Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Copper-Catalyzed Dearomative 1,4-Carboxylate Rearrangement of 2-Carbonateindoles

Yan Zhu, Ying Shao, Shengbiao Tang and Jiangtao Sun*

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164 Changzhou, China

E-mail: jtsun@cczu.edu.cn

Table of contents

- 1. General information
- 2. Preparation of substrates
- 3. General procedure for Scheme 2 and Scheme 3
- 4. Further elaboration for Scheme 4
- 5. X-ray crystallographic data
- 6. References
- 7. NMR Spectra of compounds

General information

All of the reactions were carried out in flame-dried tubes under argon atmosphere. Solvents were dried prior to use. Commercially obtained reagents were used as received. Analytical thin layer chromatography (TLC) was carried out using pre-coated (0.20 mm thickness) silica gel plates with F_{254} indicator. For column chromatography, 200-300 mesh silica gel was used. ¹H NMR were recorded on Bruker 300 MHz, 400 MHz spectrometer in CDCl₃. ¹³C NMR were recorded on Bruker 75 MHz or 100 MHz spectrometer in CDCl₃. ¹⁹F NMR were recorded on Bruker 282 MHz or 377 MHz spectrometer in CDCl₃. Data for ¹H NMR spectra were reported relative to tetramethylsilane (TMS) as an internal standard (0 ppm), and were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets and m = multiplet. Data for ¹³C NMR spectra were reported relative to CDCl₃ as an internal standard (77.16 ppm), and were reported in terms of chemical shift (δ ppm). High resolution mass spectra (HRMS) were performed on Agilent 6540 QTOF or Agilent 6230A TOF mass spectrometer (ESI). Melting points were determined on a SGW X-4B melting point apparatus without correction.

Preparation of substrates

The diazo was prepared according to the literature procedures¹. The N-substituted indolin-2-ones were prepared according to the literature procedures². 2-carbonateindoles were prepared according to the general procedure:

$$R \xrightarrow[l]{} N = 0$$

$$R^{1} \xrightarrow{1. \text{ KHMDS, THF, -78 °C}} 2. \text{ CICO}_2\text{Me, THF, -78 °C - rt} \qquad R \xrightarrow[l]{} N = 0$$

A solution of N-substituted indolin-2-one (1.0 eq) in THF was added slowly to a solution of KHMDS (1.0 mol/L in THF, 1.2 eq) at -78 °C under argon atmosphere. The solution was stirred at -78 °C for 30 min, then transferred via a syringe to a solution of methyl carbonochloridate (1.2 eq) in THF at -78 °C under argon atmosphere. The solution was allowed to worm to rt, then poured into 1 M HCl, and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 40:1 to 20:1).

methyl (1-methyl-1H-indol-2-yl) carbonate(1a)

Prepared via general procedure from 1-methylindolin-2-one (2.94 g, 20 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 30:1 to 10:1) and obtained as a pale yellow oil (1.07 g, yield: 26%).

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (petroleum ether/ethyl acetate = 5:1)

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.19 (dd, *J*₁ = 8.2 Hz, *J*₂ = 6.8 Hz, 1H), 7.12 (dd, *J*₁ = 7.8 Hz, *J*₂ = 6.8 Hz, 1H) 6.29 (s, 1H), 3.95 (s, 3H), 3.61 (s, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 152.4, 142.8, 132.6, 125.9, 121.4, 120.7, 120.2, 109.0, 87.2, 56.1, 28.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{12}NO_3$ 206.0812; Found 206.0808.

1-benzyl-1H-indol-2-yl methyl carbonate(1b)

Prepared via general procedure from 1-benzylindolin-2-one (466 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 30:1 to 10:1) and obtained as a pale yellow oil (140 mg, yield: 25%).

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.54 (m, 1H), 7.28-7.26 (m, 1H), 7.25-7.20 (m, 2H), 7.20-7.16 (m, 1H), 7.15-7.08 (m, 4H), 6.38 (s, 1H), 5.22 (s, 2H), 3.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.2, 142.8, 137.0, 132.1, 128.8, 127.6, 126.7, 126.2, 121.7, 120.8, 120.5, 109.6, 87.8, 56.0, 45.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆NO₃ 282.1125; Found 282.1124.

1-isopropyl-1H-indol-2-yl methyl carbonate(1c)

Prepared via general procedure from 1-isopropylindolin-2-one (350 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 30:1 to 10:1) and obtained as a pale yellow oil (149 mg, 32%).

 $\mathbf{R}_{\mathbf{f}} = 0.45$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.15 (dd, *J*₁ = 7.1 Hz, *J*₂ = 8.0 Hz, 1H), 7.09 (dd, *J*₁ = 7.6 Hz, *J*₂ = 7.1 Hz, 1H) 6.28 (s, 1H), 4.69-4.58 (m, 1H), 3.91 (s, 3H), 1.58-1.51 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 152.5, 142.6, 130.9, 126.4, 121.0, 120.8, 119.8, 110.4, 88.0, 56.0, 46.5, 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₆NO₃ 234.1125; Found 234.1123.

4-bromo-1-methyl-1H-indol-2-yl methyl carbonate(1d)

Prepared via general procedure from 4-bromo-1-methylindolin-2-one (350 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 30:1) and obtained as a white solid (192 mg, yield: 34%), mp: 105-107 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.26 (m, 1H), 7.15-7.13 (m, 1H), 7.07-6.98 (m, 1H), 6.36 (s, 1H), 3.95 (s, 3H), 3.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.1, 143.1, 132.8, 126.7, 123.2, 122.2, 114.5, 108.2, 87.9, 56.2, 28.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₁BrNO₃ 283.9917; Found 283.9908.

1,5-dimethyl-1H-indol-2-yl methyl carbonate(1e)

Prepared via general procedure from 1,5-dimethylindolin-2-one (322 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate =

40:1 to 20:1) and obtained as a white solid (127 mg, yield: 29%), mp: 81-83 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.55$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.12 (d, *J* = 8.3 Hz, 1H), 7.01 (d, *J* = 8.3 Hz, 1H), 6.20 (s, 1H), 3.93 (s, 3H), 3.56 (s, 3H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.5, 142.9, 130.9, 129.4, 126.1, 122.9, 120.5, 108.7, 86.8, 56.0, 28.3, 21.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₃ 220.0968; Found 220.0968.

5-methoxy-1-methyl-1H-indol-2-yl methyl carbonate(1f)

Prepared via general procedure from 5-methoxy-1-methylindolin-2-one (354 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 30:1) and obtained as a white solid (178 mg, yield: 38%), mp: 83-85 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.55$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.8 Hz, 1H), 7.03 (s, 1H), 6.85 (d, *J* = 8.8 Hz, 1H), 6.22 (s, 1H), 3.93 (s, 3H), 3.82 (s, 3H), 3.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 154.5, 152.5, 143.1, 127.7, 126.3, 111.2, 109.8, 103.0, 87.2, 56.0, 55.9, 28.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₄ 236.0917; Found 236.0917.

5-fluoro-1-methyl-1H-indol-2-yl methyl carbonate(1g)

Prepared via general procedure from 5-fluoro-1-methylindolin-2-one (370 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 20:1) and obtained as a white solid (107 mg, yield: 24%), mp: 71-73 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (dd, $J_1 = 9.3$ Hz, $J_2 = 2.4$ Hz, 1H), 7.07-7.04 (m, 1H), 6.85 (td, $J_1 = 9.3$ Hz, $J_2 = 2.4$ Hz, 1H), 6.19 (s, 1H), 3.88 (s, 3H), 3.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.3 (d, *J* = 232.7 Hz), 152.3, 129.1, 126.3 (d, *J* = 10.6 Hz), 109.7, 109.6 (d, *J* = 34.7 Hz), 105.8 (d, *J* = 23.9 Hz), 87.6 (d, *J* = 4.5 Hz), 56.2, 28.5.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -123.96.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{11}FO_3$ 224.0717; Found 224.0713.

5-bromo-1-methyl-1H-indol-2-yl methyl carbonate(1h)

Prepared via general procedure from 5-bromo-1-methylindolin-2-one (350 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 30:1) and obtained as a white solid (147 mg, yield: 26%), mp: 85-87 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.55$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.26 (d, *J* = 8.6 Hz, 1H), 7.07 (d, *J* = 8.6 Hz, 1H), 6.25 (s, 1H), 3.95 (s, 3H), 3.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.2, 143.5, 131.2, 127.6, 124.2, 123.1, 113.4, 110.6, 86.9, 56.2, 28.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₁BrNO₃ 283.9917; Found 283.9914.

6-bromo-1-methyl-1H-indol-2-yl methyl carbonate(1i)

Prepared via general procedure from 6-bromo-1-methylindolin-2-one (350 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 30:1) and obtained as a white solid (170 mg, yield: 30%), mp: 99-101 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.55$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.35 (m, 2H), 7.24-7.17 (m, 1H), 6.28 (s, 1H), 3.96 (s, 3H), 3.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.2, 143.1, 133.4, 124.8, 123.5, 122.0, 114.7, 112.1, 87.5, 56.2, 28.5. HRMS (ESI) m/z: Calcd for C₁₁H₁₁BrNO₃ [M+H]⁺: 283.9917; Found 283.9914.

6-methoxy-1-methyl-1H-indol-2-yl methyl carbonate(1j)

Prepared via general procedure from 6-methoxy-1-methylindolin-2-one (354 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 20:1) and obtained as a yellow oil (80 mg, yield: 17%).

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6 Hz, 1H), 6.78 (d, *J* = 8.6 Hz, 1H), 6.73 (s, 1H), 6.20 (s, 1H), 3.95 (s, 3H), 3.86 (s, 3H), 3.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 156.1, 152.7, 141.9, 133.4, 121.5, 119.9, 109.6, 93.3, 87.1, 56.1, 55.9, 28.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₄ 236.0917; Found 236.0916.

1,7-dimethyl-1H-indol-2-yl methyl carbonate(1k)

Prepared via general procedure from 1,7-dimethylindolin-2-one (322 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 30:1) and obtained as a white solid (118 mg, yield: 27%), mp: 75-77 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, *J* = 7.7 Hz, 1H), 6.93-6.84 (m, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 6.17 (s, 1H), 3.86 (s, 3H), 3.74 (s, 3H), 2.63 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 152.6, 142.7, 131.5, 126.6, 124.4, 120.9, 120.2, 118.8, 87.8, 56.0, 31.1, 19.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₃ 220.0968; Found 220.0969.

7-bromo-1-methyl-1H-indol-2-yl methyl carbonate(11)

Prepared via general procedure from 7-bromo-1-methylindolin-2-one (350 mg, 2.0 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 40:1 to 20:1) and obtained as a white solid (232 mg, yield: 41%), mp: 72-74 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.55$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 7.7 Hz, 1H), 6.92 (t, *J* = 7.7 Hz, 1H), 6.29 (s, 1H), 3.96 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 152.3, 143.5, 129.4, 129.0, 126.7, 121.2, 120.1, 103.6, 88.2, 56.2, 31.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₁BrNO₃ 283.9917; Found 283.9914.

ethyl (1-methyl-1H-indol-2-yl) carbonate(1m)

Prepared via following procedure: To a solution of 1-methylindolin-2-one (294 mg, 2.0 mmol) and triethylamine (242 mg, 2.4 mmol) in THF was added ethyl carbonochloridate (260 mg, 2.4 mmol) slowly at 0 oC and stirred for 30 min. Then the reaction was quenched with water, extracted with EtOAc, dried over Na2SO4, filtered and concentrated. The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 15:1) and obtained as a pale

yellow oil (175 mg, yield: 40%).

 $\mathbf{R}_{\mathbf{f}} = 0.55$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.8 Hz, 1H), 7.20-7.10 (m, 2H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.22 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 151.8, 142.9, 132.6, 126.0, 121.3, 120.7, 120.2, 109.0, 87.3, 65.7, 28.3, 14.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₃ 220.0968; Found 220.0968.

isopropyl (1-methyl-1H-indol-2-yl) carbonate(1n)

Prepared via following procedure: To a solution of 1-methylindolin-2-one (294 mg, 2.0 mmol) and triethylamine (242 mg, 2.4 mmol) in THF was added isopropyl carbonochloridate (294 mg, 2.4 mmol) slowly at 0 oC and stirred for 30 min. Then the reaction was quenched with water, extracted with EtOAc, dried over Na2SO4, filtered and concentrated. The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 30:1) and obtained as a white solid (284 mg, yield: 61%), mp: 72-74 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.19 (dd, *J*₁ = 7.9 Hz, *J*₂ = 1.0 Hz, 1H), 7.11 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.0 Hz, 1H) 6.29 (s, 1H), 5.10-4.93 (m, 1H), 3.61 (s, 3H), 1.41-1.40 (m, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 151.3, 143.0, 132.6, 126.0, 121.3, 120.7, 120.2, 109.0, 87.3, 74.2, 28.3, 21.7.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₃H₁₅NO₃Na 256.0944; Found 256.0937.

General procedure for scheme 2 and scheme 3

To a dry tube equipped with a magnetic stirrer and an oil bath, were added 1 (0.2 mmol), 2 (0.36 mmol), CuTc (1.9 mg, 0.01 mmol) and anhydrous DCM (4 mL). The reaction solution was stirred at 60 °C for 6 hours under argon atmosphere in a heating block. Then the reaction mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography to afford the desired product **3**.

dimethyl 2-(1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3aa)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a pale yellow solid (54 mg, yield: 77%), mp: 163-165 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.19-7.14 (m, 6H), 7.11 (d, *J* = 7.7 Hz, 1H), 6.86 (t, *J* = 7.7 Hz, 1H),

6.58 (d, *J* = 7.7 Hz, 1H), 4.67 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.08 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 170.4, 168.7, 144.4, 133.6, 128.8, 128.4, 127.9, 127.7, 126.6, 125.2, 122.2, 107.8, 65.9, 53.4, 53.2, 51.4, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀NO₅ 354.1336; Found 354.1340.

dimethyl 2-(1-methyl-2-oxoindolin-3-yl)-2-(p-tolyl)malonate(3ab)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-(*p*-tolyl)acetate (68.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a red oil (59 mg, yield: 81%). **R**_f = 0.2 (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.17-7.07 (m, 4H), 6.99 (s, 1H), 6.97 (s, 1H), 6.85 (t, *J* = 7.6Hz, 1H), 6.60 (d, *J* = 7.6Hz, 1H), 4.65 (s, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.10 (s, 3H), 2.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 170.5, 168.8, 144.4, 137.7, 130.7, 128.6, 128.4, 128.4, 126.5, 125.2, 122.1, 107.8, 65.6, 53.3, 53.1, 51.3, 26.2, 21.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₅ 368.1492; Found 368.1495.

dimethyl 2-(4-(tert-butyl)phenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3ac)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-(4-(tert-butyl)phenyl)-2diazoacetate (83.5 mg, 0.36 mmol). The desired product was purified by silica gel columnchromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a yellow solid (59.5 mg, yield: 74%), mp: 145-147 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.23-7.09 (m, 5H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.60 (d, *J* = 7.6 Hz, 1H), 4.63 (s, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.09 (s, 3H), 1.23 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 174.9, 170.4, 168.8, 150.8, 144.5, 130.6, 128.3, 126.3, 125.2, 124.6,

122.1, 107.7, 65.6, 53.3, 53.0, 51.2, 34.4, 31.2, 26.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₈NO₅ 410.1962; Found 410.1965.

dimethyl 2-(4-methoxyphenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3ad)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-(4-methoxyphenyl)acetate (74.2 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 3:1) and obtained as a red solid (53.4 mg, yield: 69%), mp: 147-149 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 3:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.18-7.10 (m, 4H), 6.87 (t, *J* = 7.7 Hz, 1H), 6.72-6.67 (m, 2H), 6.60 (d, *J* = 7.7 Hz, 1H), 4.64 (s, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.72 (s, 3H), 3.09 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.8, 170.5, 168.9, 159.0, 144.4, 130.0, 128.4, 126.5, 125.7, 125.3,

122.2, 113.0, 107.8, 65.3, 55.2, 53.4, 53.1, 51.5, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₆ 384.1442; Found 384.1449.

dimethyl 2-(4-chlorophenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3ae)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-(4-chlorophenyl)-2diazoacetate (75.6 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a white solid (58.7 mg, yield: 74%), mp: 141-143 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.35$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.29 (d, *J* = 7.7Hz, 1H), 7.17-7.04 (m, 5H), 6.89 (t, *J* = 7.7Hz, 1H), 6.60 (d, *J* = 7.7Hz, 1H), 4.68 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.07 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.4, 170.0, 168.4, 144.3, 133.9, 132.0, 130.2, 128.7, 127.7, 126.5,

124.8, 122.4, 108.0, 65.4, 53.6, 53.3, 51.3, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉ClNO₅ 388.0946; Found 388.0951.

dimethyl 2-(4-bromophenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3af)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-(4-bromophenyl)-2diazoacetate (91.5 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a white solid (63 mg, yield: 73%), mp: 140-142 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.30-7.24 (m, 3H), 7.15 (t, *J* = 7.7 Hz, 1H), 7.04 (t, *J* = 2.5 Hz, 1H), 7.02 (t, *J* = 2.5 Hz, 1H), 6.89 (t, t, *J* = 7.7 Hz, 1H), 6.60 (d, *J* = 7.7 Hz, 1H), 4.67 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 169.9, 168.3, 144.3, 132.6, 130.7, 130.5, 128.7, 126.5, 124.7, 122.4, 122.2, 108.0, 65.4, 53.6, 53.3, 51.2, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉BrNO₅ 432.0441; Found 432.0440.

dimethyl 2-(1-methyl-2-oxoindolin-3-yl)-2-(4-(trifluoromethyl)phenyl)malonate(3ag)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-(4- (trifluoromethyl)phenyl)acetate (87.9 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a white solid (50 mg, yield: 59%), mp: 146-148 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.44-7.37 (m, 2H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.29-7.26 (m, 2H), 7.14 (t, *J* = 7.8 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.58 (t, *J* = 7.8 Hz, 1H), 4.73 (s, 1H), 3.88 (s, 6H), 3.07 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.3, 169.8, 168.2, 144.2, 137.5, 130.4 (d, *J* = 32.4 Hz), 129.4, 128.8, 126.5, 123.9 (d, *J* = 270.4 Hz), 124.5, 124.4 (q, *J* = 3.8 Hz), 122.5, 108.0, 65.8, 53.7, 53.4, 51.2, 25.2.
¹⁹F NMR (282 MHz, CDCl₃) δ -120.76.

HRMS (ESI) m/z: Calcd for C₂₁H₁₉F₃NO₅ [M+H]⁺: 422.1210; Found 422.1213.

dimethyl 2-(3,4-dichlorophenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3ah)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-(3,4-dichlorophenyl)acetate (88.2 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a pale yellow solid (61.5 mg, yield: 72%), mp: 129-131 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.29 (m, 2H), 7.22-7.15 (m, 2H), 6.96-6.90 (m, 2H), 6.65-6.60 (m, 1H), 4.67 (s, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.09 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.2, 169.5, 168.0, 144.2, 133.6, 132.2, 131.8, 130.9, 129.3, 128.9,

128.3, 126.5, 124.5, 122.6, 108.2, 65.2, 53.7, 53.5, 51.2, 26.2.

HRMS (ESI) m/z: Calcd for C₂₀H₁₈Cl₂NO₅ [M+H]⁺: 422.0557; Found 422.0557.

dimethyl 2-(1-methyl-2-oxoindolin-3-yl)-2-(m-tolyl)malonate(3ai)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-(*m*-tolyl)acetate (68.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a yellow solid (56.5 mg, yield: 78%), mp: 131-133 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.16-7.10 (m, 2H), 7.08-7.02 (m, 2H), 7.00-6.93 (m, 2H), 6.85 (t, *J* = 7.7 Hz, 1H), 6.60 (d, *J* = 7.7 Hz, 1H), 4.65 (s, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.09 (s, 3H), 2.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.8, 170.4, 168.7, 144.4, 137.3, 133.5, 129.4, 128.7, 128.4, 127.5, 126.5, 125.8, 125.2, 122.1, 107.7, 65.9, 53.4, 53.1, 51.3, 26.1, 21.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₅ 368.1492; Found 368.1491.

dimethyl 2-(3-chlorophenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3aj)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-(3-chlorophenyl)-2diazoacetate (75.6 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as an orange solid (59.5 mg, yield: 76%), mp: 99-101 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.22-7.17 (m, 1H), 7.13 (s, 1H), 7.10-7.02 (m, 2H), 7.01-6.95 (m, 1H), 6.93-6.87 (m, 1H), 6.82 (t, *J* = 7.7 Hz, 1H), 6.52 (d, *J* = 7.7 Hz, 1H), 4.58 (s, 1H), 3.79 (s, 6H), 3.01 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.4, 169.8, 168.2, 144.3, 135.4, 133.6, 129.0, 128.7, 128.7, 128.1, 127.1, 126.6, 124.7, 122.4, 107.9, 65.6, 53.6, 53.3, 51.3, 26.2.

HRMS (ESI) m/z: Calcd for C₂₀H₁₉NO₅ [M+H]⁺: 388.0946; Found 388.0947.

dimethyl 2-(2-chlorophenyl)-2-(1-methyl-2-oxoindolin-3-yl)malonate(3ak)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-(2-chlorophenyl)-2diazoacetate (75.6 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a yellow oil (38.9 mg, yield: 50%).

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.56-7.45 (m, 1H), 7.28-7.15 (m, 5H), 6.89 (t, *J* = 7.7 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 1H), 4.90 (s, 1H), 3.72 (s, 3H), 3.45 (s, 3H), 3.03 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 173.7, 169.6, 168.7, 144.5, 134.4, 133.3, 130.6, 129.4, 128.6, 126.9, 126.6, 125.7, 122.2, 107.6, 66.6, 53.6, 53.0, 48.5, 26.3.

HRMS (ESI) m/z: Calcd for C₂₀H₁₉ClNO₅ [M+H]⁺: 388.0946; Found 388.09.

dimethyl 2-(1-methyl-2-oxoindolin-3-yl)-2-(naphthalen-2-yl)malonate(3al)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazo-2-(naphthalen-2-yl)acetate (81.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a white solid (74.5 mg, yield: 92%), mp: 154-156 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.69-7.60 (m, 3H), 7.58-7.52 (m, 1H), 7.37-7.30 (m, 2H), 7.21-7.16 (m, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.01-6.95 (m, 1H), 6.73 (t, *J* = 7.5 Hz, 1H), 6.45-6.43 (m, 1H), 4.69 (s, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 2.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 170.3, 168.8, 144.4, 132.6, 132.6, 131.2, 128.5, 128.4, 128.2, 127.4, 127.1, 126.5, 126.5, 126.4, 126.2, 125.1, 122.2, 107.9, 66.0, 53.5, 53.2, 51.2, 26.2. HRMS (ESI) m/z: Calcd for C₂₄H₂₂NO₅ [M+H]⁺: 404.1492; Found 404.1496.

> MeO₂C CO₂Me

dimethyl 2-(1-methyl-2-oxoindolin-3-yl)malonate(3am)

Prepared via general procedure from **1a** (41 mg, 0.2 mmol) and methyl 2-diazoacetate (80 mg, 0.8 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a brown oil (38.1 mg, yield: 66%).

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.27 (m, 2H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 4.20 (d, *J* = 4.3 Hz, 1H), 4.04 (d, *J* = 4.3 Hz, 1H), 3.80 (s, 3H), 3.59 (s, 3H), 3.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.2, 168.4, 167.5, 144.7, 128.8, 125.5, 124.6, 122.7, 108.2, 53.0, 52.8, 52.2, 44.7, 26.5.

HRMS (ESI) m/z: Calcd for C₁₄H₁₆NO₅ [M+H]⁺: 278.1023; Found 278.1022.

dimethyl 2-(1-benzyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ba)

Prepared via general procedure from **1b** (56.2 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a orange oil (60 mg, yield: 68%).

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.26-7.19 (m, 6H), 7.17-7.10 (m, 5H), 7.04-6.98 (m, 1H), 6.87-6.80 (m, 1H), 6.53-6.47 (m, 1H), 4.86 (d, *J* = 15.7 Hz, 1H), 4.81 (s, 1H), 4.74 (d, *J* = 15.7 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.7, 170.4, 168.7, 143.6, 135.6, 133.6, 128.9, 128.7, 128.3, 127.9,

 $127.8,\,127.6,\,127.5,\,126.6,\,125.1,\,122.2,\,108.8,\,65.8,\,53.5,\,53.2,\,51.5,\,43.9.$

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₄NO₅ 430.1649; Found 430.1650.

dimethyl 2-(1-isopropyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ca)

Prepared via general procedure from **1c** (46.6 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as an orange solid (56.4 mg, yield: 75%), mp: 165-167 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.30-7.25 (m, 1H), 7.19-7.12 (m, 5H), 7.11-7.05 (m, 1H), 6.89-6.80 (m, 1H), 6.76-6.70 (m, 1H), 4.67 (s, 1H), 4.55 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.32 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.3, 170.5, 168.7, 143.0, 133.5, 129.0, 128.1, 127.9, 127.6, 126.9, 125.6, 121.6, 109.4, 65.9, 53.4, 53.1, 51.2, 43.7, 19.2, 18.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₅ 382.1649; Found 382.1650.

dimethyl 2-(4-bromo-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3da)

Prepared via general procedure from 1d (56.6 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography

(eluent: petroleum ether/ethyl acetate = 10:1 to 3:1) and obtained as a yellow solid (73 mg, yield: 85%), mp: 111-113 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (petroleum ether/ethyl acetate = 3:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.25 (m, 1H), 7.25-7.23 (m, 1H), 7.20-7.13 (m, 3H), 7.06-7.01 (m, 2H), 6.61-6.53 (m, 1H), 4.83 (s, 1H), 3.90 (s, 3H), 3.82 (s, 3H), 2.97 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.7, 169.1, 168.8, 147.0, 133.8, 130.1, 129.3, 128.0, 127.5, 126.9,

125.2, 120.7, 106.7, 66.4, 53.6, 53.2, 52.8, 26.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉BrNO₅ 432.0441; Found 432.0439.

dimethyl 2-(1,5-dimethyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ea)

Prepared via general procedure from **1e** (43.8 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a yellow solid (60.5 mg, yield: 83%), mp: 117-119 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.21-7.14 (s, 5H), 6.96 (s, 1H), 6.92 (d, *J* = 9.0 Hz, 1H), 6.47 (d, *J* = 9.0 Hz, 1H), 4.63 (s, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.06 (s, 3H), 2.20 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.7, 170.4, 168.7, 142.0, 133.7, 131.6, 128.8, 128.6, 127.9, 127.6,

127.3, 125.1, 107.4, 65.9, 53.4, 53.1, 51.4, 26.2, 21.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₅ 368.1492; Found 368.1495.

dimethyl 2-(5-methoxy-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3fa)

Prepared via general procedure from **1f** (47 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a red oil (55.4 mg, yield: 72%). **R**_f = 0.2 (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.22-7.14 (s, 5H), 6.79 (s, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 6.47 (d, *J* = 8.4 Hz, 1H), 4.63 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.66 (s, 3H), 3.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 170.4, 168.7, 155.4, 138.1, 133.6, 128.8, 127.9, 127.7, 126.4, 114.2, 112.7, 107.9, 65.9, 55.8, 53.5, 53.1, 51.9, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₆ 384.1442; Found384.1441.

dimethyl 2-(5-fluoro-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ga)

Prepared via general procedure from 1g (44.6 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a pale yellow solid (59.7 mg, yield: 80%), mp: 142-144 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.18-7.11 (m, 5H), 7.06-6.99 (m, 1H), 6.85-6.77 (m, 1H), 6.50-6.44 (m, 1H), 4.65 (s, 1H), 3.88 (s, 6H), 3.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.4, 170.4, 168.5, 158.8 (d, *J* = 237.5 Hz), 140.4 (d, *J* = 1.7 Hz),

133.2, 128.6, 128.1, 127.8, 126.7 (d, *J* = 9.0 Hz), 115.0 (d, *J* = 26.0 Hz), 114.6 (d, *J* = 23.5Hz), 108.0

(d, *J* = 8.3 Hz), 65.8, 53.6, 53.3, 52.0, 26.3.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉FNO₅ 372.1242; Found 372.1242.

dimethyl 2-(5-bromo-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ha)

Prepared via general procedure from **1h** (56.6 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 3:1) and obtained as a pale yellow solid (71 mg, yield: 83%), mp: 153-155 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 3:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.34-7.27 (m, 1H), 7.26-7.21 (m, 1H), 7.20-7.10 (m, 5H), 6.45-6.42 (m, 1H), 4.63 (s, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.05 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.1, 170.2, 168.4, 143.4, 133.1, 131.2, 129.8, 128.6, 128.1, 127.8,

127.1, 114.9, 109.0, 65.8, 53.6, 53.2, 51.7, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉BrNO₅ 432.0441; Found 432.0443.

dimethyl 2-(6-bromo-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ia)

Prepared via general procedure from 1i (56.6 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography

(eluent: petroleum ether/ethyl acetate = 10:1 to 3:1) and obtained as a red solid (63.6 mg, yield: 74%), mp: 174-176 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 3:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.23-7.08 (m, 5H), 7.04-6.92 (m, 2H), 6.72 (s, 1H), 4.59 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 170.3, 168.5, 145.7, 133.3, 128.6, 128.2, 128.0, 127.9, 125.0, 124.1, 122.1, 111.3, 65.8, 53.6, 53.2, 51.4, 26.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉BrNO₅ 432.0441; Found 432.0442.

dimethyl 2-(6-methoxy-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ja)

Prepared via general procedure from **1j** (47 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a red solid (51.3 mg, yield: 67%), mp: 163-165 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.35$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.21-7.15 (m, 5H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.35 (d, *J* = 8.4 Hz, 1H), 6.17 (s, 1H), 4.61 (s, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.72 (s, 3H), 3.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.4, 170.4, 168.8, 160.3, 145.7, 133.7, 128.7, 127.9, 127.7, 127.3,

116.9, 105.9, 95.7, 66.0, 55.4, 53.4, 53.1, 50.9, 26.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂BrNO₆ 384.1442; Found 384.1441.

dimethyl 2-(1,7-dimethyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ka)

Prepared via general procedure from 1k (43.8 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as an orange solid (58.6 mg, yield: 79%), mp: 142-144 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.20-7.15 (m, 5H), 6.98 (d, J = 7.5 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H),

6.72 (t, J = 7.5 Hz, 1H), 4.62 (s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.37 (s, 3H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.5, 170.4, 168.7, 142.2, 133.6, 132.2, 128.8, 127.9, 127.6, 125.6, 124.3, 122.0, 119.2, 66.2, 53.4, 53.1, 50.9, 29.7, 19.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NO₅ 368.1492; Found 368.1492.

dimethyl 2-(7-bromo-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3la)

Prepared via general procedure from 11 (56.6 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as an orange solid (63 mg, yield: 73%), mp: 124-126 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.16-7.10 (m, 4H), 7.09-7.05 (m, 2H), 6.99 (d, *J* = 7.7 Hz, 1H), 6.60 (t, *J* = 7.7 Hz, 1H), 4.57 (s, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.40 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.2, 170.2, 168.5, 141.7, 134.1, 133.2, 128.7, 128.2, 127.8, 125.5, 123.2, 102.0, 66.2, 53.5, 53.2, 51.2, 30.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉BrNO₅ 432.0441; Found 432.0442.

diethyl 2-(1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3mn)

Prepared via general procedure from **1m** (43.8 mg, 0.2 mmol) and ethyl 2-diazo-2-phenylacetate (68.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a yellow solid (58.4 mg, yield: 76%), mp: 125-127 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.19 (m, 3H), 7.17-7.09 (m, 4H), 6.90-6.81 (m, 1H), 6.62-6.52 (m, 1H), 4.69 (s, 1H), 4.42-4.27 (m, 4H), 3.08 (s, 3H), 1.29-1.23 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 169.9, 168.1, 144.4, 133.8, 128.8, 128.4, 127.8, 127.6, 126.6, 125.4, 122.2, 107.7, 65.9, 62.5, 62.1, 51.2, 26.1, 14.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO₅ 382.1649; Found 382.1649.

diisopropyl 2-(1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3no)

Prepared via general procedure from **1n** (46.6 mg, 0.2 mmol) and isopropyl 2-diazo-2-phenylacetate (74.5 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a pale yellow oil (43 mg, yield: 53%).

 $\mathbf{R}_{\mathbf{f}} = 0.35$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (300 MHz, CDCl₃) δ 7.33-7.27 (m, 1H), 7.24-7.18 (m, 2H), 7.17-7.08 (m, 4H), 6.90-6.82 (m, 1H), 6.59-6.52 (m, 1H), 5.29-5.20 (m, 1H), 5.20-5.12 (m, 1H), 4.68 (s, 1H), 3.07 (s, 3H), 1.28-1.25 (m, 6H), 1.25-1.21 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 169.3, 167.5, 144.4, 134.1, 128.9, 128.3, 127.6, 127.4, 126.7, 125.5, 122.1, 107.6, 70.2, 69.9, 65.8, 51.0, 26.1, 21.6, 21.5, 21.5.

CDCl₃

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₈NO₅ 410.1962; Found 410.1964.

1-ethyl 3-methyl 2-(1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(3ma)

Prepared via general procedure from **1m** (43.8 mg, 0.2 mmol) and methyl 2-diazo-2-phenylacetate (63.4 mg, 0.36 mmol). The desired product was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 10:1 to 5:1) and obtained as a white solid (60.2 mg, yield: 80%), mp: 115-117 °C.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (petroleum ether/ethyl acetate = 5:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.30-7.22 (m, 4H), 7.22-7.17 (m, 3H), 7.16-7.11 (m, 7H), 6.90-6.83 (m, 2H), 6.63-6.58 (m, 1H), 6.58-6.53 (m, 1H), 4.68 (s, 2H), 4.45-4.22 (m, 4H), 3.86 (s, 6H), 3.10 (s, 3H), 3.08 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.8, 169.8, 144.4, 133.6, 128.8, 128.8, 128.4, 128.4, 128.0, 127.8, 127.7, 127.6, 126.8, 126.4, 125.2, 122.2, 107.7, 107.7, 66.0, 62.6, 62.2, 53.4, 53.1, 51.5, 51.1, 26.2, 26.2, 14.0, 13.9.

HRMS (ESI) m/z: Calcd for C₂₁H₂₂NO₅ [M+H]⁺: 368.1492; Found 368.1494.

Further elaboration for Scheme 4

To a dry bottom equipped with a magnetic stirrer, an oil bath and a condensator, were added **1a** (4 mmol), **2a** (7.2 mmol), CuTc (38 mg, 0.2 mmol) and anhydrous DCM (80 mL). The reaction solution was stirred at 60 °C for 6 hours under argon atmosphere in a heating block. Then the reaction mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography (Petroleum ether/EtOAc = 20:1 to 5:1) to afford **3a** (1.03 g, 73% yield).

To a dry tube equipped with a magnetic stirrer and an oil bath, were added **3ha** (65 mg, 0.15 mmol), (4-methoxyphenyl)boronic acid (68 mg, 0.45 mmol), $Pd(OAc)_2$ (1.7 mg, 0.0075 mmol), Sphos (6.2 mg, 0.015 mmol), K₃PO₄ (95.5 mg, 0.45 mmol) and anhydrous THF (3 mL). The reaction solution was stirred at 80 °C for 6 hours under argon atmosphere in a heating block. Then the reaction mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography (Petroleum ether/EtOAc = 10:1 to 3:1) to afford the desired product **4** as a pink solid (57.8 mg, 84% yield, mp: 167-169 °C).

dimethyl 2-(5-(4-methoxyphenyl)-1-methyl-2-oxoindolin-3-yl)-2-phenylmalonate(4) Rf = 0.45 (petroleum ether/ethyl acetate = 2:1) ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 1H), 7.33-7.32 (m, 1H), 7.31-7.28 (m, 1H), 7.28-7.25 (m, 1H), 7.24-7.20 (m, 2H), 7.19-7.16 (m, 3H), 6.95-6.91 (m, 2H), 6.65-6.59 (m, 1H), 4.69 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.83 (s, 3H), 3.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 168.7, 158.9, 143.3, 135.0, 133.7, 133.6, 128.8, 128.0, 127.8, 127.7, 126.7, 125.7, 125.1, 114.2, 107.9, 66.0, 55.4, 53.5, 53.2, 51.8, 26.3.

HRMS (ESI) m/z: Calcd for C₂₇H₂₆NO₆ [M+H]⁺: 460.1755; Found 460.1752.

To a solution of 3aa (53 mg, 0.15 mmol) in acetone (4 mL) was added K_2CO_3 (0.16 g, 1.13 mmol). The mixture was stirred at rt for 30 min. The mixture was treated with iodomethane (0.17 g, 1.2 mmol) and heated at reflux for 24 hours. Then additional iodomethane (0.17 g, 1.2 mmol) was added and stirred for further 24 hours. After cooling to rt, the mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography (Petroleum ether/EtOAc = 20:1 to 5:1) to afford the desired product **5** as a white solid (48 mg, 87% yield, mp: 131-133 °C).

dimethyl 2-(1,3-dimethyl-2-oxoindolin-3-yl)-2-phenylmalonate

 $\mathbf{Rf} = 0.45$ (petroleum ether/ethyl acetate = 2:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.76-7.31 (m, 1H), 7.22-6.96 (m, 6H), 6.90-6.83 (m, 1H), 6.54-6.39 (m, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.06 (s, 3H), 1.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.2, 169.4, 169.1, 142.8, 134.0, 132.2, 129.3, 127.9, 127.6, 126.7, 126.1, 122.1, 107.6, 67.6, 52.8, 52.7, 26.1, 21.4.
HRMS (ESI) m/z: Calcd for C₂₈H₂₈NO₆ [M+H]⁺: 368.1492; Found 368.1494.

X-ray crystallographic data

The crystal structures have been deposited at the Cambridge Crystallographic Data Centre. CCDC 2213330 (**3ma**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via the internet at https://www.ccdc.cam.ac.uk/structures/. The measurements were taken in a Bruker D8 Venture diffractometer. The data were integrated by Bruker D8 with multi-scan absorption corrections. The structure solution and refinement were processed by SHELXL (2018/3).

X-ray crystallographic data for 3ma

Method of crystallization: A solution of **3ma** in ethyl acetate and petroleum ether was evaporated the solvent slowly at room temperature.

Crystal data and structure for 3ma (thermal ellipsoids are shown at the 50% level)

Identification code	220113sjt_0m	
Empirical formula	C21 H21 N O5	
Formula weight	367.39	
Temperature	213.00 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	= 103.416(6)°
Unit cell dimensions	a = 13.2122(2) Å	= 99.690(6)°
	b = 9.2500(2) Å	= 99.558(6)°
	c = 15.7120(3) Å	
Volume	1879.53(6) Å ³	
Ζ	4	
Density (calculated)	1.298 Mg/m ³	
Absorption coefficient	0.487 mm ⁻¹	
F(000)	776	
Crystal size	0.07 x 0.07 x 0.05 mm ³	
Theta range for data collection	2.973 to 54.960°.	
Index ranges	-16<=h<=16, -11<=k<=11, -19<=l<=16	
Reflections collected	18555	
Independent reflections	3527 [R(int) = 0.0407]	
Completeness to theta = 53.594°	98.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.5810	
Refinement method	Full-matrix least-squares on F ²	

Data / restraints / parameters	3527 / 0 / 247
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0536, $wR2 = 0.1560$
R indices (all data)	R1 = 0.0605, wR2 = 0.1619
Extinction coefficient	n/a

References

 (a) H. Keipour, A. Jalba, L. Delage-Laurin and T. Ollevier, Copper-Catalyzed Carbenoid Insertion Reactions of α-Diazoesters and α-Diazoketones into Si-H and S-H Bonds. *J. Org. Chem.* 2017, **82**, 3000–3010. (b) C. T. Maier and C. G. Fu, Catalytic Enantioselective O-H Insertion Reactions. *J. Am. Chem. Soc.* 2006, **128**, 4594. (c) Z. Xue, Y. Li and S. Luo, Chiral Primary Amine-Catalyzed Divergent Coupling of α-Substituted Acrylaldehydes with α-Diazoesters. *ACS Catal.* 2020, **10**, 10989-10998. (d) M. Rubina, W. E. Woodward and M. Rubin, Remarkable Stereoelectronic Control in the Lewis Base Assisted [2,3]-Rearrangement of Cyclopropenylmethyl Phosphinites. *Org. Lett.* 2007, **9**, 5501-5504. (e) L. M. H. Davies, T. Hansen and R. M. Churchill, Catalytic Asymmetric C-H Activation of Alkanes and Tetrahydrofuran. *J. Am. Chem. Soc.* 2000, **122**, 3063-3070. (f) P. Zhang, J. Zeng, P. Pan, X.-j. Zhang and M. Yan, Palladium-Catalyzed Migratory Insertion of Carbenes and C-C Cleavage of Cycloalkanecarboxamides. *Org. Lett.* 2022, **24**, 536-541.

2. (a) R. Le Goff, M. Sanselme, M. A. Lawson, A. Daïch and S. Comesse, Highly Stereoselective Domino Oxa-Michael/Aza-Michael/Cyclization: Synthesis of Bicyclic Lactams and Spiroox-indole Skeleton. *Eur. J. Org. Chem.* 2015, **33**, 7244-7248. (b) D.-Z. Chen, W.-J. Xiao and J.-R. Chen, Synthesis of spiropyrazoline oxindoles by a formal [4 + 1] annulation reaction between 3-bromooxindoles and in situ-derived 1,2-diaza-1,3-dienes. *Org. Chem. Front.* 2017, **4**, 1289-1293.

.0

S25

)()

S27

S29

)()

S40

S48

S60

S62

S64

.0

)()

.0

9.5

.0

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

---3.40

-15000

4.0

3.5

3.0

2.0

2.5

1.5

1.0

0.5

0.0

-0.5

S104

)()

.0

---3.06

-1.81

S135

S140

^{431. 55 431. 60 431. 65 431. 70 431. 75 431. 80 431. 85 431. 90 431. 95 432. 00 432. 05 432. 10 432. 15 432. 20 432. 25 432. 30 432. 35 432. 40 432. 45 432. 50 432. 55} m/z (Da)

