Supporting Information

A productive isocyanide $/ \mathrm{Ag}_{2} \mathrm{CO}_{3}$-promoted addition of heteroatoms to alkynes under mild condition

Jie Lei, ${ }^{\mathrm{a}}$ Jia Xu, ${ }^{\mathrm{a}}$ Ya-Fei Luo, ${ }^{\text {a }}$ Jie Li, ${ }^{\text {a }}$ Jing-Ya Wang, ${ }^{\text {a }}$ Hong-yu Li, ${ }^{\text {b }}$ Zhi-Gang Xu, ${ }^{\text {*a }}$ ZhongZhu Chen*a

${ }^{\text {a }}$ College of Pharmacy, National \& Local Joint Engineering Research Center of Targeted and Innovative
Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China. Email:
18883138277@163.com; xzg@cqwu.edu.cn
${ }^{\text {b }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little
Rock, Arkansas 72205, USA. Email: HLi2@uams.edu

Table of Contents Page
\qquadOptimization of the reaction condition 2
General procedures for condition A 2
General procedures for synthesis of B 3
General procedures for compounds 20 3
General procedures for compounds 21 3
Control experiments 4
X-ray structure of $\mathbf{8}$ and $\mathbf{1 2}$ 4
HPLC conversion of yield and time 5-8
Density functional theory (DFT) calculations 9-11
NMR Characterization Data and Figures of Products. $.12-88$

General Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift in $\mathrm{ppm}(\delta)$, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), relative intensity. ${ }^{13} \mathrm{C}$ NMR data are reported as follows: chemical shift in ppm (δ). LC/MS analyses were performed on a Shimadzu-2020 LC-MS instrument using the following conditions: Shim-pack VPODS C18 column (reverse phase, $150 \times 4.6 \mathrm{~mm}$); a linear gradient from 10% water and 90% acetonitrile to 75% acetonitrile and 25% water over 6.0 min ; flow rate of 0.5 $\mathrm{mL} / \mathrm{min}$; UV photodiode array detection from 200 to 400 nm . High-resolution mass spectra (HRMS) were recorded on Thermo Scientific Exactive Plus System. The products were purified by Biotage Isolera ${ }^{\mathrm{TM}}$ Spektra Systems and hexane/EtOAc solvent systems. All reagents and solvents were obtained from commercial sources and used without further purification.

Table S1 Optimization of the reaction condition. ${ }^{a}$

Entry	Solvent	Yield (\%) ${ }^{\text {b }}$
1	EtOH	93
2	MeCN	91
4	$\mathrm{H}_{2} \mathrm{O}$	67
5	Toluene	39
6	THF	<10
7	DMF	74
8	DMSO	55
9	DCM	84
$10^{\text {c }}$	EtOH	91
${ }^{a}$ Reaction condition: $1 \mathbf{1 a}(0.3 \mathrm{mmol}), 1 \mathrm{~mol} \% \mathrm{Ag}_{2} \mathrm{CO}_{3}, 4 \mathrm{~mol} \% t$-BuNC, solvent (3.0 mL), room temperature, 30 min . ${ }^{b}$ Isolated yield. ${ }^{c} \mathbf{1 a}(0.3 \mathrm{mmol}), 1 \mathrm{~mol} \% \mathrm{Ag}_{2} \mathrm{CO}_{3}, 1.0$ equiv. t-BuNC, solvent $(3.0 \mathrm{~mL})$, room temperature, 30 min .		

General procedures for condition \mathbf{A}.

To a solution of ethanol (3.0 mL) in flask, substrate (0.3 mmol), tert-butyl isocyanide ($4 \mathrm{~mol} \%$) and silver carbonate ($1 \mathrm{~mol} \%$) were added at room temperature. And then the reaction mixture was stirred for 30 min . The reaction mixture was monitored by TLC.

When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane ($0-100 \%$) to afford the relative targeted product.

General procedures for condition B.

To a solution of ethanol (3.0 mL) in flask, substrate (0.3 mmol), tert-butyl isocyanide ($16 \mathrm{~mol} \%$) and silver carbonate ($3 \mathrm{~mol} \%$) were added at room temperature. And then, the reaction mixture was heated to $50^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane $(0-100 \%)$ to afford the relative targeted product.

General procedure for compound 19

In a solution of compound $\mathbf{2 l}(0.2 \mathrm{mmol})$ in $\mathrm{DCE}(3.0 \mathrm{~mL}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1.5 equiv) was added and stirred at room temperature for 2 h . When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane ($0-100 \%$) to afford the targeted product 19 in $\mathbf{7 3 \%}$ yield.

General procedure for compound 21

A mixture of $\mathbf{2 1}(0.2 \mathrm{mmol})$ and $\mathbf{2 0}(0.3 \mathrm{mmol})$ was added to the solvent of $\mathrm{PhCl}(2.0$ mL) in an oven dried reaction tube. Then $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%)$ was added to it and heated with microwave irradiation at $100^{\circ} \mathrm{C}$ for 10 min . After the completion of the reaction, the reaction was cooled to room temperature an extracted with dichloromethane. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude residue was obtained after evaporating the solvent under vacuum; it was purified by column chromatography on a silica gel using a a gradient of ethyl acetate/hexane ($0-100 \%$) to afford the pure product 21 (51\%) as a white solid.

Control experiments

1	$\mathrm{AgOAc}(2 \mathrm{~mol} \%), \mathrm{t}$-BuNC (8 mol\%), EtOH, r.t., 30 min .	N/D
2	$\mathrm{AgOAc}(2 \mathrm{~mol} \%), t-\mathrm{BuNC}(8 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(16 \mathrm{~mol} \%)$, EtOH, r.t., 30 min .	91\%
3	$\mathrm{K}_{2} \mathrm{CO}_{3}(16 \mathrm{~mol} \%)$, EtOH , r.t., 30 min .	N/D
4	$\left[\mathrm{Ag}(t-\mathrm{BuNC})_{4}\right] \mathrm{ClO}_{4}, \mathrm{EtOH}$, r.t., 30 min .	N/D
5	$\left[\mathrm{Ag}(\mathrm{c}-\mathrm{HexNC})_{2}\right] \mathrm{ClO}_{4}, \mathrm{EtOH}$, r.t., 30 min.	N/D
6	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1 \mathrm{~mol} \%)$, - $\mathrm{BuNC}(4 \mathrm{~mol} \%$), TEMPO (2.0 equiv.), EtOH, r.t., 30 min .	87\%
7	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1 \mathrm{~mol} \%), t$-BuNC (4 mol\%), BHT (2.0 equiv.), EtOH, r.t., 30 min .	89\%
8	Ag power (2 mol\%), t-BuNC (8 mol\%), EtOH, r.t., 30 min .	N/D

X-ray structures of compound 8 and 12

HPLC conversion of yield and time

$\mathrm{t}=5 \mathrm{~min}\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right.$ and isocyanide were added $)$
mAU

$t=6 \mathrm{~min}$
mAU

$\mathrm{t}=8 \mathrm{~min}$
mAU

$t=10 \mathrm{~min}$
maU

$\mathrm{t}=15 \mathrm{~min}$
mAU
(1000
$\mathrm{t}=17 \mathrm{~min}$
mAU

$\mathrm{t}=20 \mathrm{~min}$
mAU

$\mathrm{t}=24 \mathrm{~min}$
mAU

$\mathrm{t}=27 \mathrm{~min}$
mAU

$\mathrm{t}=30 \mathrm{~min}$

Density functional theory (DFT) calculations

Optimized structures

A-IM1

A-TS1

A-IM2

A-IM3

A-TS2

A-IM4

A-TS3

B-TS2

B-IM3

B-TS3

Computational details

All calculations were performed using Gaussian 16 program package, ${ }^{[1]}$ employing the B3LYP-D3(BJ) ${ }^{[2]}$ density functional with the def2-SVP basis set. Geometries were optimized in toluene solvent and characterized by frequency analysis at 298.15 K . Unless specified, the Gibbs free energies obtained at the B3LYP-D3(BJ)/def2-SVP (SMD, toluene) level at 298.15 K were used in the discussion. The optimized molecular structures were visualized by CYLview (2.0 version) software. ${ }^{[3]}$
[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[2] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
[3] CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org)

Table S2 The ZPE-correct electronic energies ($E_{\text {ZPE }}$), enthalpies (H), and Gibbs free energies (G) for all stationary points (in Hartree), obtained at the B3LYP-D3(BJ)/def2SVP theoretical level.

| Structures | ${ }^{\mathrm{a}} \boldsymbol{Z P E}$ | ${ }^{\mathrm{b}} \boldsymbol{H} \boldsymbol{c}$ | ${ }^{\mathrm{c}} \boldsymbol{G} \boldsymbol{c}$ | \boldsymbol{E} ZPE | \boldsymbol{H} | \boldsymbol{G} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A-IM1 | 0.481562 | 0.517834 | 0.402703 | -1672.61641 | -1672.580139 | -1672.695269 |
| A-TS1 | 0.479467 | 0.51525 | 0.401713 | -1672.618426 | -1672.582642 | -1672.69618 |
| A-IM2 | 0.48193 | 0.518144 | 0.4045 | -1672.61718 | -1672.580966 | -1672.694611 |
| A-TS2 | 0.480922 | 0.516996 | 0.391247 | -1672.522646 | -1672.486573 | -1672.612322 |
| A-IM3 | 0.484819 | 0.520658 | 0.406037 | -1672.616147 | -1672.580308 | -1672.694929 |
| A-TS3 | 0.479787 | 0.515056 | 0.40299 | -1672.589316 | -1672.554046 | -1672.666112 |
| A-IM4 | 0.485134 | 0.520645 | 0.408011 | -1672.625899 | -1672.590388 | -1672.703022 |
| B-TS2 | 0.349284 | 0.375564 | 0.280078 | -1422.078959 | -1422.052679 | -1422.148165 |
| B-IM3 | 0.353078 | 0.380063 | 0.288941 | -1422.167279 | -1422.140294 | -1422.231416 |
| B-TS3 | 0.348384 | 0.374658 | 0.286219 | -1422.149840 | -1422.123566 | -1422.212005 |

${ }^{\text {a }}$ Zero-point correction energy;
${ }^{\mathrm{b}}$ Thermal correction to enthalpy;
${ }^{\text {c }}$ Thermal correction to Gibbs free energy.

NMR Characterization Data and Figures of Products

(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2a, 93%, white solid, $\mathrm{mp} .=109-110^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.9,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~s}$, $1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 2.81-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.18,154.71,135.12,129.40,128.47,128.39,126.23,126.09,125.54,122.06$, 110.16, 105.52, 63.78, 48.07, 23.36. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 278.1539, found 278.1548.
(Z)-1-(2-(4-methoxybenzylidene)-2,3-dihydrobenzofuran-3-yl)pyrrolidine

$\mathbf{2 b}, 98 \%$, white solid, $\mathrm{mp} .=107-108{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=11.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=15.2,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.89$ (m, 2H), 5.77 (d, $J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{dd}, J=9.3,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=9.3,3.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.74(\mathrm{t}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.24,158.01,153.02$, $129.69,129.32,127.96,126.09,125.69,121.89,113.83,110.08,105.13,63.69,55.31$, 48.05, 23.33. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 308.1645$, found 308.1645 .
(Z)-1-(2-(4-(tert-butyl)benzylidene)-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2c, 95%, white solid, $\mathrm{mp} .=110-111^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.01$ (dd, $J=14.7,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 2.82-2.56(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 4 \mathrm{H}$), 1.33 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.24,154.14,149.21$, $132.30,129.35,128.19,126.08,125.69,125.32,121.95,110.12,105.35,63.71,48.02$, 34.56, 31.35, 23.34. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 334.2165$, found 334.2169.
(Z)-1-(2-benzylidene-6-methyl-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2d, 98%, white solid, mp. $=106-107^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=15 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.13$ (s, 1H), 2.68 (dd, $J=55.9,5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 158.43,155.26,135.24,128.37,126.15,125.67,122.82,110.80,105.30$, 63.65, 48.04, 23.35, 21.67. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+}$292.1696, found 292.1696.
(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)piperidine

2e, 91%, white solid, $\mathrm{mp} .=108-109{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=15 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2H), $7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=12.4,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J=10.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dt}, J=10.5,5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.54(\mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{dt}, J=11.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.24,154.76,135.30,129.28,128.40,126.14,125.32,122.00,110.04$, 104.94, 68.73, 49.71, 26.50, 24.49. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 292.1696, found 292.1698.
(Z)-1-(2-benzylidene-5-methyl-2,3-dihydrobenzofuran-3-yl)piperidine

2f, 92%, white solid, mp. $=109-110^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=13.9$, $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}$, $1 \mathrm{H}), 2.68(\mathrm{dt}, J=10.4,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.44$ (m, 2H), 2.35 (s, 3H), $1.61-1.51$ (m, $4 \mathrm{H}), 1.40(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.18$, 155.11, 135.40, 131.37, 129.72, 128.36, 126.56, 126.02, 125.2, 109.52, 104.67, 68.85, 49.68, 26.49, 24.48, 21.03. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+}$306.1852, found 306.1855.
(Z)-1-(5-methyl-2-(4-propylbenzylidene)-2,3-dihydrobenzofuran-3-yl)piperidine

$\mathbf{2 g}, 95 \%$, white solid, $\mathrm{mp} .=121-122^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=10.5$, $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{dt}, J=10.4,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.64$ (dd, $J=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.25,154.32,140.64,132.78,131.25,129.69$, 128.51, 128.27, 126.57, 125.27, 109.50, 104.73, 68.75, 49.62, 37.86, 26.47, 24.63, 24.48, 21.05, 13.89. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 348.2322$, found 348.2329 .
(Z)-1-(2-(4-propylbenzylidene)-2,3-dihydrobenzofuran-3-yl)piperidine

2h, 97%, white solid, mp. $=119-120^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{dt}, J=$ $10.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{dt}, J=10.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{dd}, J$ $=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.22,153.99,140.74,132.70,129.24$, $128.53,128.33,126.13,125.39,121.89,110.01,104.98,68.65,49.67,37.87,26.49$, 24.61, 24.51, 13.88. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 334.2165$, found 334.2169.
(Z)-1-(2-(thiophen-3-ylmethylene)-2,3-dihydrobenzofuran-3-yl)piperidine

$\mathbf{2 i}, 91 \%$, white solid, mp. $=107-108{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=15 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.05$ $-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.54(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.41(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.04,153.81,135.95,129.28,128.51,126.18,125.56,124.81,121.97,109.98$, 99.77, 68.23, 49.69, 26.48, 24.48. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NOS}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 298.1260, found 298.1260.
(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)-4-methylpiperidine

$\mathbf{2 j}, 90 \%$, white solid, $\mathrm{mp} .=107-108^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $18.2,11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{td}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{td}, J=11.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ $-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.12,154.76,135.28,129.29,128.42,126.14,125.33,122.00,110.06$, 104.97, 68.35, 49.57, 48.47, 34.90, 30.88, 21.96. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 306.1852$, found 306.1859.
(Z)-1-(2-benzylidene-5-(tert-butyl)-2,3-dihydrobenzofuran-3-yl)-4-methylpiperidine

$\mathbf{2 k}, 93 \%$, white solid, mp. $=116-117^{\circ} \mathrm{C}$, (EA/Hex $\left.=5 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.2,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{td}, J=$ $11.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 2 \mathrm{H})$, $0.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.35,135.44,128.36,126.00$, $124.88,122.94,109.1,104.68,68.60,49.59,48.55,34.92,34.74,31.74,30.91,29.72$. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 362.2478$, found 362.2480.
(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)-4-phenylpiperazine

21, 97%, white solid, mp. $=118-119{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.30\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-6.99$ (m, 2H), $7.10-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.26-3.11(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{dt}, J=$ $10.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.16,153.97$, $151.43,135.03,129.63,129.08,128.48,126.34,126.21,124.54,122.22,119.79$, $116.25,110.22,105.53,67.94,49.79,48.38$. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 369.1961$, found 369.1961.
(Z)-1-(2-benzylidene-6-bromo-2,3-dihydrobenzofuran-3-yl)-4-phenylpiperazine

$\mathbf{2 m}, 99 \%$, white solid, $\mathrm{mp} .=125-126{ }^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H})$, $5.04(\mathrm{~s}, 1 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.83,153.54,151.3,134.58,129.11,128.57,127.22,126.65$, 125.38, 123.83, 122.76, 119.91, 116.30, 113.93, 106.35, 67.46, 49.77, 48.36. HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+} 447.1067$, found 447.1068.
(Z)-1-(2-benzylidene-5-(tert-butyl)-2,3-dihydrobenzofuran-3-yl)-4-phenylpiperazine

2n, 96%, white solid, mp. $=122-123{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 4 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.33$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.07,154.61,151.43,145.39$, 135.21, 129.09, 128.45, 128.30, 126.54, 126.21, 124.08, 122.90, 119.73, 116.13, 109.39, 105.22, 68.22, 49.74, 48.48, 34.50, 31.75. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+} 425.2587$, found 425.2589 .
tert-butyl (Z)-4-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)piperazine-1-carboxylate

2o, 93%, white solid, $\mathrm{mp} .=124-125{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 4 \mathrm{H})$, $2.59(\mathrm{~d}, J=79.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.13,154.69$, $153.85,134.94,129.68,128.47,126.39,126.08,124.41,122.24,110.24,105.55,79.63$, 68.11, 28.42. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$393.2173, found 393.2176.

(Z)-4-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)morpholine

$\mathbf{2 p}, 92 \%$, white solid, mp. $=120-121^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 4 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.52(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.16,153.79,134.94,129.66,128.45,126.36$, $126.13,124.37,122.22,110.22,105.57,68.17,67.41,48.73$. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+}$294.1489, found 294.1502.
(Z)-4-(2-benzylidene-6-bromo-2,3-dihydrobenzofuran-3-yl)morpholine

2q, 97%, white solid, $\mathrm{mp} .=122-123^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.25\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.72$ $-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.84,153.35,134.50,128.55,127.13,126.68,125.40,123.66,122.81,113.93$, 106.44, 67.70, 67.33, 48.70. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 372.0594, found 372.0591 .
methyl 4-((3-(piperidin-1-yl)benzofuran-2-yl)methyl)benzoate

4a, 95%, white solid, mp. $=130-131^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.50\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.05,153.51,147.98,143.97,130.63,129.85,128.61$, $128.33,126.53,123.42,121.91,120.28$, 111.54, 53.76, 52.05, 32.51, 26.81, 24.29. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 350.1751$, found 350.1759.

1-(2-benzyl-5-bromobenzofuran-3-yl)piperidine

4c, 80%, white solid, mp. $=132-133{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.50\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $4 \mathrm{H}), 7.21(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 4 \mathrm{H})$, $1.61-1.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.22,150.57,138.14,128.59$,
126.51, 126.05, 122.70, 114.95, 112.95, 53.73, 32.52, 26.80, 24.25. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrNO}^{+}(\mathrm{M}+\mathrm{H})^{+} 370.0801$, found 370.0801.

1-(2-benzyl-5-methylbenzofuran-3-yl)piperidine

4d, 81%, white solid, mp. $=135-136{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.45\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=$ $8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dt}, J=10.8,5.6$ $\mathrm{Hz}, 4 \mathrm{H}), 1.59(\mathrm{dd}, J=11.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.90,149.14$, $138.68,131.16,130.04,128.57,128.46,126.77,126.28,124.34,120.02,111.01,53.77$, 32.50, 26.88, 24.36, 21.41. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 306.1852$, found 306.1860.

1-phenyl-4-(2-(4-propylbenzyl)benzofuran-3-yl)piperazine

$4 \mathbf{e}, 85 \%$, white solid, $\mathrm{mp} .=140-141^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.20\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21$ - 7.15 (m, 4H), $7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14$ (d, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.33 (s, 8H), 2.54 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.59 (dd, $J=10.5$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}$), $0.95-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.51, 151.60, $150.29,140.88,135.44,129.21,128.73,128.45,126.32,123.41,122.06,120.00$, $119.98,116.40,111.70,52.43,50.24,37.70,32.00,24.64,13.91$. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+} 411.2431$, found 411.2437.

1-(2-benzyl-5-bromobenzofuran-3-yl)-4-phenylpiperazine

4f, 87%, white solid, mp. $=139-140^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.55\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $153.85,151.49,150.69,137.87,129.22,128.79,128.65,126.62,125.42,125.32$, 120.88, 120.10, 116.77, 116.45, 115.12, 52.39, 50.20, 32.41. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+} 447.1067$, found 447.1071.

1-(2-benzyl-5-(tert-butyl)benzofuran-3-yl)-4-phenylpiperazine

$\mathbf{4 g}, 89 \%$, white solid, mp. $=146-148{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.50\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H})$, $7.20(\mathrm{dd}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ $(\mathrm{s}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.72$, 151.57, 150.37, 145.24, 138.37, 129.19, 128.88, 128.58, 126.39, 125.94, 121.36, 120.02, 116.36, 116.02, 110.96, 52.47, 50.26, 32.39, 31.92, 29.71. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+} 425.2587$, found 425.2593.
tert-butyl 4-(2-benzylbenzofuran-3-yl)piperazine-1-carboxylate

4h, 80%, white solid, mp. $=128-129{ }^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.55\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H})$, 7.17 (dt, $J=15.8,6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $4.15(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.11(\mathrm{~s}, 4 \mathrm{H}), 1.50(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.89,153.47,150.07,138.15,128.82,128.58$, 126.50, 126.16, 123.50, 122.10, 119.88, 111.69, 79.83, 52.20, 32.35, 28.49. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 393.2173$, found 393.2177.

4-(2-benzyl-5-bromobenzofuran-3-yl)morpholine

$4 i, 86 \%$, white solid, mp. $=140-141^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{dd}, J=14.2,5.9 \mathrm{~Hz}, 4 \mathrm{H})$, $4.15(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.19-3.08(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.23,151.72,137.74,128.66,128.53,128.29,128.07,126.66,126.38,122.47$, 115.26, 113.13, 67.63, 52.50, 32.39. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 372.0594 , found 372.0600 .

4-(2-benzyl-6-bromobenzofuran-3-yl)morpholine

$4 \mathbf{j}, 83 \%$, white solid, $\mathrm{mp} .=143-144^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $4.14(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.83,150.90,137.78,128.68,128.51,126.62,125.43,125.16,120.75,116.78$, 115.14, 67.62, 52.55, 32.33. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 372.0594, found 372.0600.

1,4-bis((3-(pyrrolidin-1-yl)benzofuran-2-yl)methyl)benzene

$\mathbf{4 m}, 83 \%$, white solid, mp. $=152-153{ }^{\circ} \mathrm{C}$, $\left(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{R}_{\mathrm{f}}=0.6\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=7.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.01(\mathrm{~m}$, $8 \mathrm{H}), 4.08(\mathrm{~s}, 4 \mathrm{H}), 3.27(\mathrm{t}, J=6.5 \mathrm{~Hz}, 8 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.50,146.04,136.90,128.53,127.35,125.93,123.27,121.53,120.19$, 111.47, 52.41, 32.50, 25.29. HRMS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 477.2537$, found 477.2542.

2-phenylbenzofuran

6, 95%, white solid, (EA/Hex $=10 \%, \mathrm{R}_{\mathrm{f}}=0.5$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.93,154.90,130.49,129.23,128.81,128.57,124.95$, 124.28, 122.95, 120.92, 111.20, 101.32. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 195.0804, found 195.0808.
isoquinoline 2-oxide

8, 93%, white solid, $\left(\mathrm{EA} / \mathrm{Hex}=10 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~s}$, $1 \mathrm{H}), 8.07$ (dd, $J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.73$, $136.29,129.61,129.24,126.72,125.11,124.35$. HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{+}(\mathrm{M}+\mathrm{H})^{+} 146.0600$, found 146.0637.

3-phenyl-1H-isochromen-1-one

10, 92%, white solid, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.3\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}$, $J=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.1,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41$ $(\mathrm{m}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.12,144.59,140.61,134.53,133.10,130.15,129.81$, 128.80, 128.46, 125.58, 123.39, 119.86, 107.11. HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 223.0754$, found 223.0761 .
(Z)-3-(2-methoxybenzylidene)isobenzofuran-1(3H)-one

12, 89%, white solid, $\left(E A / H e x=5 \%, \mathrm{R}_{\mathrm{f}}=0.3\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{dd}$, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}$, $1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.37$, $157.05,144.47$, $141.00,134.38,131.35,129.78,125.43,123.29,121.97,121.09$, 120.06, 110.47, 100.85, 55.62. HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 253.0859$, found 253.0863 .

16a, 93%, white solid, (EA/Hex $\left.=5 \%, \mathrm{R}_{\mathrm{f}}=0.3\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (dd, $J=7.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (dd, $J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.64$ (m, 1H), $7.61-$ $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.91$ $-6.75(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.77, 138.52, 136.39, 134.02, 133.17, 132.87, 130.47, 129.48, 129.04, 128.76, 127.46, 127.02, 124.12, 123.99, 123.28, 119.60, 108.05. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 366.1100$, found 366.1109 .

2-(4-bromophenyl)-3-phenylisoquinolin-1(2H)-one

16b, 89%, white solid, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.3\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-$ $7.90(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.74, 138.54, 133.37, 132.78, 131.23, 130.62, 129.41, 129.18, 128.72, 127.45, 126.95, 123.97, 123.25, 120.34, 119.52, 112.37, 107.85. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrNO}^{+}(\mathrm{M}+\mathrm{H})^{+}$376.0332, found 376.0340
(5-methyl-2-phenylfuran-3-yl)(phenyl)methanone

18a, 97%, yellow solid, (EA/Hex $=5 \%, \mathrm{R}_{\mathrm{f}}=0.5$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=8.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.97, $154.51,151.20,138.25,132.63,130.04,129.69,128.59,128.22,127.28,123.75$, 121.77, 109.75, 13.42. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$263.1067, found 263.1065.

1-(5-methyl-2-phenylfuran-3-yl)ethan-1-one

18b, 93%, light yellow solid, (EA/Hex $=5 \%, \mathrm{R}_{\mathrm{f}}=0.5$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.65 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$, 2.67 ($\mathrm{s}, 3 \mathrm{H}$), $2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 194.11, 157.93, 151.71, 129.95, 128.77, 127.78, 123.70, 123.27, 105.08, 29.14, 14.52. HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$201.0910, found 201.1030.
ethyl 5-methyl-2-phenylfuran-3-carboxylate

18c, 95%, yellow solid, (EA/Hex $=5 \%, \mathrm{R}_{\mathrm{f}}=0.5$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.88$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34$ $(\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 163.29, 155.30, 129.88, 129.57, 128.61, 128.22, 114.72, 109.17, 60.58, 14.46, 13.37. HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$231.1016, found 231.1015.
ethyl 2-(4-bromophenyl)-5-methylfuran-3-carboxylate

18d, 91%, light yellow, (EA/Hex $\left.=5 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.65,154.67,151.38$, 131.22, 129.56, 128.95, 123.13, 109.02, 60.48, 14.24, 13.31. HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrO}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$309.0121, found 309.0129.

5-methyl-2-phenylfuran-3-carbonitrile

18e, 90%, light yellow solid, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H})$, 2.38 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.45,152.48,129.64,128.99,128.39$, 125.09, 115.29, 108.96, 92.01, 13.35. HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 184.0757, found 184.0757.

5-methyl-2-(thiophen-2-yl)furan-3-carbonitrile

18f, 84%, yellow solid, ($\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.5$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}$, $J=3.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ $(\mathrm{d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.79,130.41,128.12$, $127.19,114.72,108.35,90.94,76.71,13.33$. HRMS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NOS}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}$190.0321, found 190.0331.

2-methyl-6,7-dihydrobenzofuran-4(5H)-one

$\mathbf{1 8 g}, 87 \%$, yellow solid, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.24(\mathrm{~s}$, $1 \mathrm{H}), 2.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.62,166.00,152.60,122.05,101.95,37.57,23.30,22.68$, 13.32. HRMS (ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$151.0754, found 151.0756.
methyl 5-methyl-2-(m-tolyl)furan-3-carboxylate

18h, 91%, yellow solid, $\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, 3 H), 2.41 ($\mathrm{s}, 3 \mathrm{H}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.26, 156.31, 151.03, 137.66, 129.94, 128.60, 127.98, 125.36, 114.04, 108.68, 51.46, 21.49, 13.33. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$231.1016, found 231.1015.
methyl 2,5-dimethylfuran-3-carboxylate

18i, 89%, yellow solid, (EA/Hex $\left.=5 \%, \mathrm{R}_{\mathrm{f}}=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20(\mathrm{~s}$, 1 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), $2.52(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.69$, 157.67, 149.91, 113.71, 106.11, 51.07, 13.55, 13.09. HRMS (ESI) m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 155.0703$, found 155.0709.

The known products $\mathbf{2 r}$ and $\mathbf{2 s},{ }^{[1]}$ compound $\mathbf{2 t}, \mathbf{2 u}, \mathbf{4 b}, \mathbf{4 k}$ and $\mathbf{4 l},{ }^{[2]} \mathbf{1 4 a}$ and $\mathbf{1 4 b}{ }^{[3]}$ were unambiguously authenticated by comparing the obtained ${ }^{1} \mathrm{H}$ NMR spectroscopic data with those reported in the literature.
[1] N. Wongsa, U. Sommart, T. Ritthiwigrom, A. Yazici, S. Kanokmedhakul, K. Kanokmedhakul, A. C. Willis, S. G. Pyne, J. Org. Chem. 2013, 78, 1138-1148.
[2] G. Purohit, U. C. Rajesh, D. S. Rawat, ACS Sustainable Chem. Eng. 2017, 5, 64666477.
[3] N. Nebra, J. Monot, R. Shaw, B. Martin-Vaca, D. Bourissou, ACS Catal. 2013, 3, 2930-2934.

1-(benzofuran-2-yl(phenyl)methyl)-4-phenylpiperazine

19, 73%, white solid, $\mathrm{mp} .=149-150^{\circ} \mathrm{C},\left(\mathrm{EA} / \mathrm{Hex}=5 \%, \mathrm{R}_{\mathrm{f}}=0.3\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.15(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}$, $1 \mathrm{H}), 3.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $157.16,155.02,151.31,138.90,129.12,128.59,128.20,127.80$, 123.91, 122.75, $120.78,119.70,116.05,111.47,105.16,69.34,51.64,49.25$. HRMS (ESI) m$/ \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}(\mathrm{M}+\mathrm{H})^{+} 369.1961$, found 369.1983 .

3-(benzofuran-2-yl(phenyl)methyl)-2-phenyl-1H-indole

21, 51%, white solid, mp. $=151-152{ }^{\circ} \mathrm{C}$, (EA/Hex $\left.=10 \%, \mathrm{R}_{\mathrm{f}}=0.3\right) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.33(\mathrm{~m}$, $4 \mathrm{H}), 7.27$ (dd, $J=5.6,3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.48-$ $6.36(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.16,155.04$, $141.45,136.09,132.58,128.92,128.66,128.39,128.09,126.66,123.50,122.52$, 122.23, 120.61, 119.97, 112.01, 111.24, 110.91, 105.35, 42.47. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}^{+}(\mathrm{M}+\mathrm{H})^{+} 400.1696$, found 400.1698 .

NMR Figures of Products

${ }^{1} \mathrm{H}$ NMR spectrum of 2a (in CDCl_{3})

ल্ল゙

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 c}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 d}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

$$
\begin{array}{llllllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 e}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2} \mathbf{j}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 k}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 l}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 o}\left(\mathrm{in} \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 p}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 q}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

DEPT 135° spectrum of $\mathbf{4 a}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}$ (in CDCl_{3})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 d}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

No

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{j}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 m}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

DEPT 135° spectrum of $\mathbf{4 m}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

 へへ八NへNべ

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$（in CDCl_{3} ）

${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 a}\left(\mathrm{in} \mathrm{CDCl}_{3}\right)$

DEPT 135° spectrum of $\mathbf{1 6 a}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$

O

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{1 6 a}$ (in CDCl_{3})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 b}$ (in CDCl_{3})

※

$\stackrel{\text { た }}{\text { ®．}}$

