Supporting Information for:

Highly Diastereo- and Enantioselective Copper-Catalyzed Methylboration of 1,2Dihydroquinolines and $\mathbf{2 H}$-Chromenes
Suna Han, ${ }^{\ddagger}$ Xin Shen ${ }^{\ddagger}$ Xiaoxue Wu, Chaochao Xie, Guofu Zi, and Guohua Hou*
Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
*ghhou@bnu.edu.cn
\ddagger These authors contributed equally.

Table of contents

1. General Information.. 2
2. Preparation of Substrates... S2
3. Copper-Catalyzed Enantioselective Methylboration of Substrates............. S6
4. The Characterization Data for Substrates.. S7
5. The Characterization Data for products..S13
6. X-ray Crystallography..S27
7. References... S29
8. NMR spectra of all compounds.. S30
9. SFC and HPLC spectra of all products... 88
10. Figures of single-crystals..S112

1. General Information

All the reactions were carried out under a nitrogen atmosphere unless otherwise apecified, the air or moisture sensitive reactions and manipulations were performed by using standard Schlenk techniques and in a nitrogen-filled glovebox. DME, THF and toluene were distilled from sodium benzophenone ketyl. DCE was distilled from calcium hydride. Anhydrous MeOH was distilled from magnesium. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV (400 MHz) spectrometers and JEOL JNM-ECX600P and JNM-ECS600 $(600 \mathrm{MHz})$ spectrometers $\left(\mathrm{CDC1}_{3}\right.$ was the solvent used for the NMR analysis, with TMS as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ${ }^{1} \mathrm{H}$ NMR. Data is represented as follows: chemical shift, integration, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$ and coupling constants (J) in Hertz (Hz). Optical rotation was determined using Autopol III Automatic polarimeter (Rudolph research Analyical). HPLC analysis was conducted on Agilent 1260 series instrument. SFC analysis was conducted on Agilent 1260 series instrument. HRMS were recorded on a Waters LCT Premier XE mass spectrometer with APCI or ESI.

2. Preparation of Substrates

Preparation of Substrates 1

To a solution of quinoline or substituted quinoline (20.0 mmol) in $\mathrm{MeOH}(30.0 \mathrm{~mL})$ was added dropwise $\mathrm{ClCO}_{2} \mathrm{R}(24.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, then $\mathrm{NaBH}_{4}(20.0 \mathrm{mmol})$ was added portionwise at $0^{\circ} \mathrm{C}$ over 1 h . The reaction mixture was then allowed to warm to room
temperature. After 2-3 h, the solution was carefully quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layers were dried over MgSO_{4}, filtered and evaporated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc as an eluent ($\mathrm{PE} / \mathrm{EA} /=4 / 1$ to $30 / 1$) to give the corresponding 1,2-dihydroquinoline ($\mathbf{1 a - 1 \mathbf { j } \text {) as light yellow oil, which was immediately }}$ used and stored at $-30^{\circ} \mathrm{C}$ under a nitrogen atmosphere in order to prevent decomposition. ${ }^{1}$

To a mixture of quinoline (10.0 mmol), acetic anhydride $(12.0 \mathrm{~mL})$ and acetic acid $(40.0 \mathrm{~mL})$ was gradually added $\mathrm{NaBH}_{4}(40.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ over 1.5 h . After the addition was complete, the reaction mixture was then allowed to warm to room temperature. After 1 h , the reaction mixture was concentrated under vacuum, diluted with $\mathrm{H}_{2} \mathrm{O}$, neutralized with sodium carbonate and extracted with DCM. The organic layers were dried over MgSO_{4}, filtered and evaporated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc as an eluent ($\mathrm{PE} / \mathrm{EA} /=$ $5 / 1$) to give the corresponding 1,2-dihydroquinoline $\mathbf{1 f}$ as a light yellow oil. ${ }^{2}$

Preparation of Substrates 3

a. Procedure for the preparation of 3a.

Chroman-4-one (5.0 mmol) was suspended in methanol $(50.0 \mathrm{~mL})$ and treated with an excess of $\mathrm{NaBH}_{4}(7.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 minutes at room temperature, then concentrated in vacuum. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers was then
combined, washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to yield the desired compound. ${ }^{3}$
p-Toluenesulfonic acid (3.0 mg) and hydroquinone $(5.0 \mathrm{mg})$ were added to a solution of chroman-4-ol $(5.00 \mathrm{mmol})$ in toluene $(20.0 \mathrm{~mL})$. The reaction mixture was heated under reflux using a Dean-Stark trap (2 h), washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (petroleum ether). ${ }^{4}$

b. Procedure for the preparation of $\mathbf{3 b}, \mathbf{3 g}, \mathbf{3 h}, \mathbf{3 i}$ and $\mathbf{3 j}$.

Equimolar quantities of chloropropionic acid $(0.05 \mathrm{~mol})$ and appropriate Phenol $(0.05 \mathrm{~mol})$ were placed in a conical flask, to which aqueous solution of NaOH (0.12 mol in 25 mL water) was slowly added with constant stirring and then heating to $75-80^{\circ} \mathrm{C}$, reacting for 12 h . After the reaction, with sufficient cooling and acidified by adding con. HCl , extracted with ethyl acetate, followed by saturated brine. It was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then solvent was removed. The crude product was purified by silica gel chromatography. ${ }^{5}$

3-Phenoxypropanoic acids were placed in a conical flask, to which sulfoxide chloride was quickly added with constant stirring. The reaction mixture was heated under reflux for 2 h , then concentrated in vacuo and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the mixture. The aluminum chloride anhydrous was added at $0^{\circ} \mathrm{C}$ and the reaction stirred for 1 h at $0^{\circ} \mathrm{C}$, then the reaction mixture was allowed to warm to rt . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ slowly at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by saturated brine. It was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then solvent was removed. The crude product was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=7: 1$); Then according to procedure for the preparation of $\mathbf{3}$.

c. Procedure for the preparation of other substrates.

To a solution of phenols $(50.0 \mathrm{mmol})$ in acetone $(200 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(200.0 \mathrm{mmol})$ and 3-bromoprop-1-yne (60.0 mmol). The resulting mixture was stirred at reflux temperature during
overnight and the reaction stopped by filtration and evaporation under vacuum. The crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by saturated brine. It was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then solvent was removed. The crude product was purified by silica gel chromatography. ${ }^{6}$

A mixture of (prop-2-yn-1-yloxy) benzene (10.0 mmol) and N, N-diethylaniline (1.6 mL) was refluxed for 8-12 h . After cooling to room temperature, the reaction mixture was diluted with ethyl acetate. The resulting mixture was washed with hydrochloric acid (2M), water and brine, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude product was purified by silica gel chromatography. ${ }^{6}$

d. Procedure for the preparation of 3 k .

Equimolar quantities of chloropropionic acid (0.05 mol) and appropriate Phenthiol $(0.05 \mathrm{~mol})$ were placed in a conical flask, to which aqueous solution of $\mathrm{NaOH}(0.12 \mathrm{~mol}$ in 25 mL water) was slowly added with constant stirring and then heating to $75-80^{\circ} \mathrm{C}$, reacting for 12 h . After the reaction, with sufficient cooling and acidified by adding con. HCl , extracted with ethyl acetate, followed by saturated brine. It was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then solvent was removed. The crude product was purified by silica gel chromatography.

3-(Phenylthio)propanoic acids were placed in a conical flask, to which sulfoxide chloride was quickly added with constant stirring. The reaction mixture was heated under reflux for 2 h , then concentrated in vacuo and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the mixture. The aluminum chloride anhydrous was added at $0^{\circ} \mathrm{C}$ and the reaction stirred for 1 h at $0^{\circ} \mathrm{C}$, then the reaction mixture was allowed to warm to rt . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ slowly at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by saturated brine. It was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then solvent was removed. The crude product was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=7: 1$); Then according to procedure for the preparation of $\mathbf{3}$.

3. Copper-Catalyzed Enantioselective Methylboration of Substrates

a. Copper-Catalyzed Enantioselective Methylboration of Substrates 1

In a nitrogen-filled glovebox, $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%),(S, S)-\mathrm{Ph}-\mathrm{BPE}(12.2 \mathrm{mg}, 0.024$ mmol, $12 \mathrm{~mol} \%$) and THF (1 mL), then the mixture was stirred 30 minutes at room temperature. To the mixture was added $\mathrm{B}_{2} \operatorname{pin}_{2}\left(76.2 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathbf{1}(0.20 \mathrm{mmol}, 1$ equiv $), \mathrm{CH}_{3} \mathrm{I}$ ($85.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) and ${ }^{t} \mathrm{BuOK}(33.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) successively. After that, 0.5 mL of THF was added along the vial's wall to keep all reacts into the reaction solution. The vial was sealed was a rubber stopper, removed from the glovebox and stirred at room temperature for 16 hours. Upon completion of the reaction, the reaction mixture was passed through a short silica gel column eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solvent was removed under vacuo, and the residue was purified by column chromatography on silica gel using petroleum ether/EtOAc as an eluent $(\mathrm{PE} / \mathrm{EA} /=10 / 1$ to $20 / 1$) to give the corresponding borylation products $\mathbf{2}$. The ee values of $\mathbf{2}$ were determined by HPLC or SFC analysis on a chiral stationary phase, the dr were determined by NMR analysis.

b. Copper-Catalyzed Enantioselective Methylboration of substrates 3

In a nitrogen-filled glovebox, $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%),(S, S)-\mathrm{Ph}-\mathrm{BPE}(12.2 \mathrm{mg}$, $0.024 \mathrm{mmol}, 12 \mathrm{~mol} \%$) and THF (1 mL), then the mixture was stirred 30 minutes at room
temperature. To the mixture was added $\mathrm{B}_{2} \operatorname{pin}_{2}(76.2 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and $\mathbf{3}(0.20 \mathrm{mmol}, 1$ equiv), $\mathrm{CH}_{3} \mathrm{I}$ ($85.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) and ${ }^{t} \mathrm{BuOK}(33.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) successively. After that, 0.5 mL of THF was added along the vial's wall to keep all reacts into the reaction solution. The vial was sealed was a rubber stopper, removed from the glovebox and stirred at room temperature for 16 hours. Upon completion of the reaction, the reaction mixture was passed through a short silica gel column eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solvent was removed under vacuo, and the residue was purified by column chromatography on silica gel using petroleum ether/EtOAc as an eluent $(\mathrm{PE} / \mathrm{EA} /=20 / 1$ to $100 / 1)$ to give the corresponding borylation products 4 . The ee values of 4 were determined by HPLC or SFC analysis on a chiral stationary phase, the dr were determined by NMR analysis.

4. The Characterization Data for Substrates

Methyl quinoline-1(2H)-carboxylate (1a)

 $1 \mathrm{H}), 4.41(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 154.8,136.4$, $128.1,127.5,126.5,126.4,125.6,124.5,123.7,53.1,43.6$.

Methyl 6-methylquinoline-1(2H)-carboxylate (1b)

$3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=4.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$
$\mathrm{MHz}) \delta: 154.9,134.1,133.9,128.1,126.9,126.5,123.5,53.1,43.6,20.9$.

Methyl 7-methylquinoline-1(2H)-carboxylate (1c)

1.1 g , yield: $27 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), .79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=$ $9.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta: 154.9,137.5,136.3,126.4,126.2,125.5,125.3,124.2,53.1,43.6,21.7$.

Methyl 6-methoxyquinoline-1(2H)-carboxylate (1d)

0.92 g , yield: $21 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.46(\mathrm{~s}, 1 \mathrm{H}), 6.75$ $(\mathrm{dd}, J=11.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=4.1 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 156.9,155.4,130.0,129.7,127.0,125.3,113.3$, 111.7, 56.0, 53.5, 44.0.

Methyl 6-bromoquinoline-1(2H)-carboxylate (1e)

 0.54 g, yield: $10 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (dd, $J=8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta: 155.0,135.8,130.6,130.3,129.4,127.4,125.9,125.7,117.7,53.7,44.0$.

Methyl 7-bromoquinoline-1(2H)-carboxylate (1f)

6.00-5.95 (m, 1H), $4.37(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta:}$ $154.9,137.9,128.0,127.9,127.2,126.9,126.2,121.2,53.8,44.1$.

Isopropyl quinoline-1(2H)-carboxylate (1g)

0.61 g , yield: $14 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=9.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.39(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 154.4,137.1,128.5,127.8,127.0,126.8,126.1,124.7,124.1,70.3,43.8$, 22.6.

Isobutyl quinoline-1(2H)-carboxylate (1h)

0.51 g , yield: $11 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.59(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{dt}, J=9.5 \mathrm{~Hz}$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.98(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 154.9,137.0,128.5,127.8$, $127.0,126.8,126.1,124.8,124.2,72.8,43.9,28.4,19.7$.

Phenyl quinoline-1(2H)-carboxylate (1i)

2.3 g , yield: $46 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.58(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.06(\mathrm{~m}, 1 \mathrm{H})$, $4.56(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 153.2,151.6,136.5,129.9,128.8,128.1,127.1,127.0$, 126.2, 125.5, 124.3, 122.2, 44.4.

Benzyl quinoline-1(2H)-carboxylate (1j)

1.65 g , yield: $31 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45-7.34 (m, 5H), 7.26-7.21 (m, 1H), 7.13-7.08 (m, 2H), $6.52(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta: 154.7,136.9,136.8,129.2,128.8,128.7,128.6,128.0,127.0,126.9,126.0,125.1,124.3,68.3$,
44.2.

1-(Quinolin-1(2H)-yl)ethanone (1k)

1.02 g , yield: 59%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.28-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.10-6.09(m, 1H), $4.47(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150\right.$
$\mathrm{MHz}) \delta: 170.1,137.1,129.4,128.3,127.2,126.5,126.2,125.7,123.9,41.4,22.5$.

2H-chromene (3a)

 $\mathrm{Hz}, 1 \mathrm{H}), 5.63-5.59(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{dt}, J=2.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 143.3$, 123.4, 121.3, 119.7, 118.0, 117.6, 117.1, 112.6, 72.5.

8-methyl-2H-chromene (3b)

$0.62 \mathrm{~g}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-$ $6.60(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{dt}, J=9.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dt}, J=9.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}$, $J=3.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 152.0,130.7,125.0,124.9,124.3$, 121.9, 121.6, 120.6, 65.4.

8-isopropyl-2H-chromene (3c)

$1.24 \mathrm{~g}, 71 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.03(\mathrm{dd}, J=7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{dt}, J=9.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=9.7,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.75(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.12(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 151.1,135.8,126.1,125.3,124.2,122.3,121.8,121.0,65.3,26.7,22.6$.

8-(tert-butyl)-2H-chromene (3d)

$1.47 \mathrm{~g}, 78 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.14-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.67$ $(\mathrm{m}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, J=9.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.29(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 150.4,132.0,126.0,125.2,124.4,122.5,121.4,119.0$, 64.3, 34.4, 29.7.

8-methoxy-2H-chromene (3e)

$1.12 \mathrm{~g}, 69 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.88-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=$ $7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=9.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J$ $=3.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.6,142.7,124.5,123.0,122.0$, $120.8,118.9,112.0,65.7,55.9$.

8-phenyl-2H-chromene (3f)

$1.58 \mathrm{~g}, 76 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.49(\mathrm{dt}, J=9.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.8,137.9,130.5,129.3,128.0,127.0,126.0,124.9,122.9,122.1,121.2$, 65.4.

8-chloro-2H-chromene (3g)

$0.58 \mathrm{~g}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.13(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=9.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.77(\mathrm{dt}, J=9.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=3.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 149.8$, $129.8,125.1,124.1,123.7,122.6,121.6,120.8,66.4$.

6-bromo-2H-chromene (3h)

$0.92 \mathrm{~g}, 87 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.16(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=9.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.79(\mathrm{dt}, J=9.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=3.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 153.0$, $131.9,129.1,124.2,123.6,123.4,117.5,113.3,65.7$.

7-bromo-2H-chromene (3i)

${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.17(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J$ $=3.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta 153.1,131.6,129.0,124.1,123.6,123.2,117.5$, 113.2, 65.6.

6, 8-dimethyl-2H-chromene (3j)

$0.48 \mathrm{~g}, 59 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H})$, $6.28(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dt}, J=9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}$, $3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 150.4,131.4,129.9,125.1,124.8,124.7,121.9$, $121.8,65.5,20.5,15.5$.

5, 8-dimethyl-2H-chromene (3k)

$1.21 \mathrm{~g}, 76 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-$ $6.62(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{dt}, J=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 152.4,131.6,130.1,122.8,122.4$, $122.3,121.4,120.7,64.8,18.3,15.5$.

$0.52 \mathrm{~g}, 71 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{ddd}, J=7.8,1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{dt}, J=10.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94(\mathrm{dt}, J=10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=5.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 135.37,132.15,129.40,128.93,128.78,128.13,127.05,121.98,25.32,20.99$.

5. The Characterization Data for products

Methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-

1(2H)-carboxylate (2a)

$49.7 \mathrm{mg}, 75 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1$ H), $4.00(\mathrm{ddd}, J=12.9,5.7,0.91 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.06(\mathrm{qd}, J=7.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=12.2,5.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.20$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 155.6,136.8,136.3,127.2,126.2,123.6,123.2$, 83.6, 52.8, 43.3, 33.6, 25.1, 24.9, 24.8, 18.7. TOF-HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 332.2031, found 332.2028. 99.9% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=2.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$; HPLC condition: Lux 5 u Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa : hex $=10: 90,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}$ $=19.5 \min ($ minor $), \mathrm{t}_{\mathrm{B}}=20.6 \mathrm{~min}($ major $)$.

Methyl 4,6-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2b)
$47.0 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
 $1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}$, $J=12.9,5.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ $(\mathrm{qd}, J=7.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.52(2 \mathrm{H}, \mathrm{m}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3$ H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 155.6,136.1,134.3,132.6,127.8,126.8,123.5,83.6,54.8,52.8$, 43.1, $33.5,25.1,25.0,24.8,20.8,18.9$. TOF-HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 346.2188$, found 346.2190. 99.9% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=4.0\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}$ (1:1); HPLC condition: Lux $5 u$ Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa : hex $=10: 90,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=10.1$ $\min ($ major $), t_{\mathrm{B}}=11.4 \min ($ minor $)$.

Methyl 4,7-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-

 1(2H)-carboxylate (2c)
$51.1 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.60(\mathrm{~s}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=13.0,5.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{qd}, J=7.1,4.1 \mathrm{~Hz}, 1$ H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{dd}, J=11.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=2.21 \mathrm{~Hz}, 12 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 155.6,136.7,135.7,133.3,127.2,124.0,123.9,83.6,52.8$, 43.1, 33.1, 25.0, 24.8, 21.5, 19.0. TOF-HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 346.2188$, found 346.2190. 99% ee, dr $>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=3.6\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5u Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=$ $3.4 \min ($ minor $), \mathrm{t}_{\mathrm{B}}=3.7 \mathrm{~min}$ (major).

Methyl 6-methoxy-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-

 dihydroquinoline-1(2H)-carboxylate (2d)
$56.4 \mathrm{mg}, 78 \%$ yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.63(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 3.96$ $(1 \mathrm{H}$, ddd, $J=12.9,5.8,0.7 \mathrm{~Hz}), 3.76(6 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 3.70-3.62$
$(1 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}, \mathrm{qd}, J=7.1,4.0 \mathrm{~Hz}), 1.56(\mathrm{ddd}, J=12.1,5.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 1.19$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 155.6,130.1,124.7,112.4,111.4,83.6,55.5$, 52.8, 43.2, 33.9, 25.0, 24.8, 18.6. TOF-HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BNO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 362.2137$, found 362.2140. 99.9% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=4.3\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5 u Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=$ $6.7 \min ($ minor $), \mathrm{t}_{\mathrm{B}}=8.3 \min$ (major).

Methyl 6-bromo-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2e)

$57.4 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, J=13.0$, $5.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{td}, J=$ 7.1, 4.1 Hz), $1.54(\mathrm{dq}, J=9.6,3.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta: 155.4,138.3,136.0,129.8,129.1,125.1,115.9,100.0,83.7,52.9,43.4,33.5,24.9$, 24.8, 18.5. TOF-HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BBrNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 410.1136$, found $410.1139 .88 \%$ ee, dr $>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=9.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}$ (1:1); HPLC condition: Lux 5 u

Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa $:$ he $=10: 90,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=11.1 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{B}}=$ $13.9 \min$ (minor).

Methyl

7-bromo-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-

dihydroquinoline-1(2H)-carboxylate (2f)

$57.4 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}$,
 $J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=13.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 155.3$, 138.1, 134.8, 128.5, 126.1, 125.9, 119.4, 83.7, 53.0, 43.2, 33.2, 24.9, 24.8, 18.6. TOF-HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BBrNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 410.1136$, found $410.1138 .96 \%$ ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=-10.6(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1) ;$ HPLC condition: Lux 5 u Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa $:$ hex $=10: 90$, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=4.9 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{B}}=5.6 \mathrm{~min}$ (major).

Isopropyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2g)

$51.0 \mathrm{mg}, 71 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (hept, $J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (ddd, $J=12.9,5.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=12.8$, $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{qd}, J=7.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{qd}, J=5.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=6.2,3.1$ $\mathrm{Hz}, 6 \mathrm{H}), 1.23-1.22(12 \mathrm{H}, \mathrm{m}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 154.8$, 137.1, 136.3, 127.1, 126.0, 123.8, 122.9, 83.6, 69.3, 43.1, 33.6, 25.0, 24.8, 22.2, 18.7. TOF-HRMS Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 360.2344$, found $360.2341 .98 \% \mathrm{ee}, \mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=3.9(\mathrm{c}=1.0$,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=$ 10:90, $3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=2.8 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{B}}=3.0 \mathrm{~min}$ (major).

Isobutyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-

1(2H)-carboxylate (2h)

$56.7 \mathrm{mg}, 76 \%$ yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.73(\mathrm{~d}, J=8.3$ Hz, 1 H), 7.17-7.03 (2 H, m), 6.96 (td, J7.4, 1.2 Hz, 1 H), 4.04 (ddd, $J=12.9,5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.95(2 \mathrm{H}, \mathrm{m}), 3.66(\mathrm{dd}, J=12.9$, $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{qd}, J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00($ hept $, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=12.0,5.5$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta: 155.3,137.0,136.2,127.2,126.0,123.9,123.1,100.0,83.6,43.2,33.5,28.1,25.0,24.8,19.3$, 18.9. TOF-HRMS Calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 374.1498$, found $374.2501 .98 \% \mathrm{ee}, \mathrm{dr}>99: 1$. $[\alpha]_{D}{ }^{30}=-3.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5u Cellulose-1 (250 \times 4.60 mm), $\mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=3.0 \min$ (minor), $\mathrm{t}_{\mathrm{B}}=3.3 \mathrm{~min}$ (major). Phenyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate (2i)

$56.6 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.35 (m, 2 H$), 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{td}, J=7.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=13.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{qd}, J$ $=7.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=12.1,5.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 153.5,151.4,136.5,129.4,127.3,126.4,125.5,123.7,121.9,100.0$,
83.7, 83.6, 43.9, 33.6, 25.1, 25.0, 24.8, 18.8. TOF-HRMS Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 394.2188, found 394.2190. 99.9% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=10.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5 u Cellulose- $1(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; $t_{A}=9.4 \min ($ major $), t_{B}=10.2 \mathrm{~min}$ (minor).

Benzyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate ($\mathbf{2 j}$)
 $57.0 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.39 (m, 2 H), $7.35(\mathrm{td}, J=6.6,6.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H})$, 7.12 (ddd, $J=8.5,7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{td}$, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{qd}, J=7.1$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 12 \mathrm{H}),, 1.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta: 155.0,136.8,136.8,136.6,128.6,128.0,127.9,127.2,126.2,83.6,67.3,43.5,33.5,29.8$, 25.0, 24.8, 18.8. TOF-HRMS Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 408.2345$, found $408.2342 .99 .9 \%$ ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=4.6\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux $5 u$ Cellulose$1(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=11.3 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{B}}=13.9$ \min (major).

1-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinolin-1(2H)yl)ethanone (2k)

$29.4 \mathrm{mg}, 78 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.27-7.22(1 \mathrm{H}, \mathrm{m}), 7.17-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{qd}, J=7.2,4.0$
$\mathrm{Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150$ $\mathrm{MHz}) \delta: 170.6,126.7,126.1,124.9,124.7,83.6,34.1,29.4,24.9,24.8,23.7$. TOF-HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 316.2082$, found $316.2080 .99 \%$ ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=10.3(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=$ $10: 90,3.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=5.08 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{B}}=5.37 \mathrm{~min}$ (major).
methyl 4-ethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate (21)

Colorless oil, $21.8 \mathrm{mg}, 54 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84-3.76(\mathrm{~m}, 5 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 155.7,136.5,135.7,127.8,126.2,123.9$, $122.6,83.5,52.6,44.1,41.6,24.8,24.6,23.9,12.8$. TOF-HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BNO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 346.2188, found 346.2190. 80% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=31.5\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$; HPLC condition: Lux 5 u Cellulose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa : hex $=5: 95,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=$ $21.5 \min ($ major $), \mathrm{t}_{\mathrm{B}}=23.4 \min ($ minor $)$.
methyl 4-benzyl-3-hydroxy-3,4-dihydroquinoline-1(2H)-carboxylate (2m)

Colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.23-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.07-$ $3.02(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 155.6,139.5,137.2,130.1,129.2$, $128.5,127.3,126.9,126.3,124.4,123.9,66.4,53.1,51.4,44.0,34.2$. TOF-HRMS Calcd. for
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 298.1438$, found 298.1439. 89% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=-41.1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

HPLC condition: Lux 5 u Amylose-2 $(250 \times 4.60 \mathrm{~mm}), \mathrm{CO}_{2}: \mathrm{MeOH}=94: 6,3.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{A}}=9.7 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{B}}=10.2 \mathrm{~min}$ (major).

4,4,5,5-tetramethyl-2-(4-methylchroman-3-yl)-1,3,2-dioxaborolane (4a)

$60 \mathrm{mg}, 73 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.81$
 (td, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.30(\mathrm{ddd}, J=11.8$, 3.7, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dt}, J=12.5$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 152.97,128.38$, 127.97, 126.28, 118.90, 115.92, 82.69, 62.40, 29.02, 24.18, 23.89, 21.00. TOF-HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 275.1816$, found 275.1810. 99% ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}^{25}=-49.9\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1) ;$ SFC condition: Lux $5 u$ Cellulose-4 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3.0$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=2.9 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{B}}=3.3 \mathrm{~min}($ minor $)$.

2-(4,8-dimethylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4b)

$54 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 6.91(\mathrm{dd}, J=11.5,7.5 \mathrm{~Hz}$,
 $2 \mathrm{H}), 6.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{ddd}, J=11.4,3.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}$, $J=12.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{dt}, J=12.5$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 151.95,128.23$, $128.17,126.93,125.64,118.96,83.40,63.29,30.01,25.09,24.77,22.05,16.24$. TOF-HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 289.1973$, found 289.1972. 99.9% ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-42.4(\mathrm{c}=1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose-4 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=$

10:90, $3.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=3.1 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{B}}=3.4 \mathrm{~min}($ minor $)$.

2-(8-isopropyl-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4c)

$48 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.01(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}$,
 $1 \mathrm{H}), 6.90(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=$ $11.4,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=12.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dt}, J=13.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dt}, J=12.4,4.0 \mathrm{~Hz} 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $\left.12 \mathrm{H}), 1.19(\mathrm{dd}, J=8.1,6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}^{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 151.56,136.49,128.43,126.98$, $123.72,119.40,83.64,77.53,77.21,76.89,63.41,30.37,26.85,25.20,24.93,22.86,22.21$. TOFHRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 316.2106$, found 316.2100. 99.9\% ee, dr $>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-$ $29\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5u Cellulose-1 ($250 \times 4.60 \mathrm{~mm}$), $\mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=2.6 \min ($ major $), \mathrm{t}_{\mathrm{B}}=2.8 \min ($ minor $)$.

2-(8-(tert-butyl)-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4d)

 $48 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.09(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{ddd}, J=7.5,1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (ddd, $J=11.3,3.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=12.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 1.81$ $-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta: 153.33,137.78,129.02,127.67,124.29,118.91,83.33,62.62,34.96,30.43,29.78,25.08,24.83$, 22.24. TOF-HRMS Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 331.2443$, found $331.2444 .99 .9 \%$ ee, $\mathrm{dr}>99: 1$; $[\alpha]_{\mathrm{D}}{ }^{25}=-52.5\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; HPLC condition: Lux 5 u Amylose-1 ($250 \times$ 4.60 mm), ipa : hex $=3: 97,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=7.8 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{B}}=8.2 \mathrm{~min}$ (major).

2-(8-methoxy-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4e)

$59 \mathrm{mg}, 65 \%$ yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 6.76(\mathrm{dd}, J=8.2,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70-6.65(\mathrm{~m}, ~, 2 \mathrm{H}), 4.45(\mathrm{ddd}, J=11.5,3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=$ $12.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=12.7,4.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 1.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 148.36,143.51,129.53$, $121.39,119.11,108.75,83.62,63.65,55.86,29.78,25.06,24.83,21.87$. TOF-HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 305.1922$, found $305.1926 .99 \% \mathrm{ee}, \mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-25.0\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose- $1(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=5.3 \min (\operatorname{minor}), \mathrm{t}_{\mathrm{B}}=5.9 \min$ (major).

4,4,5,5-tetramethyl-2-(4-methyl-8-phenylchroman-3-yl)-1,3,2-dioxaborolane (4f)

$85 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.52(\mathrm{dt}, \mathrm{J}=8.1,1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{dt}, \mathrm{J}=4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=7.5,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, \mathrm{J}$ $=11.5,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=12.3,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.32(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 148.36,129.52,121.39$, 119.11, 108.75, 83.62, 77.29, 63.65, 55.86, 29.78, 25.06, 24.83, 21.87. TOF-HRMS Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 351.2130$, found 351.2129. 99% ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-48.6\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=5.9 \min (\operatorname{minor}), \mathrm{t}_{\mathrm{B}}=7.4 \min ($ major $)$.

2-(8-chloro-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4g)

$55 \mathrm{mg}, 59 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.14(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.5,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.2(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dt}, J=12.5,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 149.88,130.57,127.83$, 127.71, 121.38, 119.84, 83.73, 64.22, 30.15, 25.06, 24.78, 21.73. TOF-HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BClO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 309.1426$, found $309.1420 .90 \% \mathrm{ee}, \mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-36.6\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose-4 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=4.1 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{B}}=5.5 \mathrm{~min}$ (minor).

2-(6-bromo-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4h)

$59 \mathrm{mg}, 56 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.13(\mathrm{dd}, J=5.1,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{ddd}, J=7.7,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ $-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{dt}, J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25$ $(\mathrm{d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 153.33,131.75,130.94,130.07$, $118.69,111.70,83.72,63.54,29.94,25.03,24.79,21.66$. TOF-HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BBrO}_{3}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 353.0921$, found $353.0918 .84 \%$ ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-8.2\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5 u Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3 \mathrm{~mL} / \mathrm{min}, 230$ $\mathrm{nm} ; \mathrm{t}_{\mathrm{A}}=4.0 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{B}}=4.4 \mathrm{~min}$ (minor).

2-(7-bromo-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4i)

White soild, $43.1 \mathrm{mg}, 61 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.15-7.13(\mathrm{~m}$, $2 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{ddd}, J=11.4,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=$ $12.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dt}, J=12.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta 153.2,131.7,130.8,130.0,118.6,111.6,83.6,63.4,29.8,24.9,24.7,21.6$. TOF-HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BBrO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 354.0918$, found 354.0919. 99.9\% ee, $\mathrm{dr}>$ 99:1. $[\alpha]_{\mathrm{D}}{ }^{30}=-31.8\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$.

4,4,5,5-tetramethyl-2-(4,6,8-trimethylchroman-3-yl)-1,3,2-dioxaborolane (4j)

$61 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 6.77-6.67(\mathrm{dd}, J=$
 $24.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{ddd}, J=11.4,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.5$,
$11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=31.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.71$ $(\mathrm{m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 150.10,129.20$, 128.04, 127.90, 127.22, 125.60, 83.51, 63.23, 29.99, 25.08, 24.76, 22.07, 20.52, 16.10. TOF-HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 303.2129, found 303.2132. 99.9\% ee, dr $>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-64.6(\mathrm{c}=$ 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Cellulose-4 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}$ $=10: 90,3 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=3.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{B}}=3.5 \mathrm{~min}$ (minor).

4,4,5,5-tetramethyl-2-(4,5,8-trimethylchroman-3-yl)-1,3,2-dioxaborolane (4k)

$82 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
 $6.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{ddd}, J=11.4,3.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=$ $13.1,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dt}, J$ $=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 151.94$,
$133.83,127.90,126.47,123.51,120.93,83.57,77.32,77.11,76.90,62.59,27.26,25.10,24.78$, 19.27, 18.38, 16.26. TOF-HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 303.2129 , found 303.2131. 99% ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-51.3\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1)$; SFC condition: Lux 5 u Amylose$1(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=3.0 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{B}}=3.2 \mathrm{~min}$ (minor).

2-(4,6-dimethylthiochroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4l)

$50 \mathrm{mg}, 55 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 6.98-6.93(\mathrm{dd}, J=8.4$,

$0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.18(\mathrm{td}, J=13.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{qd}, J=7.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=12.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ $(\mathrm{s}, 3 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 12 \mathrm{H}), 1.16(\mathrm{dd}, J=7.1,1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 139.35,133.10,130.12,128.32,127.34,126.32,83.70,77.41,77.09,76.77$, $33.99,25.00,24.77,23.66,20.89,19.81$. TOF-HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 305.1744$, found 305.1741. 99.9% ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-25.9\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Enantiomeric excess of the corresponding hydroxyl compound obtained by oxidation with NaBO_{3} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1); SFC condition: Lux 5 u Amylose-2 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90,3 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=2.9$ $\min ($ major $), \mathrm{t}_{\mathrm{B}}=3.1 \mathrm{~min}$ (minor).

4-methyl-8-phenylchroman-3-ol (5)

 $=9.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.30$,
$138.49,129.96,129.67,129.31,128.18,128.06,127.06,125.59,121.58,69.03,66.98,35.45$, 16.11.TOF-HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$263.1042, found 263.1041. 99.5\% ee, $\mathrm{dr}>99: 1$; $[\alpha]_{\mathrm{D}}{ }^{25}=-20.1\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ SFC condition:Lux $5 u$ Cellulose-1 $(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}$ $=10: 90,3 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=4.0 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{B}}=4.4 \min ($ minor $)$.

3-(furan-2-yl)-4-methyl-8-phenylchromane (6)

$22 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.54(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=22.7,7.5 \mathrm{~Hz}$, 2H), $6.96(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ $(\mathrm{dd}, J=9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dt}, J=10.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 153.62,150.60,141.44,138.68,130.06,129.66,129.12$, 128.91, 128.03, 127.49, 126.96, 120.41, 110.16, 105.80, 63.79, 36.62, 33.58, 19.10.TOF-HRMS Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 291.1384, found 291.1382. 99.5% ee, $\mathrm{dr}>99: 1 ;[\alpha]_{\mathrm{D}}{ }^{25}=-14.2(\mathrm{c}=$ $\left.0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; SFC condition:Lux 5 u Cellulose- $1(250 \times 4.60 \mathrm{~mm}), \mathrm{MeOH}: \mathrm{CO}_{2}=5: 95,3 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=6.2 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{B}}=7.7 \mathrm{~min}$ (major).

7-bromo-4-methylchroman-3-ol (7)

White soild, $41.3 \mathrm{mg}, 85 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.26-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.17(\mathrm{~m}$, $1 \mathrm{H}), 4.06(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.06-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz},\right) \delta 152.4,131.2,130.5,127.1,118.2,113.2,69.0,66.4$, 34.3, 15.5. TOF-HRMS Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 243.0015$, found $243.0018 .99 .9 \%$ ee, $\mathrm{dr}>$ 99:1. $[\alpha]_{\mathrm{D}}{ }^{30}=36.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC condition: Lux 5 u Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa : $h e x=10: 90,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=8.2 \min ($ minor $), \mathrm{t}_{\mathrm{B}}=11.3 \min$ (major).

7-bromo-4-methylchroman-3-yl methanesulfonate (8)

White soild, $57.3 \mathrm{mg}, 89 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.27(\mathrm{dd}, J=$ $2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=8.6,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{td}, J=4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=12.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=12.1,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta$ $152.1,131.0,130.6,125.5,118.3,113.4,74.8,66.2,38.8,33.1,15.9$. TOF-HRMS Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 320.9791$, found $320.9795 .99 \% \mathrm{ee}, \mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=1.34\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC condition: Lux 5 u Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa : hex $=7: 93,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=$ $20.2 \min ($ minor $), \mathrm{t}_{\mathrm{B}}=25.0 \min ($ major $)$.

7-bromo-4-methylchroman-3-yl 4-methylbenzenesulfonate (9)

White soild, $60.2 \mathrm{mg}, 75 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.82-7.80$

$(\mathrm{m}, 2 \mathrm{H}), 7.35(\mathrm{dt}, J=7.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.66$ $(\mathrm{m}, 1 \mathrm{H}), 4.88(\mathrm{ddd}, J=5.7,4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=11.7,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{ddd}, J=11.7,2.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dddd}, J=7.5,6.5,5.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta 152.1,145.2,133.6,130.9,130.8,130.0,127.8$, $125.8,118.3,113.2,75.3,65.3,33.2,21.7,16.0$. TOF-HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 397.0104, found 397.0105. 97% ee, $\mathrm{dr}>99: 1 .[\alpha]_{\mathrm{D}}{ }^{30}=39.3\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC condition: Lux 5 u Amylose-1 $(250 \times 4.60 \mathrm{~mm})$, ipa : hex $=10: 90,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm} ; \mathrm{t}_{\mathrm{A}}=13.5 \mathrm{~min}($ minor $)$, $\mathrm{t}_{\mathrm{B}}=16.8 \mathrm{~min}($ major $)$.

6. X-ray Crystallography

Single-crystal X-ray diffraction measurements were carried out on a Rigaku Saturn CCD diffractometer at 100 (2) K using graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=$
$1.54184 \AA$). An empirical absorption correction was applied using the SADABS program. ${ }^{7}$ All structures were solved by direct methods and refined by full-matrix least squares on F^{2} using the SHELXL program package. ${ }^{8}$ All the hydrogen atoms were geometrically fixed using the riding model. The crystal data and experimental data for 1b, 2a and 2p are summarized in Table S1.

Crystal parameters

Table S1. Crystal Data and Experimental Parameters for Compounds 2iand 4j

Compound	2 i	4j
Formula	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BNO}_{4}$	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NBO}_{3}$
Fw	393.27	302.2
crystal system	orthorhombic	orthorhombic
space group	$P 2{ }_{1}{ }_{1} 2_{1}$	$P 2{ }_{1}{ }_{1} 2_{1}$
$a(\AA)$	9.566(2)	7.331(2)
$b(\AA)$	12.058(3)	13.344(3)
$c(\AA)$	18.415(4)	17.277(4)
α (deg)	90	90
β (deg)	90	90
$\gamma(\mathrm{deg})$	90	90
$V\left(\AA^{3}\right)$	2124.16(8)	1690.05(7)
Z	4	4
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.230	1.188
$\mu(\mathrm{Mo} / \mathrm{K} \alpha)_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$	0.662	0.613
size (mm)	$0.20 \times 0.20 \times 0.20$	$0.25 \times 0.21 \times 0.15$
$F(000)$	840	656
2θ range (deg)	8.77 to 151.55	8.37 to 144.15
no. of reflns, collected	13039	6016
no of obsd reflns	4240	3222
no of variables	297	206
$\operatorname{abscorr}\left(T_{\text {max }}, T_{\text {min }}\right)$	1.00, 0.76	1.00, 0.94
R	0.044	0.038
$R_{\text {w }}$	0.11	0.098

$R_{\text {all }}$	0.045	0.039
Absolute structure parameter	$-0.02(7)$	$-0.04(9)$
Gof	1.053	1.06
CCDC	2174322	2174323

7. References

[1] D. Kong, S. Han, G. Zi, G. Hou and J. Zhang, J. Org. Chem. 2018, 83, 1924.
[2] V. K. Tiwari, G. G. Pawar, R. Das, A. Adhikary and M. Kapur, Org. Lett. 2013, 15, 3310.
[3] U. M. Battisti, S. Corrado, C. Sorbi, A. Cornia, A. Tait, D. Malfacini, M. C. Cerlesi, G. Calo and
L. Brasili, Med. Chem. Commun. 2014, 5, 973.
[4] D. R. Boyd, N. D. Sharma, N. I. Bowers, R. Boyle, J. S. Harrison, K. Lee, T. D. H. Bugg and D.
T. Gibson, Org. Biomol. Chem. 2003, 1, 1298.
[5] U. A. More, S. D. Joshi, T. M. Aminabhavi, A. K. Gadad, M. N. Nadagouda and V. H. Kulkarni, Eur. J. Med. Chem. 2014, 71, 199.
[6] Y. Sawada, T. Yanai, H. Nakagawa, Y. Tsukamoto, S. Yokoi, M. Yanagi, T. Toya, H.Sugizaki, Y. Kato, H. Shirakura, T. Watanabe, Y. Yajima, S. Kodama and A. Masui, Pest Manag Sci. 2002, 59, 36.
[7] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1996.
[8] G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

8. NMR spectra of all compounds.

Methyl quinoline-1(2H)-carboxylate (1a)

Methyl 6-methylquinoline-1(2H)-carboxylate (1b)

Methyl 7-methylquinoline-1(2H)-carboxylate (1c)

Methyl 6-methoxyquinoline-1(2H)-carboxylate (1d)

Methyl 6-bromoquinoline-1(2H)-carboxylate (1e)

Methyl 7-bromoquinoline-1(2H)-carboxylate (1f)

Isopropyl quinoline-1(2H)-carboxylate (1g)

$\stackrel{\square}{\text { a }}$

isobutyl quinoline-1(2H)-carboxylate (1h)

phenyl quinoline-1(2H)-carboxylate (1i)

[^0]
$\stackrel{10}{1}$

1-(quinolin-1(2H)-yl)ethanone (1k)

2H-chromene (3a)

\circ
$\stackrel{y}{2}$
\vdots

ल⿵冂⿱一口㇒⿵冂⿰入入一
$\stackrel{8}{6}$
$\stackrel{\leftrightarrow}{1}$
1

8-isopropyl-2H-chromene (3c)

8-(tert-butyl)-2H-chromene (3d)

8-phenyl-2H-chromene (3f)

8-chloro-2H-chromene (3g)

会

7-bromo-2H-chromene (3i)

6，8－dimethyl－2H－chromene（3j）

$\begin{aligned} & \text { 合 } \\ & \stackrel{\text { n}}{1} \end{aligned}$		势只会	$\begin{aligned} & \text { B } \\ & \text { Co } \\ & i \end{aligned}$	$\stackrel{\text { Nิ }}{\text { N}}$

5, 8-dimethyl-2H-chromene (3k)

6－methyl－2H－thiochromene（3I）

高気年表
＂どッ

水
तो
ले
ते

methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate (2a)

Methyl 4,6-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-

1(2H)-carboxylate (2b)

Methyl 4,7-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2c)

Methyl
6-methoxy-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2d)

methyl
6-bromo-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2e)

methyl
7-bromo-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2f)

Isopropyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)-carboxylate (2 g)

Isobutyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-

 1(2H)-carboxylate (2h)

Phenyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate (2i)

Benzyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate ($\mathbf{2 j}$)

1-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinolin-1(2H)-

yl)ethanone (2k)

methyl 4-ethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,4-dihydroquinoline-1(2H)carboxylate (21)

methyl 4-benzyl-3-hydroxy-3,4-dihydroquinoline-1(2H)-carboxylate (2m)

4,4,5,5-tetramethyl-2-(4-methylchroman-3-yl)-1,3,2-dioxaborolane (4a)

o
i
i
둔

$\left.\begin{array}{llllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}\right)$

2-(4,8-dimethylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4b)

2-(8-methoxy-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4e)


```
永会
```

$\stackrel{9}{9}$

※
ncin

2-(6-bromo-4-methylchroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4h)

 3.00

			$\begin{aligned} & \text { ®o } \\ & \text { cin } \\ & \text { ì } \end{aligned}$

O covacio
O covacio

$\begin{array}{lcccccccccccccccc}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & \begin{array}{c}80 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

2-(4,6-dimethylthiochroman-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4I)

○ 오앙
ค

4-methyl-8-phenylchroman-3-ol (5)

3-(furan-2-yl)-4-methyl-8-phenylchromane (6)

7－bromo－4－methylchroman－3－ol（7）

		Nす\％のロ	－응
	の¢둔응ㅇㅇ	¢\％ㅇㅇㅇNㅇ	\％\％
へNへ0000000			－－

-152.3622
$\mathcal{Z}_{130}^{131.51584}$
$\chi_{127.0532}$
-118.1926
-113.1943

-69.0062
-66.4369

-34.3098
-15.5217

7-bromo-4-methylchroman-3-yl methanesulfonate (8)

7-bromo-4-methylchroman-3-yl 4-methylbenzenesulfonate (9)

9. SFC and HPLC spectra of all compounds

Additional Info : Peak(s) manually integrated

					 OMe
	${ }_{2.5}^{1}$		4	${ }_{4.5}{ }^{1}$	${ }_{5.5}$
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.409 BB	0.0641	1967.26648	467.29135	49.6653
2	3.715 VB R	0.0708	1993.78064	431.16693	50.3347
Total	s :		3961.04712	898.45828	

			-29HSN-13-55.D) $90<\varepsilon$		Bpin Me
	${ }_{2.5}{ }^{1}$	${ }_{3}^{1} 1+1{ }^{\text {a }}$	4	$4.51+1{ }^{1}$	5.5
$\begin{gathered} \text { Peak } F \\ \# \end{gathered}$	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.403 VV R	0.0557	10.95594	2.59779	0.3205
2	3.706 VB R	0.0734	3407.81396	717.38831	99.6795
Totals	s :		3418.76990	719.98609	

Additional Info: Peak(s) manually integrated

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak R } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{gathered} \text { width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area 8
1	11.081	VV	0.2889	3.22400 e 4	1750.36707	49.8933
2	13.903		0.3716	3.23779 e 4	1360.56140	50.1067
Totals	s :			6.46179 e 4	3110.92847	

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	10.893	VV	0.2665	4506.07031	263.50348	93.7045
2	13.653	BB	0.3367	302.73715	14.08760	6.2955
Total	s :			4808.80746	277.59108	

Additional Info: Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	5.634	VV R	0.1034	416.64581	57.936	100.0000
Total	s :			416.64581	57.936	

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.021		0.0759	2054.07251	429.06149	50.0031
2	3.349	VB	0.0861	2053.82007	374.08072	49.9969

Totals : $4107.89258 \quad 803.14221$

Additional Info: Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	11.278	VV R	0.2023	2536.70386	178.53922	49.3008
2	13.910	VV R	0.2196	2608.66162	142.82715	50.6992
Totals	s :			5145.36548	321.36636	

$\frac{\text { Additional Info: Peak(s) manually integrated }}{\text { MWD1 } B, \text { Sig=254.4 Refoff (HSN2012-02-1915-2846HSN-14-9.D }}$

Peak RetTime Type $\#$ [min]	Width [min]	Area $[\mathrm{mAU*}$]	Height [mAU]	Area	\%

Additional Info : Peak(s) manually integrated

Additional Info : Peak (s) manually integrated

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	21.465		0.5662	1.67908 e 4	465.05923	90.2056
2	23.369	VB	0.6013	1823.11743	47.02920	9.7944

Additional Info : Peak(s) manually integrated

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.431		0.2258	5100.64453	324.57666	49.8497
2	10.005	VV R	0.2411	5131.39355	294.10269	50.1503

Totals : 1.02320 e 4 618.67935

Additional Info : Peak(s) manually integrated

Totals :
5917.14896351 .03730

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.861	VV R	0.0588	4787.90186	1305.30164	99.4283
2	3.339	VV R	0.0608	27.52984	5.85816	0.5717

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	3.114	BV R	0.0642	3167.29956	782.27649	48.6322
2	3.414	VV R	0.0727	3345.45605	720.32324	51.3678
Total	3 :			6512.75562	1502.59973	

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.117	BV R	0.0636	2169.33716	543.5138	00.0000
Totals : 2169.33716 543.51						

Additional Info : Peak(s) manually integrated

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\text { mAU }]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.741	BV	0.1867	311.91870	26.24359	49.5333
2	8.227	VB	0.1964	317.79617	25.15459	50.4667
Tota	s :			629.71487	51.39818	

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U{ }^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.307	VV	0.0475	11.11751	2.85231	0.1293
2	5.882	VV R	0.1128	8587.05273	1097.82520	99.8707

Totals :
8598.170251100 .67751

Additional Info : Peak(s) manually integrated

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU] [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.920	VV R	0.1102	2.38807 e 4	2866.53687	49.0752
2	7.374	VV R	0.1566	2.47808 e 4	2408.00488	50.9248
Total	s :			$4.86615 e 4$	5274.54175	

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.956	VV R	0.0820	42.49166	6.69762	0.2635
2	7.405	VV R	0.1492	1.60848 e 4	1650.57251	99.7365
Total	s :			1.61273 e 4	1657.27013	

Additional Info : Peak(s) manually integrated

Additional Info : Peak(s) manually integrated

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.972	BV R	0.0771	1916.52222	378.67670	49.9353
2	4.451	$B V \mathrm{R}$	0.0876	1921.49011	336.39191	50.0647
Tota	s :			3838.01233	715.06860	

Additional Info : Peak(s) manually integrated

Additional Info : Peak(s) manually integrated

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.261	VB	0.2880	2179.18311	117.6916	100.0000
Tota	S :			2179.18311	117.6916	

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.152	VV R	0.0603	830.64777	214.20097	50.0507
2	3.488	BV R	0.0677	828.96552	192.53253	49.9493
Tota	S :			1659.61328	406.73351	

Additional Info : Peak(s) manually integrated
MWD1 D, Sig=230,4 Ref=off (SX12019-07-1916-14-55SX-2-49-G.D)

Peak $\#$ $\#$ RetTime [min]	Width [min]	Area $\left[\mathrm{mAU}^{\star} \mathrm{s}\right]$	Height [mAU]	Area
$\%$				

Totals :
4207.896001073 .86365

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.969	BB	0.0528	491.87753	146.15196	46.7430
2	3.222	VB R	0.0576	560.42511	151.61177	53.2570
Total	s :			1052.30264	297.76373	

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.937	BV R	0.0540	3654.46167	1066.58069	99.7853
2	3.190	BV R	0.0471	7.86413	2.12698	0.2147
Total	s :			3662.32580	1068.70766	

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	2.944	VB	0.0277	4.73446	2.61115	0.0741
2	3.104	BB	0.0679	6386.38184	1478.07861	99.9259
Tota	s :			6391.11630	1480.68976	

Additional Info : Peak(s) manually integrated
Additional Info : Peak (s) manually integrated

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.920	VV R	0.1102	2.38807 e 4	2866.53687	49.0752
2	7.374	VV R	0.1566	2.47808 e 4	2408.00488	50.9248

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.956	VV R	0.0820	42.49166	6.69762	0.2635
2	7.405	VV R	0.1492	1.60848 e 4	1650.57251	99.7365

Additional Info : Peak(s) manually integrated

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.777 BB	0.1649	877.608	169.981	0.00

Totals :
1877.60864169 .98178

Additional Info : Peak(s) manually integrated

$\begin{aligned} & \text { Peak } \\ & \end{aligned}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.030	BV	0.3250	3.10173 e 4	1459.29297	50.0124
2	16.134	BV	0.3796	3.10018 e 4	1266.39172	49.9876

Totals :
$6.20191 e 4 \quad 2725.68469$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	13.532		0.3401	72.00000	3.33219	1.2506
2	16.837	VB	0.4025	5685.14551	218.52538	98.7494

10. Figures of single-crystals

Figure S1. Structure of compound 2i.

Figure S2. Structure of compound $\mathbf{4 j}$.

[^0]:

