Supporting Information

An Organic Photoredox Catalyst Promoted Para-Selective C-H Amination of Aryl Oximes

Cheng Wang, ‡ Xue-jun Zhang, ‡ Yan-Wei Zhao*, Qianqian Liu, Hongli Cheng, Zhibin Huang,* and Yingsheng Zhao*

Table of Contents

Supplementary Methods	2
Optimization Studies	3
Other substrates	5
Preparation of substrates	5
Procedures for preparation 3 and 4.	8
Application	24
Control experiments	28
Quantum Yield Measurement	33
Preliminary mechanistic studies	35
NOESY analysis of 3f, 3h and 3v	40
The characterization of Cu ²⁺ by XPS	45
KIE experiments	46
Effect of Light: On/Off Plot	47
References	49
NMR spectra	50

Supplementary Methods

Reagents: Unless otherwise noted, all reagents purchased from commercial suppliers and used without further purification. Column chromatography purifications performed using 200–300 and 300-400 mesh silica gel.

Instruments: NMR spectra recorded on Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, brs = broad singlet, m = multiplet. HRMS analysis carried out using a Bruker micrOTOF–Q instrument or a TOF–MS instrument. The UV–visdiffuse reflection spectroscopy (DRS) were measured on a Shimadzu UV-3600 spectrophotometer at room temperature. LC-MS analysis carried out using a Agilent Technologies 1260 Znfinity. Cyclic voltammetry was performed on the Autolab 302N. The fluorescence quenching experiment was carried out on Hitachi F-2500 fluorescence spectrophotometer. The XPS test was operated on X-ray photoelectron spectrometer (EXCALAB 250 XI).

Optimization Studies

$ \begin{array}{c} OMe \\ N \\ H \\ H \end{array} $ $ \begin{array}{c} H \\ + \\ EtOOC \end{array} $ $ \begin{array}{c} H \\ N \\ N \\ 1a \end{array} $	OMe Photocatalyst (10 mol%) Cu(OTf) ₂ (10 mol%) DCE, O ₂ , 30-35°C, 40 W blue LEDs EtOOC N 3a	R TPT: R=H PC-1: R=F PC-2: R=CI PC-3: R=Br PC-4: R=Me PC-5: R=CF ₃ ⊕ BF ₄
Entry	Photocatalyst	Yield
1	ТРТ	83 %
2	Acr ⁺ -Mes BF ₄ ⁻	62 %
3	Eosin Y	trace
4	<i>fac</i> -Ir(III)(ppy) ₃	trace
5	4CZIPN	trace
6	Rose Bengal	trace
7	PC-1	57 %
8	PC-2	50 %
9	PC-3	43 %
10	PC-4	77 %
11	PC-5	44 %

Table S-1: Influence of the Photocatalyst.^a

^a Reaction condition: 1a (0.1 mmol), 2a (0.2 mmol), Photocatalyst (10 mol %), $Cu(OTf)_2$ (10 mol %), DCE (1 mL), O_2 , at 30-35°C under 40 W blue LEDs irradiation for 12 h. Isolated yields.

H H H H	H TPT (Additive Solvent, O 40 W bl	10 mol%) (10 mol%) 2, 30-35°C, ue LEDs EtOOC	N OMe H H 3a
Entry	Additive	Solvent	Yield
1	$Cu(OAc)_2$	DCE	42 %
2	CuO	DCE	64 %
3	Cu ₂ Br	DCE	70 %
4	Cu ₂ O	DCE	45 %
5	Fe(OTf) ₃	DCE	73 %
6	LiOTf	DCE	trace
7	Cu(OTf) ₂	DCM	78 %
8	Cu(OTf) ₂	MeCN	56 %
9	Cu(OTf) ₂	Acetone	57 %
10	Cu(OTf) ₂	DMF	0 %
11	Cu(OTf) ₂	HFIP	0 %
12	none	DCE	0 %
13 ^b	Cu(OTf) ₂	DCE	0 %
14 ^c	Cu(OTf) ₂	DCE	0 %
15 ^d	Cu(OTf) ₂	DCE	31 %

Table S-2: Influence of the Additive, Solvent. ^a

^a Reaction condition: 1a (0.1 mmol), 2a (0.2 mmol), TPT (10 mol %), Additive (10 mol %), Solvent (1 mL), O₂, at 30-35°C under 40 W blue LEDs irradiation for 12 h.
^b No TPT. ^c Dark. ^d Ar. Isolated yields.

Other substrates

N^{_OR}1 ∠OR₁ TPT (10 mol%) Ν Cu(OTf)₂ (10 mol%) DCE, O2, 30-35°C, EtO₂C 40 W blue LEDs Pyac^{*} 2a, Pyac-H 2 N_OEt N^{∕O^tBu} N^{∠Oⁱpr} Pyac Pyac Pyac^{*} 3aa, 62% 3ab, 49% 3ac, 30%

Scheme S1. Substrate scope of the oxime ether derivatives.^a

^aReaction condition: **1** (0.1 mmol), **2a** (0.2 mmol), TPT (10 mol %), $Cu(OTf)_2$ (10 mol%), DCE (1 mL) , O_2 , at 30-35°C under 40 W blue LEDs irradiation for 12 h. Isolated yields.

Scheme S2. Oxime protected 4-methylbenzaldehyde and 4-methoxybenzaldehyde as substrate.

Preparation of substrates

2a-2o, **7** were purchased from commercial sources and used without further purification. **1a-1x** were prepared according to reported methods^[1]. These compounds **1a-1f**, **1k-1q**, **1s-1u**, **1x** were known.

Preparation of O-methyl aryl oximes 1a-1x^[1]

To a solution of Ketones (22.0 mmol) and pyridine (5.0 mL, 61.8 mmol) in EtOH (10 Ml) was added NH₂OMe•HCl (2.29 g, 33.0 mmol) in one portion and the reaction mixture was stirred at 60 °C for 6 h. The reaction was quenched by adding water and extracted twice with ethyl acetate. The combined extracts were washed with aqueous HCl and brine, and dried over MgSO₄. The solvents were removed under reduced pressure. Further recrystallization was conducted from ethyl acetate-hexane to provide *O*-methyl ketoximes.^[1]

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 3.4 Hz, 2H), 7.68 (ddd, J = 7.9, 1.8, 1.1 Hz, 1H), 7.51 (dt, J = 7.8, 1.3 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 3.98 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.0, 138.7, 135.6, 134.4, 130.4, 126.4, 94.6, 62.4. **HRMS** Calcd for C₈H₈INONa [M+Na]⁺: 283.9548; Found:283.9541.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.68 (d, J = 2.3 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.03 (dd, J = 8.2, 1.6 Hz, 1H), 4.00 (s, 3H), 2.32 (s, 3H). ¹³**C NMR** (100 MHz, 100 MHz)

CDCl₃) δ 148.3, 137.7, 132.9, 132.2, 131.2, 128.0, 120.7, 62.3, 21.0. **HRMS** Calcd for C₉H₁₀BrNONa [M+Na]⁺: 249.9843; Found: 249.9842.

¹**H** NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 8.8, 2.6 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H), 3.97 (s, 3H), 3.82 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 156.5, 143.4, 133.4, 128.9, 122.7, 113.3, 112.8, 62.1, 55.8. **HRMS** Calcd for C₉H₁₀BrNO₂Na [M+Na]⁺: 265.9793; Found: 265.9797.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.87 (d, J = 2.2 Hz, 1H), 7.36 (dd, J = 8.2, 2.2 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H), 3.99 (s, 3H), 2.34 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 146.1, 135.5, 132.4, 132.4, 129.2, 120.0, 62.3, 19.3. **HRMS** Calcd for C₉H₁₀BrNONa [M+Na]⁺: 249.9843; Found: 249.9847.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 7.52 (m, 2H), 7.43 – 7.31 (m, 3H), 5.22 (s, 2H), 4.02 (s, 3H), 1.98 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 153.6, 133.5, 129.4, 128.5, 126.9, 62.6, 56.5, 20.7. **HRMS** Calcd for C₁₁H₁₃NO₃Na [M+Na]⁺: 230.0793; Found: 230.0787.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 2.3 Hz, 1H), 7.19 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 3.99 (s, 3H), 2.70 (t, *J* = 6.7 Hz, 4H), 1.82 (dt, *J* = 12.4, 6.5

Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 137.9, 132.4, 132.3, 130.0, 129.0, 124.1, 62.3, 29.3, 24.0, 21.4. HRMS Calcd for C₁₁H₁₂ClNONa [M+Na]⁺: 232.0505; Found: 232.0511.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 2.1 Hz, 1H), 7.34 (dd, J = 8.1, 2.2 Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 3.99 (s, 3H), 2.69 (q, J = 6.4 Hz, 4H), 1.82 (p, J = 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 138.3, 132.8, 131.8, 130.3, 127.1, 120.3, 62.3, 29.4, 24.0, 21.3. **HRMS** Calcd for C₁₁H₁₂BrNONa [M+Na]⁺: 276.0000; Found: 276.0003.

Procedures for preparation 3 and 4.

General Procedure for para C-H Amination of Aryl Oximes : A mixture of 1 (0.1 mmol, 1.0 eq), Pyrazole 2 (0.2 mmol, 2.0 eq), TPT (4.0 mg, 10 mol%), Cu(OTf)₂ (3.6 mg, 10 mol%) and DCE (1 ml) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 12 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel,

petroleum ether/ethyl acetate = 5:1-20:1) to give the product.

Yellow solid, isolated yield: 22.6 mg, 83%. Mp: 102-104°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.10 (s, 1H), 8.07 (s, 1H), 7.73 (d, J = 8.9 Hz, 2H), 7.69 (d, J = 8.9 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.7, 147.3, 142.4, 140.0, 131.4, 129.9, 128.2, 119.5, 117.3, 62.2, 60.5, 14.4. **HRMS** Calcd for C₁₄H₁₅N₃O₃Na [M+Na]⁺: 296.1011; Found: 296.1010.

Yellow solid, isolated yield: 19.8 mg, 69%. Mp: 81-83°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.30 (s, 1H), 8.08 (s, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.50 (dd, J = 8.4, 2.4 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 2.46 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.7, 146.3, 142.3, 139.7, 138.4, 129.9, 129.6, 127.9, 121.3, 117.1, 116.8, 62.1, 60.5, 19.9, 14.4. **HRMS** Calcd for C₁₅H₁₇N₃O₃Na [M+Na]⁺: 310.1168; Found: 310.1169.

Yellow solid, isolated yield: 21.1 mg, 70%. Mp: 65-66°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.31 (s, 1H), 8.08 (s, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 2.3 Hz, 1H), 7.49 (dd, J = 8.5, 2.4 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 2.78 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 145.9, 144.7, 142.4, 140.0, 129.9, 129.0, 128.1, 120.0, 117.2, 117.0, 62.2, 60.6, 26.4, 15.6, 14.5. **HRMS** Calcd for C₁₆H₂₀N₃O₃ [M+H]⁺: 302.1505; Found: 302.1496.

White solid, isolated yield: 17.6 mg, 50%. Mp: 151-152°C

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.09 (s, 1H), 7.98 (d, J = 2.3 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 7.63 (dd, J = 8.7, 1.7 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.5, 146.8, 142.7, 140.5, 130.5, 129.9, 128.3, 124.4, 123.6, 118.0, 117.7, 62.5, 60.7, 14.4. **HRMS** Calcd for C₁₄H₁₄BrN₃O₃Na [M+Na]⁺: 374.0116; Found: 374.0124.

White solid, isolated yield: 19.1 mg, 56%. Mp: 155-157°C

¹**H NMR** (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.40 (q, J = 2.3 Hz, 1H), 8.19 (d, J = 8.7 Hz, 1H), 8.12 (s, 1H), 8.07 (d, J = 2.3 Hz, 1H), 7.87 (dd, J = 8.6, 2.3 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 4.03 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 162.5, 144.1 (q, J = 1.8 Hz), 143.0, 139.8, 130.2 (C-F $2J_{C-F} = 31.5$ Hz), 123.0, 129.9 (C-F $2J_{C-F} = 31.5$ Hz), 129.5 (C-F $2J_{C-F} = 31.5$ Hz), 129.3 (d, J = 1.5 Hz), 129.2 (C-F $2J_{C-F} = 31.5$ Hz), 129.0, 127.5 (C-F $1J_{C-F} = 272.7$ Hz), 124.8 (C-F $1J_{C-F} = 272.7$ Hz), 122.1, 122.0 (C-F $1J_{C-F} = 272.7$ Hz), 119.3 (C-F $1J_{C-F} = 272.7$ Hz), 118.0, 116.9 (q, J = 5.9 Hz), 62.7, 60.8, 14.5. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -58.81 (d, J = 1.9 Hz). **HRMS** Calcd for C₁₅H₁₄F₃N₃O₃Na [M+Na]⁺: 364.0885; Found: 364.0881.

White solid, isolated yield: 24.7 mg, 86%. Mp: 83-84°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 4.1 Hz, 2H), 8.06 (s, 1H), 7.56 (s, 1H), 7.50 (dd, J = 8.2, 1.9 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 2.28 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 147.4, 141.8, 139.9, 133.9, 133.8, 132.9, 129.8, 126.2, 125.4, 116.2, 62.2, 60.4, 18.2, 14.4. **HRMS** Calcd for C₁₅H₁₇N₃O₃Na [M+Na]⁺: 310.1168; Found: 310.1164.

Yellow solid, isolated yield: 16.0 mg, 40%. Mp: 93-94°C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.19 (d, J = 1.8 Hz, 1H), 8.12 (s, 1H), 8.00 (s, 1H), 7.65 (dd, J = 8.2, 1.8 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.26 (s, 0H), 4.34 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 145.6, 143.1, 142.2, 138.2, 134.8, 134.5, 127.9, 127.5, 116.5, 93.9, 62.5, 60.5, 14.4. HRMS Calcd for C₁₄H₁₄IN₃O₃Na [M+Na]⁺: 421.9978; Found: 421.9970.

Yellow solid, isolated yield: 25.2 mg, 69%. Mp: 96-98°C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.09 (d, J = 5.3 Hz, 2H), 7.82 (s, 1H), 7.55 (s, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 2.24 (d, J = 0.9 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 162.7, 146.9, 142.2, 140.6, 133.8, 132.8, 131.9, 130.0, 129.9, 120.7, 116.6, 62.5, 60.6, 18.1, 14.5. **HRMS** Calcd for C₁₅H₁₆BrN₃O₃Na [M+Na]⁺: 388.0273; Found: 388.0265.

Yellow solid, isolated yield: 19.8 mg, 52%. Mp: 132-133°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.01 (s, 1H), 7.43 (d, J = 2.8 Hz, 1H), 7.37 (s, 1H), 7.24 (d, J = 2.8 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.90 (d, J = 13.9 Hz, 7H), 1.36 (t, J = 7.1 Hz, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 160.6, 143.5, 142.4, 136.4, 133.1, 130.9, 123.0, 120.6, 116.6, 109.4, 62.6, 60.6, 56.2, 14.5. **HRMS** Calcd for C₁₅H₁₆BrN₃O₄Na [M+Na]⁺: 404.0222; Found: 404.0225.

White solid, isolated yield: 20.1 mg, 55%. Mp: 100-101°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.24 (s, 1H), 8.10 (s, 1H), 8.06 (s, 1H), 7.36 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 4.00 (s, 3H), 2.38 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 144.9, 142.2, 139.1, 137.2, 134.7, 132.6, 131.5, 129.9, 116.4, 115.1, 62.5, 60.6, 19.2, 14.5. **HRMS** Calcd for C₁₅H₁₇BrN₃O₃ [M+H]⁺: 366.0453; Found: 366.0456.

Yellow liquid, isolated yield: 27.1 mg, 90%. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 8.08 (s, 1H), 7.63 (s, 1H), 7.56 (dd, J = 8.2, 2.7 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 153.7, 141.9, 139.6, 137.4, 134.0, 133.6, 129.1, 126.0, 124.6, 116.2, 62.2, 60.5, 18.4, 14.5, 12.7. HRMS Calcd for C₁₆H₁₉N₃O₃Na [M+Na]⁺: 324.1324; Found: 324.1327.

Yellow solid, isolated yield: 26.6 mg, 73%. Mp: 121-123°C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.12 (s, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.70 (dd, J = 8.3, 2.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 2.22 (s, 3H), 1.36 (t, J = 7.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 152.1, 142.2, 139.2, 138.8, 134.8, 131.3, 127.9, 125.9, 118.32, 116.5, 62.5, 60.6, 14.5, 12.4. HRMS Calcd for C₁₅H₁₆BrN₃O₃Na [M+Na]⁺: 388.0273; Found: 388.0278.

Yellow liquid, isolated yield: 20.1 mg, 50%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 1.9 Hz, 1H), 8.20 (s, 1H), 8.12 (s, 1H), 7.72 (dd, J = 8.3, 1.9 Hz, 1H), 7.38 (d, J = 8.3 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 2.21 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 152.0, 142.8, 142.2, 139.2, 137.7, 134.6, 127.6, 126.7, 116.5, 93.8, 62.5, 60.6, 14.5, 12.5. **HRMS** Calcd for C₁₅H₁₆IN₃O₃Na [M+Na]⁺: 436.0314; Found: 436.0317.

Yellow solid, isolated yield: 16.6 mg, 58%. Mp: 110-112°C.

¹**H NMR** (400 MHz, CDCl₃ δ 8.42 (s, 1H), 8.10 (s, 1H), 7.77 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 9.0 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.01 (s, 3H), 2.24 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 153.5, 142.5, 139.8, 135.9, 130.0, 127.4, 119.4, 117.3, 62.2, 60.6, 14.5, 12.6. **HRMS** Calcd for C₁₅H₁₇N₃O₃Na [M+Na]⁺: 310.1168; Found: 310.1165.

White solid, isolated yield: 15.1 mg, 50%. Mp: 109-112°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.76 (d, J = 9.1 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 2.76 (q, J = 7.6 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 158.6, 142.5, 139.7, 134.9, 130.0, 127.6, 119.5, 117.3, 62.2, 60.6, 19.9, 14.5, 11.2. **HRMS** Calcd for C₁₆H₂₀N₃O₃ [M+H]⁺: 302.1505; Found: 302.1491.

White solid, isolated yield: 27.1 mg, 82%. Mp: 116-119°C. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.10 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.09 (s, 3H), 3.91 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 162.8, 148.0, 142.6, 134.0, 131.0, 130.0, 128.4, 118.9, 117.5, 64.0, 60.7, 53.2, 14.5. HRMS Calcd for C₁₆H₁₇N₃O₅Na [M+Na]⁺: 354.1066; Found: 354.1063.

Yellow solid, isolated yield: 26.9 mg, 75%. Mp: 105-107°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.09 (s, 1H), 7.76 (d, J = 8.9 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 4.02 (s, 3H), 3.77 (s, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.8, 162.9, 150.3, 142.6, 140.0, 134.6, 130.1, 127.6, 119.5, 117.4, 62.6, 61.4, 60.7, 33.1, 14.5, 14.2. **HRMS** Calcd for C₁₈H₂₁N₃O₅Na [M+Na]⁺: 382.1379; Found: 382.1375.

Yellow solid, isolated yield: 26.9 mg, 78%. Mp: 117-119°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.09 (s, 1H), 7.71 (s, 4H), 5.22 (s, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 3H), 1.99 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.5, 162.8, 152.5, 142.5, 134.0, 132.7, 130.0, 128.3, 119.3, 117.4, 62.8, 60.6, 56.3, 20.8, 14.5. **HRMS** Calcd for C₁₇H₁₉N₃O₅Na [M+Na]⁺: 368.1222; Found: 368.1218.

Yellow solid, isolated yield: 22.8 mg, 61%. Mp: 90-91°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.08 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.9 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.97 (s, 3H), 3.65 (s, 3H), 2.79 (t, J = 7.3 Hz, 2H), 2.36 (t, J = 7.3 Hz, 2H), 1.86 (p, J = 7.4 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 173.6, 162.8, 156.3, 142.4, 139.7, 134.5, 129.9, 127.5, 119.4, 117.2, 62.1, 60.5, 51.6, 33.4, 25.4, 21.7, 14.4. **HRMS** Calcd for C₁₉H₂₃N₃O₅Na [M+Na]⁺: 396.1535; Found: 396.1548.

White solid, isolated yield: 25.5 mg, 73%. Mp: 114-116°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.78 (d, J = 9.0 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 3.57 (t, J = 6.5 Hz, 2H), 3.21 – 2.77 (m, 2H), 2.09 – 1.97 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 156.0, 142.5, 139.9, 134.6, 130.0, 127.5, 119.5, 117.3, 62.3, 60.6, 44.8, 29.6, 24.0, 14.5. **HRMS** Calcd for C₁₇H₂₀ClN₃O₃Na [M+Na]⁺: 372.1091; Found: 372.1087.

Yellow solid, isolated yield: 18.2 mg, 58%. Mp: 134-136°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.08 (d, J = 8.4 Hz, 2H), 7.53 (s, 1H), 7.49 (dd, J = 8.6, 2.4 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 2.84 – 2.76 (m, 2H), 2.74 (t, J = 6.6 Hz, 2H), 1.87 (dt, J = 12.7, 6.5 Hz, 2H), 1.37 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 153.2, 142.4, 141.2, 139.4, 130.2, 130.0, 125.9, 119.4, 117.4, 117.2, 62.3, 60.6, 30.0, 24.2, 21.3, 14.5. **HRMS** Calcd for C₁₇H₁₉N₃O₃Na [M+Na]⁺: 336.1324; Found: 336.1330.

Yellow solid, isolated yield: 17.7 mg, 51%. Mp: 110-112°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.14 (s, 1H), 8.10 (s, 1H), 7.39 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 3H), 2.73 (dt, *J* = 10.3, 6.3 Hz, 4H), 1.85 (p, *J* = 6.5 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 152.0, 142.2, 139.3, 136.9, 134.7, 132.7, 127.3, 126.4, 125.7, 116.5, 62.5, 60.6, 29.2, 23.9, 21.1, 14.5. **HRMS** Calcd for C₁₇H₁₈ClN₃O₃Na [M+Na]⁺: 370.0934; Found: 370.0930.

Yellow solid, isolated yield: 24.6 mg, 63%. Mp: 138-141°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (d, J = 4.3 Hz, 2H), 8.09 (s, 1H), 7.30 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 2.77 – 2.64 (m, 4H), 1.84 (dt, J = 12.3, 6.5 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 151.8, 142.0, 139.8, 138.5, 134.7, 133.0, 123.0, 127.8, 116.3, 115.5, 62.4, 60.5, 29.2, 23.8, 20.9, 14.5. **HRMS** Calcd for C₁₇H₁₉BrN₃O₃ [M+H]⁺: 392.0610; Found: 392.0591.

Yellow solid, isolated yield: 15.4 mg, 47%. Mp: 125-127°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s,1H), 8.09 (s,1H), 7.53 (s, 1H), 7.52 (t, *J* = 1.3 Hz, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 3H), 2.80 (t, *J* = 6.7 Hz, 2H), 2.73 – 2.61 (m, 2H), 1.79 (p, *J* = 6.8 Hz, 2H), 1.61 (p, *J* = 6.4 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 161.0, 142.3, 141.4, 139.9, 135.5, 130.1, 129.1, 120.0, 117.3, 117.1, 62.1, 60.6, 32.0, 26.4, 25.9, 21.5, 14.5. **HRMS** Calcd for C₁₈H₂₁N₃O₃Na [M+Na]⁺: 350.1481; Found: 350.1479.

White solid, isolated yield: 17.8 mg, 62%. Mp: 100-102°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.09 (s, 1H), 8.06 (s, 1H), 7.70 (d, J = 8.9 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 4.23 (q, J = 7.0 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 147.1, 142.5, 140.1, 131.8, 130.0, 128.2, 119.6, 117.3, 70.11, 60.6, 14.7, 14.5. **HRMS** Calcd for C₁₅H₁₇N₃O₃Na [M+Na]⁺: 310.1168; Found: 310.1169.

White solid, isolated yield: 14.8 mg, 49%. Mp: 101-102°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.09 (s, 1H), 8.05 (s, 1H), 7.71 (d, J = 9.2 Hz, 2H), 7.67 (d, J = 9.3 Hz, 2H), 4.46 (m, J = 6.3 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.30 (d, J = 6.3 Hz, 7H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.8, 146.6, 142.5, 140.0, 132.1, 130,0, 128.2, 119.6, 117.3, 76.2, 60.6, 21.8, 14.5. **HRMS** Calcd for C₁₆H₁₉N₃O₃Na [M+Na]⁺: 324.1324; Found: 324.1320.

White solid, isolated yield: 9.5 mg, 30%. Mp: 95-97°C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.10 (s, 1H), 8.05 (s, 1H), 7.70 (s, 4H), 4.34 (q, *J* = 7.1 Hz, 2H), 1.37 (m, 12H). ¹³**C** NMR (100 MHz, CDCl₃) δ 162.9, 146.0, 142.5, 139.8, 132.6, 130.0, 128.1, 119.6, 117.3, 79.7, 60.6, 27.7, 14.5. **HRMS** Calcd for C₁₇H₂₁N₃O₃Na [M+Na]⁺: 338.1481; Found: 338.1483.

White solid, isolated yield: 3.4 mg, 12%. Mp: 115-117°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (s, 2H), 7.93 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.20 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.94 (s, 3H), 2.41 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 144.6, 142.4, 141.2, 138.3, 134.5, 130.2, 127.2, 126.5, 125.0, 116.7, 62.3, 60.6, 21.3, 14.5. **HRMS** Calcd for C₁₅H₁₇N₃O₃Na [M+Na]⁺: 310.1168; Found: 310.1173.

White liquid, isolated yield: 3.8 mg, 23%.

¹**H** NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.09 (s, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H), 4.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 147.4, 138.0, 137.0, 130.2, 127.6, 62.6. **HRMS** Calcd for C₉H₉NO₂Na [M+Na]⁺: 186.0531; Found: 186.0536.

Yellow solid, isolated yield: 12.7 mg, 63%. Mp: 50-51°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.94 (d, J = 2.5 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.71 (d, J = 8.9 Hz, 2H), 7.66 (d, J = 8.8 Hz, 2H), 6.47 (t, J = 2.2 Hz, 1H), 3.98 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.7, 141.6, 130.4, 128.3, 126.8, 119.2, 108.1, 62.2. **HRMS** Calcd for C₁₁H₁₂N₃O [M+H]⁺: 202.0980; Found: 202.0980.

White solid, isolated yield: 12.7 mg, 58%. Mp: 102-103°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.81 (dd, J = 4.8, 0.8 Hz, 1H), 7.66 (d, J = 9.1 Hz, 2H), 7.62 (d, J = 9.1 Hz, 2H), 7.58 (dd, J = 4.3, 0.8 Hz, 1H), 3.98 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 152.6, 150.2, 147.5, 140.9, 130.7, 129.1 (d, J = 13.9 Hz), 128.3, 118.7, 113.0 (d, J = 28.3 Hz), 62.3. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -174.27. **HRMS** Calcd for C₁₁H₁₁FN₃O [M+H]⁺: 220.0886; Found: 220.0891.

Yellow solid, isolated yield: 17.5 mg, 65%. Mp: 51-52°C.

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 9.22 (s, 1H), 8.26 (s, 1H), 8.20 (s, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 8.8 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 147.8, 139.6, 138.5 (q, J = 2.7 Hz), 131.0, 128.5 (q, J = 3.8 Hz), 128.1, 126.7 (C-F 1*J* C-F = 264.5 Hz), 124.0 (C-F 1*J* C-F = 264.5 Hz), 121.4 (C-F 1*J* C-F = 264.5 Hz), 119.30, 118.8 (C-F 1*J* C-F = 264.5 Hz), 114.7 (C-F 2*J* C-F = 37.3 Hz), 114.3 (C-F 2*J* C-F = 37.3 Hz), 113.9 (C-F 2*J* C-F = 37.3 Hz), 113.6 (C-F 2*J* C-F = 37.3 Hz), 61.7. ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -55.16. HRMS Calcd for C₁₂H₁₁F₃N₃O [M+H]⁺: 270.0854; Found: 270.0849.

White liquid,, isolated yield: 15.5 mg, 52%.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.54 (s, 1H), 8.25 (s, 1H), 7.90 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 9.3 Hz, 3H), 3.89 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 148.0, 140.4, 139.4, 133.2, 129.8, 128.1, 126.12, 118.6, 61.7. **HRMS** Calcd for C₁₁H₁₁ClSN₃O₃ [M+H]⁺: 300.0210; Found: 300.0215.

Yellow solid, isolated yield: 20.2 mg, 78%. Mp: 104-106°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.09 (s, 1H), 8.06 (s, 1H), 7.71 (d, J = 9.0 Hz, 2H), 7.67 (d, J = 8.9 Hz, 2H), 3.98 (s, 3H), 3.86 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.2, 147.3, 142.5, 140.1, 131.6, 130.1, 128.3, 119.6, 117.0, 62.3, 51.7. **HRMS** Calcd for C₁₃H₁₃N₃O₃Na [M+Na]⁺: 282.0855; Found: 282.0857.

White solid, isolated yield: 14.3 mg, 61%. Mp: 94-96°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.70 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 1.9 Hz, 1H), 7.60 (d, J = 8.7 Hz, 2H), 6.40 (d, J = 1.9 Hz, 1H), 4.00 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.5, 141.0, 139.3, 132.2, 127.7, 127.3, 125.1, 107.1, 62.3. **HRMS** Calcd for C₁₁H₁₀ClN₃Ona [M+Na]⁺: 258.0410; Found: 258.0411.

White solid, isolated yield: 19.8 mg, 71%. Mp: 110-112°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.70 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 1.9 Hz, 1H), 7.58 (d, J = 8.7 Hz, 2H), 6.49 (d, J = 1.9 Hz, 1H), 3.99 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 147.5, 141.9, 139.9, 132.3, 127.6, 125.8, 112.7, 111.0, 62.3. HRMS Calcd for C₁₁H₁₀ClN₃Ona [M+Na]⁺: 301.9905; Found: 301.9899.

White solid, isolated yield: 8.9 mg, 36.5%. Mp: 139-143°C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.95 (d, J = 2.6 Hz, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 2.6 Hz, 1H), 4.00 (s, 3H), 2.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 152.9, 147.4, 140.5, 131.6, 128.6, 128.3, 119.8, 108.4, 62.3, 26.7. **HRMS** Calcd for C₁₃H₁₃N₃O₂Na [M+Na]⁺: 266.0905; Found: 266.0903.

White solid, isolated yield: 8.9 mg, 36.5%. Mp: 125-127°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 2.0 Hz, 1H), 3.99 (s, 3H), 2.51 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 187.7, 147.6, 141.6, 134.0, 139.8, 132.5, 127.3, 126.2, 113.4, 62.3, 28.9. **HRMS** Calcd for C₁₃H₁₃N₃O₂Na [M+Na]⁺: 266.0905; Found: 266.0909.

White solid, isolated yield: 15.3 mg, 56%. Mp: 86-87°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 2.0 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.2, 147.6, 141.3, 140.0, 133.6, 132.6, 127.2, 126.3, 113.0, 62.3, 61.4, 14.1. **HRMS** Calcd for C₁₄H₁₅N₃O₃Na [M+Na]⁺: 296.1011; Found: 296.1008.

White solid, isolated yield: 7.6 mg, 28%. Mp: 81-82°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.95 (d, J = 2.6 Hz, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 2.5 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.3, 147.4, 145.7, 140.5, 131.6, 128.4, 128.2, 120.2, 110.8, 62.3, 61.4, 14.5. **HRMS** Calcd for C₁₄H₁₅N₃O₃Na [M+Na]⁺: 296.1011; Found: 296.1013.

White solid, isolated yield: 10.1 mg, 44.6%. Mp: 110-112°C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.34 (s, 1H), 8.05 (d, *J* = 2.1 Hz, 1H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 2.1 Hz, 1H), 3.93 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 147.7, 141.5, 138.8, 132.5, 128.0, 123.4, 117.4, 113.6, 111.2, 61.9. **HRMS** Calcd for C₁₂H₁₁N₄O [M+H]⁺: 227.0933; Found: 227.0936.

White solid, isolated yield: 1.7 mg, 7.4%. Mp: 104-106°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (s, 1H), 8.00 (d, J = 2.6 Hz, 1H), 7.72 (s, 4H), 6.88 (d, J = 2.6 Hz, 1H), 4.00 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.2, 139.8, 132.4, 128.4, 128.2, 126.8, 120.0, 113.8, 113.2, 62.4. **HRMS** Calcd for C₁₂H₁₁N₄O [M+H]⁺: 227.0933; Found: 227.0936.

White solid, isolated yield: 20.9 mg, 64%. Mp: 112-114°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.75 – 7.66 (m, 3H), 7.56 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 1.9 Hz, 1H), 4.00 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 147.5, 143.1, 141.1, 132.5, 127.5, 126.5, 118.0, 80.5, 62.4. **HRMS** Calcd for C₁₁H₁₁IN₃O [M+H]⁺: 327.9947; Found: 327.9952.

Yellow liquid, isolated yield: 8.2 mg, 38%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.68 (d, J = 8.5 Hz, 2H), 7.58 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.21 (s, 1H), 3.99 (s, 3H), 2.38 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 147.7, 141.0, 140.4, 138.9, 131.43, 127.8, 124.9, 107.6, 62.3, 12.7. **HRMS** Calcd for C₁₂H₁₃N₃Ona [M+Na]⁺: 238.0956; Found: 238.0949.

White solid, isolated yield: 12.1 mg, 35%. Mp: 112-113°C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 8.05 (s, 1H), 7.68 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 4.34 (p, J = 7.1 Hz, 4H), 3.99 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 161.8, 161.0, 147.2, 141.7, 139.9, 137.0, 133.0, 127.9, 124.2, 116.2, 63.0, 62.4, 61.0, 14.4, 13.9. **HRMS** Calcd for C₁₇H₁₉N₃O₅Na [M+Na]⁺: 368.1222; Found: 368.1212.

White solid, isolated yield: 12.1 mg, 35%. Mp: 102-103°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.07 (s, 1H), 7.75 (d, J = 8.9 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 4.46 (q, J = 7.1 Hz, 2H), 4.34 (q, J = 7.2 Hz, 2H), 3.99 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.1, 161.6, 147.2, 145.6, 139.6, 132.3, 131.4, 128.3, 120.2, 116.9, 62.4, 62.1, 61.2, 14.4, 14.3. **HRMS** Calcd for C₁₇H₁₉N₃O₅Na [M+Na]⁺: 368.1222; Found: 368.1217.

White solid, isolated yield: 15.3 mg, 56%. Mp: 121-123°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 6.81 (s, 1H), 3.98 (s, 3H), 3.78 (s, 3H), 2.35 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.8, 149.5, 147.7, 141.2, 133.6, 132.3, 127.3, 126.2, 112.7, 62.3, 52.1, 13.5. **HRMS** Calcd for C₁₄H₁₆N₃O₃ [M+H]⁺: 274.1192; Found: 274.1182.

White solid, isolated yield: 11.8 mg, 47%. Mp: 60-61°C.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.38 (s, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 8.01 – 7.94 (m, 3H), 7.91 (d, *J* = 8.7 Hz, 2H), 7.68 (ddd, *J* = 8.2, 7.0, 1.1 Hz, 1H), 7.53 (ddd, *J* = 8.1, 7.0, 1.0 Hz, 1H), 3.95 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 147.8, 145.9, 137.2, 132.1, 131.6, 128.9, 128.4, 124.9, 122.8, 119.8, 111.1, 61.8. **HRMS** Calcd for C₁₄H₁₂N₄Ona [M+Na]⁺: 275.0909; Found: 275.0901.

Application

Gram scale reaction

A mixture of **1a** (8 mmol, 1.08g, 1.0 eq), **2a** (16 mmol, 2.24g, 2.0 eq), TPT (320 mg, 10 mol%), Cu(OTf)₂ (288 mg, 10 mol%) and DCE (80 ml) in a 250 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 24 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1) to give the product **3a** (1.81g, 66%).

General procedures for preparation of 5.

Step 1: To a well-stirred mixture of Fenbufen precursor (10 mmol), alcohol (11 mmol),

acetonitrile (20 mmol) and sulfuric acid (98%, 12 mmol, 0.7 mL) was added at room temperature. Slowly heated to 80-85 °C and maintained between 80-85°C for 16-18 h. The reaction mixture cooled and added to 20% sodium carbonate solution (100 mL). The reaction mass was extracted in CH_2Cl_2 (50 mL × 2). The combined organic layer was washed with water (100 mL), dried over sodium sulfate, and concentrated under reduced pressure to obtain corresponding ester **5sm** (97-99%) as the only product. **5sm** analytical data are consistent with the literature.^[2]

Step 2: To a solution of **5sm** (22.0 mmol) and pyridine (5.0 mL, 61.8 mmol) in EtOH (10 mL) was added NH₂OMe•HCl (2.29 g, 33.0 mmol) in one portion and the reaction mixture was stirred at 60 °C for 6 h. The reaction was quenched by adding water and extracted twice with ethyl acetate. The combined extracts were washed with aqueous HCl and brine, and dried over MgSO₄. The solvents were removed under reduced pressure. Further recrystallization was conducted from ethyl acetate-hexane to provide **5**. **5** analytical data are consistent with the literature. ^[3]

A mixture of **5** (0.2 mmol, 1.0 eq), Pyrazole 2 (0.4 mmol, 2.0 eq), TPT (8.0 mg, 10 mol%), $Cu(OTf)_2$ (7.2 mg, 10 mol%) and DCE (2 mL) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 12 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1) to give the product.

Synthesis of Kresoxim-methyl derivatives.

A mixture of 7 (0.2 mmol, 1.0 eq), Pyrazole 2 (0.4 mmol, 2.0 eq), TPT (8.0 mg, 10 mol%), Cu(OTf)₂ (7.2 mg, 10 mol%) and DCE (2 mL) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 18 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give the product **8a-8b**.

Yellow liquid, isolated yield: 23.5 mg, 41%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 2.5 Hz, 1H), 7.78 – 7.70 (m, 3H), 7.70 (d, J = 9.0 Hz, 2H), 6.47 (t, J = 2.1 Hz, 1H), 4.00 (s, 3H), 3.66 (s, 3H), 3.05 (t, J = 8.1 Hz, 2H), 2.58 (t, J = 7.7 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 155.9, 141.5, 140.8, 133.2, 127.5, 126.8, 119.0, 108.1, 62.3, 51.9, 30.7, 22.3. **HRMS** Calcd for C₁₅H₁₇N₃O₃Na [M+Na]⁺: 310.1168; Found: 310.1167.

Yellow liquid, isolated yield: 35.5 mg, 50%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.91 (s, 1H), 7.78 (d, J = 8.9 Hz, 2H), 7.69 (d, J = 8.9 Hz, 2H), 4.01 (s, 3H), 3.66 (s, 3H), 3.05 (t, J = 8.2 Hz, 2H), 2.58 (t, J = 7.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 155.6, 139.8, 138.6 (q, J = 2.7 Hz), 134.7, 127.7, 126.5 (C-F 1J_{C-F} = 265.8 Hz), 126.3 (q, J = 3.8 Hz), 123.8 (C-F 1J_{C-F} = 265.8 Hz), 121.2(C-F 1J_{C-F} = 265.8 Hz), 119.6, 118.5(C-F 1J_{C-F} = 265.8 Hz), 116.5 (C-F 2J_{C-F} = 38.5 Hz), 116.1 (C-F 2J_{C-F} = 38.5 Hz), 115.7 (C-F 2J_{C-F} = 38.5 Hz), 115.3

(C-F 2*J*_{C-F} = 38.5 Hz), 62.4, 51.9, 30.7, 22.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -56.8. HRMS Calcd for C₁₆H₁₆F₃N₃O₃Na [M+Na]⁺: 378.1041; Found: 378.1041.

White liquid, isolated yield: 35.4 mg, 46%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.17 (s, 1H), 7.83 (d, J = 8.9 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H), 4.02 (s, 3H), 3.67 (s, 3H), 3.06 (t, J = 8.3 Hz, 2H), 2.60 (t, J = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 155.4, 139.6, 138.8, 135.9, 129.3, 128.9, 127.9, 120.1, 62.6, 52.0, 30.6, 22.3. HRMS Calcd for C₁₅H₁₆ClSN₃O₅Na [M+Na]⁺: 408.0397; Found: 408.0395.

White solid, isolated yield: 48.1 mg, 67%. Mp: 99-101°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.77 (d, J = 8.9 Hz, 2H), 7.71 (d, J = 8.8 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 3.66 (s, 3H), 3.09 – 3.01 (m, 2H), 2.61 – 2.56 (m, 2H), 1.38 (t, J = 7.1 Hz, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.1, 162.8, 155.7, 142.5, 139.9, 134.4, 130.0, 127.6, 119.5, 117.4, 62.4, 60.6, 51.9, 30.7, 22.3, 14.5. **HRMS** Calcd for C₁₈H₂₁N₃O₅Na [M+Na]⁺: 382.1379; Found: 382.1377.

White solid, isolated yield: 31.6 mg, 35%. Mp: 124-127°C.

¹**H NMR** (400 MHz, DMSO- d_6) δ 8.93 (s, 1H), 8.07 (s, 1H), 7.74 (s, 1H), 7.65 (dd, J = 8.8, 2.8 Hz, 1H), 7.58 (d, J = 6.8 Hz, 1H), 7.47 (td, J = 7.5, 1.6 Hz, 1H), 7.42 (td, J = 7.5, 1.4 Hz, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.03 (d, J = 8.9 Hz, 1H), 4.98 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 3.71 (s, 3H), 2.18 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 162.7, 162.2, 155.2, 148.9, 141.3, 134.9, 132.3, 130.7,

129.8, 129.4, 128.9, 128.2, 127.9, 127.3, 121.6, 117.6, 115.8, 111.8, 68.3, 63.3, 59.9, 52.5, 15.8, 14.3. **HRMS** Calcd for $C_{24}H_{25}N_3O_6Na$ [M+Na]⁺: 474.1641; Found: 474.1652.

Yellow liquid, isolated yield: 34.0 mg, 38%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.86 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.41 (td, J = 7.5, 1.5 Hz, 1H), 7.35 (dd, J = 8.7, 2.8 Hz, 1H), 7.22 (dd, J = 7.5, 1.5 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 5.01 (s, 2H), 4.04 (s, 3H), 3.84 (s, 3H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.4, 156.2, 149.4, 137.9 (q, J = 2.7 Hz), 135.2, 132.8, 129.8, 129.2, 128.8, 128.7, 128.0, 127.7, 126.8 (C-F 1 $J_{C-F} = 266.2$ Hz), 126.4 (q, J = 3.8 Hz), 124.0 (C-F 1 $J_{C-F} = 266.2$ Hz), 122.9, 121.4 (C-F 1 $J_{C-F} = 266.2$ Hz), 118.7 (C-F 1 $J_{C-F} = 266.2$ Hz), 118.5, 115.6 (C-F 2 $J_{C-F} = 38.5$ Hz), 115.3 (C-F 2 $J_{C-F} = 38.5$ Hz), 114.9 (C-F 2 $J_{C-F} = 38.5$ Hz), 114.5 (C-F 2 $J_{C-F} = 38.5$ Hz), 111.8, 68.7, 64.0, 53.1, 16.5. ¹⁹**F NMR** (377 MHz, DMSO- d_6) δ -54.8. **HRMS** Calcd for C₂₂H₂₀F₃N₃O₄Na [M+Na]⁺: 470.1304; Found: 470.1311.

Control experiments

Free radical trapping experiment.

A mixture of 1a (0.1 mmol, 1.0 eq), 2a (0.2 mmol, 2.0 eq), TPT (4.0 mg, 10 mol%), $Cu(OTf)_2$ (3.6 mg, 10 mol%), BHT (67.0 mg, 3.0 eq) and DCE (1 mL) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 12 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1) to give the product **9**.

White solid, isolated yield: 20.1 mg, 56%. Mp: 132-136°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.82 (s, 1H), 7.07 (s, 2H), 5.27 (s, 1H), 5.20 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.42 (s, 18H), 1.33 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 163.3, 154.2, 141.1, 136.6, 132.5, 125.9, 125.3, 115.4, 60.3, 57.0, 34.5, 30.3, 14.5. **HRMS** Calcd for C₂₁H₃₀N₂O₃Na [M+Na]⁺: 381.2154; Found: 381.2152.

Fluorescence Quenching Experiments

Test conditions for quenching reaction(I_0 and I are respective fluorescence intensities in the absence and presence of the indicated concentrations of the quenchers):

TPT: 1.6 mg dissolved in 50 mL Acetone (0.00008 M)

Quencher: 36.2 mg of Cu(OTf)₂ dissolved in 25 mL Acetone (0.004 M)

14.1 mg of 2a dissolved in 25 mL Acetone (0.004 M)

13.5 mg of **1a** dissolved in 25 mL Acetone (0.004 M)

General procedure:

1 mL of prepared solution containing **TPT** was added to a cuvette, keep the total volume at 4 mL, **Quenchers** and DCE were added as the following table:

Entry	TPT	quenchers	Acetone	Total volume
1	1 ml	0 ml	3 ml	4 ml
2	1 ml	0.25 ml	2.75 ml	4 ml
3	1 ml	0.5 ml	2.5 ml	4 ml
4	1 ml	0.75 ml	2.25 ml	4 ml
5	1 ml	1 ml	2 ml	4 ml

Figure S-1. Fluorescence quenching experiments with 2a

Figure S-2. Stern-Volmer plots of 2a

Figure S-3. Fluorescence quenching experiments with 1a

Figure S-4. Stern-Volmer plots of 1a

Figure S-5. Fluorescence quenching experiments with Cu(OTf)₂

Figure S-6. Stern-Volmer plots of Cu(OTf)₂

Figure S-7. Quenching efficiency of 2a, 1a, and Cu(OTf)₂

Inference: The results can clearly show that 2a quench DCFS more effectively than that of 1a and Cu(OTf)₂.

Quantum Yield Measurement

The measured method was designed according to a published procedure by Ackermann with slight modifications ^[4].

The solutions were prepared and stored in the dark:

Preparation of potassium ferrioxalate solution: 295 mg of solid potassium ferrioxalate, 140 μ L H₂SO₄ were diluted with H₂O to a finale volume of 50 mL.

Preparation of buffer solution:

4.95 g NaOAc and 1 mL H_2SO_4 were diluted with H_2O to a finale volume of 100 mL. Using the same setup as for catalytic reactions 0.7 mL of the potassium ferrioxalate solution were irradiated for 20 sec. The sample solution was added to of 1.4 mL of the buffer solution containing 0.7 mg 1,10-phenanthroline. The solution was diluted with H_2O to a finale volume of 3.5 mL. Subsequently the absorbance of this solution was determined at 510 nm. The same procedure was followed for a nonirradiated sample.

Calculation Number of Photons:

Abs of Fe^{2+} (at 510 nm) = 3.629 (after irradiation of 20 sec) Abs of Fe^{2+} (at 510 nm) = 0.053 (no irradiation) ΔAbs of Fe^{2+} (at 510 nm) = 3.629-0.053 = 3.576

$$[Fe^{2+}] = \frac{\Delta Abs \ of \ Fe^{2+} \ (at \ 510 \ nm)}{e_{510nm} \times 1}$$
$$[Fe^{2+}] = \frac{3.576}{11100M^{-1}cm^{-1} \times 1 \ cm} = 3.222 \times 10^{-4}M$$
$$n_{(Fe^{2+})} = 3.222 \ M \times 0.0035 \ L = 1.128 \times 10^{-6}$$

with quantum yield of 0.9 for the absorption of Fe^{3+} :

 $n_{(photons)} = 1.253 \times 10^{-6}$ $n_{(photons)} = 6.265 \times 10^{-8} mol/s$

The initial rate of the amination was determined to be 4.177×10^{-9} mol/s.

Quantum Yield
$$= \frac{n_{priduct}/s}{Photons/s} = \frac{4.177 \times 10^{-9}}{6.265 \times 10^{-8}} = 0.067$$

Determination Initial Rate:

Product formation was monitored by ¹H-spectroscopy using mesitylene as internal standard.

Preliminary mechanistic studies

Selective C-H amination.

A mixture of **10** (0.1 mmol, 1.0 eq), **2a** (0.2 mmol, 2.0 eq), TPT (4.0 mg, 10 mol%), $Cu(OTf)_2$ (3.6 mg, 10 mol%) and DCE (1 ml) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 12 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1) to give the product **11**
(25.1mg, 69%), but 12 was not detected.

Yellow solid, isolated yield: 25.1 mg, 69%. Mp: 110-112°C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.08 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.8 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.23 – 7.17 (m, 3H), 4.33 (q, J = 7.1 Hz, 2H), 4.16 (s, 2H), 4.06 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9, 155.0, 142.5, 139.8, 136.5, 134.9, 130.0, 128.8, 128.5, 127.9, 126.6, 119.4, 117.3, 62.4, 60.6, 32.5, 14.5. **HRMS** Calcd for C₂₁H₂₁N₃O₃Na [M+Na]⁺: 386.1481; Found: 386.1490.

A mixture of 13 (0.1 mmol, 1.0 eq), 2a (0.2 mmol, 2.0 eq), TPT (4.0 mg, 10 mol%),

 $Cu(OTf)_2$ (3.6 mg, 10 mol%) and DCE (1 ml) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 12 h. After the reaction, **14** was not detected.

UV-experiments

Step 1: 0.1 mmol of 1a, 2a, 3a, TPT, Cu(OTf)₂ and (1a (0.1 mmol 1 eq)+TPT (0.34 eq)) in 1 ml of DCE.

Step 2: put 1µl of Step 1 solution into a cuvette containing 2ml of DCE.

Figure S-8. UV Spectra of 1a, 2a, 3a, TPT and Cu(OTf)₂ in DCE

Figure S-9. UV Spectra of 1a, 1a + TPT and TPT in DCE

¹H NMR experiments

A mixture of **1a** (0.1 mmol, 1.0 eq), TPT (13.5 mg, 0.34 eq) and DCE (1 ml) in a 15 ml glass vial sealed. The reaction vessel was stirred for 15 minutes. After the reaction, then direct analysis by ¹NMR spectroscopy.

Figure S-10. ¹H NMR Spectra of 1a and TPT in DMSO-d6

The characterization of Cu²⁺by XPS

A mixture of 1p (0.1 mmol, 1.0 eq), 2a (0.2 mmol, 2.0 eq), TPT (4.0 mg, 10 mol%),

 $Cu(OTf)_2$ (3.6 mg, 10 mol%) and DCE (1 ml) in a 15 ml glass vial sealed under **argon** atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 12 h. The reaction mixture was directed dried by oil pump, and then transformed into glove box. The reaction mixture was direct by X-ray photoelectron spectroscopy. The result listed below.

Figure S-11.XPS of Cu

In order to explain the mechanism more favorably, the XPS spectrum was used to further analyze the catalyst residue after the reaction, and the photoelectron peaks at 933.5 and 953.5 eV correspond to Cu $2p_{3/2}$ and Cu $2p_{1/2}$, respectively. It shows that in addition to Cu $^{2+}$, Cu $^+$ also exists in the catalytic system^{[5][6]}. And then the two peaks at 933.5 and 953.5 eV split into four peaks, two of them at 936.4 and 955.9 eV ascribing to the Cu $2p_{3/2}$ and Cu $2p_{1/2}$ orbits of Cu $^{2+}$, and the other two peaks at 933.4 and 953.4 eV corresponding to the Cu $2p_{3/2}$ and Cu $2p_{1/2}$ orbits of Cu $^+$.

KIE experiments

KIE by intermolecular competion: A mixture of 10 (0.1 mmol, 1.0 eq) and 10-[D]5 (0.1

mmol, 1.0 eq), **2a** (0.4 mmol, 2.0 eq), TPT (8.0 mg, 10 mol%), Cu(OTf)₂ (7.2 mg, 10 mol%) and DCE (2 ml) in a 15 ml glass vial sealed under oxygen atmosphere. The reaction vessel was exposed to 40 w blue LEDs irradiation at room temperature stirring for 3 h. After the indicated reaction time, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1) to give the product. The results determined by ¹H NMR spectroscopy.

Effect of Light: On/Off Plot

According to the general procedure, a reaction containing mesitylene as internal standard was set up and placed in front of the LEDs. The reaction was sequentially stirred under visible light irradiation and in the absence of light. Every two hours an aliquot of 50 μ L was removed via syringe and analyzed by ¹H-NMR spectroscopy. After a total of 8 h the determined yields were plotted against the reaction time.

Figure S-12. Effect of visible light irradiation.

References

- [1] N. Wang, L. Liu, W. Xu, M. Zhang, Z. Huang, D. Shi, Y. Zhao, Org. Lett. 2019, 21, 365-368.
- [2] G. Xiao, C. Xie, Q. Guo, G. Zi, G. Hou, Y. Huang, Org Lett. 2022, 24, 2722-2727.
- [3] B. Hasdemir, O. Sacan, H. Yasa, H. B. Kucuk, A. S. Yusufoglu, R. Yanardag, *Arch Pharm (Weinheim)* **2018**, *351*.
- [4] P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr, L. Ackermann, *Angew. Chem. Int. Ed.* **2019**, *58*, 9820-9825.
- [5] X. Han, H. Sheng, C. Yu, T. W. Walker, G. W. Huber, J. Qiu, S. Jin, ACS Catal.2020, 10, 6741-6752.
- [6] S. Wu, X. Huang, H. Zhang, Z. Wei, M. Wang, ACS Catal. 2021, 12, 58-65.

NMR spectra

¹³C NMR of 1g

¹H NMR of 1h

¹³C NMR of 1h

¹H NMR of 1i

¹³C NMR of 1i

¹H NMR of 1j

¹³C NMR of 1j

¹H NMR of 1r

¹³C NMR of 1r

¹H NMR of 1u

¹³C NMR of 1u

¹H NMR of 1v

¹³C NMR of 1v

¹H NMR of 3a

¹³C NMR of 3a

¹H NMR of 3b

¹³C NMR of 3b

¹³C NMR of 3c

¹³C NMR of 3e

¹H NMR of 3f

¹H NMR of 3g

¹H NMR of 3i

¹³C NMR of 3i

¹³C NMR of 3j

¹H NMR of 3m

4.5 4.0 3.041

3.5 3.0

[₩]80.2 1.5

0.5

0.0

1.0

-0.5

3.06-

2.5 2.0

0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 11 (ppm) ¹³C NMR of 3n

¹H NMR of 30

¹H NMR of 3r

¹³C NMR of 3r

¹³C NMR of 3u

¹³C NMR of 3v

¹H NMR of 3w

¹³C NMR of 3x

¹H NMR of 3aa

¹H NMR of 3ab

¹H NMR of 3ac

¹H NMR of 3ad

¹H NMR of 3ad'

¹³C NMR of 3ad'

¹H NMR of 4a

¹³C NMR of 4a

¹H NMR of 4b

¹³C NMR of 4c

¹H NMR of 4d

¹H NMR of 4e

¹H NMR of 4f

¹H NMR of 4g

¹H NMR of 4h

¹³C NMR of 4h

¹H NMR of 4h'

¹H NMR of 4i

¹H NMR of 4i'

¹H NMR of 4j

¹H NMR of 4j'

¹H NMR of 4k

¹³C NMR of 4k

¹H NMR of 4l

¹³C NMR of 4l

¹H NMR of 4m

¹H NMR of 4m'

¹H NMR of 4n

¹H NMR of 40

¹³C NMR of 40

¹H NMR of 6a

¹H NMR of 6b

¹H NMR of 6c

¹³C NMR of 6c

¹H NMR of 6d

¹³C NMR of 6d

¹H NMR of 8a

¹³C NMR of 8a

¹H NMR of 8b

¹³C NMR of 8b

¹⁹F NMR of 8b

¹H NMR of 9

¹H NMR of 11

¹³C NMR of 11

