-2.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CHF}\right)$, 2.65 (dd, $J=8.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$), 1.89 - 1.81 (m, $2 \mathrm{H} \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$
$\left.\mathrm{CH}_{2}-\mathrm{O}-\right), 1.81-1.74\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-\right), 1.72-1.65\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{O}^{-}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{N}-\right)$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}_{p-\mathrm{Cl}}$), 131.7 (s, 1C, CCl), 129.9 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{m-\mathrm{Cl}}$), 128.6 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}_{o-\mathrm{Cl}}$), 86.2 ($\mathrm{s}, 2 \mathrm{C}, 2 \times C \mathrm{HF}$), 84.9 ($\mathrm{s}, 1 \mathrm{C}, C \mathrm{HBr}$), 70.1 (s, 1C, Ar-CH2-CH2-CH2-O-), 68.6 (s, 1C, $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-$), 68.3 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{N}-\mathrm{CH}_{2}$), 54.4 (s, 1C, $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-$), 52.6 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}-$), 31.8 (s, $1 \mathrm{C}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{O}-$), 31.2 ($\left.\mathrm{s}, 1 \mathrm{C}, \mathrm{Ar}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-186.72$ $--188.37(\mathrm{~m}, 2 \mathrm{~F}) \mathrm{ppm}$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrClF}_{2} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 410.0692$ found 410.0697.

II. Crystal structure determination

Table S1. Crystal data and structure refinement for compound tritosyl-14

X-ray-derived ORTEP

Extended packing arrangement

Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{9} \mathrm{~S}_{3}$
Formula weight	650.38
Temperature [K]	100
Crystal system	monoclinic
Space group (number)	$P 2_{1}$ (4)
$a[\mathrm{~A}]$	11.1881(7)
b [\AA]	9.6923(6)
$c[\AA]$	27.0368(16)
$\alpha\left[{ }^{\circ}\right]$	90
$\beta\left[{ }^{\circ}\right]$	94.553(3)
$\gamma\left[{ }^{\circ}\right]$	90
Volume [${ }^{3}{ }^{3}$]	2922.6(3)
Z	4
$\rho_{\text {calc }}\left[\mathrm{gcm}^{-3}\right]$	1.479
$\mu\left[\mathrm{mm}^{-1}\right]$	2.954
$F(000)$	1352
Crystal size [mm^{3}]	$0.157 \times 0.091 \times 0.085$
Crystal colour	clear light colourless
Crystal shape	Block
Radiation	$\mathrm{Cu} K_{\alpha}(\lambda=1.54178$ A $)$
2Θ range [${ }^{\circ}$]	3.28 to 140.57 (0.82 A)
Index ranges	$-13 \leq \mathrm{h} \leq 13$
	$-10 \leq \mathrm{k} \leq 11$
	$-32 \leq 1 \leq 32$
Reflections collected	35261
Independent reflections	9642
	$R_{\text {int }}=0.0351$
	$R_{\text {sigma }}=0.0329$
Completeness to $\theta=67.679^{\circ}$	99.3 \%
Data / Restraints / Parameters	9642 / 1 / 763
Goodness-of-fit on F^{2}	1.039
Final R indexes	$R_{1}=0.0494$
[$I \geq 2 \sigma(I)]$	$\mathrm{w} R_{2}=0.1288$
Final R indexes	$R_{1}=0.0517$
[all data]	$\mathrm{w} R_{2}=0.1309$
Largest peak/hole $\left[\mathrm{e}^{-3}{ }^{-3}\right]$	0.99/-0.37
Flack X parameter	0.000(13)

Table S2. Crystal data and structure refinement for compound 24

X-ray-derived ORTEP

Extended packing arrangement

Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{BrClF}_{2} \mathrm{O}_{2}$
Formula weight	267.50
Temperature [K]	150
Crystal system	orthorhombic
Space group (number)	$P 2_{1} 2_{1} 2$ (18)
$a[\AA]$	10.7019(6)
b [\AA]	17.3028(10)
$c[\AA]$	4.9473(3)
$\left.\alpha{ }^{\circ}{ }^{\circ}\right]$	90
$\beta\left[{ }^{\circ}\right]$	90
$\gamma\left[{ }^{\circ}\right]$	90
Volume [\AA^{3}]	916.11(9)
Z	4
$\rho_{\text {calc }}\left[\mathrm{gcm}^{-3}\right]$	1.939
$\mu\left[\mathrm{mm}^{-1}\right]$	5.839
$F(000)$	528
Crystal size [mm^{3}]	$0.03 \times 0.07 \times 0.21$
Crystal colour	clear light colourless
Crystal shape	plate
Radiation	Ga $K_{\alpha}(\lambda=1.34139$ A $)$
2Θ range [${ }^{\circ}$]	8.45 to 112.92 (0.80 \AA)
Index ranges	$\begin{aligned} & -12 \leq h \leq 13 \\ & -20 \leq k \leq 21 \\ & -5 \leq 1 \leq 5 \end{aligned}$
Reflections collected	8226
Independent reflections	$\begin{aligned} & 1770 \\ & R_{\text {int }}=0.0504 \\ & R_{\text {sigma }}=0.0391 \end{aligned}$
Completeness to $\theta=53.594^{\circ}$	100.0 \%
Data / Restraints / Parameters	1770 / 0 / 112
Goodness-of-fit on F^{2}	1.093
Final R indexes	$R_{1}=0.0299$
$[I \geq 2 \sigma(I)]$	$\mathrm{w} R_{2}=0.0676$
Final R indexes [all data]	$\begin{aligned} & R_{1}=0.0367 \\ & \mathrm{w} R_{2}=0.0699 \end{aligned}$
Largest peak/hole [e \AA^{-3}]	0.74/-0.40
Flack X parameter	0.09(5)

III. NMR spectra of compounds

80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
C13 (ppm)																	

${ }^{19}$ F NMR Spectrum ($\mathrm{CDCl}_{3}, 470 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

15
${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

${ }^{1} \mathrm{H}$ NMR Spectrum
(Acetone- $d_{6}, 500 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR Spectrum
(Acetone- $d_{6}, 126 \mathrm{MHz}$)

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

${ }^{13}$ C NMR Spectrum $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right)$

${ }^{1}$ H NMR Spectrum
(Acetone- $d_{6}, 500 \mathrm{MHz}$)

gat

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum (Acetone- $d_{6}, 470 \mathrm{MHz}$)

合然

${ }^{13} \mathrm{C}$ NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

29
${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

$$
\text { (} L \text {) }
$$

${ }^{19}$ F NMR Spectrum

${ }^{19}$ F NMR Spectrum
(Acetone- $d_{6}, 470 \mathrm{MHz}$)

[^0]
${ }^{1}$ H NMR Spectrum $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right)$

.

${ }^{13} \mathrm{C}$ NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{1}$ H NMR Spectrum $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

35
${ }^{13} \mathrm{C}$ NMR Spectrum $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right)$

(20)

${ }^{1}$ H NMR Spectrum $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

30	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10
10	10	160	150	140	130	12	110	10	$\mathrm{fl}_{1}(\mathrm{ppm})$	8	0	0	5	40	30	2	10

${ }^{19}$ F NMR Spectrum
$\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right)$

IV. Solution-state conformation

Figure S1. Solution state conformation of compound 15 in acetone- d_{6}

C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis
${ }^{3} \mathrm{JH}_{1 \mathrm{a}}-\mathrm{F}_{2} 29.7 \mathrm{~Hz}$	${ }^{3} \mathrm{JF}_{2}-\mathrm{H}_{3} 6.7 \mathrm{~Hz}$	${ }^{3} \mathrm{HH}_{3}-\mathrm{H}_{4} 2.5 \mathrm{~Hz}$	${ }^{3} \mathrm{JF}_{4}-\mathrm{H}_{5} 5.3 \mathrm{~Hz}$
$\begin{aligned} & { }^{3} \mathrm{JH}_{1 \mathrm{~b}}-\mathrm{F}_{2} 26.0 \mathrm{~Hz} \\ & { }^{3} \mathrm{JH}_{1 \mathrm{a}}-\mathrm{H}_{2} 4.7 \mathrm{~Hz} \end{aligned}$	${ }^{3} \mathrm{JH}_{2}-\mathrm{H}_{3} 8.0 \mathrm{~Hz}$	${ }^{3} \mathrm{JH}_{3}-\mathrm{F}_{4} 22.0 \mathrm{~Hz}$	${ }^{3} \mathrm{JH}_{4}-\mathrm{H}_{5} 8.3 \mathrm{~Hz}$
${ }^{3} \mathrm{JH}_{1 \mathrm{~b}}-\mathrm{H}_{2} 2.4 \mathrm{~Hz}$			

Figure S2. Solution state conformation of compound 16 in acetone- d_{6}

Figure S3. Solution state conformation of compound 17 in acetone- d_{6}

C_{5}

C1-C2 axis	C2-C3 axis	C3-C4 axis	C4-C5 axis
${ }^{3} \mathrm{JH}_{1 \mathrm{a}}-\mathrm{F}_{2} 28.2 \mathrm{~Hz}$	${ }^{3} \mathrm{JF}_{2}-\mathrm{H}_{3} 8.1 \mathrm{~Hz}$	${ }^{3} \mathrm{JH}_{3}-\mathrm{H}_{4} 2.8 \mathrm{~Hz}$	${ }^{3} \mathrm{JF}_{4}-\mathrm{H}_{5} 6.6 \mathrm{~Hz}$
${ }^{3} \mathrm{JH}_{1 \mathrm{~b}}-\mathrm{F}_{2} 28.0 \mathrm{~Hz}$	${ }^{3} \mathrm{JH}_{2}-\mathrm{H}_{3} 8.1 \mathrm{~Hz}$	${ }^{3} \mathrm{JH}_{3}-\mathrm{F}_{4} 24.3 \mathrm{~Hz}$	${ }^{3} \mathrm{JH}_{4}-\mathrm{H}_{5} 8.2 \mathrm{~Hz}$
${ }^{3} \mathrm{JH}_{1 \mathrm{a}}-\mathrm{H}_{2} 4.9 \mathrm{~Hz}$			
${ }^{3} \mathrm{JH}_{1 \mathrm{~b}}-\mathrm{H}_{2} 2.1 \mathrm{~Hz}$			

Figure S4. Solution state conformation of compound 18 in acetone- d_{6}

Table S3. Thermochemistry for conformers of molecule 18 in vacuum (B3LYP/6311+G*)

Conformer	Energy (На)	Enthalpy (Ha)	Gibbs' Free Energy (Ha)	Dipole moment (D)			
				X	Y	Z	Total
A	-661.185974	-661.185029	-661.238574	-0.898225	-1.11111	1.02895	1.76072
B	-661.181079	-661.180134	-661.233960	0.820353	1.20611	2.87256	3.19769

Table S4. Optimized geometry of conformer A in vacuum (B3LYP/6-311+G*)

Center Number	Atomic Number	Atomic Type	Coordinates $(\mathbf{\AA})$		
$\mathbf{1}$	6	0	-2.739324000	-0.556899000	0.080528000
$\mathbf{2}$	1	0	-2.485386000	-0.900462000	-0.920834000
$\mathbf{3}$	1	0	-2.553508000	-1.388229000	0.774312000
$\mathbf{4}$	6	0	-1.854185000	0.617749000	0.477744000
$\mathbf{5}$	1	0	-2.261887000	1.082257000	1.384395000
$\mathbf{6}$	6	0	-0.378090000	0.304442000	0.719134000
$\mathbf{7}$	1	0	0.095557000	1.232021000	1.054503000
$\mathbf{8}$	1	0	-0.276497000	-0.409589000	1.541262000
$\mathbf{9}$	6	0	0.383988000	-0.206614000	-0.492493000
$\mathbf{1 0}$	1	0	0.178749000	0.408501000	-1.372543000
$\mathbf{1 1}$	6	0	1.893323000	-0.358928000	-0.311596000
$\mathbf{1 2}$	1	0	2.285016000	-0.805233000	-1.234682000
$\mathbf{1 3}$	6	0	2.645011000	0.945311000	-0.067485000
$\mathbf{1 4}$	1	0	2.444690000	1.658246000	-0.869951000
$\mathbf{1 5}$	1	0	2.319621000	1.392590000	0.880618000
$\mathbf{1 6}$	8	0	-4.117589000	-0.219417000	0.036300000
$\mathbf{1 7}$	1	0	-4.430396000	0.001750000	0.921969000
$\mathbf{1 8}$	9	0	-1.932793000	1.610289000	-0.520346000
$\mathbf{1 9}$	9	0	-0.096350000	-1.509817000	-0.810500000
$\mathbf{2 0}$	8	0	2.207912000	-1.206740000	0.797030000
$\mathbf{2 1}$	1	0	1.935037000	-2.109133000	0.592271000
$\mathbf{2 2}$	8	0	4.044527000	0.729078000	-0.058558000
$\mathbf{2 3}$	1	0	4.228136000	0.039305000	0.593135000

Table S5. Optimized geometry of conformer B in vacuum (B3LYP/6-311+G*)

Center Number	Atomic Number	Atomic Type	Coordinates (\mathbf{A})		
	6	0	-2.739324000	-0.556899000	0.080528000
$\mathbf{2}$	1	0	-2.485386000	-0.900462000	-0.920834000
$\mathbf{3}$	1	0	-2.553508000	-1.388229000	0.774312000
$\mathbf{4}$	6	0	-1.854185000	0.617749000	0.477744000
$\mathbf{5}$	1	0	-2.261887000	1.082257000	1.384395000
$\mathbf{6}$	6	0	-0.378090000	0.304442000	0.719134000
$\mathbf{7}$	1	0	0.095557000	1.232021000	1.054503000
$\mathbf{8}$	1	0	-0.276497000	-0.409589000	1.541262000
$\mathbf{9}$	6	0	0.383988000	-0.206614000	-0.492493000
$\mathbf{1 0}$	1	0	0.178749000	0.408501000	-1.372543000
$\mathbf{1 1}$	6	0	1.893323000	-0.358928000	-0.311596000
$\mathbf{1 2}$	1	0	2.285016000	-0.805233000	-1.234682000
$\mathbf{1 3}$	6	0	2.645011000	0.945311000	-0.067485000
$\mathbf{1 4}$	1	0	2.444690000	1.658246000	-0.869951000
$\mathbf{1 5}$	1	0	2.319621000	1.392590000	0.880618000
$\mathbf{1 6}$	8	0	-4.117589000	-0.219417000	0.036300000
$\mathbf{1 7}$	1	0	-4.430396000	0.001750000	0.921969000
$\mathbf{1 8}$	9	0	-1.932793000	1.610289000	-0.520346000
$\mathbf{1 9}$	9	0	-0.096350000	-1.509817000	-0.810500000
$\mathbf{2 0}$	8	0	2.207912000	-1.206740000	0.797030000
$\mathbf{2 1}$	1	0	1.935037000	-2.109133000	0.592271000
$\mathbf{2 2}$	8	0	4.044527000	0.729078000	-0.058558000
$\mathbf{2 3}$	1	0	4.228136000	0.039305000	0.593135000

Figure S5. Solution state conformation of compound 24 in acetone- d_{6}

Figure S6. Solution state conformation of compound 26 in acetone- d_{6}

Figure S7. Solution state conformation of compound 28 in acetone- d_{6}

V. Log P determination using ${ }^{19}$ F NMR ${ }^{5}$

Equations:
Eq. 1)

$$
\rho_{o c t}=\frac{I_{O c t}^{X}}{I_{O c t}^{r e f}} \quad \rho_{\mathrm{H}_{2} \mathrm{O}}=\frac{I_{\mathrm{H}_{2} \mathrm{O}}^{X}}{I_{\mathrm{H}_{2} \mathrm{O}}^{r e f}}
$$

Eq. 2)

$$
\frac{\rho_{O c t}}{\rho_{H_{2} \mathrm{O}}}=\frac{P^{X}}{P^{\text {ref }}}
$$

Eq. 3)

$$
P^{X}=P^{r e f}\left(\frac{\rho_{O c t}}{\rho_{H_{2} \mathrm{O}}}\right)
$$

Eq. 4)

$$
\log P^{X}=\log P^{r e f}+\log \left(\frac{\rho_{O c t}}{\rho_{H_{2} \mathrm{O}}}\right)
$$

ρ : Partition of compound X in the phase; I: Sum of all integration in the phase (ref = 100); $P: n$-octanol/ $\mathrm{H}_{2} \mathrm{O}$ partition; X : compound with unknown $\log P$; ref: 2,2,2-trifluoroethanol $(\log P=0.36)$

Compounds	$\boldsymbol{I}_{\boldsymbol{O c t}}^{\boldsymbol{X}}$	$\boldsymbol{\rho}_{\boldsymbol{O c t}}$	$\boldsymbol{I}_{\boldsymbol{H}_{\mathbf{2}} \boldsymbol{O}}^{\boldsymbol{X}}$	$\boldsymbol{\rho}_{\boldsymbol{H}_{\mathbf{2}} \boldsymbol{o}}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{P}^{\boldsymbol{X}}$
$\mathbf{1 1}$	10.03	0.1103	22.76	0.2276	0.00
$\mathbf{1 2}$	12.02	0.1202	18.83	0.1883	0.17
$\mathbf{1 3}$	13.46	0.1346	12.42	0.1242	0.40
$\mathbf{1 5}$	5.30	0.0530	37.70	0.3770	-0.49
$\mathbf{1 6}$	2.04	0.0204	10.56	0.1056	-0.35
$\mathbf{1 7}$	2.84	0.0284	8.79	0.0879	-0.13
$\mathbf{1 8}$	0.71	0.0071	46.02	0.4602	-1.45
$\mathbf{2 4}$	16.31	0.1631	3.96	0.0396	0.975
$\mathbf{2 6}$	7.04	0.0704	1.10	0.0110	1.17
$\mathbf{2 8}$	3.59	0.0359	0.19	0.0019	1.64

$\log P{ }^{19}$ F NMR spectra

Compound 11

Compound 12

Compound 13

Compound 15

Compound 16

Compound 17

Compound 18

Compound 24

Compound 26

Compound 28

VI. Density functional theory calculations on Pitolisant and analogues

Table S6. Thermochemistry of Pitolisant analogues in vacuum (B3LYP/6-31+G*)

Dipole moment

Compound	(D)			
	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Total
Pitolisant	-1.54814	0.556954	1.96880	2.56576
$\mathbf{3 6}$	-1.02685	-0.563209	-3.04759	3.26488
$\mathbf{3 7}$	-1.19564	-0.503006	-2.86493	3.14452

Table S7. Optimized geometry of Pitolisant in vacuum (B3LYP/6-31+G*)

Center Number	Atomic Number	Atomic Type	Coordinates (i)		
			X	Y	Z
1	6	0	-7.517217000	1.915124000	-0.000123000
2	6	0	-7.242639000	1.083479000	-1.261527000
3	6	0	-5.838300000	0.468788000	-1.214683000
4	7	0	-5.662949000	-0.327443000	0.000004000
5	6	0	-5.838367000	0.468873000	1.214628000
6	6	0	-7.242710000	1.083561000	1.261352000
7	1	0	-5.683788000	-0.188245000	-2.079949000
8	1	0	-5.088357000	1.283651000	-1.287810000
9	1	0	-5.683900000	-0.188101000	2.079947000
10	1	0	-5.088430000	1.283742000	1.287738000
11	6	0	-4.476808000	-1.182234000	0.000067000
12	1	0	-4.548381000	-1.836353000	0.880816000
13	1	0	-4.548339000	-1.836415000	-0.880639000
14	6	0	-3.098784000	-0.484468000	0.000073000
15	1	0	-2.992983000	0.159083000	-0.881858000
16	1	0	-2.993012000	0.159125000	0.881976000
17	6	0	-1.960587000	-1.496759000	0.000119000
18	1	0	-2.021828000	-2.148656000	0.889486000
19	1	0	-2.021793000	-2.148694000	-0.889221000
20	8	0	-0.720802000	-0.802052000	0.000127000
21	6	0	0.408293000	-1.660636000	0.000048000
22	1	0	0.383481000	-2.315052000	0.889534000
23	1	0	0.383442000	-2.314933000	-0.889522000
24	6	0	1.673102000	-0.809740000	0.000078000
25	1	0	1.662607000	-0.154829000	-0.880259000
26	1	0	1.662639000	-0.154939000	0.880496000
27	6	0	2.954368000	-1.668357000	-0.000003000
			S112		

$\mathbf{2 8}$	1	0	2.949514000	-2.325774000	0.880020000
$\mathbf{2 9}$	1	0	2.949459000	-2.325695000	-0.880083000
$\mathbf{3 0}$	6	0	5.965876000	0.364896000	1.213096000
$\mathbf{3 1}$	6	0	6.531546000	0.756372000	-0.000025000
$\mathbf{3 2}$	6	0	4.816788000	-0.428956000	1.201600000
$\mathbf{3 3}$	1	0	4.380441000	-0.736831000	2.149721000
$\mathbf{3 4}$	6	0	5.966090000	0.364567000	-1.213136000
$\mathbf{3 5}$	6	0	4.220765000	-0.837928000	-0.000011000
$\mathbf{3 6}$	1	0	6.418953000	0.670976000	-2.150830000
$\mathbf{3 7}$	6	0	4.816998000	-0.429283000	-1.201626000
$\mathbf{3 8}$	1	0	4.380816000	-0.737415000	-2.149740000
$\mathbf{3 9}$	1	0	6.418576000	0.671559000	2.150785000
$\mathbf{4 0}$	17	0	7.983080000	1.753323000	-0.000032000
$\mathbf{4 1}$	1	0	-7.340085000	1.703684000	-2.162489000
$\mathbf{4 2}$	1	0	-6.863343000	2.800802000	-0.000133000
$\mathbf{4 3}$	1	0	-7.340212000	1.703827000	2.162268000
$\mathbf{4 4}$	1	0	-7.980525000	0.273474000	-1.338551000
$\mathbf{4 5}$	1	0	-8.550148000	2.286691000	-0.000164000
$\mathbf{4 6}$	1	0	-7.980598000	0.273559000	1.338388000

Table S8. Optimized geometry of compound 36 in vacuum (B3LYP/6-31+G*)

Center Number	Atomic Number	Atomic Type	Coordinates (\mathbf{A})			
	6	0	-6.512364000	1.570658000	0.003918000	
$\mathbf{2}$	6	0	-6.185147000	0.810506000	-1.276089000	
$\mathbf{3}$	6	0	-4.745031000	0.293278000	-1.213823000	
$\mathbf{4}$	7	0	-4.522979000	-0.475604000	-0.001394000	
$\mathbf{5}$	6	0	-4.747077000	0.284990000	1.215874000	
$\mathbf{6}$	6	0	-6.187318000	0.801739000	1.279232000	
$\mathbf{7}$	1	0	-5.890275000	2.477523000	0.007560000	
$\mathbf{8}$	1	0	-6.316621000	1.472616000	-2.140134000	
$\mathbf{9}$	9	0	-7.066409000	-0.255858000	-1.455851000	
$\mathbf{1 0}$	1	0	-4.573715000	-0.351370000	-2.082315000	
$\mathbf{1 1}$	1	0	-4.065839000	1.166954000	-1.312592000	
$\mathbf{1 2}$	1	0	-4.577197000	-0.365562000	2.080233000	
$\mathbf{1 3}$	1	0	-4.068094000	1.158001000	1.321758000	
$\mathbf{1 4}$	1	0	-6.320301000	1.457891000	2.147580000	
$\mathbf{1 5}$	9	0	-7.068843000	-0.265863000	1.450139000	
$\mathbf{1 6}$	6	0	-3.338684000	-1.329789000	-0.003345000	

$\mathbf{1 7}$	1	0	-3.411734000	-1.986527000	0.874167000
$\mathbf{1 8}$	1	0	-3.410698000	-1.981112000	-0.884974000
$\mathbf{1 9}$	6	0	-1.971440000	-0.615032000	-0.000394000
$\mathbf{2 0}$	1	0	-1.874740000	0.033131000	-0.880746000
$\mathbf{2 1}$	1	0	-1.875960000	0.028288000	0.883638000
$\mathbf{2 2}$	6	0	-0.815186000	-1.607739000	-0.002394000
$\mathbf{2 3}$	1	0	-0.865934000	-2.262394000	0.885379000
$\mathbf{2 4}$	1	0	-0.865508000	-2.258288000	-0.893207000
$\mathbf{2 5}$	8	0	0.407727000	-0.886993000	-0.000467000
$\mathbf{2 6}$	6	0	1.557015000	-1.721213000	-0.001998000
$\mathbf{2 7}$	1	0	1.545557000	-2.376793000	0.886460000
$\mathbf{2 8}$	1	0	1.545455000	-2.373663000	-0.892755000
$\mathbf{2 9}$	6	0	2.801940000	-0.841942000	-0.000562000
$\mathbf{3 0}$	1	0	2.776811000	-0.186139000	-0.879936000
$\mathbf{3 1}$	1	0	2.776884000	-0.189053000	0.880980000
$\mathbf{3 2}$	6	0	4.102396000	-1.671287000	-0.001985000
$\mathbf{3 3}$	1	0	4.112755000	-2.329837000	0.877099000
$\mathbf{3 4}$	1	0	4.112463000	-2.327263000	-0.883000000
$\mathbf{3 5}$	6	0	7.065573000	0.430084000	1.213680000
$\mathbf{3 6}$	6	0	7.621108000	0.837433000	0.001045000
$\mathbf{3 7}$	6	0	5.935716000	-0.390863000	1.201252000
$\mathbf{3 8}$	1	0	5.507770000	-0.711332000	2.149041000
$\mathbf{3 9}$	6	0	7.064584000	0.434366000	-1.212573000
$\mathbf{4 0}$	6	0	5.349025000	-0.811333000	-0.000940000
$\mathbf{4 1}$	1	0	7.509851000	0.752863000	-2.149863000
$\mathbf{4 2}$	6	0	5.934741000	-0.386614000	-1.202124000
$\mathbf{4 3}$	1	0	5.506026000	-0.703740000	-2.150691000
$\mathbf{4 4}$	1	0	7.511596000	0.745276000	2.151727000
$\mathbf{4 5}$	17	0	9.048037000	1.868595000	0.002278000
$\mathbf{4 6}$	9	0	-7.840887000	1.993512000	0.004238000

Table S9. Optimized cartesian coordinates of compound 37 in vacuum (B3LYP/6-31+G*)

Center	Atomic	Atomic Number	Number	Type	Coordinates (\mathbf{A})		
		\mathbf{X}	\mathbf{Y}	\mathbf{Z}			
$\mathbf{1}$	6	0	5.522894000	0.944885000	-0.000184000		
$\mathbf{2}$	6	0	5.152138000	0.202565000	1.279030000		
$\mathbf{3}$	6	0	3.683090000	-0.230185000	1.212171000		
$\mathbf{4}$	7	0	3.416616000	-0.983104000	0.000161000		
$\mathbf{5}$	6	0	3.683170000	-0.230707000	-1.212156000		

$\mathbf{6}$	6	0	5.152222000	0.202013000	-1.279103000
$\mathbf{7}$	35	0	7.397875000	1.530147000	-0.000250000
$\mathbf{8}$	1	0	4.953616000	1.879555000	-0.000406000
$\mathbf{9}$	1	0	5.311027000	0.855162000	2.144675000
$\mathbf{1 0}$	9	0	5.961903000	-0.917189000	1.467932000
$\mathbf{1 1}$	1	0	3.473437000	-0.863252000	2.081034000
$\mathbf{1 2}$	1	0	3.059580000	0.684080000	1.309967000
$\mathbf{1 3}$	1	0	3.473575000	-0.864147000	-2.080761000
$\mathbf{1 4}$	1	0	3.059667000	0.683517000	-1.310388000
$\mathbf{1 5}$	1	0	5.311173000	0.854237000	-2.145018000
$\mathbf{1 6}$	9	0	5.961998000	-0.917825000	-1.467467000
$\mathbf{1 7}$	6	0	2.181431000	-1.761977000	0.000289000
$\mathbf{1 8}$	1	0	2.213171000	-2.419353000	-0.879194000
$\mathbf{1 9}$	1	0	2.213131000	-2.419003000	0.880037000
$\mathbf{2 0}$	6	0	0.862237000	-0.962483000	0.000101000
$\mathbf{2 1}$	1	0	0.806865000	-0.311843000	0.882163000
$\mathbf{2 2}$	1	0	0.806914000	-0.312171000	-0.882206000
$\mathbf{2 3}$	6	0	-0.353481000	-1.881223000	0.000242000
$\mathbf{2 4}$	1	0	-0.343240000	-2.535940000	-0.888902000
$\mathbf{2 5}$	1	0	-0.343258000	-2.535644000	0.889604000
$\mathbf{2 6}$	8	0	-1.529754000	-1.086916000	0.000099000
$\mathbf{2 7}$	6	0	-2.727612000	-1.849848000	0.000206000
$\mathbf{2 8}$	1	0	-2.755744000	-2.503486000	-0.889306000
$\mathbf{2 9}$	1	0	-2.755744000	-2.503238000	0.889901000
$\mathbf{3 0}$	6	0	-3.916856000	-0.896699000	0.000077000
$\mathbf{3 1}$	1	0	-3.852125000	-0.244940000	0.880430000
$\mathbf{3 2}$	1	0	-3.852161000	-0.245204000	-0.880474000
$\mathbf{3 3}$	6	0	-5.265115000	-1.645774000	0.000208000
$\mathbf{3 4}$	1	0	-5.315103000	-2.301348000	-0.879743000
$\mathbf{3 5}$	1	0	-5.315064000	-2.301103000	0.880349000
$\mathbf{3 6}$	6	0	-8.095840000	0.632058000	-1.213194000
$\mathbf{3 7}$	6	0	-8.626024000	1.070672000	-0.000116000
$\mathbf{3 8}$	6	0	-7.017519000	-0.255509000	-1.201651000
$\mathbf{3 9}$	1	0	-6.609518000	-0.600071000	-2.149782000
$\mathbf{4 0}$	6	0	-8.095023000	0.633335000	1.213073000
$\mathbf{4 1}$	6	0	-6.457490000	-0.712060000	0.000096000
$\mathbf{4 2}$	1	0	-8.520464000	0.976946000	2.150701000
$\mathbf{4 3}$	6	0	-7.016715000	-0.254240000	1.201743000
$\mathbf{4 4}$	1	0	-6.608081000	-0.597806000	2.149964000
$\mathbf{4 5}$	1	0	-8.521906000	0.974681000	-2.1508990000
				0	

VII. References

${ }^{1}$ Denavit, V.; Lainé, D.; St-Gelais, J.; Johnson, P. A.; Giguère, D. Nat. Commun. 2018, 9, 4721.
${ }^{2}$ Lainé, D.; Lessard, O.; St-Gelais, J.; Giguère, D. Chem. Eur. J. 2021, 27, 3799-3805.
${ }^{3}$ Wolf, N.; Kersting, L.; Herok, C.; Mihm, C.; Seibel, J. J. Org. Chem. 2020, 85, 97519760.
${ }^{4}$ Goosen, A.; Marais, C. F.; McCleland, C. W.; Rinaldi, F. C. J. Chem. Soc., Perkin Trans. 2 1995, 1227-1236.
${ }^{5}$ Linclau, B.; Wang, Z.; Compain, G.; Paumelle, V.; Fontenelle, C. Q.; Wells, N.; Wey-mouth-Wilson, A. Angew. Chem. Int. Ed. 2016, 55, 674-678.

[^0]: 㱗

