Facile synthesis of fully substituted 1*H*-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions

Shujun Cao, Chongchong Ma, Xinjie Teng, Rongshun Chen*, Yun Li, Weidong Yuan, and Yingguang Zhu*

Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China

*E-mail: rongshunchen@njau.edu.cn; ygzhu@njau.edu.cn

Supporting Information

Table of Contents

.General information	. S2		
2.Optimization of reaction conditions	S2		
3.General procedure for the synthesis of fully substitute	ed S4		
H-imidazoles			
I.Mechanistic studies	S4		
4.1 The experiment in the absence of Ir(ppy) ₃	S4		
4.2 The experiment of the addition of radical scavenger TEMPO	S5		
4.3 The experiment of the addition of radical scavenger BHT			
4.4 The possible reaction between compounds 5a-d , 2a , and 3a	S6		
4.5 Intermediates trapping experiments	S7		
4.6 Fluorescence quenching experiments			
4.7 Light on/off experiments			
4.8 Cyclic voltammetry experiments	S11		
5. Characterization data	S12		
5.X-ray structure of product 4k	S33		
7.References			
8.NMR spectra			

1.General information. All commercially available reagents were used without further purification. Column chromatography was performed on silica gel (200-300 mesh). 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra were recorded on a 400 MHz NMR spectrometer. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were recorded on a 500 MHz NMR spectrometer. Chemical shifts (δ) were reported in ppm, and coupling constants (J) were given in Hertz (Hz). Data were reported as s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. High-resolution mass spectra (HRMS) were recorded on an AB SCIEX Triple TOF 5600+ mass spectrometer. Melting points were uncorrected. Substrates 1a-10 were prepared according to the literature procedure.¹

2. Optimization of reaction conditions

	R O O, N + CHO + CHO	$\frac{NH_2}{DMF, N_2, 36 W blue}$, Et ₃ N'HCI		
F	$1a R = p - CF_3C_6H_4$ $2a$ $3a$		4	a 🖂	X7' 11
En	PC	[Cu]	Additive	Solvent	Yield
try		a av	E. M.H.GI	DIG	[%]
1	$Ir(dF(CF_3)ppy_2)dtbbpyPF_6$	CuCN	Et ₃ N HCl	DMF	0
2	$Ir(ppy_2dtbbpy)PF_6$	CuCN	Et ₃ N HCl	DMF	0
3	$Ir(dF(CF_3)ppy_2(5,5-dF(CF_3)bpy_2))PF_6$	CuCN	Et ₃ N HCl	DMF	0
4	$Ir(dF(CF_3)ppy_2bpy)PF_6$	CuCN	Et ₃ N HCl	DMF	0
5	Ir(ppy) ₃	CuCN	Et ₃ N HCl	DMF	51
6	4CzIPN	CuCN	Et ₃ N HCl	DMF	0
7	4DPAIPN	CuCN	Et ₃ N HCl	DMF	0
8	Acr-Mes ⁺ ClO ₄ ⁻	CuCN	Et ₃ N HCl	DMF	0
9	Eosin Y	CuCN	Et ₃ N HCl	DMF	0
10	Rhodamine B	CuCN	Et ₃ N HCl	DMF	0
11	Rose begal	CuCN	Et ₃ N HCl	DMF	0
12	Methylene blue	CuCN	Et ₃ N HCl	DMF	0
13	Ir(ppy) ₃	CuBr	Et ₃ N HCl	DMF	81
14	Ir(ppy) ₃	CuCl	Et ₃ N HCl	DMF	79
15	Ir(ppy) ₃	CuI	Et ₃ N HCl	DMF	77
16	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMF	90
17	Ir(ppy) ₃	CuSCN	Et ₃ N HCl	DMF	41
18	Ir(ppy) ₃	CuTc	Et ₃ N HCl	DMF	48

Table S1. Optimization of Reaction Conditions^a

19	Ir(ppy) ₃	Cu(OAc)	Et ₃ N HCl	DMF	82
20	Ir(ppy) ₃	Cu(OTf)	Et ₃ N HCl	DMF	73
21	Ir(ppy) ₃	$Cu(OAc)_2$	Et ₃ N HCl	DMF	48
22	Ir(ppy) ₃	$Cu(OTf)_2$	Et ₃ N HCl	DMF	46
23	Ir(ppy) ₃	$Cu(acac)_2$	Et ₃ N HCl	DMF	49
24	Ir(ppy) ₃	$Cu(NO_3)_2$	Et ₃ N HCl	DMF	37
25	Ir(ppy) ₃	$CuCl_2$	Et ₃ N HCl	DMF	53
26	Ir(ppy) ₃	CuBr ₂	Et ₃ N HCl	DMF	52
27	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N	DMF	60
28	Ir(ppy) ₃	$Cu(MeCN)_4PF_6$	Cs_2CO_3	DMF	0
29	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Na ₂ CO ₃	DMF	53
30	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	K_2CO_3	DMF	70
31	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Na ₂ HPO ₄	DMF	57
32	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	K_2HPO_4	DMF	40
33	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	NaHCO ₃	DMF	74
34	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	NaH_2PO_4	DMF	35
35	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	TFA	DMF	0
36	Ir(ppy) ₃	$Cu(MeCN)_4PF_6$	TMG	DMF	30
37	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMA	60
38	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMSO	73
39	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	MeCN	71
40	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	Dioxane	0
41	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DCE	53
42	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	MeOH	0
43	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	NMP	36
44	Ir(ppy) ₃	$Cu(MeCN)_4PF_6$	Et ₃ N HCl	EA	59
45	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	THF	3
46	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	toluene	36
47	-	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMF	0
48	Ir(ppy) ₃	-	Et ₃ N HCl	DMF	0
49	Ir(ppy) ₃	$Cu(MeCN)_4PF_6$	-	DMF	50
50 ^c	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMF	0
51 ^d	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMF	77
52 ^e	Ir(ppy) ₃	Cu(MeCN) ₄ PF ₆	Et ₃ N HCl	DMF	19

^{*a*}All reactions were carried out with **1a** (76.6 mg, 0.20 mmol), **2a** (42.4 mg, 0.40 mmol, 2.0 equiv), **3a** (37.2 mg, 0.40 mmol, 2.0 equiv), photocatalyst (0.0020 mmol), copper catalyst (0.020 mmol), additive (0.40 mmol, 2 equiv) in solvent (2.0 mL) at room temperature under N₂ for 24 h under irradiation with a 15 W blue LED lamp unless otherwise stated. ^{*b*}Isolated yield based on **1a**. ^{*c*}The reaction was conducted in the dark.^{*d*} In the air atmosphere. ^{*e*}18 W CFL lamp was used. Cu(acac)₂ = cupric acetylacetonate. CuTC = copper(I) thiophene-2-carboxylate. NEt₃ = triethylamine, TMG = tetramethylguanidine, DCE = dichloroethane, DMF = *N*,*N*-dimethylformamide. **3.General procedure for the synthesis of fully substituted 1***H***-imidazoles (Scheme 2 and Scheme 3).** To a reaction tube equipped with a magnetic stir bar were added oxime ester **1** (0.20 mmol), aldehyde **2** (0.40 mmol), amine **3**(0.40 mmol), Ir(ppy)₃ (1.3 mg, 0.0020 mmol), Cu(MeCN)₄PF₆ (7.5 mg, 0.020 mmol), Et₃N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. After that, the mixture was diluted with water (15 mL) and extracted with EtOAc (15 mL×3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 40:1 ~ 10:1) to give products **4**.

4. Mechanistic studies

To a reaction tube equipped with a magnetic stir bar were added oxime ester **1a** (76.6 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), Cu(MeCN)₄PF₆ (7.5 mg, 0.020 mmol), Et₃N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **3a** was not observed. After that, the mixture was diluted with water (15 mL) and extracted with EtOAc (15 mL×3). The combined organic layers were washed with H₂O, brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) to afford the recovered oxime ester **1a** (71.5 mg, 93% recovered). Such results are not contradictory with previous reports about copper-mediated/catalyzed N-O bond

cleavage reactions of oxime esters, which need to be conducted under heating conditions.

$R \rightarrow 0$ $N \rightarrow$

4.2 The experiment of the addition of radical scavenger TEMPO

To a reaction tube equipped with a magnetic stir bar were added oxime ester **1a** (76.6 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), Ir(ppy)₃ (1.3 mg, 0.0020 mmol), Cu(MeCN)₄PF₆ (7.5 mg, 0.020 mmol), Et₃N HCl (55.2 mg, 0.40 mmol), TEMPO (125.0 mg, 0.80 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Afterwards, the mixture was diluted with water (15 mL) and extracted with EtOAc (15 mL×3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) to give product **4a** (19.3 mg, 26%).

4.3 The experiment of the addition of radical scavenger BHT

To a reaction tube equipped with a magnetic stir bar were added oxime ester **1a** (76.6 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), $Ir(ppy)_3$ (1.3 mg, 0.0020 mmol), $Cu(MeCN)_4PF_6$ (7.5 mg, 0.020 mmol), Et_3N HCl (55.2 mg, 0.40 mmol), BHT (176.3 mg, 0.80 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **4a** was not observed.

4.4 The possible reaction between compounds 5a-d, aldehyde 2a, and amine 3a 4.4.1 The possible reaction between 2,3-diphenyl-2*H*-azirine (5a), aldehyde 2a, and amine 3a

To a reaction tube equipped with a magnetic stir bar were added azirine **5a** (38.6 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), $Ir(ppy)_3$ (1.3 mg, 0.0020 mmol), $Cu(MeCN)_4PF_6$ (7.5 mg, 0.020 mmol), Et_3N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **4a** was not observed.

4.4.2 The possible reaction between 1,2-diphenylethan-1-one (5b), aldehyde 2a, and amine 3a

To a reaction tube equipped with a magnetic stir bar were added azirine **5b** (39.2 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), $Ir(ppy)_3$ (1.3 mg, 0.0020 mmol), $Cu(MeCN)_4PF_6$ (7.5 mg, 0.020 mmol), Et_3N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **4a** was not observed.

4.4.3 The possible reaction between benzil (5c), aldehyde 2a, and amine 3a (Scheme 2d)

To a reaction tube equipped with a magnetic stir bar were added azirine **5c** (42.0 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), $Ir(ppy)_3$ (1.3 mg, 0.0020 mmol), $Cu(MeCN)_4PF_6$ (7.5 mg, 0.020 mmol), Et_3N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **4a** was not observed.

4.4.4 The possible reaction between 2-hydroxy-1,2-diphenylethan-1-one (5d) aldehyde 2a, and amine 3a

To a reaction tube equipped with a magnetic stir bar were added azirine **5d** (42.4 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), $Ir(ppy)_3$ (1.3 mg, 0.0020 mmol), $Cu(MeCN)_4PF_6$ (7.5 mg, 0.020 mmol), Et_3N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **4a** was not observed.

4.5 Intermediates trapping experiments

To a reaction tube equipped with a magnetic stir bar were added oxime ester **1a** (76.6 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), Ir(ppy)₃ (1.3 mg, 0.0020 mmol), Cu(MeCN)₄PF₆ (7.5 mg, 0.020 mmol), Et₃N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 12 h. After that, a trace amount of the crude reaction mixture was subjected to the HRMS analysis, which indicated that the intermediates **F** could be formed. Afterwards, the mixture was diluted with water (15 mL) and extracted with EtOAc (15 mL×3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) to give product **4a** (57.1 mg, 77%).

To a reaction tube equipped with a magnetic stir bar were added oxime ester **1a** (76.6 mg, 0.20 mmol), aldehyde **2a** (42.4 mg, 0.40 mmol), amine **3a** (37.3 mg, 0.40 mmol), $Ir(ppy)_3$ (1.3 mg, 0.0020 mmol), $Cu(MeCN)_4PF_6$ (7.5 mg, 0.020 mmol), Et_3N HCl (55.2 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was irradiated with a 15 W blue LED lamp and stirred at 25 °C under nitrogen atmosphere for 24 h. After that, a trace amount of the crude reaction mixture was subjected to the HRMS analysis, which indicated that benzyl alcohol could be formed. Afterwards, the

mixture was diluted with water (15 mL) and extracted with EtOAc (15 mL×3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) to give product **4a** (67.1 mg, 90%).

4.6 Fluorescence quenching experiments

The luminescence quenching experiment was taken using a FluoroMax-4 Spectrophotometer. The experiments were carried out with the 3 x 10^{-5} mol/L of Ir(ppy)₃ in DMF at 25 °C under nitrogen atmosphere. The concentrations of quencher (**1a**, **2a**, **3a**, Et₃N HCl) in DMF were 1 mmol/L, 2 mmol/L, 3 mmol/L, 4 mmol/L. The excitation wavelength was 384 nm and the emission intensity was collected at 523 nm. The ratio of I₀/I was plotted as a function of the quencher concentration (I₀ = emission intensity of the photocatalyst in isolation at the specified wavelength; I = observed emission intensity of the photocatalyst with added quencher).

Figure S3. Emission quenching experiments with oxime ester 1a, PhCHO 2a, PhNH₂3a, or Et₃N HCl as quenchers.

4.7 Light on/off experiments

Figure S4 Light on-off experiments

The yield of **4m** was determined by ¹H NMR using 1,2-dibromoethane as an internal standard. The results revealed that a radical chain process was not the major reaction pathway.

4.8 Reductive potential of substrate

Figure S3. Cyclic voltammogram of 1a

 $E_{1/2}^{\text{Red}}$ (1a) = -1.78 V vs. SCE

5.Characterization data

White solid (0.20 mmol scale, 67.1 mg, 90%; 3.0 mmol scale, 0.98 g, 88%); mp 178-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 2H), 7.45 – 7.39 (m, 2H), 7.30 – 7.16 (m, 12H), 7.12 (d, J = 6.1 Hz, 2H), 7.03 (d, J = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 138.2, 137.0, 134.4, 131.1, 130.8, 130.6, 130.4, 129.0, 128.9, 128.4, 128.3, 128.2, 128.12, 128.05, 127.9, 127.6, 127.4, 126.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₁N₂ 373.1699, found 373.1676.

White solid (44.3 mg, 55%); mp 179-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 2H), 7.45 – 7.39 (m, 2H), 7.29 – 7.17 (m, 9H), 7.07 – 7.00 (m, 4H), 6.78 – 6.72 (m, 2H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 146.7, 138.0, 137.1, 134.5, 132.3, 130.7, 130.5, 129.0, 128.9, 128.4, 128.2, 128.14, 128.11, 128.0, 127.3, 126.4, 122.7, 113.8, 55.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂O 403.1805, found 403.1823.

White solid (65.5 mg, 73%); mp 177-178 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.63 (m, 2H), 7.59 – 7.53 (m, 2H), 7.52 – 7.42 (m, 4H), 7.41 – 7.36 (m, 2H), 7.32 – 7.29 (m, 1H), 7.27 – 7.18 (m, 9H), 7.18 – 7.15 (m, 2H), 7.08 – 7.01 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.0, 140.2, 140.1, 138.5, 137.0, 134.4, 131.3, 131.1, 130.43, 130.40, 129.1, 128.9, 128.7, 128.4, 128.3, 128.23, 128.21, 128.15, 128.0, 127.5, 126.81, 126.78, 126.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂ 449.2012, found 449.2009.

White solid (51.5 mg, 66%); mp 165-166 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.44 – 7.40 (m, 2H), 7.30 – 7.19 (m, 9H), 7.11 – 7.07 (m, 2H), 7.04 – 7.00 (m, 2H), 6.94 – 6.89 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.4 (d, *J* = 248.4 Hz), 147.0, 138.4, 136.9, 134.2, 132.9 (d, *J* = 8.1 Hz), 130.3, 129.7, 129.2, 129.0, 128.9, 128.4, 128.3, 128.2, 128.1, 127.4, 126.7, 126.6 (d, *J* = 3.6 Hz), 115.5 (d, *J* = 21.6 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀FN₂ 391.1605, found 391.1614.

White solid (66.7 mg, 82%); mp 170-171 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.43 – 7.39 (m, 2H), 7.32 – 7.22 (m, 9H), 7.20 – 7.18 (m, 2H), 7.06 – 7.01 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 138.7, 136.8, 134.0, 132.3, 129.9, 129.4, 129.3, 129.0, 128.7, 128.6, 128.5, 128.40, 128.36, 128.3, 128.1, 127.5, 126.9, 126.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1323.

White solid (70.4 mg, 78%); mp 174-175 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.43 – 7.38 (m, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.19 (m, 9H), 7.04 – 7.01 (m, 2H), 6.99 – 6.95 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 138.7, 136.8, 134.1, 132.5, 131.6, 130.2, 129.5, 129.4, 129.3, 128.9, 128.5, 128.4, 128.34, 128.25, 128.1, 127.5, 126.9, 122.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀BrN₂ 451.0804, found 451.0832.

White solid (60.8 mg, 69%); mp 163-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.46 – 7.39 (m, 2H), 7.29 – 7.22 (m, 9H), 7.18 – 7.10 (m, 2H), 7.08 – 7.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 138.0 (q, J = 1.4 Hz), 136.78, 136.75, 132.0, 131.0, 130.2, 130.1, 129.1, 128.9, 128.55, 128.55 (q, J = 33.9 Hz), 128.5, 128.42, 128.38, 128.3, 128.2, 127.2, 125.1 (q, J = 3.8 Hz), 124.4 (q, J = 270.1 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₀F₃N₂ 441.1573, found 441.1578.

White solid (51.3 mg, 63%); mp 169-170 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.70 (m, 1H), 7.44 – 7.41 (m, 2H), 7.37 (dt, J = 7.2, 1.6 Hz, 1H), 7.28 – 7.22 (m, 9H), 7.16 – 7.10 (m, 4H), 7.05 – 7.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 136.8, 136.3, 134.1, 131.4, 131.0, 130.2, 130.1, 129.3, 129.1, 128.9, 128.44, 128.38, 128.34, 128.32, 128.2, 128.1, 127.3, 126.5, 125.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1322.

White solid (55.3 mg, 68%); mp 166-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 1H), 7.44 – 7.37 (m, 2H), 7.37 – 7.26 (m, 4H), 7.27 – 7.17 (m, 5H), 7.13 – 7.05 (m, 5H), 6.92 – 6.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 137.0, 136.9, 133.9, 133.7, 132.8, 132.1, 130.1, 129.9, 129.8, 129.6, 129.2, 129.1, 128.9, 128.4, 128.3, 128.02, 127.98, 127.9, 127.3, 126.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1315.

White solid (49.5 mg, 64%); mp 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 3H), 7.33 – 7.28 (m, 3H), 7.26 – 7.17 (m, 4H), 7.17 – 7.13 (m, 2H), 7.12 – 7.03 (m, 5H), 6.90 – 6.83 (m, 2H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 139.5, 137.3, 137.1, 134.2, 131.3, 131.1, 130.5, 130.2, 130.1, 129.9, 129.1, 129.0, 128.4, 128.2, 128.1, 128.0, 127.9, 127.4, 127.0, 125.4, 20.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂ 387.1856, found 387.1863.

White solid (69.1 mg, 77%); mp 167-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.41 (dd, J = 7.8, 1.9 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.30 – 7.20 (m, 9H), 7.15 – 7.08 (m, 2H), 7.07 – 6.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 137.2, 136.9, 133.4, 131.2, 131.1, 131.0, 130.33, 130.30, 129.1, 128.87, 128.86, 128.5, 128.4, 128.3, 128.2, 128.1, 120.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀BrN₂ 451.0804, found 451.0823.

White solid (65.9 mg, 81%); mp 170-171 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.43 – 7.40 (m, 2H), 7.31 – 7.21 (m, 9H), 7.21 – 7.18 (m, 2H), 7.06 – 7.01 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 147.2, 138.7, 136.8, 134.0, 132.3, 129.4, 129.3, 129.1, 129.04, 128.95, 128.7, 128.5, 128.41, 128.35, 128.3, 128.1, 127.6, 127.5, 126.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1316.

White solid (53.7 mg, 66%); mp 166-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.42 (dd, J = 7.8, 1.9 Hz, 2H), 7.33 – 7.18 (m, 10H), 7.17 – 7.09 (m, 2H), 7.07 – 6.97 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 138.8, 136.7, 134.1, 133.9, 132.4, 130.9, 130.2, 129.6, 129.3, 129.21, 129.18, 128.9, 128.5, 128.4, 128.3, 128.2, 128.11, 128.09, 127.5, 126.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1326.

White solid (65.7 mg, 82%); mp 168-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.4 Hz, 2H), 7.43 – 7.37 (m, 2H), 7.26 – 7.17 (m, 6H), 7.07 – 6.95 (m, 8H), 2.29 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 138.1, 137.5, 137.1, 136.0, 131.6, 130.8, 130.5, 130.4, 129.0, 128.91, 128.85, 128.8, 128.4, 128.03, 127.95, 127.6, 127.2, 21.2, 21.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₅N₂ 401.2012, found 401.2008.

White solid (54.1 mg, 65%); mp 177-178 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.41 (dd, J = 7.6, 2.0 Hz, 2H), 7.29 – 7.19 (m, 6H), 7.05 – 6.97 (m, 6H), 6.83 – 6.78 (m, 2H), 3.78 (s, 3H), 2.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.4, 146.6, 137.9, 137.6, 137.2, 130.9, 130.6, 130.0, 129.03, 128.97, 128.9, 128.5, 128.4,

128.1, 128.0, 127.6, 127.2, 113.5, 55.1, 21.3; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for C₂₉H₂₅N₂O 417.1961, found 417.1969.

White solid (51.0 mg, 63%); mp 166-167 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.43 – 7.38 (m, 2H), 7.29 – 7.21 (m, 6H), 7.05 – 7.01 (m, 4H), 7.00 – 6.97 (m, 2H), 6.96 – 6.91 (m, 2H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8 (d, J = 245.7 Hz), 146.8, 137.9, 137.2, 137.1, 130.8, 130.7, 130.6, 130.4, 129.2, 129.0, 128.94 (d, J = 7.7 Hz), 128.88, 128.4, 128.2 (d, J = 3.7 Hz), 128.1, 127.3, 116.0 (d, J = 21.4 Hz), 21.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₂FN₂ 405.1762, found 405.1777.

White solid (60.9 mg, 71%); mp 171-172 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.29 – 7.17 (m, 11H), 7.13 – 7.10 (m, 2H), 7.07 – 7.03 (m, 2H), 1.27 (s, 9H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 151.2, 146.9, 138.0, 137.1, 134.4, 131.0, 130.6, 130.6, 129.0, 128.4, 128.24, 128.15, 128.1, 127.8, 127.5, 127.3, 126.5, 125.0, 34.5, 31.1. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₂₉N₂ 429.2325, found 429.2332.

White solid (58.4 mg, 64%); mp 162-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.1 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.35 – 7.15 (m, 9H), 7.14 – 7.10 (m, 2H), 7.08 (d, *J* = 8.5 Hz, 2H), 7.04 (dd, *J* = 7.7, 1.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0 (q, *J* = 2.0 Hz), 145.5, 138.4, 136.8, 134.2, 131.2, 131.0, 130.3, 130.2, 129.24, 129.15, 128.5, 128.4, 128.3, 128.2, 128.1, 127.3, 126.7, 120.4, 120.3 (q, *J* = 256.0 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₀F₃N₂O 457.1522, found 457.1534.

White solid (63.6 mg, 79%); mp 176-177 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.37 – 7.33 (m, 2H), 7.26 – 7.14 (m, 9H), 7.13 – 7.09 (m, 2H), 7.04 – 7.00 (m, 2H), 6.77 – 6.73 (m, 2H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 146.8, 137.9, 137.1, 134.4, 131.0, 130.6, 130.4, 130.2, 129.0, 128.4, 128.2, 128.1, 128.0, 127.8, 127.3, 126.4, 123.0, 113.4, 55.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂O 403.1805, found 403.1821.

White solid (52.3 mg, 67%); mp 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.44 – 7.36 (m, 2H), 7.30 – 7.16 (m, 9H), 7.14 – 7.10 (m, 2H), 7.06 – 6.99 (m, 2H), 6.96 – 6.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, *J* = 248.7 Hz), 146.0, 138.2, 136.9, 134.2, 131.1, 130.83, 130.79 (d, *J* = 8.2 Hz), 130.5, 129.1, 128.37, 128.36, 128.35 (d, *J* = 3.4 Hz), 128.3, 128.2 128.0, 127.3, 126.7, 115.2 (d, *J* = 21.7 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀FN₂ 391.1605, found 391.1611.

White solid (50.0 mg, 63%); mp 167-168 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.56 (m, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H), 7.35 – 7.19 (m, 9H), 7.15 – 7.10 (m, 2H), 7.06 (d, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 144.6, 139.1, 136.6, 134.6, 133.9, 132.1, 131.8, 131.0, 129.9, 129.4, 128.9, 128.4, 128.3, 128.2, 127.3, 126.9, 118.6, 111.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₀N₃ 398.1652, found 398.1653.

White solid (49.6 mg, 61%); mp 173-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.5 Hz, 2H), 7.55 (s, 1H), 7.31 – 7.16 (m, 11H), 7.15 – 7.09 (m, 3H), 7.07 – 7.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 138.5, 136.7, 134.2, 134.1, 132.2, 131.3, 131.0, 130.3, 129.2, 129.0, 128.5, 128.43, 128.35, 128.30, 128.27, 128.2, 128.1, 127.3, 126.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1318.

White solid (45.6 mg, 59%); mp 175-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.26 – 7.21 (m, 6H), 7.19 – 7.14 (m, 4H), 7.16 – 7.07 (m, 4H), 7.08 – 7.03 (m, 1H), 6.91 – 6.84 (m, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 138.1, 137.6, 136.4, 134.5, 131.1, 130.9, 130.7, 130.5, 130.0, 129.2, 128.9, 128.5, 128.4, 128.1, 127.8, 127.7, 127.6, 127.4, 126.5, 125.2, 20.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂ 387.1856, found 387.1863.

White solid (44.1 mg, 50%); mp 176-177 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 2.1 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.32 – 7.18 (m, 10H), 7.13 – 7.09 (m, 3H), 7.06 – 7.02 (m, 2H). ¹³C NMR (126 MHz, CDCl₃ δ 144.3, 138.6, 136.5, 134.0, 132.4, 132.3, 131.5, 131.0, 130.5, 130.4, 130.1, 129.9, 129.3, 128.7, 128.4, 128.22, 128.17, 128.1, 127.5, 127.3, 126.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₁₉Cl₂N₂ 441.0920, found 441.0936.

White solid (52.4 mg, 62%); mp 180-181 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.79 – 7.72 (m, 1H), 7.71 – 7.60 (m, 4H), 7.53 (dd, J = 8.6, 1.7 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.32 – 7.18 (m, 9H), 7.19 – 7.12 (m, 2H), 7.08 (d, J = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 138.5, 137.1, 134.4, 132.9, 132.8, 131.1, 131.0, 130.5, 129.1, 128.49, 128.46, 128.4, 128.33, 128.30, 128.2, 128.0, 127.8, 127.6, 127.51, 127.45, 126.6, 126.5, 126.2, 126.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₂₃N₂ 423.1856, found 423.1865.

White solid (55.3 mg, 73%); mp 167-168 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.58 (dd, J = 7.2, 1.6 Hz, 2H), 7.38 – 7.33 (m, 3H), 7.26 – 7.21 (m, 3H), 7.21 – 7.17 (m, 6H), 7.15 – 7.12 (m, 2H), 6.83 (dd, J = 5.1, 3.7 Hz, 1H), 6.67 (dd, J = 3.7, 1.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 142.1, 138.2, 136.6, 134.1, 133.1, 131.0, 130.2, 129.3, 129.1, 128.9, 128.3, 128.1, 128.0, 127.3, 127.1, 126.6, 126.3, 126.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₂S 379.1263, found 379.1271.

White solid (68.0 mg, 88%); mp 160-161 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.47 – 7.42 (m, 2H), 7.27 – 7.20 (m, 8H), 7.20 – 7.16 (m, 1H), 7.15 – 7.11 (m, 2H), 7.03 (d, J = 8.2 Hz, 2H), 6.93 – 6.89 (m, 2H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.9, 138.13, 138.09, 134.5, 134.4, 131.1, 130.9, 130.7, 130.6, 129.6, 128.9, 128.3, 128.12, 128.08, 128.06, 128.0, 127.8, 127.4, 126.5, 21.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂ 387.1856, found 387.1868.

White solid (73.7 mg, 86%); mp 161-162 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.45 – 7.40 (m, 2H), 7.27 – 7.17 (m, 11H), 7. 27 – 7.16 (m, 2H), 6.97 – 6.92 (m, 2H), 1.27 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 147.0, 138.2, 134.5, 134.3, 131.1, 130.9, 130.7, 130.6, 128.9, 128.2, 128.1, 128.0, 127.82, 127.79, 127.4, 126.5, 125.9, 34.6, 31.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₁H₂₉N₂ 429.2325, found 429.2334.

White solid (56.6 mg, 62%); mp 162-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.54 (m, 2H), 7.40 (dd, J = 7.7, 2.0 Hz, 2H), 7.31 – 7.16 (m, 9H), 7.15 – 7.06 (m, 4H), 7.06 – 7.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6 (q, J = 2.0 Hz), 147.0, 138.5, 135.5, 134.1, 131.0, 130.6, 130.2, 130.1, 129.8, 129.0, 128.52, 128.50, 128.22, 128.17, 127.4, 126.8, 121.2, 120.2 (q, J = 256.9 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₀F₃N₂O 457.1522, found 457.1555.

White solid (57.7 mg, 67%); mp 179-180 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.44 – 7.41 (m, 2H), 7.27 – 7.21 (m, 8H), 7.20 – 7.16 (m, 1H), 7.14 – 7.11 (m, 2H), 7.04 – 6.98 (m, 4H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 150.1, 147.0, 138.3, 134.3, 134.2, 131.0, 130.7, 130.3, 130.2, 129.2, 128.9, 128.4, 128.3, 128.14, 128.11, 128.0, 127.4, 126.6, 122.1, 21.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₃N₂O₂ 431.1754, found 431.1756.

White solid (72.1 mg, 80%); mp 177-178 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.43 – 7.39 (m, 2H), 7.38 – 7.34 (m, 2H), 7.30 – 7.21 (m, 8H), 7.21 – 7.16 (m, 1H), 7.14 – 7.09 (m, 2H), 6.91 – 6.86 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.9, 138.5, 136.1, 134.1, 132.3, 131.1, 130.5, 130.3, 130.1, 129.8, 129.0, 128.52, 128.47, 128.23, 128.18, 128.15, 127.3, 126.7, 122.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀BrN₂ 451.0804, found 451.0819.

White solid (47.6 mg, 54%); mp 173-174 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 6.8 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.28 – 7.16 (m, 9H), 7.14 – 7.08 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 146.9, 140.1, 138.7, 134.0, 131.0, 130.4, 130.1, 129.9 (q, J = 31.6 Hz), 129.0, 128.7, 128.60, 128.58, 128.30, 128.28, 128.2, 127.4, 126.8, 126.2 (q, J = 3.9 Hz), 123.5(q, J = 273.2 Hz) ; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₀F₃N₂ 441.1573, found 441.1566.

White solid (40.4 mg, 51%); mp 170-171 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.55 – 7.51 (m, 2H), 7.38 – 7.35 (m, 2H), 7.34 – 7.23 (m, 8H), 7.23 – 7.18 (m, 1H), 7.12 – 7.09 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 146.9, 140.9, 138.9, 133.8, 132.9, 131.0, 130.2, 129.9, 129.8, 129.1, 128.8, 128.7, 128.5, 128.4, 128.2, 127.4, 126.9, 117.8, 112.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₀N₃ 398.1652, found 398.1677.

White solid (45.2 mg, 57%); mp 168-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 7.0 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.30 – 7.16 (m, 9H), 7.11 (d, *J* = 7.1 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 3.11 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 138.5, 137.3, 134.2, 132.8, 131.0, 130.6, 130.3, 130.2, 129.0, 128.5, 128.4, 128.3, 128.20, 128.15, 128.1, 127.4, 126.7, 122.0, 82.4, 78.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₁N₂ 397.1699, found 397.1703.

White solid (54.7 mg, 66%); mp 171-172 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.5 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.43 – 7.37 (m, 2H), 7.31 – 7.18 (m, 9H), 7.14 – 7.08 (m, 4H), 2.56 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.9, 146.9, 141.1, 138.7, 136.3, 134.1, 131.0, 130.5, 130.24, 130.15, 129.1, 129.0, 128.6, 128.5, 128.3, 128.24, 128.17, 127.4, 126.8, 26.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₃N₂O 415.1805, found 415.1835.

White solid (45.6 mg, 59%); mp 166-167 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 7.4, 1.8 Hz, 2H), 7.44 (dd, J = 7.7, 2.0 Hz, 2H), 7.26 – 7.16 (m, 9H), 7.15 – 7.10 (m, 3H), 7.07 (d, J = 7.6 Hz, 1H), 6.86 – 6.82 (m, 2H), 2.20 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.8, 139.0, 138.1, 137.0, 134.5, 131.1, 130.9, 130.7, 130.6, 129.0, 128.91, 128.85, 128.7, 128.23, 128.15, 128.1, 128.0, 127.9, 127.4, 126.5, 125.5, 21.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂ 387.1856, found 387.1847.

White solid (40.9 mg, 53%); mp 164-165 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.61 (m, 2H), 7.47 – 7.43 (m, 2H), 7.27 – 7.17 (m, 10H), 7.16 – 7.13 (m, 2H), 7.13 – 7.10 (m, 3H), 1.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.7, 138.3, 136.2, 136.0, 134.4, 131.0, 130.74, 130.67, 130.6, 130.5, 129.3, 129.0, 128.3, 128.2, 128.12, 128.09, 127.9, 127.3, 126.62, 126.56, 17.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂ 387.1856, found 387.1834.

White solid (49.6 mg, 61%); mp 162-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.44 (m, 2H), 7.37 – 7.29 (m, 2H), 7.28 – 7.15 (m, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 138.3, 135.1, 134.2, 133.3, 130.9, 130.84, 130.80, 130.5, 130.32, 130.25, 130.2, 128.5, 128.34, 128.31, 128.24, 128.16, 128.1, 127.4, 127.2, 126.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₀ClN₂ 407.1310, found 407.1301.

White solid (52.2 mg, 51%); mp 177-178 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.63 – 7.55 (m, 2H), 7.41 – 7.36 (m, 2H), 7.28 – 7.13 (m, 11H), 7.12 – 7.06 (m, 2H), 7.05 – 7.00 (m, 2H), 2.65 – 2.50 (m, 1H), 2.30 – 2.13 (m, 3H), 2.02 – 1.85 (m, 2H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 172.1, 146.8, 139.0, 138.3, 136.5, 134.1, 131.0, 130.6, 130.3, 130.2, 128.94, 128.87, 128.4, 128.3, 128.11, 128.09, 128.06, 127.3, 126.9, 126.6, 50.8, 32.7, 29.0, 27.4, 8.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₄H₃₀N₃O₂ 512.2333, found 512.2340.

White solid (53.3 mg, 69%); mp 167-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.62 (m, 2H), 7.61 – 7.54 (m, 2H), 7.43 – 7.37 (m, 3H), 7.37 – 7.27 (m, 3H), 7.25 – 7.17 (m, 7H), 7.17 – 7.11 (m, 1H), 6.84 – 6.78 (m, 2H), 5.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 138.0, 137.5, 134.4, 131.1, 131.0, 130.9, 130.0, 129.1, 128.9, 128.8, 128.59, 128.57, 128.5, 128.1, 127.3, 126.8, 126.3, 126.0, 48.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₃N₂ 387.1856, found 387.1885.

White solid (40.2 mg, 62%); mp 172-173 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.69 (m, 2H), 7.55 – 7.52 (m, 2H), 7.52 – 7.47 (m, 5H), 7.47 – 7.43 (m, 3H), 7.22 – 7.18 (m, 2H), 7.15 – 7.11 (m, 1H), 3.95 (q, *J* = 7.2 Hz, 2H), 1.02 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 137.7, 134.5, 131.5, 131.3, 131.0, 129.3, 129.1, 129.0, 128.8, 128.61, 128.57, 128.0, 126.7, 126.1, 39.6, 16.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₁N₂ 325.1699, found 325.1686.

White solid (33.8 mg, 50%); mp 175-176 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.63 (m, 2H), 7.51 – 7.48 (m, 6H), 7.48 – 7.44 (m, 4H), 7.18 – 7.14 (m, 2H), 7.12 – 7.08 (m, 1H), 4.47 (hept, J = 7.0 Hz, 1H), 1.25 (d, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 137.8, 134.5, 132.4, 132.3, 132.1, 130.0, 128.9, 128.8, 128.7, 128.3, 127.9, 126.6, 126.0, 49.3, 23.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₂₃N₂ 339.1856, found 339.1867.

White solid (22.6 mg, 32%); mp 177-178 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.53 (m, 2H), 7.49 – 7.46 (m, 2H), 7.45 – 7.43 (m, 3H), 7.42 – 7.40 (m, 3H), 7.29 – 7.25 (m, 2H), 7.12 – 7.03 (m, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 137.9, 136.8, 135.0, 134.7, 132.4, 130.2, 129.8, 128.6, 128.5, 128.4, 128.0, 127.7, 127.2, 125.9, 59.8, 33.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₅N₂ 353.2012, found 353.2010.

6. X-ray structure of product 4k

X-ray structure of 4k with thermal ellipsoids shown at the 30% probability level

(CCDC 2165867)

Crystal data and structure refinement for product 4k

Identification code	4k		
Empirical formula	C27 H19 Br N2		
Formula weight	451.35		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 9.7856(7) Å	a = 94.494(2) °.	
	b = 10.4391(7) Å	$\beta = 95.410(2)$ °.	
	c = 11.5402(7) Å	$\gamma = 114.329(2)$ °.	
Volume	1060.43(12) Å ³		
Z	2		
Density (calculated)	1.414 Mg/m ³		
Absorption coefficient	1.954 mm ⁻¹		
F(000)	460		
Crystal size	0.300 x 0.220 x 0.20	0.300 x 0.220 x 0.200 mm ³	
Theta range for data collection	2.159 to 27.517 °.		
Index ranges	-12<=h<=12, -13<=h	k<=13, -14<=l<=14	
Reflections collected	16521		
Independent reflections	4840 [R(int) = 0.030	7]	
Completeness to theta = $25.242 \circ$	99.2 %	99.2 %	
Absorption correction	Semi-empirical from	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.5116	0.7456 and 0.5116	
Refinement method	Full-matrix least-squ	ares on F ²	
	\$33		

Data / restraints / parameters	4840 / 0 / 271
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0394, $wR2 = 0.0957$
Extinction coefficient	R1 = 0.0611, WR2 = 0.1055 n/a
Largest diff. peak and hole	0.589 and -0.451 e.Å ⁻³

7. References

 J. Ke, Y. Tang, H. Yi, Y. Li, Y. Cheng, C. Liu and A. Lei, Copper-Catalyzed Radical/Radical C_{sp3}-H/P-H Cross-Coupling: α-Phosphorylation of Aryl Ketone O-Acetyloximes. *Angew. Chem., Int. Ed.*, 2015, **54**, 6604-6607. 8. NMR spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

S55

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

S101

