Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

New tertiary amine-derived C₂-symmetric chiral pyridine-N,N'-dioxide ligands

and their applications in asymmetric catalysis

Ren-Ming Liu^{a,c}, Yu-Heng Wang^{a,c}, Zi-Yue Chen^{a,c}, Lei Zhang^{a,c}, Qing-Hui Shi^a, Ying Zhou,^b You-Ping Tian^b, Xiong-Li Liu^{a,*}

^a National & Local Joint Engineering Research Center for the Exploition of Homology Resources

of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.

^bCollege of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025.

^c These four authors contributed equally to this work.

*E-mail address: xlliu1@gzu.edu.cn

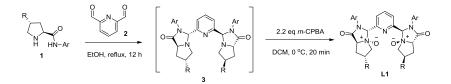
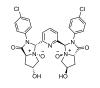

Table of Contents

Table of contents	S1
1. General experimental information	
2. General procedure for preparation of chiral Py-2NO ligands L1	
3. Characterization data of Py-2NO ligands L1	S2
4. General procedure for preparation of chiral Py-NO ligands L2	
5. Characterization data of Py-NO ligands L2	S6
6. General procedure for preparation of chiral ligand L4a	
7. Characterization data of chiral ligand L4a	S8
8. General procedure for preparation of chiral ligand L6a	S8
9. Characterization data of chiral ligand L6a	S9
10. Table S1: optimization of reaction conditions for synthesis of compound 6a	S9
11. Characterization data of compounds 6	S10
12. Characterization data of compounds 6	S10
13. The gram scale synthesis of the ligand L1a	S19
14. The preparative gram scale asymmetric synthesis of the product 6a	S19
15. Control experiments and HPLC spectra for compound 6a	S20
16. X-ray crystal data for compounds L2b, L2c and 3d	S23
17. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds L and 6	S26

1. General information

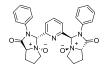
Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. General procedure for preparation of chiral Py-2NO ligands L1

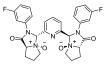

In a sealed tube equipped with a magnetic stirring bar, pyridine-2,6-dicarbaldehyde 2 (1.0 mmol) and optically pure 4-hydroxyprolinamide or prolinamide 1 (2.4 mmol, 2.4 equiv) were added. Then, anhydrous ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3**.

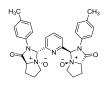
For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N*'-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (2.2 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the Py-2NO ligand **L1**.

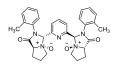
3. Characterization data of Py-2NO ligands L1

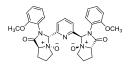

L1a: White solid, m.p. 249.1-249.3 °C; yield 61%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.53-2.60 (m, 4H), 3.80-3.84 (m, 2H), 3.96 (d, J = 10.8 Hz, 2H), 4.14-4.17 (m, 2H), 4.51-4.53 (m, 2H), 6.05 (s, 2H), 7.19-7.25 (m, 8H), 7.68 (d, J = 7.6 Hz, 2H), 7.89-7.92 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 35.7, 70.2, 73.5, 75.0, 86.0, 122.3, 127.5, 128.6, 131.6, 132.4, 136.7, 148.5, 167.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₂₉N₅NaO₆ [M+Na]⁺: 566.2008; Found: 566.2002.

L1b: White solid, m.p. 245.3-245.6 °C; yield 59%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.50-2.61 (m, 4H), 3.80-3.84 (m, 2H), 3.96 (d, J = 10.8 Hz, 2H), 4.14-4.17 (m, 2H), 4.51-4.53 (m, 2H), 6.05 (s, 2H), 7.19-7.24 (m, 8H), 7.68 (d, J = 7.6 Hz, 2H), 7.89-7.92 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 35.7, 70.2, 73.5, 75.0, 86.0, 122.3, 127.5, 128.6, 131.6, 132.4, 136.7, 148.5, 167.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₂₇Cl₂N₅NaO₆ [M+Na]⁺: 634.1228; Found: 634.1220.

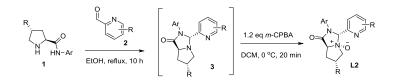

L1c: White solid, m.p. 248.6-249.5 °C; yield 60%, 18:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.23 (s, 6H), 2.31-2.36 (m, 2H), 2.43-2.48 (m, 2H), 3.72 (d, J = 8.4 Hz, 2H), 4.14-4.18 (m, 2H), 4.35-4.39 (m, 2H), 4.44 (s, 2H), 6.79 (s, 2H), 7.10 (d, J = 8.4 Hz, 4H), 7.36 (d, J = 8.4 Hz, 4H), 7.59 (d, J = 8.0 Hz, 2H), 7.84-7.88 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 20.9, 36.4, 70.9, 74.9, 76.7, 86.8, 124.5, 128.7, 129.9, 133.4, 136.9, 151.1, 168.8; HRMS (ESI-TOF) m/z: Calcd. for C₃₁H₃₃N₅NaO₆ [M+Na]⁺: 594.2323; Found: 594.2325.


L1d: White solid, m.p. 223.5-224.0 °C; yield 62%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.97-2.03 (m, 2H), 2.25-2.36 (m, 4H), 2.46-2.54 (m, 2H), 3.80-3.85 (m, 6H), 6.08 (s, 2H), 7.06-7.10 (m, 2H), 7.19-7.23 (m, 4H), 7.31-7.33 (m, 4H), 7.67 (d, J = 7.6 Hz, 2H), 7.75-7.79 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.7, 23.7, 70.4, 86.8, 120.8, 125.6, 127.2, 128.4, 134.5, 136.6, 149.3, 167.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₂₉N₅NaO₄ [M+Na]⁺: 534.2112; Found: 534.2107.


L1e: White solid, m.p. 260.5-260.9 °C; yield 60%, 18:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 1.99-2.02 (m, 2H), 2.12-2.15 (m, 2H), 2.23-2.33 (m, 4H), 3.62-3.66 (m, 2H), 3.86 (d, J = 6.0 Hz, 2H), 3.96-4.04 (m, 2H), 6.81 (s, 2H), 7.36-7.38 (m, 4H), 7.54-7.57 (m, 4H), 7.61 (d, J = 7.6 Hz, 2H), 7.83-7.87 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 22.9, 24.7, 71.7, 77.4, 86.8, 125.2, 128.7, 129.4, 130.9, 135.1, 137.0, 151.1, 169.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₂₇Cl₂N₅NaO₄ [M+Na]⁺: 602.1332; Found: 602.1330.


L1f: White solid, m.p. m.p. 272.5-273.4 °C; yield 27%, 12:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 1.98-2.00 (m, 2H), 2.12-2.20 (m, 4H), 2.25-2.30 (m, 2H), 3.62-3.66 (m, 4H), 3.93-4.01 (m, 2H), 6.89 (s, 2H), 7.00-7.04 (m, 2H), 7.30-7.37 (m, 4H), 7.59 (d, J = 7.2 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H), 7.85-7.89 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 22.8, 24.5, 71.4, 77.3, 86.4, 109.9 (d, $J_{CF} = 26.2$ Hz), 113.3 (d, $J_{CF} = 21.1$ Hz), 118.5, 129.0, 131.1 (d, $J_{CF} = 9.0$ Hz), 136.8, 137.9 (d, J_{CF} = 10.1 Hz), 150.5, 162.7 (d, $J_{CF} = 242.3$ Hz), 169.3; HRMS (ESI-TOF) m/z: Calcd. for $C_{29}H_{27}F_2N_5NaO_4$ [M+Na]⁺: 570.1923; Found: 570.1918.

L1g: White solid, m.p. 268.2-268.9 °C; yield 60%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 1.97-1.99 (m, 2H), 2.13-2.33 (m, 12H), 3.65-3.69 (m, 2H), 3.94-4.03 (m, 4H), 6.75 (s, 2H), 7.06 (d, J = 8.8 Hz, 4H), 7.39 (d, J = 8.4 Hz, 4H), 7.57 (d, J = 7.6 Hz, 2H), 7.76-7.79 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 21.0, 22.9, 24.6, 71.6, 77.4, 87.4, 123.9, 128.4, 129.9, 133.6, 136.4, 136.9, 151.5, 169.2; HRMS (ESI-TOF) m/z: Calcd. for C₃₁H₃₃N₅NaO₄ [M+Na]⁺: 562.2425; Found: 562.2418.



L1h: White solid, m.p. m.p. 240.5-241.7 °C; yield 42%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.07-2.15 (m, 4H), 2.29 (s, 6H), 2.34-2.37 (m, 4H), 3.80 (s, 2H), 4.10-4.17 (m, 2H), 4.55 (s, 2H), 6.54 (s, 2H), 6.86-6.89 (m, 2H), 7.14-7.25 (m, 6H), 7.42 (d, J = 7.6 Hz, 2H), 7.70-7.74 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 18.5, 23.5, 25.6, 72.9, 77.7, 88.4, 127.6, 127.7, 129.2, 131.1, 133.9, 136.8, 137.6, 153.0, 170.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₁H₃₃N₅NaO₄ [M+Na]⁺: 562.2425; Found: 562.2419.

L1i: White solid, m.p. m.p. 243.1-241.4 °C; yield 45%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.06-2.12 (m, 4H), 2.34-2.36 (m, 4H), 3.78-3.82 (m, 2H), 3.84 (s, 6H), 4.20-4.26 (m, 2H), 4.54-4.55 (m, 2H), 6.31 (s, 2H), 6.67-6.71 (m, 2H), 7.08-7.10 (m, 2H), 7.13 (s, 2H), 7.25-7.29 (m, 2H), 7.50 (d, J = 3.6 Hz, 2H), 7.68-7.72 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 23.0, 25.3, 56.4, 72.2, 77.4, 87.7, 112.5, 121.3, 122.8, 127.6, 130.6, 131.0, 137.4, 152.6, 155.8, 170.2; HRMS (ESI-TOF) m/z: Calcd. for C₃₁H₃₃N₅NaO₆ [M+Na]⁺: 594.2323; Found: 594.2331.

4. General procedure for preparation of chiral Py-NO ligands L2

In a sealed tube equipped with a magnetic stirring bar, pyridine-2-carbaldehyde 2 (1.0 mmol) and optically pure 4-hydroxyprolinamide or prolinamide 1 (1.2 mmol, 1.2 equiv) were added. Then, anhydrous ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3**.

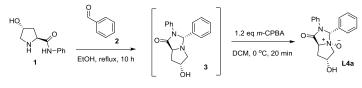
For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N'*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (1.2 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the Py-NO ligand **L2**.

5. Characterization data of Py-NO ligands L2

L2a: Light yellow solid, m.p. 145.7-146.6 °C; yield 68%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.50-2.54 (m, 2H), 3.74 (d, J = 9.2 Hz, 1H), 4.13-4.17 (m, 1H), 4.46 (d, J = 3.2 Hz, 1H), 4.76-4.80 (m, 1H), 6.75 (br s, 1H), 6.86 (s, 1H), 7.15-7.19 (m, 1H), 7.31-7.35 (m, 2H), 7.38-7.42 (m, 1H), 7.47-7.49 (m, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.83-7.87 (m, 1H), 8.60-8.61 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 36.9, 71.1, 75.0, 76.8, 86.6, 122.5, 125.1, 126.5, 127.8, 129.4, 136.3, 137.0, 149.7, 151.6, 169.2; HRMS (ESI-TOF) m/z: Calcd. for C₁₇H₁₇N₃NaO₃ [M+Na]⁺: 334.1162; Found: 334.1166.

L2b: Light yellow solid, m.p. 152.5-153.1 °C; yield 65%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 2.19 (s, 3H), 2.65-2.68 (m, 2H), 3.84-3.88 (m, 1H), 3.95 (d, J = 9.2 Hz, 1H), 4.51 (s, 1H), 4.95-4.98 (m, 1H), 5.97 (s, 1H), 7.01 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.8 Hz, 2H), 7.27-7.30 (m, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.67-7.71 (m, 1H), 8.61-8.63 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.0, 36.9, 71.5, 74.3, 76.5, 88.4, 122.7, 125.2, 126.4, 130.0, 132.6, 136.8, 137.2, 150.1, 150.2, 168.6; HRMS (ESI-TOF) m/z: Calcd. for C₁₈H₁₉N₃NaO₃ [M+Na]⁺: 348.1319; Found: 348.1317.

L2c: Light yellow solid, m.p. 154.3-154.7 °C; yield 64%, 18:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.09-2.13 (m, 1H), 2.24-2.31 (m, 1H), 2.40-2.53 (m, 2H), 3.77-3.81 (m, 1H), 4.06-4.13 (m, 1H), 4.52-4.55 (m, 1H), 7.07 (s, 1H), 7.52-7.65 (m, 5H), 7.74-7.79 (m, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.97-8.00 (m, 2H), 8.39 (d, J = 8.4 Hz, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 23.1, 25.0, 71.7, 77.6, 87.0, 118.7, 124.4, 124.7, 127.8, 128.3, 128.5, 129.5, 130.4, 132.3, 136.0, 136.4, 147.1, 153.0, 169.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₁₈BrN₃NaO₂ [M+Na]⁺: 446.0475; Found: 446.0476.

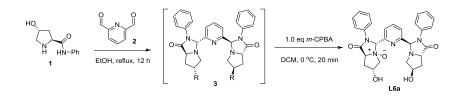


L2d: Light yellow solid, m.p. 143.5-143.9 °C; yield 64%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.04-2.07 (m, 1H), 2.17-2.23 (m, 1H), 2.35-2.44 (m, 2H), 3.66-3.70 (m, 1H), 3.96-4.03 (m, 1H), 4.31-4.34 (m, 1H), 6.83 (s, 1H), 7.16-7.20 (m, 1H), 7.32-7.36 (m, 2H), 7.49 (d, J = 7.6 Hz, 2H), 7.65 (d, J = 8.4 Hz, 1H), 8.10-8.12 (m, 1H), 8.71 (d, J = 2.4 Hz, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 23.0, 24.9, 71.7, 77.5, 86.5, 121.5, 122.4, 126.5, 129.4, 129.5, 136.5, 139.4, 150.3, 151.4, 169.8; HRMS (ESI-TOF) m/z: Calcd. for C₁₇H₁₆BrN₃NaO₂ [M+Na]⁺: 396.0318; Found: 396.0322.

3d: Light yellow solid, m.p. 182.0-182.8 °C; yield 88%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.09-2.12 (m, 1H), 2.22-2.28 (m, 1H), 2.39-2.50 (m, 2H), 3.71-3.75 (m, 1H), 4.01-4.08 (m, 1H), 4.36-4.39 (m, 1H), 6.87 (s, 1H), 7.21-7.25 (m, 1H), 7.37-7.41 (m, 2H), 7.53-7.56 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 8.15-8.17 (m, 1H), 8.76 (d, J = 2.4 Hz, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 24.9, 27.9, 56.0, 64.6, 82.5, 120.0, 121.2, 124.1, 125.1, 129.2, 137.9, 140.3, 150.5, 157.7, 175.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₇H₁₆BrN₃NaO [M+Na]⁺: 380.0369; Found: 380.0375.

6. General procedure for preparation of chiral ligand L4a

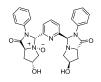
In a sealed tube equipped with a magnetic stirring bar, benzaldehyde 2 (1.0 mmol) and optically pure 4-hydroxyprolinamide 1 (1.2 mmol, 1.2 equiv) were added. Then, anhydrous ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3**.


For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N'*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (1.2 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the ligand **L4a**.

7. Characterization data of chiral ligand L4a

L4a: white solid; yield 75%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 2.45-2.57 (m, 2H), 3.69 (d, J = 11.6 Hz, 1H), 4.07-4.11 (m, 1H), 4.48 (s, 1H), 4.77-4.80 (m, 1H), 6.80 (s, 1H), 7.16-7.19 (m, 1H), 7.32-7.38 (m, 5H), 7.50-7.53 (m, 4H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 36.7, 70.8, 75.4, 76.5, 87.7, 123.1, 126.7, 128.5, 129.5, 130.3, 130.4, 131.7, 136.2, 168.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₈H₁₈N₂NaO₃ [M+Na]⁺: 333.1210; Found: 333.1206.

8. General procedure for preparation of chiral ligand L6a



In a sealed tube equipped with a magnetic stirring bar, pyridine-2,6-dicarbaldehyde 2 (1.0 mmol) and optically pure 4-hydroxyprolinamide or prolinamide 1 (2.4 mmol, 2.4 equiv) were added. Then, anhydrous ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was

purified by flash column chromatography to give the intermediate 3.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N'*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (1.0 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the chiral ligand **L6a**.

9. Characterization data of chiral ligand L6a

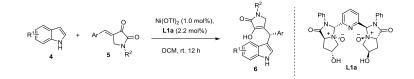
L6a: White solid, m.p. 222.1-223.4 °C; yield 41%, >20:1 dr; ¹H NMR (DMSO- d_6 , 400 MHz) δ : 1.84-1.90 (m, 1H), 2.15-2.26 (m, 2H), 2.41-2.44 (m, 1H), 2.95-2.98 (m, 1H), 3.21 (d, J = 10.0 Hz, 1H), 3.64 (d, J = 11.2 Hz, 1H), 3.77-3.80 (m, 1H), 3.98-4.06 (m, 2H), 4.25 (s, 1 H), 4.38 (s, 1H), 4.92 (br s, 1H), 6.13 (s, 1H), 6.69 (br s, 1H), 6.82 (s, 1H), 7.03-7.07 (m, 1H), 7.14-7.24 (m, 3H), 7.28-7.32 (m, 2H), 7.48-7.56 (m, 6H), 7.79-7.83 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 36.5, 37.1, 63.3, 63.7, 70.0, 70.9, 74.7, 76.4, 82.4, 86.1, 121.5, 122.9, 123.8, 125.0, 126.6, 127.5, 129.1, 129.4, 136.3, 137.9, 138.1, 150.5, 158.0, 168.7, 174.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₂₉N₅NaO₅ [M+Na]⁺: 550.2061; Found: 550.2059.

10. Table S1: optimization of reaction conditions for synthesis of compound 6a^a

	44	N + N Bn	=OSovent, rt. 12 h	$\stackrel{B_{1}}{\longrightarrow} \qquad \stackrel{B_{1}}{\longrightarrow} \stackrel{H_{1}}{\longrightarrow} $		
Entry	Metal	Ligand	Ligand/metal	Sovent	$\operatorname{Yield}^{b}(\%)$	Ee ^c
1	Ni(OTf) ₂	L1a	1.0	DCM	88	77(+)
2	Ni(OTf) ₂	L1a	2.0	DCM	87	91(+)
3	Ni(OTf) ₂	L1a	3.0	DCM	90	93(+)
4	Ni(OTf) ₂	L1a	2.2	DCM	92	94(+)
5	Co(OTf) ₂	L1a	2.2	DCM	91	88(+)
6	Zn(OTf) ₂	L1a	2.2	DCM	90	92(+)
7	Yb(OTf) ₂	L1a	2.2	DCM	88	37(-)

8	Ho(OTf) ₂	L1a	2.2	DCM	89	43(-)
9	Tb(OTf) ₂	L1a	2.2	DCM	90	37(-)
10	Ni(OTf) ₂	L1b	2.2	DCM	87	80(+)
11	Ni(OTf) ₂	L1c	2.2	DCM	85	61(+)
12	Ni(OTf) ₂	L1d	2.2	DCM	65	17(-)
13	Ni(OTf) ₂	L1e	2.2	DCM	85	72(-)
14	Ni(OTf) ₂	L1f	2.2	DCM	87	84(-)
15	Ni(OTf) ₂	L1g	2.2	DCM	88	71(-)
16	Ni(OTf) ₂	L1h	2.2	DCM	83	30(-)
17	Ni(OTf) ₂	L1i	2.2	DCM	88	71(-)
18	Ni(OTf) ₂	L1a	2.2	CHCl ₃	91	92(+)
19	Ni(OTf) ₂	L1a	2.2	DCE	91	91(+)
20	Ni(OTf) ₂	L1a	2.2	THF	84	92(+)
21	Ni(OTf) ₂	L1a	2.2	CH ₃ CN	88	92(+)
22	Ni(OTf) ₂	L1a	2.2	CH ₃ OH	<10%	-
23	Ni(OTf) ₂	L1a	2.2	AcOEt	<10%	-
24^d	Ni(OTf) ₂	L1a	2.2	DCM	81	90(+)
25 ^e	Ni(OTf) ₂	L1a	2.2	DCM	85	89(+)

^{*a*} Reaction conditions: metal (1.0 mol %), ligand (x mol %), **4a** (0.30 mmol), and **5a** (0.20 mmol) in 3.0 mL of CH₂Cl₂ at 25 °C.


^b Isolated yield after flash chromatography.

^c Determined by HPLC analysis.

^{*d*} Run at -5 °C.

^e Ni(OTf)₂ (0.5 mol %), **L1a** (1.1 mol %).

11. Catalytic asymmetric synthesis of compounds 6

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (1.0 mol %), L1a (2.2 mol %) in 3.0 mL of CH₂Cl₂ was added 4 (0.30 mmol), and 5 (0.20 mmol). The reaction mixture was stirred at room temperature for 12 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 6, using hexane/EtOAc (10/1, v/v) as the eluent.

12. Characterization data of compounds 6

6a: Light yellow solid, m.p. 193.2-195.4 °C; yield 89%, 94% ee, $[α]_D^{20} = -18.7$ (*c* 1.2, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 19.86$ min; $τ_{minor} = 10.81$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 3.54-3.67 (m, 2H), 4.51 (s, 2H), 5.58 (s, 1H), 6.86-6.90 (m, 1H), 6.96 (s, 1H), 7.02-7.06 (m, 1H), 7.11-7.35 (m, 12H), 9.52 (br s, 1H), 10.92 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 39.0, 45.9, 48.1, 112.0, 115.6, 118.9, 119.1, 121.6, 123.4, 123.8, 126.8, 126.9, 127.7, 128.5, 128.8, 129.1, 136.9, 138.2, 142.5, 142.8, 167.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₂N₂NaO₂ [M+Na]⁺: 417.1573; Found: 417.1568.

6b: Light yellow solid, m.p. 221.1-222.5 °C; yield 85%, 91% ee, $[\alpha]_D^{20} = -4.1$ (*c* 0.41, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 17.46$ min; $\tau_{minor} = 9.40$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.24 (s, 3H), 3.52-3.66 (m, 2H), 4.51 (s, 2H), 5.54 (d, *J* = 2.8 Hz, 1H), 6.85-6.89 (m, 1H), 6.94 (s, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.11-7.15 (m, 4H), 7.22-7.35 (m, 5H), 9.49 (br s, 1H), 10.91 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 21.1, 38.6, 45.9, 48.1, 112.0, 115.7, 118.9, 119.1, 121.5, 123.7, 123.8, 126.9, 127.7, 127.8, 128.4, 128.8, 129.1, 129.4, 135.7, 137.0, 138.2, 139.8, 142.4, 167.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₄N₂NaO₂ [M+Na]⁺: 431.1730; Found: 431.1733.

6c: Light yellow solid, m.p. 167.4-168.8 °C; yield 90%, 91% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 17.51 min; τ_{minor} = 9.30 min); ¹H NMR (CDCl₃, 400 MHz) δ: 3.45-3.55 (m, 2H), 4.40-4.51 (m, 2H), 5.50 (s, 1H), 6.87 (d, *J* = 1.6 Hz, 1H), 6.82-6.92 (m, 3H), 7.03-7.24 (m, 11H), 8.14 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 38.7, 46.8, 48.7, 111.3, 115.3 (d, *J*_{CF} = 21.2 Hz), 116.2, 119.5 (d, *J*_{CF} = 23.1 Hz), 122.3, 123.0, 126.5, 127.7, 128.8, 129.7 (d, *J*_{CF} = 8.1 Hz), 136.6

(d, $J_{CF} = 9.0$ Hz), 141.8, 161.6 (d, $J_{CF} = 242.3$ Hz), 167.8; HRMS (ESI-TOF) m/z: Calcd. for $C_{26}H_{21}FN_2NaO_2 [M+Na]^+$: 435.1479; Found: 435.1479.

6d: Light yellow solid, m.p. 115.4-115.9 °C; yield 90%, 94% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 9.09 min; τ_{minor} = 15.45 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 3.58-3.69 (m, 2H), 4.47-4.57 (m, 2H), 5.59 (s, 1H), 6.88-6.92 (m, 1H), 7.01-7.05 (m, 4H), 7.10-7.14 (m, 3H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.28-7.36 (m, 4H), 9.58 (br s, 1H), 10.98 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 38.8, 46.0, 48.2, 112.1, 113.6 (d, *J*_{CF} = 21.0 Hz), 114.9, 115.1 (d, *J*_{CF} = 22.2 Hz), 119.0 (d, *J*_{CF} = 8.1 Hz), 121.7, 122.6, 124.0, 124.6, 126.7, 127.7, 129.1, 130.6 (d, *J*_{CF} = 7.2 Hz), 136.9, 138.1, 142.8, 145.8 (d, *J*_{CF} = 7.2 Hz), 162.8 (d, *J*_{CF} = 241.2 Hz), 167.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₁FN₂NaO₂ [M+Na]⁺: 435.1479; Found: 435.1484.

6e: Light yellow solid, m.p. 240.2-241.3 °C; yield 91%, 93% ee, $[α]_D^{20} = -60.7$ (*c* 1.2, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 17.35$ min; $τ_{minor} = 9.40$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 3.55-3.67 (m, 2H), 4.46-4.57 (m, 2H), 5.57 (s, 1H), 6.87-6.91 (m, 1H), 6.99 (s, 1H), 7.03-7.07 (m, 1H), 7.12-7.16 (m, 2H), 7.23-7.36 (m, 9H), 9.56 (br s, 1H), 10.96 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 38.5, 46.0, 48.2, 112.1, 115.1, 119.0, 121.7, 122.7, 124.0, 126.7, 127.7, 128.7, 129.1, 130.3, 131.3, 137.0, 138.1, 141.9, 142.7, 167.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₁ClN₂NaO₂ [M+Na]⁺: 451.1184; Found: 451.1185.

6f: Light yellow solid, m.p. 238.2-239.9 °C; yield 90%, 97% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 8.57 min; τ_{minor} = 6.43 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 3.43-3.47 (m, 1H), 3.68-3.73 (m, 1H), 4.48-4.58 (m, 2H), 5.88 (d, J = 8.8 Hz, 1H), 6.87-6.96 (m, 2H), 7.04-7.25 (m, 8H), 7.29-7.32 (m, 2H), 7.35-7.39 (m, 1H), 7.43-7.46 (m, 1H), 9.53-9.56 (m, 1H), 10.98 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 36.3, 46.0, 48.6, 112.1, 114.6, 118.8, 119.1, 121.3, 121.7, 124.2, 126.7, 127.5, 127.7, 128.6, 129.1, 129.8, 130.3, 133.3, 137.0, 138.1, 140.1, 143.2, 167.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₁ClN₂NaO₂ [M+Na]⁺: 451.1184; Found: 451.1185.

6g: Light yellow solid, m.p. 222.1-223.4 °C; yield 91%, 91% ee, $[\alpha]_D^{20} = -39.1$ (*c* 0.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.95$ min; $\tau_{minor} = 9.67$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.55-3.66 (m, 2H), 4.46-4.56 (m, 2H), 5.54 (s, 1H), 6.87-6.91 (m, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 7.02-7.06 (m, 1H), 7.12-7.16 (m, 3H), 7.19-7.25 (m, 3H), 7.28-7.30 (m, 2H), 7.32-7.35 (m, 1H), 7.38 (d, *J* = 4.4 Hz, 1H), 7.45 (d, *J* = 12.0 Hz, 1H), 9.56 (br s, 1H), 10.96 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 38.5, 46.0, 48.2, 112.1, 115.0, 119.0, 119.1, 120.0, 121.7, 122.7, 124.0, 126.7, 127.7, 128.4, 129.1, 129.2, 130.7, 131.6, 136.9, 138.1, 142.3, 142.7, 167.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₁BrN₂NaO₂ [M+Na]⁺: 495.0679; Found: 495.0682.

6h: Light yellow solid, m.p. 113.6-114.8 °C; yield 90%, 94% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 17.37$ min; $\tau_{minor} = 9.13$ min); ¹H NMR (DMSO- d_6 , 400 MHz) δ : 3.57-3.68 (m, 2H), 4.48-4.56 (m, 2H), 5.57 (s, 1H), 6.88-6.92 (m, 1H), 7.01 (s, 1H), 7.04-7.07 (m, 1H), 7.12-7.41 (m, 11H), 9.58 (br s, 1H), 10.98 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 38.7, 45.9, 48.2, 112.1, 114.8, 118.9, 119.1, 121.7, 122.1, 122.5, 124.1, 126.7, 127.6, 127.7, 129.1,

129.7, 131.0, 131.1, 136.9, 138.1, 142.9, 145.7, 167.2; HRMS (ESI-TOF) m/z: Calcd. for $C_{26}H_{21}BrN_2NaO_2 [M+Na]^+$: 495.0679; Found: 495.0678.

6i: Light yellow solid, m.p. 110.2-115.1 °C; yield 92%, 98% ee, $[\alpha]_D^{20} = -12.0$ (*c* 0.4, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.96$ min; $\tau_{minor} = 9.85$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 3.49-3.59 (m, 2H), 4.43-4.53 (m, 2H), 5.58 (s, 1H), 6.77 (d, J = 1.6 Hz, 1H), 6.91-6.95 (m, 1H), 7.05-7.08 (m, 2H), 7.10 (d, J = 7.6 Hz, 2H), 7.17-7.20 (m, 4H), 7.27 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.8 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 8.17 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.3, 45.8, 47.7, 110.5, 113.8, 118.1, 118.9, 121.5, 122.2, 122.7, 125.2, 126.7, 126.8, 127.8, 128.1, 135.3, 135.6, 141.5, 145.7, 148.1, 166.6; HRMS (ESI-TOF) m/z: Calcd. forC₂₆H₂₁N₃NaO₄ [M+Na]⁺: 462.1424; Found: 462.1424.

6j: Light yellow solid, m.p. 92.3-94.1 °C; yield 90%, 96% ee, $[\alpha]_D^{20} = -6.0$ (*c* 1.1, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 18.49$ min; $\tau_{minor} = 12.59$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 0.74-0.78 (m, 3H), 1.40-1.46 (m, 2H), 3.22-3.25 (m, 2H), 3.60-3.74 (m, 2H), 5.58 (s, 1H), 6.87-6.91 (m, 1H), 7.03-7.07 (m, 2H), 7.17-7.23 (m, 2H), 7.28-7.30 (m, 4H), 7.36 (d, *J* = 8.0 Hz, 1H), 9.37 (br s, 1H), 10.95 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 11.6, 21.6, 39.0, 43.9, 48.3, 112.0, 115.7, 118.9, 119.1, 121.6, 122.7, 123.9, 126.7, 126.9, 128.5, 128.8, 137.0, 142.6, 143.0, 167.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₂N₂NaO₂ [M+Na]⁺: 369.1573; Found: 369.1570.

6k: Light yellow solid, m.p. 133.1-134.4 °C; yield 91%, 95% ee; The ee was determined by HPLC analysis using a Chiralpak ID column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 17.23 min; τ_{minor} = 20.69 min); ¹H NMR (CDCl₃, 400 MHz) δ: 2.25 (s, 3H), 3.39 (d, *J* = 10.4 Hz, 1H), 3.65 (d, *J* = 10.4 Hz, 1H), 4.32-4.36 (m, 1H), 4.52 (d, *J* = 15.2 Hz, 1H), 5.63 (s, 1H), 6.76-6.83 (m, 2H), 6.97-7.01 (m, 1H), 7.04 (d, *J* = 8.0 Hz, 2H), 7.18-7.23 (m, 7H), 7.41-7.43 (m, 2H), 8.08-8.14 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 11.0, 36.8, 45.8, 47.6, 108.8, 109.0, 109.7, 117.8, 118.5, 120.2, 126.7, 126.8, 127.8, 131.1, 135.4, 141.6, 145.6, 166.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₃N₃NaO₂ [M+Na]⁺: 456.1682; Found: 456.1678.

6I: Light yellow solid, m.p. 136.7-137.4 °C; yield 90%, 99% ee; The ee was determined by HPLC analysis using a Chiralpak ID column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 23.06 min; τ_{minor} = 28.40 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.29 (s, 3H), 3.44 (d, *J* = 16.4 Hz, 1H), 3.74 (d, *J* = 16.4 Hz, 1H), 4.45 (d, *J* = 15.2 Hz, 1H), 4.56 (d, *J* = 15.2 Hz, 1H), 5.70 (s, 1H), 6.76-6.80 (m, 1H), 6.90-6.97 (m, 2H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.22-7.31 (m, 4H), 7.42 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.8 Hz, 2H), 9.59 (br s, 1H), 11.00 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 16.8, 42.9, 50.7, 53.2, 114.4, 116.0, 123.3, 123.8, 125.4, 126.1, 128.5, 132.1, 132.4, 132.5, 133.8, 134.3, 138.5, 140.5, 142.9, 148.0, 151.1, 155.3, 171.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₃N₃O₄ [M+Na]⁺: 453.1689; Found: 453.1694.

6m: Light yellow solid, m.p. 144.1-145.0 °C; yield 88%, 90% ee; The ee was determined by HPLC analysis using a Chiralpak IB column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 16.31 min; τ_{minor} = 13.83 min); ¹H NMR (CDCl₃, 400 MHz) δ: 2.21 (s, 3H), 3.39 (d, *J* = 18.4 Hz, 1H), 3.70 (d, *J* = 18.4 Hz, 1H), 4.31 (d, *J* = 15.2 Hz, 1H), 4.54 (d, *J* = 15.2 Hz, 1H), 5.63 (s, 1H), 6.78-6.85 (m, 4H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.94-6.98 (m, 1H), 7.03-7.05 (m, 2H), 7.08-7.10 (m, 1H), 7.14-7.20 (m, 5H), 8.03 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 10.4,

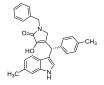
35.6, 45.0, 46.9, 108.8, 108.9, 111.5 (d, $J_{CF} = 21.2$ Hz), 113.3 (d, $J_{CF} = 22.2$ Hz), 117.4, 117.7, 119.3, 121.3, 121.9, 125.6, 125.9, 127.1, 127.9 (d, $J_{CF} = 8.1$ Hz), 131.3, 133.7, 134.9, 140.5, 141.9 (d, $J_{CF} = 7.3$ Hz), 161.8 (d, $J_{CF} = 243.4$ Hz), 166.1; HRMS (ESI-TOF) m/z: Calcd. for $C_{27}H_{23}FN_2NaO_2 [M+Na]^+$: 449.1636; Found: 449.1633.

6n: Light yellow solid, m.p. 136.9-137.4 °C; yield 91%, 92% ee; The ee was determined by HPLC analysis using a Chiralpak ID column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.58$ min; $\tau_{minor} = 13.85$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 2.19 (s, 3H), 3.36 (d, J = 18.4 Hz, 1H), 3.65 (d, J = 18.4 Hz, 1H), 4.25 (d, J = 15.6 Hz, 1H), 4.52 (d, J = 15.6 Hz, 1H), 5.59 (s, 1H), 6.76-6.82 (m, 2H), 6.92-6.96 (m, 1H), 7.01 (d, J = 8.0 Hz, 4H), 7.07 (d, J = 8.4 Hz, 2H), 7.13-7.16 (m, 5H), 8.07 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 9.9, 34.8, 44.6, 46.5, 108.4, 117.0, 117.2, 118.9, 121.2, 125.1, 125.5, 125.6, 126.2, 126.6, 127.2, 129.9, 130.9, 133.2, 134.4, 137.2, 140.1, 165.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₃ClN₂NaO₂ [M+Na]⁺: 465.1340; Found: 465.1343.

60: Light yellow solid, m.p. 127.8-127.9 °C; yield 90%, 92% ee; The ee was determined by HPLC analysis using a Chiralpak IC column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 23.90$ min; $\tau_{minor} = 10.55$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.09 (s, 3H), 3.49 (s, 2H), 4.36 (d, J = 15.2 Hz, 1H), 4.51 (d, J = 15.2 Hz, 1H), 5.59 (s, 1H), 6.81-6.85 (m, 1H), 6.94-6.97 (m, 1H), 6.99-7.04 (m, 4H), 7.09-7.17 (m, 7H), 7.22-7.24 (m, 1H), 8.06 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.1, 37.2, 46.6, 49.8, 109.6, 110.6, 118.5, 119.6, 121.0, 121.4, 126.7, 127.6, 128.0, 128.8, 129.6, 129.9, 132.7, 134.1, 135.2, 136.7, 139.0, 141.9, 167.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₃ClN₂NaO₂ [M+Na]⁺: 465.1340; Found: 465.1345.

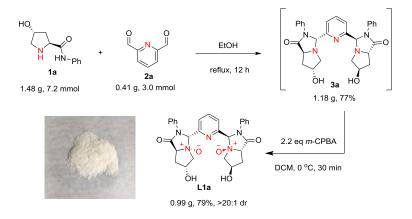
6p: Light yellow solid, m.p. 137.4-138.6 °C; yield 91%, 94% ee; The ee was determined by HPLC analysis using a Chiralpak ID column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 20.29 min; τ_{minor} = 25.61 min); ¹H NMR (CDCl₃, 400 MHz) δ: 2.21 (s, 3H), 3.36 (d, *J* = 15.2 Hz, 1H), 3.65 (d, *J* = 15.2 Hz, 1H), 4.28 (d, *J* = 15.2 Hz, 1H), 4.53 (d, *J* = 15.2 Hz, 1H), 5.57 (s, 1H), 6.77-6.83 (m, 2H), 6.95-6.98 (m, 3H), 7.02-7.04 (m, 2H), 7.14-7.18 (m, 5H), 7.23 (d, *J* = 8.4 Hz, 2H), 8.02 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.1, 37.1, 46.8, 48.6, 110.6, 119.2, 119.4, 120.2, 121.1, 123.2, 127.3, 127.7, 128.6, 128.8, 129.8, 131.3, 133.1, 135.4, 136.6, 139.9, 142.3, 167.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₃BrN₂NaO₂ [M+Na]⁺: 509.0835; Found: 509.0831.

6q: Light yellow solid, m.p. 154.1-155.2 °C; yield 91%, 96% ee; The ee was determined by HPLC analysis using a Chiralpak IC column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 11.03 min; τ_{minor} = 12.46 min); ¹H NMR (CDCl₃, 400 MHz) δ: 2.23 (s, 3H), 3.39 (d, *J* = 18.4 Hz, 1H), 3.68 (d, *J* = 18.4 Hz, 1H), 4.34 (d, *J* = 15.2 Hz, 1H), 4.54 (d, *J* = 15.2 Hz, 1H), 5.56 (s, 1H), 6.82-6.85 (m, 2H), 6.92-6.95 (m, 1H), 6.96-7.00 (m, 1H), 7.03-7.05 (m, 2H), 7.15-7.20 (m, 7H), 7.99 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.1, 36.9, 46.8, 48.6, 110.1, 110.6, 119.0, 119.6, 121.2, 127.1, 127.6, 127.7, 128.8, 129.9, 130.2, 130.3, 132.4, 133.1, 135.4, 136.5, 141.3, 142.4, 167.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₂Cl₂N₂NaO₂ [M+Na]⁺: 499.0951; Found: 499.0950.



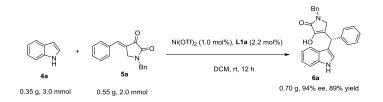
6r: Light yellow solid, m.p. 128.1-128.7 °C; yield 89%, 90% ee; The ee was determined by HPLC analysis using a Chiralpak ID column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ =

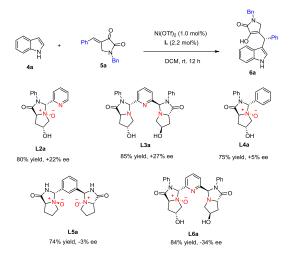
254 nm; τ_{major} = 38.07 min; τ_{minor} = 47.28 min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.18 (s, 3H), 3.40 (d, *J* = 18.4 Hz, 1H), 3.56 (s, 3H), 3.71 (d, *J* = 18.4 Hz, 1H), 4.27 (d, *J* = 15.2 Hz, 1H), 4.54 (d, *J* = 15.2 Hz, 1H), 5.62 (s, 1H), 6.62-6.65 (m, 1H), 6.67-6.71 (m, 2H), 6.76-6.80 (m, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.92-6.96 (m, 1H), 7.02-7.04 (m, 3H), 7.12-7.18 (m, 5H), 8.04 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.1, 37.6, 46.7, 48.8, 55.1, 110.5, 110.9, 111.6, 114.0, 119.3, 120.6, 120.9, 123.8, 127.6, 127.7, 128.8, 129.3, 133.0, 135.4, 136.8, 142.0, 142.5, 159.7, 167.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₆N₂NaO₃ [M+Na]⁺: 461.1836; Found: 461.1839.


6s: Light yellow solid, m.p. 134.5-134.9 °C; yield 91%, 95% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 13.74$ min; $\tau_{minor} = 7.51$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 3.51 (s, 2H), 4.50 (s, 2H), 5.45 (s, 1H), 6.69-6.72 (m, 2H), 6.92-6.95 (m, 1H), 7.03-7.08 (m, 5H), 7.18-7.24 (m, 4H), 7.27-7.32 (m, 2H), 8.11 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 38.0, 45.7, 47.5, 96.5 (d, $J_{CF} = 26.2$ Hz), 107.5 (d, $J_{CF} = 25.3$ Hz), 114.8, 119.0 (d, $J_{CF} = 9.5$ Hz), 120.9, 121.7, 125.9, 126.6, 126.7, 127.8, 129.0, 129.1, 130.2, 135.4, 141.1, 142.6, 158.9 (d, $J_{CF} = 247.0$ Hz), 166.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₆H₂₀BrFN₂NaO₂ [M+Na]⁺: 513.0584; Found: 513.0582.

6t: Light yellow solid, m.p. 112.1-112.7 °C; yield 92%, 99% ee; The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 6.44 min; τ_{minor} = 7.41 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.26 (s, 3H), 2.36 (s, 3H), 3.53-3.66 (m, 2H), 4.52 (s, 2H), 5.53 (s, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 7.07-7.14 (m, 7H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.29-7.33 (m, 2H), 9.50 (br s, 1H), 10.75 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 21.0, 21.8, 38.6, 45.9, 48.1, 111.8, 115.5, 118.9, 120.7, 123.1, 123.8, 124.8, 127.6, 127.7, 128.3, 129.1, 129.3, 130.6, 135.7, 137.4, 138.2, 139.8, 142.3, 167.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₆N₂NaO₂ [M+Na]⁺: 445.1886; Found:

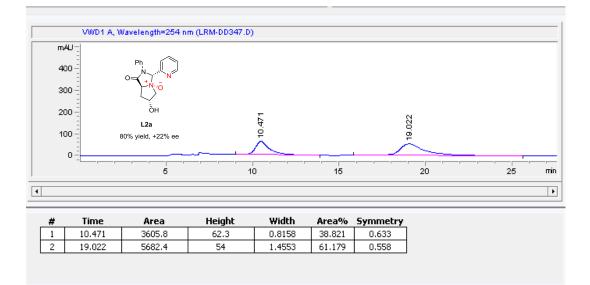
445.1887.

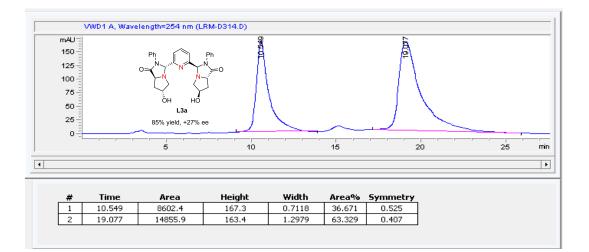

13. The gram scale synthesis of the ligand L1a

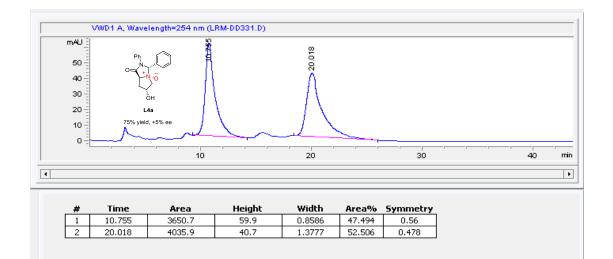

In a sealed tube equipped with a magnetic stirring bar, pyridine-2,6-dicarbaldehyde **2a** (0.41 g, 3.0 mmol) and optically pure 4-hydroxyprolinamide **1** (1.48 g, 7.2 mmol) were added. Then, anhydrous ethanol (30.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3a**.

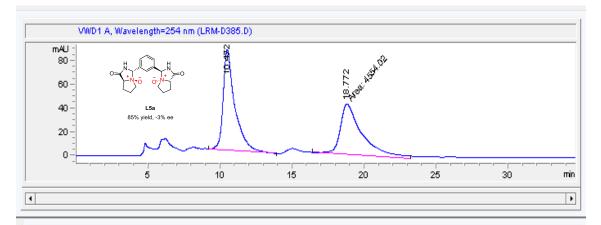
For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N'*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 20.0 mL of DCM and *m*-CPBA (2.2 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 30 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the Py-2NO ligand **L1a** (0.99 g, 79%, >20:1 dr).

14. The preparative gram scale asymmetric synthesis of the product 6a

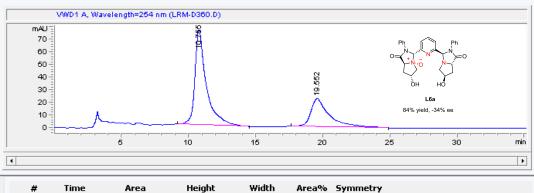


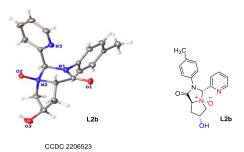

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (1.0 mol %), L1a (2.2 mol %) in 30 mL of CH₂Cl₂ was added 4a (3.0 mmol), and 5a (2.0 mmol). The reaction mixture was stirred at room temperature for 12 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 6a (0.70 g, 94% ee, 89% yield), using hexane/EtOAc (10/1, v/v) as the eluent.



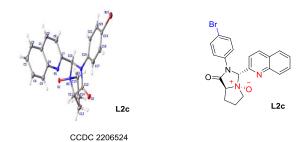

15. Control experiments and HPLC spectra for compound 6a

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (1.0 mol %), L (2.2 mol %) in 30 mL of CH₂Cl₂ was added **4a** (0.3 mmol), and **5a** (0.2 mmol). The reaction mixture was stirred at room temperature for 12 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **6a**, using hexane/EtOAc (10/1, v/v) as the eluent.





#	Time	Area	Height	Width	Area%	Symmetry
1	10.472	4805.4	84.9	0.8012	51.343	0.501
2	18.772	4554	42.9	1.7703	48.657	0.435


	THILE	HICO	ricigiic	mach	HICU /V	Symmetry
1	10.755	4393.1	75.3	0.8258	66.931	0.511
2	19.552	2170.5	22.2	1.3657	33.069	0.484

16. X-ray crystal data for compounds L2b, L2c and 3d

Table S2 Crystal data and st	Table S2 Crystal data and structure refinement for L2b			
Identification code	L2b			
Empirical formula	$C_{18}H_{23}N_3O_5$			
Formula weight	361.39			
Temperature/K	169.99(10)			
Crystal system	monoclinic			
Space group	P21			
a/Å, b/Å, c/Å	7.9392(2), 6.15070(10), 17.6593(3)			
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 93.002(2), 90			
Volume/Å ³	861.15(3)			
Z	2			
$\rho_{calc}g/cm^3$	1.323			
μ/mm^{-1}	0.853			
F(000)	384.0			
Radiation	Cu K α (λ = 1.54184)			
Crystal size/mm ³	0.15 imes 0.13 imes 0.1			
2Θ range for data collection/°	5.01 to 133.19			
Index ranges	-9 \leq h \leq 9, -7 \leq k \leq 7, -20 \leq l \leq 20			
Reflections collected	6299			
Independent reflections	2954 [$R_{int} = 0.0339$, $R_{sigma} = 0.0366$]			
Data/restraints/parameters	2954/1/244			
Goodness-of-fit on F ²	1.127			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0462, wR_2 = 0.1377$			
Final R indexes [all data]	$R_1 = 0.0467, wR_2 = 0.1387$			
Largest diff. peak/hole / e Å ⁻³	0.34/-0.32			

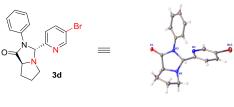
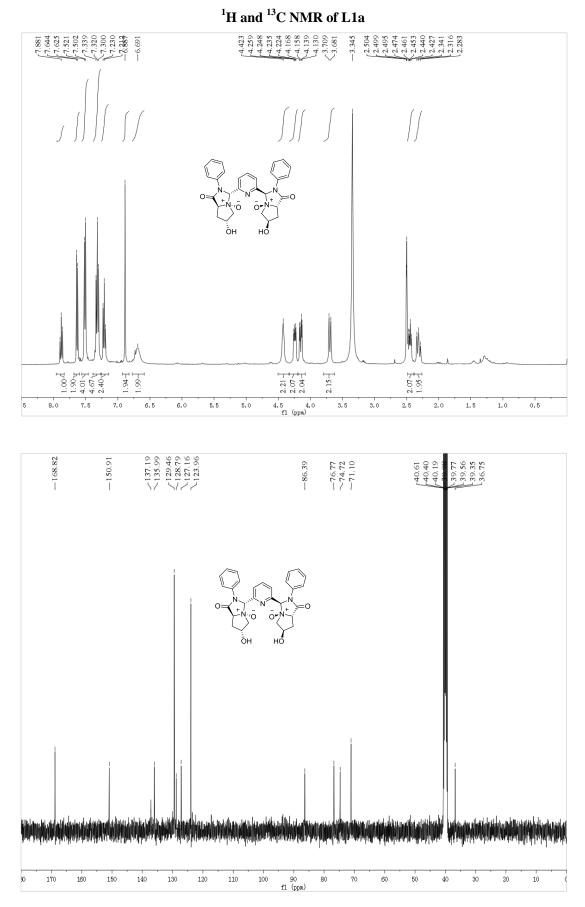

Crystal Data for $C_{18}H_{23}N_3O_5$ (*M* =361.39 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 169.99(10) K, μ (Cu K α) = 0.853 mm⁻¹, *Dcalc* = 1.394 g/cm³, 6299 reflections measured (5.01° \leq $2\Theta \le 133.19^\circ$), 2954 unique ($R_{int} = 0.0339$, $R_{sigma} = 0.0366$) which were used in all calculations. The final R_1 was 0.0462 (I > 2 σ (I)) and wR_2 was 0.1387 (all data).

Table S3 C	rystal data	and structure	refinement fo	r L2c
------------	-------------	---------------	---------------	-------

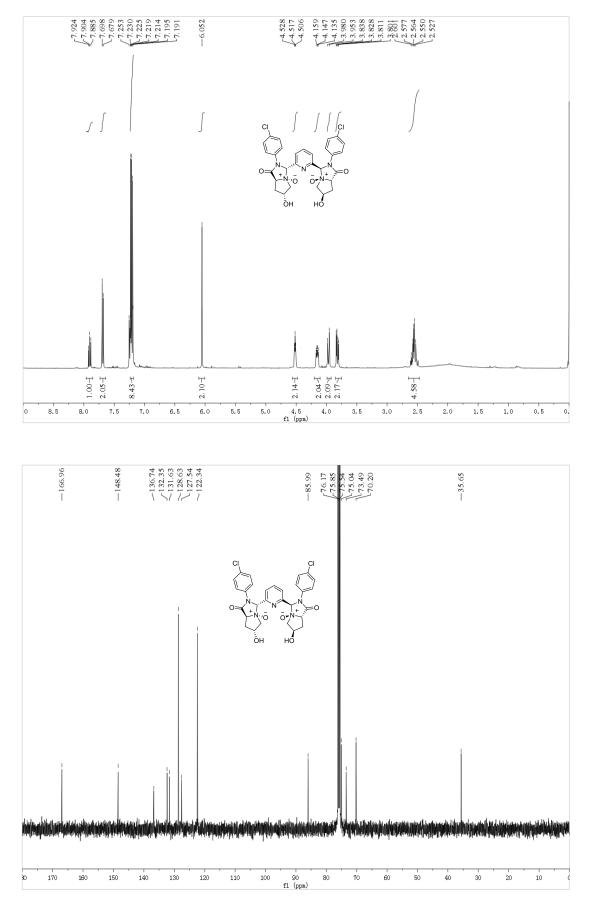
Identification code	L2c
Empirical formula	$C_{21}H_{20}BrN_{3}O_{3}$
Formula weight	442.31
Temperature/K	220.00(12)
Crystal system	monoclinic
Space group	P2 ₁
a/Å, b/Å, c/Å	10.83288(12), 7.10591(8), 12.90956(17)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 107.1505(13), 90
Volume/Å ³	949.56(2)
Z	2
$\rho_{calc}g/cm^3$	1.547
μ/mm^{-1}	3.187
F(000)	452.0
Radiation	Cu K α (λ = 1.54184)
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
2Θ range for data collection/°	7.166 to 142.432
Index ranges	$-13 \le h \le 11, -7 \le k \le 8, -11 \le l \le 15$
Reflections collected	7086
Independent reflections	3209 [$R_{int} = 0.0173$, $R_{sigma} = 0.0166$]
Data/restraints/parameters	3209/1/257
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0353, wR_2 = 0.0936$
Final R indexes [all data]	$R_1 = 0.0354, wR_2 = 0.0937$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.56
Flack parameter	-0.02(2)/-0.01(3)

Crystal Data for C₂₁H₂₀BrN₃O₃ (*M* =442.31 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 10.83288(12) Å, *b* = 7.10591(8) Å, *c* = 12.90956(17) Å, β = 107.1505(13) °, *V* = 949.56(2) Å³, *Z* = 2, *T* = 220.00(12) K, μ (Cu K α) = 3.187 mm⁻¹, *Dcalc* = 1.547 g/cm³, 7086 reflections measured (7.166° $\leq 2\Theta \leq 142.432^{\circ}$), 3209 unique ($R_{int} = 0.0173$, $R_{sigma} = 0.0166$) which were used in all calculations. The final R_1 was 0.0353 (I > 2 σ (I)) and wR_2 was 0.0937 (all data).

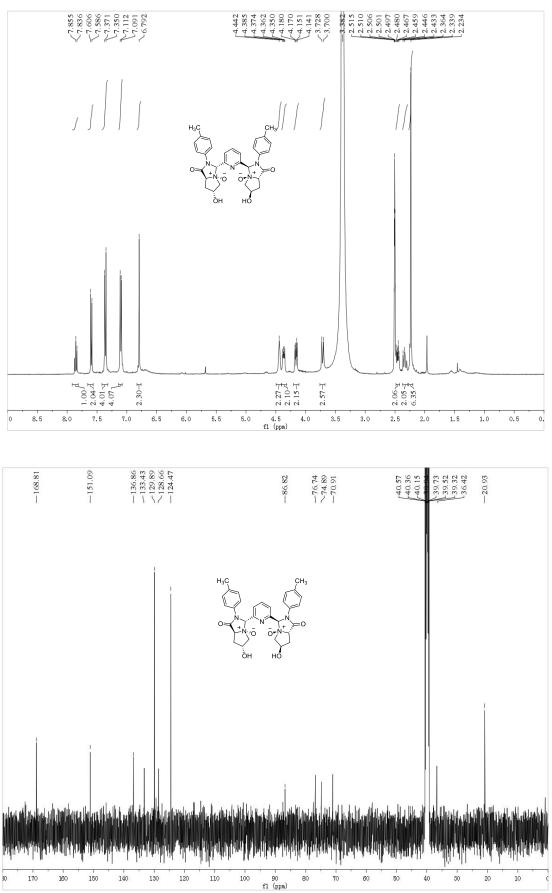


CCDC 2208260

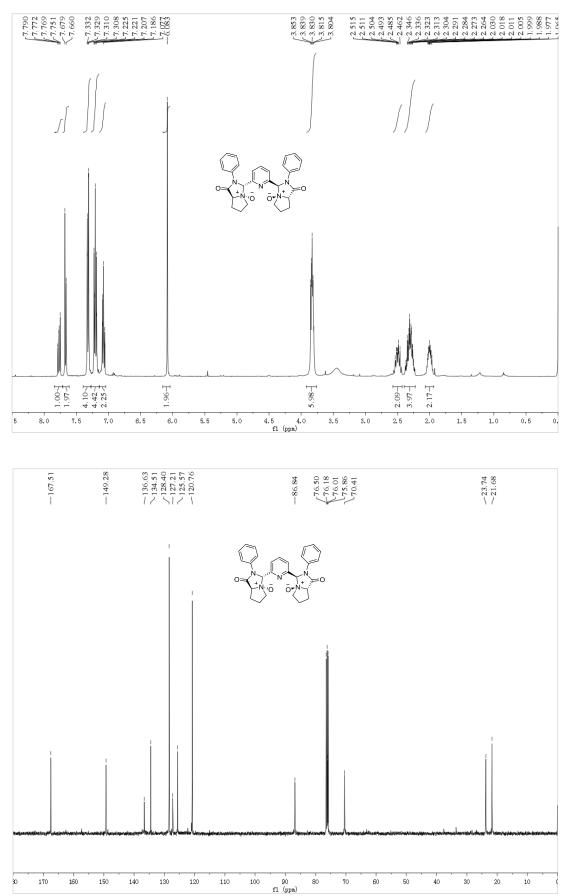
Table S4 Crystal data and structure refinement for 3d

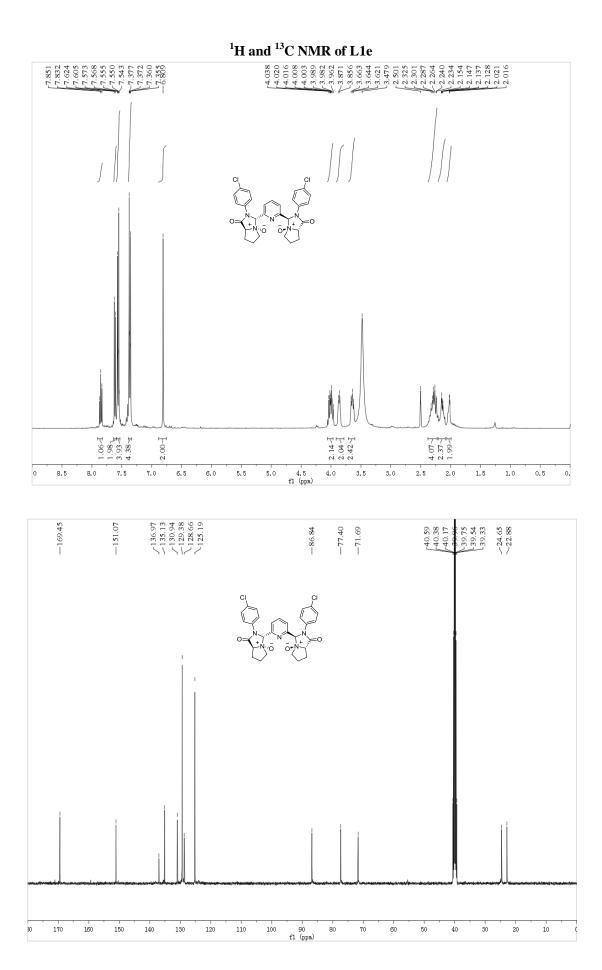

U U	
Identification code	3d
Empirical formula	$C_{17}H_{16}BrN_3O$
Formula weight	358.24
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	7.79020(10), 9.7405(2), 19.9339(3)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90
Volume/Å ³	1512.59(4)
Z	4
$\rho_{calc}g/cm^3$	1.573
μ/mm^{-1}	3.745
F(000)	728.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$
2Θ range for data collection/°	8.872 to 147.76
Index ranges	$-9 \le h \le 9, -10 \le k \le 11, -24 \le l \le 24$
Reflections collected	11359
Independent reflections	$3026 [R_{int} = 0.0498, R_{sigma} = 0.0330]$
Data/restraints/parameters	3026/0/199
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0356, wR_2 = 0.0899$
Final R indexes [all data]	$R_1 = 0.0366, wR_2 = 0.0911$
Largest diff. peak/hole / e Å $^{-3}$	0.53/-0.73
Flack parameter	-0.032(12)/-0.021(10)

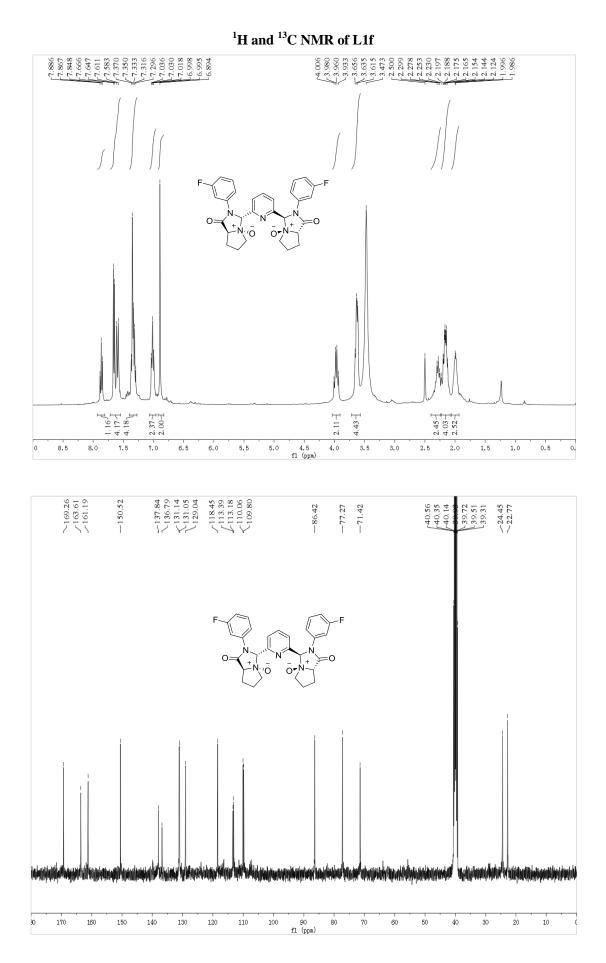
Crystal Data for C₁₇H₁₆BrN₃O (M =358.24 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 7.79020(10) Å, b = 9.7405(2) Å, c = 19.9339(3) Å, V = 1512.59(4) Å³, Z = 4, T = 150.00(10) K, μ (Cu K α) = 3.745 mm⁻¹, *Dcalc* = 1.573 g/cm³, 11359 reflections measured (8.872 ° $\leq 2\Theta \leq 147.76^{\circ}$), 3026 unique ($R_{int} = 0.0498$, $R_{sigma} = 0.0330$) which were used in all calculations. The final R_1 was 0.0356 (I > 2 σ (I)) and wR_2 was 0.0911 (all data).



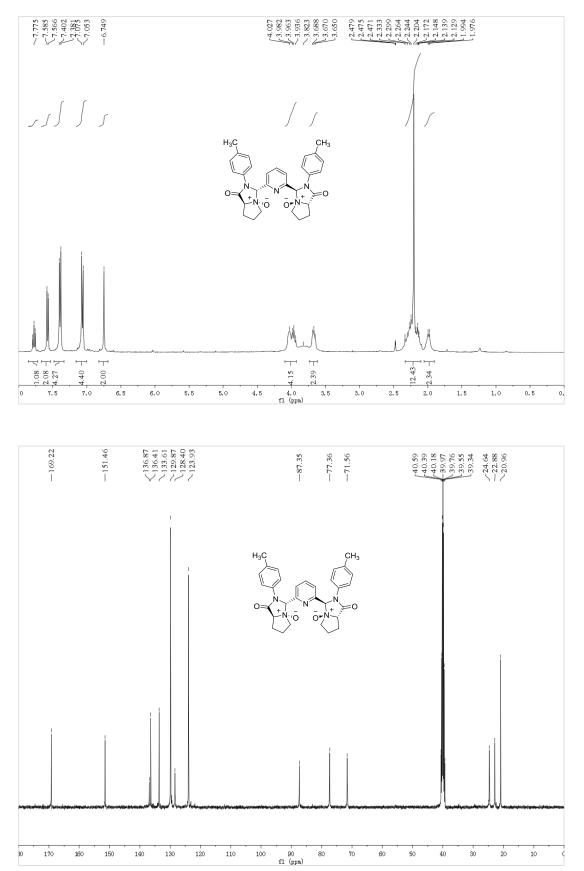
17. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds L and 6

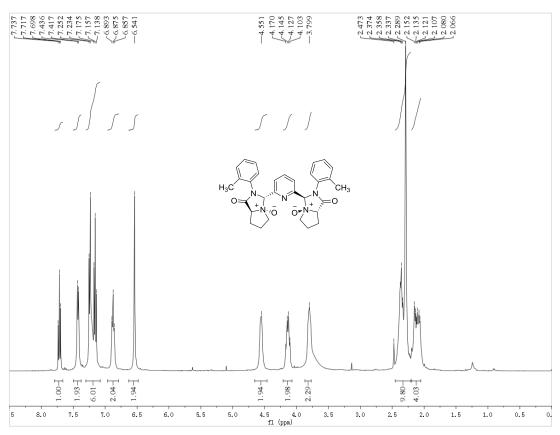

¹H and ¹³C NMR of L1b

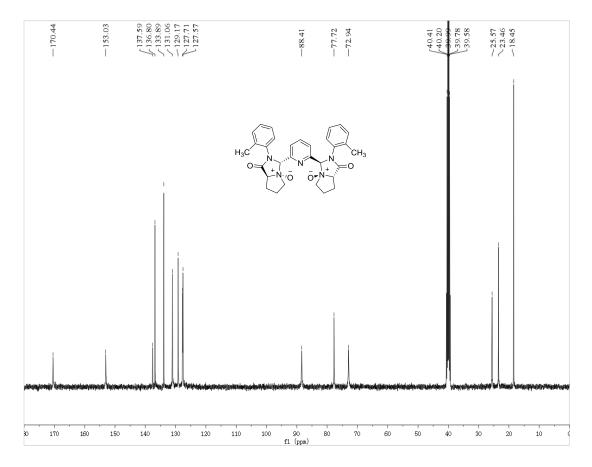


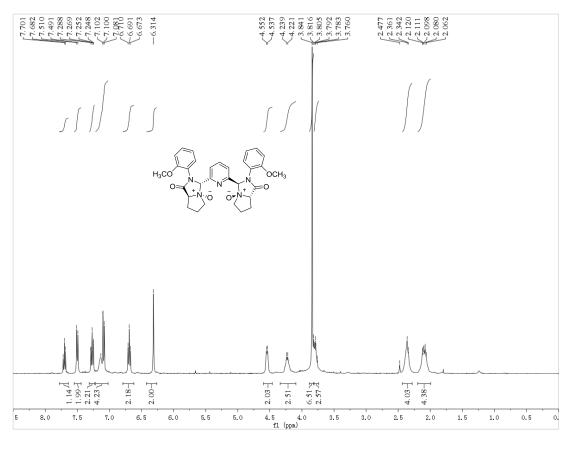


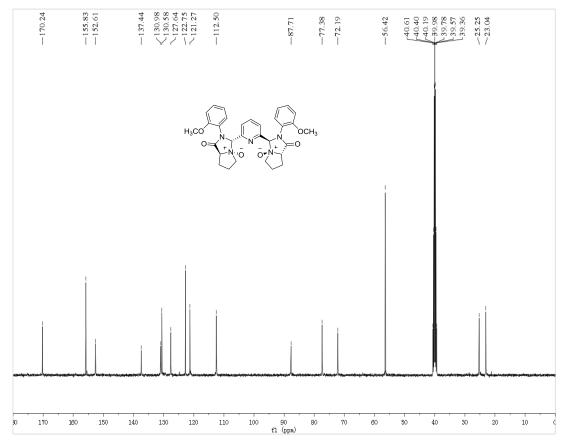
¹H and ¹³C NMR of L1d

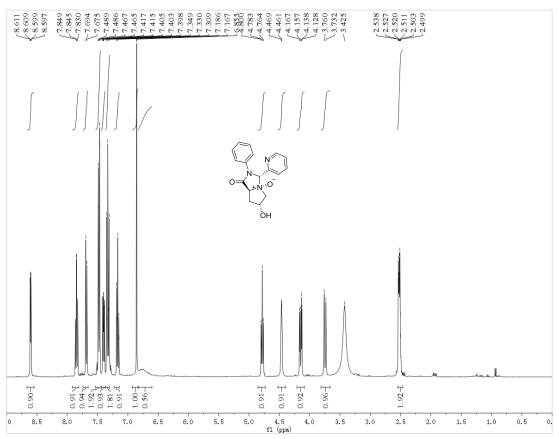


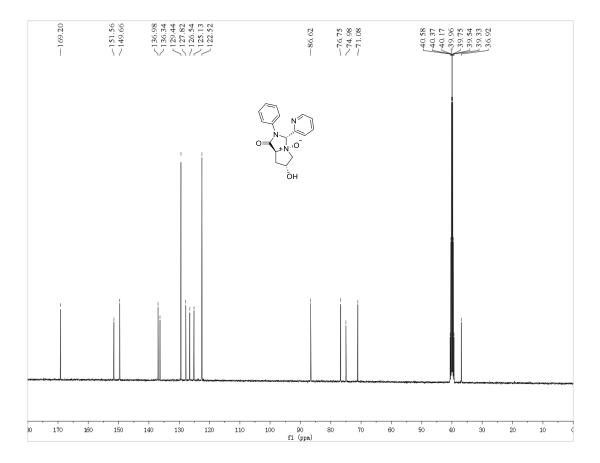


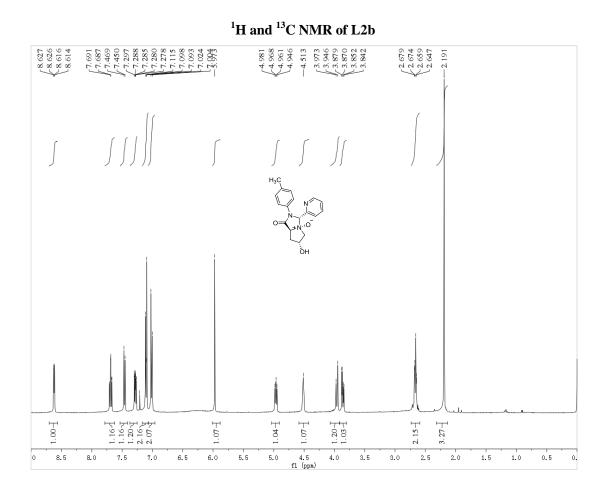

S31

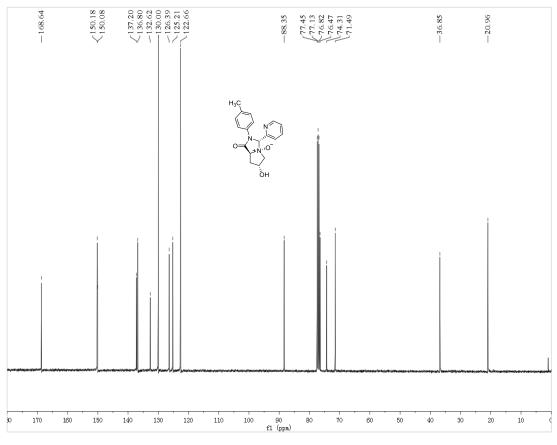


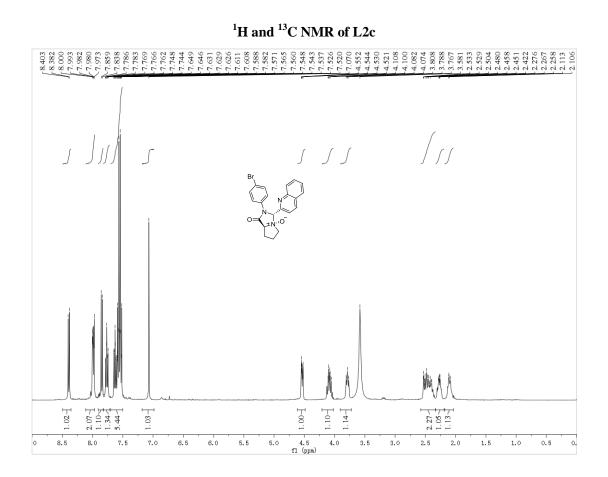

¹H and ¹³C NMR of L1h

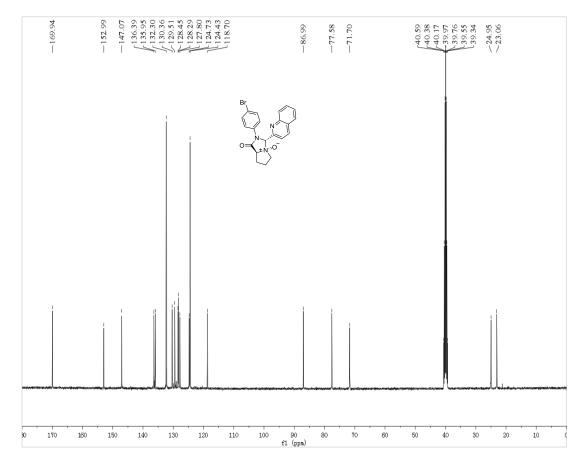


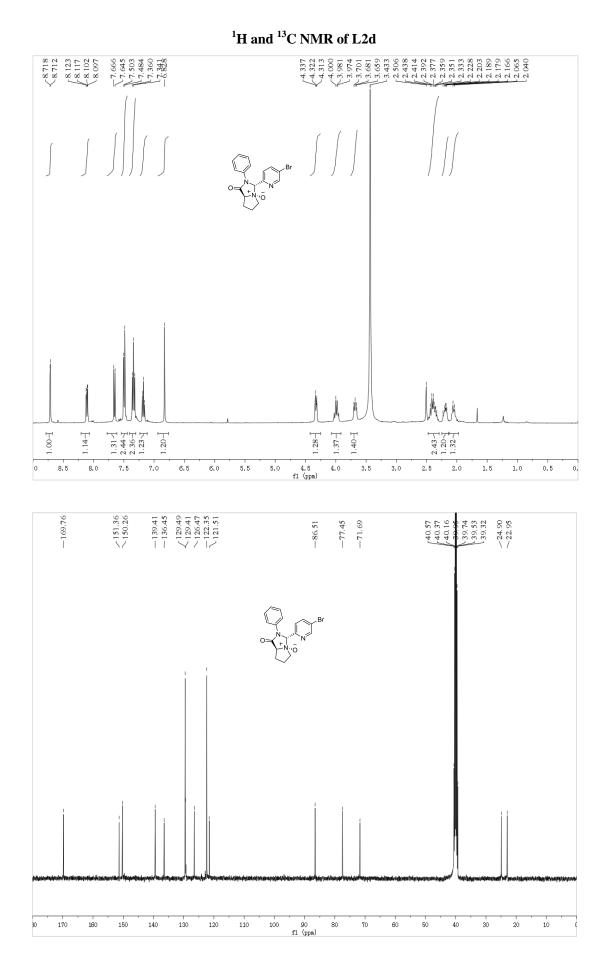

¹H and ¹³C NMR of L1i

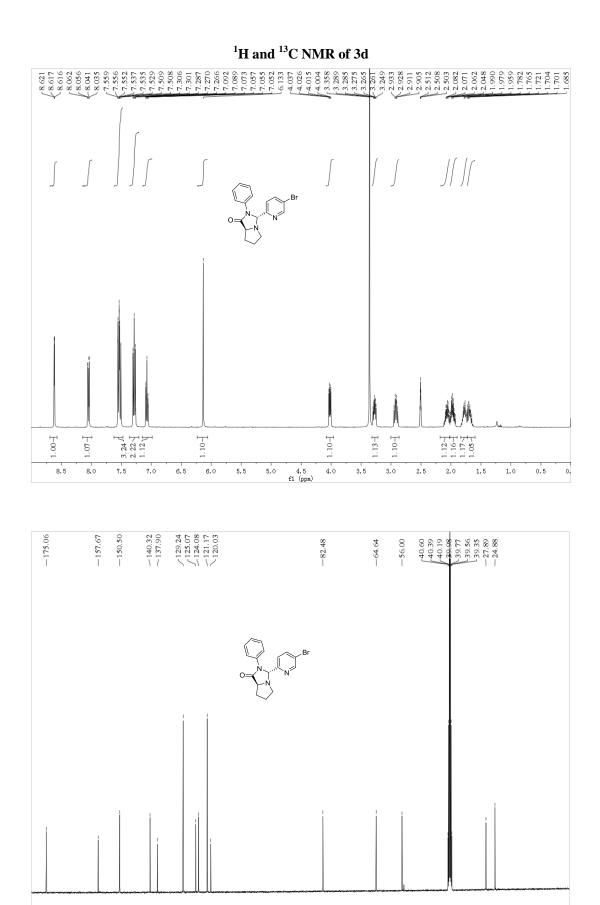


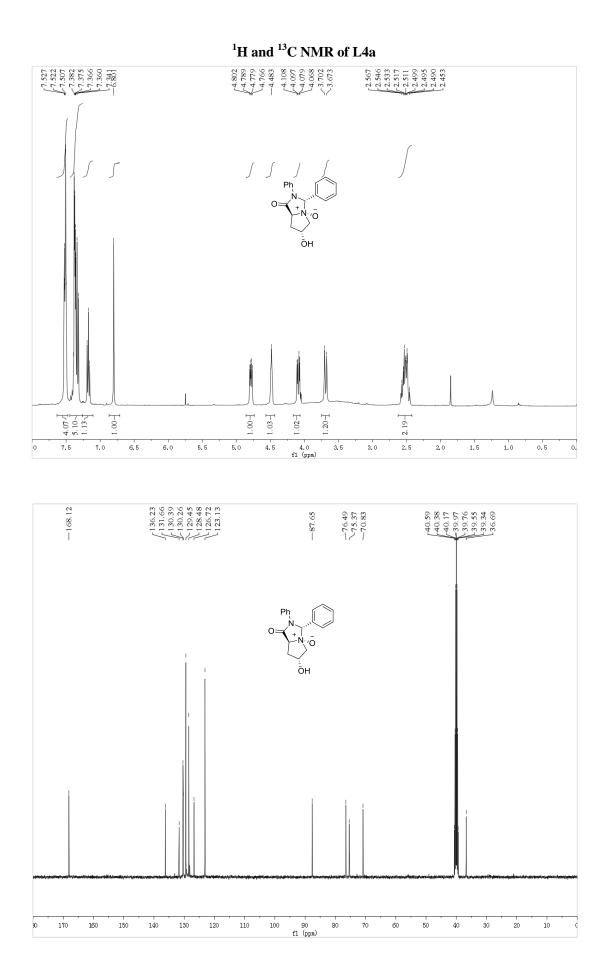


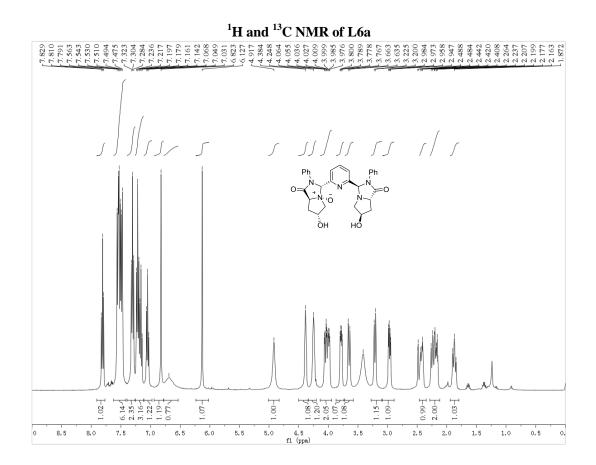

¹H and ¹³C NMR of L2a

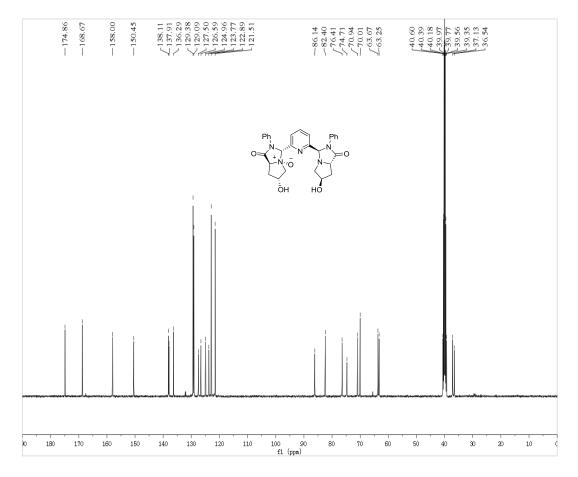


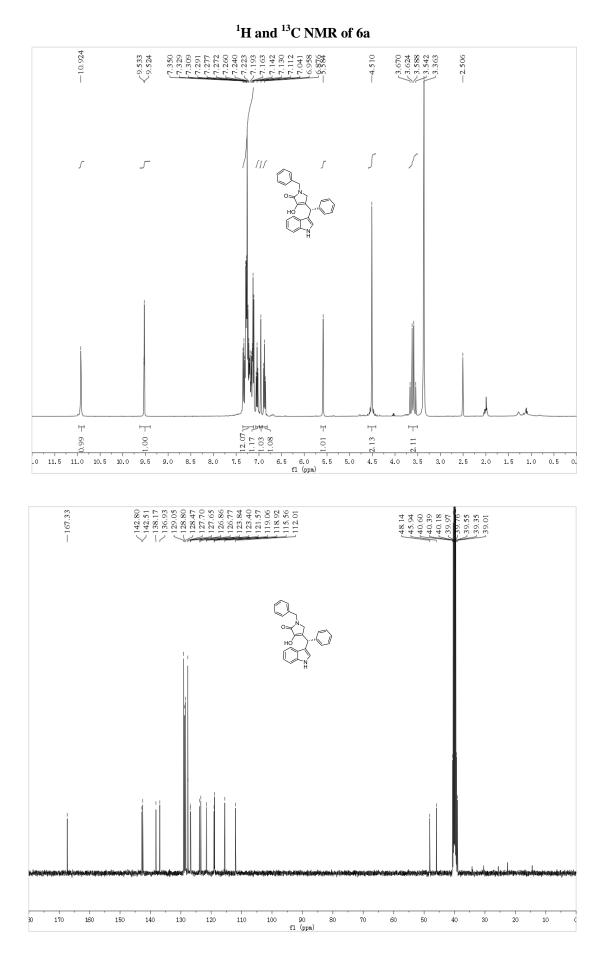




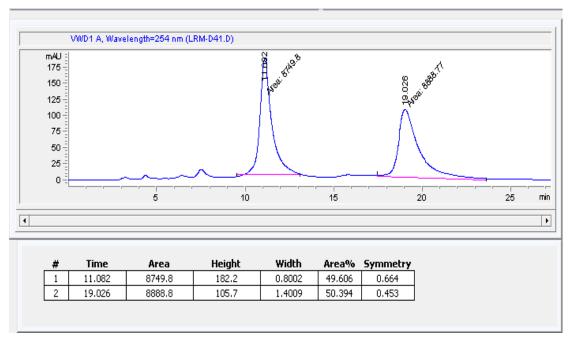


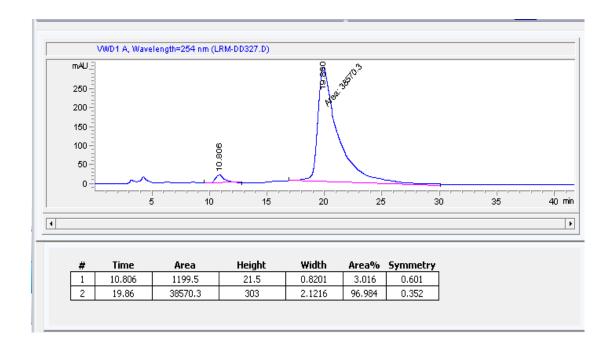


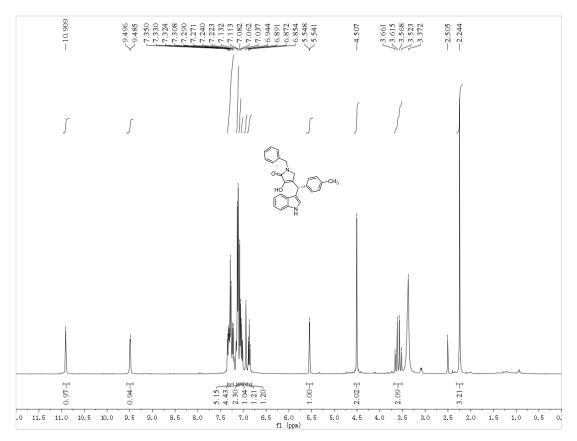

S38

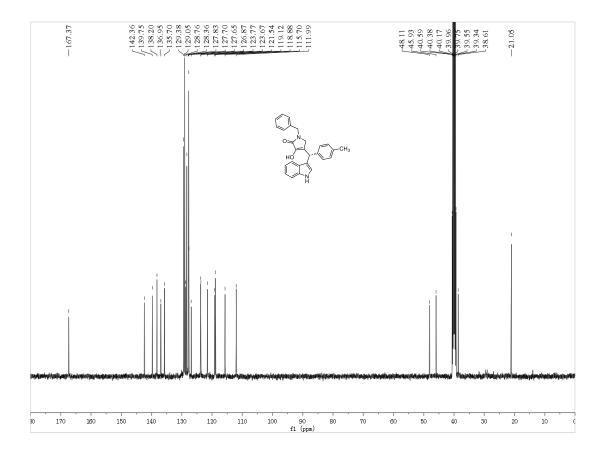


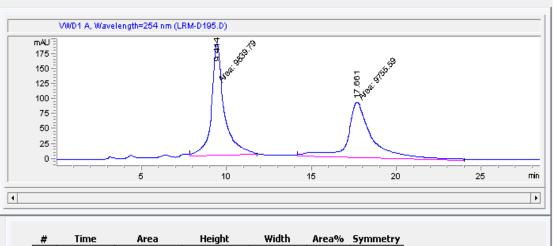
f1 (ppm)


S40

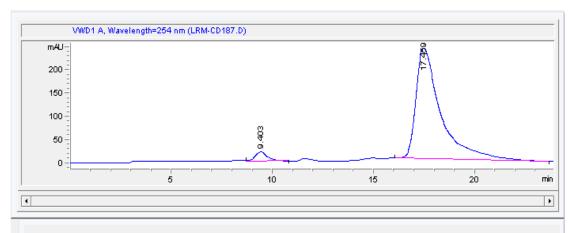


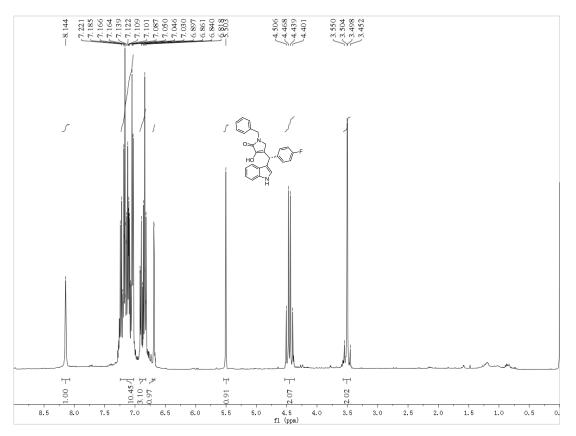


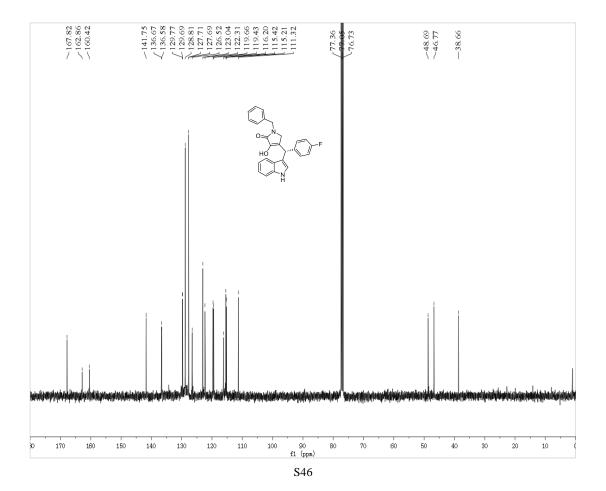


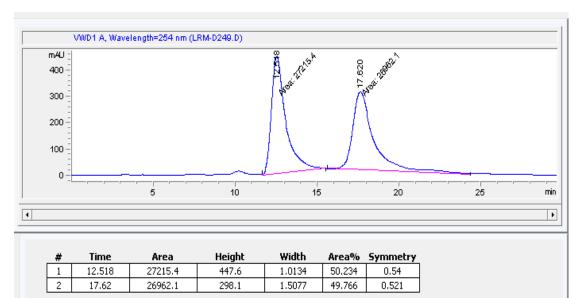


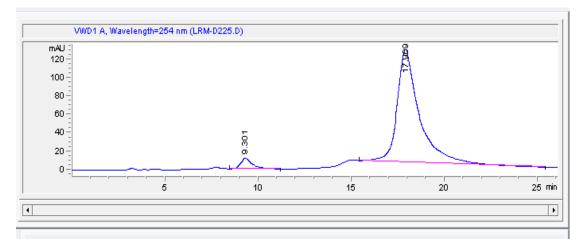
¹H and ¹³C NMR of 6b

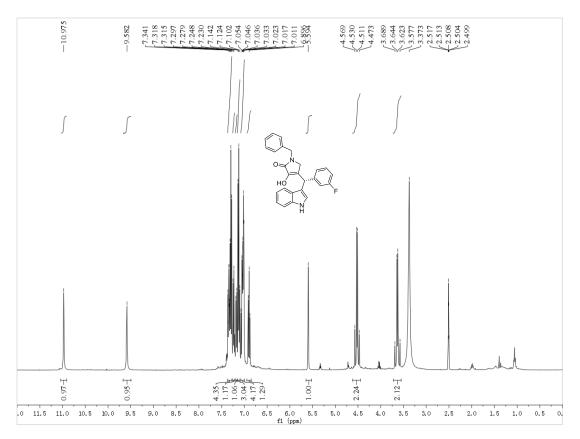


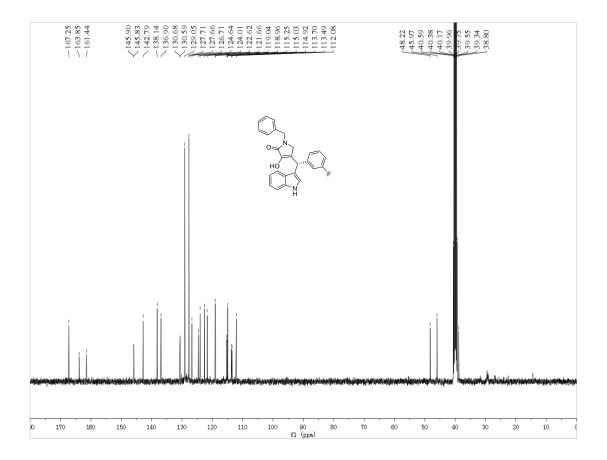


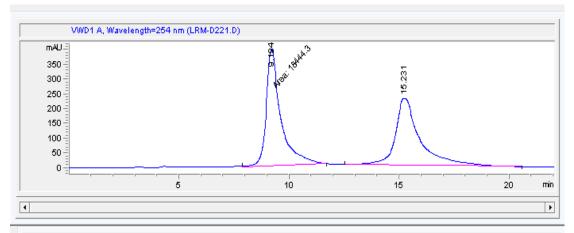

#	Time	Area	Height	Width	Area%	Symmetry
1	9.414	9839.8	186.6	0.879	50.215	0.704
2	17.661	9755.6	92.6	1.7555	49.785	0.652


#	Time	Area	Height	Width	Area%	Symmetry
1	9.403	913.6	20.4	0.6433	4.301	0.815
2	17.459	20330.5	237.7	1.2199	95.699	0.398

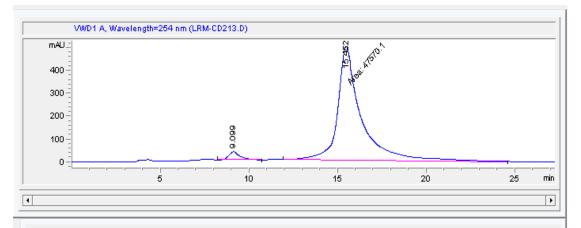

¹H and ¹³C NMR of 6c

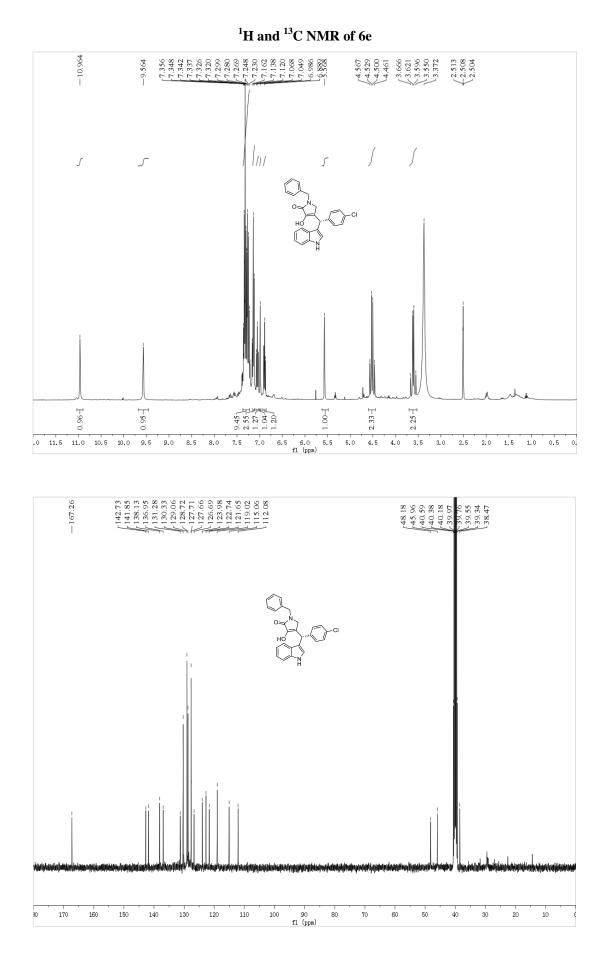


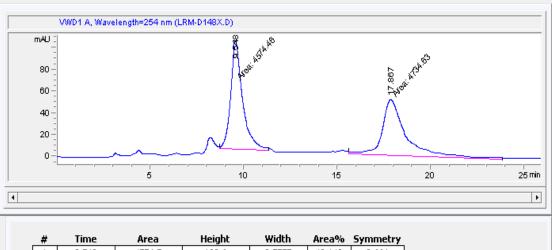


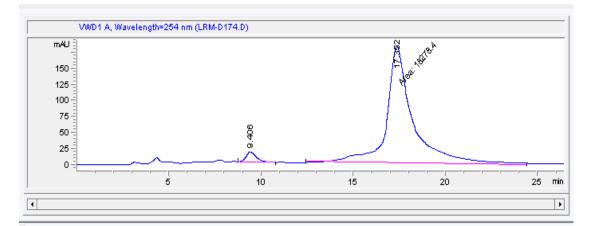

#	Time	Area	Height	Width	Area%	Symmetry
1	9.301	511.7	11.8	0.6153	4.747	0.64
2	17.909	10268.6	122.8	1.1716	95.253	0.568

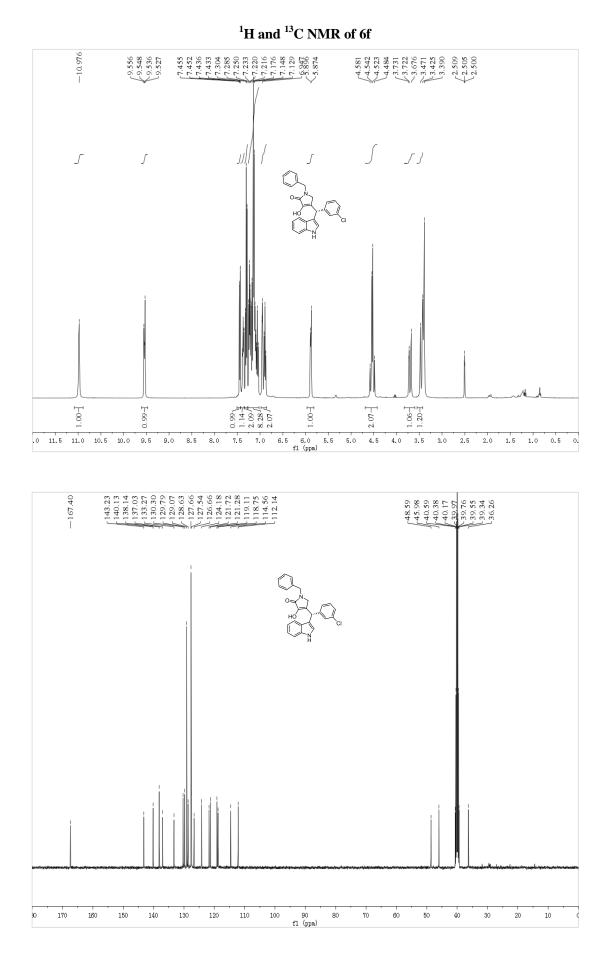
¹H and ¹³C NMR of 6d

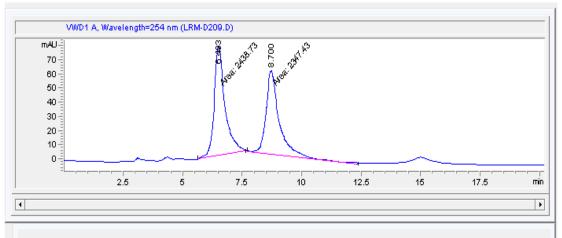


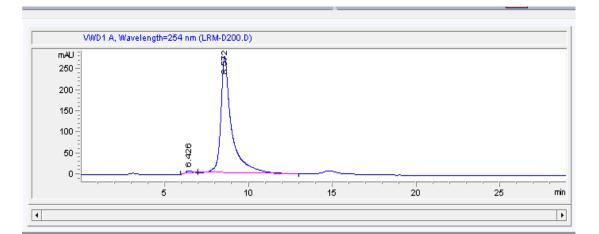


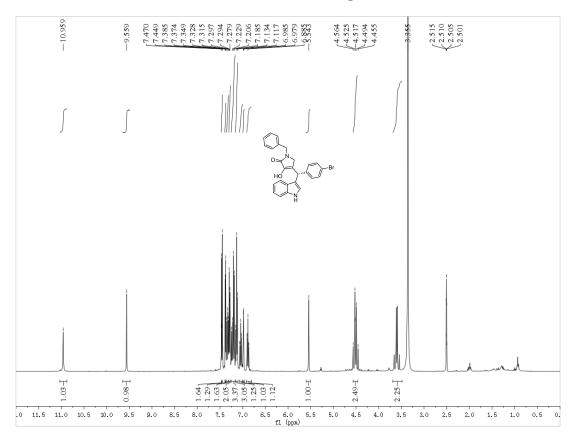

#	Time	Area	Height	Width	Area%	Symmetry
1	9.194	18444.3	397.2	0.7739	50.785	0.548
2	15.231	17874.1	227.5	1.0938	49.215	0.558

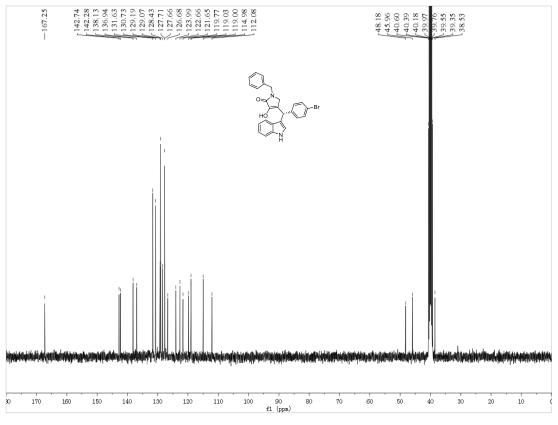

#	Time	Area	Height	Width	Area%	Symmetry
1	9.099	1556.2	36	0.6092	3.168	0.635
2	15.452	47570.1	498.9	1.5892	96.832	0.509

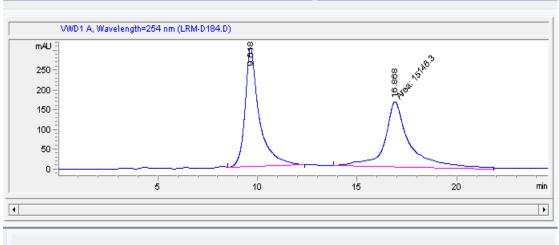



Ŧ	nme	Area	Height	wiach	Area%	Symmetry
1	9.548	4574.5	100.6	0.7577	49.140	0.664
2	17.867	4734.6	51.6	1.5286	50.860	0.533

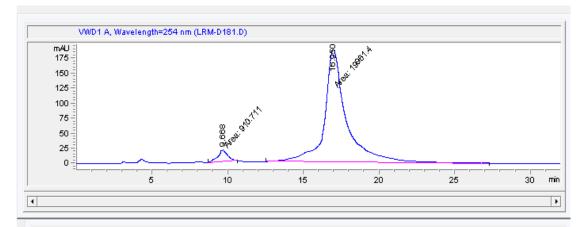

#	Time	Area	Height	Width	Area%	Symmetry
1	9.406	664.2	16.5	0.5925	3,506	0.72
2	17.352	18278.4	183.4	1.6614	96.494	0.647

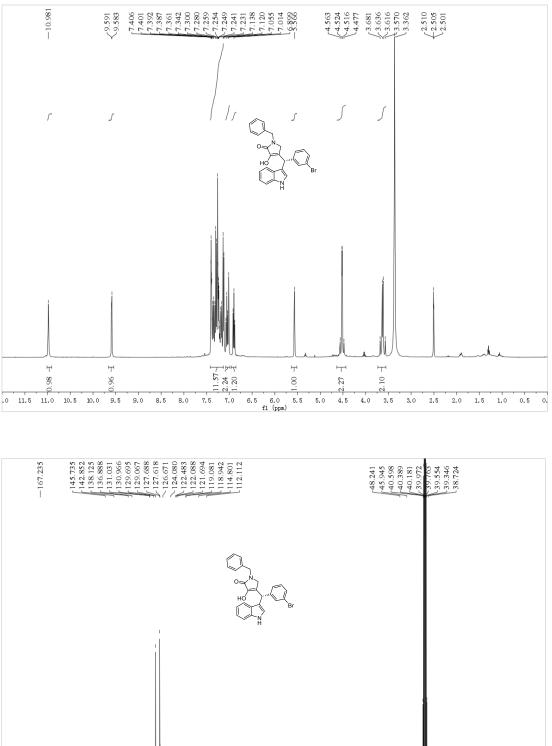


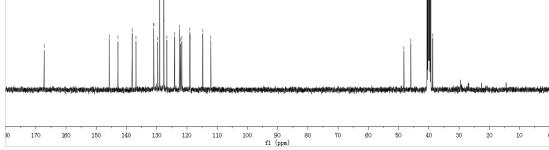

#	Time	Area	Height	Width	Area%	Symmetry
1	6.493	2438.7	77.5	0.5247	50.954	0.681
2	8.7	2347.4	59	0.663	49.046	0.583

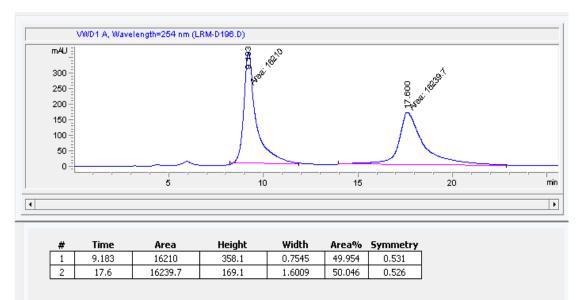

1 6.426 173.7 6.9 0.3683 1.381	
	0.818
2 8.572 12401.4 278.1 0.6173 98.619	0.505

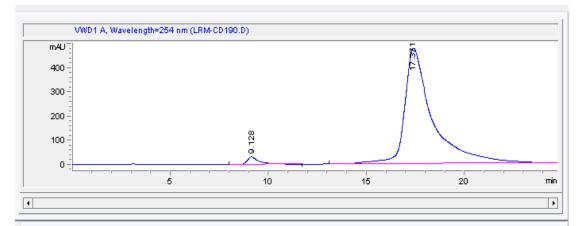
¹H and ¹³C NMR of 6g

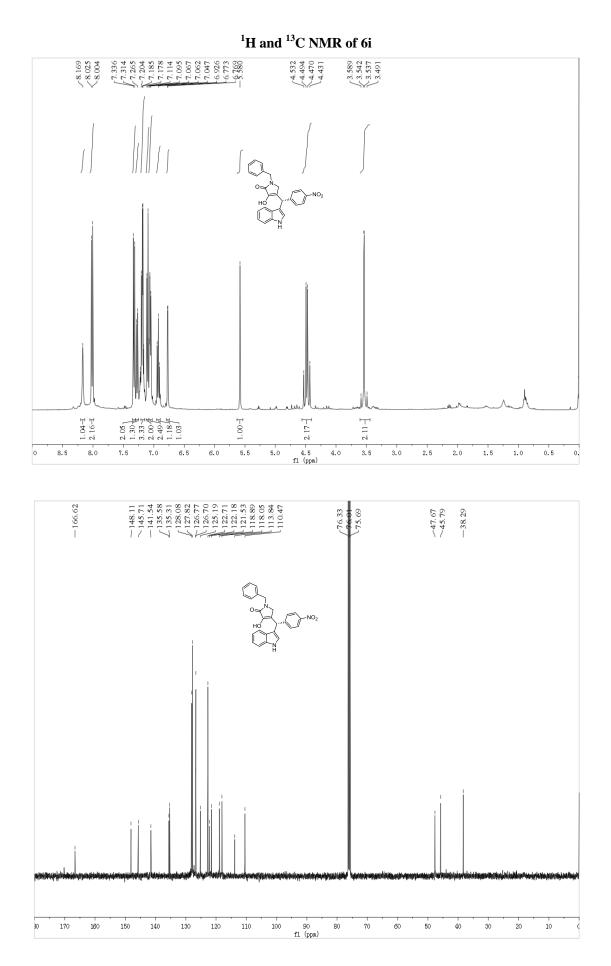


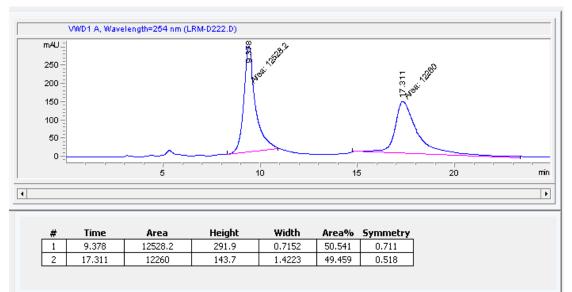


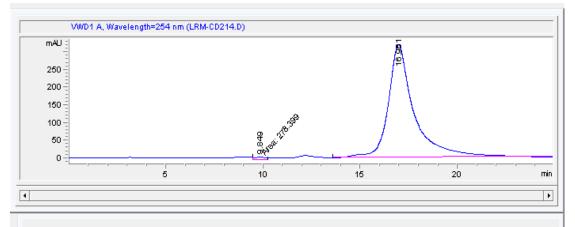

#	Time	Area	Height	Width	Area%	Symmetry
1	9.618	14966.2	301.8	0.6955	49.701	0.575
2	16.868	15146.3	165.8	1.5223	50.299	0.645


#	Time	Area	Height	Width	Area%	Symmetry
1	9.668	910.7	19.6	0.7742	4.363	1.071
2	16.95	19961.4	188	1.7695	95.637	0.614

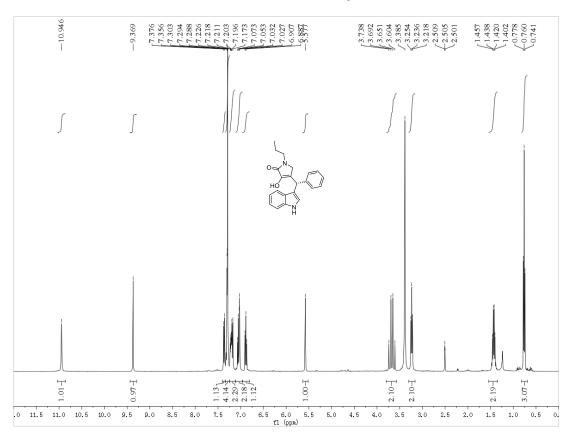

¹H and ¹³C NMR of 6h

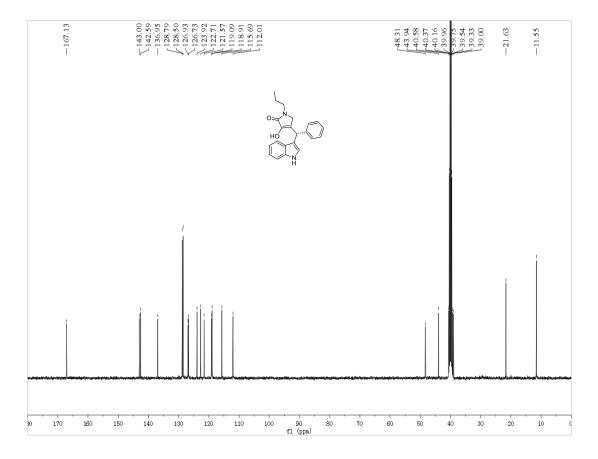


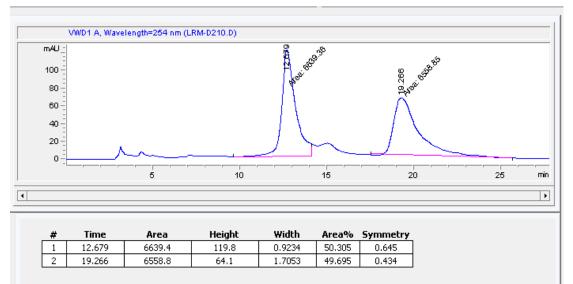


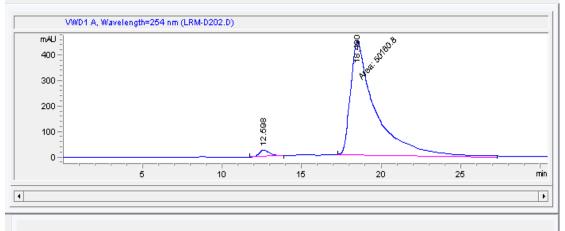


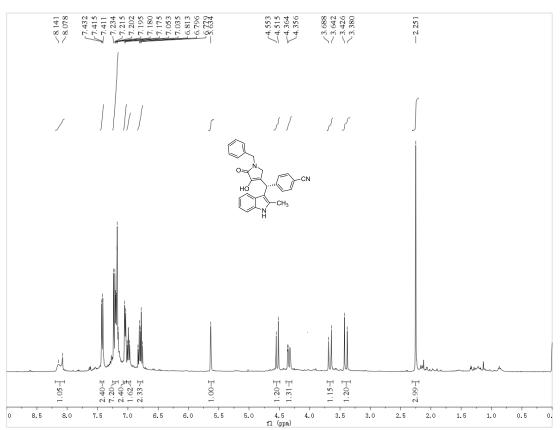
#	ŧ	Time	Area	Height	Width	Area%	Symmetry
	1	9.128	1385.4	32	0.6056	2.820	0.482
2	2	17.371	47738.5	478.3	1.3574	97.180	0.437

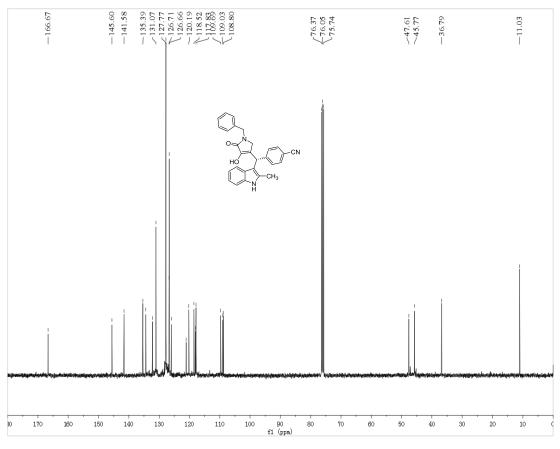


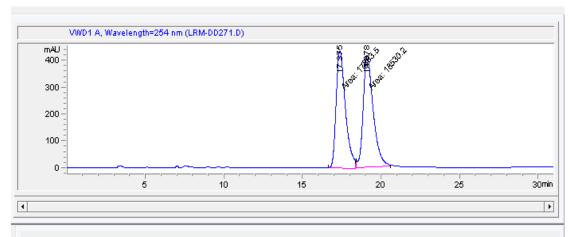



#	Time	Area	Height	Width	Area%	Symmetry
1	9.849	278.4	6.3	0.7395	0.926	0.842
2	16.961	29799.3	320.3	1.2906	99.074	0.608

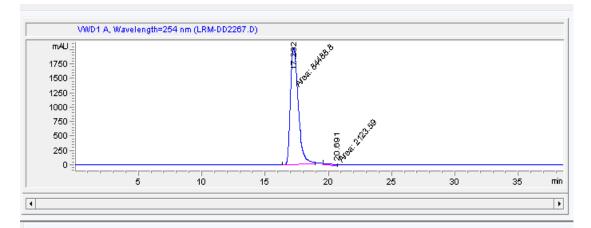

¹H and ¹³C NMR of 6j

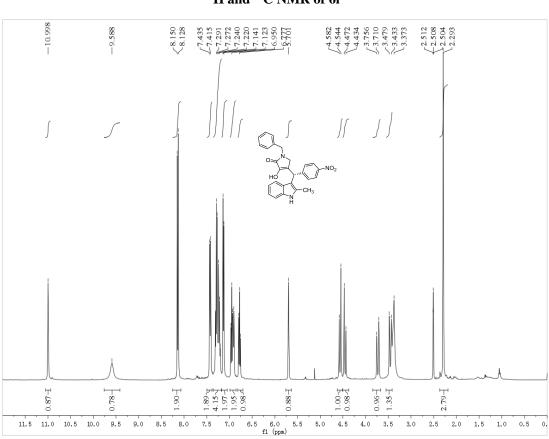


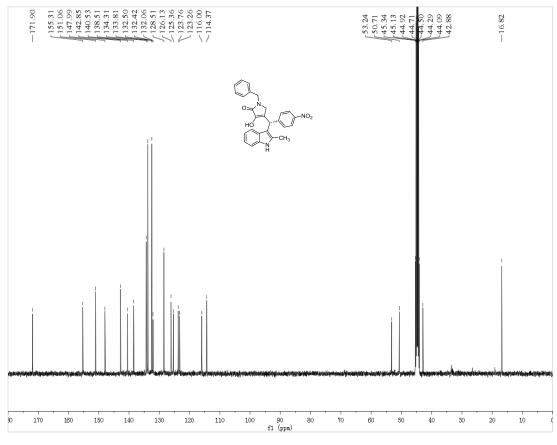



#	Time	Area	Height	Width	Area%	Symmetry
1	12.598	1132	25.9	0.6406	2.207	0.71
2	18.49	50160.8	451.7	1.8507	97.793	0.363

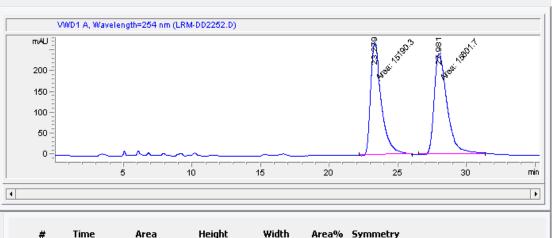
¹H and ¹³C NMR of 6k

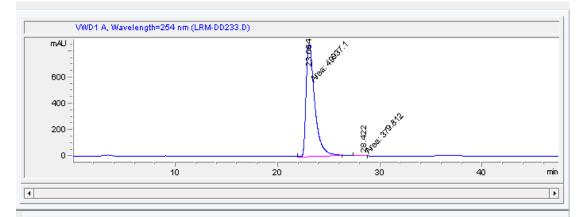




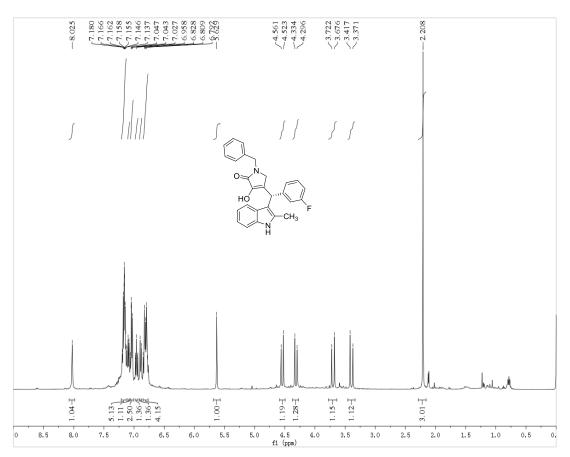


#	Time	Area	Height	Width	Area%	Symmetry
1	17.375	17883.5	438.6	0.6795	49.112	0.642
2	19.078	18530.2	419.9	0.7356	50.888	0.605

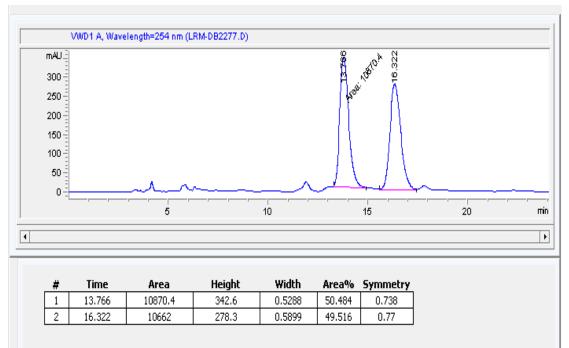

#	Time	Area	Height	Width	Area%	Symmetry
1	17.232	84488.8	2033.2	0.6926	97.548	0.656
2	20.691	2123.6	36.4	0.9714	2.452	0

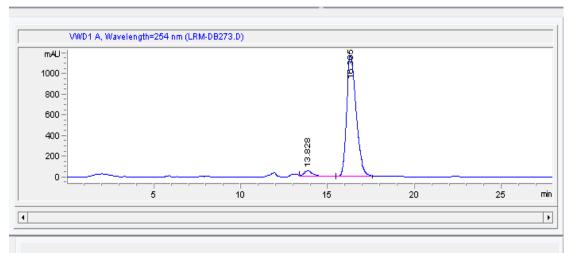


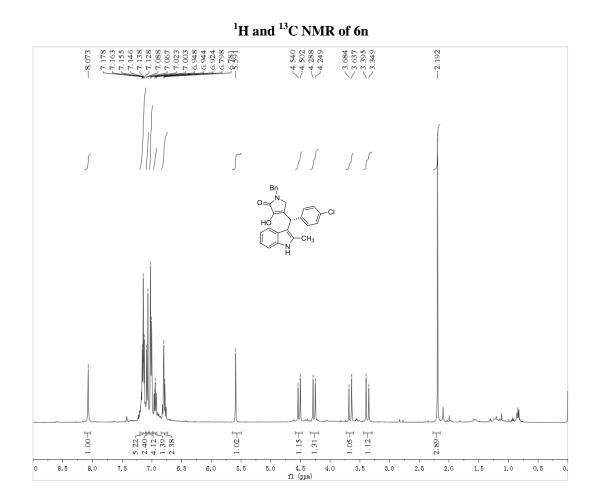
¹H and ¹³C NMR of 6l

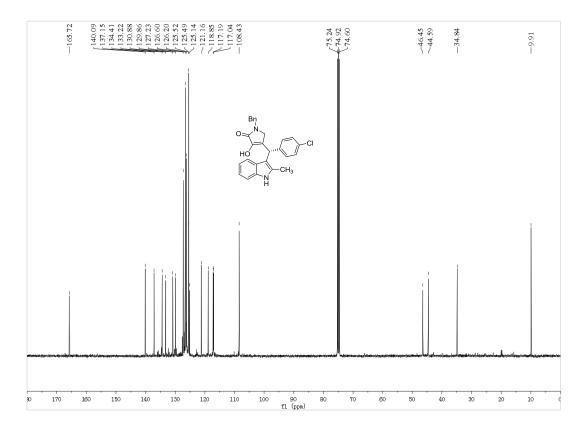


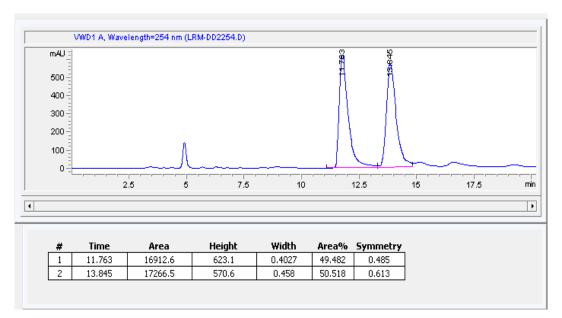

1 23.279					
1 201273	9 15190.3	270	0.9378	49.332	0.565
2 27.981	. 15601.7	241.2	1.0782	50.668	0.572

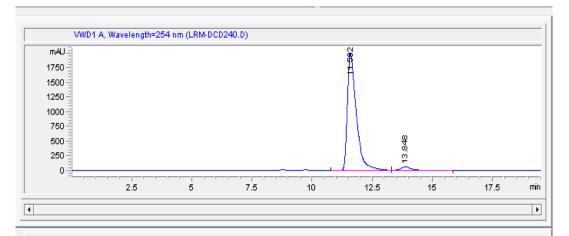

#	Time	Area	Height	Width	Area%	Symmetry
1	23.064	49937.1	853.3	0.9754	99.245	0.553
2	28.422	379.8	4.9	1.2889	0.755	2.706

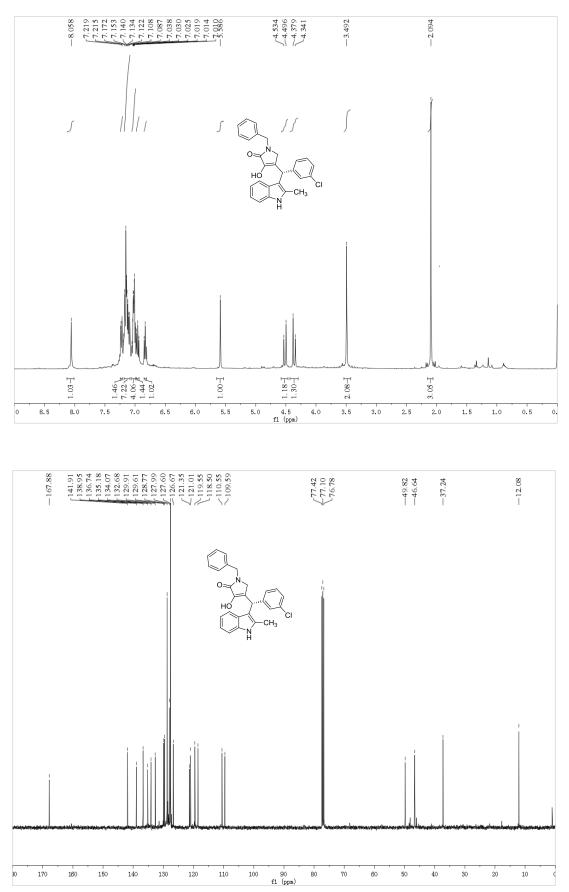

¹H and ¹³C NMR of 6m

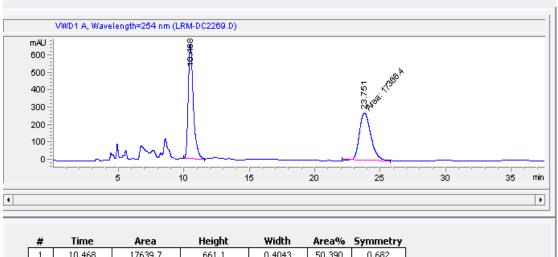






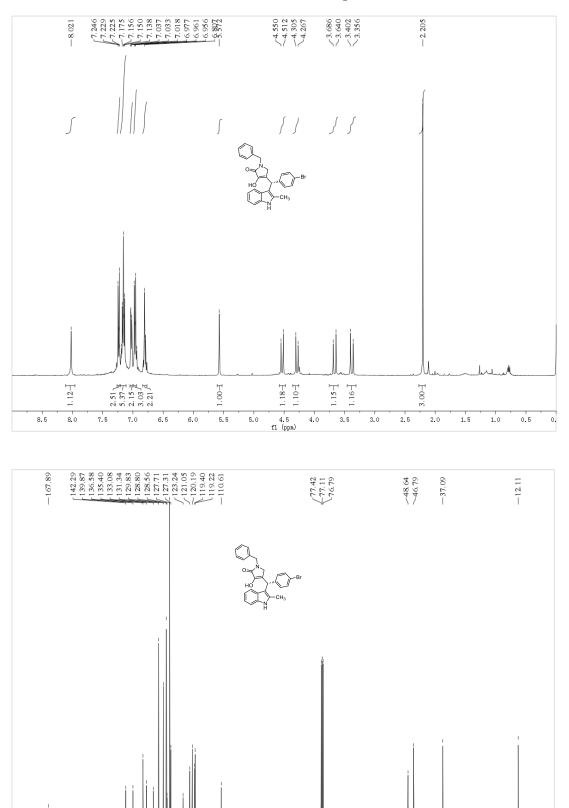

	#	Time	Area	Height	Width	Area%	Symmetry
	1	13.828	2299.2	57.7	0.5772	4.814	0.698
[2	16.305	45462.7	1173.5	0.599	95.186	0.706

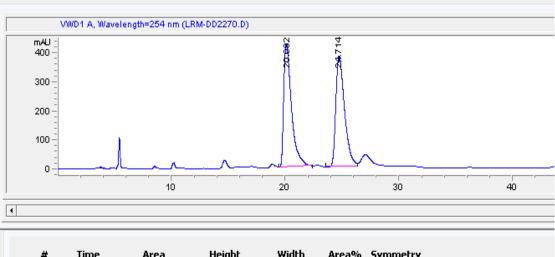


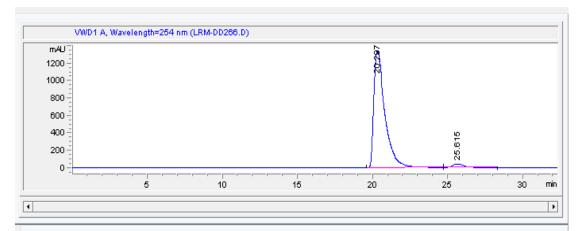


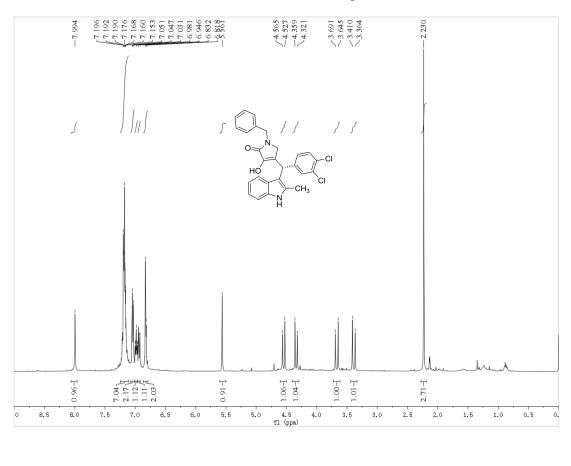
#	Time	Area	Height	Width	Area%	Symmetry
1	11.582	53174	2010.5	0.3976	95.866	0.501
2	13.848	2293.2	62.8	0.5292	4.134	0.62

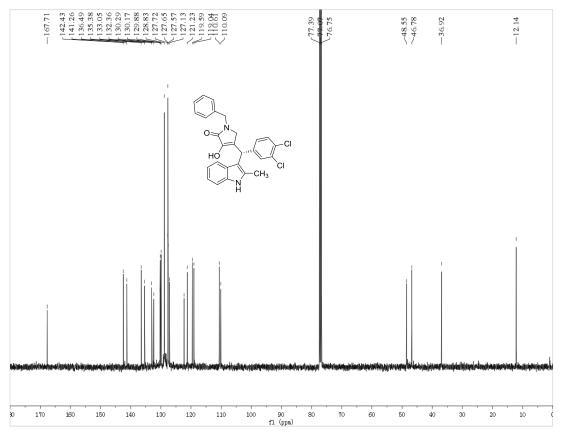

¹H and ¹³C NMR of 60

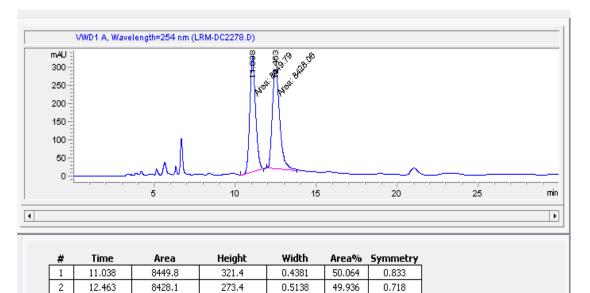


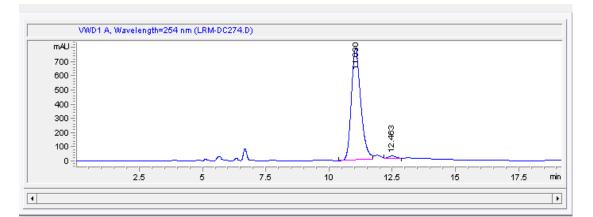

#	Lime	Area	Height	Width	Area‰	Symmetry
1	10.468	17639.7	661.1	0.4043	50.390	0.682
2	23.751	17366.4	274	1.0565	49.610	0.716

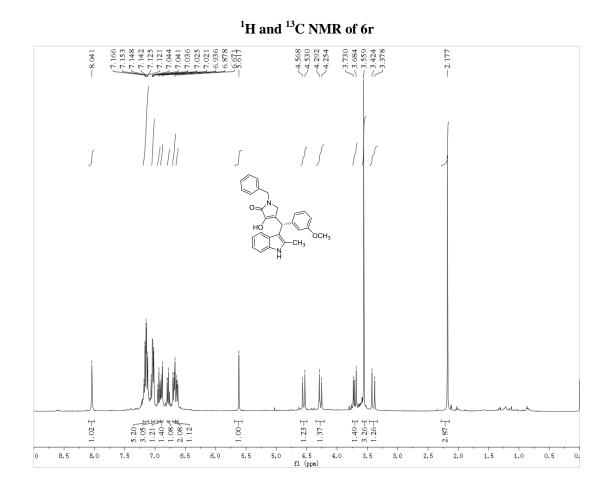

¹H and ¹³C NMR of 6p

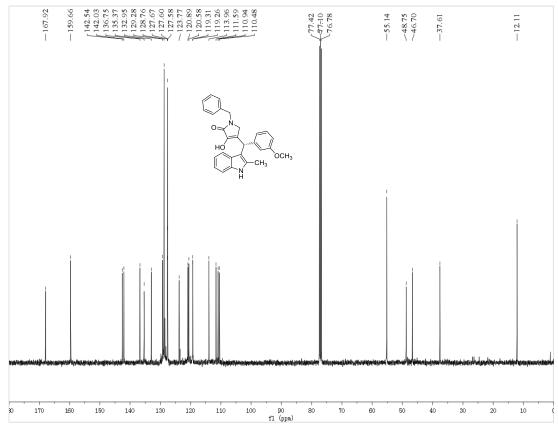


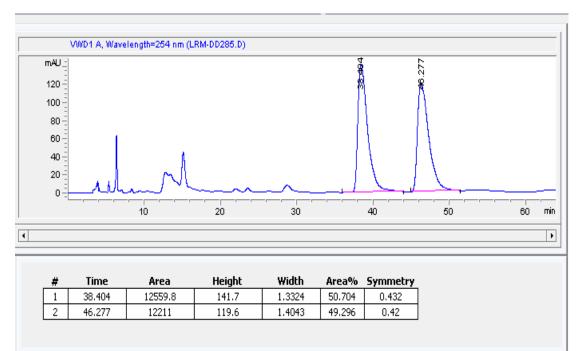

1 2	0.082	20179.8	425.1	0.7128	49.761	0.456
2 2	4.714	20373.5	381.8	0.8245	50.239	0.559


#	Time	Area	Height	Width	Area%	Symmetry
1	20.297	68643.9	1346.8	0.7626	97.034	0.411
2	25.615	2098.2	40.8	0.7804	2.966	0.675

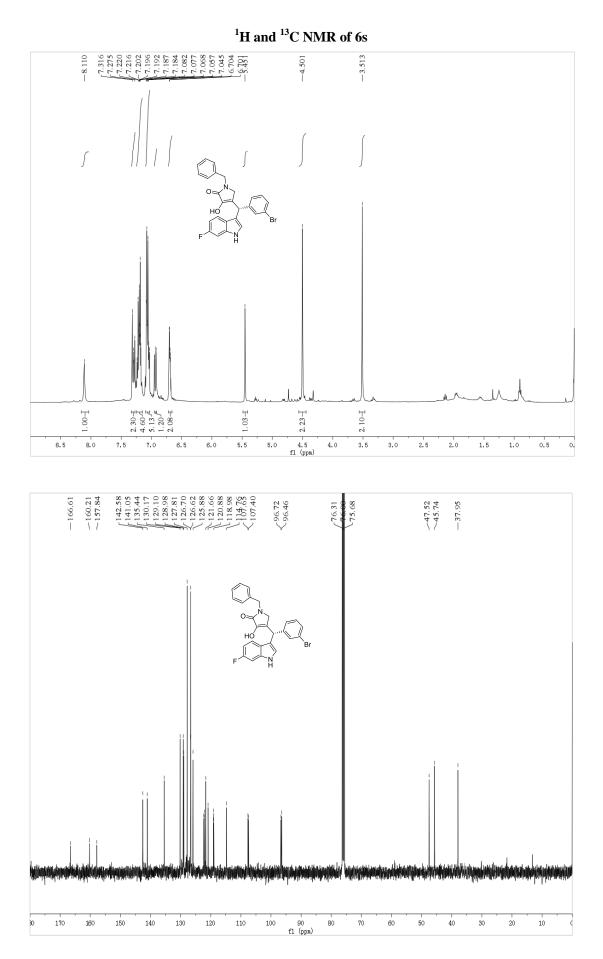

¹H and ¹³C NMR of 6q

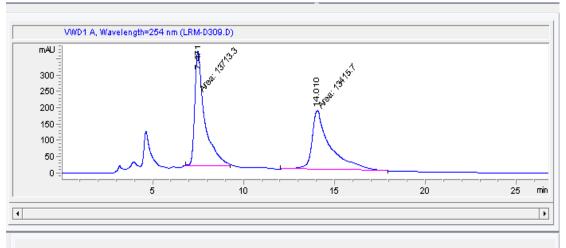




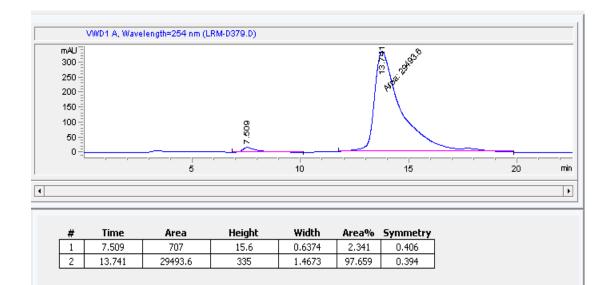


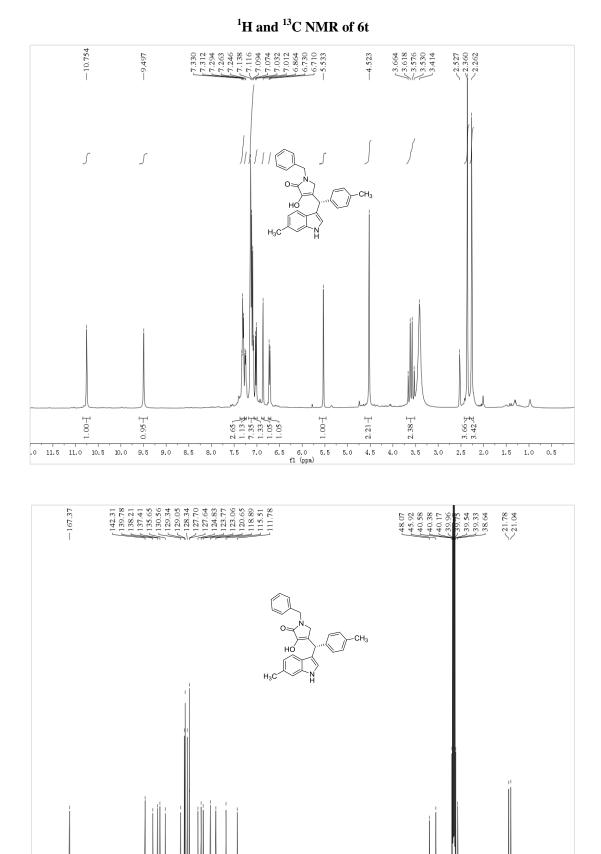

	metry	Area% 9	Width	Height	Area	Time	#
1 11.03 21013 794 0.4098 97.863 0.737	737	97.863	0.4098	794	21013	11.03	1
2 12.463 458.8 19.9 0.3685 2.137 1.037	037	2.137	0.3685	19.9	458.8	12.463	

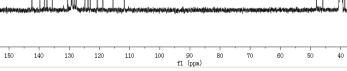


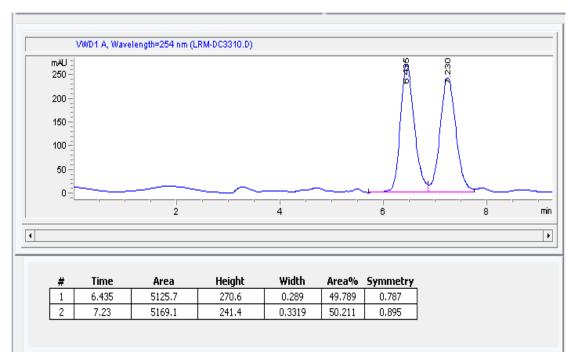


1 38.078 42320.1 486.7 1.4492 94.813 0.385
2 47.278 2315.1 24.8 1.3901 5.187 0.643




S78




#	Time	Area	Height	Width	Area%	Symmetry
1	7.471	13713.3	351.9	0.6494	50.549	0.409
2	14.01	13415.7	182.5	1.225	49.451	0.393

