Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

A productive isocyanide/Ag₂CO₃-promoted addition of

heteroatoms to alkynes under mild condition

Jie Lei,^a Jia Xu,^a Ya-Fei Luo,^a Jie Li,^a Jing-Ya Wang,^a Hong-yu Li,^b Zhi-Gang Xu,^{*a} Zhong-

Zhu Chen*a

^a College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China. Email: 18883138277@163.com; xzg@cqwu.edu.cn

^b Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA. Email: HLi2@uams.edu

Table of Contents	Page
General Experimental	2
Optimization of the reaction condition	2
General procedures for condition A	2
General procedures for synthesis of B	3
General procedures for compounds 20	3
General procedures for compounds 21	3
Control experiments	4
X-ray structure of 8 and 12	4
HPLC conversion of yield and time	5-8
Density functional theory (DFT) calculations	9-11
NMR Characterization Data and Figures of Products	12-88

General Experimental

¹H and ¹³C NMR were recorded on a Bruker 400 spectrometer. ¹H NMR data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), relative intensity. ¹³C NMR data are reported as follows: chemical shift in ppm (δ). LC/MS analyses were performed on a Shimadzu-2020 LC-MS instrument using the following conditions: Shim-pack VP-ODS C18 column (reverse phase, 150 x 4.6 mm); a linear gradient from 10% water and 90% acetonitrile to 75% acetonitrile and 25% water over 6.0 min; flow rate of 0.5 mL/min; UV photodiode array detection from 200 to 400 nm. High-resolution mass spectra (HRMS) were recorded on Thermo Scientific Exactive Plus System. The products were purified by Biotage IsoleraTM Spektra Systems and hexane/EtOAc solvent systems. All reagents and solvents were obtained from commercial sources and used without further purification.

Entry	Solvent	Yield (%) ^b	
1	EtOH	93	
2	MeCN	91	
4	H ₂ O	67	
5	Toluene	39	
6	THF	<10	
7	DMF	74	
8	DMSO	55	
9	DCM	84	
10 ^c	EtOH	91	

Table S1 Optimization of the re	action condition. ^a
--	--------------------------------

^{*a*} Reaction condition:**1a** (0.3 mmol), 1 mol% Ag₂CO₃, 4 mol% *t*-BuNC, solvent (3.0 mL), room temperature, 30 min. ^{*b*} Isolated yield. ^{*c*}**1a** (0.3 mmol), 1 mol% Ag₂CO₃, 1.0 equiv. *t*-BuNC, solvent (3.0 mL), room temperature, 30 min.

General procedures for condition A.

To a solution of ethanol (3.0 mL) in flask, substrate (0.3 mmol), *tert*-butyl isocyanide (4 mol%) and silver carbonate (1 mol%) were added at room temperature. And then the reaction mixture was stirred for 30 min. The reaction mixture was monitored by TLC.

When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na_2CO_3 and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product.

General procedures for condition B.

To a solution of ethanol (3.0 mL) in flask, substrate (0.3 mmol), *tert*-butyl isocyanide (16 mol%) and silver carbonate (3 mol%) were added at room temperature. And then, the reaction mixture was heated to 50 °C and stirred for 1 h. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na₂CO₃ and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product.

General procedure for compound 19

In a solution of compound **2l** (0.2 mmol) in DCE (3.0 mL), BF₃ Et₂O (1.5 equiv) was added and stirred at room temperature for 2 h. When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the targeted product **19** in 73% yield.

General procedure for compound 21

A mixture of **2l** (0.2 mmol) and **20** (0.3 mmol) was added to the solvent of PhCl (2.0 mL) in an oven dried reaction tube. Then ZnI_2 (20 mol%) was added to it and heated with microwave irradiation at 100 °C for 10 min. After the completion of the reaction, the reaction was cooled to room temperature an extracted with dichloromethane. The organic phase was dried over anhydrous Na₂SO₄. The crude residue was obtained after evaporating the solvent under vacuum; it was purified by column chromatography on a silica gel using a a gradient of ethyl acetate/hexane (0-100%) to afford the pure product **21** (51%) as a white solid.

Control experiments

X-ray structures of compound 8 and 12

HPLC conversion of yield and time

 $t = 5 min (Ag_2CO_3 and isocyanide were added)$

 $t = 20 \min$

Density functional theory (DFT) calculations

Optimized structures

Computational details

All calculations were performed using Gaussian 16 program package,^[1] employing the B3LYP-D3(BJ)^[2] density functional with the def2-SVP basis set. Geometries were optimized in toluene solvent and characterized by frequency analysis at 298.15K. Unless specified, the Gibbs free energies obtained at the B3LYP-D3(BJ)/def2-SVP (SMD, toluene) level at 298.15K were used in the discussion. The optimized molecular structures were visualized by CYLview (2.0 version) software.^[3]

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [2] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
- [3] CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org)

Structures	^a ZPE	^b Hc	°Gc	EZPE	Н	G
A-IM1	0.481562	0.517834	0.402703	-1672.61641	-1672.580139	-1672.695269
A-TS1	0.479467	0.51525	0.401713	-1672.618426	-1672.582642	-1672.69618
A-IM2	0.48193	0.518144	0.4045	-1672.61718	-1672.580966	-1672.694611
A-TS2	0.480922	0.516996	0.391247	-1672.522646	-1672.486573	-1672.612322
A-IM3	0.484819	0.520658	0.406037	-1672.616147	-1672.580308	-1672.694929
A-TS3	0.479787	0.515056	0.40299	-1672.589316	-1672.554046	-1672.666112
A-IM4	0.485134	0.520645	0.408011	-1672.625899	-1672.590388	-1672.703022
B-TS2	0.349284	0.375564	0.280078	-1422.078959	-1422.052679	-1422.148165
B-IM3	0.353078	0.380063	0.288941	-1422.167279	-1422.140294	-1422.231416
B-TS3	0.348384	0.374658	0.286219	-1422.149840	-1422.123566	-1422.212005

Table S2 The ZPE-correct electronic energies (E_{ZPE}), enthalpies (H), and Gibbs free energies (G) for all stationary points (in Hartree), obtained at the B3LYP-D3(BJ)/def2-SVP theoretical level.

^a Zero-point correction energy;

^b Thermal correction to enthalpy;

^c Thermal correction to Gibbs free energy.

NMR Characterization Data and Figures of Products

(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2a, 93%, white solid, mp. = 109-110 °C, (EA/Hex = 10%, $R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.9 Hz, 2H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.36 (td, *J* = 7.9, 1.4 Hz, 2H), 7.32 – 7.27 (m, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.07 – 6.98 (m, 2H), 5.83 (s, 1H), 5.16 (s, 1H), 2.81 – 2.52 (m, 4H), 1.74 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.18, 154.71, 135.12, 129.40, 128.47, 128.39, 126.23, 126.09, 125.54, 122.06, 110.16, 105.52, 63.78, 48.07, 23.36. HRMS (ESI) m/z calcd for C₁₉H₂₀NO⁺ (M+H)⁺ 278.1539, found 278.1548.

(Z)-1-(2-(4-methoxybenzylidene)-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2b, 98%, white solid, mp. = 107-108 °C, (EA/Hex = 10%, $R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 7.4 Hz, 1H), 7.28 (dd, J = 11.0, 3.5 Hz, 1H), 7.01 (dd, J = 15.2, 7.7 Hz, 2H), 6.93 – 6.89 (m, 2H), 5.77 (d, J = 1.1 Hz, 1H), 5.13 (s, 1H), 3.82 (s, 3H), 2.75 (dd, J = 9.3, 3.1 Hz, 2H), 2.61 (dd, J = 9.3, 3.1 Hz, 2H), 1.74 (t, J = 6.2 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.24, 158.01, 153.02, 129.69, 129.32, 127.96, 126.09, 125.69, 121.89, 113.83, 110.08, 105.13, 63.69, 55.31, 48.05, 23.33. HRMS (ESI) m/z calcd for C₂₀H₂₂NO₂⁺ (M+H)⁺ 308.1645, found 308.1645.

(Z)-1-(2-(4-(tert-butyl)benzylidene)-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2c, 95%, white solid, mp. = 110-111 °C, (EA/Hex =5%, R_f = 0.20). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 3H), 7.32 – 7.24 (m, 1H), 7.01 (dd, *J* = 14.7, 7.6 Hz, 2H), 5.82 (s, 1H), 5.15 (s, 1H), 2.82 – 2.56 (m, 4H), 1.74 (d, *J* = 6.1 Hz, 4H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 158.24, 154.14, 149.21, 132.30, 129.35, 128.19, 126.08, 125.69, 125.32, 121.95, 110.12, 105.35, 63.71, 48.02, 34.56, 31.35, 23.34. HRMS (ESI) m/z calcd for C₂₃H₂₈NO⁺ (M+H)⁺ 334.2165, found 334.2169.

(Z)-1-(2-benzylidene-6-methyl-2,3-dihydrobenzofuran-3-yl)pyrrolidine

2d, 98%, white solid, mp. = 106-107 °C, (EA/Hex = 15%, $R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.88 (s, 1H), 6.83 (d, *J* = 7.5 Hz, 1H), 5.81 (s, 1H), 5.13 (s, 1H), 2.68 (dd, *J* = 55.9, 5.7 Hz, 4H), 2.37 (s, 3H), 1.74 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.43, 155.26, 135.24, 128.37, 126.15, 125.67, 122.82, 110.80, 105.30, 63.65, 48.04, 23.35, 21.67. HRMS (ESI) m/z calcd for C₂₀H₂₂NO⁺ (M+H)⁺ 292.1696, found 292.1696.

(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)piperidine

2e, 91%, white solid, mp. = 108-109 °C, (EA/Hex = 15%, $R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 7.2 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.02 (dd, J = 12.4, 5.0 Hz, 2H), 5.86 (d, J = 1.2 Hz, 1H), 4.97 (s, 1H), 2.69 (dt, J = 10.6, 5.3 Hz, 2H), 2.48 (dt, J = 10.5, 5.2 Hz, 2H), 1.54 (dd, J = 11.1, 5.7 Hz, 4H), 1.40 (dt, J = 11.9, 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.24, 154.76, 135.30, 129.28, 128.40, 126.14, 125.32, 122.00, 110.04, 104.94, 68.73, 49.71, 26.50, 24.49. HRMS (ESI) m/z calcd for C₂₀H₂₂NO⁺ (M+H)⁺ 292.1696, found 292.1698.

(Z)-1-(2-benzylidene-5-methyl-2,3-dihydrobenzofuran-3-yl)piperidine

2f, 92%, white solid, mp. = 109-110 °C, (EA/Hex = 10%, $R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.9 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.20 (dd, J = 13.9, 6.5 Hz, 2H), 7.06 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 5.83 (s, 1H), 4.93 (s, 1H), 2.68 (dt, J = 10.4, 5.1 Hz, 2H), 2.55 – 2.44 (m, 2H), 2.35 (s, 3H), 1.61 – 1.51 (m, 4H), 1.40 (t, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.18, 155.11, 135.40, 131.37, 129.72, 128.36, 126.56, 126.02, 125.2, 109.52, 104.67, 68.85, 49.68, 26.49, 24.48, 21.03. HRMS (ESI) m/z calcd for C₂₁H₂₄NO⁺ (M+H)⁺ 306.1852, found 306.1855.

(Z)-1-(5-methyl-2-(4-propylbenzylidene)-2,3-dihydrobenzofuran-3-yl)piperidine

2g, 95%, white solid, mp. = 121-122 °C, (EA/Hex = 10%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.22 (s, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 5.81 (s, 1H), 4.92 (s, 1H), 2.67 (dt, *J* = 10.5, 5.1 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 2.47 (dt, *J* = 10.4, 5.0 Hz, 2H), 2.34 (s, 3H), 1.64 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.58 – 1.50 (m, 4H), 1.44 – 1.37 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.25, 154.32, 140.64, 132.78, 131.25, 129.69, 128.51, 128.27, 126.57, 125.27, 109.50, 104.73, 68.75, 49.62, 37.86, 26.47, 24.63, 24.48, 21.05, 13.89. HRMS (ESI) m/z calcd for C₂₄H₃₀NO⁺ (M+H)⁺ 348.2322, found 348.2329.

(Z)-1-(2-(4-propylbenzylidene)-2,3-dihydrobenzofuran-3-yl)piperidine

2h, 97%, white solid, mp. = 119-120 °C, (EA/Hex = 10%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.30 – 7.22 (m, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.05 – 6.97 (m, 2H), 5.84 (s, 1H), 4.96 (s, 1H), 2.68 (dt, *J* = 10.5, 5.2 Hz, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.47 (dt, *J* = 10.5, 5.0 Hz, 2H), 1.65 (dd, *J* = 15.0, 7.5 Hz, 2H), 1.58 – 1.50 (m, 4H), 1.40 (dd, *J* = 11.1, 5.6 Hz, 2H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.22, 153.99, 140.74, 132.70, 129.24, 128.53, 128.33, 126.13, 125.39, 121.89, 110.01, 104.98, 68.65, 49.67, 37.87, 26.49, 24.61, 24.51, 13.88. HRMS (ESI) m/z calcd for C₂₃H₂₈NO⁺ (M+H)⁺ 334.2165, found 334.2169.

(Z)-1-(2-(thiophen-3-ylmethylene)-2,3-dihydrobenzofuran-3-yl)piperidine

2i, 91%, white solid, mp. = 107-108 °C, (EA/Hex = 15%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 1.7 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.31 – 7.25 (m, 2H), 7.05 – 6.97 (m, 2H), 5.95 (d, J = 1.6 Hz, 1H), 4.96 (s, 1H), 2.73 – 2.62 (m, 2H), 2.53 – 2.40 (m, 2H), 1.54 (d, J = 3.7 Hz, 4H), 1.41 (d, J = 5.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.04, 153.81, 135.95, 129.28, 128.51, 126.18, 125.56, 124.81, 121.97, 109.98, 99.77, 68.23, 49.69, 26.48, 24.48. HRMS (ESI) m/z calcd for C₁₈H₂₀NOS⁺ (M+H)⁺ 298.1260, found 298.1260.

(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)-4-methylpiperidine

2j, 90%, white solid, mp. = 107-108 °C, (EA/Hex = 5%, R_f = 0.20). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 2H), 7.44 – 7.34 (m, 3H), 7.31 – 7.24 (m, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.07 – 6.99 (m, 2H), 5.85 (d, *J* = 1.3 Hz, 1H), 5.00 (s, 1H), 2.79 (dd, *J* = 18.2, 11.7 Hz, 2H), 2.58 (td, *J* = 11.2, 2.4 Hz, 1H), 2.21 (td, *J* = 11.1, 2.3 Hz, 1H), 1.66 – 1.54 (m, 3H), 1.36 – 1.23 (m, 2H), 0.89 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.12, 154.76, 135.28, 129.29, 128.42, 126.14, 125.33, 122.00, 110.06, 104.97, 68.35, 49.57, 48.47, 34.90, 30.88, 21.96. HRMS (ESI) m/z calcd for C₂₁H₂₄NO⁺ (M+H)⁺ 306.1852, found 306.1859.

(Z)-1-(2-benzylidene-5-(tert-butyl)-2,3-dihydrobenzofuran-3-yl)-4-methylpiperidine

2k, 93%, white solid, mp. = 116-117 °C, (EA/Hex = 5%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.3 Hz, 2H), 7.41 (d, *J* = 1.9 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.29 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.82 (d, *J* = 1.4 Hz, 1H), 4.98 (s, 1H), 2.79 (dd, *J* = 14.2, 11.0 Hz, 2H), 2.56 (td, *J* = 11.1, 2.3 Hz, 1H), 2.27 – 2.16 (m, 1H), 1.64 – 1.55 (m, 3H), 1.33 (s, 9H), 1.25 (s, 2H), 0.90 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.35, 135.44, 128.36, 126.00, 124.88, 122.94, 109.1, 104.68, 68.60, 49.59, 48.55, 34.92, 34.74, 31.74, 30.91, 29.72. HRMS (ESI) m/z calcd for C₂₅H₃₂NO⁺ (M+H)⁺ 362.2478, found 362.2480.

(Z)-1-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)-4-phenylpiperazine

21, 97%, white solid, mp. = 118-119 °C, (EA/Hex = 10%, $R_f = 0.30$). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.5 Hz, 2H), 7.73 (d, J = 7.5 Hz, 2H), 7.45 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.27 – 7.19 (m, 4H), 7.16 – 6.99 (m, 2H), 7.10 – 7.01 (m, 2H), 6.90 (d, J = 7.9 Hz, 2H), 6.99 – 6.79 (m, 3H), 6.84 (t, J = 7.3 Hz, 1H), 5.90 (d, J = 1.3 Hz, 1H), 5.10 (s, 1H), 3.26 – 3.11 (m, 4H), 2.93 (dt, J = 10.0, 4.9 Hz, 2H), 2.79 – 2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.16, 153.97, 151.43, 135.03, 129.63, 129.08, 128.48, 126.34, 126.21, 124.54, 122.22, 119.79, 116.25, 110.22, 105.53, 67.94, 49.79, 48.38. HRMS (ESI) m/z calcd for C₂₅H₂₅N₂O⁺ (M+H)⁺ 369.1961, found 369.1961.

(Z)-1-(2-benzylidene-6-bromo-2,3-dihydrobenzofuran-3-yl)-4-phenylpiperazine

2m, 99%, white solid, mp. = 125-126 °C, (EA/Hex = 10%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.21 (m, 5H), 7.18 (d, *J* = 7.9 Hz, 1H), 6.92 – 6.82 (m, 3H), 5.91 (s, 1H), 5.04 (s, 1H), 3.23 – 3.12 (m, 4H), 2.95 – 2.86 (m, 2H), 2.76 – 2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.83, 153.54, 151.3, 134.58, 129.11, 128.57, 127.22, 126.65, 125.38, 123.83, 122.76, 119.91, 116.30, 113.93, 106.35, 67.46, 49.77, 48.36. HRMS (ESI) m/z calcd for C₂₅H₂₄BrN₂O⁺ (M+H)⁺ 447.1067, found 447.1068.

(Z)-1-(2-benzylidene-5-(tert-butyl)-2,3-dihydrobenzofuran-3-yl)-4-phenylpiperazine

2n, 96%, white solid, mp. = 122-123 °C, (EA/Hex = 5%, $R_f = 0.20$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 2H), 7.44 (s, 1H), 7.41 – 7.30 (m, 3H), 7.27 – 7.17 (m, 3H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 2H), 6.84 (t, *J* = 7.2 Hz, 1H), 5.88 (s, 1H), 5.07 (s, 1H), 3.19 (s, 4H), 2.99 – 2.88 (m, 2H), 2.78 – 2.68 (m, 2H), 1.33 (d, *J* = 1.4 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.07, 154.61, 151.43, 145.39, 135.21, 129.09, 128.45, 128.30, 126.54, 126.21, 124.08, 122.90, 119.73, 116.13, 109.39, 105.22, 68.22, 49.74, 48.48, 34.50, 31.75. HRMS (ESI) m/z calcd for C₂₉H₃₃N₂O⁺ (M+H)⁺ 425.2587, found 425.2589.

tert-butyl (Z)-4-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)piperazine-1-carboxylate

20, 93%, white solid, mp. = 124-125 °C, (EA/Hex = 5%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 2H), 7.41 – 7.34 (m, 3H), 7.29 (t, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.08 – 6.99 (m, 2H), 5.85 (s, 1H), 5.03 (s, 1H), 3.41 (s, 4H), 2.59 (d, *J* = 79.9 Hz, 4H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 158.13, 154.69, 153.85, 134.94, 129.68, 128.47, 126.39, 126.08, 124.41, 122.24, 110.24, 105.55, 79.63, 68.11, 28.42. HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₃⁺ (M+H)⁺ 393.2173, found 393.2176.

(Z)-4-(2-benzylidene-2,3-dihydrobenzofuran-3-yl)morpholine

2p, 92%, white solid, mp. = 120-121 °C, (EA/Hex = 10%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.3 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 2H), 5.88 (d, *J* = 1.5 Hz, 1H), 5.00 (s, 1H), 3.74 – 3.64 (m, 4H), 2.82 – 2.72 (m, 2H), 2.61 – 2.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.16, 153.79, 134.94, 129.66, 128.45, 126.36, 126.13, 124.37, 122.22, 110.22, 105.57, 68.17, 67.41, 48.73. HRMS (ESI) m/z calcd for C₁₉H₂₀NO₂⁺ (M+H)⁺ 294.1489, found 294.1502.

(Z)-4-(2-benzylidene-6-bromo-2,3-dihydrobenzofuran-3-yl)morpholine

2q, 97%, white solid, mp. = 122-123 °C, (EA/Hex = 10%, $R_f = 0.25$). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.26 – 7.22 (m, 3H), 7.18 (dd, *J* = 7.9, 1.2 Hz, 1H), 5.89 (s, 1H), 4.94 (s, 1H), 3.72 – 3.65 (m, 4H), 2.76 – 2.70 (m, 2H), 2.59 – 2.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.84, 153.35, 134.50, 128.55, 127.13, 126.68, 125.40, 123.66, 122.81, 113.93, 106.44, 67.70, 67.33, 48.70. HRMS (ESI) m/z calcd for C₁₉H₁₉BrNO₂⁺ (M+H)⁺ 372.0594, found 372.0591.

methyl 4-((3-(piperidin-1-yl)benzofuran-2-yl)methyl)benzoate

4a, 95%, white solid, mp. = 130-131 °C, (EA/Hex = 10%, $R_f = 0.50$). ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.93 (m, 2H), 7.70 – 7.63 (m, 1H), 7.41 – 7.31 (m, 3H), 7.23 – 7.12 (m, 2H), 4.20 (s, 2H), 3.89 (s, 3H), 3.16 – 3.07 (m, 4H), 1.74 – 1.58 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.05, 153.51, 147.98, 143.97, 130.63, 129.85, 128.61, 128.33, 126.53, 123.42, 121.91, 120.28, 111.54, 53.76, 52.05, 32.51, 26.81, 24.29. HRMS (ESI) m/z calcd for C₂₂H₂₄NO₃⁺ (M+H)⁺ 350.1751, found 350.1759.

4c, 80%, white solid, mp. = 132-133 °C, (EA/Hex = 10%, $R_f = 0.50$). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 1.2 Hz, 1H), 7.30 (d, J = 7.9 Hz, 1H), 7.26 (d, J = 7.5 Hz, 4H), 7.21 (t, J = 8.6 Hz, 2H), 4.13 (s, 2H), 3.13 – 3.04 (m, 4H), 1.75 – 1.67 (m, 4H), 1.61 – 1.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 152.22, 150.57, 138.14, 128.59,

126.51, 126.05, 122.70, 114.95, 112.95, 53.73, 32.52, 26.80, 24.25. HRMS (ESI) m/z calcd for $C_{20}H_{21}BrNO^+$ (M+H)⁺ 370.0801, found 370.0801.

1-(2-benzyl-5-methylbenzofuran-3-yl)piperidine

4d, 81%, white solid, mp. = 135-136 °C, (EA/Hex = 10%, $R_f = 0.45$). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.29 – 7.24 (m, 4H), 7.22 – 7.16 (m, 2H), 6.98 (dd, J = 8.4, 1.3 Hz, 1H), 4.13 (s, 2H), 3.19 – 3.04 (m, 4H), 2.42 (s, 3H), 1.71 (dt, J = 10.8, 5.6 Hz, 4H), 1.59 (dd, J = 11.2, 5.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 151.90, 149.14, 138.68, 131.16, 130.04, 128.57, 128.46, 126.77, 126.28, 124.34, 120.02, 111.01, 53.77, 32.50, 26.88 , 24.36, 21.41. HRMS (ESI) m/z calcd for C₂₁H₂₄NO⁺ (M+H)⁺ 306.1852, found 306.1860.

1-phenyl-4-(2-(4-propylbenzyl)benzofuran-3-yl)piperazine

4e, 85%, white solid, mp. = 140-141 °C, (EA/Hex = 5%, R_f = 0.20). ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 1H), 7.38 (dd, *J* = 5.3, 2.9 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.21 – 7.15 (m, 4H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.8 Hz, 2H), 6.89 (t, *J* = 7.3 Hz, 1H), 4.14 (d, *J* = 3.0 Hz, 2H), 3.33 (s, 8H), 2.54 (t, *J* = 7.6 Hz, 2H), 1.59 (dd, *J* = 10.5, 4.5 Hz, 2H), 0.95 – 0.88 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.51, 151.60, 150.29, 140.88, 135.44, 129.21, 128.73, 128.45, 126.32, 123.41, 122.06, 120.00, 119.98, 116.40, 111.70, 52.43, 50.24, 37.70, 32.00, 24.64, 13.91. HRMS (ESI) m/z calcd for C₂₈H₃₁N₂O⁺ (M+H)⁺ 411.2431, found 411.2437.

1-(2-benzyl-5-bromobenzofuran-3-yl)-4-phenylpiperazine

4f, 87%, white solid, mp. = 139-140 °C, (EA/Hex = 10%, $R_f = 0.55$). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 9.1 Hz, 2H), 7.35 – 7.19 (m, 8H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.90 (t, *J* = 7.3 Hz, 1H), 4.16 (s, 2H), 3.31 (s, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 153.85, 151.49, 150.69, 137.87, 129.22, 128.79, 128.65, 126.62, 125.42, 125.32, 120.88, 120.10, 116.77, 116.45, 115.12, 52.39, 50.20, 32.41. HRMS (ESI) m/z calcd for C₂₅H₂₄BrN₂O⁺ (M+H)⁺ 447.1067, found 447.1071.

1-(2-benzyl-5-(tert-butyl)benzofuran-3-yl)-4-phenylpiperazine

4g, 89%, white solid, mp. = 146-148 °C, (EA/Hex = 5%, $R_f = 0.50$). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.36 – 7.30 (m, 3H), 7.28 (d, *J* = 4.3 Hz, 3H), 7.27 (s, 2H), 7.20 (dd, *J* = 8.7, 4.3 Hz, 1H), 7.02 (d, *J* = 8.2 Hz, 2H), 6.90 (t, *J* = 7.2 Hz, 1H), 4.16 (s, 2H), 3.35 (d, *J* = 2.4 Hz, 8H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.72, 151.57, 150.37, 145.24, 138.37, 129.19, 128.88, 128.58, 126.39, 125.94, 121.36, 120.02, 116.36, 116.02, 110.96, 52.47, 50.26, 32.39, 31.92, 29.71. HRMS (ESI) m/z calcd for C₂₉H₃₃N₂O⁺ (M+H)⁺ 425.2587, found 425.2593.

tert-butyl 4-(2-benzylbenzofuran-3-yl)piperazine-1-carboxylate

4h, 80%, white solid, mp. = 128-129 °C, (EA/Hex = 5%, $R_f = 0.55$). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.17 (dt, *J* = 15.8, 6.9 Hz, 3H), 4.15 (s, 2H), 3.62 – 3.51 (m, 4H), 3.11 (s, 4H), 1.50 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.89, 153.47, 150.07, 138.15, 128.82, 128.58, 126.50, 126.16, 123.50, 122.10, 119.88, 111.69, 79.83, 52.20, 32.35, 28.49. HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₃⁺ (M+H)⁺ 393.2173, found 393.2177.

4-(2-benzyl-5-bromobenzofuran-3-yl)morpholine

4i, 86%, white solid, mp. = 140-141 °C, (EA/Hex = 10%, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 1.5 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.23 (dd, *J* = 14.2, 5.9 Hz, 4H), 4.15 (s, 2H), 3.90 – 3.80 (m, 4H), 3.19 – 3.08 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 152.23, 151.72, 137.74, 128.66, 128.53, 128.29, 128.07, 126.66, 126.38, 122.47, 115.26, 113.13, 67.63, 52.50, 32.39. HRMS (ESI) m/z calcd for C₁₉H₁₉BrNO₂⁺ (M+H)⁺ 372.0594, found 372.0600.

4-(2-benzyl-6-bromobenzofuran-3-yl)morpholine

4j, 83%, white solid, mp. = 143-144 °C, (EA/Hex = 10%, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.32 – 7.26 (m, 3H), 7.22 (dd, *J* = 13.8, 7.0 Hz, 3H), 4.14 (s, 2H), 3.88 – 3.80 (m, 4H), 3.18 – 3.08 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 153.83, 150.90, 137.78, 128.68, 128.51, 126.62, 125.43, 125.16, 120.75, 116.78, 115.14, 67.62, 52.55, 32.33. HRMS (ESI) m/z calcd for C₁₉H₁₉BrNO₂⁺ (M+H)⁺ 372.0594, found 372.0600.

1,4-bis((3-(pyrrolidin-1-yl)benzofuran-2-yl)methyl)benzene

4m, 83%, white solid, mp. = 152-153 °C, (EA/Hex =20%, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.6, 0.9 Hz, 2H), 7.24 (d, J = 7.6 Hz, 2H), 7.13 – 7.01 (m, 8H), 4.08 (s, 4H), 3.27 (t, J = 6.5 Hz, 8H), 1.94 – 1.84 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 153.50, 146.04, 136.90, 128.53, 127.35, 125.93, 123.27, 121.53, 120.19, 111.47, 52.41, 32.50, 25.29. HRMS (ESI) m/z calcd for C₃₂H₃₃N₂O₂⁺ (M+H)⁺ 477.2537, found 477.2542.

2-phenylbenzofuran

6, 95%, white solid, (EA/Hex = 10%, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.26 – 7.20 (m, 1H), 7.03 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.93, 154.90, 130.49, 129.23, 128.81, 128.57, 124.95, 124.28, 122.95, 120.92, 111.20, 101.32. HRMS (ESI) m/z calcd for C₁₄H₁₁O⁺ (M+H)⁺ 195.0804, found 195.0808.

isoquinoline 2-oxide

8, 93%, white solid, (EA/Hex = 10%, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.07 (dd, J = 7.1, 1.5 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 7.1 Hz, 1H), 7.58 – 7.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 136.73, 136.29, 129.61, 129.24, 126.72, 125.11, 124.35. HRMS (ESI) m/z calcd for C₉H₈NO₊(M+H)⁺ 146.0600, found 146.0637.

3-phenyl-1H-isochromen-1-one

10, 92%, white solid, (EA/Hex = 5%, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 10.4, 3.5 Hz, 1H), 7.76 (dd, J = 7.1, 4.1 Hz, 2H), 7.71 – 7.59 (m, 2H), 7.49 – 7.41 (m, 1H), 7.32 (td, J = 7.6, 3.6 Hz, 2H), 7.27 – 7.19 (m, 1H), 6.33 (d, J = 5.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.12, 144.59, 140.61, 134.53, 133.10, 130.15, 129.81, 128.80, 128.46, 125.58, 123.39, 119.86, 107.11. HRMS (ESI) m/z calcd for C₁₅H₁₁O₂⁺ (M+H)⁺ 223.0754, found 223.0761.

12, 89%, white solid, (EA/Hex = 5%, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 7.8, 1.4 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.25 – 7.18 (m, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.88 (s, 1H), 6.83 (d, J = 8.3 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 167.37, 157.05, 144.47, 141.00, 134.38, 131.35, 129.78, 125.43, 123.29, 121.97, 121.09, 120.06, 110.47, 100.85, 55.62. HRMS (ESI) m/z calcd for C₁₆H₁₃O₃⁺ (M+H)⁺ 253.0859, found 253.0863.

3-phenyl-2-(3-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one

16a, 93%, white solid, (EA/Hex = 5%, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.3, 4.8 Hz, 1H), 7.88 (dd, J = 7.6, 4.7 Hz, 1H), 7.75 – 7.64 (m, 1H), 7.61 – 7.55 (m, 1H), 7.41 (d, J = 5.6 Hz, 1H), 7.36 – 7.19 (m, 3H), 7.05 – 6.92 (m, 3H), 6.91 – 6.75 (m, 3H). ¹³C NMR (100MHz, CDCl₃) δ 167.77, 138.52, 136.39, 134.02, 133.17, 132.87, 130.47, 129.48, 129.04, 128.76, 127.46, 127.02, 124.12, 123.99, 123.28, 119.60, 108.05. HRMS (ESI) m/z calcd for C₂₂H₁₅F₃NO⁺ (M+H)⁺ 366.1100, found 366.1109.

2-(4-bromophenyl)-3-phenylisoquinolin-1(2H)-one

16b, 89%, white solid, (EA/Hex = 5%, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.90 (m, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.53 (td, J = 7.5, 0.7 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.21 – 7.14 (m, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.84 (d, J = 8.5 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 167.74, 138.54, 133.37, 132.78, 131.23, 130.62, 129.41, 129.18, 128.72, 127.45, 126.95, 123.97, 123.25, 120.34, 119.52, 112.37, 107.85. HRMS (ESI) m/z calcd for C₂₁H₁₅BrNO⁺ (M+H)⁺ 376.0332, found 376.0340.

(5-methyl-2-phenylfuran-3-yl)(phenyl)methanone

18a, 97%, yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.67-7.63 (m, 2H), 7.49 (dd, J = 8.6, 4.3 Hz, 2H), 7.36 (t, J = 7.6 Hz, 3H), 7.28 (s, 1H), 6.30 (s, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.97, 154.51, 151.20, 138.25, 132.63, 130.04, 129.69, 128.59, 128.22, 127.28, 123.75, 121.77, 109.75, 13.42. HRMS (ESI) m/z calcd for C₁₈H₁₅O₂⁺ (M+H)⁺ 263.1067, found 263.1065.

1-(5-methyl-2-phenylfuran-3-yl)ethan-1-one

18b, 93%, light yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 7.4 Hz, 1H), 6.85 (s, 1H), 2.67 (s, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.11, 157.93, 151.71, 129.95, 128.77, 127.78, 123.70, 123.27, 105.08, 29.14, 14.52. HRMS (ESI) m/z calcd for C₁₃H₁₃O₂⁺ (M+H)⁺ 201.0910, found 201.1030.

ethyl 5-methyl-2-phenylfuran-3-carboxylate

18c, 95%, yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.88 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.51-7.39 (m, 3H), 6.50 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.29, 155.30, 129.88, 129.57, 128.61, 128.22, 114.72, 109.17, 60.58, 14.46, 13.37. HRMS (ESI) m/z calcd for C₁₄H₁₅O₃⁺ (M+H)⁺ 231.1016, found 231.1015.

ethyl 2-(4-bromophenyl)-5-methylfuran-3-carboxylate

18d, 91%, light yellow, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 6.44 (s, 1H), 4.28 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.32 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.65, 154.67, 151.38, 131.22, 129.56, 128.95, 123.13, 109.02, 60.48, 14.24, 13.31. HRMS (ESI) m/z calcd for C₁₄H₁₄BrO₃⁺ (M+H)⁺ 309.0121, found 309.0129.

5-methyl-2-phenylfuran-3-carbonitrile

18e, 90%, light yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.3 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 6.26 (s, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.45, 152.48, 129.64, 128.99, 128.39, 125.09, 115.29, 108.96, 92.01, 13.35. HRMS (ESI) m/z calcd for C₁₂H₁₀NO⁺ (M+H)⁺ 184.0757, found 184.0757.

5-methyl-2-(thiophen-2-yl)furan-3-carbonitrile

18f, 84%, yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 3.7, 0.8 Hz, 1H), 7.41 (dd, J = 5.0, 0.8 Hz, 1H), 7.12 (dd, J = 4.9, 3.8 Hz, 1H), 6.22 (d, J = 0.8 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.79, 130.41, 128.12, 127.19, 114.72, 108.35, 90.94, 76.71, 13.33. HRMS (ESI) m/z calcd for C₁₀H₈NOS⁺ (M+H)⁺ 190.0321, found 190.0331.

2-methyl-6,7-dihydrobenzofuran-4(5H)-one

18g, 87%, yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 2.83 (t, *J* = 6.3 Hz, 2H), 2.49-2.43 (m, 2H), 2.29 (s, 3H), 2.19-2.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.62, 166.00, 152.60, 122.05, 101.95, 37.57, 23.30, 22.68, 13.32. HRMS (ESI) m/z calcd for C₉H₁₁O₂⁺ (M+H)⁺ 151.0754, found 151.0756.

methyl 5-methyl-2-(m-tolyl)furan-3-carboxylate

18h, 91%, yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.31 (t, J = 7.7 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 6.41 (s, 1H), 3.80 (s, 3H), 2.41 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.26, 156.31, 151.03, 137.66, 129.94, 128.60, 127.98, 125.36, 114.04, 108.68, 51.46, 21.49, 13.33. HRMS (ESI) m/z calcd for C₁₄H₁₅O₃⁺ (M+H)⁺ 231.1016, found 231.1015.

methyl 2,5-dimethylfuran-3-carboxylate

18i, 89%, yellow solid, (EA/Hex = 5%, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 6.20 (s, 1H), 3.79 (s, 3H), 2.52 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.69, 157.67, 149.91, 113.71, 106.11, 51.07, 13.55, 13.09. HRMS (ESI) m/z calcd for $C_8H_{11}O_3^+$ (M+H)⁺ 155.0703, found 155.0709.

The known products **2r** and **2s**, ^[1] compound **2t**, **2u**, **4b**, **4k** and **4l**, ^[2] **14a** and **14b** ^[3] were unambiguously authenticated by comparing the obtained ¹H NMR spectroscopic data with those reported in the literature.

N. Wongsa, U. Sommart, T. Ritthiwigrom, A. Yazici, S. Kanokmedhakul, K. Kanokmedhakul, A. C. Willis, S. G. Pyne, *J. Org. Chem.* 2013, 78, 1138-1148.

- [2] G. Purohit, U. C. Rajesh, D. S. Rawat, ACS Sustainable Chem. Eng. 2017, 5, 6466-6477.
- [3] N. Nebra, J. Monot, R. Shaw, B. Martin-Vaca, D. Bourissou, ACS Catal. 2013, 3, 2930-2934.

1-(benzofuran-2-yl(phenyl)methyl)-4-phenylpiperazine

19, 73%, white solid, mp. = 149-150 °C, (EA/Hex = 5%, R_f = 0.3). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.0 Hz, 2H), 7.52 – 7.43 (m, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.15 (m, 5H), 6.89 (d, *J* = 7.9 Hz, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 6.68 (s, 1H), 4.59 (s, 1H), 3.22 (t, *J* = 4.8 Hz, 4H), 2.65 (d, *J* = 4.0 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.16, 155.02, 151.31, 138.90, 129.12, 128.59, 128.20, 127.80, 123.91, 122.75, 120.78, 119.70, 116.05, 111.47, 105.16, 69.34, 51.64, 49.25. HRMS (ESI) m/z calcd for C₂₅H₂₅N₂O⁺ (M+H)⁺ 369.1961, found 369.1983.

3-(benzofuran-2-yl(phenyl)methyl)-2-phenyl-1H-indole

21, 51%, white solid, mp. = 151-152 °C, (EA/Hex = 10%, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.54 – 7.48 (m, 2H), 7.47 – 7.40 (m, 3H), 7.40 – 7.33 (m, 4H), 7.27 (dd, J = 5.6, 3.3 Hz, 4H), 7.23 – 7.12 (m, 4H), 6.99 – 6.90 (m, 1H), 6.48 – 6.36 (m, 1H), 5.94 (d, J = 3.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.16, 155.04, 141.45, 136.09, 132.58, 128.92, 128.66, 128.39, 128.09, 126.66, 123.50, 122.52, 122.23, 120.61, 119.97, 112.01, 111.24, 110.91, 105.35, 42.47. HRMS (ESI) m/z calcd for C₂₉H₂₂NO⁺ (M+H)⁺ 400.1696, found 400.1698.

NMR Figures of Products

DEPT 135° spectrum of 2a (in CDCl₃)

¹³C NMR spectrum of **2c** (in CDCl₃)

S35

¹³C NMR spectrum of **2e** (in CDCl₃)

¹³C NMR spectrum of **2f** (in CDCl₃)

¹³C NMR spectrum of **2h** (in CDCl₃)

¹³C NMR spectrum of **2i** (in CDCl₃)

¹³C NMR spectrum of **2j** (in CDCl₃)

¹³C NMR spectrum of **2k** (in CDCl₃)

¹³C NMR spectrum of **2l** (in CDCl₃)

 ^{13}C NMR spectrum of 2m (in CDCl₃)

¹³C NMR spectrum of **2n** (in CDCl₃)

¹³C NMR spectrum of **2p** (in CDCl₃)

¹³C NMR spectrum of **2q** (in CDCl₃)

¹³C NMR spectrum of **4a** (in CDCl₃)

DEPT 135° spectrum of 4a (in CDCl₃)

S51

DEPT 135 ° spectrum of 4c (in CDCl₃)

¹³C NMR spectrum of **4d** (in CDCl₃)

DEPT 135 ° spectrum of 4d (in CDCl₃)

S55

S56

¹³C NMR spectrum of **4g** (in CDCl₃)

DEPT 135 ° spectrum of 4g (in CDCl₃)

¹³C NMR spectrum of **4h** (in CDCl₃)

DEPT 135 °spectrum of 4h (in CDCl₃)

¹³C NMR spectrum of **4i** (in CDCl₃)

DEPT 135 ° spectrum of 4i (in CDCl₃)

¹³C NMR spectrum of **4j** (in CDCl₃)

DEPT 135 °spectrum of 4j (in CDCl₃)

¹³C NMR spectrum of **4m** (in CDCl₃)

DEPT 135 ° spectrum of 4m (in CDCl₃)

¹³C NMR spectrum of **6** (in CDCl₃)

¹³C NMR spectrum of **10** (in CDCl₃)

¹³C NMR spectrum of **12** (in CDCl₃)

7,7,39 7,7,39 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,7,59 7,7,79 7,59 7,7,759 7

¹³C NMR spectrum of **16a** (in CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR spectrum of **16a** (in CDCl₃)

¹³C NMR spectrum of **16b** (in CDCl₃)

S76

S77

¹³C NMR spectrum of **18g** (in CDCl₃)

DEPT 135 ° spectrum of 19 (in CDCl₃)

¹³C NMR spectrum of **21** (in CDCl₃)