Precise manipulation of electron transfers to enable the site-selective hydropyridylation of ynones

Jing Ma,^{a, †} Jianjing Yang,^{a, †} Kelu Yan,^a Bingwen Li,^b Boju Luo,^a Meirou Jing,^a Yumeng Zhou,^a Ziling Wu,^a Laijin Tian,^a Jiangwei Wen* ^a

^a Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China.

E-mail: wenjy@qfnu.edu.cn

^b Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.

⁺ These authors contributed equally to this work

Contents

1. General information	S2
2. Investigation of solvents and Investigating the electron transfer properties of ynones	S2
3. Gram-scale synthesis	S4
4. Mechanistic studies	S4
4.1 Radical trapping experiments	S4
4.2 Potentiostatic experiments	S 7
4.3 Deuteration experiments	S7
4.4 General procedure for kinetic studies	S9
5. Reference	S13
6. Detail descriptions for products.	S13
7. Copies of product NMR spectra	S25

1. General information

All glassware was oven dried at 100 °C for hours and cooled down under vacuum. Ynones was prepared according to reported procedures. ¹ Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China), carbon rods ($\phi = 6$ mm), nickel plate (1.5 × 1.5 cm²), and Pt plate (1.5 × 1.5 cm²). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (b. p. 60-90 °C). ¹H, ¹³C, and ¹⁹F NMR data were recorded with Bruker Advance III (500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (77.00 ppm, chloroform, 40.00 ppm, DMSO-*d*₆), respectively.

2. Investigation of solvents and Investigating the electron transfer properties of ynones Table S1. Investigation of solvents

	Ph + NC-Q	N Conc C (+) Solv Conc C (+) Na ₂ C	dition A:) C (-), I = 10 ent/HFIP, 55 dition B: Ni (-), I = 5 CO ₃ , Solvent/I	mA, NH₄C °C, N₂, 3 h mA, ⁿ Bu₄NI HFIP, rt, N₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HO Ph	Ph
Entry	Condition A: Solvent [a]	1c [%] ^[c]	1d [%] ^[c]	Entry	Condition B: Solvent [b]	1c [%][c]	1d [%] ^[c]
1	DMSO	83	n. d.	12	DCM	n. d.	81
2	DMF	21	18	13	DCE	34	13
3	Acetone	66	trace	14	CHCl ₃	11	47
4	MeCN	37	trace	15	DBE	trace	trace
5	1,4-dioxane	41	n. d.	16	MeCN	n. d.	9
6	THF	35	n. d.	17	DMSO	21	n. d.
7	Toluene	n. d.	n. d.	18	HFIP	0	41
8	HFIP	23	5	19	MeOH	50	trace
9	MeOH	58	n. d.	20	EtOH	28	trace
10	EtOH	50	n. d.	21	TFEA	n. d.	n. d.
11	TFEA	17	n. d.				

^[a] Reaction condition A: carbon rods as the anode, carbon rods as the cathode, constant current 10 mA, **1a** (0.25 mmol), **1b** (0.5 mmol), NH₄Cl (1.0 mmol), Solvent/HFIP (5.0 mL, v = 4 : 1), 55 °C, N₂, 3 h. ^[b] Reaction condition B: carbon rods as the anode, Ni plate as the cathode, constant current 5 mA, **1a** (0.25 mmol), **1b** (0.5 mmol), ^{*n*}Bu₄NBF₄ (0.25 mmol), Na₂CO₃ (0.5 mmol), Solvent/HFIP (10.0 mL, v = 9 : 1), N₂, 6 h. ^[c] Isolated yield.

Figure S1. Investigating the electron transfer properties of ynones. Square wave voltammetry (SWV) was performed on solutions containing 0.1 M ^{*n*}Bu₄NBF₄ in DMSO or CH₂Cl₂ at room temperature in the presence of HFIP (1.0 mL), or/and NH₄Cl (2.0 mM), at a pulse height of 25 mV, step height of 4 mV, with the frequency of 10 Hz, **1a** (0.25 mM). (a) Varying solvent with NH₄Cl (2.0 mM), and HFIP (1.0 mL). (b) Varying solvent with NH₄Cl (2.0 mM). (c) Varying solvent with HFIP (1.0 mL). (d) SWV results in DMSO (HFIP, 1.0 mL), HFIP, and DCM. (e) The effect of solvent on selectivity. (f) Conclusion of the SWV experiments.

3. Gram-scale synthesis

1c: In an oven-dried undivided three-necked flask (100 mL) equipped with a stir bar, **1a** (5.0 mmol, 1.03 g), **1b** (10.0 mmol, 2.08 g), NH₄Cl (20.0 mmol, 1.06 g) were combined and added. The flask was equipped with carbon rods ($\phi = 6$ mm) as the electrodes and was then charged with nitrogen. Under the protection of nitrogen, DMSO/HFIP (50.0 mL, v = 4 : 1) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under 55 °C for 24 h. When the reaction was finished, the reaction mixture was washed with water and extracted with CH₂Cl₂ (20 mL × 3). The organic layers were combined, dried over Na₂SO₄, and then concentrated. The pure product **1c** was obtained a yield of 68% by flash column chromatography on silica gel.

1d: In an oven-dried undivided three-necked flask (150 mL) equipped with a stir bar, 1a (5.0 mmol, 1.03 g), 1b (10.0 mmol, 2.08 g), and $^{n}Bu_{4}NBF_{4}$ (5.0 mmol, 1.65 g) were combined and added. The flask was equipped with a carbon rod ($\phi = 6$ mm) as the anode and nickel plate (1.5 × 1.5 cm²) as the cathode and was then charged with nitrogen. Under the protection of nitrogen, CH₂Cl₂/HFIP (100.0 mL, v = 9 : 1) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 48 h. When the reaction was finished, the reaction mixture was washed with water and extracted with CH₂Cl₂ (20 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product 1d was obtained a yield of 65% by flash column chromatography on silica gel.

- 4. Mechanistic studies
- 4.1 Radical trapping experiments

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, 1a (0.25 mmol,

51.5 mg), **1b** (0.5 mmol, 52.0 mg), NH₄Cl (1.0 mmol, 53.0 mg), TEMPO or BHT (0.5 mmol) were combined and added. The flask was equipped with carbon rods ($\phi = 6$ mm) as the electrodes and was then charged with nitrogen. Under the protection of nitrogen, DMSO/HFIP (5.0 mL, v = 4 : 1) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under 55 °C for 3 h. When the reaction was finished, the solution was concentrated in a vacuum and not detected the desired product **1c**. The pure product **1e** was obtained in 40% yield by flash column chromatography on silica gel. **1e**: ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.84 (m, 2H), 7.47 – 7.44 (m, 3H), 7.40 -7.34 (m, 5H), 7.23 (s, 1H), 1.70 - 1.68 (m, 2H), 1.66 -1.60 (m, 4H), 1.26 (s, 6H), 1.24 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 190.9, 173.7, 140.2, 134.3, 131.7, 129.7, 128.8, 128.2, 128.1, 127.9, 101.7, 61.0, 39.8, 32.4, 20.8, 16.9.

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **1a** (0.25 mmol, 51.5 mg), **1b** (0.5 mmol, 52.0 mg), ^{*n*}Bu₄NBF₄ (0.25 mmol, 82.5 mg), TEMPO or BHT (0.5 mmol) were combined and added. The flask was equipped with a carbon rod ($\phi = 6$ mm) as the anode and nickel plate (1.5 × 1.5 cm²) as the cathode and was then charged with nitrogen. Under the protection of nitrogen, CH₂Cl₂/HFIP (10.0 mL, v = 9 : 1) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 6 h. When the reaction was finished, the solution was concentrated in a vacuum and not detected the desired product **1d**. The compound **2e** can be detected by HRMS. HRMS (ESI) calcd for C₂₄H₃₀NO₂ [M + H]⁺: 364.2271; found: 364.2271.

Table S2. Potentiostatic experiments

[a] The yield of product 1c and 1d was monitored by GC with diphenylmethane as the internal standard.

4.3 Deuteration experiments

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **1a** (0.25 mmol, 51.5 mg), **1b** (0.5 mmol, 52.0 mg), ND₄Cl or NH₄Cl were combined and added. The flask was equipped with carbon rods ($\phi = 6$ mm) as the electrodes and was then charged with nitrogen. Under the protection of nitrogen, DMSO (5.0 mL) or DMSO/CD₃OD (5.0 mL, v = 4 : 1) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under 55 °C for 1.5 h. When the reaction was finished, the solution was concentrated in vacuum, the pure product **1c**-*d* was obtained by flash column chromatography on silica gel, and the deuteration rate is quantified by ¹H NMR.

Figure S5. ¹H NMR results 1c with CD₃OD as hydrogen donor.

Figure S6. ¹H NMR results 1c with CD₃OD and ND₄Cl as hydrogen donor.

4.4 General procedure for kinetic studies

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **1a** (0.25 mmol, 51.5 mg), **1b** (0.5 mmol, 52.0 mg), and NH₄Cl (1.0 mmol, 53.0 mg) were combined and added. The flask was equipped with carbon rods ($\phi = 6$ mm) as the electrodes and was then charged with nitrogen. Under the protection of nitrogen, DMSO/HFIP (5.0 mL, v = 4 : 1) were slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 10.0 mA under 55 °C for designated time interval (20, 40, 60, 80, 100, 120 min). The reaction was quenched by ethyl acetate and then analyzed by GC analysis with diphenylmethane as the internal standard. As the same as above procedure, the similar sets of experiments were conducted by using different concentration of **1a**, **1b**, NH₄Cl, HFIP. Moreover, the similar sets of experiments were also conducted with different constant current under condition A or B. Only one parameter was changed from the general procedure in one reaction.

Figure S7. The yield of 1c with different constant current and different time under condition A.

Current	Linear Fitting Results
5 mA	$y = 0.097x + 0.2$ $R^2 = 0.93$
10 mA	$y = 0.360x - 4.2$ $R^2 = 0.97$
15 mA	$y = 0.511x - 7.47$ $R^2 = 0.93$
20 mA	$y = 0.651x - 2.6$ $R^2 = 0.99$
25 mA	$y = 0.583x - 10.5$ $R^2 = 0.99$

Figure S8. The yield of different concentration 1a with different time.

Linear fitting:

Concentration of 1a	Linear Fitting Results
0.01 M	$y = 0.744x + 14.7$ $R^2 = 0.91$
0.02 M	$y = 0.625x + 11.6$ $R^2 = 0.94$
0.03 M	$y = 0.515x + 3.66$ $R^2 = 0.97$
0.04 M	$y = 0.307x + 7.77$ $R^2 = 0.97$
0.05 M	$y = 0.36x - 4.20$ $R^2 = 0.97$
0.06 M	$y = 0.352x + 8.50$ $R^2 = 0.96$

Figure S9. The yield and conversion of different concentration 1a at 80 min with 10 mA.

Figure S10. The yield of different concentration 1b with different time.

Figure S11. The yield of different concentration NH₄Cl with different time.

Time (min)

Concentration of NH ₄ Cl	Linear Fitting Results
0.02 M	$y = 0.456x - 6.71$ $R^2 = 0.92$
0.05 M	$y = 0.523x - 8.79$ $R^2 = 0.98$
0.08 M	$y = 0.400x - 7.21$ $R^2 = 0.97$
0.12 M	$y = 0.462x - 8.26$ $R^2 = 0.99$
0.16 M	$y = 0.415x - 3.86$ $R^2 = 0.95$
0.20 M	$y = 0.36x - 4.2$ $R^2 = 0.97$
0.24 M	$y = 0.382x - 2.7$ $R^2 = 0.98$

Figure S12. The yield of different concentration HFIP with different time.

Linear fitting:

Concentration of HFIP	Linear Fitting Results
0.23 M	$y = 0.345x - 7.11$ $R^2 = 0.93$
0.45 M	$y = 0.384x - 3.9$ $R^2 = 0.98$
0.86 M	$y = 0.367x - 4.65$ $R^2 = 0.99$
1.2 M	$y = 0.372x - 1.21$ $R^2 = 0.99$
1.6 M	$y = 0.441x-4.72$ $R^2 = 0.97$
1.9 M	$y = 0.36x - 4.2$ $R^2 = 0.97$

Figure S13. The yield of different concentration NH₄Cl with different time.

Condition B: current	Linear Fitting Results
1 mA	y = 0.035x - 0.89 R ² =0.92
3 mA	y = 0.134x - 1.48 R ² =0.96
5 mA	y = 0.24x - 3.63 R ² =0.93
7 mA	y = 0.29x - 5.37 R ² =0.91
9 mA	y = 0.374x - 7.41 R ² =0.94

5. Reference

- (a) Waldo, J. P.; Larock, R. C., J. Org. Chem. 2007, 72, 9643; (b) Yuan, J.; Wang, J.; Zhang, G.; Liu, C.; Qi, X.; Lan, Y.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A., Chem. Commun. 2015, 51, 576; (c) Tang, S.; Zeng, L.; Liu, Y.; Lei, A., Angew. Chem. Int. Ed. Engl. 2015, 54, 15850. (d) Wen, J.; Shi, W.; Zhang, F.; Liu, D.; Tang, S.; Wang, H.; Lin, X.-M.; Lei, A., Org. Lett. 2017, 19, 3131.
- (a) Yang, J.; Ma, J.; Yan, K.; Tian, L.; Li, B.; Wen, J., Adv. Synth. Catal., 2022. 364, 845;
 (b) Zhang, S.; Li, L.; Li, X.; Zhang, J.; Xu, K.; Li, G.; Findlater, M. Org. Lett., 2020, 22, 3570.
 (c) Liu, Y.; Yu, Y.; Sun, C.; Fu, Y.; Mang, Z.; Shi,L.; Li, H., Org. Lett. 2020, 22, 8127.
 (d) Hoshikawa, T.; Inoue, M., Chem. Sci., 2013, 4, 3118; (e) Mccarty, F. J.; Tilford, C. H.; Van Campen Jr. M. G. J. Org. Chem. 1961, 26, 4084; (f) Zeng, X.; Cai, J.; Gu, Y., Tetrahedron Lett., 1995, 36, 7275.
- 6. Detail descriptions for products.

1,3-Diphenyl-3-(pyridin-4-yl)propan-1-one (1c):² yellow oil was obtained with 83% isolated yield (59.5 mg). ¹H NMR (500 MHz, CDCl3) δ 8.48 (d, J = 2.8 Hz, 2H), 7.94 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.26–7.21 (m, 3H), 7.19 (d, J = 5.3 Hz, 2H), 4.81 (t, J = 7.2 Hz, 1H), 3.74 (ddd, J = 25.3, 17.5, 7.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.1, 153.4, 149.4, 142.3, 136.6, 133.4, 128.9, 128.7, 128.0, 127.8, 127.0, 45.2, 43.8.

3-Phenyl-3-(pyridin-4-yl)-1-(p-tolyl)propan-1-one (**2c**):² yellow oil was obtained with 78% isolated yield (58.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 3.0 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.33–7.28 (m, 2H), 7.27–7.21 (m, 7H), 4.82 (t, *J* = 7.2 Hz, 1H), 3.72 (ddd, *J* = 25.4, 17.4, 8.1 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.7, 149.1, 144.3, 143.1, 142.3, 134.1, 129.4, 128.9,

128.1, 127.8, 127.0, 45.3, 43.7, 21.6.

1-(4-Ethylphenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (3c):² yellow oil was obtained with 74% isolated yield (58.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, *J* = 4.2 Hz, 2H), 7.87 (d, *J* = 8.2 Hz, 2H), 7.32–7.26 (m, 4H), 7.2–7.21 (m, 3H), 7.19 (t, *J* = 5.1 Hz, 2H), 4.81 (t, *J* = 7.2 Hz, 1H), 3.72 (ddd, *J* = 24.0, 17.4, 7.3 Hz, 2H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 153.1, 150.4, 149.8, 142.5, 134.4, 128.8, 128.2, 128.2, 127.9, 126.9, 123.2, 45.2, 43.7, 28.9, 15.1.

1-(4-(*Tert***-butyl)phenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (4c):**² yellow oil was obtained with 75% isolated yield (64.4mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 5.8 Hz, 2H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.26–7.21 (m, 3H), 7.21–7.18 (m, 2H), 4.82 (t, *J* = 7.2 Hz, 1H), 3.72 (ddd, *J* = 24.0, 17.4, 7.2 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 196.7, 157.2, 153.3, 149.6, 142.5, 134.1, 128.8, 128.0, 127.9, 126.9, 125.6, 123.3, 45.2, 43.7, 35.1, 31.0.

1-(4-Methoxyphenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (**5c**):² yellow oil was obtained with 77% isolated yield (61.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.47 (d, *J* = 5.9 Hz, 2H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.25–7.20 (m, 3H), 7.19–7.16 (m, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 4.80 (t, *J* = 7.2 Hz, 1H), 3.84 (s, 3H), 3.68 (ddd, *J* = 25.1, 17.2, 7.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.7, 163.7, 153.2, 149.8, 142.6, 130.3, 129.8, 128.8, 127.9, 126.9, 123.2, 113.8, 55.5, 45.3, 43.4.

1-(4-Fluorophenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (6c):² yellow oil was obtained with 60% isolated yield (45.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 2H), 8.01–7.90 (m, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.26–7.20 (m, 3H), 7.19 (d, *J* = 4.4 Hz, 2H), 7.12 (t, *J* = 8.3 Hz, 2H), 4.79 (t, *J* = 7.1

Hz, 1H), 3.71 (ddd, J = 25.2, 17.4, 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.5, 165.9 (d, J = 255.5 Hz), 152.9, 149.8, 142.3, 133.1, 130.6 (d, J = 9.4 Hz), 128.9, 127.8, 127.0, 123.1, 115.8 (d, J = 21.9 Hz), 45.2, 43.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.1.

1-(4-Chlorophenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (**7c**): ² yellow oil was obtained with 74% isolated yield (59.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 2H), 7.87 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.33–7.27 (m, 2H), 7.22 (d, *J* = 7.2 Hz, 3H), 7.18 (d, *J* = 4.5 Hz, 2H), 4.78 (t, *J* = 7.2 Hz, 1H), 3.70 (ddd, *J* = 25.2, 17.4, 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.0, 152.9, 149.8, 142.2, 139.9, 134.9, 129.4, 129.0, 128.9, 127.8, 127.1, 123.2, 45.2, 43.8.

1-(4-Bromophenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (8c): ² yellow oil was obtained with 70% isolated yield (64.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 4.7 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.24–7.19 (m, 3H), 7.17 (d, *J* = 5.4 Hz, 2H), 4.78 (t, *J* = 7.2 Hz, 1H), 3.69 (ddd, *J* = 24.6, 17.4, 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.2, 152.8, 149.9, 142.2, 135.3, 132.0, 129.5, 128.9, 128.6, 127.8, 127.1, 123.1, 45.2, 43.8.

1-(3-Fluorophenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (9c): ² yellow oil was obtained with 66% isolated yield (50.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 2H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.60 (d, *J* = 9.3 Hz, 1H), 7.47–7.41 (m, 1H), 7.33–7.28 (m, 2H), 7.27–7.21 (m, 4H), 7.19 (d, *J* = 5.0 Hz, 2H), 4.79 (t, *J* = 7.2 Hz, 1H), 3.72 (ddd, *J* = 25.6, 17.6, 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.9, 162.8 (d, *J* = 248.5 Hz), 152.9, 149.8, 142.1, 138.6, 130.4 (d, *J* = 7.6 Hz), 128.9, 127.8, 127.1, 123.7 (d, *J* = 2.9 Hz), 123.2, 120.4 (d, *J* = 21.5 Hz), 114.8 (d, *J* = 22.3 Hz), 45.2, 44.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -107.5.

CI Ph H H

1-(3-chlorophenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (10c):² yellow oil was obtained with 63% isolated yield (50.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 5.2 Hz, 2H), 7.89 (s, 1H),

7.80 (d, J = 7.8 Hz, 1H), 7.55–7.51 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.33–7.28 (m, 2H), 7.24–7.20 (m, 3H), 7.18 (d, J = 5.8 Hz, 2H), 4.78 (t, J = 7.2 Hz, 1H), 3.71 (ddd, J = 25.4, 17.6, 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.9, 152.9, 149.7, 142.1, 138.1, 135.1, 133.3, 130.0, 128.9, 128.1, 127.8, 127.1, 126.0, 123.2, 45.1, 43.9.

1-(2-Fluorophenyl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (11c): ² yellow oil was obtained with 64% isolated yield (48.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 2H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.58–7.50 (m, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.26–7.21 (m, 4H), 7.21–7.12 (m, 3H), 4.78 (t, *J* = 7.1 Hz, 1H), 3.77 (ddd, *J* = 25.9, 18.1, 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 195.6, 162.9, 153.3, 149.6, 142.2, 134.9 (d, *J* = 9.0 Hz), 130.7, 128.8, 127.8, 127.0, 125.4 (d, *J* = 13.0 Hz), 124.6 (d, *J* = 3.3 Hz), 123.3, 116.7 (d, *J* = 23.8 Hz), 48.7, 45.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -105.6.

1-(Naphthalen-2-yl)-3-phenyl-3-(pyridin-4-yl)propan-1-one (12c): ² yellow oil was obtained with 65% isolated yield (54.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 5.4 Hz, 2H), 8.47 (s, 1H), 8.00 – 7.97 (m, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.91–7.85 (m, 2H), 7.63–7.59 (m, 1H), 7.58–7.54 (m, 1H), 7.34–7.29 (m, 2H), 7.28 (d, *J* = 7.0 Hz, 2H), 7.26–7.22 (m, 3H), 4.88 (t, *J* = 7.2 Hz, 1H), 3.88 (ddd, *J* = 25.2, 17.4, 7.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.0, 153.5, 149.4, 142.4, 135.7, 134.0, 132.4, 129.7, 129.5, 128.9, 128.7, 128.6, 127.9, 127.8, 127.0, 126.9, 123.7, 123.3, 45.4, 43.94.

4-Phenyl-4-(pyridin-4-yl)butan-2-one (13c): ² yellow oil was obtained with 84% isolated yield (47.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.47 (d, *J* = 4.4 Hz, 2H), 7.31–7.27 (m, 2H), 7.25–7.21 (m, 1H), 7.19 (d, *J* = 7.5 Hz, 2H), 7.13 (d, *J* = 5.2 Hz, 2H), 4.57 (t, *J* = 7.4 Hz, 1H), 3.19 (d, *J* = 7.4 Hz, 2H), 2.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.8, 152.9, 149.8, 142.0, 128.8, 127.7, 127.0, 123.1, 48.7, 45.1, 29.7.

3-Phenyl-3-(pyridin-4-yl)-1-(thiophen-2-yl)propan-1-one (14c): ² yellow oil was obtained with

66% isolated yield (48.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (s, 2H), 7.73 (d, *J* = 3.7 Hz, 1H), 7.64 (d, *J* = 4.9 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.26–7.22 (m, 3H), 7.21 (d, *J* = 4.5 Hz, 2H), 7.13– 7.11 (m, 1H), 4.80 (t, *J* = 7.3 Hz, 1H), 3.66 (ddd, *J* = 24.7, 16.9, 7.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 190.0, 152.9, 149.7, 143.9, 142.1, 134.1, 132.0, 128.8, 128.2, 127.8, 127.1, 123.2, 45.3, 44.5.

3-(4-Methoxyphenyl)-1-phenyl-3-(pyridin-4-yl)propan-1-one (15c): ² yellow oil was obtained with 67% isolated yield (53.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 4.8 Hz, 2H), 7.96–7.90 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.20–7.12 (m, 4H), 6.86–6.80 (m, 2H), 4.76 (t, *J* = 7.2 Hz, 1H), 3.76 (s, 3H), 3.70 (ddd, *J* = 24.4, 17.4, 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.3, 158.5, 153.5, 149.7, 136.7, 134.5, 133.4, 128.8, 128.7, 128.0, 123.1, 114.2, 55.2, 44.4, 44.0.

3-(4-Fluorophenyl)-1-phenyl-3-(pyridin-4-yl)propan-1-one (16c):² yellow oil was obtained with 69% isolated yield (52.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 5.3 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.60–7.54 (m, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.24–7.16 (m, 4H), 7.04–6.95 (m, 2H), 4.81 (t, *J* = 7.2 Hz, 1H), 3.72 (ddd, *J* = 25.1, 17.4, 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.9, 161.7 (d, *J* = 246.0 Hz), 153.2, 149.6, 138.0 (d, *J* = 3.3 Hz), 136.5, 133.5, 129.3 (d, *J* = 8.0 Hz), 128.7, 128.0, 123.1, 115.7 (d, *J* = 21.4 Hz), 44.4, 43.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.7.

3-(4-Chlorophenyl)-1-phenyl-3-(pyridin-4-yl)propan-1-one (17c):² yellow oil was obtained with 68% isolated yield (54.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 2.9 Hz, 2H), 7.94 (d, *J* = 7.3 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.22–7.14 (m, 4H), 4.80 (t, *J* = 7.2 Hz, 1H), 3.72 (ddd, *J* = 24.4, 17.5, 7.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 152.7, 149.8, 140.8, 136.5, 133.5, 132.8, 129.2, 129.0, 128.7, 128.0, 123.1, 44.6, 43.7.

Ph H H F

3-(4-Bromophenyl)-1-phenyl-3-(pyridin-4-yl)propan-1-one (18c):² yellow oil was obtained with 78% isolated yield (71.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 3.2 Hz, 2H), 7.93 (d, *J*

= 7.6 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 5.3 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 4.77 (t, J = 7.2 Hz, 1H), 3.71 (ddd, J = 24.1, 17.6, 7.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 152.4, 150.0, 141.4, 136.5, 133.5, 131.9, 129.6, 128.7, 128.0, 123.1, 120.9, 44.6, 43.6.

3-(2-Methoxyphenyl)-1-phenyl-3-(pyridin-4-yl)propan-1-one (19c): ² yellow oil was obtained with 49% isolated yield (38.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.45 (s, 2H), 7.95 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 6.6 Hz, 1H), 7.45 (t, *J* = 7.0 Hz, 2H), 7.25–7.15 (m, 3H), 7.11 (d, *J* = 7.1 Hz, 1H), 6.90 (t, *J* = 7.0 Hz, 1H), 6.85 (d, *J* = 7.9 Hz, 1H), 5.13 (t, *J* = 6.2 Hz, 1H), 3.76 (s, 3H), 3.70 (ddd, *J* = 22.8, 17.2, 5.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 156.8, 153.1, 149.4, 136.8, 133.2, 130.8, 128.6, 128.2, 128.0, 123.4, 120.7, 110.9, 55.3, 42.6, 39.3.

3-(2-Fluorophenyl)-1-phenyl-3-(pyridin-4-yl)propan-1-one (**20c**):² yellow oil was obtained with 52% isolated yield (39.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 2H), 7.96 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.26–7.21 (m, 4H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.07–7.01 (m, 1H), 5.05 (t, *J* = 7.2 Hz, 1H), 3.79 (ddd, *J* = 25.4, 17.6, 7.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 160.6 (d, *J* = 246.5 Hz), 152.0, 149.7, 136.5, 133.5, 129.3 (d, *J* = 14.1 Hz), 129.1 (d, *J* = 4.3 Hz), 128.8 (d, *J* = 8.5 Hz), 128.7, 128.0, 124.4 (d, *J* = 3.5 Hz), 123.2, 116.0 (d, *J* = 22.2 Hz), 42.5, 39.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -105.6.

2-(3-Oxo-1,3-diphenylpropyl)isonicotinonitrile (**21c**):² yellow oil was obtained with 67% isolated yield (52.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 4.7 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.63–7.56 (m, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 4.5 Hz, 1H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 2H), 4.85 (t, *J* = 6.8 Hz, 1H), 3.78 (ddd, *J* = 26.2, 17.9, 8.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.6, 154.9, 151.1, 141.2, 136.3, 134.0, 133.7, 129.2, 128.8, 128.1, 128.0, 127.8, 127.5, 126.4, 117.3, 45.0, 43.6.

1,3-Diphenyl-3-(phthalazin-1-yl)propan-1-one (22c):² yellow oil was obtained with 47% isolated yield (39.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.26 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 8.1 Hz, 2H), 7.88–7.83 (m, 1H), 7.83–7.74 (m, 2H), 7.51 (t, *J* = 7.0 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 2H), 7.17 (t, *J* = 6.9 Hz, 1H), 5.74 – 5.68 (m, 1H), 4.89 – 4.80 (m, 1H), 3.66 – 3.57 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 198.6, 159.5, 150.7, 142.3, 136.9, 133.0, 132.6, 131.8, 128.9, 128.5, 128.2, 128.2, 127.0, 126.9, 125.7, 124.2, 44.9, 43.1.

3-(3-methylpyridin-4-yl)-1,3-diphenylpropan-1-one (23c):² yellow oil was obtained with 56% isolated yield (42.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 4.8 Hz, 1H), 8.33 (s, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.27 – 7.21 (m, 4H), 7.18 (t, J = 6.6 Hz, 3H), 7.15 (d, J = 5.1 Hz, 1H), 4.95 (t, 1H), 3.69 (ddd, J = 23.9, 17.5, 7.3 Hz, 2H), 2.39 (s, 3H), 2.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.9, 151.1, 150.7, 147.5, 144.2, 142.0, 134.2, 132.2, 129.4, 128.7, 128.1, 128.0, 126.8, 121.0, 44.1, 41.6, 21.6, 16.6.

3-(3-fluoropyridin-4-yl)-1,3-diphenylpropan-1-one (24c):² yellow oil was obtained with 44% isolated yield (33.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, *J* = 2.4 Hz, 1H), 8.35 (d, *J* = 6.2 Hz, 1H), 8.02 – 7.95 (m, 2H), 7.61 (t, *J* = 9.2 Hz, 1H), 7.49 (t, *J* = 9.6 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.29 – 7.22 (m, 2H), 5.10 (t, *J* = 9.2 Hz, 1H), 3.84 (ddd, *J* = 32.0, 22.1, 9.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.8, 157.8 (d, *J* = 318.7 Hz), 145.8 (d, *J* = 6.4 Hz), 141.1, 139.6 (d, *J* = 14.8 Hz), 138.3 (d, *J* = 31.4 Hz), 136.5, 133.4, 128.9, 128.7, 128.0, 127.7, 127.2, 123.2 (d, *J* = 2.0 Hz), 42.8, 39.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -130.5.

3-(3-chloropyridin-4-yl)-1,3-diphenylpropan-1-one (**25c**):² yellow oil was obtained with 48% isolated yield (38.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.38 (d, J = 5.1 Hz, 1H), 7.96 – 7.92 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.27 – 7.21 (m, 3H), 7.18 (d, J = 5.1 Hz, 1H), 5.23 (t, J = 7.4 Hz, 1H), 3.80 – 3.70 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.6, 150.2, 149.8, 147.7, 140.6, 136.4, 133.5, 132.2, 128.8, 128.7, 128.0, 128.0, 127.1, 122.8, 43.3, 42.0.

3-(3-bromopyridin-4-yl)-1,3-diphenylpropan-1-one (26c):² yellow oil was obtained with 47% isolated yield (43.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.42 (s, 1H), 7.97 – 7.90 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.27 – 7.21 (m, 3H), 7.17 (d, J = 4.8 Hz, 1H), 5.21 (t, J = 7.3 Hz, 1H), 3.75 (d, J = 7.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 196.5, 152.4, 151.8, 148.3, 140.6, 136.4, 133.4, 128.8, 128.7, 128.1, 128.0, 127.1, 124.2, 123.4, 44.4, 43.5.

3-(3,5-difluoropyridin-4-yl)-1,3-diphenylpropan-1-one (27c):² yellow oil was obtained with 47% isolated yield (38.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 2H), 7.99 – 7.93 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.39 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.26 – 7.22 (m, 1H), 5.20 – 5.15 (m, 1H), 3.96 (ddd, J = 24.0, 18.2, 7.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.0, 157.6 (d, J = 255.3 Hz), 140.4, 136.3, 134.6 (d, J = 4.8 Hz), 134.4 (d, J = 4.8 Hz), 133.5, 128.9, 128.7, 128.0, 127.7, 127.3, 42.0, 35.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -128.0.

`Ph

1,3-Diphenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (1d): white powder was obtained with 81% isolated yield (57.7 mg). ¹H NMR (500 MHz, DMSO- d_6) δ 8.55 (d, J = 4.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 5.8 Hz, 2H), 7.58–7.55 (m, 2H), 7.46–7.42 (m, 3H), 7.38 (t, J = 7.7 Hz, 2H), 7.29 (t, J = 7.1 Hz, 1H), 7.23 (s, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 155.1, 150.1, 145.4, 131.9, 129.5, 129.2, 128.8, 128.1, 126.0, 122.1, 121.0, 92.3, 86.4, 72.9. HRMS (ESI) calcd for C₂₀H₁₆NO [M + H]

+: 286.1226; found: 286.1224.

3-Phenyl-1-(pyridin-4-yl)-1-(p-tolyl)prop-2-yn-1-ol (2d): white powder was obtained with 84% isolated yield (59.8 mg). ¹H NMR (500 MHz, DMSO- d_6) δ 8.55 (s, 2H), 7.62–7.53 (m, 4H), 7.51 (d, J = 8.0 Hz, 2H), 7.46–7.40 (m, 3H), 7.21–7.14 (m, 3H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 155.4, 150.0, 142.5, 137.3, 131.9, 129.4, 129.3, 129.2, 126.0, 122.2, 121.0, 92.5, 86.3, 72.8, 21.0. HRMS (ESI) calcd for C₂₁H₁₇NO [M + H] +: 300.1383; found: 300.1383. m. p.: 180 - 184 °C.

1-(4-Ethylphenyl)-3-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (3d): white powder was obtained with 73% isolated yield (57.1 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.54 (d, *J* = 6.1 Hz, 2H), 7.60–7.57 (m, 2H), 7.56 (d, *J* = 2.2 Hz, 1H), 7.56–7.54 (m, 1H), 7.54 (t, *J* = 1.9 Hz, 1H), 7.52 (t, *J* = 1.9 Hz, 1H), 7.44 (d, *J* = 2.1 Hz, 2H), 7.43 (d, *J* = 1.5 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.16 (s, 1H), 2.57 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 155.3, 150.0, 143.6, 142.7, 131.9, 129.4, 129.2, 128.1, 126.1, 122.2, 121.0, 92.5, 86.2, 72.8, 28.1, 16.0. HRMS (ESI) calcd for C₂₂H₁₉NO [M + H] +: 314.1539; found: 314.1539. m. p.: 157 - 163 °C.

1-(4-(*Tert***-butyl)phenyl)-3-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (4d):** white powder was obtained with 76% isolated yield (64.8 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.54 (d, *J* = 6.1 Hz, 2H), 7.62–7.59 (m, 2H), 7.57–7.53 (m, 4H), 7.45–7.41 (m, 3H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.16 (s, 1H), 1.25 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 155.2, 150.5, 150.1, 142.5, 131.9, 129.4, 129.2, 125.8, 125.5, 122.2, 121.0, 92.5, 86.2, 72.8, 34.6, 31.5. HRMS (ESI) calcd for C₂₄H₂₃NO [M + H] +: 342.1852; found: 324.1852. m. p.: 187 - 192 °C.

1-(4-Bromophenyl)-3-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (5d): white powder was obtained with 67% isolated yield (60.8 mg). ¹H NMR (500 MHz, DMSO- d_6) δ 8.59 (d, J = 6.1 Hz, 2H), 7.60–7.58 (m, 2H), 7.58–7.55 (m, 6H), 7.45–7.43 (m, 3H), 7.37 (s, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ

154.7, 150.1, 144.8, 131.9, 131.7, 129.6, 129.2, 128.4, 121.9, 121.4, 120.9, 91.7, 86.7, 72.6. HRMS (ESI) calcd for C₂₀H₁₄BrNO [M + H] ⁺: 364.0332; found: 364.0332. m. p.: 175 - 179 °C.

1-(3-Fluorophenyl)-3-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (6d): white powder was obtained with 61% isolated yield (46.3 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.60 (d, *J* = 4.1 Hz, 2H), 7.64–7.60 (m, 2H), 7.60–7.56 (m, 2H), 7.50–7.39 (m, 7H), 7.13 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.4 (d, *J* = 244.0 Hz), 154.5, 150.2, 148.3 (d, *J* = 6.7 Hz), 132.0, 130.9 (d, *J* = 8.2 Hz), 129.6, 129.2, 122.3 (d, *J* = 2.6 Hz), 121.9, 120.9, 115.0 (d, *J* = 21.0 Hz), 112.8 (d, *J* = 23.1 Hz), 91.7, 86.6, 72.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.9. HRMS (ESI) calcd for C₂₀H₁₄FNO [M + H] +: 304.1132; found: 304.1129. m. p.: 159 - 162 °C.

3-Phenyl-1-(pyridin-4-yl)-1-(thiophen-2-yl)prop-2-yn-1-ol (7d): white powder was obtained with 86% isolated yield (62.5 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.59 (d, *J* = 6.0 Hz, 2H), 7.67–7.61 (m, 2H), 7.59–7.54 (m, 3H), 7.50–7.47 (m, 1H), 7.46–7.41 (m, 3H), 7.16 (d, *J* = 3.6 Hz, 1H), 7.00 – 6.95 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.5, 150.5, 150.2, 131.9, 129.6, 129.2, 127.2, 126.7, 125.3, 121.8, 120.7, 91.7, 85.8, 70.5. HRMS (ESI) calcd for C₁₈H₁₃NOS [M + H] ⁺: 292.0791; found: 292.0792. m. p.: 171 -175 °C.

3-(4-Methoxyphenyl)-1-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (8d): white powder was obtained with 72% isolated yield (56.7 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.54 (d, *J* = 6.1 Hz, 2H), 7.65–7.61 (m, 2H), 7.60–7.57 (m, 2H), 7.52–7.48 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.17 (s, 1H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.79 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.1, 155.4, 150.1, 145.6, 133.5, 128.7, 128.0, 126.1, 121.0, 114.8, 114.0, 90.9, 86.5, 72.9, 55.7. HRMS (ESI) calcd for C₂₁H₁₇NO₂ [M + H] +: 316.1332; found: 316.1333. m. p.: 177 - 180 °C.

3-(4-Fluorophenyl)-1-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (9d): white powder was obtained with 65% isolated yield (49.2 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.55 (d, *J* = 6.1 Hz, 2H), 7.66–7.61 (m, 4H), 7.61–7.58 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.31–7.25 (m, 3H), 7.25 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.4 (d, *J* = 247.9 Hz), 159.8, 154.9 (d, *J* = 15.9 Hz), 150.1, 139.1, 133.5, 132.8, 130.8, 125.8, 123.3 (d, *J* = 3.3 Hz), 121.2 (d, *J* = 22.2 Hz), 96.8, 90.1, 77.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.9. HRMS (ESI) calcd for C₂₀H₁₄FNO [M + H] +:304.1132; found: 304.1134. m. p.: 155 - 159 °C.

3-(4-Chlorophenyl)-1-phenyl-1-(pyridin-4-yl)prop-2-yn-1-ol (10d): white powder was obtained with 58% isolated yield (46.3 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.55 (d, *J* = 6.0 Hz, 2H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 4H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.32–7.23 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 155.0, 150.1, 145.2, 134.2, 133.7, 129.4, 128.8, 128.1, 126.0, 121.0, 93.4, 85.3, 72.9. HRMS (ESI) calcd for C₂₀H₁₄ClNO [M + H] +: 320.0837; found: 320.0838. m. p.: 185 - 188 °C.

Diphenyl(pyridin-4-yl)methanol (11d): ^{2c, 2d} white powder was obtained with 76% isolated yield (49.7 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.51 (d, *J* = 5.8 Hz, 2H), 7.36–7.31 (m, 4H), 7.30–7.26 (m, 2H), 7.25–7.22 (m, 2H), 7.22 – 7.19 (m, 4H), 6.74 (s, 1H). ¹³C NMR (126 MHz, MDSO-*d*₆) δ 161.2, 154.4, 151.5, 133.0, 132.8, 132.3, 127.8, 85.1.

Phenyl(pyridin-4-yl)(o-tolyl)methanol (12d):^{2e} white powder was obtained with 55% isolated yield (37.9 mg). ¹H NMR (500 MHz, DMSO- d_6) δ 8.52 (d, J = 6.1 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.31–7.25 (m, 1H), 7.24–7.17 (m, 6H), 7.05 (t, J = 6.6 Hz, 1H), 6.75 (s, 1H), 6.57 (d, J = 7.5 Hz, 1H),

2.04 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 156.5, 149.6, 146.5, 144.4, 138.4, 132.8, 129.1, 128.3, 128.1, 127.6, 127.4, 125.2, 122.9, 81.4, 22.1.

(2,5-Dichlorophenyl)(phenyl)(pyridin-4-yl)methanol (13d): white oil was obtained with 59% isolated yield (48.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 5.3 Hz, 2H), 7.37–7.32 (m, 4H), 7.30–7.24 (m, 3H), 7.24–7.17 (m, 3H), 6.81 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 149.6, 144.0, 143.2, 132.9, 132.6, 131.4, 131.0, 129.5, 128.4, 128.1, 127.4, 122.5, 81.4. HRMS (EI) calcd for C₁₈H₁₃Cl₂NO [M + H] +:330.0447; found: 330.0447.

9-(Pyridin-4-yl)-9H-fluoren-9-ol (14d):^{2f} white powder was obtained with 63% isolated yield (40.8 mg). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 5.9 Hz, 2H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 5.9 Hz, 2H), 7.30–7.24 (m, 4H), 7.20 (d, *J* = 6.0 Hz, 2H), 6.61 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.6, 150.6, 149.9, 139.7, 129.4, 128.7, 125.0, 120.8, 82.3.

3-Hydroxy-1,3-diphenyl-3-(pyridin-4-yl)propan-1-one (15d): yellow oil was obtained with 47% isolated yield (35.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 2H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.43–7.37 (m, 4H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 5.48 (s, 1H), 3.92 (q, *J* = 17.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 200.4, 156.3, 149.6, 144.8, 136.4, 134.2, 128.9, 128.6, 128.1, 127.5, 125.5, 120.8, 76.6, 47.5. HRMS (ESI) calcd for C₂₀H₁₇NO₂ [M + H] +: 304.1332; found: 304.1332.

7. Copies of product NMR spectra

¹H NMR

1c

2c

Alter and the second s

S29

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 fl (ppm)

7c

-195.9981

8c

¹³C NMR

-196.2112

9c

¹³C NMR

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 fl (ppm)

10c

11c

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

12c

S40

	~158.4965 ~153.5655 ~149.7453	136.7354 134.4984 133.3996 133.3996 133.3996 128.7323 128.7323 123.1631	 77.3131 77.0591 76.8048	 44.4883 44.0539
<u>k</u>	(1)	111 11 11	¥	16

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

17c

-4/950 3.7329 3.7329 3.7329 3.7329 3.7329 3.6705 3.6705

¹³C NMR

-196.8416

- 152.7291 - 149.8898	140.8625 136.5321 132.8668 133.8668 133.8881 128.2528 128.0230 128.731516 128.731516	77.2992 77.0451 76.7912	44.6097
		¥	11

18c

19c

20c

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

(7,7,9538) (7,7,9538) (7,7,5570) (7,7,5570) (7,4574) (7,4575) (7,4575) (7,4575) (7,4575) (7,4575) (7,7356) (

21c

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

B3663 B3663 B3663 B3565 B3565 B3565 F7250 F712255 F712255 F712255 F712255 F71424 A9632 F71424 A9632 F71424 A9632 F71424 A9434 F434947 F4349457 F3752 F

23c

24c

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

25c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

Ph H F H H F F

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1(ppm)

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

S72
¹H NMR

¹³C NMR

13d

14d

S74

15d

