# **Electronic Supplementary Information**

## Insights into Mechanism and Selectivity in Rh(I)-catalyzed

# Cycloisomerization Reaction of Benzylallene-Alkynes involving C-H Bond

### Activation

Ying Ren,\*,<sup>a</sup> Tilong Yang, <sup>b</sup> and Zhenyang Lin\*,<sup>b</sup>

<sup>a</sup> Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education,

The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, China

<sup>b</sup> Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay,

Kowloon, Hong Kong, China

#### **Contents:**

Fig. S1 Gibbs energy profiles calculated for the terminal alkyne C-H oxidative addition step. The solvation-Fig. S2 Gibbs energy profile calculated for the oxidative coupling  $(A1'_{H} \rightarrow B1'_{H})$ . The solvation-corrected relative Fig. S3 Gibbs energy profiles calculated for  $C \rightarrow G$  (bond rotation) to give Me-product  $4_{Me}$ , according to Scheme 2. Fig. S4 Gibbs energy profiles calculated for (a)  $C \rightarrow D$  (insertion), (b)  $D \rightarrow F$  ( $\beta$ -hydride elimination) followed by  $F \rightarrow D$ A (reductive elimination) to give Me-product  $3_{tBu}$ , and (c)  $C \rightarrow G$  (bond rotation) followed by  $G \rightarrow A$  (reductive elimination) to give Me-product 4<sub>tBu</sub>, according to Scheme 2. Relative Gibbs energies and electronic energies (in Fig. S5 Optimized structures for some key transition states for reactions of the benzylallene-alkyne substrates having Y = SO<sub>2</sub>Ph (EDG),  $R^1$  = H; Y = SO<sub>2</sub>Ph (EDG),  $R^1$  = Me; Y = Me (EWG),  $R^1$  = Me; and Y = tBu (EWG),  $R^1$  = Me...S6 Table S1 Zero-point energies (ZPE), Total electronic energies (E), Gibbs energies (G), Total electronic energies Table S2 Results of BMK single-point energy calculations for all the species shown in Fig. 1 on the basis of the M06-optimized structures......S11



**Fig. S1** Gibbs energy profiles calculated for the terminal alkyne C–H oxidative addition step. The solvation-corrected relative Gibbs energies and electronic energies (in parentheses) are given in kcal mol<sup>-1</sup>.

Oxidative addition occurs between the acetylenic C-H bond with Rh<sup>I</sup> in the substrate-coordinated from A1'<sub>H</sub> and A1"<sub>H</sub>. The reaction begins with terminal alkyne of substrate 1<sub>H</sub> binding the Rh(CO)<sub>2</sub>Cl giving three isomers (A1<sub>H</sub>, A1'<sub>H</sub>, and A1"<sub>H</sub>) as illustrated in Fig. S1. The main difference among the three isomers is the different ligands coordinating to the Rh center. A1"<sub>H</sub> is most unstable mainly due to *trans* influence. A1'<sub>H</sub> is calculated to be about 0.8 kcal mol<sup>-1</sup> more stable than A1<sub>H</sub>. The oxidative addition step goes via the transition states, TSA1'-A3'<sub>H</sub> and TSA2"-A3"<sub>H</sub> leading to the transition metal hydride intermediates A3'<sub>H</sub> and A3"<sub>H</sub>, respectively. It is can be seen that the step A1"<sub>H</sub>  $\rightarrow$  A3"<sub>H</sub> is more favorable than that of A1'  $\rightarrow$  A3'<sub>H</sub>. The Gibbs energy profiles in Fig. S1 illustrate that the proton migration steps (A1'<sub>H</sub>  $\rightarrow$  A3'<sub>H</sub> and A1"<sub>H</sub>  $\rightarrow$  A3"<sub>H</sub>) are endergonic by 31.6 and 30.9 kcal mol<sup>-1</sup> and need to overcome the higher Gibbs energy barriers of 34.9 and 30.9 kcal mol<sup>-1</sup>.



Fig. S2 Gibbs energy profile calculated for the oxidative coupling  $(A1'_{H} \rightarrow B1'_{H})$ . The solvation-corrected relative Gibbs energies and electronic energies (in parentheses) are given in kcal mol<sup>-1</sup>.



Fig. S3 Gibbs energy profiles calculated for C  $\rightarrow$  G (bond rotation) to give Me-product 4<sub>Me</sub>. Relative Gibbs energies and electronic energies (in parentheses) are given in kcal mol<sup>-</sup>.

Fig. S3 shows the energy profile calculated for the bond rotation step from Me-C1<sub>Me</sub> to Me-G1<sub>Me</sub>. Based on the structure of intermediate Me-C1<sub>Me</sub>, ligand exchange takes place to produce the Me-C2<sub>Me</sub>. Then dissociation of the C-H<sub>R</sub> moiety from the metal center affords the intermediate Me-C3<sub>Me</sub>. In order to facilitate the bond rotation, conformational change of the five membered ring in Me-C3<sub>Me</sub> occurs to give the intermediate Me-C4<sub>Me</sub>. Me-C4<sub>Me</sub> further undergoes structural rearrangement to form the intermediate Me-C5<sub>Me</sub>. With the C<sub>sp2</sub>-C<sub>sp3</sub>(Rh) bond rotation, the Rh center and the active site on the substrate skeleton of the intermediate Me-C5<sub>Me</sub> undergo a stepwise ligand exchange to generate the intermediate Me-C8<sub>Me</sub>. From the intermediate Me-C6<sub>Me</sub>. Subsequently, conformational change of the five-membered ring in Me-C9<sub>Me</sub> affords the intermediate Me-G1<sub>Me</sub>. As shown in Fig. S3, the bond rotation steps from Me-C1<sub>Me</sub> to Me-G1<sub>Me</sub> involves a series of conformation changes with accessible barriers.



bond rotation - reductive elimination

Fig. S4 Gibbs energy profiles calculated for (a)  $C \rightarrow D$  (insertion), (b)  $D \rightarrow F$  ( $\beta$ -hydride elimination) followed by  $F \rightarrow A$  (reductive elimination) to give **Me-product**  $\mathbf{3}_{tBu}$ , and (c)  $C \rightarrow G$  (bond rotation) followed by  $G \rightarrow A$  (reductive elimination) to give **Me-product**  $\mathbf{4}_{tBu}$ , according to Scheme 2. Relative Gibbs energies and electronic energies (in parentheses) are given in kcal mol<sup>-1</sup>.



**Fig. S5** Optimized structures for some key transition states for reactions of the benzylallene-alkyne substrates having  $Y = SO_2Ph$  (EDG),  $R^1 = H$ ;  $Y = SO_2Ph$  (EDG),  $R^1 = Me$ ; Y = Me; Y = Me;

**Table S1** Zero-point energies (*ZPE*), Total electronic energies (*E*), Gibbs energies (*G*), Total electronic energies ( $E_{solvation}$ ), and Gibbs energies ( $G_{solvation}$ ) of solvation (in a.u.) for all species involved in the catalytic cycles.

| Structure                  | ZPE      | Ε             | G            | $E_{ m solvation}$ | $G_{ m solvation}$ |
|----------------------------|----------|---------------|--------------|--------------------|--------------------|
| 1 <sub>H</sub>             | 0.495279 | -1506.0292183 | -1505.629223 | -1506.4395045      | -1506.039509       |
| A1′ <sub>H</sub>           | 0.513752 | -1857.1355301 | -1856.736745 | -1857.6080227      | -1857.209238       |
| A1″ <sub>H</sub>           | 0.515022 | -1857.1246548 | -1856.719827 | -1857.5981313      | -1857.193304       |
| A2' <sub>H</sub>           | 0.514247 | -1857.1041141 | -1856.699623 | -1857.5813053      | -1857.176814       |
| A2″ <sub>H</sub>           | 0.512314 | -1857.1006799 | -1856.703176 | -1857.57558        | -1857.178076       |
| TSA1'-A3' <sub>H</sub>     | 0.511353 | -1857.0788223 | -1856.67631  | -1857.554813       | -1857.1523         |
| ТSA2''-А3'' <sub>Н</sub>   | 0.511190 | -1857.0828893 | -1856.682342 | -1857.559274       | -1857.158727       |
| A3′ <sub>H</sub>           | 0.512611 | -1857.0838586 | -1856.68096  | -1857.560484       | -1857.157585       |
| А <b>3</b> ″ <sub>Н</sub>  | 0.512316 | -1857.0828146 | -1856.681828 | -1857.559724       | -1857.158738       |
| TSA2′-B1′ <sub>H</sub>     | 0.514095 | -1857.0968186 | -1856.692946 | -1857.566336       | -1857.162463       |
| B1′ <sub>H</sub>           | 0.516529 | -1857.1519068 | -1856.741956 | -1857.619917       | -1857.209966       |
| A1 <sub>H</sub>            | 0.512997 | -1857.126939  | -1856.729475 | -1857.605376       | -1857.207912       |
| A2 <sub>H</sub>            | 0.515504 | -1857.1182257 | -1856.711713 | -1857.589624       | -1857.183111       |
| TSA2-B1 <sub>H</sub>       | 0.512837 | -1857.1012274 | -1856.699837 | -1857.569708       | -1857.168318       |
| B1 <sub>H</sub>            | 0.517956 | -1857.1484404 | -1856.740796 | -1857.618453       | -1857.210809       |
| TSB1-B2 <sub>H</sub>       | 0.517930 | -1857.1483429 | -1856.738056 | -1857.618228       | -1857.207941       |
| B2 <sub>H</sub>            | 0.517663 | -1857.1717797 | -1856.761198 | -1857.640051       | -1857.229469       |
| TSB2-B3 <sub>H</sub>       | 0.517438 | -1857.1439232 | -1856.733973 | -1857.614377       | -1857.204427       |
| B3 <sub>H</sub>            | 0.518705 | -1857.168334  | -1856.759768 | -1857.637651       | -1857.229085       |
| TSB3-B4 <sub>H</sub>       | 0.517284 | -1857.1397583 | -1856.72894  | -1857.611406       | -1857.200588       |
| B4 <sub>H</sub>            | 0.518854 | -1857.1766559 | -1856.764173 | -1857.645513       | -1857.23303        |
| TSB4-C1 <sub>H</sub>       | 0.513540 | -1857.1476413 | -1856.737635 | -1857.615697       | -1857.20569        |
| C1 <sub>H</sub>            | 0.519052 | -1857.1742701 | -1856.758809 | -1857.640461       | -1857.225          |
| TSC1-D1 <sub>H</sub>       | 0.518153 | -1857.1566409 | -1856.741082 | -1857.622445       | -1857.206886       |
| D1 <sub>H</sub>            | 0.520415 | -1857.201682  | -1856.785774 | -1857.666577       | -1857.250669       |
| TSD1-D2 <sub>H</sub>       | 0.518859 | -1857.1753786 | -1856.762566 | -1857.644623       | -1857.23181        |
| D2 <sub>H</sub>            | 0.521106 | -1857.1925504 | -1856.776172 | -1857.660882       | -1857.244504       |
| TSD2-D3 <sub>H</sub>       | 0.518491 | -1857.1761417 | -1856.765353 | -1857.644737       | -1857.233948       |
| D3 <sub>H</sub>            | 0.520631 | -1857.2200328 | -1856.803875 | -1857.686182       | -1857.270024       |
| TSD1-E1 <sub>H</sub>       | 0.520012 | -1857.173459  | -1856.757508 | -1857.639757       | -1857.223806       |
| E1 <sub>H</sub>            | 0.520365 | -1857.1898738 | -1856.773007 | -1857.658511       | -1857.241644       |
| TSE1-E2 <sub>H</sub>       | 0.516234 | -1857.1724966 | -1856.759794 | -1857.64062        | -1857.227917       |
| E2 <sub>H</sub>            | 0.517236 | -1857.1739886 | -1856.760428 | -1857.642415       | -1857.228855       |
| TSE2-E3 <sub>H</sub>       | 0.517439 | -1857.1710471 | -1856.757543 | -1857.637128       | -1857.223624       |
| E3 <sub>H</sub>            | 0.519177 | -1857.1824076 | -1856.766587 | -1857.648284       | -1857.232464       |
| TSE3-product2 <sub>H</sub> | 0.517735 | -1857.173403  | -1856.7591   | -1857.640245       | -1857.225942       |

| product2                     | 0.502111 | -1506.1550629 | -1505.743899 | -1506.551836 | -1506.140672 |
|------------------------------|----------|---------------|--------------|--------------|--------------|
| TSD3-F1 <sub>H</sub>         | 0.518413 | -1857.1624025 | -1856.747638 | -1857.629111 | -1857.214346 |
| F1 <sub>H</sub>              | 0.520262 | -1857.1819971 | -1856.765556 | -1857.649489 | -1857.233048 |
| TSF1-F2 <sub>H</sub>         | 0.519853 | -1857.1817605 | -1856.763904 | -1857.648917 | -1857.23106  |
| F2 <sub>H</sub>              | 0.518761 | -1857.1916553 | -1856.77872  | -1857.662251 | -1857.249316 |
| TSF2-F3 <sub>H</sub>         | 0.516086 | -1857.173307  | -1856.760591 | -1857.643214 | -1857.230498 |
| F3 <sub>H</sub>              | 0.517272 | -1857.1745033 | -1856.759946 | -1857.644579 | -1857.230022 |
| TSF3-F4 <sub>H</sub>         | 0.514700 | -1857.1546523 | -1856.748038 | -1857.623378 | -1857.216764 |
| F4 <sub>H</sub>              | 0.516593 | -1857.1731571 | -1856.763732 | -1857.64285  | -1857.233425 |
| TSF4-product 3 <sub>H</sub>  | 0.514729 | -1857.1593781 | -1856.751351 | -1857.627847 | -1857.219819 |
| product3 <sub>H</sub>        | 0.501234 | -1506.1412085 | -1505.733827 | -1506.544105 | -1506.136723 |
| G1 <sub>H</sub>              | 0.517128 | -1857.1612553 | -1856.750648 | -1857.627768 | -1857.217161 |
| TSG1-product 4 <sub>H</sub>  | 0.516322 | -1857.1365389 | -1856.722667 | -1857.600467 | -1857.186596 |
| product 4 <sub>H</sub>       | 0.501405 | -1506.1417999 | -1505.728488 | -1506.53893  | -1506.125618 |
| 1 <sub>Me</sub>              | 0.524446 | -1545.3217583 | -1544.894517 | -1545.740332 | -1545.313091 |
| A1 <sub>Me</sub>             | 0.542992 | -1896.4241495 | -1895.997983 | -1896.90976  | -1896.483594 |
| C1 <sub>Me</sub>             | 0.547233 | -1896.4660641 | -1896.02447  | -1896.940614 | -1896.499019 |
| TSC1-D1 <sub>Me</sub>        | 0.547055 | -1896.4473308 | -1896.002935 | -1896.920417 | -1896.476021 |
| D1 <sub>Me</sub>             | 0.550190 | -1896.4776754 | -1896.031303 | -1896.950778 | -1896.504405 |
| TSD1-D2 <sub>Me</sub>        | 0.548607 | -1896.4476361 | -1896.004302 | -1896.92392  | -1896.480586 |
| D2 <sub>Me</sub>             | 0.550122 | -1896.4607746 | -1896.017058 | -1896.936486 | -1896.492769 |
| TSD2-D3 <sub>Me</sub>        | 0.547937 | -1896.4470208 | -1896.006359 | -1896.922854 | -1896.482192 |
| D3 <sub>Me</sub>             | 0.549247 | -1896.4925648 | -1896.050485 | -1896.967081 | -1896.525001 |
| TSD3-F1 <sub>Me</sub>        | 0.546211 | -1896.4418785 | -1896.001822 | -1896.916435 | -1896.476379 |
| F1 <sub>Me</sub>             | 0.548157 | -1896.464714  | -1896.022596 | -1896.939694 | -1896.497576 |
| TSF1-F2 <sub>Me</sub>        | 0.547394 | -1896.4598163 | -1896.017071 | -1896.9369   | -1896.494155 |
| F2 <sub>Me</sub>             | 0.546720 | -1896.4688178 | -1896.028328 | -1896.947259 | -1896.506769 |
| TSF2-F3 <sub>Me</sub>        | 0.544588 | -1896.449319  | -1896.010436 | -1896.927532 | -1896.488649 |
| F3 <sub>Me</sub>             | 0.545211 | -1896.4503333 | -1896.012238 | -1896.928312 | -1896.490216 |
| TSF3-F4 <sub>Me</sub>        | 0.545529 | -1896.4368261 | -1895.997401 | -1896.912705 | -1896.473279 |
| F4 <sub>Me</sub>             | 0.544954 | -1896.4525483 | -1896.01516  | -1896.930271 | -1896.492883 |
| TSF4-product 3 <sub>Me</sub> | 0.542945 | -1896.4386092 | -1896.003734 | -1896.915355 | -1896.48048  |
| product 3 <sub>Me</sub>      | 0.528928 | -1545.4214201 | -1544.987043 | -1545.832726 | -1545.398348 |
| G1 <sub>Me</sub>             | 0.545935 | -1896.4513063 | -1896.012246 | -1896.925839 | -1896.486779 |
| TSG1-product 4 <sub>Me</sub> | 0.544644 | -1896.4240394 | -1895.984794 | -1896.896284 | -1896.457039 |
| product 4 <sub>Me</sub>      | 0.528551 | -1545.4312544 | -1544.992357 | -1545.836479 | -1545.397582 |
| Me-1 <sub>Me</sub>           | 0.461345 | -1193.2981254 | -1192.917074 | -1193.619266 | -1193.238214 |
| Me-A1 <sub>Me</sub>          | 0.479807 | -1544.3999462 | -1544.023178 | -1544.788455 | -1544.411687 |
| Me-C1 <sub>Me</sub>          | 0.481574 | -1544.4466635 | -1544.061823 | -1544.826764 | -1544.441923 |
| Me-TSC1-D1 <sub>Me</sub>     | 0.480671 | -1544.4219385 | -1544.036448 | -1544.799816 | -1544.414326 |

| Me-D1 <sub>Me</sub>              | 0.484391 | -1544.449346  | -1544.060566 | -1544.826645 | -1544.437865 |
|----------------------------------|----------|---------------|--------------|--------------|--------------|
| Me-TSD1-D2 <sub>Me</sub>         | 0.484106 | -1544.4267771 | -1544.035487 | -1544.805676 | -1544.414386 |
| Me-D2 <sub>Me</sub>              | 0.484833 | -1544.4460984 | -1544.056483 | -1544.827806 | -1544.438191 |
| Me-TSD2-D3 <sub>Me</sub>         | 0.484090 | -1544.428946  | -1544.039348 | -1544.810013 | -1544.420415 |
| Me-D3 <sub>Me</sub>              | 0.485919 | -1544.473342  | -1544.0822   | -1544.851678 | -1544.460536 |
| Me-TSD3-F1 <sub>Me</sub>         | 0.483789 | -1544.4283153 | -1544.037857 | -1544.807755 | -1544.417296 |
| Me-F1 <sub>Me</sub>              | 0.484390 | -1544.4471038 | -1544.058689 | -1544.826833 | -1544.438418 |
| Me-TSF1-F2 <sub>Me</sub>         | 0.482899 | -1544.4404172 | -1544.051233 | -1544.822917 | -1544.433732 |
| Me-F2 <sub>Me</sub>              | 0.482831 | -1544.4442285 | -1544.05796  | -1544.827209 | -1544.44094  |
| Me-TSF2-F3 <sub>Me</sub>         | 0.479733 | -1544.4253612 | -1544.040948 | -1544.808472 | -1544.424059 |
| Me-F3 <sub>Me</sub>              | 0.480868 | -1544.4265134 | -1544.043831 | -1544.809515 | -1544.426832 |
| Me-TSF3-F4 <sub>Me</sub>         | 0.481518 | -1544.413952  | -1544.026881 | -1544.795457 | -1544.408386 |
| Me-F4 <sub>Me</sub>              | 0.481167 | -1544.4297629 | -1544.04272  | -1544.811579 | -1544.424536 |
| Me-TSF4-product 3 <sub>Me</sub>  | 0.479717 | -1544.4202442 | -1544.035583 | -1544.80251  | -1544.417849 |
| Me-product 3 <sub>Me</sub>       | 0.466779 | -1193.3940097 | -1193.008202 | -1193.705767 | -1193.31996  |
| Me-G1 <sub>Me</sub>              | 0.482944 | -1544.4491199 | -1544.067388 | -1544.829685 | -1544.447953 |
| Me-TSG1-product 4 <sub>Me</sub>  | 0.480063 | -1544.4207341 | -1544.038282 | -1544.799327 | -1544.416875 |
| Me-product 4 <sub>Me</sub>       | 0.465973 | -1193.4108302 | -1193.024144 | -1193.720872 | -1193.334186 |
| Me-1 <sub>tBu</sub>              | 0.545365 | -1311.1504772 | -1310.695275 | -1311.498796 | -1311.043594 |
| Me-A1 <sub>tBu</sub>             | 0.564212 | -1662.2630888 | -1661.808024 | -1662.67551  | -1662.220445 |
| Me-C1 <sub>tBu</sub>             | 0.566932 | -1662.2930019 | -1661.829939 | -1662.698663 | -1662.2356   |
| Me-TSC1-D1 <sub>tBu</sub>        | 0.566167 | -1662.2569553 | -1661.792196 | -1662.661228 | -1662.196468 |
| Me-D1 <sub>tBu</sub>             | 0.568480 | -1662.2855028 | -1661.818947 | -1662.688576 | -1662.222021 |
| Me-TSD1-D3 <sub>tBu</sub>        | 0.566120 | -1662.2421216 | -1661.778527 | -1662.647687 | -1662.184093 |
| Me-D3 <sub>tBu</sub>             | 0.570452 | -1662.3080075 | -1661.837151 | -1662.713185 | -1662.242329 |
| Me-TSD3-F1 <sub>tBu</sub>        | 0.567077 | -1662.2516856 | -1661.785438 | -1662.657155 | -1662.190908 |
| Me-F1 <sub>tBu</sub>             | 0.569788 | -1662.2766791 | -1661.806154 | -1662.682184 | -1662.211659 |
| Me-TSF1-F2 <sub>tBu</sub>        | 0.568324 | -1662.2674063 | -1661.796648 | -1662.675037 | -1662.204278 |
| Me-F2 <sub>tBu</sub>             | 0.568444 | -1662.2750812 | -1661.805625 | -1662.68385  | -1662.214394 |
| Me-TSF2-F3 <sub>tBu</sub>        | 0.564089 | -1662.2576718 | -1661.794852 | -1662.666855 | -1662.204035 |
| Me-F3 <sub>tBu</sub>             | 0.565627 | -1662.2598337 | -1661.794837 | -1662.669815 | -1662.204818 |
| Me-TSF3-F4 <sub>tBu</sub>        | 0.565716 | -1662.2493854 | -1661.783789 | -1662.657663 | -1662.192066 |
| Me-F4 <sub>tBu</sub>             | 0.565421 | -1662.2691757 | -1661.804158 | -1662.676616 | -1662.211598 |
| Me-TSF4-product 3 <sub>tBu</sub> | 0.565518 | -1662.2597468 | -1661.793555 | -1662.667416 | -1662.201225 |
| Me-product3 <sub>tBu</sub>       | 0.550621 | -1311.2345701 | -1310.771393 | -1311.572586 | -1311.109409 |
| Me-G1 <sub>tBu</sub>             | 0.568461 | -1662.299796  | -1661.833956 | -1662.707596 | -1662.241756 |
| Me-TSG1-product 4 <sub>tBu</sub> | 0.564540 | -1662.2642034 | -1661.804675 | -1662.67011  | -1662.210582 |
| Me-product 4 <sub>tBu</sub>      | 0.550248 | -1311.2564785 | -1310.791949 | -1311.593389 | -1311.12886  |
| Me-C2 <sub>Me</sub>              | 0.483002 | -1544.439474  | -1544.052825 | -1544.819055 | -1544.432406 |
| Me-TSC2-C3 <sub>Me</sub>         | 0.482349 | -1544.439094  | -1544.052256 | -1544.818624 | -1544.431786 |

| Me-C3 <sub>Me</sub>      | 0.483232 | -1544.444956 | -1544.058376 | -1544.82355  | -1544.43697  |
|--------------------------|----------|--------------|--------------|--------------|--------------|
| Me-TSC3-C4 <sub>Me</sub> | 0.484650 | -1544.433597 | -1544.04242  | -1544.816524 | -1544.425347 |
| Me-C4 <sub>Me</sub>      | 0.483636 | -1544.441628 | -1544.055191 | -1544.823062 | -1544.436625 |
| Me-TSC4-C5 <sub>Me</sub> | 0.482908 | -1544.426096 | -1544.039197 | -1544.805132 | -1544.418233 |
| Me-C5 <sub>Me</sub>      | 0.483690 | -1544.430591 | -1544.042736 | -1544.80778  | -1544.419925 |
| Me-TSC5-C6 <sub>Me</sub> | 0.481543 | -1544.422978 | -1544.039844 | -1544.80742  | -1544.424285 |
| Me-C6 <sub>Me</sub>      | 0.481795 | -1544.425222 | -1544.042339 | -1544.808364 | -1544.425481 |
| Me-TSC6-C7 <sub>Me</sub> | 0.480215 | -1544.424887 | -1544.042417 | -1544.807854 | -1544.425384 |
| Me-C7 <sub>Me</sub>      | 0.481850 | -1544.431492 | -1544.048563 | -1544.814667 | -1544.431738 |
| Me-TSC7-C8 <sub>Me</sub> | 0.482198 | -1544.417659 | -1544.03256  | -1544.801386 | -1544.416287 |
| Me-C8 <sub>Me</sub>      | 0.482927 | -1544.425484 | -1544.042872 | -1544.809469 | -1544.426857 |
| Me-TSC8-C9 <sub>Me</sub> | 0.482491 | -1544.423984 | -1544.039118 | -1544.80706  | -1544.422194 |
| Me-C9 <sub>Me</sub>      | 0.483644 | -1544.439252 | -1544.052939 | -1544.82266  | -1544.436347 |
| Me-TSC9-G1 <sub>Me</sub> | 0.482605 | -1544.431706 | -1544.045702 | -1544.8152   | -1544.429196 |

|                      | M06                                  | BMK                                  |  |
|----------------------|--------------------------------------|--------------------------------------|--|
| Structures           | Rel energy (kcal mol <sup>-1</sup> ) | Rel energy (kcal mol <sup>-1</sup> ) |  |
| A1 <sub>H</sub>      | 0.0                                  | 0.0                                  |  |
| A2 <sub>H</sub>      | 9.9                                  | 3.7                                  |  |
| TSA2-B1 <sub>H</sub> | 22.4                                 | 10.3                                 |  |
| B1 <sub>H</sub>      | -8.2                                 | -20.1                                |  |
| TSB1-B2 <sub>H</sub> | -8.1                                 | -20.0                                |  |
| B2 <sub>H</sub>      | -21.8                                | -34.0                                |  |
| TSB2-B3 <sub>H</sub> | -5.6                                 | -20.7                                |  |
| B3 <sub>H</sub>      | -20.3                                | -34.0                                |  |
| TSB3-B4 <sub>H</sub> | -3.8                                 | -20.1                                |  |
| B4 <sub>H</sub>      | -25.2                                | -42.5                                |  |
| TSB4-C1 <sub>H</sub> | -6.5                                 | -24.3                                |  |
| C1 <sub>H</sub>      | -22.0                                | -37.9                                |  |

Table S2 Results of BMK single-point energy for all the species shown in Fig. 1 on the basis of the M06-optimized structures.\*

\*. BMK (Boese-Martin for Kinetics) is a hybrid meta-GGA functional.