Supporting Information

Total Synthesis of (+)-ent-Vetiverianine A via Lewis Acid-Mediated

Cyclization

Tomoya Mashiko, Eiji Nagata, Hisaaki Sakate, Shogo Kamo, and Kazuyuki Sugita*

Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Index

1. General	2
2. Experimental Procedures	2
3. ¹ H and ¹³ C NMR spectroscopic data	12
4. References	46

1. General

All reactions were carried out in a round-bottom flask or a test tube fitted with a 3-way glass stopcock under an Ar atmosphere unless otherwise stated. Reagents were purchased from commercial suppliers and used as received unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 F₂₅₄, 0.25 mm). Flash chromatography was performed using silica gel CHROMATOREX PSQ60B (neutral, 60 μ m; Fuji Silysia Chemical LTD.). Melting point (Mp) data were determined using a Yanaco MP apparatus and were uncorrected. Optical rotation was measured on JASCO P-2200. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer. ¹H and ¹³C NMR spectra were recorded on JEOL ECA-600 spectrometers, using CDCl₃ as solvent. Chemical shift values are reported in δ (ppm) relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H and 77.00 ppm for ¹³C). NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, quin: quintet, m: multiplet, br: broad signal), coupling constant, and integration. High-resolution mass spectra (ESI-TOF) were measured on JEOL JMS-T100LP. Analytical chiral HPLC was performed by LC-NetII/ADC system (JASCO, pump: PU-4180; UV detector: MD4017) with CHIRAL ART Cellulose-SB (YMC, 4.6 mm × 250 mm).

2. Experimental Procedures

7-methyl-1,4-dioxaspiro[4.5]dec-7-ene (12)

To a solution of **13** (1.00 g, 8.19 mmol), ethylenediamine (3.3 mL, 49 mmol), and *t*BuOH (2.0 mL, 21 mmol) in THF (28 mL) was added lithium wire (diam. 3.2 mm, 171 mg, 24.6 mmol) at 0 °C. The mixture was stirred for 55 min. at 0 °C. The reaction mixture was quenched by the carefully addition of sat. NH₄Cl aq. and diluted with CH₂Cl₂. After the layers were separated, the aqueous layer was extracted with CH₂Cl₂. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give crude **S1**, which was used next reaction without further purification.

To a solution of crude **S1** in ethylene glycol (8.5 mL) was added formic acid (ca. 90%, 1.0 mL, 24 mmol) at 0 °C. The mixture was stirred for 4 h at 0 °C. The reaction mixture was quenched by the addition of sat. NaHCO₃ aq. and diluted with CH₂Cl₂. After the layers were separated, the aqueous layer was extracted with CH₂Cl₂. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (pentane/Et₂O = 29/1 to 9/1) to give **12** (1.02 g, 6.61 mmol, 81%) as a colorless oil.

IR (neat) $v_{max} = 2952, 2926, 2881, 2855, 1366, 1173, 1104, 1065, 1016, 861 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) <math>\delta$ 5.43-5.41 (m, 1H), 4.01-3.96 (m, 4H), 2.22-2.19 (m, 2H), 2.18 (brs, 2H), 1.70 (t, J = 6.0 Hz, 2H), 1.68 (d, J = 1.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 131.7, 120.2, 108.5, 64.4 (2C), 40.3, 30.6, 24.1, 23.4; HRMS (ESI) m/z calcd. for C₉H₁₅O₂ ([M+H]⁺) 155.1067, found 155.066.

(1S,6R)-1-methyl-7-oxaspiro(bicyclo[4.1.0]heptane-3,2'-[1,3]dioxolane) (15)

To a solution of **12** (7.00 g, 45.4 mmol), Shi catalyst (**14**, 2.35 g, 9.10 mmol), and K₂CO₃ (22.0 g, 159 mmol) in MeCN (75 mL) and 4×10^{-4} M Na₂EDTA aq. (80 mL) was added H₂O₂ (18.7 mL, 182 mmol) at 0 °C. The mixture was stirred for 13 h at 0 °C. The reaction mixture was diluted with H₂O and quenched by the addition of sat. Na₂S₂O₃ aq. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 9/1 to 3/1) to give **15** (6.90 g, 40.5 mmol, 89%) as a colorless oil.

 $[\alpha]_D^{22.5}$ –11.4 (*c* = 0.66, CHCl₃); IR (neat) v_{max} = 2962, 2925, 2882, 1434, 1369, 1257, 1163, 1111, 1062, 1039, 1010, 950, 842 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.93-3.82 (m, 4H), 2.98 (s, 1H), 2.08 (d, *J* = 15.0 Hz, 2H), 2.03-1.97 (m, 1H), 1.84 (dd, *J* = 15.0, 1.8 Hz, 1H), 1.57 (td, *J* = 12.0, 5.4 Hz, 1H), 1.40-1.36 (m, 1H), 1.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 107.2, 64.35, 64.0, 59.1, 57.2, 39.6, 26.6, 24.2, 22.6; HRMS (ESI) *m/z* calcd. for C₉H₁₄O₃Na ([M+Na]⁺) 193.0835, found 193.0823.

(R)-4-hydroxy-3-methylcyclohex-2-en-1-one (16)

A solution of **15** (6.10 g, 35.8 mmol) in AcOH (180 mL) and H₂O (360 mL) was stirred for 24 h at 70 °C. The reaction mixture was concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 1/1 to 1/4) to give **16** (3.70 g, 29.3 mmol, 82%) as pale yellow oil.

 $[\alpha]_D^{22.7}$ +20.1 (*c* = 0.89, CHCl₃), lit. for (-)-**16**: $[\alpha]_D^{25}$ -32.2 (*c* 1.00, CHCl₃)^{S1}; IR (neat) v_{max} = 3390, 2953, 2928, 2872, 1661, 1441, 1377, 1325, 1258, 1201, 1080, 1060, 968, 950, 885 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (s, 1H), 4.39 (q, *J* = 6.0 Hz, 1H), 2.58 (dt, *J* = 16.2, 5.4 Hz, 1H), 2.39-2.34 (m, 1H), 2.32-2.28 (m, 1H), 2.06 (s, 3H), 2.05-21.99 (m, 1H), 1.86 (brd, *J* = 6.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 199.2, 163.9, 126.7, 68.5, 34.8, 31.9, 20.6; HRMS (ESI) *m/z* calcd. for C₇H₁₀O₂Na ([M+Na]⁺) 149.0573, found 149.0577.

(R)-4-((tert-butyldiphenylsilyl)oxy)-3-methylcyclohex-2-en-1-one (S2)

To a solution of 16 (20.0 mg, 159 µmol) and imidazole (64.8 mg, 952 µmol) in DMF (320 µL) was added

TBDPSCl (123.0 mg, 448 μ mol) at rt. The mixture was stirred for 2 h at 30 °C. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 19/1 to 5/1) to give **S2** (57.5 mg, 158 μ mol, quant.) as a colorless oil.

[α]_D^{22.7} –2.8 (c = 0.34, CHCl₃), lit. for (+)-**S2**: [α]_D²⁵ +8.7 (c = 2.05, CHCl₃)^{S2}; IR (neat) v_{max} = 2956, 2931, 2858, 1675, 1428, 1112, 704 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (dd, J = 7.8, 1.2 Hz, 2H), 7.69 (dd, J = 7.8, 1.2 Hz, 2H), 7.48-7.45 (m, 2H), 7.43-7.38 (m, 4H), 5.80 (s, 1H), 4.35-4.33 (m, 1H), 2.50 (ddd, J = 17.4, 6.6, 4.8 Hz, 1H), 2.12 (ddd, J = 17.4, 10.2, 4.8 Hz, 1H), 2.03-1.91 (m, 2H), 1.94 (s, 3H), 1.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 198.8, 163.7, 135.9 (4C), 133.6, 132.9, 130.0, 129.9, 127.8 (2C), 127.6 (2C), 126.7, 70.5, 34.7, 32.2, 26.9 (3C), 21.5, 19.4; HRMS (ESI) *m/z* calcd. for C₂₃H₂₉SiO₂ ([M+H]⁺) 365.1931, found 365.1918.

The enantiomeric excess of (–)-**S2** was determined by chiral HPLC analysis [CHIRAL ART Cellulose-SB ($4.6 \times 250 \text{ mm}$), hexane/2-propanol = 97.5/2.5 v/v, 0.5 mL/min, UV 254 nm, RT, t_{R1} = 12.1 min (80.6%), t_{R2} = 12.6 min (19.4%)] to be 61% ee.

Racemic S2 was preparade from compound 13 *via* epoxidation using *m*CPBA, hydrolysis of acetal and subsequent epoxide opening, and TBDPS protection of the resulting secondary alcohol.

Peak Information

l	#	tR [min]	Area [µV·sec]	Area%	Height%	Symmetry Factor
l	1	12.390	23056099	49.944	49.671	N/A
[2	12.900	23107743	50.056	50.329	N/A

(3R,4R)-3-(but-3-en-1-yl)-4-((tert-butyldiphenylsilyl)oxy)-3-methylcyclohexan-1-one (18)

To a suspension of CuBr•SMe₂ (25.4 mg, 124 µmol) in THF (600 µL) was added 3-buten-1-ylmagnesium bromide (17, 0.7 M in THF, prepared from 4-bromo-1-butene and Mg powder in THF, 350 µL, 245 µmol) at -78 °C and the mixture was stirred for 30 min at the same temperature. To the solution was added BF₃•OEt₂ (34 µL, 291 µmol) at -78 °C. After 10 min., to the mixture was added a solution of S2 (30.0 mg, 82.3 µmol) in THF (200 µL) at the same temperature. After 30 min, the solution was allowed to warm to -60 °C and stirred for further 3.5 h. the reaction mixture was quenched by the addition of 1 M HCl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 4/1) to give 18 (27.0 mg, 64.2 µmol, 78%, dr = 4.9:1) as a colorless oil.

 $[\alpha]_D^{22.9}$ -3.1 (*c* = 1.35, CHCl₃); IR (neat) v_{max} = 2960, 2932, 2857, 1719, 1427, 1111, 1086, 998, 822. 741, 704 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.73-7.67 (m, 4H), 7.48-7.37 (m, 6H), 5.75-5.67 (m, 1H), 4.95-4.89 (m, 2H), 3.84 (q, *J* = 3.6 Hz, 0.83H), 3.77-3.76 (m, 0.17H), 2.65-2.36 (m, 2H), 2.10-1.64 (m, 6H), 1.44-1.23 (m, 2H), 1.11 (s, 1.6H), 1.10 (s, 7.4H), 0.99 (s, 2.5H), 0.81 (s, 0.5H); ¹³C NMR (150 MHz, CDCl₃) δ 211.7, 211.3, 138.8, 138.5,

136.1 (2C), 136.0 (2C), 135.9 (4C), 134.4, 134.3, 133.3, 133.2, 129.9 (2C), 129.8, 129.7,127.7 (4C), 127.6 (2C), 127.5 (2C), 114.5, 114.2, 74.4, 74.0, 49.2, 49.1, 43.0, 38.5, 37.2, 36.7, 36.1, 29.7, 29.2, 29.0, 27.3 (3C), 27.2, 27.1 (3C), 23.0, 20.9 (2C), 19.59, 19.56; HRMS (ESI) *m/z* calcd. for C₂₇H₃₆SiO₂Na ([M+Na]⁺) 443.2377, found 443.2396.

3-((1*R*,2*R*)-2-((*tert*-butyldiphenylsilyl)oxy)-1-methyl-5-oxocyclohexyl)propanal (19)

A solution of **18** (1.76 g, 4.18 mmol, dr = 4.9:1) in MeOH (209 mL) was added cooled to -78 °C, and ozone was passed through the solution for 15 min. After the mixture was purged with Ar, PPh₃ (7.68 g, 29.3 mmol) was added. The solution was allowed to warm to rt and stirred for further 20 h, and then concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 7/3) to give **19** (1.78 g, 4.21 mmol, quant., dr = 4.9:1) as a colorless oil.

[α]_D^{22.8} -4.7 (c = 0.34, CHCl₃); IR (neat) v_{max} = 2959, 2933, 2892, 2858, 1723, 1713, 1427, 1111, 1086, 822, 741, 704 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.65 (s, 0.81H), 9.57 (s, 0.18H), 7.73 (d, J = 6.6 Hz, 2H), 7.68 (d, J = 6.6 Hz, 2H), 7.47-7.37 (m, 6H), 3.80 (dd, J = 7.2, 4.2 Hz, 0.83H), 3.76 (dd, J = 5.4, 3.0 Hz, 0.17H), 2.65-2.33 (m, 2H), 2.24-1.75 (m, 6H), 1.62-1.57 (m, 1H), 1.11 (s, 1.6H), 1.10 (s, 7.4H), 0.98 (s, 2.6H), 0.77 (s, 0.4H); ¹³C NMR (150 MHz, CDCl₃) δ 210.55, 210.45, 201.8, 201.5, 136.1 (2C), 136.0 (4C), 135.9 (2C), 134.22, 134.15, 133.1, 133.0, 130.0, 129.9, 129.8, 129.8, 127.8 (4C), 127.6 (2C), 127.6 (2C), 74.14, 74.09, 49.1, 48.8, 42.6, 42.5, 38.0, 37.4, 37.3, 36.6, 30.9, 29.4, 29.3, 29.0, 27.2 (3C), 27.1 (3C), 22.8, 20.32, 20.26, 19.5; HRMS (ESI) *m/z* calcd. for C₂₆H₃₅SiO₃ ([M+H]⁺) 423.2350, found 423.2364.

(7R,7aR)-7-((tert-butyldiphenylsilyl)oxy)-7a-methyl-1,2,5,6,7,7a-hexahydro-4H-inden-4-one (20)

To a solution of **19** (2.70 g, 6.39 mmol, dr = 4.9:1) in DMF (32 mL) was added pyrrolidine (1.3 mL, 15.7 mmol) and AcOH (457 μ L, 7.99 mmol) at 0 °C. The mixture was stirred for 2 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 1/1) to give **20** (1.90 g, 4.70 mmol, 73%) as a colorless oil.

 $[\alpha]_D^{22.7}$ +11.0 (*c* = 0.15, CHCl₃), lit. $[\alpha]_D^{25}$ -22.2 (*c* = 0.92, CHCl₃)^{S2}; IR (neat) v_{max} = 2957, 2931, 2892, 2857, 1686, 1427, 1262, 1111, 1092, 1069, 822, 704 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 2H), 7.46-7.38 (m, 6H), 6.43-6.42 (m, 1H), 3.77 (dd, *J* = 10.8, 4.2 Hz, 1H), 2.48-2.42 (m, 1H), 2.34-2.27 (m, 2H), 2.09-1.97 (m, 3H), 1.75-1.68 (m, 2H), 1.19 (s, 3H), 1.08 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ

198.7, 147.7, 138.3, 135.9 (2C), 135.8(2C), 134.5, 133.4, 129.8, 129.6, 127.7 (2C), 127.5 (2C), 78.2, 52.4, 40.6, 38.1, 30.0, 29.2, 27.0 (3C), 19.4, 17.6; HRMS (ESI) *m/z* calcd. for C₂₆H₃₃SiO₂ ([M+H]⁺) 405.2244, found 405.2259.

(3*R*,3a*R*,7*R*,7a*R*)-7-((*tert*-butyldiphenylsilyl)oxy)-7a-methyl-3-(2-methylallyl)octahydro-4*H*-inden-4-one (21) and (3*R*,3a*S*,7*R*,7a*R*)-7-((*tert*-butyldiphenylsilyl)oxy)-7a-methyl-3-(2-methylallyl)octahydro-4*H*-inden-4-one (22)

To a solution of **7** (1.41 g, 4.08 mmol) in THF (5 mL) was added *n*BuLi (2.6 M in hexane, 1.4 mL, 3.64 mmol) at -78 °C. The mixture was stirred for 25 min at the same temperature. Then, this mixture was added to a stirred solution of LiCl (172.9 mg, 4.08 mmol) and recrystallized CuI (776.6 mg, 4.08 mmol) in THF (10 mL) at -78 °C. The solution wasstirred for 30 min at -60 °C. After the solution was cooled to -78 °C, to the solution was added TMSBr (962 µL, 7.41 mmol) and a solution of **20** (300 mg, 741 µmol) in THF (4.0 mL). The mixture was stirred for 4 h at -78 °C. The reaction mixture was quenched by the addition of NH₄Cl/ NH₃OH aq. (pH ~8) and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a mixture of crude **S3** and TMS-enol ether. The mixture was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The combined organic solution was purified by flash column chromatography (hexane/EtOAc = 4/1) to give **S3** (239 mg, 519 µmol, 70%, **21:22** = 1:5.3) as a yellow oil.

To a solution of **S3** (280 mg, 610 μ mol, **21**:**22** = 1:5.3) in *t*BuOH (11.7 mL) was added KO*t*Bu (85.3 mg, 760 μ mol) at rt. The mixture was stirred for 18 h at rt. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/Et₂O = 4/1) to give **21** (228 mg, 495 μ mol, 81%) and **22** (33 mg, 72 μ mol, 12%) as a colorless oil.

21: $[\alpha]_D^{24.0} + 32.9$ (*c* = 0.06, CHCl₃), lit. for (-)-**21**: $[\alpha]_D^{25} - 37.1$ (*c* = 1.27, CHCl₃)^{S2}; IR (neat) $v_{max} = 2953$, 2892, 2858, 1720, 1112, 886, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (dd, *J* = 7.2, 1.2 Hz, 2H), 7.67 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.47-7.37 (m, 6H), 4.64 (s, 1H), 4.59 (s, 1H), 3.88 (dd, *J* = 10.8, 5.4 Hz, 1H), 2.50-2.43 (m, 1H), 2.16 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, *J* = 13.8, 4.8 Hz, 1H), 2.11-2.02 (m, 2H), 1.93-1.78 (m, 4H), 1.75-1.71 (m, 1H), 1.71 (s, 3H), 1.67 (dd, J = 13.8), 1.67 (dd,

10.8 Hz, 1H), 1.32-1.25 (m, 1H), 1.23-1.16 (m, 1H), 1.06 (s, 9H), 0.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 209.7, 145.3, 136.0 (2C), 135.9 (2C), 134.5, 133.6, 129.8, 129.6, 127.6 (2C), 127.5 (2C), 110.6, 78.8. 63.0, 52.4, 44.5, 39.5, 38.4, 32.7, 32.0, 27.1, 27.0 (3C), 22.3, 19.4, 13.3; HRMS (ESI) *m*/*z* calcd. for C₃₀H₄₁SiO₂ ([M+H]⁺) 461.2870, found 461.2862.

22: $[\alpha]_D^{24.0}$ +43.8 (*c* = 0.12, CHCl₃) {lit. for (-)-**22**: $[\alpha]_D^{25}$ -73.0 (*c* = 1.79, CHCl₃)^{S2}; IR (neat) v_{max} = 2952, 2895, 2858, 1702, 1427, 1111, 1092, 887, 822, 741, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (dd, *J* = 8.4, 1.8 Hz, 2H), 7.66 (dd, *J* = 8.4, 1.8 Hz, 2H), 7.46-7.37 (m, 6H), 4.64 (s, 1H), 4.47 (s, 1H), 3.75 (dd, *J* = 9.6, 3.6 Hz, 1H), 2.50 (dd, *J* = 9.6, 2.4 Hz, 1H), 2.48-2.42 (m, 1H), 2.35-2.31 (m, 1H), 1.92-1.80 (m, 5H), 1.69-1.63 (m, 1H), 1.59 (s, 3H, overlap with H₂O), 1.43 (t, *J* = 13.2 Hz, 1H), 1.36-1.31 (m, 1H), 1.18 (s, 3H), 1.34-1.08 (m, 1H), 1.07 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 213.5, 144.0, 136.04 (2C), 135.95 (2C), 134.4, 133.3, 129.8, 129.7, 127.7 (2C), 127.5 (2C), 111.5, 74.1, 62.8, 49.5, 40.7, 40.4, 39.3, 37.9, 30.2, 27.9, 27.0 (3C), 23.5, 21.9, 19.5; HRMS (ESI) *m*/*z* calcd. for C₃₀H₄₁SiO₂ ([M+H]⁺) 461.2870, found 461.2880.

(3*R*,3a*R*,7*R*,7a*R*)-7-((*tert*-butyldiphenylsilyl)oxy)-3-(2-hydroxy-2-methylpropyl)-7a-methyloctahydro-4*H*-inden-4-one (23)

To a solution of **21** (200 mg, 434 µmol) in EtOH (8.6 mL) was added Mn(dpm)₃ (52.5 mg, 86.8 µmol) at 0 °C. After the mixture was stirred for 20 min at 0 °C, phenylsilane (80 µL, 651 µmol) was added and the solution was stirred for further 40 min. To the reaction mixture was added PPh₃ (570 mg, 2.17 mmol) and the mixture was stirred for further 30 min at rt. The reaction mixture was concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 5/1 to 1/1) to give **23** (186.2 mg, 389 µmol, 90%) as a colorless oil. $[\alpha]_D^{22.9} + 19.2$ (c = 0.14, CHCl₃); IR (neat) $v_{max} = 3425$, 2963, 2932, 2892, 2859, 1712, 1428, 1112, 1046, 822, 741, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (dd, J = 7.8, 1.2 Hz, 2H), 7.67 (dd, J = 7.2, 1.2 Hz, 2H), 7.47-7.37 (m, 6H), 3.88 (dd, J = 10.2, 4.8 Hz, 1H), 2.45-2.39 (m, 1H), 2.24 (brs, 1H), 2.12 (ddd, J = 15.6, 7.2, 1.2 Hz, 1H), 2.09-2.02 (m, 2H), 1.98 (d, J = 11.4 Hz, 1H), 1.95-1.87 (m, 1H), 1.85-1.80 (m,1H), 1.76-1.72 (m, 1H), 1.57 (dd, J = 14.4, 4.2 Hz, 1H), 1.37-1.24 (m, 3H), 1.21 (s, 3H), 1.17 (s, 3H), 1.07 (s, 9H), 0.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 211.5, 136.0 (2C), 135.9 (2C), 134.4, 133.5, 129.8, 129.6, 127.6 (2C), 127.5 (2C), 78.7, 70.7, 63.6, 52.1, 50.0, 39.6, 38.6, 31.9, 30.6, 30.4, 30.0, 29.2, 27.0 (3C), 19.4, 13.3; HRMS (ESI) *m/z* calcd. for C₃₀H₄₂SiO₃Na ([M+Na]⁺) 501.2795, found 501.2796.

tert-butyldiphenyl(((3a*R*,3a¹*R*,5a*R*,6*R*,8a*R*)-2,2,5a,8a-tetramethyldecahydro-2*H*-cyclopenta[*de*]chromen-6-yl)oxy)silane (26) and *tert*-butyldiphenyl(((3a*R*,3a¹*S*,5a*R*,6*R*,8a*R*)-2,2,5a,8a-tetramethyldecahydro-2*H*-cyclopenta[*de*]chromen-6-yl)oxy)silane (27)

To a solution of methyltriphenylphosphonium bromide (Ph₃PMeBr, 112 mg, 313 μ mol) in toluene (1.0 mL) was added KO*t*Bu (28.1 mg, 250 μ mol) at 50 °C. The mixture was slowly warmed to reflux over 1 h, stirred for further 1 h, and then cooled to 50 °C. To the mixture was added a solution of **23** (15.0 mg, 31.3 μ mol) in toluene (500 μ mol) and stirred for further 30 min at 50 °C. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 19/1 to 4/1) to give **24** (14.0 mg, 29.4 μ mol, 94%, inseparable mixture with C5 epimer **25**, **24**:**25** = 2.5:1) as a colorless oil.

¹H NMR (600 MHz, CDCl₃, **24**:**25** = 2.5:1) δ 7.73-7.65 (m, 10H for **24**, 4H for **25**), 7.44-7.35 (m, 15H for **24**, 6H for **25**), 4.76 (br m, 2.5H for **24**, 1H for **25**), 4.58 (br t, *J* = 1.8 Hz, 1H for **25**), 4.52 (br d, *J* = 1.2 Hz, 2.5H for **24**), 3.49 (dd, *J* = 10.8, 4.8 Hz, 2.5H for **24**), 3.41 (dd, *J* = 11.4, 4.8 Hz, 1H for **25**), 2.42 (d, *J* = 11.4 Hz, 1H for **25**), 2.19-1.96 (m, 7.5H for **24**, 3H for **25**), 1.76-1.67 (m, 5H for **24**, 5H for **25**), 1.57-1.49 (m, overlap with H₂O, 5H for **24**, 3H for **25**), 1.42 (d, *J* = 11.4 Hz, 1H for **25**), 1.37-1.14 (m, 15H for **24**), 1.22 (s, 7.5H for **24**), 1.21 (s, 7.5H for **24**), 1.063 (s, 3H for **25**), 1.057 (s, 9H for **25**), 1.05 (s, 6H for **25**), 1.04 (s, 22.5H for **24**), 0.78 (s, 7.5H for **24**); ¹³C NMR for **25** (150 MHz, CDCl₃) δ 146.8, 136.2 (2C), 136.02 (2C), 135.0, 133.8, 129.6, 127.6 (2C), 127.2 (2C), 115.3, 113.3, 72.9, 71.4, 58.4, 48.29, 47.85, 37.8, 33.9, 32.64, 32.59, 30.38, 29.68, 29.66, 27.1 (3C), 19.44, 19.40.

To a solution of **24/25** (17.0 mg, 35.7 µmol, **24/25** = 2.5:1) in DCM (700 µL) was added BF₃•OEt₂ (8.9 µL, 71 µmol) at -78 °C. After the mixture was stirred for 30 min at -40 °C, solution was warmed to -20 °C and stirred for further 6 h. The reaction mixture was quenched by the addition of sat. NaHCO₃ aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/Et₂O = 39/1 to 19/1) to give **26** (12.1 mg, 25.4 µmol, 71%) and **27** (4.7 mg, 9.9 µmol, 28%) as a colorless oil. **26**: $[\alpha]_D^{22.9}$ +8.1 (*c* = 0.65, CHCl₃); IR (neat) v_{max} = 2931, 2858, 1113, 1082, 974, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.68-7.65 (m, 4H), 7.44-7.40 (m, 2H), 7.38-7.35 (m, 4H), 3.40 (dd, *J* = 11.4, 4.8 Hz, 1H), 2.00-1.84 (m, 3H), 1.62-1.49 (m, 5H, overlap with H₂O), 1.222 (s, 3H), 1.218 (s, 3H), 1.17-1.06 (m, 3H), 1.12 (s, 3H), 1.05 (s, 9H), 0.95 (s, 3H), 0.68 (d, *J* = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 136.0 (2C), 135.9 (2C), 135.0, 134.0, 129.6, 129.4, 127.5 (2C), 127.3 (2C), 81.8, 73.9, 73.6, 58.7, 47.0, 45.8, 41.1, 40.8, 33.6, 31.1, 28.8, 28.6, 28.0, 27.0 (3C), 22.7, 19.4, 14.9; HRMS (ESI) *m/z* calcd. for C₃₁H₄₅SiO₂ ([M+H]⁺) 477.3183, found 477.3193. **27**: $[\alpha]_D^{23.0}$ +7.5 (*c* = 0.65, CHCl₃); IR (neat) v_{max} = 2959, 2931, 2857, 1261, 1111, 1080, 821, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.67 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.43-7.34 (m, 6H), 3.68 (dd, *J* = 10.2, 5.4 Hz, 1H), 2.29-2.22 (m, 1H), 1.83-1.79 (m, 1H), 1.66-1.52 (m, 5H), 1.47-1.43 (m, 1H), 1.33-1.27 (m, 2H), 1.23-1.19 (m, 1H), 1.21 (s, 3H), 1.20 (s, 3H), 1.08 (s, 3H), 1.06 (s, 9H), 1.03-0.97 (m, 1H), 0.90 (s, 3H) ; ¹³C NMR (150 MHz, CDCl₃) δ 136.03 (2C), 136.00 (2C), 135.0, 134.2, 129.5, 129.3, 127.5 (2C), 127.3 (2C), 75.1, 72.7, 70.6, 53.3, 46.5, 38.23, 38.16, 37.4, 33.1, 32.8, 32.0, 30.1, 28.8, 28.1, 27.1 (3C), 23.3, 19.5; HRMS (ESI) *m/z* calcd. for C₃₁H₄₅SiO₂ ([M+H]⁺) 477.3183, found 477.3201.

Attempted synthesis of pure 24.

1-((1*R*,3a*R*,4*R*,7a*S*)-4-((*tert*-butyldiphenylsilyl)oxy)-3a-methyl-7-methyleneoctahydro-1*H*-inden-1-yl)-2methylpropan-2-ol (24)

To a solution of Mg powder (30.9 mg, 1.27 mmol) in DCM (1.6 mL) and THF (1.9 mL) was added TiCl₄ (79 μ L, 318 μ mol) at 0 °C. The mixture was stirred for 30 min at the same temperature. To the mixture was added **23** (38 mg, 79 μ mol) in DCM (300 μ L) at 0 °C. The solution was stirred for 4 h at rt. The reaction mixture was quenched by the addition of H₂O and diluted with DCM. The aqueous layer was extracted with DCM. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 4/1) to give **24** (8.3 mg, 17 μ mol, 22%) as a colorless oil.

 $[\alpha]_D^{22.9}$ +25.7 (*c* = 0.40, CHCl₃); IR (neat) v_{max} = 2953, 2932, 2858, 1112, 1090, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (dd, *J* = 7.8, 1.2 Hz, 2H), 7.66 (dd, *J* = 7.2, 1.2 Hz, 2H), 7.44-7.35 (m, 6H), 4.76 (d, *J* = 1.8 Hz, 1H), 4.52 (d, *J* = 1.2 Hz, 1H), 3.50 (dd, *J* = 10.8, 4.8 Hz, 1H), 2.17-2.01 (m, 3H), 1.77-1.68 (m, 2H), 1.58-1.50 (m, 2H), 1.37-1.14 (m, 6H), 1.220 (s, 3H), 1.215 (s, 3H), 1.04 (s, 9H), 0.78 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.4, 136.0 (2C), 135.9 (2C), 135.1, 134.1, 129.5, 129.3, 127.5 (2C), 127.3 (2C), 106.0, 80.6, 71.6, 57.6, 49.5, 48.3, 38.3, 34.6, 32.6, 32.5, 30.4, 30.1, 29.8, 27.0 (3C), 19.5, 12.6; HRMS (ESI) *m/z* calcd. for C₃₁H₄₅SiO₂ ([M+H]⁺) 477.3183, found 477.3195.

(+)-ent-vetiverianine A (4)

To a solution of **26** (24.0 mg, 50.3 μ mol) in THF (1.0 mL) was added TBAF (1.0 M in THF, 500 μ L, 500 μ mol) at rt. The solution was stirred for 8 h at 60 °C. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column

chromatography (hexane/EtOAc = 2/1) to give (+)-*ent*-vetiverianine A (**4**, 12.0 mg, 50.3 µmol, quant.) as a colorless solid.

 $[\alpha]_D^{26.2}$ +6.6 (*c* = 0.40, CHCl₃), lit. $[\alpha]_D^{25}$ -17 (*c* = 0.3, CHCl₃)^{S3}; Mp = 65.5 - 69.0 °C ; IR (neat) v_{max} = 3400, 2970, 2939, 2867, 1462, 1377, 1115, 1065, 966 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.47 (dd, *J* = 11.4, 4.2 Hz, 1H), 2.03-1.96 (m, 2H), 1.93 (dd, *J* = 12.6, 3.6 Hz, 1H), 1.80-1.73 (m, 2H), 1.65 (ddd, 12.0, 8.4, 3.6 Hz, 1H), 1.58-1.50 (m, 1H), 1.45-1.36 (m, 2H), 1.26 (s, 3H), 1.24 (s, 3H), 1.24-1.23 (m, 1H), 1.19 (s, 3H), 1.14 (dd, *J* = 12.6, 10.8 Hz, 1H), 0.88 (d, *J* = 12.6 Hz, 1H), 0.82 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 80.6, 73.9, 73.7, 59.0, 47.1, 45.0, 41.3, 40.2, 33.7, 30.7, 28.8, 28.5, 28.2, 22.7, 14.2; HRMS (ESI) *m/z* calcd. for C₁₅H₂₇O₂ ([M+H]⁺) 239.2006, found 239.2018.

(+)-ent-5-epi-vetiverianine A (28)

To a solution of **27** (21.0 mg, 44.0 μ mol) in THF (800 μ L) was added TBAF (1.0 M in THF, 450 μ L, 450 μ mol) at rt. The solution was stirred for 24 h at 60 °C. The reaction mixture was quenched by the addition of sat. NH₄Cl aq. and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated to give a residue. The residue was purified by flash column chromatography (hexane/EtOAc = 2/1) to give (+)-*ent*-5-*epi*-vetiverianine A (**28**, 10.5 mg, 44.0 μ mol, quant.) as a colorless oil.

 $[\alpha]_D^{24.4}$ +3.5 (*c* = 0.50, CHCl₃); IR (neat) v_{max} = 3410, 2969, 2937, 2872, 1468, 1378, 1364, 1090, 1011 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.74 (dd, *J* = 10.8, 5.4 Hz, 1H), 2.43-2.36 (m, 1H), 1.91-1.81 (m, 4H), 1.64-1.57 (m, 3H), 1.50-1.35 (m, 5H), 1.28 (s, 3H), 1.20 (s, 3H), 1.17 (s, 3H), 1.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 73.3, 73.1, 71.0, 53.3, 46.0, 38.8, 37.7, 37.4, 33.3, 33.0, 32.0, 30.4, 29.0, 27.9, 22.1; HRMS (ESI) *m/z* calcd. for C₁₅H₂₇O₂ ([M+H]⁺) 239.2006, found 239.2012.

3. ¹H and ¹³C NMR spectroscopic data

Table S1. NMR spectroscopic data (CDCl₃) for natural vetiverianine A (1)^{S3} and synthetic (+)-*ent*-vetiverianine A (4).

$\begin{array}{c} 16 & 14 \\ Me & Me & 9 \\ 15 & 3 & H & 5 \\ H^{1} & 5 & 7 \\ H^{1} & 11 & 7 \\ 11 & 12 & 13 \end{array}$			Me + Hi = 14 + Me = 9 + Me = 9 + Hi = 10 + Me + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1			
natural			synthetic e <i>nt</i> -vetiverianine A (4)			
	Natural 1			Synthetic 4		
No.	δ_C	δ_H (mult, <i>J</i> in Hz)	δ_C	δ_H (mult, <i>J</i> in Hz)		
2	73.7		73.7			
3α	47.0	1.93 (dd, 13.5, 3.7)	47.1	1.93 (dd, 12.6, 3.6)		
3β		1.15 (dd, 13.5, 8.5)		1.14 (dd, 12.6, 10.8)		
4	28.5	1.99 (brd, 10.7)	28.5	1.99 (m)		
5	58.9	0.88 (d, 12.5)	59.0	0.88 (d, 12.6)		
6	44.9		45.0			
7	80.6	3.47 (dd, 11.5, 4.3)	80.6	3.47 (dd, 11.4, 4.2)		
8α	30.6	1.54 (dd, 11.5, 4.0)	30.7	1.54 (m)		
8β		1.78 (dd, 11.5, 7.6)		1.78 (m)		
9α	41.3	1.75 (dd, 8.2, 6.7)	41.3	1.75 (m)		
9β		1.38 (ddd, 14.7, 8.2, 4.0)		1.38 (m) (overlapping)		
10	73.8		73.9			
11α	28.2	1.99 (m)	28.2	1.99 (m)		
11β		1.24 (overlapping)		1.24 (overlapping)		
12α	40.2	1.65 (ddd, 12.0, 8.9, 3.0)	40.2	1.65 (ddd,12.0, 8.4, 3.6)		
12β		1.45 (overlapping)		1.45 (overlapping)		
13	14.1	0.82 (s)	14.2	0.82 (s)		
14	22.7	1.24 (s)	22.7	1.24 (s)		
15	33.7	1.19 (s)	33.7	1.19 (s)		
16	28.8	1.26 (s)	28.8	1.26 (s)		

Figure S1. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 12.

0 'ОН Мe 16 6 0.96 0.0 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 IIII 1.850 X : parts per Million : Proton 2.09 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4405 4393 4,383 4,373 X : parts per Million : Proton 1.03 1.04 1.00 0.96 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 Ó 7.260 5.863 405 393 .383 .373 554 392 563 384 ..010 .860 .850 591 365 30 8 00 000000 n n n n X : parts per Million : Proton

0 ΌΗ Me 16 And the second مراجبان بالماركة فمرر مارجته ووالمالك فرارا المراجع أرا الأولية ومراجلة الملاك والأرابان ALWARD AND A HARA 80.0 70.0 60.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 50.0 40.0 30.0 20.0 10.0 0 X : parts per Million : Carbon 13 77.211 77.000 76.789 68.536 163.881 126.741 20.595 34.814 31.855

Figure S6. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 16.

Figure S7. ¹H NMR spectrum (600 MHz, CDCl₃) of compound S2.

Figure S8. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound S2.

Figure S10. ¹³C NMR spectrum (150 MHz, CDCl₃, 4.9:1 rotamer mixture) of compound 18.

Figure S11. ¹H NMR spectrum (600 MHz, CDCl₃, 4.9:1 rotamer mixture) of compound 19.

Figure S13. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 20.

Figure S15. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 21.

Figure S17. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 22.

29

Figure S19. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 23.

Figure S21. ¹H NMR spectrum (600 MHz, CDCl₃) of a 2.5:1 mixture of compounds 24 and 25.

Figure S23. HSQC spectrum (600 MHz, CDCl₃) of a 2.5:1 mixture of compounds 24 and 25.

Figure S26. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 26.

Figure S27. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 26.

Figure S28. ¹H NMR spectrum (600 MHz, CDCl₃) of compound 27.

Figure S30. ¹H NMR spectrum (600 MHz, CDCl₃) of (+)-*ent*-vetiverianine A (4).

Figure S31. ¹³C NMR spectrum (150 MHz, CDCl₃) of (+)-*ent*-vetiverianine A (4).

Figure S33. ¹³C NMR spectrum (150 MHz, CDCl₃) of (+)-*ent-5-epi*-vetiverianine A (28).

4. References

- S1) Li, J.; Zhang, W.; Zhang, F.; Chen, Y.; Li, A. J. Am. Chem. Soc. 2017, 139, 14893–14896.
- S2) Piers, E.; Oballa, R. M. J. Org. Chem. 1996, 61, 8439-8447.
- S3) Matsuo, Y.; Maeda, S.; Ohba, C.; Fukaya, H.; Mimaki, Y. J. Nat. Prod. 2016, 79, 2175–2180.