Formal insertion of selenoketenes into donor-acceptor cyclopropanes: mesomeric alkynylselenolates as key starting materials

Anu Jacob,^a Peter G. Jones,^b and Daniel B. Werz^{*c}

^aTechnische Universität Braunschweig, Institute of Organic Chemistry, ^bTechnische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany and ^cAlbert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg, Germany

Supporting Information

Contents

1.	1. General Experimental					
2.	2. General Procedures					
	2.1	General procedure for the preparation of D-A cyclopropanes (GP 1)	3			
	2.2	Synthesis of compound lithium alkylselenolate 2 (GP 2)	3			
	2.3	Syntheses of tetrahydroselenophenes (GP 3)	3			
3.	Preparation of Tetrahydroselenophenes (3)4					
4.	4. Follow-up reactions					
5.	5. Sterospecificity Experiment					
6.	¹ H and ¹³ C NMR data					
7.	Crystal Structure Determination of Compound 8c57					
8.	References					

1. General Experimental

All solvents were dried and stored over molecular sieves under argon atmosphere unless otherwise stated. Air- and moisture-sensitive reactions were carried out in oven-dried or flame-dried glassware, septum-capped under atmospheric pressure of argon. Commercially available compounds were used without further purification unless otherwise stated. The heating for the catalytic reactions were done by use of a heating block with a small amount of silicon oil in the slots. All other reactions, that required heating, were proceeded in a silicon oil bath. For all purifications via column chromatography silica gel (43-60 µm particle size) was used.

Proton (¹H), carbon (¹³C) and fluorine (¹⁹F) NMR spectra were recorded on a Bruker AV300, Bruker AVIII400, Bruker AVIIIHD500 or Bruker AVII600 instrument using the residual signals from CHCl₃, δ = 7.26 ppm and δ = 77.16 ppm, as internal reference for ¹H and ¹³C chemical shifts, respectively. Additionally, tetramethylsilane (TMS; δ = 0.00 ppm; 0.03%) was added to NMR samples. The following abbreviations were used for ¹H and ¹³C NMR chemical shifts: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet/quintet, oct = octet, m = multiplet and combinations thereof. ESI-HRMS mass spectrometry was carried out on an FTICR instrument. EI-HRMS mass spectrometry was carried out on JOEL AccuTOF GC JMS-T100GC instrument. IR spectra were recorded on an ATR spectrometer Tensor 27 from Bruker. Melting Points were recorded with a Büchi SMP-20 and Büchi M-560 melting point meter and are uncorrected.

2. General Procedures

2.1 General procedure for the preparation of D-A cyclopropanes (GP 1)

To a solution of the corresponding styrene (1.0 equiv), Rh₂(OAc)₄ (0.5 mol%) in dichloromethane was added dropwise diazomalonate (1.30 equiv) in dichloromethane over 15 h via syringe pump at ambient temperature. The solvent was removed in vacuo and silica gel column chromatography gave the desired product.¹ All donor-acceptor cyclopropanes are known to literature and were prepared according to existing procedures. **1a**¹, **1b**¹, **1c**¹, **1d**², **1e**¹, **1f**⁶, **1g**¹, **1h**¹, **1i**¹, **1j**³, **1k**⁴, **1l**⁵, **1m**¹, **1n**⁷, **1o**⁹, **1p**⁸.

2.2 Synthesis of compound lithium alkylselenolate 2 (GP 2)

In a flame dried, argon-filled microwave tube was charged corresponding acetylene (2.2 equiv) in THF (0.1 M) at 0 °C. The solution was cooled to -78 °C. To this solution was added *n*-BuLi (2.0 equiv). The reaction was allowed to stir for 1 h and slowly warmed to 25 °C. To the stirring solution was added elemental selenium (2.2 equiv) in one portion. The dissolution of selenium changes the solution color from black to pale yellow to furnish **2**.

2.3 Syntheses of tetrahydroselenophenes (GP 3)

To the *in situ* generated **2** was added a solution of cyclopropane diester **1** (100 μ mol, 1.0 equiv.), and indium trifluoromethanesulfonate (80 μ mol, 0.8 equiv.) dissolved in THF (0.1 M) under argon atmosphere. The solution was stirred at 40 °C (oil bath) until TLC analysis showed full conversion of cyclopropane **1**. The reaction tube is allowed to cool to the room temperature. To it was added EtOAc (10 mL), washed with saturated NaHCO₃ solution and extracted with EtOAc (3 x 20 mL). The organic layers were combined and dried over Na₂SO₄ and solvent was evaporated under reduced pressure. The product **3** was purified by silica gel column chromatography.

3. Preparation of Tetrahydroselenophenes (3)

Dimethyl (Z)-5-phenyl-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3a)

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3a** (35.7 mg, 87 μ mol, 87%) as yellow oil.

R_f: 0.43 in 1:20 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = 7.46 – 7.42 (m, 2H), 7.35 – 7.29 (m, 2H), 7.27 – 7.23 (m, 1H), 6.07 (s, 1H), 4.82 (dd, *J* = 12.3, 4.6 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.10 (dd, *J* = 13.1, 4.6 Hz, 1H), 2.91 (dd, *J* = 13.2, 12.3 Hz, 1H), 0.17 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.5, 169.3, 150.3, 139.5, 128.6, 127.9, 127.7, 125.6, 73.2, 53.3, 53.0, 47.0, 46.2, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 2322, 1736, 1495, 1249, 848, 644.

HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₈H₂₄O₄SeSiNa: 435.0507;

Found: 435.0502

Large scale synthesis of 3a

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (234 mg, 1 mmol, 1.0 equiv.), and *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (449 mg, 0.8 equiv.) in THF (10.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3a** (328 mg, 87 μ mol, 80%) as yellow oil.

Dimethyl (Z)-5-(4-bromophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)dicarboxylate (3b)

Dimethyl 2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate **1b** (31 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3b** (42.6 mg, 87 μ mol, 87%) as brown solid.

R_f: 0.39 in 1:20 EtOAc/Pentane

m.p. = 68-69 °C

¹**H NMR** (400 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 6.07 (s, 1H), 4.77 (dd, *J* = 12.3, 4.6 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.07 (dd, *J* = 13.1, 4.7 Hz, 1H), 2.83 (dd, *J* = 13.1, 12.3 Hz, 1H), 0.16 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.4, 169.2, 149.9, 138.8, 131.8, 129.6, 126.0, 121.4, 73.2, 53.3, 53.1, 47.0, 45.4, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 1731, 1434, 1240, 1134, 1064, 832.

HRMS (ESI-TOF) m/z:

 $[M+Na]^+$ Calcd for $C_{18}H_{23}BrO_4SeSiNa$: 512.9612.

Found: 512.9603

5

Dimethyl (*Z*)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3c)

Dimethyl 2-(4-chlorophenyl)cyclopropane-1,1-dicarboxylate **1c** (27 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3c** (42.2 mg, 95 μ mol, 95%) as brown oil.

R_f: 0.40 in 1:20 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): *δ* = 7.40 – 7.36 (m, 2H), 7.31 – 7.27 (m, 2H), 6.08 (s, 1H), 4.78 (dd, *J* = 12.3, 4.7 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.08 (dd, *J* = 13.2, 4.7 Hz, 1H), 2.84 (dd, *J* = 13.2, 12.3 Hz, 1H), 0.16 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.3, 169.2, 149.9, 138.2, 133.3, 129.2, 128.8, 126.0, 73.2, 53.3, 53.1, 47.0, 45.4, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2894, 1734, 1437, 1237,1066, 835.

HRMS (ESI-TOF) m/z:

 $[M+Na]^+$ Calcd for **C**₁₈**H**₂₃**ClO**₄**SeSiNa**: 469.0117.

Found: 469.0113.

Dimethyl (*Z*)-5-(4-fluorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3d)

Dimethyl 2-(4-fluorophenyl)cyclopropane-1,1-dicarboxylate **1d** (25.2 mg, 100 μmol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μmol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3d** (29.6 mg, 69 μmol, 69%) as yellow oil.

R_f: 0.35 in 1:20 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = 7.44 – 7.38 (m, 2H), 7.03 – 6.97 (m, 2H), 6.07 (s, 1H), 4.80 (dd, *J* = 12.3, 4.7 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.08 (dd, *J* = 13.2, 4.7 Hz, 1H), 2.84 (dd, *J* = 13.2, 12.3 Hz, 1H), 0.16 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 169.5, 168.4, 162.5 (C-F, ¹J_{C-F} = 246.7 Hz), 150.2, 135.5 (C-F, ⁴J_{C-F} = 3.3 Hz), 129.6 (C-F, ³J_{C-F} = 8.2 Hz), 126.0, 115.7 (C-F, ²J_{C-F} = 21.5 Hz), 73.3, 53.5, 53.2, 47.4, 45.5, -1.3.

¹⁹**F NMR** (377 MHz, CDCl₃): δ = -114.8.

IR (ATR) \tilde{v} (cm⁻¹) = 2954, 2322, 1733, 1508, 1229,1150, 833.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₈H₂₃FO₄SeSiNa: 453.0413.

Found: 453.0410.

Dimethyl (*Z*)-5-(4-methoxyphenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3e)

Dimethyl 2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate **1e** (26.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3e** (21.1 mg, 48 μ mol, 48%) as yellow oil.

R_f: 0.27 in 1:10 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = δ 7.38 – 7.34 (m, 2H), 6.87 – 6.82 (m, 2H), 6.06 (s, 1H), 4.80 (dd, *J* = 12.4, 4.6 Hz, 1H), 3.82 (s, 3H), 3.79 (d, *J* = 1.8 Hz, 6H), 3.06 (dd, *J* = 13.2, 4.6 Hz, 1H), 2.88 (dd, *J* = 13.1, 12.4 Hz, 1H), 0.16 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃): δ = 169.5, 169.3, 159.0, 150.5, 131.4, 128.9, 125.5, 114.0, 73.2, 55.3, 53.3, 53.0, 47.3, 45.9, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2952, 2322, 1732, 1510, 1240,1068, 835.

HRMS (ESI-TOF) m/z:

 $[M+Na]^+$ Calcd for $C_{19}H_{26}O_5$ SeSiNa: 465.0613.

Found: 465.0611.

Dimethyl (*Z*)-5-([1,1'-biphenyl]-4-yl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3f)

Dimethyl 2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1-dicarboxylate **1f** (31 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3f** (37 mg, 76 μ mol, 76%) as yellow oil.

R_f: 0.42 in 1:20 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = 7.59 – 7.50 (m, 6H), 7.46 – 7.42 (m, 2H), 7.37 – 7.32 (m, 1H), 6.09 (s, 1H), 4.88 (dd, J = 12.3, 4.7 Hz, 1H), 3.13 (dd, J = 13.1, 4.7 Hz, 1H), 2.96 (dd, J = 13.1, 12.4 Hz, 1H), 0.18 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.5, 169.3, 150.3, 140.6, 140.5, 138.6, 128.7, 128.3, 127.3, 127.3, 127.0, 125.7, 73.3, 53.3, 53.1, 47.0 45.9, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2952, 2322, 1732, 1570, 1487, 1241, 834, 730.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₂₄H₂₈O₄SeSiNa: 511.0820

Found: 511.0813

Dimethyl (Z)-5-(o-tolyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3g)

Dimethyl 2-(*o*-tolyl)cyclopropane-1,1-dicarboxylate **1g** (25 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3g** (34 mg, 80 μ mol, 80%) as yellow oil.

R_f: 0.4 in 1:20 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = 7.63 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.17 – 7.12 (m, 2H), 6.10 (s, 1H), 5.04 (dd, *J* = 12.4, 4.4 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.06 (dd, *J* = 13.1, 4.4 Hz, 1H), 2.93 (dd, *J* = 13.1, 12.4 Hz, 1H), 2.37 (s, 3H), 0.17 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.45, 169.41, 150.1, 137.4, 136.1, 130.4, 127.3, 126.7, 126.5, 125.9, 72.8, 53.2, 53.0, 45.9, 42.3, 19.5, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 2322, 1733, 1571, 1438, 1238, 836.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₉H₂₆O₄SeSiNa: 449.0664

Found: 449.0660.

Dimethyl (Z)-5-(m-tolyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3h)

Dimethyl 2-(*m*-tolyl)cyclopropane-1,1-dicarboxylate **1h** (25 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3h** (24.2 mg, 57 μ mol, 57%) as yellow solid.

R_f: 0.4 in 1:10 EtOAc/Pentane

m.p. = 96-97 °C

¹**H NMR** (400 MHz, CDCl₃): δ = 7.25 – 7.17 (m, 3H), 7.06 (d, *J* = 7.1 Hz, 1H), 6.07 (s, 1H), 4.79 (dd, *J* = 12.4, 4.6 Hz, 1H), 3.81 (d, *J* = 7.9 Hz, 6H), 3.08 (dd, *J* = 13.2, 4.6 Hz, 1H), 2.90 (dd, *J* = 13.1, 12.4 Hz, 1H), 2.36 – 2.32 (m, 3H), 0.17 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.5, 169.4, 150.4, 139.4, 138.3, 128.5, 128.5, 128.5, 125.6, 124.9, 73.2, 53.3, 53.0, 47.0, 46.3, 21.3, -1.45.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 2322, 1733, 1438, 1238, 836, 730.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₉H₂₆O₄SeSiNa: 449.0664

Found: 449.0660

Dimethyl (Z)-5-(p-tolyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3i)

Dimethyl 2-(*p*-tolyl)cyclopropane-1,1-dicarboxylate **1i** (25 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3i** (28.4 mg, 67 μ mol, 67%) as yellow oil.

R_f: 0.42 in 1:10 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = 7.35 – 7.31 (m, 2H), 7.14 – 7.11 (m, 2H), 6.06 (s, 1H), 4.80 (dd, *J* = 12.4, 4.6 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.07 (dd, *J* = 13.1, 4.7 Hz, 1H), 2.90 (dd, *J* = 13.2, 12.4 Hz, 1H), 2.32 (s, 3H), 0.17 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.5, 169.3, 150.5, 137.4, 136.4, 129.3, 127.7, 125.5, 73.2, 53.2, 53.0, 47.0, 46.1, 21.0, -1.48.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 2391, 1733, 1437, 1238,1067, 833.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₉H₂₆O₄SeSiNa: 449.0664

Found: 449.0661

Dimethyl (*Z*)-5-(4-cyanophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3j)

Dimethyl 2-(4-cyanophenyl)cyclopropane-1,1-dicarboxylate **1**j (26 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3**j (40.5 mg, 93 μ mol, 93%) as yellow solid.

R_f: 0.53 in 1:2 EtOAc/Pentane

m.p. = 115-116 °C

¹**H NMR** (400 MHz, CDCl₃): δ = 7.64 – 7.54 (m, 4H), 6.11 (s, 1H), 4.84 (dd, *J* = 12.2, 4.7 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.11 (dd, *J* = 13.1, 4.8 Hz, 1H), 2.83 (dd, *J* = 13.1, 12.2 Hz, 1H), 0.17 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.1, 168.9, 149.2, 145.4, 132.4, 128.8, 126.6, 118.5, 111.5, 73.1, 53.4, 53.1, 46.6, 45.2, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 2313, 2225, 1732, 1434, 1240, 1133, 834.

HRMS (ESI-TOF) m/z:

 $[M+Na]^+$ Calcd for $C_{19}H_{23}NO_4SeSiNa$: 460.0460

Found: 460.04590

Dimethyl (*Z*)-5-(4-(trifluoromethyl)phenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3k)

Dimethyl 2-(4-(trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxylate **1k** (30 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3k** (33.1 mg, 69 μ mol, 69%) as yellow oil.

R_f: 0.27 in 1:10 EtOAc/Pentane

¹H NMR (400 MHz, CDCl₃): δ = 7.40 (s, 4H), 5.93 (s, 1H), 4.69 (dd, J = 12.2, 4.8 Hz, 1H), 3.66 (s, 3H), 3.63 (s, 3H), 2.95 (dd, J = 13.1, 4.8 Hz, 1H), 2.70 (dd, J = 13.1, 12.2 Hz, 1H), 0.00 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 169.2, 169.1, 149.6, 143.9, 130.0 (C-F, ¹*J*_{C-F} = 256 Hz), 128.3, 127. 8 (C-F, ¹*J*_{C-F} = 256 Hz), 126.3, 125.68 (C-F, ³*J*_{C-F} = 3.8 Hz), 125.64 (C-F, ³*J*_{C-F} = 3.8 Hz), 125.6 (C-F, ³*J*_{C-F} = 3.8 Hz), 125.5 (C-F, ³*J*_{C-F} = 3.8 Hz), 125.3 (C-F, ¹*J*_{C-F} = 256 Hz), 122.6 (C-F, ¹*J*_{C-F} = 256 Hz), 73.2, 53.3, 53.1, 46.8, 45.3, -1.5.

¹⁹**F NMR** (377 MHz, CDCl₃): δ = -63.0.

IR (ATR) \tilde{v} (cm⁻¹) = 2955, 2322, 1734, 1432, 1322, 1158,1118, 835.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₉H₂₃F₃O₄SeSiNa: 503.0381

Found: 503.0374

Dimethyl (*Z*)-5-(3-nitrophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3I)

Dimethyl 2-(3-nitrophenyl)cyclopropane-1,1-dicarboxylate **1**I (28 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3**I (41.9 mg, 92 μ mol, 92%) as yellow oil.

R_f: 0.2 in 1:10 EtOAc/Pentane

¹H NMR (400 MHz, CDCl₃): δ = 8.32 (t, J = 2.0 Hz, 1H), 8.12 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 7.79 (ddd, J = 7.8, 1.6, 0.9 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 6.13 (s, 1H), 4.89 (dd, J = 12.2, 4.8 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.14 (dd, J = 13.1, 4.8 Hz, 1H), 2.87 (dd, J = 13.1, 12.2 Hz, 1H), 0.18 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.1, 168.9, 149.1, 142.2, 134.2 129.6, 126.7, 122.9, 122.7, 73.1, 53.4, 53.2, 46.8, 44.8, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 1732, 1520, 1437, 1343, 1242,1149, 836.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₈H₂₃NO₆SeSiNa: 480.0358

Found: 480.0359

15

Dimethyl (*Z*)-5-(4-nitrophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3m)

Dimethyl 2-(4-nitrophenyl)cyclopropane-1,1-dicarboxylate **1m** (28 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3m** (32.8 mg, 72 μ mol, 72%) as brown oil.

R_f: 0.53 in 1:2 EtOAc/Pentane

¹**H NMR** (500 MHz, CDCl₃): δ = 8.18 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 8.6 Hz, 2H), 6.12 (s, 1H), 4.89 (dd, J = 12.2, 4.8 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.13 (dd, J = 13.1, 4.8 Hz, 1H), 2.85 (dd, J = 13.1, 12.2 Hz, 1H), 0.17 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.2, 169.0, 149.2, 147.5, 128.9, 126.8, 124.0, 73.2, 53.5, 53.3, 46.7, 44.9,
-1.5.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 1732, 1520, 1437, 1343, 1242, 836, 691.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₈H₂₃NO₆SeSiNa: 480.0358

Found: 480.0359

Dimethyl (*Z*)-5-(naphthalen-2-yl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3n)

Dimethyl 2-(naphthalen-2-yl)cyclopropane-1,1-dicarboxylate **1n** (28 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3n** (35.5 mg, 77 μ mol, 77%) as yellow solid.

R_f: 0.36 in 1:10 EtOAc/Pentane

m.p. = 112 °C -113 °C

¹**H NMR** (500 MHz, CDCl₃): δ = 7.86 – 7.77 (m, 4H), 7.60 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.48 – 7.44 (m, 2H), 6.10 (s, 1H), 5.01 (dd, *J* = 12.2, 4.7 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.16 (dd, *J* = 13.1, 4.8 Hz, 1H), 3.03 (dd, *J* = 13.1, 12.2 Hz, 1H), 0.18 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.5, 169.3, 150.3, 136.9, 133.2, 132.9, 128.5, 127.7, 127.6, 126.6, 126.3, 126.0, 125.7, 125.7, 73.3, 53.3, 53.1, 46.9, 46.6, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2958, 2322, 1728, 1506, 1431, 1247, 1170, 954, 752.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₂₂H₂₆O₄SeSiNa: 485.0664

Found: 485.0657

Dimethyl (*Z*)-5-(thiophen-2-yl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (30)

Dimethyl 2-(thiophen-2-yl)cyclopropane-1,1-dicarboxylate **1e** (24 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3o** (18.7 mg, 45 μ mol, 45%) as yellow oil.

R_f: 0.31 in 1:10 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): δ = 7.23 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.04 (ddd, *J* = 3.5, 1.2, 0.7 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.08 (s, 1H), 5.14 (ddd, *J* = 11.9, 4.8, 0.7 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.20 (dd, *J* = 13.1, 4.8 Hz, 1H), 2.92 (dd, *J* = 13.1, 11.9 Hz, 1H), 0.16 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.2, 169.0, 149.8, 144.0, 1 26.7, 126.0, 125.4, 124.8, 72.9, 53.3, 53.0, 48.2, 40.4, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2953, 1732, 1436, 1237, 1143, 1003, 835.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₆H₂₂O₄SSeSiNa: 441.0071

Found: 441.0066

Diethyl 2-(*p*-tolyl)cyclopropane-1,1-dicarboxylate **1p** (28 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(trimethylsilyl)ethyne-1-selenolate **2a** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **3p** (32.0 mg, 73 μ mol, 73%) as yellow oil.

R_f: 0.5 in 1:10 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): δ = 7.47 – 7.43 (m, 2H), 7.35 – 7.29 (m, 2H), 7.28 – 7.22 (m, 1H), 6.12 (s, 1H), 4.84 (dd, *J* = 12.4, 4.7 Hz, 1H), 4.32 – 4.22 (m, 4H), 3.09 (dd, *J* = 13.1, 4.7 Hz, 1H), 2.89 (dd, *J* = 13.2, 12.4 Hz, 1H), 1.29 (td, *J* = 7.1, 4.5 Hz, 6H), 0.16 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 168.9, 168.8, 150.5, 139.6, 128.6, 127.8, 127.6, 125.5, 73.1, 62.0, 61.9, 47.0, 46.2, 14.0, 13.9, -1.4.

IR (ATR) \tilde{v} (cm⁻¹) = 2964, 2323, 1729, 1572, 1235, 1147, 1014, 839.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for **C**₂₀**H**₂₈**O**₄**SeSiNa**: 463.0820.

Found: 463.0819.

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(triisopropylsilyl)ethyne-1-selenolate (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **4a** (46.1 mg, 87 μ mol, 87%) as yellow oil.

R_f: 0.5 in 1:10 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): δ = 7.46 - 7.42 (m, 2H), 7.34 - 7.28 (m, 2H), 7.27 - 7.22 (m, 1H), 6.07 (s, 1H), 4.88 (dd, *J* = 12.3, 4.7 Hz, 1H), 3.80 (d, *J* = 13.9 Hz, 6H), 3.11 (dd, *J* = 13.1, 4.7 Hz, 1H), 2.89 (dd, *J* = 13.1, 12.3 Hz, 1H), 1.30 - 1.17 (m, 3H), 1.09 (dd, *J* = 7.3, 1.9 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 169.5, 151.5, 139.7, 128.6, 127.9, 127.6, 122.7, 73.9, 53.1, 52.9, 47.1, 46.5, 18.8, 18.7, 11.6.

IR (ATR) \tilde{v} (cm⁻¹) = 2944, 2862, 2322, 1734, 1445, 1231, 1150, 1066, 666.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₂₁H₂₀O₄SeNa: 519.1446

Found: 519.1438

Dimethyl (Z)-2-benzylidene-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4b)

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-phenylethyne-1-selenolate **2b** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **4b** (46.1 mg, 87 μ mol, 87%) as colourless solid.

R_f: 0.4 in 1:20 EtOAc/Pentane

m.p. = 114-115 °C

¹**H NMR** (400 MHz, CDCl₃): δ = 7.49 – 7.45 (m, 2H), 7.40 – 7.20 (m, 8H), 6.95 (s, 1H), 4.91 (dd, *J* = 12.4, 4.6 Hz, 1H), 3.85 (d, *J* = 2.5 Hz, 6H), 3.22 (dd, *J* = 13.1, 4.7 Hz, 1H), 2.92 (dd, *J* = 13.1, 12.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃): *δ* = 169.7, 139.1, 137.3, 135.6, 128.7, 128.3, 128.1, 127.9, 127.8, 127.1, 126.7, 71.7, 53.4, 53.2, 47.1, 46.6.

IR (ATR) \tilde{v} (cm⁻¹) = 2955, 2657, 2200, 1758, 1489, 1267, 1150, 1013, 744.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₂₁H₂₀O₄SeNa: 439.0425

Found: 439.0422

Dimethyl (Z)-2-(3-methylbenzylidene)-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4c)

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-(*m*-tolyl)ethyne-1-selenolate **2c** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **4c** (18.6 mg, 43 μ mol, 43%) as yellow oil.

R_f: 0.4 in 1:20 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): δ = 7.50 – 7.44 (m, 2H), 7.32 (dd, *J* = 8.3, 6.4 Hz, 2H), 7.28 – 7.16 (m, 4H), 7.06 – 7.02 (m, 1H), 6.92 (s, 1H), 4.89 (dd, *J* = 12.4, 4.6 Hz, 1H), 3.85 (d, *J* = 2.9 Hz, 6H), 3.21 (dd, *J* = 13.1, 4.7 Hz, 1H), 2.92 (dd, *J* = 13.1, 12.4 Hz, 1H), 2.34 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ = 169.7, 169.7, 139.1, 137.9, 137.2, 128.8, 128.7, 128.2, 127.9, 127.8, 126.8, 125.1, 71.7, 53.4, 53.2, 47.0, 46.5, 21.4. **IR** (ATR) \tilde{V} (cm⁻¹) = 3023, 2950, 2323, 1730, 1489, 1230, 1149, 748, 690.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₂₁H₂₀O₄SeNa: 453.0581

Found: 453.0577

Dimethyl (Z)-2-butylidene-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4d)

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium pent-1-yne-1-selenolate **2d** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **4d** (22.0 mg, 58 μ mol, 58%) as yellow oil.

R_f: 0.5 in 1:10 EtOAc/Pentane

¹**H NMR** (300 MHz, CDCl₃): δ = 7.48 – 7.43 (m, 2H), 7.34 – 7.24 (m, 3H), 5.88 (t, *J* = 7.0 Hz, 1H), 4.79 (dd, *J* = 12.3, 4.6 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.18 – 3.10 (m, 1H), 2.90 (t, *J* = 12.7 Hz, 1H), 1.97 (dt, *J* = 14.7, 7.3 Hz, 2H), 1.50 (q, *J* = 7.3 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.9, 169.5, 139.6, 134.5, 128.6, 127.8, 127.6, 127.2, 69.6, 53.2, 53.0, 48.0, 44.9, 36.2, 30.8, 21.8, 13.6.

IR (ATR) \tilde{v} (cm⁻¹) = 2955, 2323, 1732, 1494, 1232, 1152, 1063, 695.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₈H₂₂O₄SeNa: 405.0581

Found: 405.0575

Dimethyl (Z)-2-(cyclopropylmethylene)-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4e)

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 2-cyclopropylethyne-1-selenolate **2e** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **4e** (17.0 mg, 45 μ mol, 45%) as yellow oil.

R_f: 0.5 in 1:10 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): δ = 7.50 – 7.45 (m, 2H), 7.35 – 7.25 (m, 3H), 5.40 (d, *J* = 8.8 Hz, 1H), 4.84 (dd, *J* = 12.4, 4.6 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 3.13 (dd, *J* = 13.2, 4.6 Hz, 1H), 2.90 (dd, *J* = 13.1, 12.4 Hz, 1H), 1.15 (dtd, *J* = 9.4, 8.3, 4.1 Hz, 1H), 0.88 – 0.78 (m, 2H), 0.50 (td, *J* = 4.6, 2.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.9, 169.5, 139.5, 131.9, 130.7, 128.6, 127.9, 127.6, 69.4, 53.3, 53.0, 48.2, 45.1, 15.8, 7.1, 6.9.

IR (ATR) \tilde{v} (cm⁻¹) = 3004, 2951, 2323, 1729, 1232, 1150, 1014, 695.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₈H₂₀O₄SeNa: 403.0425

Found: 403.0419

Dimethyl (Z)-2-(2,2-dimethylpropylidene)-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4f)

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate **1a** (23.4 mg, 100 μ mol, 1.0 equiv.), *in situ* generated lithium 3,3-dimethylbut-1-yne-1-selenolate **2f** (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μ mol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product **4f** (20.1 mg, 51 μ mol, 51%) as yellow oil.

R_f: 0.5 in 1:10 EtOAc/Pentane

¹**H NMR** (400 MHz, CDCl₃): δ = 7.46 – 7.43 (m, 2H), 7.34 – 7.30 (m, 2H), 7.26 (s, 1H), 5.88 (s, 1H), 4.70 (dd, J = 12.5, 4.6 Hz, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.09 (dd, J = 13.1, 4.6 Hz, 1H), 2.82 (dd, J = 13.1, 12.4 Hz, 1H), 1.13 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 170.2, 170.0, 139.5, 137.4, 129.9, 128.6, 127.8, 127.6, 71.6, 53.2, 53.0, 46.7, 46.0, 33.3, 29.0.

IR (ATR) \tilde{v} (cm⁻¹) = 2957, 2323, 1733, 1442, 1237, 1148, 962, 733.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₉H₂₄O₄SeNa: 419.0738

Found: 419.0734

4. Follow-up reactions

Dimethyl (*Z*)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate 1-oxide (7c)

Dimethyl (*Z*)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate **3c** (44.6 mg, 100 μ mol, 1.0 equiv.) was dissolved in dichloromethane (5 mL). To the stirring solution was added *meta*-chloroperoxybenzoic acid (*m*CPBA) (52 mg, 300 μ mol, 3.0 equiv). The solution was allowed to stir for 5 h. To the solution was added more dichloromethane, washed with 2M NaOH solution and extracted using dichloromethane. The combined organic layers were dried using Na₂SO₄ and the solvent was evaporated off under reduced pressure gave the desired product **7c** (45.1 mg, 98 μ mol,98 %) as colourless semi-solid.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 7.42 (dd, J = 8.4, 0.5 Hz, 2H), 7.36 – 7.33 (m, 2H), 6.95 (s, 1H), 4.36 (dd, J = 14.3, 4.5 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.54 (t, J = 14.2 Hz, 1H), 3.03 (dd, J = 14.1, 4.5 Hz, 1H), 0.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.4, 167.7, 159.5, 147.4, 134.8, 130.7, 130.0, 128.8, 68.1, 61.2, 53.6, 53.4, 39.2.

IR (ATR) \tilde{v} (cm⁻¹) = 3053, 2322, 1732, 1242, 1145, 1020, 840, 703.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₈H₂₃ClO₅SeSiNa: 485.0066

Found: 485.0057

Dimethyl (Z)-5-(4-chlorophenyl)-2-methylenedihydroselenophene-3,3(2H)-dicarboxylate (8c)

Dimethyl (*Z*)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate **3c** (44.6 mg, 100 μ mol, 1.0 equiv.) was dissolved in acetonitrile/ THF/water in a 3:3:1 ratio (5 mL). To the stirring solution was added *para*-toluenesulfonic acid (*p*TsOH) (29 mg, 150 μ mol, 1.5 equiv). The solution was allowed to reflux for 5 h. To the solution was added more dichloromethane, washed with 2M NaOH solution and extracted using dichloromethane. The combined organic layers were dried using Na₂SO₄ and the solvent was evaporated off under reduced pressure. Silica gel column chromatography (*n*-pentane: EtOAc = 10:1) gave the desired product **8c** (25.4 mg, 68 μ mol, 68 %) as orange solid.

R_f: 0.40 in 1:20 EtOAc/Pentane

m.p. = 102-103 °C

¹**H NMR** (500 MHz, CDCl₃): δ = 7.41 – 7.36 (m, 2H), 7.31 – 7.26 (m, 2H), 5.71 (dd, *J* = 2.0, 0.5 Hz, 1H), 5.46 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.85 (dd, *J* = 12.2, 4.7 Hz, 1H), 3.84 (d, *J* = 0.5 Hz, 3H), 3.81 (d, *J* = 0.5 Hz, 3H), 3.13 (ddd, *J* = 13.3, 4.7, 0.6 Hz, 1H), 2.88 (dd, *J* = 13.3, 12.2 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ = 169.1, 168.8, 142.3, 137.9, 133.4, 129.2, 128.8, 112.6, 70.3, 53.4, 53.2, 48.2, 45.0.

IR (ATR) \tilde{v} (cm⁻¹) = 2951, 2322, 1731, 1489, 1258, 1226, 885.

HRMS (ESI-TOF) m/z:

[M+Na]⁺ Calcd for C₁₅H₁₅ClO₄SeNa: 396.9722

Found: 396.9713

Methyl (Z)-5-(4-chlorophenyl)-2-methyl-4,5-dihydroselenophene-3-carboxylate (9c)

Dimethyl (*Z*)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate **3c** (44.6 mg, 100 μ mol, 1.0 equiv.) was dissolved in acetonitrile/water in a 1:1 ratio (5 mL). To the stirring solution was added aqueous NaOH (2 M, 0.2 mL). The solution was allowed to stir overnight. To the solution was added more dichloromethane, washed with 2M HCl solution and extracted using dichloromethane. The combined organic layers were dried using Na₂SO₄ and the solvent was evaporated off under reduced pressure. Silica gel column chromatography (*n*-pentane: EtOAc = 10:1) gave the desired product **9c** (28 mg, 88 μ mol, 88 %) as orange oil.

R_f: 0.22 in 1:5 EtOAc/Pentane

¹H NMR (500 MHz, CDCl₃): δ = 7.32 - 7.29 (m, 2H), 7.26 (dt, J = 6.6, 2.3 Hz, 2H), 4.95 (dd, J = 8.7, 7.1 Hz, 1H), 3.73 (s, 3H), 3.55 (ddd, J = 16.3, 8.7, 2.0 Hz, 1H), 3.44 - 3.37 (m, 1H), 2.47 (t, J = 1.9 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃): δ = 164.3, 155.7, 141.6, 133.1, 128.8, 128.3, 123.2, 77.2, 51.2, 46.9, 45.1, 18.7.

IR (ATR) \tilde{v} (cm⁻¹) = 2992, 2842, 2322, 1695, 1599, 1228, 1049, 821.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₄ClO₂Se: 316.9847

Found: 316.9839

5. Sterospecificity Experiment

Dimethyl (*R*,*Z*)-2-benzylidene-5-phenyldihydroselenophene-3,3(2*H*)-dicarboxylate

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (*S*)-1a (23.4 mg, 100 μmol, 1.0 equiv.), *in situ* generated lithium 2-phenylethyne-1-selenolate 2b (see GP2) and indium trifluoromethanesulfonate (44.9 mg, 80.0 μmol, 0.8 equiv.) in THF (1.0 mL) were reacted according to GP 3 for 18 h. Silica gel column

chromatography (*n*-pentane: EtOAc = 20:1) gave the desired product (*R*)-4b (31.9 mg, 77 μ mol, 77%) as yellow oil. HPLC data revealed that the reaction proceeds with high stereospecificity with only a slight loss of enantiopurity (98 to 95% ee). This prompted us to conclude that the initial nucleophilic attack by chalcogen proceeds by an S_N2-like attack with inversion at the stereocenter to form (*R*)-4b.

Chromatogram of (rac)-4b

Signal: MWD1 B, Sig=230,4 Ref=720,100

RT [min] V	Vidth [min]	Height	Area	Area%
22.959	0.5667	19.7323	846.8037	49.4739
26.203	0.6163	17.4159	864.8126	50.5261
		Sum	1711.6163	

Chromatogram of (R)-4b

6. ¹H and ¹³C NMR data

Dimethyl (Z)-5-phenyl-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3a)

¹³C-NMR Spectrum (150 MHz, CDCl₃)

Dimethyl (*Z*)-5-(4-bromophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3b)

¹³C-NMR Spectrum (150 MHz, CDCl₃)

Dimethyl (Z)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-

dicarboxylate (3c)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Dimethyl (*Z*)-5-(4-fluorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3d)

¹³C-NMR Spectrum (126 MHz, CDCl₃)

¹⁹F-NMR Spectrum (377 MHz, CDCl₃)

Dimethyl -(Z)-5-(4-methoxyphenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-

¹³C-NMR Spectrum (126 MHz, CDCl₃)

-(Z)-5-([1,1'-biphenyl]-4-yl)-2-((trimethylsilyl)methylene)dihydroselenophene-

Dimethyl

3,3(2H)dicarboxylate (3f)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Dimethyl (Z)-5-(o-tolyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3g)

¹³C-NMR Spectrum (126 MHz, CDCl₃)

Dimethyl (Z)-5-(m-tolyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3h)

¹³C-NMR Spectrum (126 MHz, CDCl₃)

Dimethyl (Z)-5-(p-tolyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3i)

Dimethyl (Z)-5-(4-cyanophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-

dicarboxylate (3j)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Dimethyl (Z)-5-(4-(trifluoromethyl)phenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

¹⁹F-NMR Spectrum (377 MHz, CDCl₃)

Dimethyl (*Z*)-5-(3-nitrophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (3l)

Dimethyl (Z)-5-(4-nitrophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-

dicarboxylate (3m)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Dimethyl (Z)-5-(naphthalen-2-yl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Dimethyl (*Z*)-5-(thiophen-2-yl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate (30)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Diethyl (Z)-5-phenyl-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (3p)

Dimethyl (Z)-5-phenyl-2-((triisopropylsilyl)methylene)dihydroselenophene-3,3(2H)-dicarboxylate (4a)

¹³C-NMR Spectrum (101 MHz, CDCl₃)

Dimethyl (Z)-2-benzylidene-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4b)

Dimethyl (Z)-2-(3-methylbenzylidene)-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4c)

Dimethyl (Z)-2-butylidene-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4d)

¹³C-NMR Spectrum (101MHz, CDCl₃)

Dimethyl (Z)-2-(2,2-dimethylpropylidene)-5-phenyldihydroselenophene-3,3(2H)-dicarboxylate (4f)

Dimethyl (*Z*)-5-(4-chlorophenyl)-2-((trimethylsilyl)methylene)dihydroselenophene-3,3(2*H*)dicarboxylate 1-oxide (7c)

¹³C-NMR Spectrum (126MHz, CDCl₃)

¹³C-NMR Spectrum (101MHz, CDCl₃)

Methyl 5-(4-chlorophenyl)-2-methyl-4,5-dihydroselenophene-3-carboxylate (9c)

7. Crystal Structure Determination of Compound 8c

Crystals in the form of irregular colourless blocks were obtained by evaporation from a mixture of dichloromethane and *n*-heptane. The selected crystal was mounted in inert oil on a Hampton loop and transferred to the cold gas stream of a Rigaku/OD XtaLAB Synergy diffractometer. Mirror-focussed Mo- $K\alpha$ radiation was employed for the intensity measurements. Absorption corrections were implemented on the basis of multi-scans. The structure was refined anisotropically on F^2 using the program SHELXL-2018.¹⁰ The hydrogen atoms of the =CH₂ group were refined freely, but with C–H distances restrained to be approximately equal (command "SADI"); other hydrogen atoms were included using rigid methyl groups or a riding model starting from calculated positions.

Crystallographic data are summarized in Table S1, and an ellipsoid plot is presented as Fig. S1. Additionally, complete data have been deposited with the Cambridge Crystallographic Data Centre under the number CCDC 2210773. Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1. The molecule of compound **8c** in the crystal. Ellipsoids correspond to 50% probability levels. Selected bond lengths (Å) and angles (°): Se1–C1 1.9093(8), Se1–C4 1.9822(8), C1–C5 1.3328(11), C1–Se1–C4 89.56(3), Se–C1–C5 123.67(6), C2–C1–C5 125.73(7). The five-membered ring displays an envelope conformation, whereby C3 lies 0.64 Å out of the plane of the other four atoms (r.m.s. deviation < 0.01 Å).

Compound	8c		
Formula	C ₁₅ H ₁₅ ClO ₄ Se		
Mr	373.68		
Cryst. size (mm)	0.12 x 0.11 x 0.10		
Crystal system	triclinic		
Space group	P(-1)		
Temperature (°C)	-173		
<i>a</i> (Å)	7.85998(10)		
b (Å)	9.94396(14)		
<i>c</i> (Å)	11.27503(17)		
α (°)	114.4747(13)		
β (°)	96.3936(12)		
γ (°)	101.6968(12)		
V (ų)	766.31		
Ζ	2		
<i>D</i> _x (Mg m⁻³)	1.619		
λ (Å)	0.71073		
μ (mm⁻¹)	2.64		
Transmissions	0.895 – 1.000		
F(000)	376		
$2\theta_{max}$	38.3		
Refl. measured	91637		
Refl. indep.	8149		
R _{int}	0.028		
Parameters	200		
Restraints	1		
wR(F ² , all refl.)	0.057		
<i>R</i> (<i>F</i> , >4σ(<i>F</i>))	0.026		
S	1.12		
Max. ∆ <i>p</i> (e Å⁻³)	0.81, -0.52		

Table S1: Crystallographic data and structure refinement details for compound 8c.

8. References

- 1. A. U. Augustin; M. Busse; P. G. Jones; D. B. Werz, Formal insertion of thioketenes into donor– acceptor cyclopropanes by Lewis acid catalysis. *Org. Lett.*, 2018, **20**, 820.
- M. K. Ghorai; R. Talukdar; D. P. Tiwari, A route to highly functionalized β-enaminoesters via a domino ring-opening cyclization/decarboxylative tautomerization sequence of donor–acceptor cyclopropanes with substituted malononitriles. *Org. Lett.*, 2014, **16**, 2204.

- K. L. Ivanov; E. V. Villemson; E. M. Budynina; O. A. Ivanova; I. V. Trushkov; M. Y. Melnikov, Ring opening of donor–acceptor cyclopropanes with the azide ion: a tool for construction of *N*-Heterocycles. *Chem. Eur. J.*, 2015, **21**, 4975.
- 4. A. P. Kozikowski; L. Zhao; A. Zhang; C. Z. Wang; J. F. Anderson; K. M. Johnson. Structural remodeling of cocaine: design and synthesis of trisubstituted cyclopropanes as selective serotonin reuptake inhibitors. *ChemMedChem.*, 2006, **1**, 58.
- 5. P. Mueller; D. Fernandez, Carbenoid reactions in rhodium(II)-catalyzed decomposition of iodonium ylides. *Helv. Chim. Acta.*, 1995, **78**, 947.
- A. F. G. Goldberg; N. R. O'Connor; R. A. Craig; B. M. Stoltz, Lewis acid mediated (3+ 2)cycloadditions of donor–acceptor cyclopropanes with heterocumulenes. *Org. Lett.*, 2012, 14, 5314.
- A. Ghosh; A. K. Pandey; P. Banerjee, Lewis acid catalyzed annulation of donor–acceptor cyclopropane and *N*-tosylaziridinedicarboxylate: One-step synthesis of functionalized 2*H*-Furo[2,3-c]pyrroles. J. Org. Chem. 2015, **80**, 7235.
- S. R. Goudreau; D. Marcoux; A. B. Charrette, General method for the synthesis of phenyliodonium ylides from malonate esters: Easy access to 1, 1-cyclopropane diesters. *J. Org. Chem.* 2009, 74, 470.
- Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Diastereoselective synthesis of tetrahydrofurans via Pd(0)-catalyzed [3+ 2] cycloaddition of vinylcyclopropanes and aldehydes. *Org. Lett.* 2008, **10**, 2541.
- 10. G. M. Sheldrick, Acta Cryst. C71, 3-8 (2015).