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'H NMR monitoring of the Groebke-Blackburn—-Bienaymé reaction

The 4-tolylaldehyde (51.8 pL, 0.439 mmol), 2-aminopyridine (10.3 mg, 0.110 mmol) and
cyclohexyl isocyanide (13.6 pL, 0.110 mmol) were added to the CDsOD solution of
Cat1°T-Cat4°™ (18.3 mM, 600 pL, 0.011 mmol) and placed in an NMR tube. For the
noncatalyzed reaction, the same quantities of the reactants were added to the CD3OD
(600 pL) and placed in an NMR tube. The NMR tube was sealed, and the obtained
homogeneous solution was maintained at 50 °C for 16 h in an NMR spectrometer. The
reaction was monitored by measuring the time-dependent integral density of the ipso-

cyclohexyl proton group signals in isocyanide and in the product of the reaction.
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Figure S1. 'H NMR spectra of the monitoring Groebke—Blackburn—Bienaymé reaction with

Cat3°Tf at the different time intervals.
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Figure S2. 'H NMR monitoring of the modelled multicomponent reaction in the presence

of Cat1°T-Cat4°™ and in the absence of the catalyst.

'H NMR Monitoring of the first step of the reaction. The 4-tolylaldehyde (51.8 L,
0.439 mmol) and 2-aminopyridine (10.3 mg, 0.110 mmol) were added to the CDsOD
solution of Cat1°T-Cat4°™ (18.3 mM, 600 pL, 0.011 mmol) and placed in an NMR tube.
For the noncatalyzed reaction, the same quantities of the reactants were added to CD30D
(600 pL) and placed in an NMR tube. The NMR tube was then sealed, and the obtained
homogeneous solution was maintained at 50 °C for 100 min in the NMR spectrometer. The

reaction was monitored by measuring the time-dependent integral density of the

4-tolylaldehyde and imine proton group signals.
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Figure S3. 'H NMR spectra of the monitoring first step of reaction with Cat3°™ at the

different time intervals.
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Figure S4. 'H NMR monitoring of the first step of modelled multicomponent reaction in the

presence of Cat1°T-Cat4°™ and in the absence of the catalyst.
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'H NMR monitoring of the second step of the reaction. The imine (86 mg, 0.439 mmol)
and cyclohexyl isocyanide (13.6 uL, 0.110 mmol) were added to the CD3OD solution of
Cat1°"—Cat4°™ (18.3 mM, 600 pL, 0.011 mmol) and placed in an NMR tube. For the
experiment with 2,6-di-tert-butylpyridine, 0.022 mmol of the reagent was added to the
reaction mixture containing Cat3°™. For the noncatalyzed reaction, the same quantities of
the reactants were added to the CDsOD (600 pL) and placed in an NMR tube. The NMR
tube was sealed, and the obtained homogeneous solution was maintained at 50 °C for 100
min in an NMR spectrometer. The reaction was monitored by measuring the time-
dependent integral density of the ipso-cyclohexyl proton group signals in isocyanide and in

the product of the reaction.
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Figure S5. 'H NMR spectra of the monitoring second step of reaction with Cat3°™ at the

different time intervals.

S5



Cat3°T™

Cat40T
Cat20Tf

Cat1°™

Without
catalyst

Conversion

0,0

v ¥ T ¥ T . T ’ 1

0 20 40 60 80 100

Time (min)

Figure S6. 'H NMR monitoring of the progress of the second step of the model Groebke—

Blackburn—Bienaymé reaction.
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Figure S7. 'H NMR monitoring of the progress of the second step of the model Groebke—

Blackburn—Bienaymé reaction (linearization).
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Synthesis of the imine la
Imine la was synthesized according to the published procedure (DOI: 10.1515/znb-2012-
0403). 2-Aminopyridine (2.82 g; 30.00 mmol) was dissolved in dry CH2Cl2 (10 mL). Then,
4 A molecular sieves and 4-methylbenzaldehyde (7.06 mL; 60.00 mmol) were added to the
resulting solution and stirred at RT for 24 h. After that the solvent was evaporated in vacuo
at RT and the residue was crystallized using n-hexane, filtered off, washed with n-hexane
(10 mL) and dried in vacuo at 50 °C.

Me

1a. Yield: 51% (2.99 g). M.p.: 60—62 °C. 'H NMR (400.13 MHz, CDCls): 5 =9.13 (s, 1H,
HC=N), 8.52 (dd, 3Jnn= 5.0 Hz, 4Jun= 1.9 Hz, 1H, Ar), 7.91 (d, 3Jun = 7.9 Hz, 2H, Ar), 7.77
(td, 3Jnn= 7.7 Hz, 2Jun = 2.0 Hz, 1H, Ar), 7.35-7.30 (m, 3H, Ar, the signal overlaps with the
residual signal of the CDCIs), 7.20-7.17 (m, 1H, Ar), 2.45 (s, 3H, CHz3). 3C{*H} NMR
(101.61 MHz, CDCls): 6 =162.8, 161.4, 148.9, 142.5, 138.1, 133.4, 129.6, 121.6, 119.7
(Ar) and (HC=N); 21.7 (CHs). HRMS (ESI) m/z: [M + H]* Calcd for Ci3Hi13N2 197.1073;
Found 197.1073.
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Synthesis of dibenziodolium triflate Cat1°™
Cat1°™ was synthesized according to published procedure (DOI: 10.1039/d0ra09640g).
m-CPBA (77%, 665 mg, 2.96 mmol) and TfOH (0.521 mL, 5.89 mmol) were added to a
stirred solution of 2-iodo-1,1'-biphenyl (550 mg, 0.346 mL, 1.97 mmol) in dry CH2Cl
(5 mL) and stirred for 1 h at RT. Then the solvent was evaporated in vacuo at RT, and the
product was crystallized using Et2O (10 mL). The precipitate which formed, was stirred for
20 min at RT and filtered off, washed with Et2O (10 mL), and dried at 50 °C in air.

® _| OTf
|

Cat19™. Yield: 90% (760 mg). M.p.: 240-242 °C (decomp.). *H NMR (400.13 MHz,
DMSO-ds): & = 8.37 (dd, 3Jun= 8.0 Hz, *Jnnu= 1.5 Hz, 1H, Ar), 8.15 (d, 3Jun= 8.1 Hz, 1H,
Ar), 7.79 (t, 3Jww=7.5Hz, 1H, Ar), 7.67 (td, 3Jww=7.8 Hz, “Jun=1.4Hz, 1H, Ar).
13C{!H} NMR (101.61 MHz, DMSO-ds): & = 142.1, 131.5, 131.1, 131.0, 127.4 and 121.9
(Ar); 121.2 (g, YJcr=322.3 Hz, CF3). HRMS (ESI) m/z: [M]* Calcd for Ci2Hsl 278.9665;
Found 278.9667.

Synthesis and characterization of Cat2°T-Cat4°T
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Corresponded compound was synthesized according to a previously published procedure
(DOI:  10.1021/acs.orglett.0c02593), with some modifications. 2-lodoacetophenone
(1.00 g; 4.066 mmol) was dissolved in dimethylformamide-dimethylacetal (0.968 g;
8.132 mmol) and stirred at 60 °C for 24 h. After that solution was evaporated in vacuo at
60 °C and the residue was dissolved in the solution of relevant hydrazine (4.472 mmol) in
3 mL acetic acid and stirred at 120 °C for 24 h. After that the solvent was evaporated in
vacuo at 75 °C, and the corresponding pyrazoles was isolated via column chromatography
(eluent: Hexane/EtOAc 9:1). The residue was dissolved in the solution of triflic acid
(3 equiv.) and m-CPBA (1.5equiv.) in 30 mL of dry dichloromethane. The resulting
solution was stirred at RT for 72 h. After that the solvent was evaporated in vacuo at
50 °C, and the residue was crystallized using diethyl ether. After that the residue was
added to the solution of diisopropylethylamine (1 equiv.) in MeOH (5 mL). The resulting
solution was stirred at RT for 5 min and then the solvent was evaporated in vacuo at 50 °C

and the residue was crystallized using EtOAc, filtered and dried in vacuo at 50 °C.

I OTf
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S \
I
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Cat20™, Overall yield: 25% (520 mg). M.p.: 200—204 °C (decomp.). *H NMR (400.13 MHz,
DMSO-de) & = 8.29 (d, 3Jnn= 7.8 Hz, 1H, Ar), 8.15 (d, 3Jnn = 7.9 Hz, 1H, Ar), 8.03 (s, 1H,
Ar), 7.76 (t, 3Jun = 7.6 Hz, 1H, Ar), 7.61 (t, 3Jnun= 7.8 Hz, 1H, Ar), 7.36-7.21 (m, 3H, Ar),
7.20 (d, 3Jnn=7.4 Hz, 2H, Ar), 6.00 (s, 2H, CH2). 13C{*H} NMR (101.61 MHz, DMSO-ds)
0 =148.0, 138.2, 136.6, 131.9, 131.2, 130.7, 129.3, 128.4, 128.2, 127.0, 126.7 and 94.08
(Ar); 121.17 (q, Jcr=322.8 Hz, CFs); 55.4 (CH2). HRMS (ESI) m/z: [M]* Calcd for
C1eH12N2l 359.0045; Found 359.0044.
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Cat3°™. Overall yield: 28% (560 mg). M.p.: 220-224 °C (decomp.). *H NMR (400.13 MHz,
DMSO-de) & = 8.32 (d, 3Jnn = 7.9 Hz, 1H, Ar), 8.19 (s, 1H, Ar), 7.71-7.60 (m, 7H, Ar), 7.24
(dd, 33w = 7.5 Hz, “Jnn = 1.8 Hz, 1H, Ar). 3C{*H} NMR (101.61 MHz, DMSO-ds) & = 148.4,
139.3, 139.2, 132.0, 131.1, 131.0, 130.9, 130.5, 128.5, 127.2, 126.9, 125.8, and 95.1 (Ar);
121.1 (g, “Jcr=322.8 Hz, CF3). HRMS (ESI) m/z: [M]* Calcd for CisHioN2l 344.9889;
Found 344.9883.

p— | OTf
N

Cat4°™, Overall yield: 35% (704 mg). M.p.: 221-223 °C (decomp.). *H NMR (400.13 MHz,
DMSO-ds) 8 =8.73 (d, 3Jnn = 5.0 Hz, 1H, Ar), 8.43 (d, 3Jun = 8.1 Hz, 1H, Ar), 8.34 (d,
33wy =8.2Hz, 1H, Ar), 8.26 (s, 1H, Ar), 8.23 (t, 3Jw=7.8Hz, 1H, Ar), 7.92 (d,
3Jun = 8.1 Hz, 1H, Ar), 7.77-7.75 (t, 3Juu=7.5Hz, 1H, Ar), 7.73-7.62 (m, 2H, Ar).
BC{*H} NMR (101.61 MHz, DMSO-ds) ® = 151.9, 148.7, 148.6, 140.7, 140.1, 131.5,
131.1z, 130.7, 128.9, 128.8, 126.9, 125.2, 119.0 and 97.4 (Ar): 121.15 (q, *Jcr = 322.2 Hz,
CFs). HRMS (ESI) m/z: [M]* Calcd for C14aHsNsl 345.9841; Found 345.9838.
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Synthesis and characterization of 1-14
The corresponding isocyanide (0.467 mmol) was added to the mixture of relevant
aldehyde (0.701 mmol), 2-aminopyridine (43.9 mg, 0.467 mmol) and Cat3°™ (23 mg,
0.047 mmol) in MeOH (2 mL). The resulting solution was stirred at 50 °C for 16 h in air.
After that the solvent was evaporated in vacuo at 50 °C, and the corresponding compound
was isolated via column chromatography (eluent: n-hexane/EtOAc, gradient from 33 to
100%). After that the solvent was evaporated in vacuo at 50 °C, the residue was

crystallized using hexane and dried at 60 °C in air.

M
e \ N /

1. Yield: 95% (136 mg). Ri=0.22 (Hexane/EtOAc, 1:1). M.p.: 160-162 °C. H NMR
(400.13 MHz, CDCI3): & = 8.10 (d, 3Jun = 6.7 Hz, 1H, CsHaN), 7.95 (d, 3Jun = 8.1 Hz, 2H,
CeHs—Me), 7.55 (d, 3JnuH = 9.0 Hz, 1H, CsHaN), 7.26 (d, 3Jun= 7.9 Hz, 2H, CeHs—Me, the
signal overlaps with the residual signal of the CDCls), 7.11 (t, 3Jun = 7.8 Hz, 1H, CsHaN),
6.75 (t, 3Jnn = 6.7 Hz, 1H, CsHaN), 3.15 (d, br, 3Jun = 5.0 Hz, 1H, NH), 2.97 (m, 1H, NH-
CH), 2.40 (s, 3H, Me), 1.87-1.76 (m, 2H, Cy), 1.75-1.64 (m, 2H, Cy), 1.62-1.52 (m, 1H,
Cy), 1.32-1.09 (m, 5H, Cy). *C{*H} NMR (101.61 MHz, CDCls): & = 141.4, 137.0, 136.5,
131.5, 129.2, 126.9, 124.7, 123.8, 122.7, 117.2 and 111.5 (Ar); 56.9 (NH-CH); 34.2, 25.7
and 24.8 (Cy); 21.3 (Me). HRMS (ESI) m/z: [M + H]* Calcd for C20H24N3 306.1965; Found
306.1956.

N
MezN \ N /

HN

2. Yield: 84 % (131 mg). Ri=0.47 (EtOAc). M.p.: 174-176 °C. 'H NMR (400.13 MHz,
CDCls): & =8.13 (d, 3Jun = 6.8 Hz, 1H, CsHaN), 7.97 (d, 3Jnn = 8.9 Hz, 2H, CeHs—NMey),

7.57 (d, 3JHH = 9.0 Hz, 1H, CsHaN), 7.20 — 7.14 (m, 1H, CsH4N), 6.82 (d, 3Jun = 8.9 Hz, 2H,
S11



CeHs—NMe2), 6.77 (t, 3Jun = 6.4 Hz, 1H, CsHaN), 3.18 (s, br, 1H, NH), 3.02 (s, 7H, (CHz3)2
and NH-CH), 1.89 — 1.79 (m, 2H, Cy), 1.76 — 1.65 (m, 2H, Cy), 1.65 — 1.54 (m, 1H, Cy),
1.37 — 1.12 (m, 5H, Cy). 3C{*H} NMR (101.61 MHz, CDCls): & =149.8, 141.1, 136.7,
127.9, 123.7, 1235, 122.6, 122.1, 116.6, 112.3 and 111.4 (Ar); 56.8 (NH-CH); 40.4
((CHs)2); 34.2 (Cy), 25.8 and 24.8 (Cy). HRMS (ESI) m/z: [M + H]" Calcd for C21H27N4
335.2230; Found 335.2235.

N X
MeO

N\_N_

NH

3. Yield: 86 % (129 mg). Ri=0.35 (Hexane/EtOAc, 1:1). M.p.: 151-152 °C. 'H NMR
(400.13 MHz, CDCI3): & =8.07 (d, 3Jun = 6.9 Hz, 1H, CsHaN), 7.99 (d, 3Jun = 8.3 Hz, 2H,
CeH4—OCH3), 7.52 (d, %Jnn = 9.0 Hz, 1H, CsHaN), 7.09 (t, 3Jun = 7.8 Hz, 1H, CsHsN), 6.98
(d, 3Jnn = 8.3 Hz, 2H, CeHs—OCH?3), 6.74 (t, 3JnH = 6.7 Hz, 1H, CsHaN), 3.85 (s, 3H, CeHa—
OCHz), 3.09 (d, br, 3Jun = 4.8 Hz, 1H, NH), 3.02 — 2.87 (m, 1H, NH-CH), 1.89 — 1.74 (m,
2H, Cy), 1.74 — 1.64 (m, 2H, Cy), 1.61 — 1.51 (m, 1H, Cy), 1.19 (m, 5H, Cy). 33C{*H} NMR
(101.61 MHz, CDCls): 6 = 159.0, 141.4, 136.6, 128.3, 127.1, 124.1, 123.7, 122.6, 117.1,
113.9 and 111.4 (Ar); 56.8 and 55.2 (NH-CH and OCH3); 34.2, 25.8 and 24.8 (Cy).
HRMS (ESI) m/z: [M + H]" Calcd for C20H24N30 322.1914; Found 322.1914.

N
Cl
N\_N_

HN

4. Yield: 90 % (137 mg). Rs =0.27 (Hexane/EtOAc, 1:1). M.p.: 185-187 °C. H NMR
(400.13 MHz, CDCls): 8 = 8.04 (d, 3Jun = 6.9 Hz, 1H, CsHaN), 8.01 (d, 3Jnn = 8.6 Hz, 2H,
CsHs—Cl), 7.51 (d, 3Jnn = 9.0 Hz, 1H, CsHsN), 7.38 (d, 3JuH = 8.6 Hz, 2H, CeH4—Cl), 7.14 —
7.10 (m, 1H, CsHaN), 6.76 (td, 3Juu=6.7 Hz, “Jun=1.2 Hz, 1H, CsHaN), 3.09 (d,

33w = 4.8 Hz, 1H, NH), 2.99 — 2.86 (m, 1H, NH-CH), 1.83 — 1.73 (m, 2H, Cy), 1.72 — 1.63
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(m, 2H, Cy), 1.61 — 1.51 (m, 1H, Cy), 1.29 — 1.09 (m, 5H, Cy). 3C{*H} NMR (101.61 MHz,
CDCl): & = 141.5, 135.5, 133.0, 132.9, 128.6, 128.2, 124.9, 124.2, 122.7, 117.3 and 111.8
(Ar): 56.8 (NH-CH); 34.2, 25.7 and 24.8 (Cy). HRMS (ESI) m/z: [M + H]* Calcd for
C1sH21N3Cl 326.1419; Found 326.1413.

N S
NC

N\ _N_

NH

5. Yield: 96 % (143 mg). Rt = 0.34 (Hexane/EtOAc, 1:1). M.p.: 179-181 °C. H NMR
(400.13 MHz, CDCls): 5 =8.28 (d, 3Jnn = 8.0 Hz, 2H, CeHs—CN), 8.10 (d, 3JnH = 6.9 Hz,
1H, CsHaN), 7.72 (d, 3Jun = 8.1 Hz, 2H, CsH4—CN), 7.59 (d, 3Jun = 9.1 Hz, 1H, CsHaN),
7.25 — 7.19 (m, 1H, CsHaN), 6.86 (t, 3Jun = 6.8 Hz, 1H, CsHaN), 3.16 (s, 1H, NH), 3.06 —
2.90 (m, 1H, NH-CH), 1.89 — 1.79 (m, 2H, Cy), 1.78 — 1.67 (m, 2H, Cy), 1.67 — 1.59 (m,
1H, Cy), 1.40 — 1.01 (m, 5H, Cy). *C{*H} NMR (101.61 MHz, CDCls): & =141.8, 138.7,
134.3,132.3,127.3,126.2, 125.1, 122.8, 119.2, 117.6, 112.4 and 110.5 (Ar and CN); 57.0,
34.3, 25.6 and 24.8 (Cy). HRMS (ESI) m/z: [M + H]* Calcd for C20H21N4 317.1761; Found
317.1761.

NS

HN

6. Yield: 92% (144 mg). Rf=0.48 (Hexane/EtOAc, 1:1). M.p.: 210-211°C. 'H NMR
(400.13 MHz, CDCl3): d =8.35 (d, 3Jun = 8.7 Hz, 2H, CeH4a—NO2), 8.29 (d, 3JnH = 8.7 Hz,
2H, CsHa—NO2), 8.11 (d, 3JHH=6.9 Hz, 1H, CsHsN), 7.60 (d, 3Jnn = 9.1 Hz, 1H, CsHaN),
7.23 (t, 3Jnn = 9.1, 3JnH = 6.6 Hz, 1H, CsHaN), 6.88 (t, *Jun = 6.8 Hz, 1H, CsHaN), 3.25 (d,
3Jun = 5.1 Hz, 1H, NH), 3.07 — 2.91 (m, 1H, NH-CH), 1.91 — 1.81 (m, 2H, Cy), 1.78 — 1.68
(m, 2H, Cy), 1.66 — 1.56 (m, 1H, Cy), 1.37 — 1.10 (m, 5H, Cy). 13C{*H} NMR (101.61 MHz,
CDCls): 6 = 146.6, 141.8, 140.5, 133.8, 127.3, 126.6, 125.5, 123.9, 122.8, 117.6 and 112.6
(Ar); 57.1 (NH-CH); 34.3, 25.6 and 24.8 (Cy). HRMS (ESI) m/z: [M + H]* Calcd for

C19H21N40O2 337.1659; Found 337.1661.
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Me HN

7. Yield: 93 % (132 mg). Rr=0.21 (Hexane/EtOAc, 1:1). M.p.: 114-116 °C. H NMR
(400.13 MHz, CDCI3): 6 =8.13 (d, 3Jun = 6.8 Hz, 1H, CsHaN), 7.55 (d, 3Jun = 9.0 Hz, 1H,
CsHaN), 7.36 (d, 3Jun = 6.9 Hz, 1H, CsHs—CHz), 7.31 — 7.29 (m, 2H, CeH4—CHz3), 7.28 —
7.21 (m, 1H, CeHs—CHz), 7.18 — 7.09 (m, 1H, CsHa4N), 6.81 (t, 3Jnn = 6.7 Hz, 1H, CsHaN),
3.06 (d, 3JuH = 6.6 Hz, 1H, NH), 2.85 — 2.63 (m, 1H, NH-CH), 2.35 (s, 3H, CH3), 1.74 —
1.65 (m, 2H, Cy), 1.64 — 1.55 (m, 2H, Cy), 1.54 — 1.41 (m, 1H, Cy), 1.19 — 0.94 (m, 5H,
Cy). BC{*H} NMR (101.61 MHz, CDClz): d = 141.0, 137.4, 137.1, 133.7, 130.3, 130.2,
128.0, 125.8, 125.5, 123.4, 122.8, 117.3 and 111.5 (Ar); 56.3, 33.8, 25.6 and 24.6 (Cy);
20.1 (CHs). HRMS (ESI) m/z: [M + H]" Calcd for C20H24N3 306.1965; Found 306.1969.

NH\ N
\_N.

NH

8. Yield: 86 % (133 mg). Rr=0.45 (EtOAc). M.p.: 266267 °C. 'H NMR (400.13 MHz,
DMSO-ds): 8=11.25 (s, 1H, NH(Ar)), 8.61 (d, 3Jw=7.9Hz, 1H, Ar), 8.29 (d,
3Jun = 6.8 Hz, 1H, Ar), 8.03 (s, 1H, Ar), 7.49 (d, 3Jum=9.0 Hz, 1H, Ar), 7.43 (d,
3Jun =7.9 Hz, 1H), 7.25 — 6.99 (m, 3H, Ar), 6.86 (t, 3Jun =6.7 Hz, 1H, Ar), 4.66 (d,
3Jun = 5.6 Hz, 1H, NH-CH(Cy)), 2.96 — 2.88 (m, 1H, NH-CH(Cy)), 1.93 — 0.92 (m, 10H,
Cy). 13C{*H} NMR (101.61 MHz, DMSO-ds): & = 141.0, 136.4, 134.8, 126.8, 124.1, 124.0,
123.1, 122.8, 122.6, 121.8, 119.5, 116.6, 111.7, 111.4 and 109.8 (Ar); 56.3 (NH-CH(Cy));
34.2, 26.0 and 25.0 (Cy). HRMS (ESI) m/z: [M + H]* Calcd for C21H23N4 331.1917; Found
331.19109.
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9. Yield: 70 % (123 mg). Rr =0.26 (Hexane/EtOAc, 1:1). M.p.: 161-163 °C. H NMR
(400.13 MHz, CDCI3): 8 =8.11 (d, 3Jun = 6.8 Hz, 1H, Ar), 7.64 (d, 3Jnn = 3.6 Hz, 1H, Ar),
7.55 (d, 3Jun =9.0 Hz, 1H, Ar), 7.34 (d, 3JuH = 5.1 Hz, 1H, Ar), 7.20 — 7.11 (m, 2H, Ar),
6.80 (t, 3Jun = 6.8 Hz, 1H, Ar), 3.17 — 3.03 (m, 2H, NH-CH and NH-CH), 1.95 — 1.83 (m,
2H, Cy), 1.82 — 1.69 (m, 2H, Cy), 1.68 — 1.61 (m, 1H, Cy), 1.47 — 1.08 (m, 5H, Cy).
13C{*H} NMR (101.61 MHz, CDClz): 5 =141.6, 136.9, 132.6, 127.6, 124.8, 124.4, 124.1,
124.0, 122.8, 117.0 and 111.8 (Ar); 57.1, 34.3, 25.8 and 24.9 (Cy). HRMS (ESI) m/z:
[M + H]* Calcd for C17H20N3S 298.1372; Found 298.1378.

N\ N
Me
N\_N_
HN Me
><Me
Me

10. Yield: 60 % (77 mg). Ri=0.40 (Hexane/EtOAc, 1:1). M.p.: 153-154°C. 'H NMR
(400.13 MHz, CDClz): 8 =8.21 (d, 3Jun = 6.9 Hz, 1H, CsHaN), 7.82 (d, 3Jnn = 8.1 Hz, 2H,
CeH4—CH3), 7.54 (d, 3Jun = 9.1 Hz, 1H, CsHaN), 7.23 (d, 3Jun = 7.9 Hz, 2H, CeH4—CHa),
7.14 — 7.08 (m, 1H, CsHaN), 6.74 (t, 3Jun = 6.8 Hz, 1H, CsHaN), 3.13 (s, br, 1H, NH), 2.39
(s, 3H, CeHs—CHz), 1.04 (s, 12H, C(CHa)s). 13C{*H} NMR (101.61 MHz, CDCls): d = 141.9,
139.5, 137.0, 132.3, 129.0, 128.0, 123.9, 123.5, 123.3, 117.2 and 111.2 (Ar); 56.4
(C(CHs)3); 30.3 (C(CHs3)3); 21.3 (CsH4—CHs). HRMS (ESI) m/z: [M + H]* Calcd for CisH23N3
280.1808; Found 280.1809.
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Me \N/

11. Yield: 77 % (128 mg). Rr = 0.39 (Hexane/EtOAc, 1:1). M.p.: 179-181 °C. 'H NMR
(400.13 MHz, CDCls): & = 8.23 (d, 3Jun = 6.8 Hz, 1H, CsHaN), 7.86 (d, 3Jun = 8.0 Hz, 2H,
CeHs—CH3), 7.52 (d, 3Jun = 8.9 Hz, 1H, CsHaN), 7.22 (d, 3JuH = 8.2 Hz, 2H, CeHs—CH?3),
7.08 (t, 3Jun = 7.4 Hz, 1H, CsHaN), 6.71 (t, *Jun = 6.8 Hz, 1H, CsHaN), 3.10 (s, br, 1H, NH),
2.38 (s, 3H, CoHa—CHs), 1.92 (s, 3H, Ad), 1.67 — 1.39 (m, 12H, Ad). 3C{*H} NMR
(101.61 MHz, CDCls): 6 =141.9, 139.4, 136.9, 132.3, 128.9, 128.0, 123.8, 123.6, 122.2,
117.1 and 111.1 (Ar); 56.6 (NH-Caq); 43.9, 36.2 and 29.7 (Ad); 21.3 (CeHi—CHs).
HRMS (ESI) m/z: [M + HJ* Calcd for CasHzsNs 358.2278; Found 358.2278.

S
Me \N/

HN

12. Yield: 63% (93 mg). Ri=0.37 (Hexane/EtOAc, 1:1). M.p.: 98-99 °C. 'H NMR
(400.13 MHz, CDClz): 8 =7.97 (d, 3Jun = 6.8 Hz, 1H, CsHaN), 7.91 (d, 3Jnn = 8.1 Hz, 2H,
Ar), 7.56 (d, 3Jun = 9.0 Hz, 1H, CsHaN), 7.46 — 7.22 (m, 7H, Ar), 7.12 (m, 1H, CsHsN), 6.72
(t, 3Jun = 6.7 Hz, 1H, CsHaN), 4.19 (d, 3Jun = 6.2 Hz, 2H, CH2), 3.58 — 3.46 (m, 1H, NH),
2.42 (s, 3H, CHza). 3C{*H} NMR (101.61 MHz, CDClz): 5 =141.5, 139.1, 137.2, 136.2,
131.3, 129.4, 128.7, 128.2, 127.6, 126.9, 125.4, 123.9, 122.3, 117.3 and 111.6 (Ar); 52.4
(CH2); 21.3 (CHs). HRMS (ESI) m/z: [M + H]" Calcd for CaiH20N3 314.1652; Found
314.1660.
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Me \N/

13. Yield: 76% (119 mg). Rf=0.15 (MeOH/CHCIz, 1:9). M.p.: 128-129 °C. 'H NMR
(400.13 MHz, CDClz): 5 =8.14 (d, 3Jun = 6.8 Hz, 1H, CsHaN), 7.89 (d, 3Jnn = 8.1 Hz, 2H,
CeH4—CH3), 7.58 (d, 3Jun = 9.0 Hz, 1H, CsHa4N), 7.26 (d, 3Jun = 7.9 Hz, 2H, CeH4—CHa),
7.18 — 7.14 (m, 1H, CsHN), 6.82 (td, 3JuH = 6.7, *Jnn = 1.1 Hz, 1H, CsHaN), 4.04 (d,
3Jun = 6.0 Hz, 1H, NH), 3.72 (t, 3Jnun = 4.6 Hz, 4H, O—(CH2)2), 3.14 — 3.02 (m, 2H, NH-
CHz2), 2.59 — 2.53 (m, 2H, N—CH2), 2.44 (t, 3Jun = 4.6 Hz, 4H, N—(CH2)2), 2.41 (s, 3H, CH3).
3C{*H} NMR (101.61 MHz, CDCls): & =141.0, 137.3, 134.5, 131.0, 129.4, 126.9, 126.3,
124.1, 122.5, 117.2 and 111.8 (Ar); 67.0 (O—(CH2)2), 58.3 (N=(CH2)2); 53.7 (N-CHa): 44.0
(NH-CH2); 21.3 (CHs). HRMS (ESI) m/z: [M + H]* Calcd for C20H2sN4O 337.2023; Found
337.2024.

N\ N
Me
N\_N_ _—
HN
Me
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14. Yield: 63 % (96 mg). Ri=0.35 (Hexane/EtOAc, 2:1). M.p.: 187-189 °C. 'H NMR
(400.13 MHz, CDClIs): & =8.02 (d, 3JnH = 7.9 Hz, 2H, Ar), 7.60 — 7.53 (m, 2H, Ar), 7.19 —
7.09 (m, 3H, Ar), 6.99 (d, 3Jun = 7.5 Hz, 2H, Ar), 6.81 (t, 3Jun = 7.5 Hz, 1H, Ar), 6.66 (t,
3JuH = 6.8 Hz, 1H, Ar), 5.45 (s, br, 1H, NH), 2.36 (s, 3H, CeéHs—CHs3), 2.02 (s, 6H, CsH3—
(CHa)2). 13C{*H} NMR (101.61 MHz, CDCls): & = 141.2, 140.4, 137.5, 137.2, 130.8, 129.9,
129.1, 126.9, 125.3, 124.1, 122.3, 120.9, 120.5, 117.4 and 112.1 (Ar); 21.3 (CeHs—CH3);
18.6 (CeHs—(CHzs)2). HRMS (ESI) m/z: [M + H]* Calcd for C22H22Ns 328.1808; Found
328.1810
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Spectra of 1a, Cat1°™-Cat4°™, and 1-14

1a, 400.13 MHz, 298 K, CDCIs
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Figure S8. 'H NMR spectrum of the imine 1a.
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1a,100.61 MHz, 298 K, CDCl;
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Figure S9. 13C{*H} NMR spectrum of the imine 1a.
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Cat1°T", 400.13 MHz, 298 K, DMSO-ds
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Cat1°™ | 100.61 MHz, 298 K, DMSO-ds solvent
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Figure S12. 13C{*H} NMR spectrum of Cat1°™".
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Cat2, 400.13 MHz, 298 K, DMSO-d6
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Cat2, 100.61 MHz, 298 K, DMSO-d6
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Cat3°™", 400.13 MHz, 298 K, DMSO
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Cat3~T" , 100.61 MHz, 298 K, DMS0O-d6 %
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Figure S18. 3C NMR spectrum of Cat3°T",
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1, 400.13 MHz, 298 K, CDCIs
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Figure S23. *H NMR spectrum of 1.
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1,100.61 MHz, 298 K, CDCls

~
Me
N
DN MO =N
TNQQON ©
FREIA 7 zan
e i) W
NSNS e
It
solvent
residual
" signal
- |
~
i
ol
fre}
©
fe}
wn
2
[ =R
m o wn
- N O |
TMNM
o v
!
|
], l_ I el W s ' iy o -~ g "
T T T T T H T ¥ T 1 T ¥ T . T y T X, T y T X T T T ¥
180 170 160 150 140 130 120 110 100 90 80 70 60 50 30 20 ppm

Figure S24. 3C{*H} NMR spectrum of 1.
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2,400.13 MHz, 298 K, CDCls
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Figure S26. *H NMR spectrum of 2.
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2,100.61 MHz, 298 K, CDCIs
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3,100.61 MHz, 298 K, CDCIs
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4,400.13 MHz, 298 K, CDCIs
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Figure S32. 'H NMR spectrum of 4.
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4,100.61 MHz, 298 K, CDCIs
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Figure S33. 13C{*H} NMR spectrum of 4.
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5,400.13 MHz, 298 K, CDCIs

N

\

NH

'8
60'8"

7 N\

~

N

NC

solvent

residual
signal

LS5°L
O S-NV
L'L-F

T

84 83 828180797877 767574737271706.9 68 6.7ppm

b6'T

T10°€~ P

9T'E~,
e’

mm.m.\
608

S.wv
'8

F-001
T-o0z |
Fooz

Foor |
Foor |

3.5

T

T
4.0

4.5

5.0

5.5

TFoor
Too1 |

00T
TFooz |

Foot

Fooz |

ppm

0.5

1.0

1.5

2.0

25

3.0

6.0

6.5

7.0

7.5

8.0

8.5

Figure S35. *H NMR spectrum of 5.
S45



5,100.61 MHz, 298 K, CDCIs

N
NG SR 2XAR NhIR28
\_N___ FREN REQNSD
- \l"// il solvent
NH residual =
7 o~
signal < 8%
| gz
5

57.04

——112.38
—110.46

RTA———

T T T T T T T T T T ' T T T T T T
180 170 160 150 140 130 120 110 100 90

Figure S36. 13C{*H} NMR spectrum of 5.
S46



Intens. ]
x10°-

2.0

1.5

1.0+

0.5

1135.0014

0.0

nl. I "| l-]"--|, .Il.!. sl ol

197.1069

150 200

223.1098

280.1790

250

Figure S37.

317.1761

358.2278

413.2658

383.2042

447.3427
475.3273
L L) ||n|| Lt )
300 350 400 450 m/z
HRESI*-MS of 5.

S47



6,400.13 MHz, 298 K, CDCl:s

87'8~_
0E'8

solvent

residual
signal

PE'8

9’8"

O,N

84 83 82 81 80 79 78 77 76 75 74 73 72 7.1

7.0 69 6.8ppm

S6'C~
€0°E—

mN.mV.
9er

TFoor

Too1 |

Too1

F0071

00C

00C

3.5

T
4.0

4.5

5.0

T

5.5

ppm

0.5

1.0

15

2.0

2.5

3.0

6.0

6.5

7.0

7.5

8.0

8.5

Figure S38.H NMR spectrum of 6.

S48



6,100.61 MHz, 298 K, CDCls
N RBELBD
O,N = e E @ E 8 S solvent
¢ N\ N~ N residual
I signal &
HN e
& 2
n .
S &
.= 0
ze0Q
555
7S

_~25.60
—™-24.83

BN v o i

I T T X T L T X T ! T X T L T

170 160 150 140 130 120

T L T X T e T 2 T E T » T e T

110 100 90 80 70 60 50

Figure S39. 13C{*H} NMR spectrum of 6.

S49

ppm



x10°
44 226.9513
3_
2_
| 337.1661
1 383.2043
1 158.9633
| T — 359.1478 ER:2095
| 182.0829 301.1432
1135.0026 ‘ J J 235.0503 320.9864
0 ; | I| - pl I |l| II III Lo, I. 1[ |l" | " : ’| ] ||'| I_Il |.I’.I|| ‘|| ool | |!. Diapsee g
150 200 250 300 350 400

Figure S40. HRESI*-MS of 6.
S50

430.9139

450 m/z



SE'T

7,400.13 MHz, 298 K, CDCls

L6'0 ===
Jm\ul.
Sb'T t/N
ery
(51 —
291
(91
27
LNE w
L%
089~ _ o 04T
189 === Lo [ 81T
L8 Lo SO'E~_
O & l\ullJ
e L0°E
~
L
Ex/ ~ _ [~
A — Nyt~
: - [~
Nmm/ —— WS.N [ e
. ~
EN“ —_—_— 001 -
SE'L \ NS
£l e
vm.m.(l'lU 00°'T B
oSS L@
L~
~
| »
~
o
~
)
(=]
4 T PRy LN | b5
g JTS e
o
08'9

189 e

e -

1 B9
62°L NEn——
1€°L e
[of o R =
51’
vS LT Ez
B.h\

[4%: 2NN

b8~ 3

Foos

F00T
1002

o0z |

o0t

Foor |

Foot

Foot

T

3.5

T
4.0

4.5

5.0

5.5

0.5 ppm

2.0 15 1.0

2.5

3.0

6.0

6.5

7.0

7.5

8.0

8.5

Figure S41.'H NMR spectrum of 7.
S51
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13, 400.13 MHz, 298 K, CDClIs
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14, 400.13 MHz, 298 K, CDCls
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14,100.61 MHz, 298 K, CDCIs

Figure S63. $3C{*H} NMR spectrum of 14.
S73

[= V]
M 10
Sl REZBRARKLH N
Me \ SALEEINERE
N / v-: v v v e v -1: :4
S | e
HN '
Me
Me solvent
residual
signal
o
—
~
= |
|
3998
- O NS
T<tTmm
v v v v
NV
|
|
VA I W BN VA A " Py A ARSI A AR A AT i\ WA
T ¥ T ¥ T 3 T T T y T ¥ T y T L] T ¥ T LS T T T T T L}
180 170 160 150 140 130 120 110 100 90 80 70 60 50 30 20 ppm



Intens.
x10° |
197.1081
3_
2_
413.2679
1_
328.1810
213.1029
226.9521
358.2290
306.1983
4 136.0741
| 447.3459 4753268
0 " k R |I Ly l ; b h. T ||l . i |l'|'||' Il.l o '|'I'|' .
150 200 250 300 350 400 450 m/z

Figure S64. HRESI*-MS of 14.
S74




Table S1. Crystal data for Cat3°™ and Cat4°™,

Identification code Cat30Tf Cat40Tf
Empirical formula C16H11F3IN203S C15HoF3IN3O3S
Formula weight 494.22 495.21
Temperature/K 100(2)
Crystal system monoclinic
Space group P2i/c P2i/c
a/lA 5.68910(10) 12.4433(2)
b/A 30.3093(6) 12.38770(10)
c/A 9.9602(3) 11.9729(2)
a/® 90 90
B/° 105.586(3) 116.297(2)
y/° 90 90
Volume/A3 1654.31(7) 1654.55(5)
Z 4 4
Pcalc g/cm? 1.988 1.988
p/mm1 16.893 16.911
F(000) 964.0 960.0
Crystal size/mm?3 0.12 x 0.07 x 0.03 0.14 x 0.08 x 0.06
Radiation Cu Ka (A =1.54184)
20 range for data 5.832 to 134.95 7.926 to 136.266
collection/

Index ranges

—6<hs<6,-36<k<
34, -11<1<11

—13<hs<14,-14<k<
14,14 <1< 14

Reflections collected

16046

15508

Independent reflections

2962 [Rint = 0.1072,
Rsigma = 0.0537]

3012 [Rint = 0.0376,
Rsigma = 0.0253]

Data/restraints/parameters 2962/0/235 3012/0/236
Goodness-of-fit on F? 1.052 1.030
. . R1=0.0417, wR2 = R1=0.0209, wR2 =
Final R indexes [1>20 (1)] 0.1067 0.0520
. . R1=0.0424, wR2 = R1=0.0218, wR2 =
Final R indexes [all data] 0.1077 0.0525
Largest dit peaidhole / 1.10/-1.60 0.61/~0.56
CSD code 2212225 2212224
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Figure S66. A thermal ellipsoid plot for Cat4°T™.
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Table S2. Calculated total electronic energies (E, in Hartree), enthalpies (H, in Hartree),
Gibbs free energies (G, in Hartree), and entropies (S, cal/mol+K) for optimized equilibrium

model structures.

Model structure E H G S
A -727.539741069 | -727.245460 -727.309705 135.215
B -1055.46225191 | -1054.987923 | -1055.068834 | 170.293
C -1055.47011881 | -1054.994620 | -1055.078358 | 176.241
Catl -473.054769811 | -472.882786 -472.930383 100.176
Catl twoMeOH -704.405640220 | -704.115688 -704.185012 145.904
Cat2 -737.259074338 | -736.999217 -737.059468 126.809
Cat2_twoMeOH -968.612520912 | -968.235804 -968.317627 172.210
Cat3 -697.964529114 | -697.736021 -697.793254 120.457
Cat3_twoMeOH -929.317870854 | -928.971669 -929.049430 163.662
Cat4 -714.002393732 | -713.785701 -713.842506 119.555
Cat4_twoMeOH -945.355867129 | -945.021578 -945.099111 163.183

CNCy -327.945075733 | -327.765443 -327.804941 83.132
D_Catl -1200.60425168 | -1200.134965 | -1200.227369 | 194.481
D Cat2 a -1464.81050513 | -1464.255020 | -1464.361158 | 223.388
D Cat2 b -1464.81026900 | -1464.253944 | -1464.359420 | 221.991
D Cat3 a -1425.51659930 | -1424.990957 | -1425.091964 | 212.588
D Cat3 b -1425.51642229 | -1424.991688 | -1425.094988 | 217.413
D Cat4 a -1441.55457544 | -1441.041057 | -1441.143084 | 214.735
D Cat4 b -1441.55680883 | -1441.043667 | -1441.145953 | 215.279
E Catl -1528.53196695 | -1527.882862 | -1527.992725 | 231.228
E Cat2 a -1792.74223254 | -1792.005874 | -1792.127685 | 256.373
E Cat2 b -1792.74412295 | -1792.007792 | -1792.127169 | 251.249
E Cat3 a -1753.44897129 | -1752.743217 | -1752.859154 | 244.010
E Cat3 b -1753.44622106 | -1752.740309 | -1752.857513 | 246.678
E Cat4 a -1769.48472020 | -1768.790899 | -1768.907085 | 244.535
E Catd b -1769.48645264 | -1768.792848 | -1768.909528 | 245.574
F Catl -1528.54358251 | -1527.892583 | -1528.003797 | 234.071
F Cat2_a -1792.75092310 | -1792.013428 | -1792.137467 | 261.062
F Cat2 b -1792.74993081 | -1792.012200 | -1792.137168 | 263.018
F Cat3 a -1753.45784978 | -1752.750627 | -1752.871010 | 253.366
F Cat3 b -1753.45632777 | -1752.749036 | -1752.867751 | 249.857
F Cat4 a -1769.49549357 | -1768.800760 | -1768.922870 | 257.001
F Cat4 b -1769.49737825 | -1768.802136 | -1768.920384 | 248.873
MeOH -115.663537382 | -115.607102 -115.633972 56.553

A _without MeOH -611.861433449 | -611.626322 -611.680556 114.145
B_without MeOH -939.780058617 | -939.364833 -939.436893 151.662
C_without_MeOH -939.786769065 | -939.370243 -939.444200 155.654
Catl_MeOH -588.730828594 | -588.499401 -588.557021 121.271

Cat2_MeOH_and_sigma-
hole_in_a_position
Cat2_MeOH_and_sigma-
hole_in_b_position
Cat3_MeOH_and_sigma-
hole_in_a_position

-852.935895057 | -852.618519 -852.686323 | 142.707

-852.935921854 | -852.617834 -852.689867 151.606

-813.641249802 | -813.353876 -813.421361 142.036
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Cat3_MeOH_and_sigma-

: S| -813.641735547 | -813.354427 | -813.420870 | 139.842
hole_in_b_position

Cat4_MeOH_and_sigma- | g59 679171329 | -829.403586 | -829.471021 | 141.930
hole_in_a_position

Catd_MeOH_and_sigma- | g,q s79585086 | -829.404300 | -829.470298 | 138.886
hole_in_b_position

CNCy -327.045075733 | -327.765443 | -327.804941 | 83.132

D_Catl -1200.60425168 | -1200.134965 | -1200.227369 | 194.481

D Cat2 a -1464.81050513 | -1464.255020 | -1464.361158 | 223.388

D Cat2 b ~1464.81026900 | -1464.253944 | -1464.359420 | 221.991

D _Cat3 a 142551659930 | -1424.990957 | -1425.091964 | 212.588

D Cat3 b ~142551642229 | -1424.991688 | -1425.094988 | 217.413

D_Cat4_a 144155457544 | -1441.041057 | -1441.143084 | 214.735

D Cat4 b -1441.55680883 | -1441.043667 | -1441.145953 | 215279

E_Catl -1528.53196695 | -1527.882862 | -1527.992725 | 231.228

E_Cat2 a -1792.74223254 | -1792.005874 | -1792.127685 | 256.373

E Cat2 b ~1792.74412295 | -1792.007792 | -1792.127169 | 251.249

E_Cat3_a -1753.44897129 | -1752.743217 | -1752.859154 | 244.010

E Cat3 b -1753.44622106 | -1752.740309 | -1752.857513 | 246.678

E Cat4 a ~1769.48472020 | -1768.790899 | -1768.907085 | 244.535

E_Cat4 b -1769.48645264 | -1768.792848 | -1768.909528 | 245.574

F Catl -1528.54358251 | -1527.892583 | -1528.003797 | 234.071

F Cat2 a -1792.75092310 | -1792.013428 | -1792.137467 | 261.062

F Cat2 b -1792.74993081 | -1792.012200 | -1792.137168 | 263.018

F Cat3 a ~1753.45784978 | -1752.750627 | -1752.871010 | 253.366

F Cat3 b -1753.45632777 | -1752.749036 | -1752.867751 | 249.857

F Cat4 a -1769.49549357 | -1768.800760 | -1768.922870 | 257.001

F Cat4 b -1769.49737825 | -1768.802136 | -1768.920384 | 248.873
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Table S3. Calculated values of total electronic energies, enthalpies, and Gibbs free
energies of activation and reaction (AE*, AH*, AG*, AE, AH, and AG in kJ/mol) for model

processes.
Model process AE* | AH* | AG* AE AH AG
A + CNCy — C (via B) 59.2 | 60.3 | 120.3 | 38.6 | 42.8 | 95.3
A + Catl twoMeOH —» D_Catl + 2 MeOH 369 | 315 | -16
A + Cat2_twoMeOH —» D Cat2_a + 2 MeOH 385 | 316 | -4.6
A + Cat2_twoMeOH —» D _Cat2 b + 2 MeOH 39.2 | 344 | -0.1
A + Cat3_twoMeOH —» D_Cat3 a + 2 MeOH 36.6 | 314 | -2.0
A + Cat3_twoMeOH —» D_Cat3 b + 2 MeOH 371 | 295 | -10.0
A + Cat4_twoMeOH —» D_Cat4_a + 2 MeOH 36.6 | 309 | -58
A + Cat4 twoMeOH —» D _Cat4 b + 2 MeOH 30.8 | 24.1 | -13.3
D Catl + CNCy —» F _Catl (via E_Catl) 456 | 46.1 | 1039 | 151 | 20.5 | 74.9
D Cat2 a+ CNCy— F Cat2 a(viaE Cat2 a) | 350 | 383 | 1009 | 12.2 | 185 | 75.2
D Cat2 b+CNCy—>F Cat2 b (viaE Cat2 b) | 295 | 304 | 976 | 142 | 189 | 714
D Cat3 a+CNCy —»F Cat3 a(viaE Cat3 a) | 334 | 346 | 99.1 | 10.0 | 15.2 | 68.0
D Cat3 b+ CNCy—»F Cat3 b (viaE Cat3 b) | 40.1 | 442 | 1114 | 136 | 21.3 | 845
D Cat4 a+CNCy—>F Cat4 a(viaE Cat4 a) | 39.2 | 41.0 | 107.5 | 109 | 15.1 | 66.0
D Cat4d b+ CNCy—»>F Cat4 b (viaE Cat4 b) | 405 | 42.7 | 108.6 | 11.8 | 18.3 | 80.1
A_without MeOH + CNCy —» C_without MeOH | 69.4 | 70.7 | 127.6 | 51.8 | 56.5 | 108.4
A_without_MeOH + Catl_MeOH —» D_Catl -315 | -243 | 26.8
A_without_MeOH + Cat2_MeOH_and_sigma- -34.6 | -26.7 | 15.0
hole_in_a_position - D_Cat2_a
A_without_MeOH + Cat2_MeOH_and_sigma- -33.9 | -25.7 | 28.9
hole_in_b_position - D_Cat2_b
A_without_MeOH + Cat3_MeOH_and_sigma- -36.5 | -28.2 | 26.1
hole_in_a_position -» D_Cat3_a
A_without_MeOH + Cat3_MeOH_and_sigma- -34.8 | -28.7 | 16.9
hole_in_b_position - D_Cat3_b
A_without_MeOH + Cat4 _MeOH_and_sigma- -36.7 | -29.3 | 22.3
hole_in_a_position - D_Cat4_a
A_without_MeOH + Cat4_MeOH_and_sigma- -41.2 | -34.2 | 12.9
hole_in_b_position - D_Cat4 b
D Catl + CNCy —» F _Catl (via E_Catl) 456 | 46.1 | 1039 | 151 | 20.5 | 74.9
D Cat2 a+ CNCy —» F Cat2 a(viaE Cat2 a) | 350 | 38.3 | 100.9 | 12.2 | 185 | 75.2
D Cat2 b+ CNCy—>F Cat2 b (viaE Cat2 b) | 295 | 304 | 97.6 | 142 | 189 | 714
D Cat3 a+CNCy—»>F Cat3 a(viaE Cat3 a) | 334 | 346 | 99.1 | 10.0 | 15.2 | 68.0
D Cat3 b+ CNCy—»F Cat3 b (viaE Cat3 b) | 40.1 | 442 | 1114 | 136 | 21.3 | 845
D Cat4 a+CNCy > F Cat4 a(viaE Cat4 a) | 39.2 | 41.0 | 1075 | 10.9 | 15.1 | 66.0
D Cat4 b+ CNCy—>F Cat4 b (viaE Cat4 b) | 405 | 42.7 | 108.6 | 11.8 | 18.3 | 80.1
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