Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Copper halide mediated synthesis of mesoionic 6-halo-

[1,2,3]triazolo[5,1-*a*]isoquinoliums: further transformation to

polyheterocycles

Yangang Wu, Wen Zhang, Xiaolong Pan, Chuanjun Song,* Junbiao Chang*

College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China

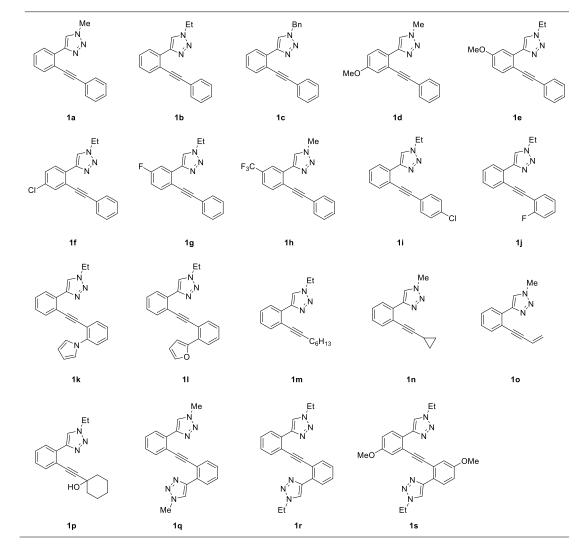

E-mail: chjsong@zzu.edu.cn; changjunbiao@zzu.edu.cn

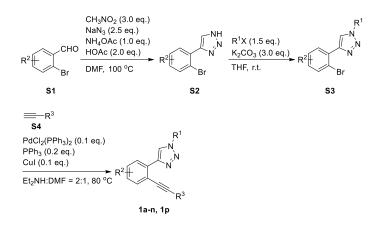
Table of Contents

1. General Information	2
2. Synthesis and analytical data of compounds 1	2
3. Synthesis and analytical data of compounds 2	12
4. Analytical data of compound 3aa	22
5. Synthesis and analytical data of compounds 4	22
6. Synthesis and analytical data of compounds 5 and 6	23
7. Synthesis and analytical data of compounds 7a–7c	24
8. Control experiment to elucidate the reaction mechanism	26
9. Crystallographic Data	27
10. References	32
11. NMR spectra	

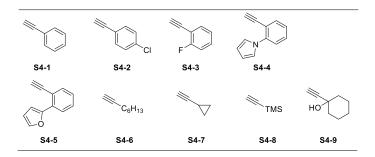
1. General Information

¹H and ¹³C NMR spectra were recorded on a 400 MHz (100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR) spectrometer. Chemical shift values are reported in ppm (parts per million) with tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; td, triplet of doublets. The coupling constants (*J*) are reported in Hertz (Hz). Melting points were determined on a XT4A micromelting point apparatus and are uncorrected. High-resolution mass spectra (HRMS) were obtained on a Q-TOF Mass Spectrometer equipped with an electrospray ion source (ESI), and operated in the positive mode. Flash column chromatography was performed over 200-300 mesh silica gel.

2. Synthesis and analytical data of compounds 1


Figure S1. Substrates involved in the manuscript

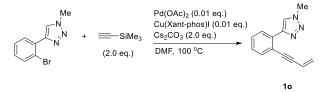
Substrates 1a-n, 1p were prepared by the following procedure


(i) Aldehydes **S1** (5.0 mmol), nitroalkanes (15.0 mmol), NaN₃ (12.5 mmol), HOAc (10.0 mmol), NH₄OAc (5.0 mmol) and DMF (30 mL) were charged in a 100 mL round bottom flask. Then, the reaction mixture was stirred at 100 °C for 0.5-2 h.^[1] After the reaction was completed (detected by TLC), the mixture was cooled to room temperature. The reaction was quenched with H₂O (30 mL) and extracted with EtOAc (30 mL×3). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The corresponding triazoles **S2** were obtained after purification by flash chromatography on silica gel.

(ii) Triazoles **S2** (3.0 mmol), methyl iodide/ethyl iodide/benzyl bromide (4.5 mmol), K_2CO_3 (9.0 mmol) and THF (30 mL) were charged in a 100 mL round bottom flask. Then, the reaction mixture was stirred at room temperature overnight. After the reaction was completed (detected by TLC), the reaction was quenched with H₂O (30 mL) and extracted with EtOAc (30 mL×3). The filtrate was evaporated *in vacuo*. The corresponding triazoles **S3** were obtained after purification by flash chromatography on silica gel.

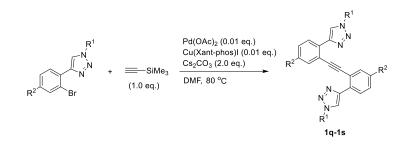
(iii) In a dry 100 mL round bottom flask, a reaction mixture of 4-(2-bromophenyl)-1,2,3-triazole **S3** (3.0 mmol), PdCl₂(PPh₃)₂ (0.3 mmol), CuI (0.3 mmol), triphenylphosphine (0.6 mmol) and terminal alkyne **S4** (15.0 mmol) in Et₂NH/DMF (30 mL, 2:1) was heated at 80 °C for 5-10 h until substrate **S3** consumed as indicated by TLC.^[2] The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford **1a-n**, **1p**.

Terminal alkyne substrates S4



Compounds S4 (1-3), (6-9) were purchased from commercial sources.

Compounds **S4** (4–5) were synthesized according to literature procedure method as described.^[3]


Substrate 10 was prepared by the following procedure

In a dry 35 mL glass tube, a reaction mixture of 4-(2-bromophenyl)-1,2,3-triazole **S3** (3.0 mmol), Pd(OAc)₂ (0.03 mmol), Cu(Xant-phos)I (0.03 mmol), Cs₂CO₃ (6.0 mmol) and trimethylsilylacetylene (6.0 mmol) in DMF (5 mL) was heated at 100 °C for 10 h. The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford **10**.

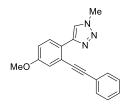
Substrates 1q-s were prepared by the following procedure

In a dry 35 mL glass tube, a reaction mixture of 4-(2-bromophenyl)-1,2,3-triazole **S3** (3.0 mmol), Pd(OAc)₂ (0.03 mmol), Cu(Xant-phos)I (0.03 mmol), Cs₂CO₃ (6.0 mmol) and trimethylsilylacetylene (3.0 mmol) in DMF (5 mL) was heated at 80 °C for 5-10 h until substrate consumed as indicated by TLC.^[4] The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford **1q–1s**.

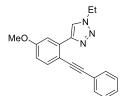
1-Methyl-4-(2-(phenylethynyl)phenyl)-1H-1,2,3-triazole 1a

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1); 88% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.37 (s, 1H), 8.28 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.62 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.52–7.50 (m, 2H), 7.45 (td, *J* = 7.6, 1.4 Hz, 1H), 7.41–7.38 (m, 3H), 7.32 (td, *J* = 7.6, 1.4 Hz, 1H), 4.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 146.1, 133.4, 132.0, 131.5, 129.1, 128.8, 128.7, 127.8, 127.6, 123.6, 123.1, 119.7, 93.6, 89.6, 36.9 ppm.

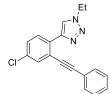
1-Ethyl-4-(2-(phenylethynyl)phenyl)-1H-1,2,3-triazole 1b


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1); 95% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.39 (s, 1H), 8.27 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.62 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.51–7.48 (m, 2H), 7.44 (td, *J* = 7.8, 1.4 Hz, 1H), 7.40–7.36 (m, 3H), 7.31 (td, *J* = 7.6, 1.2 Hz, 1H), 4.46 (q, *J* = 7.4 Hz, 2H), 1.58 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 145.8, 133.3, 132.2, 131.4, 129.1, 128.7, 128.7, 127.7, 127.6, 123.1, 121.9, 119.6, 93.6, 89.6, 45.4, 15.6 ppm.

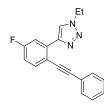
1-Benzyl-4-(2-(phenylethynyl)phenyl)-1H-1,2,3-triazole 1c


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1); 80% yield; yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (s, 1H), 8.29 (dd, J = 8.0, 0.9 Hz, 1H), 7.60–7.58 (m, 1H), 7.46–7.42 (m, 1H), 7.37–7.33 (m, 5H), 7.31–7.29 (m, 4H), 7.21–7.18 (m, 2H), 7.59 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 146.3, 134.7, 133.4, 132.0, 131.4, 129.3, 129.1, 128.9, 128.61, 128.59, 128.4, 127.8, 127.6, 123.0, 122.5, 119.7, 89.5, 54.4 ppm.

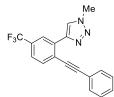
4-(4-Methoxy-2-(phenylethynyl)phenyl)-1-methyl-1H-1,2,3-triazole 1d


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); 90% yield; white solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.26 (s, 1H), 8.17 (d, *J* = 8.7 Hz, 1H), 7.53–7.48 (m, 2H), 7.43–7.37 (m, 3H), 7.13 (d, *J* = 2.8 Hz, 1H), 7.02 (dd, *J* = 8.8, 2.8 Hz, 1H), 4.13 (s, 3H), 3.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 159.0, 146.0, 131.5, 129.1, 128.83, 128.75, 125.2, 123.1, 122.8, 120.8, 117.5, 116.0, 93.4, 89.51, 55.6, 36.9 ppm.

1-Ethyl-4-(5-methoxy-2-(phenylethynyl)phenyl)-1H-1,2,3-triazole 1e

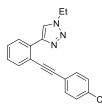

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); 75% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.45 (s, 1H), 7.84 (d, *J* = 2.7 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.50–7.47 (m, 2H), 7.40–7.35 (m, 3H), 6.87 (dd, *J* = 8.6, 2.7 Hz, 1H), 4.47 (q, *J* = 7.4 Hz, 2H), 3.91 (s, 3H), 1.59 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 160.2, 145.8, 134.8, 133.8, 131.3, 128.7, 128.4, 123.5, 122.1, 115.2, 111.8, 111.3, 92.4, 89.8, 55.7, 45.5, 15.7 ppm.

4-(4-Chloro-2-(phenylethynyl)phenyl)-1-ethyl-1H-1,2,3-triazole 1f

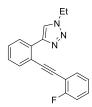

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); 78% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.37 (s, 1H), 8.22 (d, *J* = 8.6 Hz, 1H), 7.59 (d, *J* = 2.2 Hz, 1H), 7.51–7.48 (m, 2H), 7.41–7.38 (m, 4H), 4.46 (q, *J* = 7.4 Hz, 2H), 1.58 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 145.0, 133.3, 132.8, 131.5, 130.7, 129.3, 129.1, 128.9, 128.8, 122.6, 121.9, 121.1, 94.6, 88.34, 45.5, 15.6 ppm.

1-Ethyl-4-(5-fluoro-2-(phenylethynyl)phenyl)-1H-1,2,3-triazole 1g

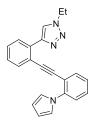
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); 75% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.44 (s, 1H), 8.01 (dd, *J* = 10.2, 2.7 Hz, 1H), 7.58 (dd, *J* = 8.6, 5.7 Hz, 1H), 7.51–7.46 (m, 2H), 7.42–7.37 (m, 3H), 7.00 (td, *J* = 8.2, 2.7 Hz, 1H), 4.46 (q, *J* = 7.4 Hz, 2H), 1.58 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 162.8 (d, *J*_{C-F} = 247.9 Hz), 144.8 (d, *J*_{C-F} = 2.5 Hz), 135.3 (d, *J*_{C-F} = 8.6 Hz), 134.5 (d, *J*_{C-F} = 9.1 Hz), 131.3, 128.8, 128.7, 122.9, 122.1, 115.6 (d, *J*_{C-F} = 3.2 Hz), 115.0 (d, *J*_{C-F} = 22.2 Hz), 114.3 (d, *J*_{C-F} = 24.0 Hz), 93.4, 88.7, 45.5, 15.6 ppm.


1-Methyl-4-(2-(phenylethynyl)-5-(trifluoromethyl)phenyl)-1H-1,2,3-triazole 1h

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1); 77% yield; brown solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.58 (s, 1H), 8.40 (s, 1H), 7.71–7.69 (m, 1H), 7.54–7.49 (m, 3H), 7.42–7.40 (m, 3H), 4.16 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 144.9, 133.9, 132.6, 131.5, 130.7

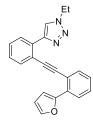

(q, $J_{C-F} = 32.7$ Hz), 129.3, 128.8, 124.6 (q, $J_{C-F} = 3.7$ Hz), 124.1 (q, $J_{C-F} = 3.6$ Hz), 123.9, 123.8 (q, $J_{C-F} = 270.8$ Hz), 123.0, 122.4, 95.9, 88.3, 37.0 ppm.

4-(2-((4-Chlorophenyl)ethynyl)phenyl)-1-ethyl-1H-1,2,3-triazole 1i


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); 78% yield; yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.31 (s, 1H), 8.24 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.60 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.47–7.40 (m, 3H), 7.36–7.29 (m, 3H), 4.46 (q, *J* = 7.4 Hz, 2H), 1.57 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 145.8, 134.8, 133.3, 132.6, 132.3, 129.3, 129.0, 127.8, 127.7, 121.8, 121.6, 119.4, 92.3, 90.5 45.5, 15.7 ppm.

1-Ethyl-4-(2-((2-fluorophenyl)ethynyl)phenyl)-1H-1,2,3-triazole 1j

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1); 90% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.71 (s, 1H), 8.33 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.53 (td, *J* = 7.4, 1.7 Hz, 1H), 7.46 (td, *J* = 7.6, 1.3 Hz, 1H), 7.38–7.29 (m, 2H), 7.19–7.12 (m, 2H), 4.48 (q, *J* = 7.4 Hz, 2H), 1.61 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 162.8 (d, *J*_{C-F} = 248.0 Hz), 145.4, 133.6, 133.5 (d, *J*_{C-F} = 1.4 Hz), 132.2, 130.4 (d, *J*_{C-F} = 8.1 Hz), 129.4, 127.6 (d, *J*_{C-F} = 8.9 Hz), 124.5 (d, *J*_{C-F} = 3.5 Hz), 122.4 (d, *J*_{C-F} = 5.8 Hz), 119.1, 115.8, 115.6, 111.8 (d, *J*_{C-F} = 15.3 Hz), 94.6, 87.5, 45.5, 15.6 ppm.


4-(2-((2-(1*H*-pyrrol-1-yl)phenyl)ethynyl)phenyl)-1-ethyl-1*H*-1,2,3-triazole 1k

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1); 80% yield; brown liquid; ¹H NMR (400 MHz, CDCl₃) δ =

8.22 (dd, J = 8.0, 0.9 Hz, 1H), 7.66 (s, 1H), 7.64–7.58 (m, 2H), 7.46–7.40 (m, 2H), 7.36–7.28 (m, 3H), 7.20 (t, J = 2.2 Hz, 2H), 6.34 (t, J = 2.2 Hz, 2H), 4.30 (q, J = 7.4 Hz, 2H), 1.48 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 145.2$, 141.6, 133.9, 133.7, 132.0, 129.7, 129.2, 127.6, 127.5, 126.5, 125.1, 122.1, 121.7, 119.2, 117.8 109.9, 93.7, 90.3, 45.3, 15.8 ppm.

1-Ethyl-4-(2-((2-(furan-2-yl)phenyl)ethynyl)phenyl)-1H-1,2,3-triazole 11

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1); 86% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (s, 1H), 8.27 (dd, J = 7.9, 0.9 Hz, 1H), 7.87 (dd, J = 8.0, 0.7 Hz, 1H), 7.65 (dd, J = 7.6, 1.0 Hz, 1H), 7.55 (dd, J = 7.7, 1.0 Hz, 1H), 7.50–7.46 (m, 2H), 7.42 (td, J = 7.8, 1.3 Hz, 1H), 7.35 (td, J = 7.6, 1.3 Hz, 1H), 7.29–7.24 (m, 2H), 6.43 (dd, J = 3.4, 1.8 Hz, 1H), 4.32 (q, J = 7.4 Hz, 2H), 1.44 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 151.9, 145.6, 142.2, 133.6, 133.3, 132.3, 131.9, 129.3, 129.1, 127.81, 127.80, 127.1, 126.0, 122.1, 119.8, 118.2, 111.9, 109.8, 93.7, 93.4, 45.4, 15.4 ppm.

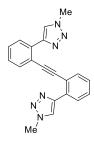
1-Ethyl-4-(2-(oct-1-yn-1-yl)phenyl)-1H-1,2,3-triazole 1m

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); 83% yield; brown liquid; ¹H NMR (400 MHz, CDCl₃) δ = 8.38 (s, 1H), 8.22 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.48 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.37 (td, *J* = 7.6, 1.4 Hz, 1H), 7.26–7.22 (m, 1H), 4.46 (q, *J* = 7.4 Hz, 2H), 2.48 (t, *J* = 7.4 Hz, 3H), 1.67–1.58 (m, 5H), 1.49–1.42 (m, 2H), 1.34–1.27 (m, 4H), 0.91–0.87 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 146.0, 133.6, 131.8, 128.3, 127.6, 127.4, 121.7, 120.5, 95.0, 80.9, 45.4, 31.5, 28.9, 28.8, 22.7, 19.9, 15.7, 14.2 ppm.

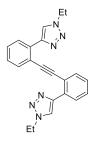
4-(2-(Cyclopropylethynyl)phenyl)-1-methyl-1*H*-1,2,3-triazole 1n

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1); 77% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (s, 1H), 8.20 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.45 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.36 (td, *J* = 7.5, 1.4 Hz, 1H), 7.23 (td, *J* = 7.6, 1.4 Hz, 1H), 4.16 (s, 3H), 1.55–1.48(m, 1H), 0.95–0.90 (m, 2H), 0.83–0.79 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 146.2, 133.6, 131.9, 128.3, 127.6, 127.4, 123.3, 120.4, 97.9, 76.0, 36.9, 8.5, 0.6 ppm.

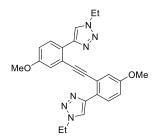
4-(2-(But-3-en-1-yn-1-yl)phenyl)-1-methyl-1H-1,2,3-triazole 10


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); 61% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.28 (s, 1H), 8.25 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.53 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.43 (td, *J* = 7.6, 1.4 Hz, 1H), 7.29 (td, *J* = 7.6, 1.3 Hz, 1H), 6.08 (dd, *J* = 17.6, 11.2 Hz, 1H), 5.73 (dd, *J* = 17.6, 1.9 Hz, 1H), 5.61 (dd, *J* = 11.2, 1.9 Hz, 1H), 4.16 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 146.0, 133.4, 132.0, 129.1, 127.7, 127.6, 127.4, 123.5, 119.5, 117.2, 92.5, 90.2, 36.9 ppm.

1-((2-(1-Ethyl-1H-1,2,3-triazol-4-yl)phenyl)ethynyl)cyclohexan-1-ol 1p

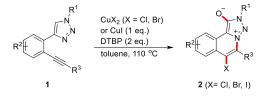

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); 87% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (s, 1H), 8.07 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.36 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.23 (td, *J* = 7.7, 1.4 Hz, 1H), 7.11 (td, *J* = 7.6, 1.3 Hz, 1H), 4.24 (q. *J* = 7.4 Hz, 2H), 1.98–1.94 (m, 2H), 1.66–1.60 (m, 4H), 1.53–1.43 (m, 3H), 1.39 (t, *J* = 7.4 Hz, 3H), 1.23–1.14 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 145.2, 133.2, 131.6, 128.4, 127.3, 127.1, 122.3, 119.5, 97.9, 83.5, 68.9, 45.2, 39. 8, 25.1, 23.2, 15.2 ppm.

1,2-Bis(2-(1-methyl-1H-1,2,3-triazol-4-yl)phenyl)ethyne 1q


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); 55% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.11 (dd, *J* = 7.9, 0.8 Hz, 2H), 7.99 (s, 2H), 7.62 (dd, *J* = 8.6, 0.9 Hz, 2H), 7.47 (td, *J* = 7.6, 1.4 Hz, 2H), 7.36 (td, *J* = 7.6, 1.4 Hz, 2H), 3.92 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 145.7, 133.1, 132.4, 129.5, 128.3, 128.1, 123.9, 120.0, 92.8, 36.8 ppm.

1,2-Bis(2-(1-ethyl-1H-1,2,3-triazol-4-yl)phenyl)ethyne 1r

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); 60% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.12 (d, *J* = 7.9 Hz, 2H), 8.08 (s, 2H), 7.56 (d, *J* = 7.24, 2H), 7.44–7.40 (m, 2H), 7.31 (td, *J* = 7.6, 0.9 Hz, 2H), 4.22 (q, *J* = 7.4 Hz, 4H), 1.34 (t, *J* = 7.4 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 145.2, 133.0, 132.3, 129.3, 127.9, 127.8, 122.1, 119.6, 92.9, 45.3, 15.3 ppm.


1,2-bis(2-(1-ethyl-1*H*-1,2,3-triazol-4-yl)-5-methoxyphenyl)ethyne 1s

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); white solid; 45% yield; ¹H NMR (400 MHz, CDCl₃) δ = 8.08

(d, J = 8.8 Hz, 2H), 7.95 (s, 2H), 7.13 (d, J = 2.8 Hz, 2H), 7.04 (dd, J = 8.8, 2.8 Hz, 2H), 4.22 (q, J = 7.4 Hz, 4H), 3.87 (s, 6H), 1.36 (t, J = 7.4 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.1$, 145.3, 129.6, 125.6, 121.5, 120.6, 117.5, 116.1, 92.7, 55.7, 45.4, 15.4 ppm.

3. Synthesis and analytical data of compounds 2

A solution of **1** (0.2 mmol), CuX_2 (X = Cl, Br) or CuI (0.2 mmol), and DTBP (0.4 mmol) in toluene (3 mL) in a sealed tube was stirred at 110 °C for 8-40 h until substrate **1** consumed as indicated by TLC. The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford **2**.

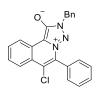
6-Chloro-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2aa

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 75% yield; yellow solid; mp: 205–206 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.88 (dd, *J* = 8.0, 0.6 Hz, 1H), 8.14 (dd, *J* = 8.3, 0.7 Hz, 1H), 7.75 (ddd, *J* = 8.2, 7.2, 1.2 Hz, 1H), 7.62–7.53 (m, 6H), 3.80 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.9, 131.8, 130.7, 130.54, 130.53, 129.2, 129.1, 127.5, 127.3, 125.9, 124.9, 124.8, 121.8, 114.6, 31.4 ppm; IR (neat): *v_{max}* 1648, 1606, 1449 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₇H₁₃³⁵ClN₃O: 310.0742, found: 310.0740.

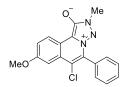
6-Bromo-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ab

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 70% yield; yellow solid; mp: 238–240 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.67 (d, *J* = 7.9 Hz, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.67–7.63 (m, 1H), 7.67–7.51 (m, 5H), 3.65 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 152.9, 133.6, 131.2, 130.6, 130.4, 130.1, 129.0, 127.5, 127.2, 125.5, 125.1, 120.2, 118.3, 113.4, 30.8 ppm; IR (neat): *v_{max}* 1648, 1251 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₇H₁₃⁷⁹BrN₃O: 354.0237, found: 354.0236.

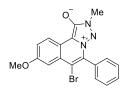
6-Iodo-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ac


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 72% yield; yellow solid; mp: 227–229 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.84 (dd, *J* = 8.0, 0.8 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.73–7.69 (m, 1H), 7.64–7.59 (m, 3H), 7.58–7.53 (m, 1H), 7.46–7.41 (m, 2H), 3.78 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.7, 136.7, 135.0, 132.8, 130.6, 130.5, 130.4, 129.3, 128.0, 127.9, 125.5, 121.8, 115.3, 99.7, 31.4 ppm; IR (neat): *v_{max}* 1643, 1408 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₇H₁₃IN₃O: 402.0098, found: 402.0096.

6-Chloro-2-ethyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ba

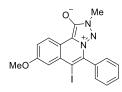

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 72% yield; yellow solid; mp: 211–212 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.88 (d, *J* = 8.6 Hz, 1H), 8.13 (d, *J* = 7.9 Hz, 1H), 7.73 (td, *J* = 7.4, 1.1 Hz, 1H), 7.62–7.57 (m, 4H), 7.56–7.53 (m, 2H), 4.25 (q, *J* = 7.3 Hz, 2H), 1.42 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.3, 131.8, 130.6, 130.6, 130.4, 129.2, 129.0, 127.4, 127.2, 126.0, 124.8, 124.8, 121.7, 114.6, 39.9, 14.5 ppm; IR (neat): v_{max} 1648, 1448 cm⁻¹; ESI-HRMS: m/z [M + H]⁺ calcd for C₁₈H₁₅³⁵ClN₃O: 324.0898, found: 324.0898.

2-Benzyl-6-chloro-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ca

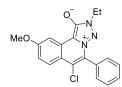

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 50% yield; yellow solid; mp: 53–55 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.68 (d, *J* = 7.4 Hz, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.82–7.78 (m, 1H), 7.66–7.62 (m, 3H), 7.61–7.56 (m, 3H), 7.33–7.29 (m, 2H), 7.27–7.25 (m, 3H), 5.33 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 152.8, 136.0, 132.1, 130.6, 130.5, 130.3, 129.0, 128.9, 128.6, 127.7, 127.5, 127.4, 126.0, 125.5, 124.4, 124.1, 120.2, 113.5, 47.0 ppm; IR (neat): *v_{max}* 1648, 1606, 1448 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C_{23H17}³⁵ClN₃O: 386.1055, found: 386.1057.

6-Chloro-8-methoxy-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2da

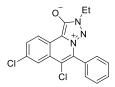
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); 75% yield; yellow solid; mp: 225–226 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.83 (d, *J* = 8.9 Hz, 1H), 7.62–7.59 (m, 3H), 7.56–7.53 (m, 3H), 7.37 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.97 (s, 3H), 3.80 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 159.3, 153.4, 132.2, 130.5, 129.3, 129.1, 126.7, 126.6, 123.6, 120.1, 120.0, 115.0, 106.9, 55.8, 31.4 ppm; IR (neat): *v_{max}* 1654, 1462 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₈H₁₅³⁵ClN₃O₂: 340.0847, found: 340.0848.


6-Bromo-8-methoxy-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4ium-1-olate 2db

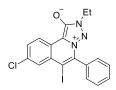
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 83% yield; yellow solid; mp: 253–255 °C; ¹H NMR (400 MHz, DMSO- d_6) δ = 8.62 (d, J = 8.7 Hz, 1H), 7.63–7.55 (m, 5H), 7.51–7.46 (m, 2H), 3.93 (s, 3H), 3.64 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ = 158.6, 152.4, 134.0,


131.4, 130.3, 130.1, 128.9, 126.9, 122.2, 119.6, 119.5, 117.7, 113.8, 109.4, 55.6, 30.7 ppm; IR (neat): v_{max} 1444, 1260 cm⁻¹; ESI-HRMS: m/z [M + H]⁺ calcd for C₁₈H₁₅⁷⁹BrN₃O₂: 384.0342, found: 384.0341.

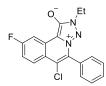
6-Iodo-8-methoxy-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2dc


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); 87% yield; yellow solid; mp: 281–283 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.81 (d, *J* = 8.8 Hz, 1H), 7.63–7.59 (m, 3H), 7.55 (d, *J* = 2.5 Hz, 1H), 7.44–7.42 (m, 2H), 7.32 (dd, *J* = 8.8, 2.5 Hz, 1H), 3.97 (s, 3H), 3.76 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 159.6, 137.1, 135.2, 130.4, 130.3, 129.7, 129.3, 128.7, 123.7, 119.59, 119.57, 115.4, 100.1, 99.0, 55.8, 31.4 ppm; IR (neat): *v_{max}* 1632, 1614, 1458 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₅IN₃O₂: 432.0203, found: 432.0203.

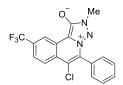
6-Chloro-2-ethyl-9-methoxy-5-phenyl-2H-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ea


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 71% yield; yellow solid; mp: 191–192 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.34 (s, 1H), 8.02 (d, *J* = 9.0 Hz, 1H), 7.60–7.53 (m, 5H), 7.12 (d, *J* = 9.0 Hz, 1H), 4.27 (br, 2H), 4.02 (s, 3H), 1.42 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 161.3, 130.8, 130.2, 129.5, 129.3, 128.9, 126.9, 126.4, 119.0, 118.1, 102.2, 56.0, 39.7, 14.6 ppm; IR (neat): *v_{max}* 1483, 1221 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₉H₁₇³⁵ClN₃O₂: 354.1004, found: 354.1005.

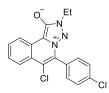
6,8-Dichloro-2-ethyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2fa


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 73% yield; yellow solid; mp: 205–206 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.81 (d, *J* = 8.6 Hz, 1H), 8.11 (d, *J* = 2.0 Hz, 1H), 7.68 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.62–7.58 (m, 3H), 7.57–7.53 (m, 2H), 4.25 (q, *J* = 7.3 Hz, 2H), 1.42 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.3, 133.4, 133.0, 131.1, 130.7, 130.5, 129.1, 128.8, 126.2, 126.0, 124.5, 124.4, 123.2, 114.3, 40.1, 14.4 ppm; IR (neat): *v_{max}* 1650, 1491, 1415 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₄³⁵Cl₂N₃O: 358.0508, found: 358.0507.

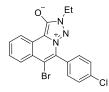
8-Chloro-2-ethyl-6-iodo-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2fc


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 85% yield; yellow solid; mp: 243–244 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.78 (d, *J* = 8.6 Hz, 1H), 8.08 (d, *J* = 2.0 Hz, 1H), 7.65–7.59 (m, 4H), 7.44–7.41 (m, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 137.9, 134.7, 133.7, 132.4, 130.9, 130.6, 130.3, 129.2, 124.0, 123.2, 97.6, 40.0, 14.4 ppm; IR (neat): *v_{max}* 1644, 1408 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₈H₁₄³⁵ClIN₃O: 449.9865, found: 449.9863.

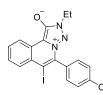
6-Chloro-2-ethyl-9-fluoro-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ga


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); 69% yield; yellow solid; mp: 184–185 °C; ¹⁹F NMR (376 MHz, CDCl₃) δ = -107.2 ppm; ¹H NMR (400 MHz, CDCl₃) δ = 8.52 (dd, *J* = 9.2, 2.6 Hz, 1H), 8.11 (dd, *J* = 9.0, 5.2 Hz, 1H), 7.61–7.58 (m, 3H), 7.56–7.51 (m, 2H), 7.27 (td, *J* = 8.1, 2.6 Hz, 1H), 4.24 (q, *J* = 7.3 Hz, 2H), 1.41 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 163.8 (d, *J*_{C-F} = 250.8 Hz), 153.4, 131.2 (d, *J*_{C-F} = 2.9 Hz), 130.6, 130.5, 129.0, 128.9, 127.6 (d, *J*_{C-F} = 11.5 Hz), 127.5 (d, *J*_{C-F} = 9.5 Hz), 126.7 (d, *J*_{C-F} = 1.0 Hz), 121.4 (d, *J*_{C-F} = 2.1 Hz), 115.8 (d, *J*_{C-F} = 23.9 Hz), 114.0 (d, *J*_{C-F} = 4.5 Hz), 107.3 (d, *J*_{C-F} = 25.0 Hz), 40.0, 14.4 ppm; IR (neat): *v_{max}* 1648, 1253, 1030 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₄³⁵ClFN₃O: 342.0804, found: 342.0802.

6-Chloro-2-methyl-5-phenyl-9-(trifluoromethyl)-2*H*-[1,2,3]triazolo[5,1*a*]isoquinolin-4-ium-1-olate 2ha


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 56% yield; yellow solid; mp: 260–262 °C; ¹⁹F NMR (376 MHz, CDCl₃) δ = -62.6 ppm; ¹H NMR (400 MHz, CDCl₃) δ = 9.12 (br, 1H), 8.24 (d, *J* = 8.6 Hz, 1H), 7.77 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.64–7.61 (m, 3H), 7.57–7.54 (m, 2H), 3.81 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.9, 133.7, 132.5 (q, *J*_{C-F} = 33.0 Hz), 130.9, 130.3, 129.2, 128.5, 126.9, 126.6, 125.9, 125.8, 123.7 (q, *J*_{C-F} = 271.3 Hz), 123.4 (q, *J*_{C-F} = 3.5 Hz), 118.9 (q, *J*_{C-F} = 4.1 Hz), 114.0, 31.6 ppm; IR (neat): *v_{max}* 1645, 1466 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₂³⁵ClF₃N₃O: 378.0616, found: 378.0615.

6-Chloro-5-(4-chlorophenyl)-2-ethyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ia


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); 70% yield; yellow solid; mp: 185–187 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.85 (d, *J* = 7.8 Hz, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 7.75–7.71 (m, 1H), 7.59–7.55 (m, 3H), 7.51–7.48 (m, 2H), 4.25 (q, *J* = 7.3 Hz, 2H), 1.42 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.3, 136.6, 132.1, 130.8, 130.7, 129.4, 127.5, 127.5, 127.4, 126.0, 124.8, 124.7, 121.7, 114.7, 39.9, 14.4 ppm; IR (neat): *v*_{max} 1646, 1482 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₄³⁵Cl₂N₃O: 358.0508, found: 358.0508.

6-Bromo-5-(4-chlorophenyl)-2-ethyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ib

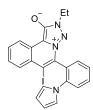
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 71% yield; yellow solid; mp: 245–246 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.86 (d, *J* = 7.9 Hz, 1H), 8.13 (d, *J* = 8.8 Hz, 1H), 7.75–7.71 (m, 1H), 7.58–7.55 (m, 3H), 7.47–7.44 (m, 2H), 4.24 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.3, 136.5, 132.3, 132.0, 130.8, 129.6, 129.5, 127.64, 127.63, 126.1, 125.7, 121.8, 119.8, 115.0, 39.9, 14.5 ppm; IR (neat): *v*_{max} 2851, 1648 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₄⁷⁹Br³⁵ClN₃O: 402.0003, found: 402.0007.

5-(4-Chlorophenyl)-2-ethyl-6-iodo-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ic

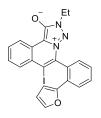
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 70% yield; yellow solid; mp: 246–247 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.83–8.81 (m, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.71–7.69 (m, 1H), 7.59–7.57 (m, 2H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.40–7.37 (m, 2H), 4.25–4.24 (m, 2H), 1.42–1.39 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 136.5, 135.7, 133.3, 132.8, 132.0, 130.7, 129.6, 128.0, 127.7, 125.5, 121.8, 99.7, 39.8, 14.5 ppm; IR (neat): *v*_{max} 1630, 1484 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₄³⁵ClIN₃O: 449.9865, found: 449.9867.

6-Chloro-2-ethyl-5-(2-fluorophenyl)-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2ja

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); 75% yield; yellow solid; mp: 193–194 °C; ¹⁹F NMR (376 MHz, CDCl₃) δ = -111.2 ppm; ¹H NMR (400 MHz, CDCl₃) δ = 8.88–8.86 (m, 1H), 8.14–8.12 (m, 1H), 7.77–7.73 (m, 1H), 7.64–7.56 (m, 2H), 7.53–7.49 (m, 1H), 7.38 (td, *J* = 7.6, 1.1 Hz, 1H), 7.32–7.27 (m, 1H), 4.32–4.18 (m, 2H), 1.42 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 161.6 (d, *J*_{C-F} = 249.8 Hz), 153.4, 132.8 (d, *J*_{C-F} = 8.3 Hz), 132.3 (d, *J*_{C-F} = 2.3 Hz), 134.0, 128.8, 127.4, 126.9, 126.3, 124.9, 124.7 (d, *J*_{C-F} = 3.6 Hz), 124.5, 121.8, 117.3 (d, *J*_{C-F} = 15.6 Hz), 116.5 (d, *J*_{C-F} = 21.0 Hz),


114.5, 39.9, 14.4 ppm; IR (neat): v_{max} 1657, 1487 cm⁻¹; ESI-HRMS: m/z [M + H]⁺ calcd for C₁₈H₁₄³⁵ClFN₃O: 342.0804, found: 342.0802.

2-Ethyl-5-(2-fluorophenyl)-6-iodo-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2jc


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 85% yield; yellow solid; mp: 250–252 °C; ¹⁹F NMR (376 MHz, CDCl₃) δ = -112.3 ppm; ¹H NMR (400 MHz, CDCl₃) δ = 8.82 (d, *J* = 7.9 Hz, 1H), 8.04 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.72–7.67 (m, 1H), 7.64–7.58 (m, 1H), 7.55–7.51 (m, 1H), 7.44–7.36 (m, 2H), 7.31–7.26 (m, 1H), 4.24 (br, 2H), 1.40 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 161.1 (d, *J*_{C-F} = 249.1 Hz), 153.2, 132.8, 132.7, 132.4 (d, *J*_{C-F} = 2.2 Hz), 132.1, 130.9, 127.9, 127.5, 125.8, 124.9 (d, *J*_{C-F} = 3.5 Hz), 123.0 (d, *J*_{C-F} = 15.8 Hz), 121.8, 116.5 (d, *J*_{C-F} = 20.8 Hz), 115.2, 100.8, 39.9, 14.4 ppm; IR (neat): *v_{max}* 1639, 1607, 1481 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₁₄FIN₃O: 434.0160, found: 434.0161.

5-(2-(1*H*-pyrrol-1-yl)phenyl)-2-ethyl-6-iodo-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2kc

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 88 % yield; yellow solid; mp: 150–151 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.76 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.71–7.65 (m, 2H), 7.58–7.47 (m, 4H), 6.60 (t, *J* = 2.1 Hz, 2H), 5.97 (t, *J* = 2.1 Hz, 2H), 4.31–4.22 (m, 1H), 4.12–4.04 (m, 1H), 1.36 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.1, 140.9, 134.9, 132.7, 131.8, 130.8, 130.2, 127.8, 127.6, 127.4, 126.3, 125.5, 121.7, 121.2, 114.9, 110.0, 100.8, 39.7, 14.4 ppm; IR (neat): *v*_{max} 1648, 1495 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₂₂H₁₈IN₄O: 481.0520, found: 481.0524.

2-Ethyl-5-(2-(furan-2-yl)phenyl)-6-iodo-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2lc

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); 75 % yield; yellow solid; mp: 230–231 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.84 (d, *J* = 8.0 Hz, 1H), 8.05 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.94 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.72 (t, *J* = 7.3 Hz, 1H), 7.64 (td, *J* = 7.6, 1.4 Hz, 1H), 7.56–7.49 (m, 2H), 7.39 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.17 (d, *J* = 1.2 Hz, 1H), 6.17 (dd, *J* = 3.4, 1.8 Hz, 1H), 5.92 (d, *J* = 3.4 Hz, 1H), 4.24–4.08 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.2, 151. 6, 142.8, 137.0, 132.6, 131.9, 130.9, 130.8, 130.7, 130.6, 128.2, 127.8, 127.7, 127.0, 125.5, 121.8, 111.8, 107.4, 99.6, 39.7, 14.4 ppm; IR (neat): *v_{max}* 1650, 1288 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₂₂H₁₇IN₃O₂: 482.0360, found: 482.0362.

6-Chloro-2-ethyl-5-hexyl-2H-[1,2,3]triazolo[5,1-a]isoquinolin-4-ium-1-olate 2ma

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1); 58% yield; yellow solid; mp: 93–95 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.81(d, *J* = 7.5 Hz, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.68–7.64 (m, 1H), 7.55–7.51 (m, 1H), 4.35 (q, *J* = 7.3 Hz, 2H), 3.29–3.25 (m, 2H), 1.78–1.70 (m, 2H), 1.53 (t, *J* = 7.3 Hz, 3H), 1.49–1.43 (m, 2H), 1.39–1.30 (m, 4H), 0.89 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.5, 133.7, 129.8, 127.2, 125.8, 125.2, 124.6, 124.2, 121.6, 114.1, 39.8, 31.5, 29.2, 27.5, 25.9, 22.6, 14.5, 14.2 ppm; IR (neat): *v*_{max} 1642, 1300 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₈H₂₃³⁵ClN₃O: 332.1524, found: 332.1524.

6-Chloro-5-cyclopropyl-2-methyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2na

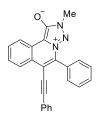
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); 60% yield; yellow solid; mp: 124–126 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.79 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 7.3 Hz, 1H), 3.91 (s, 3H), 2.11–2.04 (m, 1H), 1.34–1.28 (m, 2H), 1.21–1.13 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.9, 132.3, 130.0, 128.5, 127.2, 125.2, 124.8, 124.2, 121.5, 114.1, 31.4, 9.6, 8.9 ppm; IR (neat): *v*_{max} 1636, 1253 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₄H₁₃³⁵ClN₃O: 274.0742, found: 274.0744.

6-Iodo-2-methyl-5-vinyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 2oc

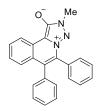
The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 88 % yield; yellow solid; mp: 115–116 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.81 (d, *J* = 7.9 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.66 (t, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 8.2 Hz, 1H), 7.06 (dd, *J* = 17.7, 12.2 Hz, 1H), 6.51 (dd, *J* = 17.7, 0.9 Hz, 1H), 6.01 (dd, *J* = 12.2, 0.9 Hz, 1H), 3.91 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.5, 133.1, 132.3, 131.0, 130.5, 128.0, 127.7, 127.6, 124.8, 121.6, 115.1, 99.6, 31.4 ppm; IR (neat): v_{max} 1637, 1260 cm⁻¹; ESI-HRMS: m/z [M + H]⁺ calcd for C₁₃H₁₁IN₃O: 351.9941, found: 351.9942.

6-Chloro-2-ethyl-2H-[1,2,3]triazolo[5,1-a]isoquinolin-4-ium-1-olate 2pa

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:2); 73% yield; yellow solid; mp: 164–165 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.76 (d, *J* = 8.0 Hz, 1H), 8.08 (s, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.73–7.69 (m, 1H), 7.58–7.54 (m, 1H), 4.31 (q, *J* = 7.3 Hz, 2H), 1.51 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.1, 132.2, 131.0, 128.7, 127.5, 126.6,124.3, 122.0, 120.5, 114.2, 39.8, 14.5 ppm; IR (neat): *v_{max}* 1642 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₁₂H₁₁³⁵ClN₃O: 248.0585, found: 248.0587.


4. Analytical data of compound 3aa

Yellow solid; mp: 186–187 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.85 (d, *J* = 8.0 Hz, 1H), 7.83–7.80 (m, 2H), 7.71–7.65 (m, 2H), 7.57–7.53 (m, 3H), 7.52–7.47 (m, 1H), 7.33 (s, 1H), 3.89 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 154.1, 134.3, 131.0, 130.4, 129.8, 129.3, 128.9, 127.2, 127.0, 126.4, 126.1, 121.8, 121.3, 115.9, 31.5 ppm; IR (neat): *v_{max}* 1648, 1495 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₁₇H₁₄N₃O: 276.1131, found: 276.1133.


5. Synthesis and analytical data of compounds 4

2-Methyl-5-phenyl-6-(phenylethynyl)-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate 4a

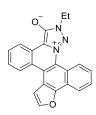
A mixture of 6-iodo-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1olate **2ac** (80.2 mg, 0.2 mmol), phenylacetylene (102.1 mg, 1.0 mmol), Pd(PPh₃)₂Cl₂ (14.0 mg, 0.02 mmol), CuI (3.8 mg, 0.02 mmol) and PPh₃ (10.5 mg, 0.04 mmol) in DMF/Et₂NH (5 mL, 1:1) was stirred at 80 °C for 12 h. The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 1:2) to afford **4a** as yellow solid; 71.4 mg, 95 % yield; mp: 227–228 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.87 (d, *J* = 8.0 Hz, 1H), 8.27 (d, *J* = 8.0 Hz, 1H), 7.78–7.76 (m, 2H), 7.72 (t, *J* = 7.1 Hz, 1H), 7.61–7.54 (m, 4H), 7.36–7.31 (m, 5H), 3.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 136.5, 131.7, 130.9, 130.5, 130.1, 129.3, 128.8, 128.6, 128.5, 127.3, 126.1, 126.0, 125.5, 122.2, 121.8, 115.6, 99.7, 83.5, 31.4 ppm; IR (neat): *v_{max}* 2920, 2000, 1511 cm⁻¹; ESI-HRMS: *m*/z [M + H]⁺ calcd for C₂₅H₁₈N₃O: 376.1444, found: 376.1446.

2-Methyl-5,6-diphenyl-2H-[1,2,3]triazolo[5,1-a]isoquinolin-4-ium-1-olate 4b

A mixture of 6-iodo-2-methyl-5-phenyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1olate **2ac** (80.2 mg, 0.2 mmol), phenylboronic acid (36.6 mg, 0.3 mmol) Pd(PPh₃)₄ (2.9 mg, 0.0025 mmol) and K₂CO₃ (110.6, 0.8 mmol) in EtOH:toluene:H₂O (7 mL, 1:4:2) was stirred at 100 °C for 10 h. The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) to afford **4b** as yellow solid; 68.9 mg, 98 % yield; mp: 270–272 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.94 (d, *J* = 7.9 Hz, 1H), 7.69–7.65 (m, 1H), 7.40–7.36 (m, 1H), 7.34–7.28 (m, 9H), 7.20–7.17 (m, 2H), 3.84 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 154.1, 134.8, 132.9, 132.1, 131.1, 130.9, 130.3, 129.6, 129.3, 128.4, 128.3, 128.0, 127.4, 126.8, 126.6, 126.2, 121.7, 115.2, 31.4 ppm; IR (neat): *v_{max}* 1648, 1438 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₂₃H₁₈N₃O: 352.1444, found: 352.1443.

6. Synthesis and analytical data of compounds 5 and 6

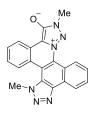
A mixture of 2jc/2kc (0.2 mmol), Pd(OAc)₂ (0.02 mmol), and ^{*t*}BuOLi (0.4 mmol) in DMF (5 mL) was stirred at 120 °C for 2 h until substrate 2jc/2kc consumed as indicated by TLC. The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford 5/6.


2-Ethyl-2*H*-dibenzo[*c*,*h*]pyrrolo[2,1-*f*][1,2,3]triazolo[1,5-*a*][1,6]naphthyridin-4ium-1-olate 5

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1); 95 % yield; yellow solid; mp: 233-235 °C; ¹H NMR (400

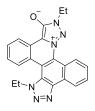
MHz, CDCl₃) δ = 9.75 (dd, *J* = 8.6, 1.0 Hz, 1H), 9.05 (dd, *J* = 8.0, 0.9 Hz, 1H), 8.74 (d, *J* = 8.4 Hz, 1H), 7.95–7.92 (m, 2H), 7.74–7.70 (m, 1H), 7.68–7.64 (m, 1H), 7.59–7.54 (m, 1H), 7.50–7.44 (m, 2H), 6.89 (dd, *J* = 4.1, 2.9 Hz, 1H), 4.48 (q, *J* = 7.3 Hz, 2H), 1.65 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 152.7, 133.1, 130.1, 129.7, 128.0, 127.1, 126.1, 125.9, 125.8, 124.4, 122.9, 121.9, 120.9, 119.5, 116.1, 114.9, 114. 8, 114.6, 114.2, 109.6, 39.9, 14.7 ppm; IR (neat): *v_{max}* 1643, 1408 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₂₂H₁₇N₄O: 353.1397, found: 353.1398.

9-Ethyl-9*H*-benzo[c]furo[3,2-*a*][1,2,3]triazolo[1,5-*f*]phenanthridin-11-ium-8-olate 6

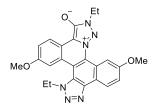


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1); 78 % yield; yellow solid; mp: 227–229 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.96 (d, *J* = 8.5 Hz, 1H), 9.10 (d, *J* = 7.9 Hz, 1H), 8.57 (d, *J* = 8.4 Hz, 1H), 8.40 (d, *J* = 7.4 Hz, 1H), 7.87 (d, *J* = 1.8 Hz, 1H), 7.76–7.68 (m, 3H), 7.62 (d, *J* = 1.8 Hz, 1H), 7.60–7.56 (m, 1H), 4.50 (q, *J* = 7.2 Hz, 2H), 1.68 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 152.9, 150.9, 145.0, 129.3, 127.9, 127.4, 127.3, 126.8, 125.4, 125.2, 124.7, 123.6, 122.5, 122.0, 121.9, 120.9, 120.5, 117.9, 114.8, 109. 6, 40.0, 14.7 ppm; IR (neat): *v_{max}* 1634, 1457 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₂₂H₁₆N₃O₂: 354.1237, found: 354.1236.

7. Synthesis and analytical data of compounds 7a-7c


A mixture of **1p–1r** (0.2 mmol), CuI (0.2 mmol) and DTBP (0.4 mmol) in toluene (3 mL) was stirred at 110 °C for 14-18 h until substrate **1p–1r** consumed as indicated by TLC. The cooled mixture was evaporated *in vacuo*, Pd(OAc)₂ (0.02 mmol), 'BuOLi (0.4 mmol) and DMF (5 mL) were then added. The mixture was heated to 120 °C for 2-3 h until the intermediate consumed as indicated by TLC. The cooled mixture was partitioned between H₂O (30 mL) and EtOAc (30 mL). The separated aqueous phase was extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (3 x 30 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel to afford **7a–7c**.

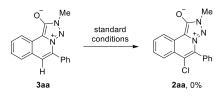
3,9-Dimethyl-3,9-dihydrobenzo[c]bis([1,2,3]triazolo)[4,5-a:1',5'-f]phenanthridin-11-ium-8-olate 7a


The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:2); 77 % yield; yellow solid; mp: 266–267 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.95 (d, *J* = 8.7 Hz, 1H), 9.06 (dd, *J* = 8.0, 0.7 Hz, 1H), 8.99 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.92–7.88 (m, 1H), 7.84–7.76 (m, 2H), 7.67–7.62 (m, 1H), 4.43 (s, 3H), 4.10 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 153.3, 143.1, 130.1, 129.7, 128.7, 128.1, 127.33, 127.25, 127.0, 126.4, 125.6, 125.3, 123.0, 122.6, 121.8, 121.3, 115.3, 114. 5, 40.3, 31.8 ppm; IR (neat): *v_{max}* 1654, 1259 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₂₀H₁₅N₆O: 355.1302, found: 355.1305.

3,9-Diethyl-3,9-dihydrobenzo[c]bis([1,2,3]triazolo)[4,5-a:1',5'-f]phenanthridin-11-ium-8-olate 7b

The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:2); 72 % yield; yellow solid; mp: 238–240 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.98 (d, *J* = 8.7 Hz, 1H), 9.07 (dd, *J* = 8.0, 0.7 Hz, 1H), 9.02 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.93–7.90 (m, 1H), 7.86–7.81 (m, 1H), 7.80–7.76 (m, 1H), 7.65–7.61 (m, 1H), 4.91 (q, *J* = 7.2 Hz, 2H), 4.55 (q, *J* = 7.3 Hz, 2H), 1.69 (t, *J* = 7.3 Hz, 3H), 1.38 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 152.9, 143.5, 130.2, 129.7, 128.2, 127.8, 127.5, 127.0, 126.6, 126.3, 125.8, 125.4, 123.1, 122.9, 122.0, 121.6, 115.4, 114.7, 47.8, 40.3, 15.3, 14.7 ppm; IR (neat): *v_{max}* 1654, 1259 cm⁻¹; ESI-HRMS: *m/z* [M + H]⁺ calcd for C₂₀H₁₅N₆O: 383.1615, found: 383.1614.

3,9-Diethyl-5,13-dimethoxy-3,9-dihydrobenzo[*c*]bis([1,2,3]triazolo)[4,5-*a*:1',5'*f*]phenanthridin-11-ium-8-olate 7c



The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:2); 74 % yield; red solid; mp: 226–227 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.60 (d, *J* = 2.4 Hz, 1H), 9.04 (d, *J* = 8.9 Hz, 1H), 8.94 (d, *J* = 8.9 Hz, 1H), 7.57 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.41 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.97 (q, *J* = 7.3 Hz, 2H), 4.52 (q, *J* = 7.3 Hz, 2H), 4.06 (s, 3H), 4.00 (s, 3H), 1.70 (t, *J* = 7.3 Hz, 3H), 1.33 (t, *J* = 7.3 Hz, 3H) ppm; IR (neat): *v_{max}* 1631, 1458 cm⁻¹; ESI-HRMS: *m*/*z* [M + H]⁺ calcd for C₂₄H₂₃N₆O₃: 443.1826, found: 443.1828.

8. Control experiment to elucidate the reaction mechanism

To elucidate the reaction mechanism for the formation of 6-halo-[1,2,3]triazolo[5,1-a]isoquinoliums **2**, the control experiment was conducted as follows. The reaction of [1,2,3]triazolo[5,1-a]isoquinolin-4-ium-1-olate **3aa** under the standard reaction conditions did not afforded 6-chloro-[1,2,3]triazolo[5,1-a]isoquinolin-4-ium-1-olate **2aa**. This suggested that vinylic C–H bromination of **3aa** did not proceed under the

present reaction conditions.

9. Crystallographic Data

6-Chloro-5-(4-chlorophenyl)-2-ethyl-2*H*-[1,2,3]triazolo[5,1-*a*]isoquinolin-4-ium-1-olate (2ia)

The structure of **2ia** was determined by X-ray diffraction. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2202803).

Table 1.	Crystal	data ar	nd structure	refinement	for 2ia
I abic I.	Crystar	uata al	iu sii utiui t	1 cimentent	

Empirical formula	$C_{18}H_{14}Cl_2N_3O$
Formula weight	359.22
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.4903(6)
b/Å	9.7844(8)
c/Å	10.1573(9)
$\alpha/^{\circ}$	117.682(9)
β/°	100.666(7)
γ/°	93.883(6)
Volume/Å ³	807.88(13)
Ζ	2
$\rho_{calc}g/cm^3$	1.477
μ/mm^{-1}	3.696
F(000)	370.0

Crystal size/mm ³	0.16 imes 0.12 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2@ range for data collection/°	9.634 to 134.168
Index ranges	$-11 \le h \le 11, -11 \le k \le 9, -12 \le l \le 11$
Reflections collected	5805
Independent reflections	2881 [$R_{int} = 0.0252, R_{sigma} = 0.0406$]
Data/restraints/parameters	2881/0/219
Goodness-of-fit on F ²	0.977
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0420, wR_2 = 0.1015$
	$R_1 = 0.0559, wR_2 = 0.1147$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.33

Table 2. Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for 2ia. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	у	Z	U(eq)
C1	5756(3)	8266(3)	-1550(3)	40.3(5)
C2	6130(2)	8612(3)	3(3)	38.1(5)
C3	7393(2)	9456(3)	1236(3)	38.9(5)
C4	8592(3)	10246(3)	1090(3)	47.4(6)
C5	9771(3)	11077(3)	2324(3)	54.1(7)
C6	9779(3)	11157(3)	3720(3)	53.1(7)
C7	8621(3)	10375(3)	3886(3)	47.5(6)
C8	7412(2)	9501(3)	2647(3)	39.3(5)
C9	6148(3)	8672(3)	2751(3)	40.0(5)
C10	4933(2)	7920(3)	1598(3)	37.7(5)
C11	3578(3)	7127(3)	1664(3)	38.5(5)
C12	3514(3)	5677(3)	1586(3)	53.4(7)
C13	2271(3)	4969(3)	1705(3)	58.1(7)
C14	1108(3)	5729(3)	1916(3)	50.6(7)
C15	1145(3)	7168(3)	1988(3)	51.4(7)
C16	2391(3)	7868(3)	1860(3)	45.4(6)
C17	3425(3)	6715(3)	-3613(3)	49.8(7)
C18	3153(4)	4949(3)	-4428(3)	66.8(9)
C11	6188.0(7)	8659.5(8)	4469.1(7)	50.0(2)
C12	-452.7(9)	4862.4(10)	2097.4(10)	79.1(3)
N1	4963(2)	7918(2)	225(2)	
N2	3859(2)	7162(2)	-1017(2)	
N3	4357(2)	7396(2)	-2069(2)	
01	6422(2)	8601(2)	-2335(2)	54.7(5)

2π2[h2a*2U11+2hka*b*U12+]						
Atom	U11	U22	U33	U23	U13	U12
C1	41.4(13)	35.3(12)	42.7(13)	18.2(10)	10.4(11)	3.7(10)
C2	34.8(12)	35.9(12)	43.2(13)	19.0(10)	10.6(10)	3.4(9)
C3	32.7(12)	34.1(12)	47.7(14)	18.1(10)	9.8(10)	6.0(9)
C4	42.1(14)	48.4(14)	53.0(15)	25.8(12)	13.3(12)	2.7(11)
C5	38.3(14)	49.6(15)	71.5(19)	29.9(14)	9.5(13)	-2.0(12)
C6	35.9(14)	49.9(15)	62.9(18)	26.6(13)	-5.0(12)	-3.6(11)
C7	39.4(14)	49.3(15)	50.7(15)	25.6(12)	2.4(12)	3.9(11)
C8	34.0(12)	36.7(12)	46.1(14)	20.6(10)	6.0(10)	6.6(10)
C9	39.9(13)	40.1(13)	40.7(13)	21.1(11)	7.6(10)	7.2(10)
C10	37.2(13)	36.5(12)	39.6(13)	18.8(10)	10.0(10)	4.7(10)
C11	38.6(13)	39.5(12)	34.2(12)	16.6(10)	7.8(10)	0.2(10)
C12	50.2(16)	48.8(15)	69.4(18)	33.1(14)	20.0(14)	10.7(12)
C13	65.5(19)	46.0(15)	70.6(19)	32.3(14)	25.1(16)	4.4(14)
C14	48.5(15)	53.3(16)	43.6(14)	19.5(12)	14.2(12)	-9.2(12)
C15	43.2(14)	54.4(16)	51.8(16)	21.7(13)	13.6(12)	5.0(12)
C16	44.1(14)	41.9(13)	49.9(15)	23.2(12)	10.4(12)	2.2(11)
C17	51.5(16)	53.6(16)	41.7(14)	23.7(12)	5.2(12)	6.6(12)
C18	81(2)	54.0(17)	49.6(17)	15.1(14)	15.3(16)	-3.9(15)
Cl1	46.5(4)	59.0(4)	45.1(4)	29.0(3)	4.3(3)	2.5(3)
Cl2	66.8(5)	81.8(6)	85.6(6)	37.3(5)	31.7(4)	-15.5(4)
N1	32.6(10)	37.9(10)	39.3(11)	18.0(9)	6.2(8)	1.6(8)
N2	36.7(11)	45.4(11)	40.6(11)	20.9(9)	5.1(9)	0.8(9)
N3	43.1(11)	42.1(11)	37.2(11)	19.8(9)	6.4(9)	3.2(9)
01	58.0(12)	58.5(11)	49.9(11)	28.4(9)	17.6(9)	-4.1(9)

Table 3. Anisotropic Displacement Parameters (Å2×103) for 202010226. The Anisotropic displacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$

Table 4. Bond Lengths for 2ia

Atom	Atom	Length/Å
C1	C2	1.417(3)
C1	N3	1.392(3)
C1	01	1.243(3)
C2	C3	1.427(3)
C2	N1	1.368(3)
C3	C4	1.402(3)
C3	C8	1.410(3)
C4	C5	1.376(3)
C5	C6	1.382(4)
C6	C7	1.376(4)
C7	C8	1.401(3)
C8	C9	1.450(3)
C9	C10	1.351(3)

Atom	Atom	Length/Å
C10	C11	1.485(3)
C10	N1	1.399(3)
C11	C12	1.380(3)
C11	C16	1.376(3)
C12	C13	1.381(4)
C13	C14	1.366(4)
C14	C15	1.373(4)
C14	Cl2	1.739(3)
C15	C16	1.383(3)
C17	C18	1.506(4)
C17	N3	1.457(3)
N1	N2	1.332(2)
N2	N3	1.347(3)

C9	Cl1	1.745(2)

Atom	Atom	Atom	Angle/°
N3	C1	C2	102.0(2)
01	C1	C2	132.6(2)
01	C1	N3	125.4(2)
C1	C2	C3	133.8(2)
N1	C2	C1	106.35(19)
N1	C2	C3	119.9(2)
C4	C3	C2	122.2(2)
C4	C3	C8	119.5(2)
C8	C3	C2	118.2(2)
C5	C4	C3	120.1(3)
C4	C5	C6	120.5(2)
C7	C6	C5	120.4(2)
C6	C7	C8	120.5(3)
C3	C8	C9	117.8(2)
C7	C8	C3	118.8(2)
C7	C8	C9	123.3(2)
C8	C9	Cl1	118.15(17)
C10	C9	C8	123.8(2)
C10	C9	Cl1	118.00(19)
C9	C10	C11	126.3(2)

Table 5. Bo	nd Angle	es for 2ia
-------------	----------	------------

Atom	Atom	Atom	Angla/°
			Angle/°
C9	C10	N1	116.2(2)
N1	C10	C11	117.57(19)
C12	C11	C10	120.6(2)
C16	C11	C10	119.7(2)
C16	C11	C12	119.6(2)
C11	C12	C13	120.5(3)
C14	C13	C12	119.1(3)
C13	C14	C15	121.3(2)
C13	C14	Cl2	119.5(2)
C15	C14	Cl2	119.1(2)
C14	C15	C16	119.3(3)
C11	C16	C15	120.2(2)
N3	C17	C18	112.4(2)
C2	N1	C10	124.01(19)
N2	N1	C2	113.90(19)
N2	N1	C10	122.02(18)
N1	N2	N3	102.68(17)
C1	N3	C17	126.4(2)
N2	N3	C1	115.03(19)
N2	N3	C17	118.61(19)

Table 6. Torsion Angles for 2ia

А	В	С	D	Angle/°
C1	C2	C3	C4	3.9(4)
C1	C2	C3	C8	-176.9(3)
C1	C2	N1	C10	176.5(2)
C1	C2	N1	N2	-0.4(3)
C2	C1	N3	C17	-179.8(2)
C2	C1	N3	N2	-0.9(3)
C2	C3	C4	C5	178.4(2)
C2	C3	C8	C7	-177.6(2)
C2	C3	C8	C9	0.6(3)
C2	N1	N2	N3	-0.2(3)
C3	C2	N1	C10	-2.7(3)
C3	C2	N1	N2	-179.7(2)
C3	C4	C5	C6	-0.8(4)
C3	C8	C9	C10	-3.0(4)
C3	C8	C9	Cl1	177.62(18)
C4	C3	C8	C7	1.6(3)
C4	C3	C8	C9	179.8(2)

		1	1	r
А	В	С	D	Angle/°
C10	C11	C12	C13	177.5(2)
C10	C11	C16	C15	-177.2(2)
C10	N1	N2	N3	-177.2(2)
C11	C10	N1	C2	179.5(2)
C11	C10	N1	N2	-3.8(3)
C11	C12	C13	C14	-0.6(4)
C12	C11	C16	C15	0.4(4)
C12	C13	C14	C15	1.0(4)
C12	C13	C14	Cl2	-179.0(2)
C13	C14	C15	C16	-0.7(4)
C14	C15	C16	C11	0.0(4)
C16	C11	C12	C13	-0.1(4)
C18	C17	N3	C1	113.7(3)
C18	C17	N3	N2	-65.2(3)
Cl1	C9	C10	C11	2.9(3)
Cl1	C9	C10	N1	-178.13(16)
Cl2	C14	C15	C16	179.3(2)

C4	C5	C6	C7	1.5(4)
C5	C6	C7	C8	-0.6(4)
C6	C7	C8	C3	-0.9(4)
C6	C7	C8	C9	-179.0(2)
C7	C8	C9	C10	175.0(2)
C7	C8	C9	Cl1	-4.3(3)
C8	C3	C4	C5	-0.8(4)
C8	C9	C10	C11	-176.5(2)
C8	C9	C10	N1	2.5(4)
C9	C10	C11	C12	-76.7(3)
C9	C10	C11	C16	101.0(3)
C9	C10	N1	C2	0.4(3)
C9	C10	N1	N2	177.1(2)

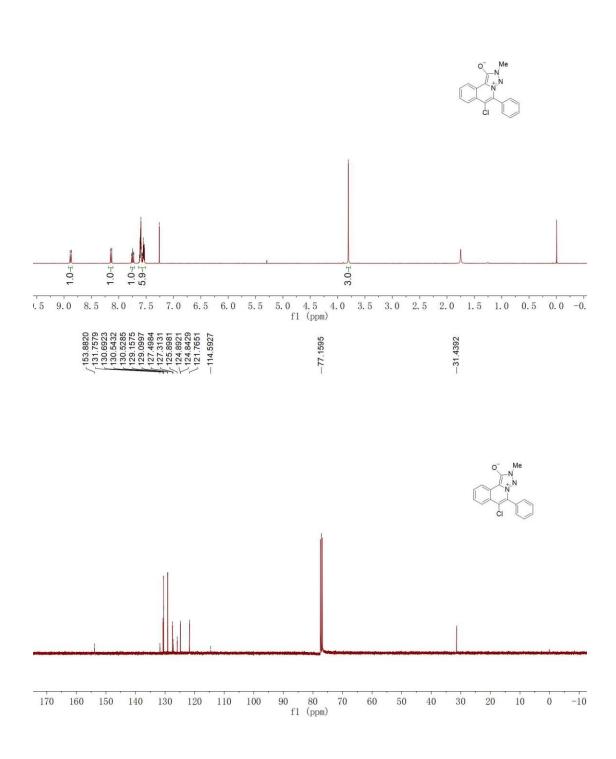
N1	C2	C3	C4	-177.1(2)
N1	C2	C3	C8	2.1(3)
N1	C10	C11	C12	104.3(3)
N1	C10	C11	C16	-78.0(3)
N1	N2	N3	C1	0.7(3)
N1	N2	N3	C17	179.7(2)
N3	C1	C2	C3	179.8(3)
N3	C1	C2	N1	0.7(2)
01	C1	C2	C3	-0.4(5)
01	C1	C2	N1	-179.5(3)
01	C1	N3	C17	0.4(4)
01	C1	N3	N2	179.3(2)

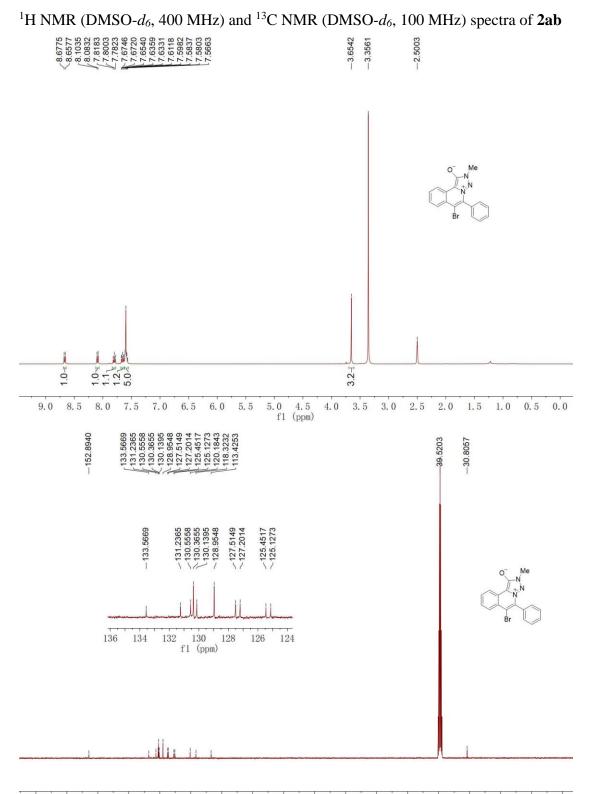
Table 7. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for 2ia

Atom	X	у	Z	U(eq)
H4	8590.81	10209.71	158.81	57
H5	10568.23	11589.21	2217.56	65
H6	10571.02	11741.72	4552.64	64
H7	8641.74	10427.92	4827.18	57
H12	4313.87	5173.08	1451.33	64
H13	2225.66	3987.84	1642.83	70
H15	341.7	7666.11	2121.22	62
H16	2426	8842.27	1906.95	55
H17A	3878.59	7077.75	-4202.12	60
H17B	2499.91	7076.57	-3557.27	60
H18A	2680.6	4583.27	-3864.43	100
H18B	4064.5	4584.64	-4500.83	100
H18C	2541.33	4554.44	-5439.68	100

10. References

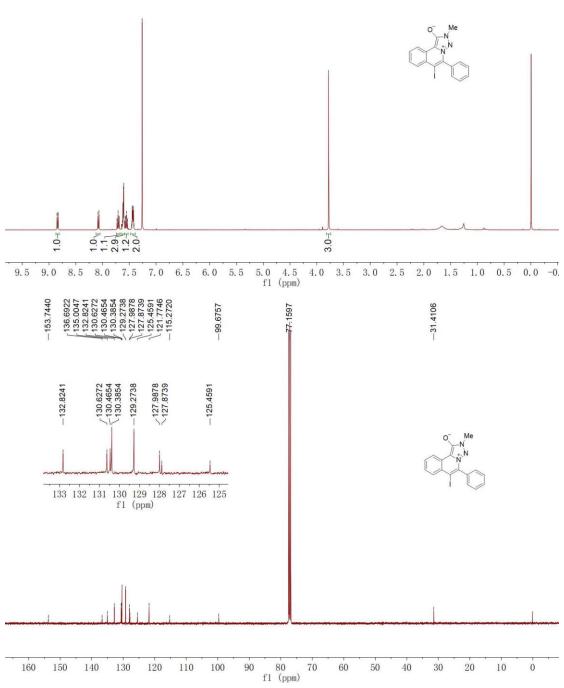
(1) R. Hui, M. Zhao, M. Chen, Z. Ren and Z. Guan, One-Pot Synthesis of 4-Aryl-NH-1, 2, 3-Triazoles through Three-Component Reaction of Aldehydes, Nitroalkanes and NaN₃. *Chin. J. Chem.*, 2017, **35**, 1–5.

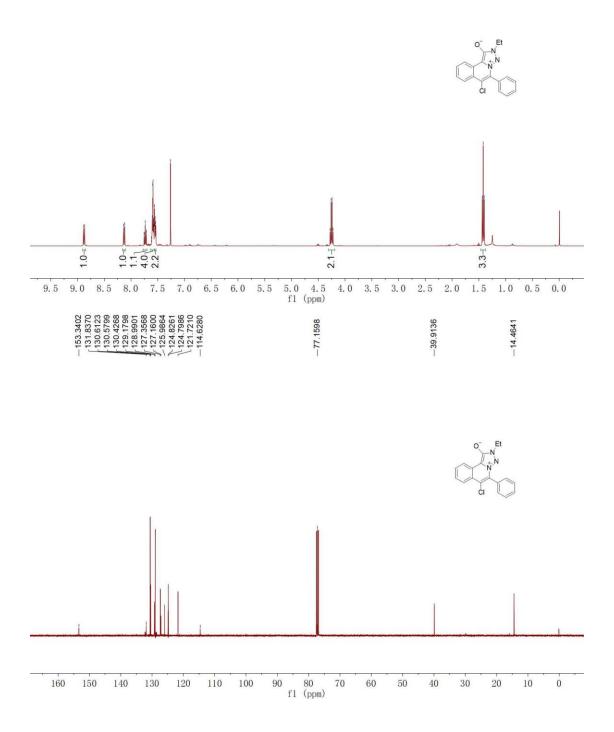

(2) P. Pierrat, S. Hesse, C. Cebrián and P. C. Gros, Controlling charge-transfer properties through a microwave-assisted mono-or bis-annulation of dialkynyl-N-(het) arylpyrroles. *Org. Biomol. Chem.*, 2017, **15**, 8568–8575.

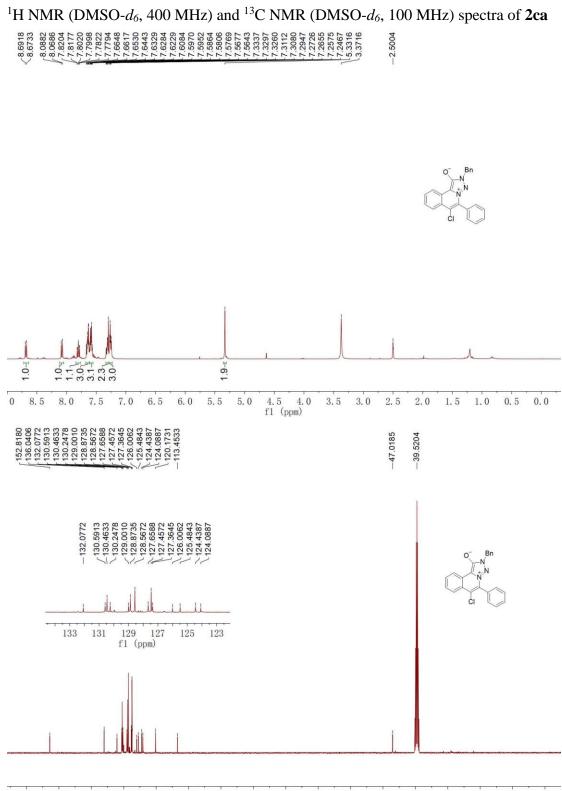

(3) K. Naveen, S. A. Nikson and P. T. Perumal, Palladium-Catalyzed Synthesis of Tetrasubstituted Olefins by Triple Domino Process. *Adv. Synth. Catal.*, 2017, **359**, 2407–2413.

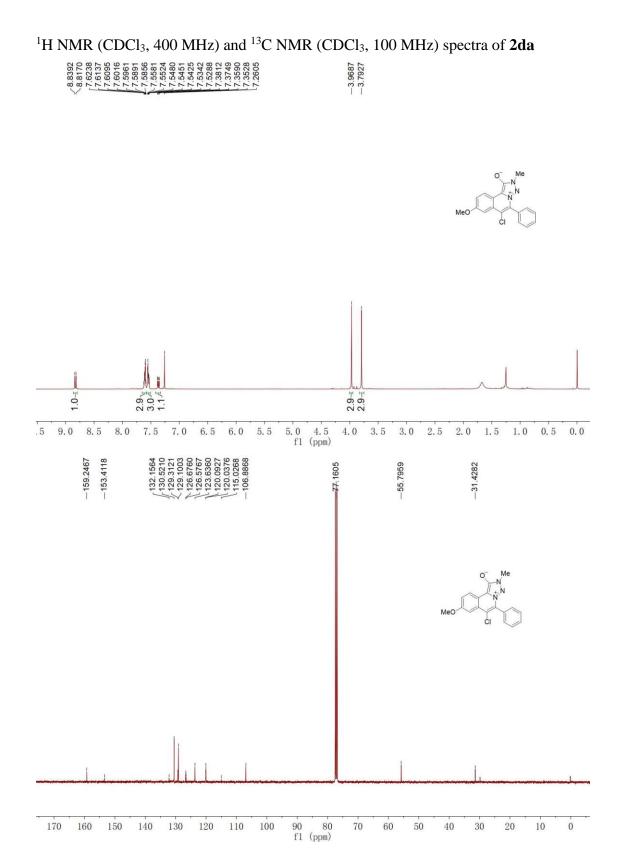
(4) S. Qiu, C. Zhang, R. Qiu, G. Yin and J. Huang, One-Pot Domino Synthesis of Diarylalkynes/1,4-Diaryl-1,3-diynes by [9,9-Dimethyl-4,5-bis(diphenylphosphino) xanthene](Xantphos)–Copper(I) Iodide–Palladium(II) Acetate-Catalyzed Double Sonogashira-Type Reaction. *Adv. Synth. Catal.*, 2018, **360**, 313–321.

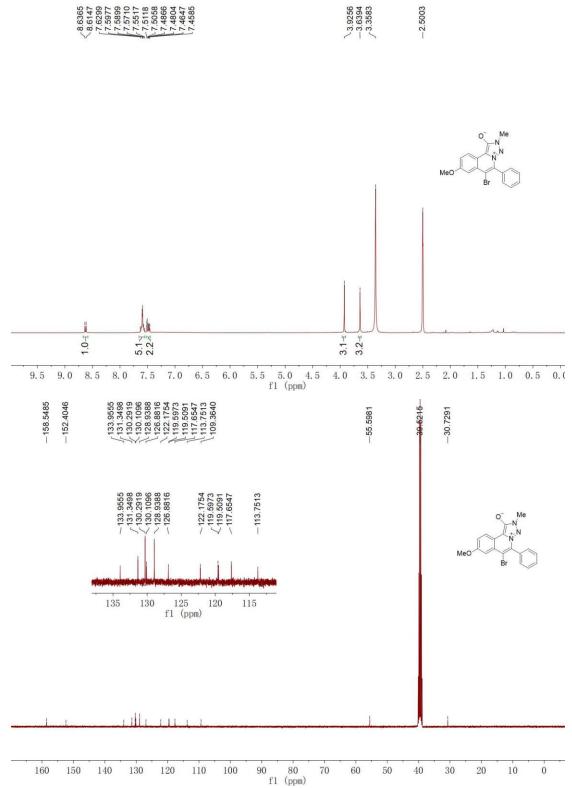
11. NMR spectra

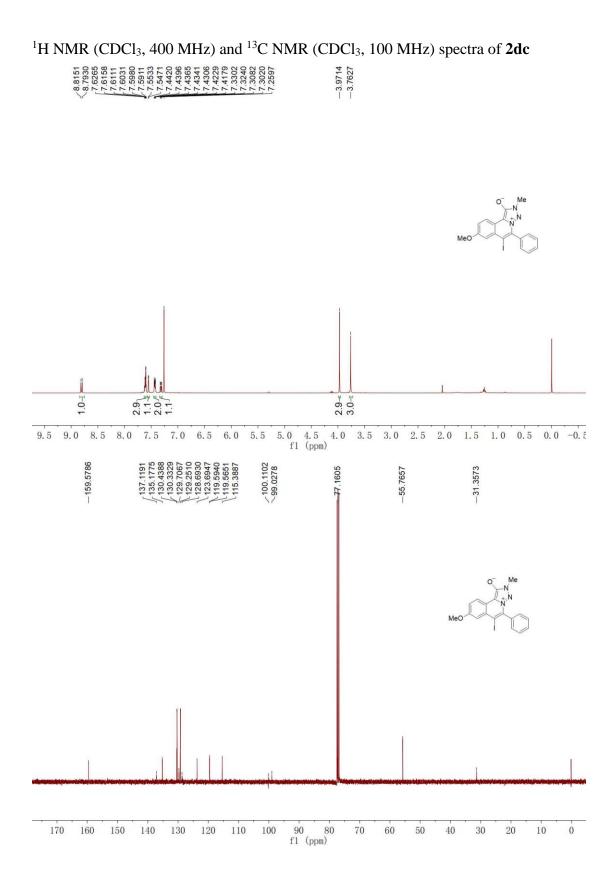

¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) spectra of **2aa**

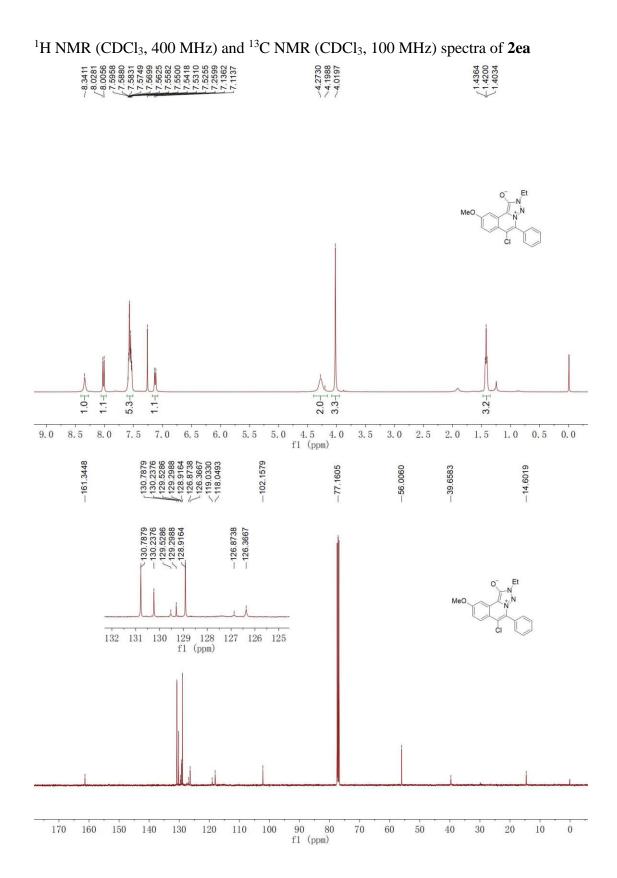

90 80 f1 (ppm)


¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) spectra of **2ac**


 ^1H NMR (CDCl₃, 400 MHz) and ^{13}C NMR (CDCl₃, 100 MHz) spectra of **2ba**

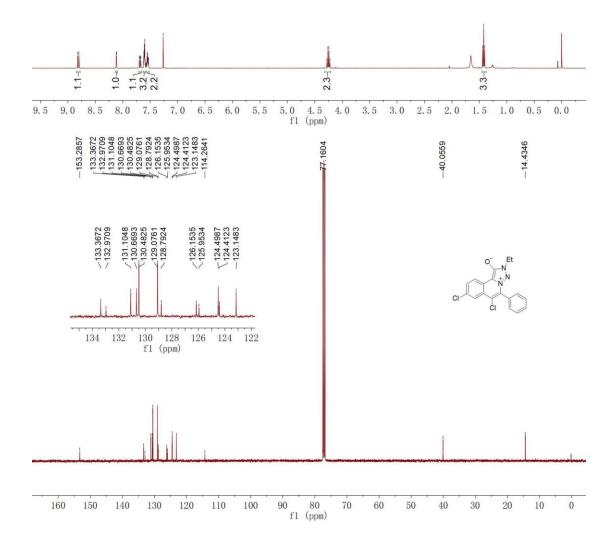



f1 (ppm)

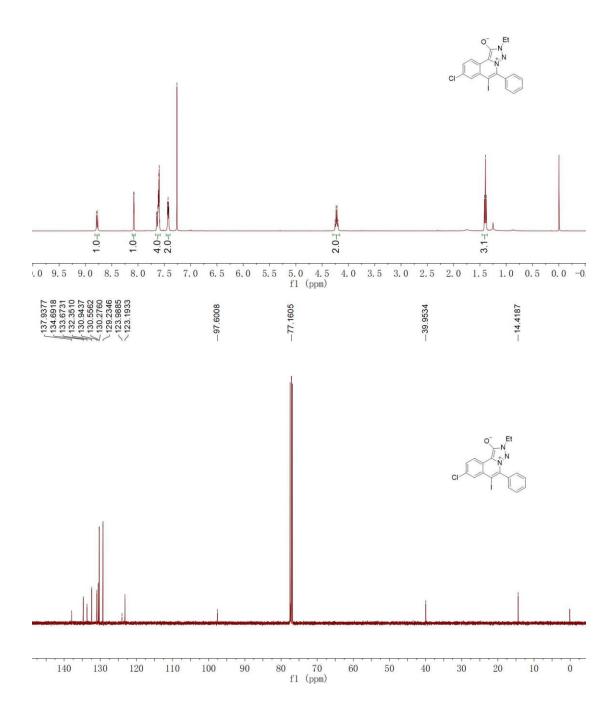


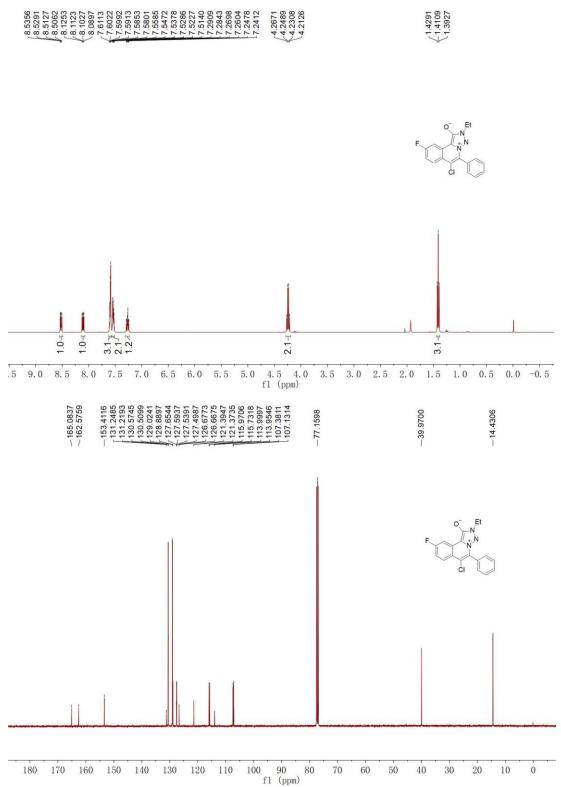
S38

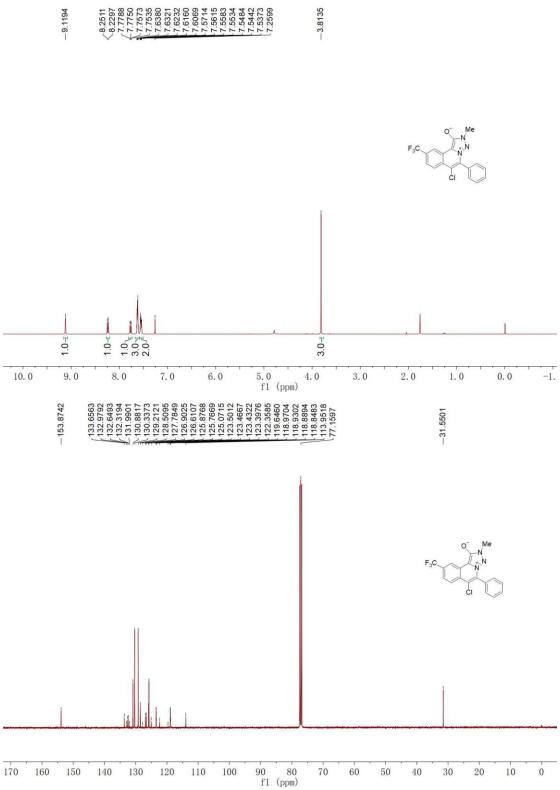
¹H NMR (DMSO- d_6 , 400 MHz) and ¹³C NMR (DMSO- d_6 , 100 MHz) spectra of **2db**

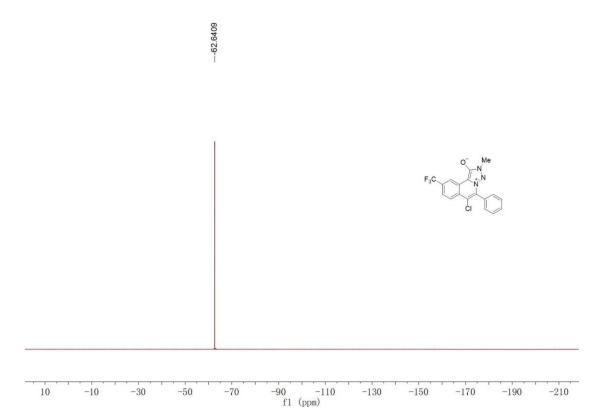


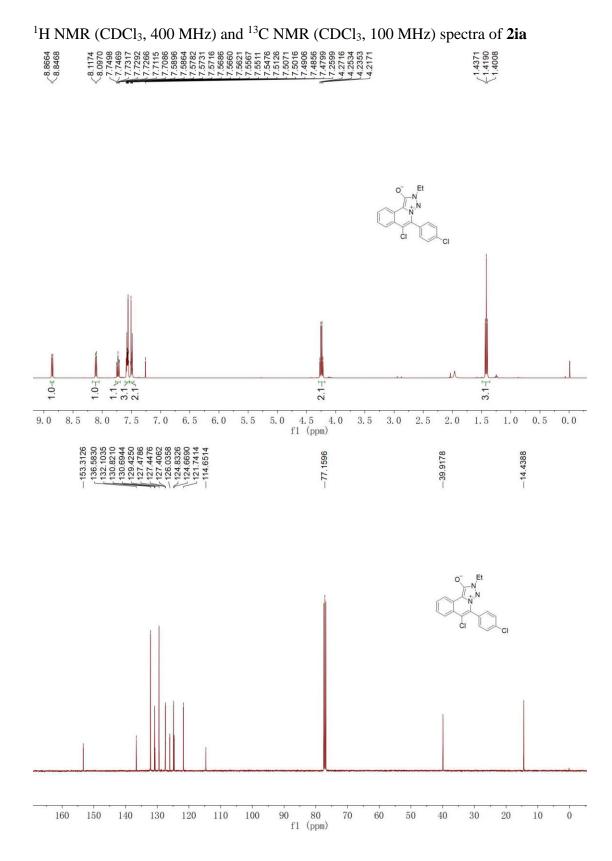
 1 H NMR (CDCl₃, 400 MHz) and 13 C NMR (CDCl₃, 100 MHz) spectra of **2fa**

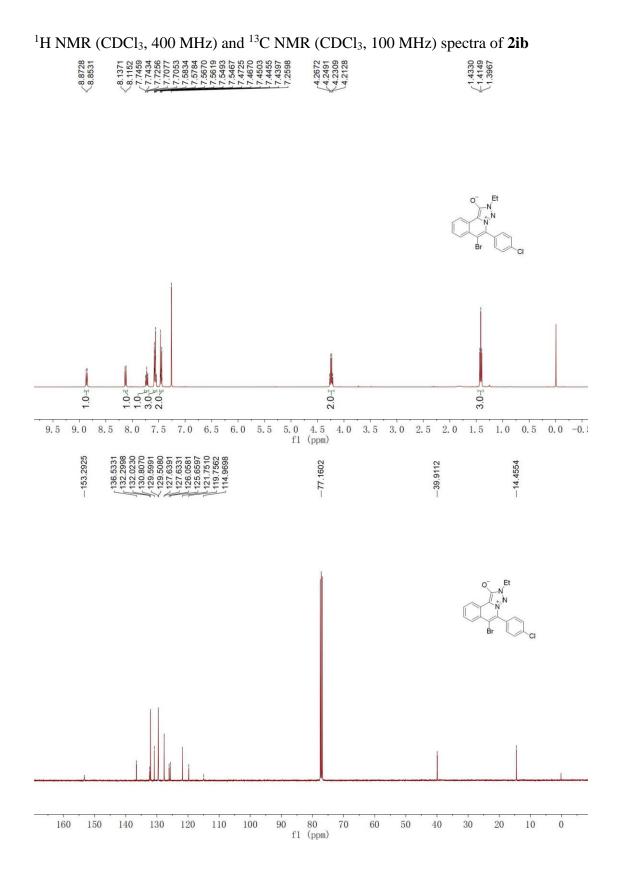

7 1		0 ~ 0
97	4588888844422238898888448223	0-0
79	576233346282882882882886866666666666666666	400
~ ~	777777777777777777777770000000000000000	444
00 00	8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
V		

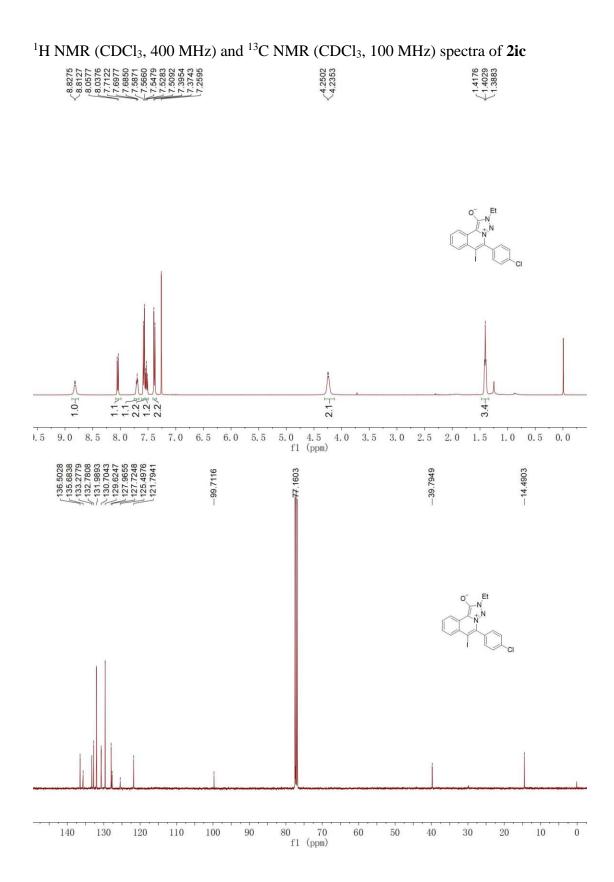


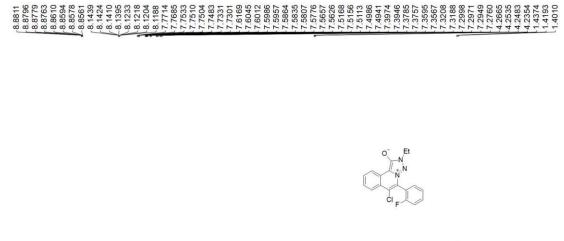


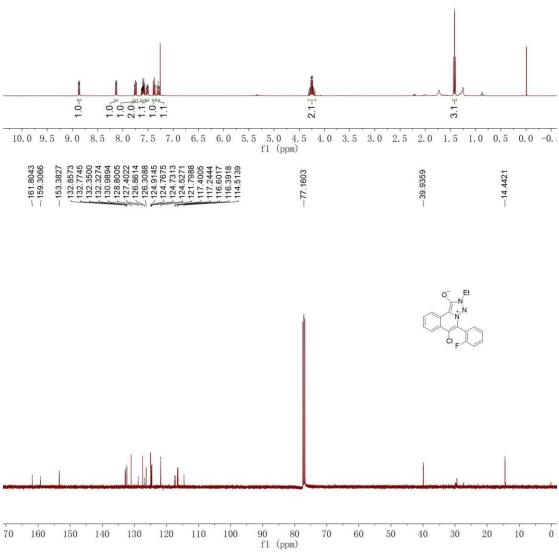

 ^1H NMR (CDCl₃, 400 MHz), ^{13}C NMR (CDCl₃, 100 MHz) and ^{19}F NMR (CDCl₃, 376 MHz) spectra of **2ga**

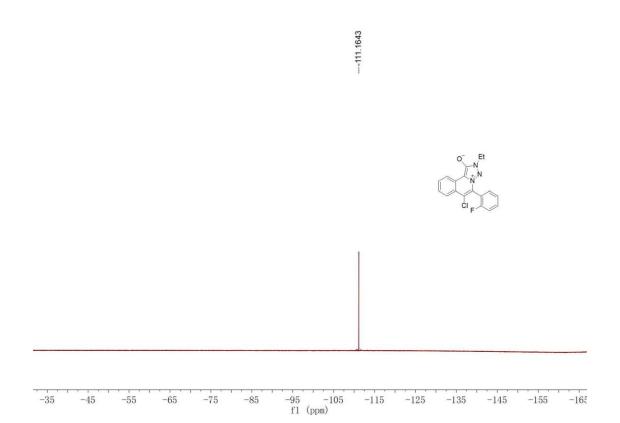


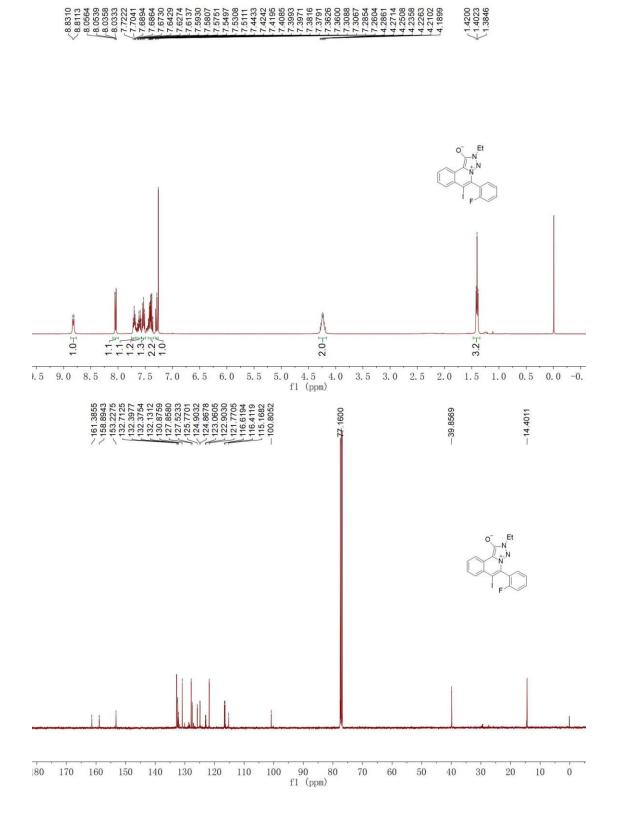


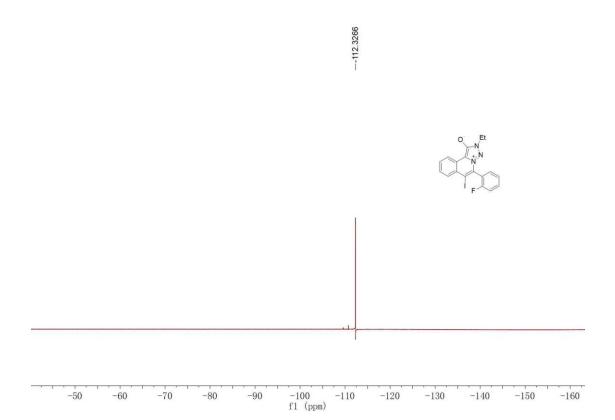

 ^1H NMR (CDCl₃, 400 MHz), ^{13}C NMR (CDCl₃, 100 MHz) and ^{19}F NMR (CDCl₃, 376 MHz) spectra of **2ha**

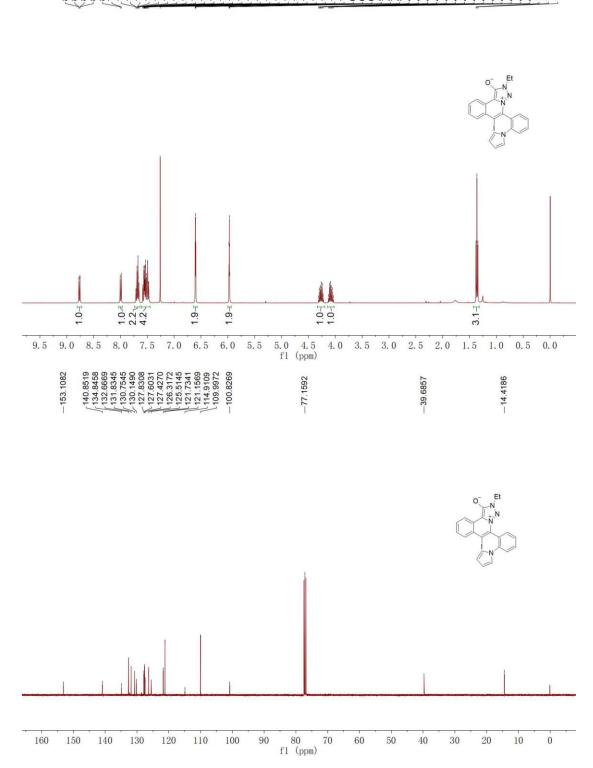


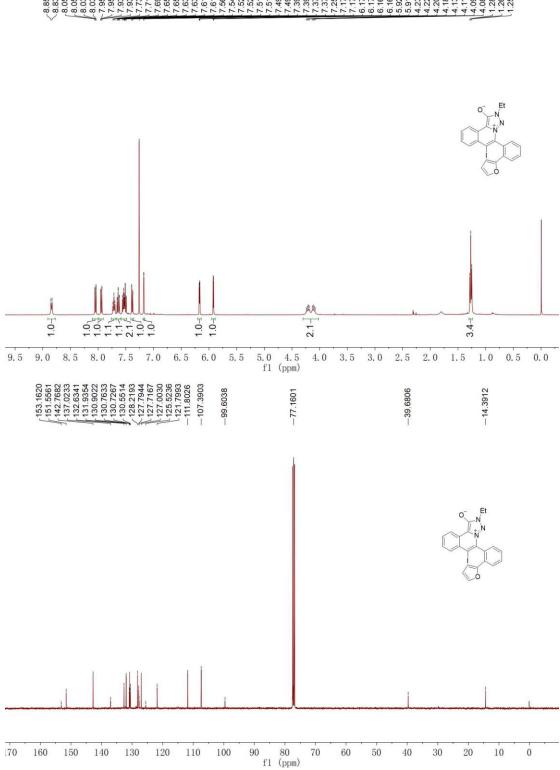




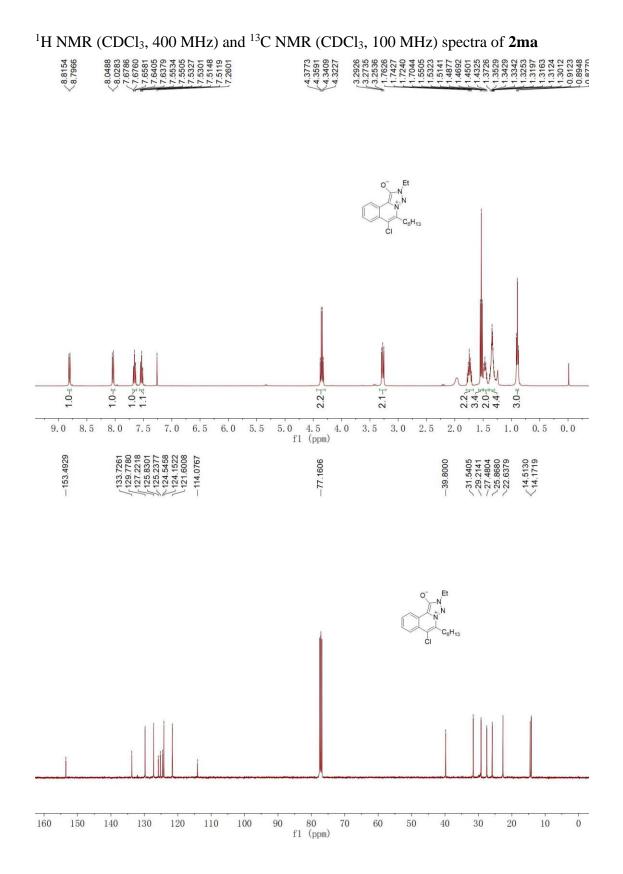

 ^1H NMR (CDCl₃, 400 MHz), ^{13}C NMR (CDCl₃, 100 MHz) and ^{19}F NMR (CDCl₃, 376 MHz) spectra of 2ja

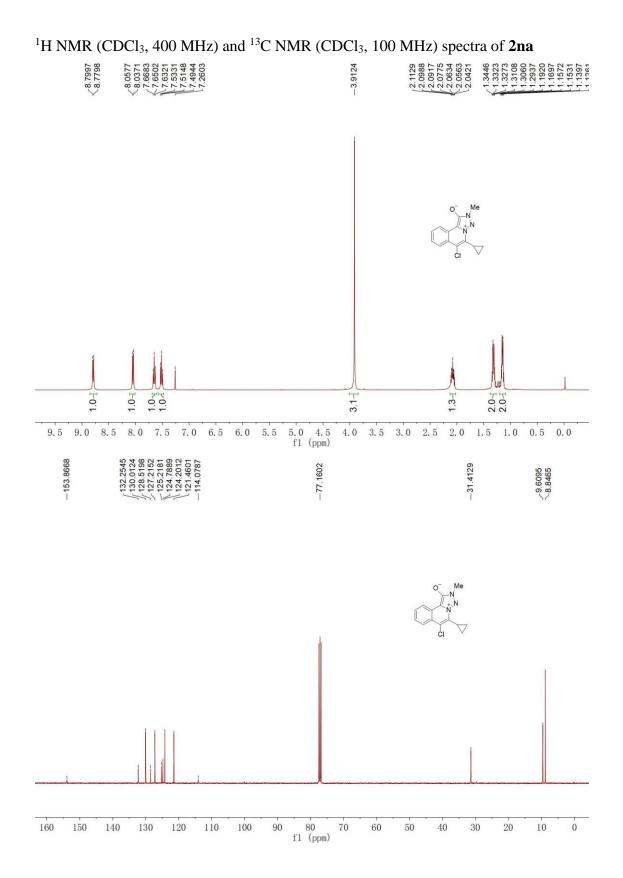


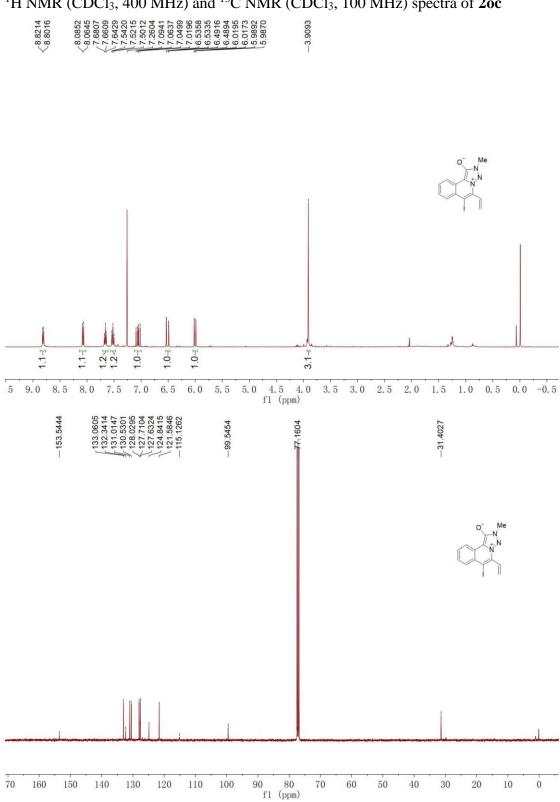




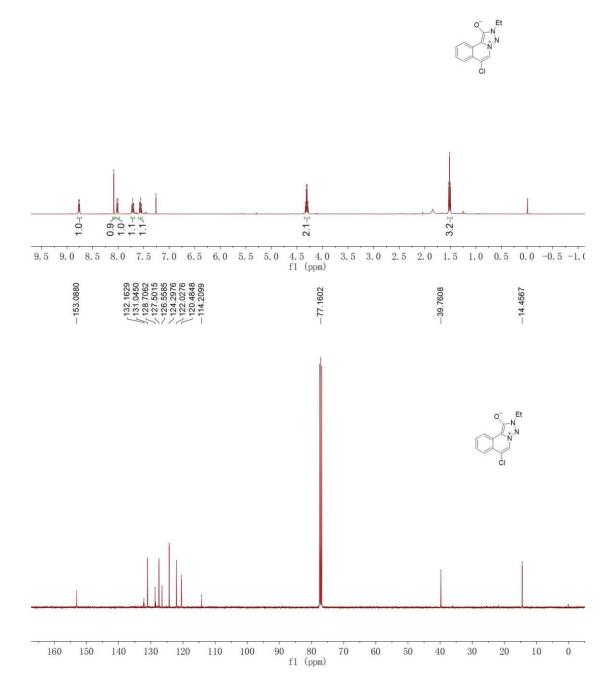
 ^1H NMR (CDCl₃, 400 MHz), ^{13}C NMR (CDCl₃, 100 MHz) and ^{19}F NMR (CDCl₃, 376 MHz) spectra of **2jc**



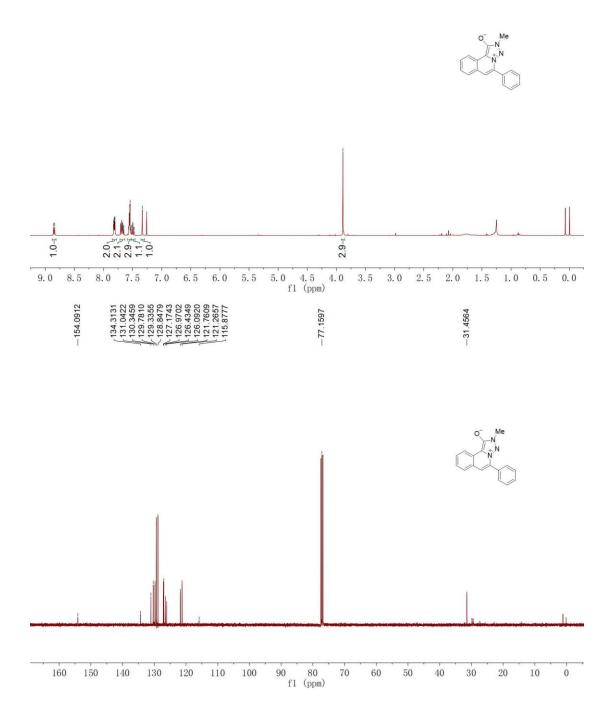


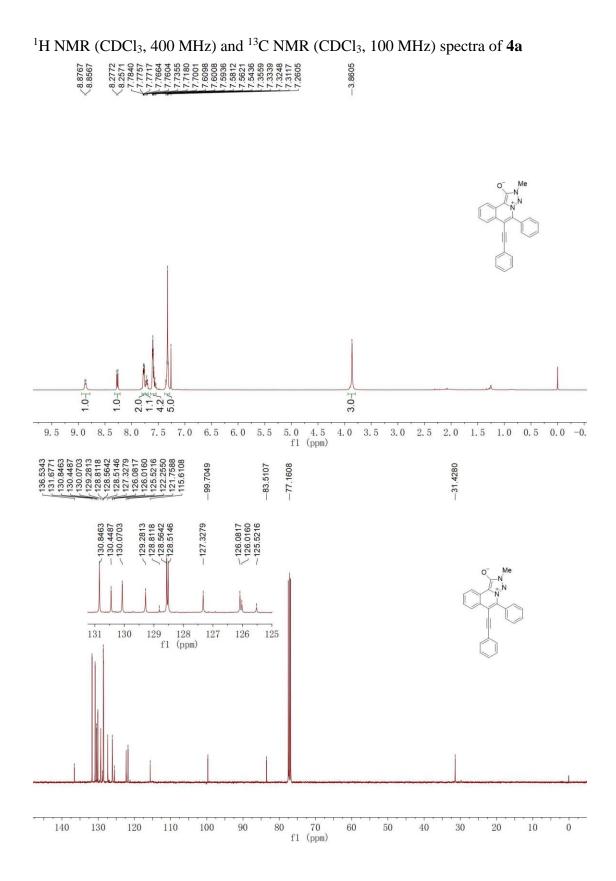


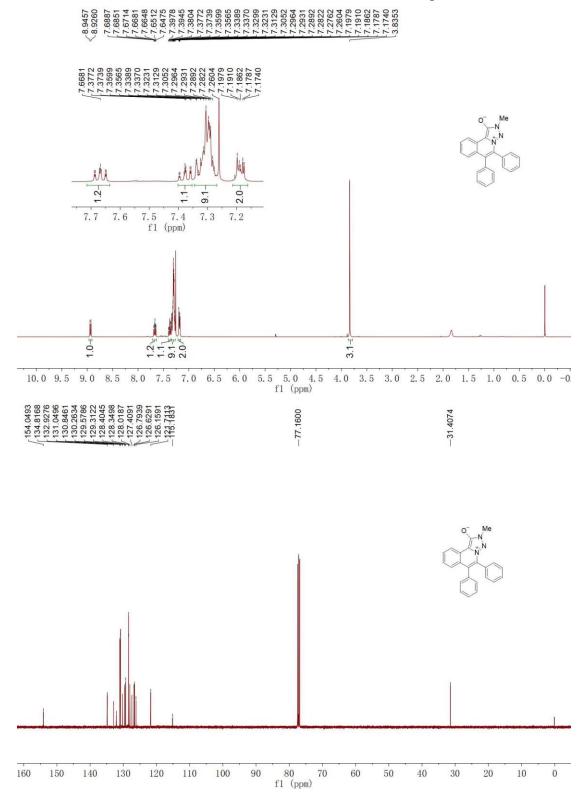
¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) spectra of **2lc** $\frac{120}{2000}$ $\frac{100}{2000}$ \frac



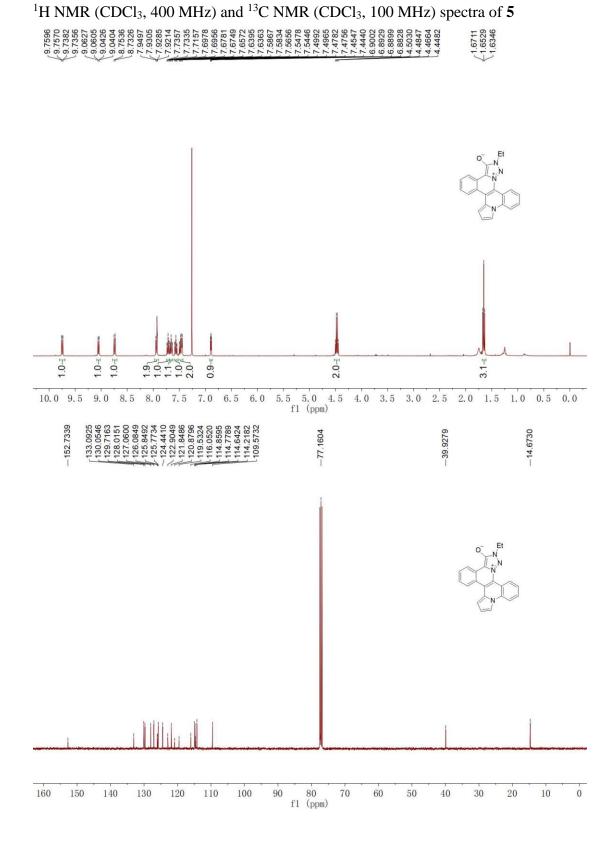
 ^1H NMR (CDCl₃, 400 MHz) and ^{13}C NMR (CDCl₃, 100 MHz) spectra of **2oc**

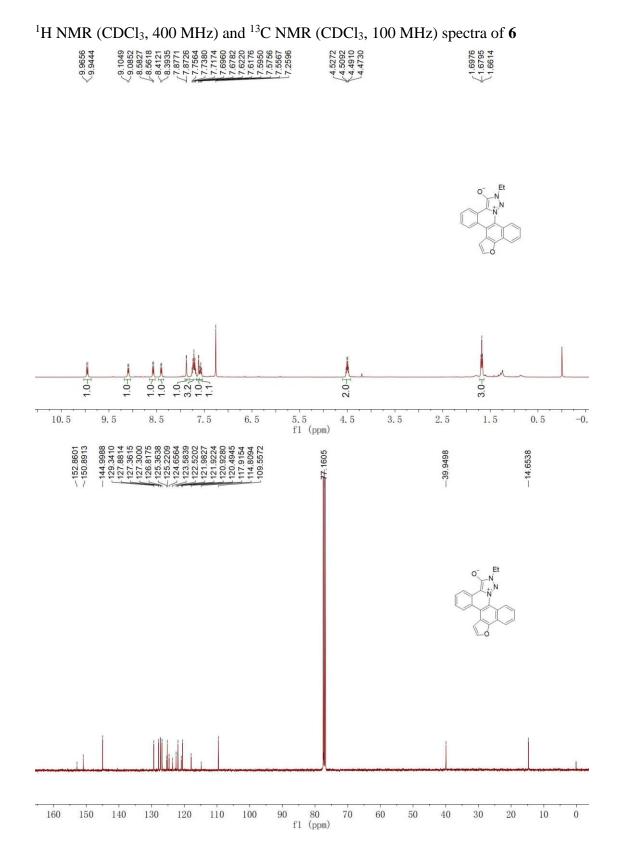


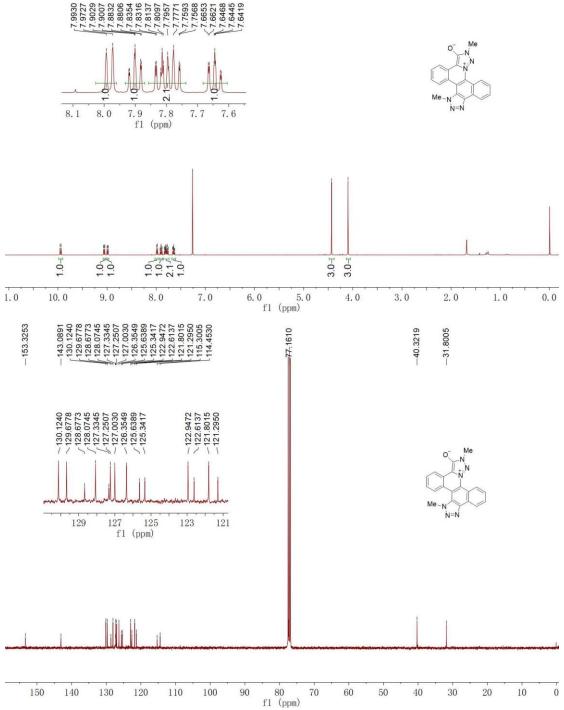

00000000000000000000000000000000000000	0 0 7 3	337
88 8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	000-	
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0, - 0, 00	m − m
	0 0 0 0	4 20 20
000000000000000000000000000000000000000	4444	
V		

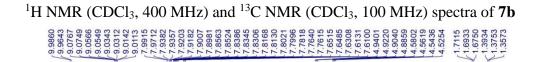


¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz) spectra of **3aa**


-8.8581 -8.8381 -8.8381 -8.8381 -8.8381 -8.8262 -7.8262 -7.8263 -7.734 -7.734 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.7040 -7.75610 -7.5531 -7.55410 -7.5530 -7.55410 -7.55410 -7.55410 -7.5540 -7.5540 -7.55410 -7.5540 -7.75540 -7.757400 -7.757400 -7.757400 -7.757400 -7.757400 -7.75740000 -7.757400000000000000000000000000000000






 1 H NMR (CDCl₃, 400 MHz) and 13 C NMR (CDCl₃, 100 MHz) spectra of **4b**

