Supporting Information

[3+2] cycloaddition for the assembly of indolizinebased heterocyclic sulfonyl fluorides

Huan Xiong, Jianping Wu*, and Hua-Li Qin*
School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China.
*Corresponding author: Jianping Wu, Hua-Li Qin
E-mail: biojpwu@whut.edu.cn, qinhuali@whut.edu.cn

Table of Contents

1. General Information S1
2. Optimization of the Reaction Conditions S2
3. General Procedures S10
3.1 General procedures for synthesis of the salts $\mathbf{1}$ (with $\mathbf{1 a}$ as an example) S10
3.2 General procedures for synthesis of the salts $\mathbf{4}$ (with $\mathbf{4 a}$ as an example) S11
3.3 General procedures for synthesis of 1-bromoethene-1-sulfonyl fluoride 2 S12
3.4 General procedure for synthesis of compounds $\mathbf{3}$ (with $\mathbf{3 a}$ as an example) S12
3.5 General procedure for synthesis of compounds $\mathbf{5}$ (with $\mathbf{5 a}$ as an example) S13
3.6 General procedure for synthesis of compound 6 S14
3.7 General procedure for synthesis of compound 7 S14
3.8 General procedure for synthesis of compound $\mathbf{8}$ S15
3.9 General procedure for synthesis of compound 9 S15
3.10 General procedure for synthesis of compound $\mathbf{1 0}$ S16
3.11 General procedure for synthesis of compound 11 S17
4. Characterization S18
5. References S51
6. NMR Spectra S53
7. Data of Crystal Structure of $\mathbf{5 g}$ S204

1. General Information

All reactions were carried out under an air atmosphere unless otherwise specified. Oil bath was used for the heating reactions. NMR spectra were recorded in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $\mathrm{D}_{2} \mathrm{O}$ or DMSO- d_{6} on a $500 \mathrm{MHz}\left(\right.$ for ${ }^{1} \mathrm{H}$), 471 MHz (for ${ }^{19} \mathrm{~F}$), and 126 MHz (for ${ }^{13} \mathrm{C}$) Bruker Avance spectrometer, and were internally referenced to solvent residual signals (note: $\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.264 \mathrm{ppm}, \delta \mathrm{C}=77.160 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta \mathrm{H}=5.320 \mathrm{ppm}, \delta \mathrm{C}=$ $53.840 \mathrm{ppm} ; \mathrm{D}_{2} \mathrm{O}: \delta \mathrm{H}=4.790 \mathrm{ppm} ;$ DMSO- $\left.d 6: \delta \mathrm{H}=2.500 \mathrm{ppm}, \delta \mathrm{C}=39.520 \mathrm{ppm}\right)$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{m}=$ multiplet. The coupling constants were reported in Hertz (Hz). The HPLC experiments were carried out on a Waters e2695 instrument (column: J\&K, RP-C18, $5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}$), and the HPLC yields of the products were determined by using the corresponding pure compounds as the external standards. Melting points were measured and uncorrected. HRMS experiments were performed on a TOF-Q ESI instrument. Reagents used in the reactions were all purchased from commercial sources and used without further purification. The product spots on the thin layer chromatography (TLC) were visualized under ultraviolet light (254 nm or 365 nm) followed by staining with potassium permanganate or phosphomolybdic acid.

2. Optimization of the Reaction Conditions

Table S1 Screening of the oxidant ${ }^{a}$

${ }^{a}$ Reaction conditions: $1 \mathbf{1 a}\left(65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0\right.$ equiv.), $2\left(112 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($20 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), oxidant ($0.3 \mathrm{mmol}, 1.5$ equiv.) and toluene ($0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$. After the addition was over, the resulting mixture was stirred at room temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912 \mathrm{~min}, \lambda_{\max }=261.8 \mathrm{~nm} ; \mathrm{MeCN}\right.$ $\left./ \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})\right)$. N.D. $=$ Not detectable.

Table S2 Screening of the base ${ }^{a}$

 1a	 2	$\xrightarrow[\text { Toluene }, 0^{\circ} \mathrm{C}-\text { r.t., } 5 \mathrm{~h}]{\substack{\text { Base }(1.0 \text { equiv. }) \\ \text { DDQ }(1.5 \text { equiv. })}}$	
Entry		Base (1.0 equiv.)	Yield (3a, \%) ${ }^{\text {b }}$
1		$\mathbf{E t}_{3} \mathrm{~N}$	45
2		DABCO	28
3		DIPEA	42
4		TMEDA	40
5		DBU	14
6		Tripropylamine	24
7		$\mathrm{Na}_{2} \mathrm{CO}_{3}$	N.D.
8		NaHCO_{3}	N.D.
9		$\mathrm{K}_{2} \mathrm{CO}_{3}$	N.D.
10		KHCO_{3}	N.D.
11		CsCO_{3}	6
12		$\mathrm{KH}_{2} \mathrm{PO}_{4}$	N.D.
13		1	N.D.

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv. $), \mathbf{2}(112 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.), base ($0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{DDQ}(68 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) and toluene ($0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at room temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912 \mathrm{~min}, \lambda_{\max }=261.8 \mathrm{~nm}\right.$; $\left.\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})\right)$. N.D. $=$ Not detectable.

Table S3 Screening of the Et E_{3} loading ${ }^{a}$

${ }^{a}$ Reaction conditions: $1 \mathbf{1 a}\left(65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathbf{2}$ ($112 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (X equiv.), DDQ ($68 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) and toluene ($0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at room temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912 \mathrm{~min}, \lambda_{\max }=261.8 \mathrm{~nm} ; \mathrm{MeCN}\right.$ $\left./ \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})\right)$.

Table S4 Screening of the DDQ loading ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}$ ($65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2}\left(112 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), DDQ (X equiv.) and toluene $(0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at room temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912 \mathrm{~min}, \lambda_{\max }=261.8 \mathrm{~nm} ; \mathrm{MeCN}\right.$ $\left./ \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})\right)$.

Table S5 Screening of the BESF (2) loading ${ }^{a}$

	$\underbrace{\mathrm{SO}_{2} \mathrm{~F}}_{\text {2, (X equiv.) }} \xrightarrow[\text { Toluene }, 0^{\circ} \mathrm{C}-\text { r.t., } 5 \mathrm{~h}]{\mathrm{St}_{3} \mathrm{~N}(1.5 \text { equiv. })}$	
Entry	BESF (2, X equiv.)	Yield (3a, \%) ${ }^{\text {b }}$
1	1.0	43
2	1.5	47
3	2.0	50
4	2.5	55
5	3.0	53
6	4.0	57
7	5.0	55
8	6.0	56
9	8.0	54
10	10.0	49

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv. $), \mathbf{2}$ (X equiv. $), \mathrm{Et}_{3} \mathrm{~N}(30 \mathrm{mg}, 0.3 \mathrm{mmol}$, 1.5 equiv.), $\mathrm{DDQ}(91 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.) and toluene ($0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at room temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912 \mathrm{~min}, \lambda_{\max }=261.8 \mathrm{~nm} ; \mathrm{MeCN}\right.$ $\left./ \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})\right)$.

Table S6 Screening of the solvent ${ }^{a}$

 1a		
Entry	Solvent	Yield (3a, \%) ${ }^{\text {b }}$
1	DCM	46
2	CHCl_{3}	61
3	DCE	48
4	Toluene	55
5	O-dichlorobenzene	54
6	Bromobenzene	53
7	Toluene/ $\mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=1: 1)$	58
8	Toluene/ $\mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=1: 3)$	47
9	Toluene/ $\mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=3: 1)$	57

${ }^{a}$ Reaction conditions: $1 \mathbf{1 a}\left(65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0\right.$ equiv.), $2\left(95 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{DDQ}(91 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.) and solvent ($0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at room temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912 \mathrm{~min}, \lambda_{\max }=\right.$ $261.8 \mathrm{~nm} ; \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})$).

Table S7 Screening of the temperature ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}\left(65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathbf{2}\left(95 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{DDQ}\left(91 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{CHCl}_{3}(0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at the corresponding temperature for $5 \mathrm{~h} .{ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=5.912\right.$ $\left.\min , \lambda_{\max }=261.8 \mathrm{~nm} ; \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})\right)$.

Table S8 Screening of the time ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}$ ($65 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2}\left(95 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5\right.$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), $\operatorname{DDQ}\left(91 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{CHCl}_{3}(0.1 \mathrm{M}, 2.0 \mathrm{~mL}$) were added to an oven-dried reaction tube $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was over, the resulting mixture was stirred at room temperature for the corresponding time. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}}=\right.$ $5.912 \mathrm{~min}, \lambda_{\text {max }}=261.8 \mathrm{~nm} ; \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=80: 20(\mathrm{v} / \mathrm{v})$).

3. General Procedures

3.1 General procedures for synthesis of the salts 1 (with 1 a as an example)

Isoquinoline (5 mmol) was added to a solution of the 2-bromoacetophenone (1.1 equiv.) in acetone (0.4 M) in a 50 mL round-bottom flask equipped with a magnetic stirring bar. The mixture was stirred for 24 h at room temperature. Filter the resulting precipitate and wash the residue with diethyl ether. Finally, the residue was dried in vacuum to obtain the product $\mathbf{1 a}$.

1a, 66\%

1b, 44\%

1c, 49%

1d, 49\%

1e, 51\%

1f, 59\%

1g, 53%

1h, 45%

1k, 50\%

1I, 42\%

1m, 75\%

1j, 51\%

1n, 45\%

10, 43%

1p, 58\%

Scheme S1. Preparation of the salts 1

3.2 General procedures for synthesis of the salts 4 (with 4a as an example)

Quinoline (5 mmol) was added to a solution of the 2-bromoacetophenone (1.1 equiv.) in EtOAc $(0.4 \mathrm{M})$ in a 50 mL round-bottom flask equipped with a magnetic stirring bar. The mixture was refluxed for 12 h , then cooled to room temperature upon completion. Filter the resulting precipitate and wash the residue with diethyl ether. Finally, the residue was dried in vacuum to obtain the product $\mathbf{4 a}$.

Note: Switched EtOAc to acetone for preparing $\mathbf{4 m}$ and $\mathbf{4 p}$, toluene for synthesis of $\mathbf{4 0}$ and reacted at room temperature.

Scheme S2. Preparation of the salts 4

3.3 General procedures for synthesis of 1-bromoethene-1-sulfonyl fluoride $2^{[1]}$

2
Ethenesulfonyl fluoride, $33 \mathrm{~g}(300 \mathrm{mmol})$ was dissolved in $300 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and placed in a 500 mL round-bottom flask equipped with a stirred bar under the irradiation of 50 W white light. To the flask was added $96 \mathrm{~g}(600 \mathrm{mmol}, 31 \mathrm{~mL})$ bromine in three portions in 30 minutes, the reaction was stirred for about 12-16 hours. After the ethenesulfonyl fluoride was completely consumed, the solution was washed with sodium thiosulfate solution until the color turned light yellow. Then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness. The residue was dissolved in 250 mL dry ether, and the mixture was cooled to $-50{ }^{\circ} \mathrm{C}$. A solution of $31 \mathrm{~g}(300 \mathrm{mmol})$ of triethylamine in 60 mL dry ether was added in 30 minutes below $-40{ }^{\circ} \mathrm{C}$. The mixture reacted vigorously to precipitate triethylamine hydrobromide. After warming slowly to room temperature with stirring, dilute sulfuric acid was added and the layers were separated. The layers were washed with acid, water and saturated sodium chloride solution, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to dryness. The residue was purified by reduced pressure distillation with a water pump at $85^{\circ} \mathrm{C}$. The product weighed $42.8 \mathrm{~g}, 76 \%$.

3.4 General procedure for synthesis of compounds 3 (with 3a as an example)

2-(2-oxo-2-phenylethyl)isoquinolin-2-ium bromide (1a, $328 \mathrm{mg}, 1.0 \mathrm{mmol}$), BESF ($\mathbf{2}$, $473 \mathrm{mg}, 2.5 \mathrm{mmol}$) and $\mathrm{CHCl}_{3}(0.2 \mathrm{M}, 5.0 \mathrm{~mL})$ were added to an oven-dried reaction tube (30 mL) equipped with a magnetic stirring bar. $\mathrm{Et}_{3} \mathrm{~N}(152 \mathrm{mg}, 1.5 \mathrm{mmol})$ was dropped into the suspension at $0^{\circ} \mathrm{C}$. Then $\operatorname{DDQ}(545 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 1 h . After the reaction was completed, the mixture was filtered, and the filter cake was washed with dichloromethane. The filtrate was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were further washed with brine, and dried over anhydrous sodium sulfate. The solvent was
concentrated under reduced pressure and the residue was further purified by column chromatography on silica gel via gradient elution with petroleum ether/ dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent to afford pure heterocyclic sulfonyl fluoride 3a as yellow solid ($212 \mathrm{mg}, 60 \%$ yield).

3.5 General procedure for synthesis of compounds 5 (with 5 a as an example)

1-(2-oxo-2-phenylethyl)quinolin-1-ium bromide (4a, $328 \mathrm{mg}, 1.0 \mathrm{mmol}$), BESF (2, $473 \mathrm{mg}, 2.5 \mathrm{mmol}$) and $\mathrm{CHCl}_{3}(0.2 \mathrm{M}, 5.0 \mathrm{~mL})$ were added to an oven-dried reaction tube (30 mL) equipped with a magnetic stirring bar. $\mathrm{Et}_{3} \mathrm{~N}(152 \mathrm{mg}, 1.5 \mathrm{mmol})$ was dropped into the suspension at $0^{\circ} \mathrm{C}$. Then $\operatorname{DDQ}(545 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 1 h . After the reaction was completed, the mixture was filtered, and the filter cake was washed with dichloromethane. The filtrate was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were further washed with brine, and dried over anhydrous sodium sulfate. The solvent was concentrated under reduced pressure and the residue was further purified by column chromatography on silica gel via gradient elution with petroleum ether/ dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent to afford pure heterocyclic sulfonyl fluoride 5a as light white solid ($296 \mathrm{mg}, 84 \%$ yield).

3.6 General procedure for synthesis of compound 6

1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5a, $177 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4methoxyphenol ($74.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{NaOH}(40 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added in a solution of acetonitrile (3 mL) and reacted at room temperature for 10 minutes. The reaction mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica gel by gradient elution with petroleum ether/dichloromethane ($3: 1$ to $0: 1, \mathrm{v} / \mathrm{v}$) as eluent to obtain pure compound $\mathbf{6}$ as yellow solid ($226 \mathrm{mg}, 99 \%$ yield).

3.7 General procedure for synthesis of compound 7

1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride ($5 \mathbf{5 a}, 177 \mathrm{mg}, 0.5 \mathrm{mmol}$), and $\mathrm{NaOH}(40 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added in mixed solution (3 mL) of acetonitrile and methanol (5:1), and reacted at room temperature for 10 minutes. The reaction mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$ and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica gel by gradient elution with petroleum ether/ dichloromethane ($3: 1$ to $0: 1, \mathrm{v} / \mathrm{v}$) as eluent to obtain pure compound 7 as yellow solid ($170 \mathrm{mg}, 93 \%$ yield).

3.8 General procedure for synthesis of compound 8

To a solution of compound $\mathbf{5 a}(70 \mathrm{mg}, 0.2 \mathrm{mmol})$ and TBS-protected estrone $(77 \mathrm{mg}$, 0.2 mmol) dissolved in acetonitrile (2 mL) was added catalytic amount ($30 \mathrm{~mol} \%, 60$ $\mu \mathrm{L}$) of TBAF solution (tetrabutylammonium fluoride, 1 M in anhydrous THF), and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with water and the aqueous phrase was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before being concentrated to dryness under vacuum. The residue was purified through silica gel chromatography with petroleum ether/ dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent to obtain pure compound $\mathbf{8}$ as yellow solid ($68 \mathrm{mg}, 55 \%$ yield).

3.9 General procedure for synthesis compound of 9

1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride ($5 \mathbf{5}, 177 \mathrm{mg}, 0.5 \mathrm{mmol}$), imidazole ($68 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(326 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added in mixed solution (3 mL) of acetonitrile, and reacted at room temperature under N_{2} for 2 h . The reaction mixture was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$ and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica gel by gradient elution with petroleum ether/ dichloromethane ($1: 1$ to $0: 1, \mathrm{v} / \mathrm{v}$) as eluent to obtain pure compound $\mathbf{9}$ as white solid ($184 \mathrm{mg}, 92 \%$ yield).

3.10 General procedure for synthesis of compound 10

To a stirred solution of compound $\mathbf{5 a}(177 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ was added DBU ($228 \mathrm{mg}, 1.5 \mathrm{mmol}$) followed by $\mathrm{TMSN}_{3}(144 \mathrm{mg}, 1.25 \mathrm{mmol})$. The resultant solution was stirred at $60^{\circ} \mathrm{C}$ for 2 h , then a further portion of TMSN $3(86 \mathrm{mg}, 0.75$ mmol) was added and reacted for further 10 h . The reaction mixture was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$) and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was further purified by column chromatography on silica gel by gradient elution with petroleum ether/ dichloromethane $(1: 1, \mathrm{v} / \mathrm{v})$ as eluent to obtain pure compound $\mathbf{1 0}$ as yellow solid ($152 \mathrm{mg}, 81 \%$ yield).

3.11 General procedure for synthesis of compound 11

2-(2-oxo-2-phenylethyl)isoquinolin-2-ium bromide (1a, $656 \mathrm{mg}, 1.0 \mathrm{mmol}$), BESF (2, $946 \mathrm{mg}, 2.5 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(0.2 \mathrm{M}, 10.0 \mathrm{~mL})$ were added to an oven-dried reaction tube (30 mL) equipped with a magnetic stirring bar. $\mathrm{Et}_{3} \mathrm{~N}(304 \mathrm{mg}, 1.5 \mathrm{mmol})$ was dropped into the suspension at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h. The mixture was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were further washed with brine, and dried over anhydrous sodium sulfate. The solvent was concentrated under reduced pressure and the residue was further purified by column chromatography on silica gel via gradient elution with petroleum ether/ dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent to afford compound $\mathbf{1 1}$ as yellow solid (121 $\mathrm{mg}, 17 \%$ yield).

4. Characterization

2-(2-oxo-2-phenylethyl)isoquinolin-2-ium bromide (1a). White solid, $1079 \mathrm{mg}, 66 \%$ yield. M.p. $208-210^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. The NMR data is identical to that reported in literature ${ }^{[2]}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 8.81\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.09(\mathrm{~m}$, $3 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H})$.

1b
5-nitro-2-(2-oxo-2-phenylethyl) isoquinolin-2-ium bromide (1b). Yellow solid, 820 mg , 44% yield. M.p. $192-194{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 1 was followed. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 9.12-8.97(\mathrm{~m}, 4 \mathrm{H}), 8.31$ $(\mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 2 \mathrm{H}), 7.81-7.69(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO$\left.d_{6}\right) \delta 190.5,152.7,144.1,139.0,137.7,134.8,134.7,133.4,130.8,129.5,129.1,128.3$, 127.6, 121.3, 66.3. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right): 293.0921$, found: 293.0925 .

6-bromo-2-(2-oxo-2-phenylethyl) isoquinolin-2-ium bromide (1c). White solid, 997 mg , 49% yield. M.p. $235-237{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 1 was followed. ${ }^{1}$ H NMR (500 MHz, DMSO- d_{6}) $\delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 8.84\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=\right.$
$7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.25\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.13-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.69$ - 7.66 (m, 2H), $6.72(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO-d6) δ 190.7, 151.8, 138.0, 137.4, 134.7, 134.6, 133.5, 132.3, 132.2, 129.7, 129.1, 128.3, 125.5, 124.4, 66.2. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrNO}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right): 326.0175$, found:326.0168.

1d
2-(2-oxo-2-(o-tolyl)ethyl)isoquinolin-2-ium bromide (1d). White solid, $838 \mathrm{mg}, 49 \%$ yield. M.p. 229-230 ${ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 8.83\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 8.71 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.6(\mathrm{~s}, 2 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) δ 193.0, 151.6, 139.1, 137.3, 137.1, 136.3, 133.2, 133.1, 132.2, 131.3, 130.5, 129.7, 127.3, 126.8, 126.2, 125.3, 67.2, 21.1. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right): 262.1226$, found: 262.1235 .

2-(2-oxo-2-(m-tolyl)ethyl)isoquinolin-2-ium bromide (1e). White solid, $872 \mathrm{mg}, 51 \%$ yield. M.p. $262-263{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. ${ }^{1} H$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 8.76\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSOd6) $\delta 190.9,151.6,138.6,137.4,137.2,136.3,135.3,133.6,131.4,130.6,129.0,128.5$,
127.4, 126.8, 125.5, 125.4, 66.1, 20.8. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}\right]^{+}$([M$\left.\mathrm{Br}]^{+}\right):$262.1226, found: 262.1220 .

$1 f$
2-(2-oxo-2-(p-tolyl)ethyl)isoquinolin-2-ium bromide (1f). White solid, $1009 \mathrm{mg}, 59 \%$ yield. M.p. $217-219^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. The compound was reported in literature ${ }^{[3]}{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.12(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.80-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.01(\mathrm{~m}, 2 \mathrm{H})$, $7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.

1g
2-(2-(4-methoxyphenyl)-2-oxoethyl)isoquinolin-2-ium bromide (1g). White solid, 949 $\mathrm{mg}, 53 \%$ yield. M.p. $213-215^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. The compound was reported in literature. ${ }^{[3]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.79\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.08(\mathrm{~m}, 3 \mathrm{H})$, 7.21 - 7.18 (m, 2H), 6.67 (s, 2H), $3.90(\mathrm{~s}, 3 \mathrm{H})$.

1h
2-(2-(naphthalen-2-yl)-2-oxoethyl)isoquinolin-2-ium bromide (1h). White solid, 850 $\mathrm{mg}, 45 \%$ yield. M.p. $259-261^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was
followed. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.14$ (s, 1H), 8.93 (s, 1H), 8.83 (dd, $J_{1}=$ $\left.1.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.07(\mathrm{~m}, 4 \mathrm{H}), 7.78$ - $7.70(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) δ 190.8, 151.7, 137.4, $137.2,136.3,135.6,132.0,131.3,130.9,130.7,130.6,129.7,129.4,128.8,127.8,127.4$, 127.4, 126.8, 125.4, 123.2, 66.1. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right)$: 298.1226, found: 298.1222.

$1 i$
2-(2-(4-fluorophenyl)-2-oxoethyl) isoquinolin-2-ium bromide (1i). White solid, 836 mg , 48% yield. M.p. $203-204{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 1 was followed. ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 8.79\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=\right.$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.34-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.24-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$, $6.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) δ 190.2, 167.3, 165.3, 152.2, 138.0, $137.8,136.8,132.1,132.0(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=100.9 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=2.8$ $\mathrm{Hz}), 127.9,127.4,126.0,116.9(\mathrm{~d}, J=22.2 \mathrm{~Hz})$, 66.5. HRMS-ESI (m/z) calcd. for [C $\left._{17} \mathrm{H}_{13} \mathrm{FNO}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right): 266.0976$, found: 266.0985.

1j
2-(2-(4-chlorophenyl)-2-oxoethyl)isoquinolin-2-ium bromide (1j). White solid, 923 mg , 51% yield. M.p. $215-217{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. The compound was reported in literature. ${ }^{[4]} \mathbf{1}$ H NMR (500 MHz , DMSO- d_{6}) $\delta 10.07(\mathrm{~s}, 1 \mathrm{H}), 8.76\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.10(\mathrm{~m}, 3 \mathrm{H})$,
$7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H})$.

1k
2-(2-(4-bromophenyl)-2-oxoethyl) isoquinolin-2-ium bromide (1k). White solid, 1018 $\mathrm{mg}, 50 \%$ yield. M.p. $248-249{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. The NMR data is identical to that reported in literature. ${ }^{[5]} \quad{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.77\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.70(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35-8.31(\mathrm{~m}, 1 \mathrm{H})$, $8.13-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H})$.

2-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)isoquinolin-2-ium bromide (11). White solid, $832 \mathrm{mg}, 42 \%$ yield. M.p. $210-211^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 1 was followed. ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- $d 6$) $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 8.83$ (dd, $J_{1}=$ $\left.1.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.31(\mathrm{~m}, 3 \mathrm{H}), 8.13-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ $(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) δ 190.6, 151.6, 137.5, 137.3, 136.9, 136.3, 133.6 (q, $J=32.2 \mathrm{~Hz}), 131.4,130.6,129.2,127.4,126.8,126.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.4$, $123.6(\mathrm{q}, J=273.4 \mathrm{~Hz}), 66.2$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right)$: 316.0944, found: 316.0939.

2-(2-ethoxy-2-oxoethyl) isoquinolin-2-ium bromide (1m). White solid, $1110 \mathrm{mg}, 75 \%$ yield. M.p. $194-196^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. The NMR data is identical to that reported in literature. ${ }^{[5]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ $9.72(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.43(\mathrm{~m}, 2 \mathrm{H}), 8.26-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.08$ - 8.04 (m, 1H), 5.72 (s, 2H), 4.38 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

4-bromo-2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (1n). Light yellow solid, $844 \mathrm{mg}, 45 \%$ yield. M.p. $135-137^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{1}$ was followed. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.63 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.44(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.18(\mathrm{~m}$, $1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 166.1,151.8,139.5,137.2,136.0,132.3,131.9,126.7,126.0,120.8$, 62.4, 60.0, 13.9. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNO}_{2}\right]^{+}$([M-Br] ${ }^{+}$): 294.0124, found: 294.0131.

5-bromo-2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide (10). White solid, 806 mg , 43% yield. M.p. $202-204{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 1 was followed. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 166.2,152.5,141.0,137.8,136.0,132.3,130.9,128.0,124.3$, 120.9, 62.4, 60.2, 13.9. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNO}_{2}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right)$: 294.0124, found: 294.0131.

Br^{\ominus}
1p
2-(cyanomethyl)isoquinolin-2-ium bromide (1p). White solid, $722 \mathrm{mg}, 58 \%$ yield. M.p. $203-205{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 1 was followed. The NMR data is identical to that reported in literature. ${ }^{[6]}{ }^{1} \mathbf{H} \quad$ NMR $\quad(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.91\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.10$ (m, 1H), 6.23 (s, 2H).

3-benzoylpyrrolo[2,1-a] isoquinoline-1-sulfonyl fluoride (3a). Yellow solid, $212 \mathrm{mg}, 60 \%$ yield. M.p. 198-199 ${ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H})$, $7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.67(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.9, 138.8, 134.7, 132.7, 130.9, 130.6, 129.3, 129.3, 129.1, 128.8, 127.6, 126.6(d, J $=2.5 \mathrm{~Hz}), 125.1,123.7,122.5,117.1,107.8(\mathrm{~d}, J=32.3 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 354.0595$, found: 354.0590.

3-benzoyl-7-nitropyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3b). Yellow solid, $295 \mathrm{mg}, 74 \%$ yield. M.p. $211-213^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17$ (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87$ (m, 4H), 7.69 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (q, J $=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{~ N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 65.68(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 185.8,146.4,138.2,133.2,132.7,132.1,132.1,129.4,129.0,128.4,128.0$, 126.9, 124.1, 123.8, 110.9, $109.3(\mathrm{~d}, J=32.5 \mathrm{~Hz}$). HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 399.0445$, found: 399.0440.

Note: In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$, theoretically, there should be seventeen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

3-benzoyl-8-bromopyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3c). Yellow solid, $240 \mathrm{mg}, 56 \%$ yield. M.p. $245-247^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.87-$ $7.85(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.82(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.9$, 138.7, 134.2, 132.9, 132.6, 132.2, 130.0, 129.3, 129.1, 128.9, 128.3 (d, $J=2.5 \mathrm{~Hz}$), 126.2, $125.4,124.0,121.2,116.0,108.2(\mathrm{~d}, J=32.6 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrFNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 431.9700$, found: 431.9695 .

3d
3-(2-methylbenzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3d). Light yellow solid, $147 \mathrm{mg}, 40 \%$ yield. M.p. $224-225^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1$, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $)^{2} \delta 9.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-$ $7.89(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44$ (m, 2H), $7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.50(\mathrm{~s}$, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1,138.7,136.6,134.8,131.4,131.0,130.8$, 130.7, 130.0, 129.4, 128.3, 127.7, 126.7 (d, $J=2.4 \mathrm{~Hz}$), 125.6, 125.2, 124.4, 122.5, 117.4, $107.9(\mathrm{~d}, J=32.5 \mathrm{~Hz})$, 19.8. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.0751$, found: 368.0748 .

3-(3-methylbenzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3e). White solid, $187 \mathrm{mg}, 51 \%$ yield. M.p. $189-190^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.79-$ $7.75(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 65.63(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 186.1, 138.8, 138.8, 134.7, 133.5, 130.8, 130.5, 129.7, 129.3, 129.1, 128.6, 127.6, 126.6 (d, $J=2.5 \mathrm{~Hz}$), 126.5, 125.1, 123.8, 122.5, 117.1, $107.6(\mathrm{~d}, J=32.4 \mathrm{~Hz}), 21.6$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.0751$, found: 368.0748 .

3-(4-methylbenzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3f). Light yellow solid, $220 \mathrm{mg}, 60 \%$ yield. M.p. $185-186^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane (3:1 to 1:1, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $)^{2} \delta 9.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.68(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.7,143.6,136.0,134.6,130.8,130.5,129.5,129.5,129.3,128.8,127.6,126.6$, (d, $J=2.3 \mathrm{~Hz}), 125.1,123.8,122.5,117.0,107.5(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 21.8$. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.0751$, found: 368.0758.

3-(4-methoxybenzoyl)pyrrolo[2,1-a] isoquinoline-1-sulfonyl fluoride (3g). Light yellow solid, $195 \mathrm{mg}, 51 \%$ yield. M.p. $204-206^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane (3:1 to 1:1, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 3.92 (s, 3H). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.74$ (s, 1F). ${ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 184.5,163.5,134.5,131.7,131.2,130.7,130.4,129.2,128.1,127.6,126.5(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}), 125.0,123.9,122.5,116.8,114.1,107.3(\mathrm{~d}, J=32.1 \mathrm{~Hz}), 55.7$. HRMSESI (m/z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 384.0700$, found: 384.0693.

3h
3-(2-naphthoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3h). Yellow solid, 173 $\mathrm{mg}, 43 \%$ yield. M.p. $205-207^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1 \mathrm{to} 1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.76(\mathrm{~m}, 8 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.41$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.69(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.7, 135.9, 135.3, 134.7, 132.4, 130.8, 130.6, 130.5, 129.5, 129.3, 129.0, 128.8, 128.5, 127.9, 127.6, 127.2, 126.6 (d, $J=2.3 \mathrm{~Hz}$), 125.2, 125.0, 123.8, 122.4, 117.0, 107.7 (d, $J=32.4 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 404.0751$, found: 404.0759 .

3-(4-fluorobenzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3i). Yellow solid, $207 \mathrm{mg}, 56 \%$ yield. M.p. $228-229^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane (3:1 to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.95-8.93(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.89(\mathrm{~m}, 3 \mathrm{H})$, $7.81-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 65.20(\mathrm{~s}, 1 \mathrm{~F}),-106.75--106.80(\mathrm{~m}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 184.6,165.8(\mathrm{~d}, J=253.8 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 135.2,132.2(\mathrm{~d}, J=9.2$ $\mathrm{Hz}), 131.3,130.9,129.6,129.0,128.1,126.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 125.3,124.0,122.7,117.5$, $116.2(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 107.8(\mathrm{~d}, J=32.4 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 372.0500$, found: 372.0491.

3-(4-chlorobenzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3j). Light yellow solid, $237 \mathrm{mg}, 61 \%$ yield. M.p. $215-216^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1$, v / v) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-$ $7.87(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.60(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.5,139.2,137.1,134.9,130.9,130.7,130.7$ 129.4, 129.2, 129.0, 127.7, $126.7(\mathrm{~d}, ~ J=2.5 \mathrm{~Hz}), 125.0,123.4,122.4,117.3,108.0(\mathrm{~d}, J=32.4 \mathrm{~Hz})$. HRMSESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClFNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 388.0205$, found: 388.0210.

3-(4-bromobenzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (3k). Light yellow solid, $242 \mathrm{mg}, 56 \%$ yield. M.p. $217-218{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1$, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $)^{2} \delta 9.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-$ $7.86(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{q}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.61$ (s, 1 F). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.7,137.5,134.9,132.2,130.9,130.8,130.7,129.4,129.1,127.7,127.7,126.7$ (d, $J=2.4 \mathrm{~Hz}), 125.0,123.3,122.4,117.3,108.0(\mathrm{~d}, J=32.4 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrFNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 431.9700$, found: 431.9707 .

3-(4-(trifluoromethyl)benzoyl)pyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (31). White solid, $248 \mathrm{mg}, 59 \%$ yield. M.p. $214-215{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97-8.95(\mathrm{~m}, 1 \mathrm{H})$, $7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.53$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 65.11(\mathrm{~s}, 1 \mathrm{~F}), \delta-63.32(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.6,142.0,135.2,134.1(\mathrm{q}, J=32.9 \mathrm{~Hz}), 131.1,130.9$, 129.6, 129.6, 129.5, 127.7, $126.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 125.9(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.0,123.7$ (q, $J=273.2 \mathrm{~Hz}), 123.2,122.5,117.6,108.4(\mathrm{~d}, J=32.8 \mathrm{~Hz})$. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 422.0469$, found: 422.0461 .

3m
ethyl 1-(fluorosulfonyl)pyrrolo[2,1-a]isoquinoline-3-carboxylate (3m). White solid, $177 \mathrm{mg}, 55 \%$ yield. M.p. $181-182^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.76$ $\left(\mathrm{dd}, J_{1}=1.0, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 65.57(\mathrm{~s}, 1 \mathrm{~F})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,133.8,130.0,129.9,129.1,127.5,126.3(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}), 124.9,124.2,122.6,116.6,116.5,107.2(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 61.3,14.5$.

HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 322.0544$, found: 322.0550 .

ethyl 6-bromo-1-(fluorosulfonyl)pyrrolo[2,1-a]isoquinoline-3-carboxylate (3n). White solid, 316 mg , 79% yield. M.p. $196-197{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1$, v / v) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.90(\mathrm{~m}, 1 \mathrm{H}), 8.20-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.03$ (s, 1H), $7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 65.45(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,132.9,130.9$, 130.1, 128.7, 127.3, 126.6 (d, $J=2.5 \mathrm{~Hz}$), 125.4, 125.0, 122.6, 116.4, 113.1, 107.9 (d, $J=32.5 \mathrm{~Hz}), 61.6,14.5$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrFNO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 399.9649, found: 399.9641.

30
ethyl 7-bromo-1-(fluorosulfonyl)pyrrolo[2,1-a]isoquinoline-3-carboxylate (30). White solid, $216 \mathrm{mg}, 54 \%$ yield. M.p. $225-227^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1$, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}$, $1 \mathrm{H}), 7.97\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 65.46$ (s, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,134.0,132.9,129.6,129.1,125.9$ (d, $J=2.5 \mathrm{~Hz}$), 125.5, 125.5, 124.2, 122.5, 116.8, 115.3, 108.1 (d, $J=32.4 \mathrm{~Hz}$), 61.5 , 14.5. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrFNO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 399.9649$, found: 399.9645.

3-cyanopyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (31). White solid, $197 \mathrm{mg}, 72 \%$ yield. M.p. 189-190 ${ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1$, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.73(\mathrm{~s}$, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.3,130.9,130.1,130.1,128.1,126.4$ (d, $J=2.4$ $\mathrm{Hz}), 125.9,122.7,122.2,117.9,111.0,108.3(\mathrm{~d}, J=33.6 \mathrm{~Hz}), 99.5$. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 275.0285$, found: 275.0280.

4a
1-(2-oxo-2-phenylethyl)quinolin-1-ium bromide (4a). White solid, $1361 \mathrm{mg}, 83 \%$ yield. M.p. 203-205 ${ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The NMR data is identical to that reported in literature. ${ }^{[2]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.61\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}$, $\left.J_{1}=1.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=8.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 8.24-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.81$ $(\mathrm{m}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H})$.

4b
6-methyl-1-(2-oxo-2-phenylethyl)quinolin-1-ium bromide (4b). White solid, 906 mg , 53% yield. M.p. $219-221^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[7]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.56-9.55(\mathrm{~m}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H})$, $8.28\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.06\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=\right.$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.

4-methyl-1-(2-oxo-2-phenylethyl)quinolin-1-ium bromide (4c). White solid, $940 \mathrm{mg}, 55 \%$ yield. M.p. $225-226^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{4}$ was followed. The NMR data is identical to that reported in literature. ${ }^{[8]}{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.60-8.57(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.16(\mathrm{~m}, 3 \mathrm{H}), 8.05-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H})$, $7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$.

4d
3-methyl-1-(2-oxo-2-phenylethyl)quinolin-1-ium bromide (4d). White solid, 991 mg , 58% yield. M.p. $226-227^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[7]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})
$\delta 9.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.40(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.15$ $-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}$, $2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$.

6-chloro-1-(2-oxo-2-phenylethyl)quinolin-1-ium bromide (4e). Yellow solid, 832 mg , 46% yield. M.p. $203-205{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[7]}{ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.62\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.55(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.39\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.26\left(\mathrm{dd}, J_{1}=2.5\right.$ $\left.\mathrm{Hz}, J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.16-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H})$, 7.09 (s, 2H).

1-(2-oxo-2-(p-tolyl)ethyl)quinolin-1-ium bromide (4f). White solid, $975 \mathrm{mg}, 57 \%$ yield. M.p. $215-216{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[3]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO- $d 6$) $\delta 9.58(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.56\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.42$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.23-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.08$ $-8.05(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.

1-(2-(4-methoxyphenyl)-2-oxoethyl)quinolin-1-ium bromide (4g). White solid, 949 mg , 53% yield. M.p. $218-220^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[3]} \mathbf{1} \mathbf{H}$ NMR (500 MHz , DMSO- $d 6$) $\delta 9.55-9.53(\mathrm{~m}, 1 \mathrm{H}), 9.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.24-8.20(\mathrm{~m}, 1 \mathrm{H})$, $8.15-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H})$.

4h
1-(2-(4-fluorophenyl)-2-oxoethyl)quinolin-1-ium bromide (4h). Yellow solid, 675 mg , 39% yield. M.p. $231-233{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[9]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO- $d 6$) $\delta 9.60\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}\right.$, $\left.J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.28$ $-8.20(\mathrm{~m}, 3 \mathrm{H}), 8.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H})$.

1-(2-(4-chlorophenyl)-2-oxoethyl)quinolin-1-ium bromide (4i). White solid, 1050 mg , 58% yield. M.p. $218-219^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[10]} \mathbf{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6})
$\delta 9.55\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56\left(\mathrm{dd}, J_{1}=1.5\right.$ $\left.\mathrm{Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.24-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.04 (s, 2H).

1-(2-(4-bromophenyl)-2-oxoethyl)quinolin-1-ium bromide (4j). White solid, 1119 mg , 55% yield. M.p. $227-229{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The NMR data is identical to that reported in literature. ${ }^{[6]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.65\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.58-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.23-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 2 \mathrm{H})$, 7.13 ($\mathrm{s}, 2 \mathrm{H}$).

1-(2-(4-nitrophenyl)-2-oxoethyl)quinolin-1-ium bromide (4k). Yellow solid, 1026 mg , 55% yield. M.p. $212-213{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[3]}{ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.61\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58-8.56(\mathrm{~m}, 2 \mathrm{H})$, $8.52-8.49(\mathrm{~m}, 2 \mathrm{H}), 8.41-8.38(\mathrm{~m}, 2 \mathrm{H}), 8.36\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.25$ - $8.21(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H})$.

1-(2-(4-cyanophenyl)-2-oxoethyl)quinolin-1-ium bromide (4I). White solid, $847 \mathrm{mg}, 48 \%$ yield. M.p. 226-228 ${ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{4}$ was followed. The compound was reported in literature. ${ }^{[11]}{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , DMSO-d6) $\delta 9.61$ $\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.54$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.30(\mathrm{~m}, 3 \mathrm{H}), 8.24-8.18(\mathrm{~m}, 3 \mathrm{H}), 8.08-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.14$ ($\mathrm{s}, 2 \mathrm{H}$).

1-(2-oxo-2-(thiophen-2-yl)ethyl)quinolin-1-ium bromide (4m). Yellow solid, 802 mg , 48% yield. M.p. $199-201{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The compound was reported in literature. ${ }^{[12]} \mathbf{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 9.62\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.56\left(\mathrm{dd}, J_{1}=1.0\right.$ $\left.\mathrm{Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.46-8.42(\mathrm{~m}, 2 \mathrm{H}), 8.33\left(\mathrm{dd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.28$ - $8.22(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47\left(\mathrm{dd}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02$ ($\mathrm{s}, 2 \mathrm{H}$).

4n
1-(2-ethoxy-2-oxoethyl)quinolin-1-ium bromide (4n). Brown solid, $1154 \mathrm{mg}, 78 \%$ yield. M.p. $164-166{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The NMR data is identical to that reported in literature. ${ }^{[5]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $\quad(500 \mathrm{MHz}$,

DMSO- d_{6}) $\delta 9.64-9.62(\mathrm{~m}, 1 \mathrm{H}), 9.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=\right.$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 6.22$ ($\mathrm{s}, 2 \mathrm{H}$), $4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(3,3-dimethyl-2-oxobutyl)quinolin-1-ium bromide (40). Gray solid, $447 \mathrm{mg}, 29 \%$ yield. M.p. $190-192{ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts 4 was followed. The NMR data is identical to that reported in literature. ${ }^{[13]}{ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, DMSO-d $\mathrm{d}_{\text {) }} \delta 9.56$ (d, $\left.J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.27-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.64 (s, 2H), 1.34 (s, 9H).

1-(2-oxo-2-(phenylamino)ethyl)quinolin-1-ium bromide (4p). White solid, $755 \mathrm{mg}, 44 \%$ yield. M.p. 229-231 ${ }^{\circ} \mathrm{C}$. General procedures for synthesis of the salts $\mathbf{4}$ was followed. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 9.61\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 9.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.47(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.32-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 162.7$, $151.3,148.5,138.4,138.0,136.0,130.7,129.9,129.3,128.9,124.1,121.9,119.3,118.6$, 59.2. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right]^{+}\left([\mathrm{M}-\mathrm{Br}]^{+}\right): ~ 263.1179$, found: 263.1177 .

5a
1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5a). White solid, 296 mg , 84\% yield. M.p. $175-177{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04\left(\mathrm{dd}, J_{1}=5.0, J_{2}=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.90-7.85(\mathrm{~m}$, $2 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 5 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.28$ (s, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.9,138.6,137.3,133.9,132.9,131.2,130.3$, $129.9,129.5,129.0,128.9,127.1,126.7,125.1,120.3,115.2,105.9$ (d, $J=30.5 \mathrm{~Hz})$. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 354.0595$, found: 354.0603.

1-benzoyl-7-methylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5b). Yellow solid, 290 $\mathrm{mg}, 79 \%$ yield. M.p. $202-203^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 3 \mathrm{H})$, $7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.25(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 184.9,138.3,137.4,136.7,133.8,131.3,131.1,131.0$, 130.3, 128.9, 128.9, 128.6, 127.2, 125.1, 120.1, 115.0, 105.5 (d, $J=30.2 \mathrm{~Hz}$), 21.1. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.0751$, found: 368.0750 .

1-benzoyl-5-methylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5c). Yellow solid, 135 $\mathrm{mg}, 37 \%$ yield. M.p. $207-208^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz , CDCl3) $\delta 8.10-8.06(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 5 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 72.08(\mathrm{~s}$, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 184.7, 139.3, 138.7, 137.4, 133.8, 132.7, 130.2, $129.5,128.9,128.6,127.7,126.6,125.7,125.3,120.7,114.8,104.5(\mathrm{~d}, J=30.0 \mathrm{~Hz})$, 19.8. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 368.0751, found: 368.0757.

1-benzoyl-4-methylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5d). Yellow solid, 338 $\mathrm{mg}, 92 \%$ yield. M.p. $205-207^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (s, 2H), 7.63 - $7.54(\mathrm{~m}, 5 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 73.81$ (s, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.8,137.7,137.2,133.9,131.6,131.3,130.3$, $129.8,129.0,128.9,128.3,127.6,126.6,125.8,125.1,120.3,107.7$ (d, $J=32.5 \mathrm{~Hz})$, $20.3(\mathrm{~d}, J=3.4 \mathrm{~Hz})$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.0751$,
found: 368.0756 .

5e
1-benzoyl-7-chloropyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5e). White solid, 340 $\mathrm{mg}, 88 \%$ yield. M.p. $188-190^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.02(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}$ (471 MHz, CDCl3) $\delta 72.42$ (s, 1F). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 184.9,138.2,137.2$, 134.1, 132.4, 131.3, 130.3, 130.0, 129.9, 129.0, 129.0, 128.3, 127.3, 126.2, 121.9, 116.5, $106.6(\mathrm{~d}, J=30.9 \mathrm{~Hz})$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClFNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 388.0205 , found: 388.0210 .

1-(4-methylbenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5f). Yellow solid, 297 $\mathrm{mg}, 81 \%$ yield. M.p. $187-189^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 4 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.35(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 184.8, 145.1, 138.3, 134.6, 132.8, 130.9, 130.5, 129.8, 129.7, 129.4, 128.9, 126.6, 126.5, 125.0, 120.2, 115.2, $105.6(\mathrm{~d}, J=30.1 \mathrm{~Hz})$, 21.9. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 368.0751$, found: 368.0754.

1-(4-methoxybenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5g). White solid, $295 \mathrm{mg}, 77 \%$ yield. M.p. $204-205^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane (3:1 to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.04-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.39(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.1,164.5,138.1,132.9,132.8,130.7,129.9,129.8,129.5,128.8$, 126.6, 125.7, 125.0, 120.1, 115.3, 114.3, 105.5 (d, $J=30.2 \mathrm{~Hz}$), 55.8. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 384.0700$, found: 384.0709.

5h

1-(4-fluorobenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5h). Yellow solid, 330 $\mathrm{mg}, 89 \%$ yield. M.p. $201-203^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87$ (d, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.27(\mathrm{~s}, 1 \mathrm{~F}),-103.46-$
$-103.52(\mathrm{~m}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.5,166.4(\mathrm{~d}, J=257.0 \mathrm{~Hz}), 138.6$, $133.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 132.8,131.3,130.0,129.6,128.5,126.9$, 126.8, 125.1, 120.2, 116.3 (d, $J=22.2 \mathrm{~Hz}), 115.2,106.0(\mathrm{~d}, J=30.5 \mathrm{~Hz})$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 372.0500$, found: 372.0509.

$5 i$
1-(4-chlorobenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5i). Light yellow solid, $325 \mathrm{mg}, 84 \%$ yield. M.p. $186-187^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane (3:1 to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ $-7.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.24(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 183.6,140.6,138.7,135.7,132.9,131.6,131.4,130.0,129.6,129.4,128.4$, 127.2, 126.8, 125.1, 120.2, 115.2, $106.1(\mathrm{~d}, J=30.6 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClFNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 388.0205$, found: 388.0209.

5j
1-(4-bromobenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5j). Yellow solid, 397 $\mathrm{mg}, 92 \%$ yield. M.p. $203-204^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.74$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 72.24(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.7,138.7,136.1,132.8$, $132.3,131.7,131.4,130.0,129.6,129.2,128.4,127.2,126.8,125.1,120.2,115.2,106.1$ $(\mathrm{d}, J=30.6 \mathrm{~Hz})$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrFNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 431.9700$, found: 431.9707.

1-(4-nitrobenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5k). Yellow solid, 358 $\mathrm{mg}, 90 \%$ yield. M.p. $224-225^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.43$ (s, 2H), $8.29(\mathrm{~s}, 3 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$, $7.76-7.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR (471 MHz , DMSO- d_{6}) $\delta 72.82(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 182.5,150.2,142.0,138.3,132.6,132.0,131.4,130.0,129.6,128.5$, 127.6, 126.9, 124.6, 123.8, 120.6, 114.2, 104.3 (d, $J=28.6 \mathrm{~Hz}$). HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 399.0445$, found: 399.0449.

51
1-(4-cyanobenzoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (51). Yellow solid, 336
$\mathrm{mg}, 89 \%$ yield. M.p. $220-222^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.69$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.13(\mathrm{~s}, 1 \mathrm{~F})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 182.7, 140.9, 139.2, 132.9, 132.8, 132.0, 130.5, 130.1, $129.7,128.3,128.1,127.0,125.2,120.3,117.9,117.0,115.1,106.6(\mathrm{~d}, J=30.9 \mathrm{~Hz})$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 379.0547$, found: 379.0537 .

5m
1-(thiophene-2-carbonyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (5m). White solid, $302 \mathrm{mg}, 84 \%$ yield. M.p. $180-181^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.79(\mathrm{~m}, 8 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.42(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.2,143.6,138.3$, $135.8,135.3,132.7,130.9,130.0,129.5,128.6,128.0,126.6,125.8,125.0,120.0,115.2$, $105.7(\mathrm{~d}, ~ J=30.2 \mathrm{~Hz})$. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FNO}_{3} \mathrm{~S}_{2}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 360.0159 , found: 360.0149 .

5n
Ethyl 3-(fluorosulfonyl)pyrrolo[1,2-a]quinoline-1-carboxylate (5n). White solid, 167 $\mathrm{mg}, 52 \%$ yield. M.p. $123-125^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel
using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.19(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,137.9,133.2,130.2,129.5,129.2,126.7,125.3$, 125.2, 121.8, 120.4, 115.3, 105.8 (d, $J=30.4 \mathrm{~Hz}), 62.0,14.5$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 322.0544$, found: 322.0536.

1-pivaloylpyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (50). Light yellow solid, 150 mg , 45% yield. M.p. $135-137{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane ($3: 1$ to $1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.51(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.3,137.1,132.9,130.0$, 129.7, 129.7, 127.9, 126.3, 125.0, 120.3, 119.1, 115.3, 105.0 (d, $J=29.9 \mathrm{~Hz}), 45.2$, 28.4. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 334.0908$, found: 334.0903.

1-(phenylcarbamoyl)pyrrolo[1,2-a]quinoline-3-sulfonyl fluoride (50). White solid, 151 $\mathrm{mg}, 41 \%$ yield. M.p. $260-262^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether / dichloromethane (3:1 to 1:1, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz ,

DMSO- d_{6}) $\delta 11.06(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR (471 MHz, DMSO- d_{6}) $\delta 73.61$ ($\mathrm{s}, 1 \mathrm{~F}$). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,138.6$, $135.3,132.0,130.0,129.8,129.6,128.9,126.5,126.0,124.3,124.3,120.2,118.8,118.5$, 114.4, $102.5(\mathrm{~d}, ~ J=28.7 \mathrm{~Hz})$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 369.0704, found: 369.0693.

6
4-methoxyphenyl 1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonate (6). Yellow solid, 226 $\mathrm{mg}, 99 \%$ yield. M.p. $63-65^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using dichloromethane as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-8.00(\mathrm{~m}, 3 \mathrm{H})$, $7.83(\mathrm{~s}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.9,158.4$, $143.1,138.0,137.6,133.6,132.9,130.2,130.0,129.4,129.3,128.7,128.1,127.9,126.3$, 125.0, 123.5, 120.2, 115.6, 114.6, 108.8, 55.6. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 458.1057$, found: 458.1050 .

7
Methyl 1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonate (7). Yellow solid, $170 \mathrm{mg}, 93 \%$ yield. M.p. $153-154{ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using
dichloromethane as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.85(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 5 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.9,137.8,137.7,133.6,132.9,130.3$, $130.0,129.4,129.3,128.8,128.2,127.7,126.3,125.0,120.3,115.7,108.9,56.3$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 366.0795$, found: 366.0798 .

8
(8R,9S, 13S, 14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl 1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonate (8). Yellow solid, $66 \mathrm{mg}, 55 \%$ yield. M.p. 202-203 ${ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using ether/ dichloromethane (1:1, v/v) as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-$ $7.86(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67\left(\mathrm{dd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.78-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.48\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=\right.$ $19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 220.5,185.9,147.8,139.1,138.9,138.6,134.1,132.4,130.7,130.2$, $130.0,129.4,129.1,128.7,127.5,127.4,126.7,125.1,123.1,123.0,122.1,118.9,116.6$, 111.2, 50.5, 48.0, 44.2, 37.9, 35.9, 31.6, 29.4, 26.2, 25.7, 21.7, 13.9. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 604.2152$, found: 604.2160 .

9
(3-((1H-imidazol-1-yl)sulfonyl)pyrrolo[1,2-a]quinolin-1-yl)(phenyl)methanone
White solid, $184 \mathrm{mg}, 92 \%$ yield. M.p. 207-208 ${ }^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether/ dichloromethane ($1: 1$ to $0: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 4 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-$ $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.9,137.6,137.3,136.2,133.9,132.8,131.3,131.1,130.3$, 129.9, 129.4, 129.0, 128.9, 126.6, 126.1, 125.0, 120.3, 117.1, 114.7, 111.0. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 402.0907$, found: 402.0917 .

10
1-benzoylpyrrolo[1,2-a]quinoline-3-sulfonyl azide (10). Yellow solid, $152 \mathrm{mg}, 92 \%$ yield. M.p. $165-166^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether/ dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.12-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.89\left(\mathrm{dd}, J_{1}=1.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.83$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.1, 137.9, 137.5, 133.9, 132.9, 130.8, 130.4, 129.8, 129.5, 129.0, 128.5, 126.6, 125.2, 120.4, 115.4, 112.3. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 377.0703$, found: 377.0710.

Note: In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}$, theoretically, there should be seventeen peaks.

Due to the compact overlaying, it is difficult to specify the overlaying peaks.

3-benzoyl-2,3-dihydropyrrolo[2,1-a]isoquinoline-1-sulfonyl fluoride (11). Yellow solid, $121 \mathrm{mg}, 17 \%$ yield. M.p. $58-60^{\circ} \mathrm{C}$. Purification by column chromatography on silica gel using petroleum ether/ dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.81$ $\left(\mathrm{dd}, J_{1}=1.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33\left(\mathrm{dd}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.44\left(\mathrm{dd}, J_{1}\right.$ $\left.=3.5 \mathrm{~Hz}, J_{2}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{19} \mathbf{F} \mathbf{N M R}(471$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.28(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.6, 140.3, 132.4, 131.7, 130.0, 129.3, 128.5, 128.3, 128.1 (d, $J=35.7 \mathrm{~Hz}$), 125.9 (d, $J=2.6 \mathrm{~Hz}), 125.0$, 123.3, 122.8, 114.1, 110.3, 58.0, 33.6. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}\right]^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 356.0751$, found: 356.0758 .

5. References

[1] J. Leng and H.-L. Qin, 1-Bromoethene-1-sulfonyl fluoride (1-Br-ESF), a new SuFEx clickable reagent, and its application for regioselective construction of 5sulfonylfluoro isoxazoles, Chem. Commun., 2018, 54, 4477-4480.
[2] X. He, R. Li, P. Y. Choy, T. Liu, J. Wang, O. Y. Yuen, M. P. Leung, Y. Shang and F. Y. Kwong, DMAP-catalyzed annulation approach for modular assembly of furan-fused chromenes, Org. Lett., 2020, 22, 9444-9449.
[3] Y. Chen, A. Shatskiy, J.-Q. Liu, M. D. Karkas and X.-S. Wang, Silver-Promoted $(4+1)$ Annulation of Isocyanoacetates with Alkylpyridinium Salts: Divergent Regioselective Synthesis of 1, 2-Disubstituted Indolizines, Org. Lett., 2021, 23, 7555-7560.
[4] M. Salari, A. Hassanabadi and M. H. Mosslemin, Green synthesis of trans-2-(4-chlorobenzoyl)-5-hydroxy-3-(aryl)-2, 3-dihydrobenzofuran-4, 7-diones, J. Chem. Res., 2017, 41, 271-274.
[5] M. Anary-Abbasinejad, K. Charkhati and A. Hassanabadi, Synthesis of benzoindolizine derivatives by reaction of trimethyl phosphite, dialkyl acetylenedicarboxylates and isoquinolinium or quinolinium bromides, J. Chem. Res., 2009, 2009, 95-97.
[6] M. D. Hopkin, I. R. Baxendale and S. V. Ley, A new focused microwave approach to the synthesis of amino-substituted pyrroloisoquinolines and pyrroloquinolines via a sequential multi-component coupling process, Synthesis., 2008, 2008, 16881702.
[7] W. Kemnitzer, J. Kuemmerle, S. Jiang, N. Sirisoma, S. Kasibhatla, C. CroganGrundy, B. Tseng, J. Drewe and S. X. Cai, Discovery of 1-benzoyl-3-cyanopyrrolo [1, 2-a] quinolines as a new series of apoptosis inducers using a cell-and caspasebased high-throughput screening assay. 2: structure-activity relationships of the 4-, 5-, 6-, 7-and 8-positions, Bioorg. Med. Chem. Lett., 2009, 19, 3481-3484.
[8] V. Uppar, S. Chandrashekharappa, K. N. Venugopala, P. K. Deb, S. Kar, O. I. Alwassil, R. M. Gleiser, D. Garcia, B. Odhav and M. K. Mohan, Synthesis and characterization of pyrrolo [1, 2-a] quinoline derivatives for their larvicidal activity
against Anopheles arabiensis, Struct. Chem., 2020, 31, 1533-1543.
[9] W. Kemnitzer, J. Kuemmerle, S. Jiang, H.-Z. Zhang, N. Sirisoma, S. Kasibhatla, C. Crogan-Grundy, B. Tseng, J. Drewe and S. X. Cai, Discovery of 1-benzoyl-3cyanopyrrolo [1, 2-a] quinolines as a new series of apoptosis inducers using a celland caspase-based high-throughput screening assay. Part 1: Structure-activity relationships of the 1-and 3-positions, Bioorg. Med. Chem. Lett., 2008, 18, 62596264.
[10] S.-J. Chen, G.-S. Chen, T. Deng, J.-H. Li, Z.-Q. He, L.-S. Liu, H. Ren and Y.-L. Liu, Dicarbofunctionalization of Trifluoromethyl Alkenes with Pyridinium Salts via a Cycloaddition/Visible-Light-Enabled Fragmentation Cascade, Org. Lett., 2022, 24, 702-707.
[11] M. C. Al-Matarneh, R.-M. Amărandi, I. I. Mangalagiu and R. Danac, Synthesis and biological screening of new cyano-substituted pyrrole fused (iso) quinoline derivatives, Molecules, 2021, 26, 2066.
[12] E. I. Georgescu, F. Georgescu, C. Roibu, C. C. Draghici and M. T. Caproiu, NBridgehead heterocyclic compounds thenoyl-substituted. I. Indolizines and benzoindolizines, Rev. Roum. Chim., 2001, 46, 357-362.
[13] J. Grigoryan, G. Sargsyan, A. K. Gyulnazaryan, R. Paronikyan and G. Stepanyan, Synthesis and antibacterial properties of several unsaturated quaternary ammonium salts, Pharm. Chem. J., 2013, 47, 477-480.
6. NMR spectra

(

(

S105

S108

S112

S113

S114

(

(

S131

S133

S138

S143

S144

S146

(

S154

S161

S164

S166

S185

7. Data of Crystal Structure of $\mathbf{5 g}$.

Approximately 150 mg of the purified compound $\mathbf{5 g}$ was dissolved in CHCl_{3} and placed under dark conditions to evaporate slowly. After several days, colorless crystals were obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart-1000 CDCC diffractometer (graphite-monochromated Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \mathrm{~nm}$) at 293(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 2204064).

Table S9 Crystal data and structure refinement for 220710e

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group

220710e
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{FNO}_{4} \mathrm{~S}$
383.38

298(2) K
0.71073 A

Triclinic, $\mathrm{P}-1$

Unit cell dimensions	$\begin{gathered} \mathrm{a}=4.5757(4) \mathrm{A} \quad \text { alpha }=76.640(2) \mathrm{deg} . \\ \mathrm{b}=10.3900(11) \mathrm{A} \quad \text { beta }=83.509(3) \mathrm{deg} . \\ \mathrm{c}=18.9149(18) \mathrm{A} \quad \text { gamma }=83.568(3) \mathrm{deg} . \end{gathered}$
Volume	865.86(14) A^3
Z, Calculated density	2, $1.470 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.224 \mathrm{~mm}^{\wedge}-1$
F(000)	396
Crystal size	$0.45 \times 0.23 \times 0.11 \mathrm{~mm}$
Theta range for data collection	2.08 to 25.02 deg .
Limiting indices	$-5<=\mathrm{h}<=5,-12<=\mathrm{k}<=12,-17<=1<=22$
Reflections collected / unique	$4275 / 2988[\mathrm{R}(\mathrm{int})=0.0361]$
Completeness to theta $=25.02$	97.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9757 and 0.9057
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	2988 / 0 / 245
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.052
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0633, \mathrm{wR} 2=0.1493$
R indices (all data)	$\mathrm{R} 1=0.0922, \mathrm{wR} 2=0.1613$
Largest diff. peak and hole	0.253 and -0.377 e. A^{\wedge}-3

Table S10 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters $\left(\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3\right)$ for 220710 e .
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized
Uij tensor.

	x	y	z	U(eq)
S(1)	-3136(2)	3863(1)	3357(1)	47(1)
F(1)	-623(5)	2754(2)	3600(2)	78(1)
$\mathrm{N}(1)$	789(6)	7139(3)	3028(1)	37(1)
$\mathrm{O}(1)$	469(7)	9120(2)	1626(1)	61(1)
$\mathrm{O}(2)$	8072(8)	6697(3)	-867(2)	72(1)
$\mathrm{O}(3)$	-4970(6)	3898(3)	4004(2)	71(1)
$\mathrm{O}(4)$	-4197(7)	3511(3)	2759(2)	66(1)
C(1)	1097(8)	6912(3)	2311(2)	41(1)
C(2)	-129(8)	5750(3)	2342(2)	42(1)
C(3)	-1285(8)	5268(3)	3070(2)	43(1)
C(4)	-714(7)	6135(3)	3493(2)	40(1)
C(5)	-1428(8)	6171(4)	4238(2)	48(1)
C(6)	-538(9)	7158(4)	4494(2)	51(1)
C(7)	1246(8)	8139(3)	4038(2)	44(1)
C(8)	2035(7)	8097(3)	3303(2)	40(1)
C(9)	4033(8)	8948(3)	2878(2)	48(1)
C(10)	5106(9)	9887(4)	3170(3)	59(1)
C(11)	4209(10)	9996(4)	3884(3)	64(1)
C(12)	2387(9)	9106(4)	4318(2)	57(1)
C(13)	1528(8)	7977(3)	1626(2)	44(1)
C(14)	3141(8)	7585(3)	979(2)	40(1)
C(15)	3076(9)	8505(4)	307(2)	54(1)

$\mathrm{C}(16)$	$4646(10)$	$8248(4)$	$-321(2)$	$61(1)$
$\mathrm{C}(17)$	$6381(10)$	$7052(4)$	$-285(2)$	$51(1)$
$\mathrm{C}(18)$	$6470(9)$	$6116(3)$	$377(2)$	$48(1)$
$\mathrm{C}(19)$	$4874(8)$	$6386(3)$	$993(2)$	$45(1)$
$\mathrm{C}(20)$	$8117(15)$	$7642(5)$	$-1553(2)$	$97(2)$

Table S11 Bond lengths [A] and angles [deg] for 220710e

$\mathrm{S}(1)-\mathrm{O}(3)$	$1.409(3)$
$\mathrm{S}(1)-\mathrm{O}(4)$	$1.415(3)$
S(1)-F(1)	1.562(2)
$\mathrm{S}(1)-\mathrm{C}(3)$	1.717(3)
$\mathrm{N}(1)$-C(4)	1.391(4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.418(4)
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.422(4)$
$\mathrm{O}(1)-\mathrm{C}(13)$	1.231(4)
$\mathrm{O}(2)-\mathrm{C}(17)$	$1.370(5)$
$\mathrm{O}(2)-\mathrm{C}(20)$	$1.435(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.374(5)
$\mathrm{C}(1)-\mathrm{C}(13)$	$1.506(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.415(5)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	1.397(5)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.419(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.350(5)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$\mathrm{C}(6)-\mathrm{C}(7)$	1.439(5)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9300
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.405(5)$
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.409(5)$
$\mathrm{C}(8)$-C(9)	1.398(5)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.384(5)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9300
$\mathrm{C}(10)-\mathrm{C}(11)$	1.394(6)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9300

$\mathrm{C}(11)-\mathrm{C}(12)$	1.375(6)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9300
$\mathrm{C}(13)-\mathrm{C}(14)$	1.473(5)
$\mathrm{C}(14)-\mathrm{C}(19)$	$1.396(5)$
$\mathrm{C}(14)-\mathrm{C}(15)$	1.403(5)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.383(5)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9300
$\mathrm{C}(16)-\mathrm{C}(17)$	1.390(6)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300
$\mathrm{C}(17)-\mathrm{C}(18)$	1.399(5)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.372(5)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9300
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9300
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9600
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(4)$	121.11(18)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{F}(1)$	104.13(18)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{F}(1)$	104.44(17)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(3)$	111.28(18)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(3)$	110.74(17)
$F(1)-S(1)-C(3)$	103.04(16)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	109.1(3)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(8)$	121.1(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	129.4(3)
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{C}(20)$	117.6(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	107.4(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	124.1(3)

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	124.4(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.1(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	125.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	125.9
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	108.6(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{S}(1)$	127.1(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(1)$	124.3(3)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	106.8(3)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	120.0(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	133.2(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.4(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.5(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.3
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.3
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	118.4(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.8(3)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	121.7(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.2(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	122.4(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$	117.4(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.7(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.1
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.1
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.7(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.6
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.6
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	119.5(4)

$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	120.2
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$121.1(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.4
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$	119.4
$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$123.1(3)$
$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(1)$	$119.1(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(1)$	$117.8(3)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)$	$117.4(3)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(13)$	$124.4(3)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$118.1(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$122.0(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.0
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.0(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	129.5
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	$129.4(3)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$115.6(4)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.0(4)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	$120.0(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	120.6
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$\mathrm{C}(19)-\mathrm{H}(19)$
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$
$\mathrm{O}(20 \mathrm{~B})$	10.2
O	

$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table S12 Anisotropic displacement parameters (A^2 x 10^3) for 220710e
The anisotropic displacement factor exponent takes the form:
-2 pi^2 [h^2 a*^2 U11 + ... $+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12$]

	U 11	U 22	U 33	U 23	U 13	U 12
$\mathrm{~S}(1)$	$42(1)$	$46(1)$	$52(1)$	$-6(1)$	$3(1)$	$-14(1)$
$\mathrm{F}(1)$	$64(2)$	$44(1)$	$117(2)$	$8(1)$	$-18(2)$	$-9(1)$
$\mathrm{N}(1)$	$37(2)$	$34(2)$	$36(2)$	$-5(1)$	$4(1)$	$-2(1)$
$\mathrm{O}(1)$	$81(2)$	$40(2)$	$53(2)$	$-5(1)$	$7(2)$	$10(1)$
$\mathrm{O}(2)$	$114(3)$	$55(2)$	$43(2)$	$-13(1)$	$16(2)$	$-7(2)$
$\mathrm{O}(3)$	$62(2)$	$82(2)$	$69(2)$	$-20(2)$	$23(2)$	$-35(2)$
$\mathrm{O}(4)$	$69(2)$	$72(2)$	$65(2)$	$-19(2)$	$-4(2)$	$-30(2)$
$\mathrm{C}(1)$	$44(2)$	$39(2)$	$37(2)$	$-8(2)$	$3(2)$	$-5(2)$
$\mathrm{C}(2)$	$44(2)$	$42(2)$	$39(2)$	$-11(2)$	$0(2)$	$-6(2)$
$\mathrm{C}(3)$	$38(2)$	$41(2)$	$46(2)$	$-6(2)$	$4(2)$	$-10(2)$
$\mathrm{C}(4)$	$35(2)$	$36(2)$	$44(2)$	$-5(2)$	$4(2)$	$-3(2)$
$\mathrm{C}(5)$	$48(2)$	$51(2)$	$39(2)$	$-4(2)$	$9(2)$	$-4(2)$
$\mathrm{C}(6)$	$50(2)$	$58(2)$	$42(2)$	$-14(2)$	$5(2)$	$2(2)$
$\mathrm{C}(7)$	$44(2)$	$39(2)$	$47(2)$	$-15(2)$	$-2(2)$	$7(2)$
$\mathrm{C}(8)$	$37(2)$	$33(2)$	$49(2)$	$-12(2)$	$-3(2)$	$2(2)$
$\mathrm{C}(9)$	$46(2)$	$42(2)$	$53(2)$	$-9(2)$	$-3(2)$	$-2(2)$
$\mathrm{C}(10)$	$55(3)$	$44(2)$	$75(3)$	$-5(2)$	$-10(2)$	$-12(2)$
$\mathrm{C}(11)$	$69(3)$	$48(2)$	$81(3)$	$-22(2)$	$-19(3)$	$-5(2)$
$\mathrm{C}(12)$	$58(3)$	$54(2)$	$64(3)$	$-28(2)$	$-8(2)$	$11(2)$
$\mathrm{C}(13)$	$50(2)$	$36(2)$	$43(2)$	$-5(2)$	$-3(2)$	$-3(2)$
$\mathrm{C}(14)$	$49(2)$	$37(2)$	$35(2)$	$-5(2)$	$-5(2)$	$-7(2)$
$\mathrm{C}(15)$	$72(3)$	$40(2)$	$45(2)$	$-2(2)$	$-6(2)$	$5(2)$
$\mathrm{C}(16)$	$96(3)$	$47(2)$	$34(2)$	$1(2)$	$-6(2)$	$0(2)$

$\mathrm{C}(17)$	$74(3)$	$46(2)$	$37(2)$	$-12(2)$	$0(2)$	$-14(2)$
$\mathrm{C}(18)$	$60(3)$	$37(2)$	$44(2)$	$-6(2)$	$1(2)$	$0(2)$
$\mathrm{C}(19)$	$57(2)$	$41(2)$	$33(2)$	$-1(2)$	$-3(2)$	$-9(2)$
$\mathrm{C}(20)$	$174(6)$	$68(3)$	$40(3)$	$-11(2)$	$26(3)$	$-16(3)$

Table S13 Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 220710 e .

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2)	-189	5350	1953	50
H(5)	-2499	5521	4547	57
H(6)	-1089	7205	4977	61
H(9)	4641	8884	2400	57
H(10)	6440	10452	2886	70
H(11)	4839	10666	4066	76
H(12)	1900	9142	4804	69
H(15)	1942	9312	284	65
H(16)	4543	8867	-762	73
H(18)	7611	5311	400	58
H(19)	4948	5756	1430	53
H(20A)	6174	7796	-1719	145
H(20B)	9472	7299	-1905	145
H(20C)	8734	8461	-1495	145

Table S14 Torsion angles [deg] for 220710e

$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-1.9(4)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	170.5(3)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	156.1(3)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	-31.5(5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	1.8(4)
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-156.3(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-1.0(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(1)$	177.7(3)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	21.4(4)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	159.1(3)
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-89.7(4)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-157.1(3)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-19.3(4)
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	91.9(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	1.3(4)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-171.9(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-177.0(3)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$9.8(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	-0.2(4)
$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	-178.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	177.8(4)
$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.9(6)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-2.5(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	179.8(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-3.1(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	1.5(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	-174.6(4)

$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	3.5(5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-172.8(3)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$	-178.2(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$	5.5(5)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	167.1(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	-4.6(5)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	-11.2(5)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	177.2(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-3.7(5)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	178.1(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-0.2(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	4.2(6)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	-4.4(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	0.5(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	176.7(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(1)$	124.7(4)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(1)$	-29.7(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	-53.6(5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	152.0(3)
$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	166.3(4)
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	-15.5(5)
$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-10.0(6)
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	168.3(3)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	0.2(6)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	176.7(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-1.1(7)
$\mathrm{C}(20)-\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	1.9(6)
$\mathrm{C}(20)-\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	-178.3(4)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(2)$	-178.8(4)

$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$1.4(6)$
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$179.3(3)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-0.8(6)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-0.1(6)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$0.4(6)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-175.9(3)$

Symmetry transformations used to generate equivalent atoms:

Table S15 Hydrogen bonds for 220710e [A and deg.]
D-H...A d(D-H) d(H...A) \quad (D...A) \quad (DHA)

