Supporting Information

An Unusual *trans*-hydrosilylation of prochiral 1,1-disubstituted cyclopropenes to realize different nature of asymmetric palladium and rhodium catalysis

Han-Qi Zhou, Fang-Ying Ling, Xiao-Jun Fang, Hua-Jie Zhu, Li Li*, Fei Ye, Zheng Xu, Li-Wen Xu*

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China Email: liwenxu@hznu.edu.cn

Table of Contents

1. General Information	S1
2. Experimental Section	S2
2.1 Preparation of Substrates	S2
2.2 Evaluation of Reaction Parameters	S6
2.2.1 Hydrosilylation of Ester-substutited Cyclopropenes	S6
2.2.2 Hydrosilylation of Amide-substituted Cyclopropenes	S12
2.3 Asymmetric Synthesis of Silycyclopropanes	S17
2.4 Asymmetric Synthesis of Silicon-Stereogenic Silycyclopropanes	S38
2.5 Transformation of Chiral Silylcyclopropanes	S39
2.6 Gram Scale Reaction	S40
2.7 Experimental Mechanistic Study	S41
2.7.1 Kinetic Study for the KIE	S41
2.7.2 The study of possible NLE in the Pd-catalyzed hydrosilylation of 4a	S42
2.7.3 Comparison of ³¹ P NMR of ligand and Pd/L34 complex in the reaction	with 4a
and 2a	S43
2.7.4 CD Spectra	S45
2.7.5 UV Spectra	S47
2.7.6 Control experiments	S49
3. X-Ray Structure of 5n	S50
4. NOESY spectrum of 3a - <i>d2</i>	S51
5. References	S51
6. NMR Spectra	S52
7. HPLC and UPLC Charts	S108

1. General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. Dichloromethane (DCM), toluene, were freshly distilled from CaH₂, Ether (Et₂O), tetrahydrofuran (THF) and 1, 4-dioxane were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh).

NMR spectra were recorded on a Bruker 400-, 500- (400 MHz for ¹H; 100 MHz for ¹³C, 500 MHz for ¹⁹F). The chemical shifts (δ) were quoted in parts per million (ppm) referenced to TMS (0.00 ppm for ¹H NMR) and CDCl₃ (77.16 ppm for ¹³C NMR) The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = doublets of doublet, t = triplet, q = quartet, m = multiplets. Coupling constants, *J*, were reported in Hertz unit (Hz). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer. HPLC analyses were carried out with an Agilent 1260 infinity, Waters AcQuity HPLC or Waters AcQuity UPLC using a chiralcel OD column, a chiralcel AD column, a chiralcel ND column.

2. Experimental Section

2.1 Preparation of Substrates

$$\mathbb{R}^{1} \xrightarrow{\text{N}_{2}}_{\text{COOR}^{2}} + = \text{TMS} \xrightarrow{[\text{Rh}(OAc)_{2}]_{2}}_{\text{r.t.}} \xrightarrow{\mathbb{R}^{1}}_{\text{TMS}} \xrightarrow{\text{COOR}^{2}} \xrightarrow{\text{K}_{2}CO_{3}}_{\text{THF, 0 °C to 40 °C}} \xrightarrow{\mathbb{R}^{1}}_{\text{T}} \xrightarrow{\text{COOR}^{2}}_{\text{COOR}^{2}}$$
s1 s2 s3 1

General procedure for the synthesis of cycloprop-2-ene-1-ester $1^{[1-5]}$: A solution of S1 (15.0 mmol) in trimethylsilylacetylene S2 (10.0 mL) was added via a syringe pump over 18 h to a stirred suspension of [Rh(OAc)₂]₂ (1.0 mol%) in S2 (3.0 mL) under room temperature. After the reaction complete, the reaction was evaporated under reduced pressure to provide an oily residue, which was then purified by silica column chromatography to afford S3. To a solution of S3 (5.0 mmol) and THF (10.0 mL) was added 2.0 M aq. K₂CO₃ (30.0 mL) dropwise at 0 °C. Then the reaction mixture was allowed to warm up to 40 °C and stirred for 20 h. The mixture was extracted three times with DCM. The combined organics were dried with Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography to afford 1.

General procedure for the synthesis of cycloprop-2-ene-1-carboxamides 4 ^[1-5]: To a solution of S3 (5.0 mmol) and methanol (20.0 mL) was added 1.5 M aq. KOH (30.0 mL) dropwise at 0 °C. Then the reaction mixture was allowed to warm up to room temperature and stirred overnight. 2.0 M aq. HCl was added to render the solution acidic (pH = 1-2), and the mixture was extracted three times with DCM. The combined organics were dried with Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography to afford S4. Flame-dried round bottom flask was charged with S4 (2.0 mmol), DMF (2 drops) and freshly distilled anhydrous DCM (10.0 mL) under N₂ atmosphere. Oxalyl chloride (3.0 mmol) was then added dropwise and the mixture was stirred at room temperature for 2 h. The solution was concentrated under reduced pressure to provide a pale yellow solid or oil residue, which was dissolved in anhydrous DCM (4.0 mL) and added dropwise to a solution of R^3R^4NH (4.0 mmol) and Et₃N (4.0 mmol) in anhydrous DCM (4.0 mL). The reaction mixture was stirred for 18 hours at room temperature and then extracted three times with DCM. The combined organics were dried with Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography to afford **4**.

Methyl 1-([1,1'-biphenyl]-4-yl) cycloprop-2-ene-1-carboxylate (1h): Yellow solid, mp 91.4 - 94.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.42 (m, 4H), 7.38 - 7.31 (m, 2H), 7.29 - 7.21 (m, 3H),

7.16 (s, 2H), 3.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 141.0, 140.6, 139.6, 128.8, 128.7, 127.3, 127.2, 127.1, 107.7, 52.5, 30.5. HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₇H₁₅O₂: 251.1067, found: 251.1087.

7.2 Hz, 2H), 0.85 (t, J = 7.2 Hz, 3H), 0.61 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 143.7, 128.4, 126.4, 126.1, 110.0, 49.5, 46.4, 32.3, 21.7, 20.6, 11.7, 11.3. HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₆H₂₂NO: 244.1696, found: 244.1791.

N, *N* - diethyl -1- (4-methoxyphenyl) cycloprop -2- ene -1carboxamide (4f): White solid, mp 86.4 - 90.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 2H), 7.01 - 6.90 (m, 2H), 6.80 -

6.71 (m, 2H), 3.71 (s, 3H), 3.29 (dq, J = 22.8, 7.2 Hz, 4H), 1.09 (t, J = 6.8 Hz, 3H), 0.84 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 158.3, 135.8, 127.2,

113.9, 110.3, 55.4, 42.0, 39.1, 31.6, 13.9, 12.7. HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₅H₂₀NO₂: 246.1556, found: 246.1489.

7.04 (m, 2H), 3.42 (q, J = 7.2 Hz, 2H), 3.36 (q, J = 7.2 Hz, 2H), 1.31 (s, 9H), 1.20 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 149.3, 140.6, 125.7, 125.3, 109.8, 42.0, 39.1, 34.5, 31.7, 31.5, 13.8, 12.8. HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₈H₂₆NO: 272.3927, found: 272.3826.

1 - ([1,1'-biphenyl]-4-yl) -N, N- diethylcycloprop -2- ene -1 carboxamide (4k): White solid, mp 94.8 - 99.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 - 7.48 (m, 2H), 7.48 - 7.43 (m, 2H),

7.39 - 7.30 (m, 2H), 7.21 (s, 2H), 7.15 - 7.09 (m, 2H), 3.33 (dq, J = 22.4, 7.2 Hz, 4H), 1.12 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 140.8, 139.2, 128.9, 127.3, 127.2, 127.1, 126.5, 109.7, 42.0, 39.1, 31.9, 13.9, 12.8. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₀H₂₂NO: 292.1696, found: 292.1750.

1-(2-bromophenyl)-N, N-diethylcycloprop-2-ene-carboxamide
 (4p): White solid, mp 33.0 - 34.4 °C. ¹H NMR (400 MHz, CDCl₃)
 δ 7.43 (dd, J = 8.0, 1.2 Hz, 1H), 7.30 (s, 2H), 7.26 (dd, J = 8.0, 2.0

Hz, 1H), 7.22 - 7.16 (m, 1H), 7.01 (td, J = 7.6, 2.0 Hz, 1H), 3.25 (q, J = 6.8 Hz, 4H), 1.04 (t, J = 7.2 Hz, 3H), 0.56 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 142.7, 133.7, 131.2, 128.4, 127.7, 123.5, 110.0, 42.1, 40.5, 34.1, 25.7, 25.1, 13.0, 12.7. HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₄H₁₇BrNO: 294.0564, found: 294.0488.

δ 7.36 (d, J = 1.2 Hz, 2H), 7.24 -7.14 (m, 2H), 7.11 - 7.05 (m, 1H), 7.03 - 6.95 (m, 1H), 3.35 (p, J = 6.8 Hz, 4H), 1.11 (t, J = 7.2 Hz, 3H), 0.75 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 161.5 (d, J = 245.7 Hz), 130.8 (d, J = 12.4 Hz), 129.7 (d, J = 3.8 Hz), 128.4 (d, J = 8.0 Hz), 124.3 (d, J = 3.6 Hz), 116.0 (d, J = 21.8 Hz), 110.3 (d, J = 1.9 Hz), 40.8 (d, J = 221.5 Hz), 34.1, 28.4, 25.4 (d, J = 66.2 Hz), 12.9 (d, J = 68.1 Hz). ¹⁹F NMR (500 MHz, CDCl₃) δ -117.93 - -118.07 (m). HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₄H₁₇FNO: 234.1491, found: 234.1289.

1 - (3,5-difluorophenyl) -*N*, *N*- diethylcycloprop -2- ene -1carboxamide (4r): Yellow solid, mp 53.4 - 58.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (s, 2H), 6.68 - 6.42 (m, 3H), 3.34 (q, *J* = 6.8 Hz, 2H), 3.26 (q, *J* = 7.2 Hz, 2H), 1.11 (t, *J* = 7.2 Hz, 3H),

0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 164.5 (d, J = 12.6 Hz), 162.0 (d, J = 13.0 Hz), 148.3 (t, J = 8.2 Hz), 109.6 - 107.9 (m), 102.0 (t, J = 25.4 Hz), 49.1, 40.6 (d, J = 286.9 Hz), 33.0 (d, J = 222.0 Hz), 25.4 (d, J = 67.3 Hz), 13.3 (d, J =130.2 Hz). ¹⁹F NMR (500 MHz, CDCl₃) δ -109.61 (t, J = 8.4 Hz). HRMS (APCI) m/z: [M+H]⁺ calculated for C₁₄H₁₆F₂NO: 252.1346, found: 252.1194.

2.2 Evaluation of Reaction Parameters

2.2.1 Hydrosilylation of Ester-substituted Cyclopropenes

Figure S1. Results from evaluation of ligands for the asymmetric hydrosilylation of 1a (For the detailed reaction data, see Table S1).

Table S1. Screening of the Chiral Phosphine Ligands^a

الم ع		Pd ₂ (dba) ₃ (1.5 Ligand (6.0 DCM, 25 °C,	5 mol%) mol%) 18 h	H Si 3a
Entry	Ligand	Yield of 3a (%) ^b	<i>ee</i> of 3a (%) ^c	dr of $3a^d$
1	L1	trace	-	-
2	L2	nr	-	-
3	L3	28	1	2:1
4	L4	nr	-	-
5	L5	21	-12	7:1
6	L6	nr	-	-

7	L7	nr	-	-
8	L8	trace	-	-
9	L9	39	18	6:1
10	L10	37	4	3:1
11	L11	11	-8	3:1
12	L12	20	-14	3:1
13	L13	nr	-	-
14	L14	nr	-	-
15	L15	nr	-	-
16	L16	nr	-	-
17	L17	nr	-	-
18	L18	nr	-	-
19	L19	nr	-	-
20	L20	nr	-	-
21	L21	nr	-	-
22	L22	29	-51	16:1
23	L23	11	-46	>20:1
24	L24	24	-46	>20:1
25	L25	nr	-	-
26	L26	15	81	4:1
27	L27	42	84	5:1
28	L28	13	73	4:1
29	L29	28	79	4:1
30	L30	trace	-	-
31	L31	21	28	3:1
32	L32	20	80	4:1
33	L33	22	78	4:1
34	L34	44	85	5:1

^aUnless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), **2a** (0.26 mmol), DCM (2 mL). ^bIsolated yield. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

Figure S2. The structures for chiral ligands used in the asymmetric hydrosilylation of 1a (For the detailed reaction data, see Table S1).

1a	+	[Pd] (1.5 mol%) L34 (6.0 mol%) DCM, 25 ℃, 18 h	H. Si 3a	
Entry	[Pd] Cat.	Yield of $3a (\%)^{b}$	$\overline{ee} \text{ of } \mathbf{3a} (\%)^{c}$	dr of $3a^d$
1	Pd ₂ (dba) ₃	44	85	5:1
2	$[PdCl(C_3H_5)]_2$	26	70	4:1
3	$Pd(OAc)_2$	20	90	3:1
4	PdCl ₂	trace	-	-
5	$Pd(cod)Cl_2$	32	38	2:1
6	Pd(TFA) ₂	36	71	13:1
7	Pd(CH ₃ CN) ₄ (BF) ₄	21	25	2:1
8	Pd(CH ₃ CN) ₂ Cl	37	39	2:1
9	Pd(nbd)Cl ₂	29	49	1:1
10	$[Pd(C_9H_9)Cl]_2$	59	76	3:1
11	$[PdCl(2-Me-C_3H_4)_2]_2$	20	51	1:1
12	PdBr ₂	trace	-	-
13	$Pd(dba)_2$	23	80	3:1
14	$Pd(acac)_2$	trace	-	-
15	$Pd_2(dba)_3^e$	49	88	5:1
16 ^f	[Rh(cod) ₂]BF ₄	nr	-	-

Table S2. Screening of the Palladium Catalysts^a

^aUnless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), **2a** (0.26 mmol), DCM (2 mL). ^bIsolated yield. ^cDetermined by HPLC. ^dDetermined by ¹H NMR. ^e5Å MS (50 mg). ^f[Rh(cod)₂]BF₄ (3.0 mol%), (*R*)-DTBM-SEGPHOS (3.6 mol%), [B(2CF₃-C₆H₃)₄Na] (3.0 mol%), Hexane (2 mL), 30 ^oC.

Table S3. Screening of the Solvents^a

0 + 1a	H ₂ Si 2a	Pd ₂ (dba) ₃ (1.5 mol%) L34 (6.0 mol%) ► solvent, 25 °C, 18 h 5Å MS (50 mg)		
Entry	Solvent	Yield of 3a (%) ^b	<i>ee</i> of 3a (%) ^c	dr of 3a ^d
1	DCM	49	88	5:1
2	Et ₂ O	22	91	7:1
3	toluene	trace	-	-
4	CH ₃ CN	46	84	4:1
5	THF	nr	-	-
6	hexane	21	90	2:1
7	DMF	14	74	4:1
8	dioxane	48	86	3:1
9	DMSO	30	72	13:1
10	DCE	41	80	4:1

^aUnless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), **2a** (0.26 mmol), solvent (2 mL). ^bIsolated yield. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

0 + 1a	H ₂ Si 2a	Pd₂(dba)₃ (1.5 mol%) L34 (6.0 mol%) DCM, Temp, 18 h 5Å MS (50 mg)	H, O H, O Si 3a	
Entry	Temp (°C)	Yield of $3a (\%)^b$	<i>ee</i> of 3a (%) ^c	dr of $3a^d$
1	-20 ^e	trace	-	-
2	0 ^f	49	90	10:1
3	25	49	88	5:1
4	40	43	80	3:1
5	70	38	76	3:1

Table S4. Screening of the Temperature in this reaction^a

^aUnless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), **2a** (0.26 mmol), DCM (2 mL). ^bIsolated yield. ^cDetermined by HPLC. ^dDetermined by ¹H NMR. ^e2 d. ^f24 h

Table S5. Screening of the Loading of Palladium Catalyst with Ligand^a

C C C		a Pd ₂ (dba L34 (DCM, 5Å MS	a) ₃ (X mol%) Y mol%) 0 °C, 24 h S (50 mg)		$ \begin{array}{c} $
Entry	X (mol%)	Y (mol%)	Yield of $3a (\%)^b$	<i>ee</i> of 3a (%) ⁶	$dr ext{ of } \mathbf{3a}^d$
1	1.5	6	49	90	10:1
2	3	12	38	89	10:1
3	1.5	3	40	85	5:1
4	0.75	3	32	90	10:1

^aUnless otherwise noted, the reaction conditions were as follows: **1a** (0.2 mmol), **2a** (0.26 mmol),

DCM (2 mL). ^bIsolated yield. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

2.2.2 Hydrosilylation of Amide-substituted Cyclopropenes

Figure S3. Results from evaluation of ligands for the asymmetric hydrosilylation of 4a (For detailed reaction data, see Table S6).

Ĩ

Table S6. Screening of the Chiral Phosphine Ligands^a

4a	JEt_2 + Si	Pd ₂ (dba) ₃ (1.5) Ligand (7.5 m DCM, 25 °C, 1	mol%) hol%) 18 h	
Entry	Ligand	Yield of 5a (%) ^b	<i>ee</i> of 5a (%) ^c	dr of $\mathbf{5a}^d$
1	L9	20	9	>19:1
2	L12	7	5	>19:1
3	L16	24	50	>19:1
4	L17	25	24	>19:1
5	L22	32	34	>19:1
6	L23	23	14	>19:1
7	L34	30	88	>19:1
8	L35	29	80	>19:1

9	L36	23	81	>19:1
10	L37	30	87	>19:1
11	L38	27	86	>19:1
12	L39	32	77	>19:1

^aUnless otherwise noted, the reaction conditions were as follows: **4a** (0.2 mmol), **2a** (0.3 mmol), DCM (2 mL). ^bDetermined by 1H NMR using dibromomethane as an internal standard. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

Table S7. Screening of the Palladium Catalysts^a

O V 4a	H_2^+ $H_2^ H_2^ H_2^$	[Pd] (1.5 mol%) L34 (7.5 mol%) DCM, 25 °C, 18 h		
Entry	[Pd] Cat.	Yield of 5a $(\%)^b$	<i>ee</i> of 5a (%) ^c	dr of $\mathbf{5a}^d$
1	Pd ₂ (dba) ₃	30	88	>19:1
2	Pd ₂ (dba) ₃ ·CH ₃ Cl	37	91	>19:1
3	Pd(dba) ₂	45	90	>19:1
4	$[PdCl(C_3H_5)]_2$	50	89	>19:1
5	$[PdCl(2-Me-C_3H_4)_2]_2$	50	90	>19:1
6	$Pd(OAc)_2$	trace	-	-
7	PdCl ₂	nr	-	-
8	PdBr ₂	nr	-	-
9	$Pd(TFA)_2$	42	89	>19:1
10	$[Pd(C_9H_9)Cl]_2$	trace	-	-

^aUnless otherwise noted, the reaction conditions were as follows: **4a** (0.2 mmol), **2a** (0.3 mmol), DCM (2 mL). ^bDetermined by 1H NMR using dibromomethane as an internal standard. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

Table S8. Screening of the Solvent^a

Entry	Solvent	Yield of 5a (%) ^b	<i>ee</i> of 5a (%) ^c	dr of $\mathbf{5a}^d$
1	DCM	50	90	>19:1
2	THF	52	90	>19:1
3	Et ₂ O	52	88	>19:1
4	Toluene	trace	-	-
5	DMF	nr	-	-
6	Hexane	nr	-	-
7	CH ₃ CN	46	87	-
8	DMSO	24	90	>19:1
9	1,4-Dioxane	49	90	>19:1
10	DCE	54	86	>19:1
11	2-Me-THF	20	86	>19:1

^aUnless otherwise noted, the reaction conditions were as follows: **4a** (0.2 mmol), **2a** (0.3 mmol), solvent (2 mL). ^bDetermined by 1H NMR using dibromomethane as an internal standard. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

O NEt ₂ + 4a	H ₂ Si 2a	PdCl(2-Me-C ₃ H ₄) ₂] ₂ (1.5 mol%) L 34 (7.5 mol%) THF, Temp, 18 h	H	
Entry	Temp (°C)	Yield of $5a (\%)^b$	<i>ee</i> of 5a (%) ^c	dr of $\mathbf{5a}^d$
1	50	26	90	>19:1
2	25	52	90	>19:1
3	0	52	92	>19:1
4	-20	48	92	>19:1
5	-40	52	92	>19:1

Table S9. Screening of the Temperature in the reaction^a

^aUnless otherwise noted, the reaction conditions were as follows: **4a** (0.2 mmol), **2a** (0.3 mmol), THF (2 mL). ^bDetermined by 1H NMR using dibromomethane as an internal standard. ^cDetermined by HPLC. ^dDetermined by ¹H NMR.

Table S10. Screening of the Additives^a

G O O 4a	$r_{NEt_2} + r_{Si} + r_{Si}$	[PdCl(2-Me-C ₃ H ₄) ₂] ₂ (1.5 mol%) L34 (7.5 mol%) Additive (5.0 mol%) THF, 0 ℃, 18 h		$ \begin{array}{c} $
Entry	Additive	Yield of 5a $(\%)^b$	<i>ee</i> of 5a (%) ^c	dr of $\mathbf{5a}^d$
1	None	52	92	>19:1
2	$(C_{6}F_{5})_{3}B$	32	92	>19:1
3	NaBF ₄	52	87	>19:1
4	4(3,5-2(CF ₃)Ph)BN	a 24	90	>19:1
5	NaBPh ₄	28	90	>19:1
6	AgBF ₄	28	80	>19:1
7	NaBEt ₃ H	50	90	>19:1
8	NaBH ₄	26	91	>19:1
9	NaB(OCOCH ₃) ₃ H	40	91	>19:1
10	NEt ₃	40	90	>19:1
11	K ₂ CO ₃	46	91	>19:1
12	CuI	62	95	>19:1
13	CuBr	52	95	>19:1
14	CuCl	56	94	>19:1
15	CuCl ₂	36	93	>19:1
16	Cu(CH ₃ CN) ₄ PF ₄	trace	-	-
17	Cu(OTf) ₂	16	92	>19:1
18	Cu(CH ₃ CN) ₄ BF ₄	trace	-	-
19	NaI	trace	-	-
20	CuI ^e	60	95	>19:1
21	Culf	nr	-	-
22	PdI_{2}^{g}	trace	-	-

^aUnless otherwise noted, the reaction conditions were as follows: **4a** (0.2 mmol), **2a** (0.3 mmol), THF (2 mL). ^bDetermined by 1H NMR using dibromomethane as an internal standard. ^cDetermined by HPLC. ^dDetermined by ¹H NMR. ^dDetermined by ¹H NMR. ^eCuI (3.0 mol%). ^fWithout [PdCl(2-Me-C₃H₄)₂]₂. ^gInstead of [PdCl(2-Me-C₃H₄)₂]₂.

2.3 Asymmetric Synthesis of Silycyclopropanes

General procedure for asymmetric synthesis of silycyclopropanes 3: Under N₂ atmosphere, $Pd_2(dba)_3$ (2.7 mg, 1.5 mol%), L34 (7.8 mg, 6.0 mol%) and 5Å MS (50 mg) were dissolved in 2 mL anhydrous DCM, and stirred at room temperature for 30 min. Cycloprop-2-ene-1-ester 1 (0.2 mmol) was added and stirred for 30 min, then the dihydrosilane 2a (0.26 mmol) was added and stirred at 0 °C for 24 h. The mixture was filtered through celite and the filtrate was concentrated. A portion of the residue was analyzed with ¹H NMR to determine the diastereomeric ratio and recovered. The crude product was purified by column chromatography to give the products 3.

General procedure for asymmetric synthesis of silycyclopropanes 5: Under N₂ atmosphere, $[PdCl(2-Me-C_3H_4)_2]_2$ (1.5 mg, 1.5 mol%), L34 (9.8 mg, 7.5 mol%) and CuI (1.9 mg, 5.0 mol%) were dissolved in 2 mL anhydrous THF, and stirred at room temperature for 20 min. Cycloprop-2-ene-1-carboxamide 4 (0.2 mmol) was added and stirred for 20 min, then the dihydrosilane 2a (0.3 mmol) was added and stirred at 0 °C for 18 h. The mixture was filtered through celite and the filtrate was concentrated. A portion of the residue was analyzed with ¹H NMR to determine the diastereomeric ratio and recovered. The crude product was purified by column chromatography to give the products 5.

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - phenylcyclopropane - 1 - carboxylate (3a): Yellow oil (39.4 mg, 55% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25} = 18.7$ (c = 0.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.41 (m, 2H),

7.34 - 7.20 (m, 4H), 7.18 - 7.07 (m, 7H), 7.06 - 7.00 (m, 2H), 4.11 (d, J = 4.4 Hz, 1H), 3.54 (s, 3H), 1.87 (dd, J = 10.8, 3.2 Hz, 1H), 1.54 (ddd, J = 10.8, 8.4, 4.4 Hz, 1H), 1.44 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 137.0, 135.4, 135.3, 133.8, 133.3, 131.4, 129.9, 129.6, 128.1, 127.9, 127.9, 127.4, 52.8, 33.5, 19.6, 13.9. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₂NaO₂Si: 381.5110, found: 381.5123. HPLC: Chiralpak OX-H and Phenomenex column (hexanes: isopropanol = 95.5:0.5, 0.6 mL/min, 211 nm, 90% *ee*, *dr* = 10:1). tR = 48.770 min (major), tR = 67.476 min (minor).

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (*p* - tolyl) cyclopropane - 1 - carboxylate (3b): Yellow oil (25.3 mg, 34% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25} = 16.2$ (c = 0.63, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.49 - 7.41 (m, 1H),

7.36 - 7.10 (m, 8H), 6.96 - 6.83 (m, 4H), 4.13 (d, J = 4.4 Hz, 1H), 3.54 (s, 3H), 2.25 (s, 3H), 1.84 (dd, J = 10.8, 3.2 Hz, 1H), 1.57 - 1.46 (m, 1H), 1.41 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 137.0, 135.4, 135.3, 134.0, 133.9, 133.4, 131.2, 129.8, 129.5, 128.7, 128.1, 127.8, 52.8, 33.1, 21.3, 19.6, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₄H₂₄NaO₂Si: 395.1438, found: 395.1447. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 90% *ee*, *dr* = 13:1). tR = 14.519 min (major), tR = 21.737 min (minor).

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (4 - methoxyphenyl) cyclopropane - 1 - carboxylate (3c): Yellow oil (48.2 mg, 62% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{D}^{25} = 14.1$ (c = 0.60, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.39 (m, 2H), 7.35 - 7.25 (m, 3H), 7.23 - 7.12 (m, 5H), 6.99 - 6.89 (m, 2H), 6.72 - 6.55 (m, 2H), 4.15 (d, J = 4.8 Hz, 1H), 3.71 (s, 3H), 3.54 (s, 3H), 1.85 (dd, J = 10.8, 3.2 Hz, 1H), 1.50 (ddd, J = 10.8, 8.4, 4.0 Hz, 1H), 1.41 (dd, J = 8.4, 3.2 Hz, 1H). 13C NMR (100 MHz, CDC13) δ 175.6, 158.8, 135.4, 135.2, 133.9, 133.4, 132.3, 129.9, 129.6, 129.2, 128.1, 127.8, 113.3, 55.3, 52.8, 32.7, 19.7, 14.1. HRMS (ESI) m/z: [M+Na]+ calculated for C₂₄H₂₄NaO₃Si: 411.1387, found: 411.1400. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 89% *ee*, *dr* = 9:1). tR = 25.447 min (major), tR = 40.328 min (minor).

Methyl (1*S*, 2*S*) - 1 - (4 - chlorophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3d): Yellow oil (36.9 mg, 47% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{D}^{25} = 75.1$ (c = 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45 -

7.40 (m, 2H), 7.35 - 7.21 (m, 4H), 7.19 - 7.14 (m, 4H), 7.03 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 4.18 (d, J = 4.4 Hz, 1H), 3.55 (s, 3H), 1.88 (dd, J = 10.7, 3.6 Hz, 1H), 1.57 - 1.51 (m, 1H), 1.41 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 135.5, 135.4, 135.2, 133.4, 133.3, 132.8, 132.6, 130.0, 129.7, 128.2, 128.1, 127.9, 52.9, 32.8, 19.5, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁ClNaO₂Si: 415.0892, found: 415.0901. HPLC: Chiralpak Phenomenex column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 94% *ee*, *dr* = 8:1). tR = 13.925 min (major), minor enantiomer tR = 20.578 min (minor).

Methyl (1*S*, 2*S*) - 1 - (4 - bromophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3e): Yellow oil (49.9 mg, 57% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{D}^{25} = 13.4$ (c = 0.54, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 -

7.40 (m, 2H), 7.38 - 7.21 (m, 4H), 7.20 - 7.15 (m, 6H), 6.92 - 6.84 (m, 2H), 4.19 (d, J = 4.0 Hz, 1H), 3.55 (s, 3H), 1.88 (dd, J = 10.8, 3.6 Hz, 1H), 1.53 (ddd, J = 10.8, 8.4, 4.0 Hz, 1H), 1.41 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 136.1,

135.4, 135.2, 133.4, 133.0, 132.8, 131.0, 130.0, 129.7, 128.2, 128.0, 121.5, 52.9, 32.9, 19.5, 14.0. HRMS (ESI) m/z: $[M+Na]^+$ calculated for C₂₃H₂₁BrNaO₂Si: 459.0386, found: 459.0395. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 92% *ee*, *dr* = 5:1). tR = 15.069 min (major), tR = 22.796 min (minor).

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (4 - fluorophenyl) cyclopropane - 1 - carboxylate (3f): Yellow oil (36.1 mg, 48% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{D}^{25} = 12.7$ (c = 0.61, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 -

7.41 (m, 2H), 7.36 - 7.26 (m, 3H), 7.24 - 7.10 (m, 5H), 7.02 - 6.94 (m, 2H), 6.83 - 6.70 (m, 2H), 4.16 (d, J = 4.4 Hz, 1H), 3.55 (s, 3H), 1.88 (dd, J = 10.8, 3.2 Hz, 1H), 1.57 - 1.46 (m, 1H), 1.41 (dd, J = 8.4, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 162.1 (d, J = 244.5 Hz), 135.4, 135.12, 133.5, 133.0 (d, J = 5.8 Hz), 132.8 (d, J = 5.3 Hz),132.8, 130.0, 129.7, 128.2, 127.9, 114.8 (d, J = 21.5 Hz), 52.8, 32.7, 19.7, 14.0. ¹⁹F NMR (500 MHz, CDCl₃) δ -108.2 - -129.0 (m). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁FNaO₂Si: 399.1187, found: 399.1195. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 94% *ee*, *dr* = 3:1). tR = 15.418 min (major), tR = 21.965 min (minor).

Ethyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (4 - (trifluoromethyl) phenyl) cyclopropane - 1 - carboxylate (3g): Yellow oil (22.0 mg, 25% yield), purified by column chromatography (Al₂O₃, PE/EA=25:1). $[\alpha]_{\rm p}^{25}$ = 19.1 (c = 0.79, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.46 - 7.38 (m, 2H), 7.35 - 7.25 (m, 5H), 7.24 - 7.19 (m, 1H), 7.13 - 7.05 (m, 6H), 4.23 (d, J = 3.6 Hz, 1H), 4.11 - 3.94 (m, 2H), 1.91 (dd, J = 10.8, 3.2 Hz, 1H), 1.55 (ddd, J = 10.8, 8.4, 3.6 Hz, 1H), 1.46 (dd, J = 8.4, 3.6 Hz, 1H), 1.08 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 141.0, 135.3, 135.2, 132.9 (d, J = 82.8 Hz), 131.6, 130.0, 129.7, 129.4 (d, J = 32.0 Hz), 128.2, 128.0, 124.7 (q, J = 3.7 Hz), 124.3 (d, J = 270.5 Hz), 61.7, 33.2, 19.1, 14.2, 13.7. ¹⁹F NMR (500 MHz, CDCl₃) δ -62.4. HRMS (ESI) m/z: $[M+Na]^+$ calculated for C₂₅H₂₃F₃NaO₂Si: 463.1312, found: 463.1325. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 92% *ee*, *dr* = 13:1). tR = 12.453 min (major), tR = 15.713 min (minor).

Methyl (1*S*, 2*S*) - 1 - ([1, 1'-biphenyl]-4-yl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3h): Yellow oil (55.6 mg, 64% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25} = 8.4$ (c = 0.42, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56 -

7.48 (m, 2H), 7.47 - 7.41 (m, 2H), 7.41 - 7.24 (m, 9H), 7.18 - 7.03 (m, 6H), 4.26 (d, J = 4.0 Hz, 1H), 3.58 (s, 3H), 1.90 (dd, J = 10.4, 2.8 Hz, 1H), 1.56 (ddd, J = 10.8, 8.4, 4.0 Hz, 1H), 1.48 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 141.0, 140.1, 136.0, 135.4, 135.3, 133.8, 133.0, 131.7, 129.9, 129.5, 128.9, 128.1, 127.9, 127.4, 127.2, 126.6, 52.9, 33.1, 19.5, 14.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₆NaO₂Si: 457.1594, found: 457.1607. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 80% *ee*, *dr* = 10:1). tR = 23.796 min (major), tR = 34.269 min (minor).

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (3 - methoxyphenyl) cyclopropane - 1 - carboxylate (3i): Yellow oil (39.6 mg, 51% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25} = 12.9$ (c = 0.56, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34 -7.28 (m, 2H), 7.22 - 7.14 (m, 3H), 7.09 - 6.98 (m, 5H), 6.89 (t, *J* =

8.0 Hz, 1H), 6.61 - 6.51 (m, 2H), 6.39 (dd, J = 2.8, 1.6 Hz, 1H), 4.00 (d, J = 4.4 Hz, 1H), 3.43 (s, 3H), 3.31 (s, 3H), 1.71 (dd, J = 10.8, 3.2 Hz, 1H), 1.41 (ddd, J = 10.8, 8.4, 4.8 Hz, 1H), 1.31 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 159.1, 138.5, 135.4, 135.2, 133.8, 133.4, 129.9, 129.6, 128.9, 128.1, 128.1, 127.9, 123.6, 116.4, 113.8, 55.0, 52.8, 33.6, 19.7, 13.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₄H₂₄NaO₃Si: 411.1387, found: 411.1412. HPLC: Chiralpak OD-H column (hexanes:

isopropanol = 99:1, 0.6 mL/min, 211 nm, 87% *ee*, dr = 3:1). tR = 25.447 min (major), tR = 40.328 min (minor).

Methyl (1*S*, 2*S*) - 1 - (3 - chlorophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3j): Yellow oil (11.8 mg, 15% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25} = 12.8$ (c = 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 -7.40 (m, 2H), 7.37 - 7.27 (m, 3H), 7.22 - 7.11 (m, 6H), 7.03 (t, *J* =

7.6 Hz, 1H), 6.99 - 6.91 (m, 2H), 4.16 (d, J = 4.4 Hz, 1H), 3.56 (s, 3H), 1.88 (dd, J = 10.7, 3.2 Hz, 1H), 1.56 - 1.50 (m, 1H), 1.43 (dd, J = 8.4, 3.2 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 174.7, 139.0, 135.4, 135.2, 133.7, 133.3, 132.8, 131.6, 130.0, 129.8, 129.6, 129.1, 128.2, 128.0, 127.7, 52.9, 33.1, 19.6, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁ClNaO₂Si: 415.0892, found: 415.0901. HPLC: Chiralpak Phenomenex column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 90% *ee*, *dr* = 5:1). tR = 13.857 min (major), tR = 21.098 min (minor).

Methyl (1*S*, 2*S*) - 1 - (3 - bromophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3k): Yellow oil (13.1 mg, 15% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25}$ = 55.8 (c = 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.33 -7.26 (m, 2H), 7.23 - 7.08 (m, 5H), 7.07 - 6.96 (m, 5H), 6.87 - 6.80

(m, 2H), 4.02 (d, J = 4.4 Hz, 1H), 3.41 (s, 3H), 1.73 (dd, J = 10.8, 3.2 Hz, 1H), 1.43 - 1.36 (m, 1H), 1.28 (dd, J = 8.8, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 139.3, 135.4, 135.2, 134.4, 133.3, 132.8, 130.6, 130.1, 130.0, 129.8, 129.4, 128.3, 128.0, 122.0, 52.9, 33.1, 19.6, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁BrNaO₂Si: 459.0386, found: 459.0401. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 91% *ee*, *dr* = 5:1). tR = 15.923 min (major), tR = 24.372 min (minor).

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (3 - fluorophenyl) cyclopropane - 1 - carboxylate (3l): Yellow oil (34.6 mg, 46% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25} = 23.2$ (c = 0.52, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 -7.40 (m, 2H), 7.36 - 7.26 (m, 3H), 7.23 - 7.14 (m, 4H), 7.05 (td, J =

8.0, 6.0 Hz, 1H), 6.88 - 6.79 (m, 2H), 6.69 (dt, J = 10.0, 1.6 Hz, 1H), 4.16 (d, J = 4.4 Hz, 1H), 3.55 (s, 3H), 1.87 (dd, J = 10.8, 3.2 Hz, 1H), 1.54 (ddd, J = 10.8, 8.4, 4.4 Hz, 1H), 1.43 (dd, J = 8.4, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 162.3 (d, J = 244.3 Hz), 139.4 (d, J = 7.4 Hz), 135.4, 135.2, 133.4, 132.9, 130.0, 129.7, 129.3 (d, J = 8.5 Hz), 128.2, 128.0, 127.0 (d, J = 2.5 Hz), 118.4 (d, J = 21.2 Hz), 114.4 (d, J = 20.9 Hz), 52.9, 33.2 (d, J = 2.1 Hz), 19.6, 14.0. ¹⁹F NMR (500 MHz, CDCl₃) δ -98.5 - 121.9 (m). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁FNaO₂Si: 399.1187, found: 399.1194. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 94% *ee*, *dr* = 7:1). tR = 16.081 min (major), tR = 23.926 min (minor).

Methyl (1*S*, 2*S*) - 1 - (2 - chlorophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3m): Yellow oil (11.8 mg, 15% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{D}^{25} = 15.6$ (c = 0.40, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50

(d, J = 6.4 Hz, 2H), 7.36 - 7.18 (m, 6H), 7.17 - 7.04 (m, 5H), 6.94 (td, J = 7.5, 1.2 Hz, 1H), 4.35 - 4.20 (m, 1H), 3.56 (s, 3H), 1.79 (s, 2H), 1.41 (d, J = 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 135.6, 135.4, 135.3, 134.0, 133.2, 129.9, 129.6, 128.8, 128.1, 127.7, 126.5, 58.6, 52.9, 32.9, 18.6. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁ClNaO₂Si: 415.0892, found: 415.0910. HPLC: Chiralpak Phenomenex column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 85% *ee*, *dr* = 5:1). tR = 15.675 min (major), tR = 18.055 min (minor).

Methyl (1*S*, 2*S*) - 1 - (2 - bromophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3n): Yellow oil (16.6 mg, 19% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{D}^{25} = 24.1$ (c = 0.53, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.51

(d, J = 6.8 Hz, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.37 - 7.19 (m, 5H), 7.15 - 7.07 (m, 3H), 7.05 (td, J = 7.7, 2.0 Hz, 2H), 6.97 (t, J = 7.6 Hz, 1H), 4.33 (d, J = 3.2 Hz, 1H), 3.56 (s, 3H), 1.79 (d, J = 32.8 Hz, 2H), 1.40 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 137.3, 135.4, 135.4, 134.1, 133.2, 132.8, 129.9, 129.5, 129.0, 128.1, 127.9, 127.1, 58.6, 52.9, 35.0, 18.6. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁BrNaO₂Si: 459.0386, found: 459.0394. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 79% *ee*, dr = 5:1). tR = 21.213 min (major), tR = 23.164 min (minor).

Methyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - (2 - fluorophenyl) cyclopropane - 1 - carboxylate (30): Yellow oil (35.3 mg, 47% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{\rm P}^{25} = 1.6$ (c = 1.45, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.49 -

7.38 (m, 2H), 7.34 - 7.19 (m, 4H), 7.18 - 7.10 (m, 5H), 6.92 - 6.80 (m, 3H), 4.20 (t, J = 3.2 Hz, 1H), 3.55 (s, 3H), 1.83 (dd, J = 10.8, 3.6 Hz, 1H), 1.64 (ddd, J = 10.8, 8.8, 4.0 Hz, 1H), 1.41 (dd, J = 8.8, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 162.7 (d, J = 246.7 Hz), 135.3, 135.3, 133.5, 133.0, 131.5 (d, J = 4.1 Hz), 129.9, 129.6, 129.4 (d, J = 8.4 Hz), 128.0, 127.9, 124.9 (d, J = 14.4 Hz), 123.6 (d, J = 3.8 Hz), 115.3 (d, J = 21.5 Hz), 52.9, 28.7 (d, J = 1.9 Hz), 19.5, 13.5. ¹⁹F NMR (500 MHz, CDCl₃) δ -112.19. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁FNaO₂Si: 399.1187, found: 399.1198. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 92% *ee*, *dr* = 4:1). tR = 17.463 min (major), tR = 21.545 min (minor).

Methyl (1*S*, 2*S*) - 1 - (3, 5 - difluorophenyl) - 2 - (diphenylsilyl) cyclopropane - 1 - carboxylate (3p): Yellow oil (9.5 mg, 12% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{p}^{25} = 21.8$ (c = 0.28, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 -7.42 (m, 2H), 7.37 - 7.28 (m, 3H), 7.25 - 7.15 (m, 5H), 6.59 (tt, *J* =

9.2, 2.0 Hz, 1H), 6.55 - 6.49 (m, 2H), 4.21 (d, J = 4.4 Hz, 1H), 3.57 (s, 3H), 1.88 (dd, J = 10.8, 3.2 Hz, 1H), 1.54 (ddd, J = 10.8, 8.8, 4.4 Hz, 1H), 1.42 (dd, J = 8.4, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 141.0, 135.3, 135.2, 132.9 (d, J = 83.4 Hz), 131.6, 130.0, 129.7, 129.4 (d, J = 32.0 Hz), 128.2, 128.0, 125.7, 124.7 (d, J = 3.7 Hz), 124.3 (d, J = 270.5 Hz), 123.0, 61.7, 33.2, 19.1, 14.0 (d, J = 51.6 Hz). ¹⁹F NMR (500 MHz, CDCl₃) δ -110.6 - -110.8 (m). HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₀F₂NaO₂Si: 417.1093, found: 417.1107. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 95% *ee*, *dr* = 4:1). tR = 15.721 min (major), tR = 24.285 min (minor).

Isopropyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1- phenylcyclopropane - 1 - carboxylate (3q): Yellow oil (18.6 mg, 24% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{D}^{25}$ = 27.0 (c = 0.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.41 (m, 2H),

7.37 - 7.21 (m, 4H), 7.19 - 7.10 (m, 5H), 7.10 - 6.98 (m, 4H), 4.94 - 4.83 (m, 1H), 4.11 (d, J = 4.4 Hz, 1H), 1.84 (dd, J = 10.0, 2.8 Hz, 1H), 1.49 (ddd, J = 10.4, 8.4, 4.4 Hz, 1H), 1.42 (dd, J = 8.0, 2.8 Hz, 1H), 1.06 (dd, J = 6.4, 4.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 137.2, 135.4, 135.3, 133.9, 133.5, 131.3, 129.8, 129.5, 128.1, 127.9, 127.8, 127.2, 68.7, 33.8, 21.8, 21.7, 18.8, 13.4. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₅H₂₆NaO₂Si: 409.1594, found: 409.1605. HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 85% *ee*, *dr* = 18:1). tR = 20.603 min (major), tR = 25.370 min (minor).

Benzyl (1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - phenylcyclopropane - 1 - carboxylate (3r): Yellow oil (45.2 mg, 52% yield), purified by column chromatography (Al₂O₃, PE/EA= 25:1). $[\alpha]_{\rm p}^{25}$ = 12.3 (c = 0.92, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.38 (m,

2H), 7.32 - 7.23 (m, 3H), 7.21 - 7.16 (m, 4H), 7.16 - 7.10 (m, 5H), 7.10 - 7.03 (m, 6H), 5.07 (d, J = 12.8 Hz, 1H), 4.95 (d, J = 12.8 Hz, 1H), 4.13 (d, J = 4.8 Hz, 1H), 1.90 (dd, J = 10.4, 3.2 Hz, 1H), 1.54 (ddd, J = 10.8, 8.4, 4.4 Hz, 1H), 1.45 (dd, J = 8.8, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 136.9, 136.3, 135.4, 135.3, 133.7, 133.3, 131.4, 129.9, 129.6, 128.5, 128.1, 128.0, 127.9, 127.9, 127.4, 127.4, 66.8, 33.7, 19.3, 13.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₉H₂₆NaO₂Si: 457.1594, found: 457.1607. HPLC: Chiralpak OD-H column (hexanes: isopropanol = 99:1, 0.6 mL/min, 211 nm, 83% *ee*, *dr* = 15:1). tR = 23.598 min (major), tR = 32.870 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - phenylcyclopropane - 1 - carboxamide (5a): White solid (36.8 mg, 46% yield), mp 69.7 - 71.7 °C, purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25} = 32.6$ (c = 3.51,

CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (tt, J = 6.4, 1.6 Hz, 4H), 7.27 - 7.15 (m, 6H), 7.03 (s, 5H), 4.08 (d, J = 5.2 Hz, 1H), 3.39 (dq, J = 14.0, 7.2 Hz, 1H), 3.29 - 3.07 (m, 3H), 1.69 (dd, J = 8.4, 4.0 Hz, 1H), 1.61 (ddd, J = 10.4, 8.0, 4.8 Hz, 1H), 1.37 (dd, J = 10.4, 3.6 Hz, 1H), 0.98 (t, J = 6.8 Hz, 3H), 0.47 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 138.1, 135.4, 135.3, 134.4, 133.8, 129.5, 129.4, 128.5, 128.2, 127.9, 127.8, 127.8, 126.7, 41.5, 40.0, 35.6, 14.7, 12.7, 12.5, 10.0. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₉NNaOSi: 422.1911, found: 422.1935. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 95% *ee*, *dr* > 19:1). tR = 9.169 min (major), tR = 7.403 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - phenyl - *N*, *N* - dipropylcyclopropane - 1 - carboxamide (5b): Colorless oil (37.6 mg, 44% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25} = 25.7$ (c = 3.18, CHCl₃). ¹H NMR

(400 MHz, CDCl₃) δ 7.46 - 7.39 (m, 4H), 7.34 - 7.22 (m, 6H), 7.14 - 7.08 (m, 5H), 4.14 (d, J = 4.8 Hz, 1H), 3.32 (ddd, J = 15.2, 11.6, 4.0 Hz, 1H), 3.20 (t, J = 7.6 Hz, 2H), 3.07 (ddd, J = 14.4, 10.4, 5.6 Hz, 1H), 1.77 (dd, J = 8.4, 4.0 Hz, 1H), 1.69 (ddd, J = 10.4, 8.0, 4.8 Hz, 1H), 1.59 - 1.40 (m, 3H), 1.31 - 1.20 (m, 1H), 0.83 (t, J = 7.2 Hz, 3H), 0.56 (d, J = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 138.2, 135.4, 135.3, 134.4, 133.8, 129.5, 129.4, 128.4, 128.1, 127.9, 127.8, 126.8, 49.1, 47.2, 35.7, 20.8, 20.4, 14.8, 11.5, 11.1, 10.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₃₃NNaOSi: 450.2224, found: 450.2254. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 94% *ee*, *dr* > 19:1). tR = 7.964 min (major), tR = 5.670 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diisopropyl - 1 - phenylcyclopropane - 1 - carboxamide (5c): Colorless oil (48.8 mg, 59% yield), purified by column chromatography (Al₂O₃, PE/EA=15:1). $[\alpha]_{\rm p}^{25}$ = 32.2 (c = 4.78, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.40 - 7.29 (m, 4H), 7.26 - 7.12 (m, 6H), 7.02 (s, 5H), 4.37 (hept, J = 6.4 Hz, 1H), 4.11 (d, J = 4.8 Hz, 1H), 3.08 (hept, J = 6.8 Hz, 1H), 1.65 (dd, J = 8.0, 3.6 Hz, 1H), 1.59 (ddd, J = 10.0, 8.0, 4.8 Hz, 1H), 1.38 (dd, J = 10.0, 3.6 Hz, 1H), 1.32 (d, J = 6.8 Hz, 3H), 1.25 (d, J = 6.4 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.25 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 138.1, 135.4, 135.3, 134.5, 133.8, 129.5, 129.3, 128.2, 128.1, 127.9, 127.7, 126.6, 48.6, 45.8, 36.8, 21.0, 20.6, 19.4, 18.9, 14.2, 9.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₈H₃₃NNaOSi: 450.2224, found: 450.2248. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 97% *ee*, *dr* > 19:1). tR = 5.042 min (major), tR = 3.969 min (minor).

((1*S*, 2*S*) - 2 - (diphenylsilyl) - 1 - phenylcyclopropyl) (pyrrolidin - 1 - yl) methanone (5d): Colorless oil (11.9 mg, 15% yield), purified by column chromatography (Al₂O₃, PE/EA=10:1). $[\alpha]_{p}^{25} = 15.8$ (c = 1.88, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47

- 7.38 (m, 4H), 7.35 - 7.24 (m, 6H), 7.16 - 7.03 (m, 5H), 4.14 (d, J = 5.2 Hz, 1H), 3.57 - 3.26 (m, 3H), 2.75 (dt, J = 10.8, 6.8 Hz, 1H), 1.90 - 1.56 (m, 6H), 1.45 (dd, J = 10.4, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 137.5, 135.4, 135.4, 134.4, 133.8, 129.5, 129.5, 129.1, 128.1, 127.9, 127.8, 126.8, 46.8, 36.3, 26.2, 24.0, 14.8, 9.7. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₇NNaOSi: 420.1754, found: 420.1765. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 93% *ee*, dr >19:1). tR = 25.723 min (major), tR = 16.119 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - (*p*- tolyl) cyclopropane - 1 - carboxamide (5e): White solid (33.1 mg, 40% yield), mp 91.4 - 94.9 °C, purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25}$ = 33.1 (c = 2.75, CHCl₃). ¹H NMR

(400 MHz, CDCl₃) δ 7.49 - 7.40 (m, 4H), 7.34 - 7.21 (m, 6H), 7.00 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 7.6 Hz, 2H), 4.17 (d, J = 4.8 Hz, 1H), 3.44 (dq, J = 14.4, 7.2 Hz, 1H), 3.33 - 3.13 (m, 3H), 2.26 (s, 3H), 1.72 (dd, J = 8.4, 4.0 Hz, 1H), 1.64 (ddd, J = 10.8, 8.4, 5.2 Hz, 1H), 1.43 (dd, J = 10.4, 4.0 Hz, 1H), 1.05 (t, J = 6.8 Hz, 3H), 0.58 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 136.3, 135.4, 135.4, 135.0, 134.5, 133.9, 129.4, 129.4, 128.8, 128.3, 127.9, 127.7, 41.5, 39.9, 35.3, 21.2, 14.6, 12.8, 12.5, 9.9. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₇H₃₁NNaOSi: 436.2067, found: 436.2085. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 92% *ee*, *dr* > 19:1). tR = 7.001 min (major), tR = 5.838 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - (4 - methoxyphenyl)cyclopropane -1- carboxamide (5f): Colorless oil (38.7 mg, 45% yield), purified by column chromatography

(Al₂O₃, PE/EA= 15:1). $[\alpha]_{D}^{25}$ = 33.7 (c = 5.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.33 (m, 4H), 7.27 - 7.14 (m, 6H), 6.94 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 4.11 (d, J = 4.8 Hz, 1H), 3.66 (s, 3H), 3.46 - 3.33 (m, 1H), 3.29 - 3.06 (m, 3H), 1.63 (dd, J = 8.4, 4.0 Hz, 1H), 1.55 (ddd, J = 10.4, 8.0, 4.8 Hz, 1H), 1.36 (dd, J = 10.4, 3.6 Hz, 1H), 0.97 (t, J = 7.2 Hz, 3H), 0.51 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl3) δ 172.3, 158.4, 135.4, 135.3, 134.5, 133.9, 130.1, 129.6, 129.5, 129.4, 127.9, 127.8, 113.5, 55.3, 41.5, 40.0, 34.8, 14.8, 12.9, 12.5, 9.8. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₇H₃₂NO₂Si: 430.2197, found: 430.1917. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 92% *ee*, *dr* > 19:1). tR = 10.230 min (major), tR = 7.138 min (minor).

(1*S*, 2*S*) - 1 - (4 - chlorophenyl) - 2 - (diphenylsilyl) - *N*, *N* - diethylcyclopropane - 1 - carboxamide (5g): White Solid (35.6 mg, 41% yield), mp 139.2 - 145.5 °C, purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25} = 16.0$ (c = 4.46,

CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.30 (m, 4H), 7.27 - 7.15 (m, 6H), 6.98 - 6.90 (m, 4H), 4.15 (d, J = 4.4 Hz, 1H), 3.41 - 3.27 (m, 1H), 3.26 - 3.03 (m, 3H), 1.66 (dd, J = 8.0, 3.6 Hz, 1H), 1.60 (ddd, J = 10.0, 8.4, 4.4 Hz, 1H), 1.40 (dd, J = 10.0, 3.6 Hz, 1H), 0.97 (t, J = 7.2 Hz, 3H), 0.54 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 136.8, 135.4, 135.2, 133.9, 133.4, 132.6, 129.7, 129.6, 129.6, 128.3, 128.0, 127.9, 41.5, 40.0, 35.0, 14.9, 12.9, 12.5, 10.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₈CINNaOSi: 456.1521, found: 456.1559. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 95% *ee*, *dr* > 19:1). tR = 8.381 min (major), tR = 6.627 min (minor).

(1*S*, 2*S*) - 1 - (4 - bromophenyl) - 2 - (diphenylsilyl) - *N*, *N* - diethylcyclopropane - 1 - carboxamide (5h): Colorless oil (44.0 mg, 46% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{\rm p}^{25}$ = 41.0 (c = 3.89, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.30 (m, 4H), 7.26 - 7.16 (m, 6H), 7.10 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 4.16 (d, J = 4.8 Hz, 1H), 3.42 - 3.26 (m, 1H), 3.23 - 3.06 (m, 3H), 1.65 (dd, J = 8.4, 4.0 Hz, 1H), 1.59 (ddd, J = 10.0, 8.0, 4.4 Hz, 1H), 1.40 (dd, J = 10.4, 4.0 Hz, 1H), 0.97 (t, J = 7.2 Hz, 3H), 0.54 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 137.3, 135.3, 135.2, 133.9, 133.4, 131.2, 130.0, 129.6, 129.5, 128.0, 127.9, 120.7, 41.5, 40.0, 35.1, 14.8, 12.9, 12.4, 10.1. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₉BrNOSi: 478.1196, found: 478.1222. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 92% *ee*, *dr* > 19:1). tR = 6.923 min (major), tR = 5.877 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - (4fluorophenyl) cyclopropane-1-carboxamide (5i): Colorless oil (30.1 mg, 36% yield), purified by column chromatography (Al₂O₃, PE/EA=15:1). $[\alpha]_{\rm p}^{25}$ = 31.4 (c = 2.32, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.40 - 7.33 (m, 4H), 7.29 - 7.18 (m, 6H), 7.05 - 6.89 (m, 2H), 6.75 - 6.56 (m, 2H), 4.12 (d, *J* = 4.8 Hz, 1H), 3.37 (dt, *J* = 14.8, 7.6 Hz, 1H), 3.28 - 3.07 (m, 3H), 1.66 (dd, *J* = 8.4, 4.0 Hz, 1H), 1.59 (ddd, *J* = 10.4, 8.0, 4.8 Hz, 1H), 1.40 (dd, *J* = 10.4, 3.6 Hz, 1H), 0.97 (t, *J* = 6.8 Hz, 3H), 0.51 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 161.7 (d, *J* = 244.3 Hz), 135.4, 135.3, 133.9 (d, *J* = 3.4 Hz), 133.8 (d, *J* = 50.9 Hz), 130.1, 130.0, 129.6, 129.5, 128.0, 127.9, 115.0 (d, *J* = 21.6 Hz), 41.5, 40.0, 34.9, 15.0, 12.9, 12.5, 9.9. ¹⁹F NMR (500 MHz, CDCl₃) δ -115.7 - -115.8 (m). HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₉FNOSi: 418.1997, found: 418.2181. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 95% *ee*, *dr* > 19:1). tR = 7.371 min (major), tR = 5.907 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - (4 - (trifluoromethyl) phenyl) cyclopropane-1-carboxamide (5j): Colorless oil (42.1 mg, 45% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{D}^{25} = 64.6$ (c = 1.40, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.30 (m, 2H), 7.30 - 7.25 (m, 3H), 7.25 - 7.19 (m, 5H), 7.18 - 7.12 (m, 2H), 7.12 - 7.03 (m, 2H), 4.18 (d, *J* = 4.4 Hz, 1H), 3.38 - 3.22 (m, 2H), 3.21 - 3.08 (m, 2H), 1.75 (dd, *J* = 8.4, 4.4 Hz, 1H), 1.65 (ddd, *J* = 10.4, 8.0, 4.4 Hz, 1H), 1.46 (dd, *J* = 10.4, 4.0 Hz, 1H), 0.98 (t, *J* = 7.2 Hz, 3H), 0.51 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 124.99 (q, *J* = 3.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 142.2, 135.2, 135.0, 133.5, 133.1, 129.6, 129.5, 128.8 (d, *J* = 32.4 Hz), 128.5, 128.0, 127.8, 125.0 (q, *J* = 3.6 Hz), 124.11 (d, *J* = 270.5 Hz)41.4, 39.9, 35.3, 14.9, 12.8, 12.4, 10.2. ¹⁹F NMR (500 MHz, CDCl₃) δ -62.5. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₇H₂₉F₃NOSi: 468.1965, found: 468.2119. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 96% *ee*, *dr* > 19:1). tR = 5.789 min (major), tR = 5.074 min (minor).

(1*S*, 2*S*) - 1 - (4 - (tert - butyl) phenyl) - 2 - (diphenylsilyl) - *N*, *N* - diethylcyclopropane - 1 - carboxamide (5k): Colorless oil (44.7 mg, 49% yield), purified by column chromatography (Al₂O₃, PE/EA=15:1). $[\alpha]_{D}^{25}$ = 39.9 (c = 4.47, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.42 - 7.38 (m, 2H), 7.37 - 7.33 (m, 2H), 7.31 - 7.19 (m, 6H), 7.10 - 7.05 (m, 2H), 7.00 - 6.94 (m, 2H), 4.23 (d, *J* = 4.8 Hz, 1H), 3.50 - 3.38 (m, 1H), 3.37 - 3.14 (m, 3H), 1.74 (dd, *J* = 8.0, 3.6 Hz, 1H), 1.65 (ddd, *J* = 10.4, 8.0, 4.8 Hz, 1H), 1.43 (dd, *J* = 10.4, 4.0 Hz, 1H), 1.27 (s, 9H), 1.05 (t, *J* = 7.2 Hz, 3H), 0.53 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 149.6, 135.4, 135.3, 134.8, 134.4, 134.0, 129.4, 129.3, 128.1, 127.8, 127.7, 124.9, 41.6, 40.0, 35.0, 34.5, 31.5, 20.0, 14.8, 14.0, 12.6, 12.5, 9.8. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₀H₃₇NNaOSi: 478.2537, found: 478.2569. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 92% *ee*, *dr* > 19:1). tR = 7.276 min (major), tR = 4.618 min (minor).

(1*S*, 2*S*) - 1 - ([1, 1'- biphenyl] - 4 - yl) - 2 - (diphenylsilyl) -*N*, *N*-diethylcyclopropane-1-carboxamide (5l): Colorless oil (33.3 mg, 35% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{D}^{25}$ = 34.3 (c = 4.36, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.41 (m, 2H), 7.39 - 7.32 (m, 6H), 7.26 - 7.13 (m, 9H), 7.10 - 7.04 (m, 2H), 4.21 (d, J = 4.4 Hz, 1H), 3.39 (dt, J = 14.4, 7.6 Hz, 1H), 3.29 - 3.10 (m, 3H), 1.73 (dd, J = 8.0, 4.0 Hz, 1H), 1.64 (ddd, J = 10.8, 8.4, 4.8 Hz, 1H), 1.42 (dd, J = 10.4, 4.0 Hz, 1H), 0.99 (t, J = 7.2 Hz, 3H), 0.53 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 140.7, 139.3, 137.2, 135.4, 135.3, 134.2, 133.8, 129.5, 129.4, 128.9, 128.8, 127.9, 127.8, 127.4, 127.0, 126.7, 41.60, 40.02, 35.24, 14.88, 12.85, 12.51, 10.15. HRMS (APCI) m/z: [M+Na]⁺ calculated for C₃₂H₃₃NNaOSi: 498.2224, found: 498.2470. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 94% *ee*, dr > 19:1). tR = 6.617 min (major), tR = 5.825 min (minor).

(1*S*, 2*S*) -2-(diphenylsilyl)-*N*,*N*-diethyl-1-(3-methoxyphenyl) cyclopropane-1-carboxamide (5m): Colorless oil (27.5 mg, 32% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25}$ = 39.9 (c = 4.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.35 (m, 4H), 7.28 - 7.14 (m, 6H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.66

(d, J = 7.6 Hz, 1H), 6.60 (dd, J = 8.0, 2.4 Hz, 1H), 6.52 (t, J = 2.0 Hz, 1H), 4.09 (d, J = 4.8 Hz, 1H), 3.45 - 3.31 (m, 4H), 3.25 - 3.15 (m, 3H), 1.68 (dd, J = 8.0, 3.6 Hz, 1H), 1.60 (ddd, J = 10.4, 8.0, 5.2 Hz, 1H), 1.37 (dd, J = 10.4, 4.0 Hz, 1H), 0.98 (t, J = 6.8 Hz, 3H), 0.54 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 159.4, 139.6, 135.4, 135.3, 134.5, 133.9, 129.5, 129.4, 129.1, 127.9, 127.8, 120.4, 113.6, 113.4, 55.0, 41.6, 40.1, 35.6, 14.8, 12.9, 12.5, 9.8. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₇H₃₂NO₂Si: 430.2197, found: 430.1917. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 94% *ee*, *dr* > 19:1). tR = 9.010 min (major), tR = 8.117 min (minor).

(1*S*, 2*S*) - 1 - (3 - chlorophenyl) - 2 - (diphenylsilyl) - *N*, *N* - diethylcyclopropane - 1 - carboxamide (5n): White Solid (35.6 mg, 41% yield), mp 137.8 - 141.1 °C, purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25}$ = 35.3 (c = 2.56, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.38 (m, 4H), 7.36

- 7.22 (m, 6H), 7.14 - 7.07 (m, 1H), 7.05 - 6.92 (m, 3H), 4.23 (d, J = 4.8 Hz, 1H), 3.47 - 3.36 (m, 1H), 3.36 - 3.13 (m, 3H), 1.75 - 1.65 (m, 2H), 1.48 (dd, J = 9.6, 3.2 Hz, 1H), 1.05 (t, J = 7.2 Hz, 3H), 0.61 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 140.3, 135.4, 135.2, 134.1, 133.9, 133.3, 129.7, 129.6, 129.4, 128.5, 128.0, 127.9, 127.0, 126.8, 41.5, 40.0, 35.3, 15.0, 12.9, 12.4, 10.2. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₈ClNNaOSi: 456.1521, found: 456.1546. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 96% *ee*, *dr* > 19:1). tR = 6.723 min (major), tR = 5.991 min (minor).

(1*S*, 2*S*) - 1 - (3 - bromophenyl) - 2 - (diphenylsilyl) - *N*, *N* -diethylcyclopropane-1-carboxamide (50): Colorless oil (35.4 mg, 37% yield), purified by column chromatography (Al₂O₃, PE/EA=15:1). $[\alpha]_{p}^{25}$ = 37.4 (c = 1.91, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.31 (m, 4H), 7.27 - 7.16 (m, 7H), 7.10 (t, *J* = 1.2

Hz, 1H), 7.01 (dt, J = 7.6, 1.2 Hz, 1H), 6.90 (t, J = 8.0 Hz, 1H), 4.16 (d, J = 4.4 Hz, 1H), 3.33 (dt, J = 14.4, 7.2 Hz, 1H), 3.26 - 3.09 (m, 3H), 1.71 - 1.54 (m, 2H), 1.40 (dd, J = 9.6, 3.6 Hz, 1H), 0.98 (t, J = 6.8 Hz, 3H), 0.54 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 140.6, 135.4, 135.2, 133.8, 133.3, 131.4, 130.0, 129.7, 129.7, 129.7, 128.0, 127.9, 127.3, 122.4, 41.5, 40.0, 35.2, 15.0, 12.9, 12.4, 10.2. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₉BrNOSi: 478.1196, found: 478.1203. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 95% *ee*, *dr* > 19:1). tR = 8.478 min (major), tR = 7.427 min (minor)

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N*- diethyl - 1 - (3-fluorophenyl) cyclopropane-1-carboxamide (5p): Colorless oil (25.1 mg, 30% yield), purified by column chromatography (Al₂O₃, PE/EA=15:1). $[\alpha]_{p}^{25} = 5.0$ (c = 1.24, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.30 (m, 4H), 7.26 - 7.15 (m, 6H), 6.99 (td, *J* = 8.0, 6.0 Hz, 1H),

6.84 (dt, J = 7.6, 1.6 Hz, 1H), 6.75 (td, J = 8.4, 2.8 Hz, 1H), 6.68 (dt, J = 10.0, 2.0 Hz,

1H), 4.15 (d, J = 4.4 Hz, 1H), 3.36 (dq, J = 14.4, 7.2 Hz, 1H), 3.26 - 3.06 (m, 3H), 1.73 - 1.51 (m, 2H), 1.40 (dd, J = 9.6, 3.2 Hz, 1H), 0.98 (t, J = 6.8 Hz, 3H), 0.53 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 162.7 (d, J = 244.4 Hz), 140.8 (d, J = 7.6 Hz), 135.4, 135.3, 134.3 (d, J = 6.6 Hz), 134.0, 133.5, 129.7 (d, J = 8.7 Hz), 129.6 (d, J = 7.8 Hz), 128.0, 127.9, 124.2 (d, J = 2.7 Hz), 115.3 (d, J = 21.9 Hz), 113.8 (d, J = 21.0 Hz), 41.6, 40.0, 35.3 (d, J = 2.2 Hz), 15.1, 12.8, 12.5, 10.3. ¹⁹F NMR (500 MHz, CDCl₃) δ -99.24 - -136.02 (m). HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₉FNOSi: 418.1997, found: 418.2119. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 96% *ee*, *dr* > 19:1). tR = 7.701 min (major), tR = 6.795 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - (3 - (trifluoromethyl) phenyl)cyclopropane-1-carboxamide (5q): Colorless oil (40.2 mg, 43% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25} = 18.1$ (c = 0.90, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.33 (m, 2H), 7.32

- 7.29 (m, 3H), 7.26 - 7.20 (m, 5H), 7.20 - 7.11 (m, 4H), 4.13 (d, J = 4.8 Hz, 1H), 3.35 (dq, J = 14.4, 6.8 Hz, 1H), 3.22 (q, J = 6.8 Hz, 2H), 3.11 (dq, J = 14.0, 6.8 Hz, 1H), 1.74 (dd, J = 8.4, 4.0 Hz, 1H), 1.66 (ddd, J = 10.0, 8.0, 4.8 Hz, 1H), 1.46 (dd, J = 10.4, 4.0 Hz, 1H), 0.98 (t, J = 7.2 Hz, 3H), 0.48 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 139.3, 135.3, 135.1, 133.4 (d, J = 58.2 Hz), 131.9, 130.6 (d, J = 32.1 Hz), 129.7, 129.7, 128.7, 128.0, 127.9, 125.0 (d, J = 3.7 Hz), 124.0 (d, J = 270.6 Hz), 123.6 (d, J = 3.7 Hz), 41.5, 40.0, 35.3, 15.0, 12.8, 12.4, 10.2. ¹⁹F NMR (500 MHz, CDCl₃) δ -62.59 (d, J = 70.0 Hz). HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₇H₂₉F₃NOSi: 468.1965, found: 468.1627. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 97% *ee*, *dr* > 19:1). tR = 6.589 min (major), tR = 6.019 min (minor).

(1*S*, 2*S*) - 1 - (2 - bromophenyl) - 2 - (diphenylsilyl) - *N*, *N* -diethylcyclopropane-1-carboxamide (5r): Colorless oil (55.5 mg, 58% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{\rm p}^{25}$ = 60.3 (c =5.17, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.45 - 7.36 (m, 3H), 7.27 - 7.23 (m, 1H), 7.22 - 7.19 (m, 2H), 7.18 - 7.10 (m, 5H), 6.97 (dtd, J = 14.0, 7.2, 2.0 Hz, 2H), 6.88 (dd, J = 7.6, 2.4 Hz, 1H), 4.11 (d, J = 3.6 Hz, 1H), 3.41 - 3.04 (m, 3H), 2.92 - 2.68 (m, 1H), 2.17 (ddd, J = 11.2, 8.0, 3.6 Hz, 1H), 1.59 (dd, J = 8.0, 4.0 Hz, 1H), 1.40 (dd, J = 10.8, 3.6 Hz, 1H), 1.02 (t, J = 7.2 Hz, 3H), 0.28 (t, J = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 171.3, 139.0, 135.4, 135.4, 134.2, 133.9, 133.5, 130.7, 130.0, 129.6, 129.4, 128.4, 128.1, 127.8, 127.1, 42.4, 41.8, 36.5, 17.6, 12.7, 12.4, 9.8. HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₉BrNOSi: 478.1196, found: 478.1292. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 81% *ee*, *dr* > 19:1). tR = 11.338 min (major), tR = 9.600 min (minor).

(1*S*, 2*S*) - 2 - (diphenylsilyl) - *N*, *N* - diethyl - 1 - (2 - fluorophenyl) cyclopropane-1-carboxamide (5s): Colorless oil (41.8 mg, 50% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25}$ = 27.6 (c = 3.57, CHCl₃). ¹H NMR (400 MHz,

CDCl₃) δ 7.39 - 7.34 (m, 2H), 7.32 - 7.23 (m, 4H), 7.21 - 7.14 (m, 2H), 7.05 (tdd, J = 7.2, 4.8, 1.6 Hz, 1H), 6.99 (td, J = 8.0, 2.0 Hz, 1H), 6.81 (td, J = 7.6, 1.2 Hz, 4H), 6.75 - 6.68 (m, 1H), 4.12 (dd, J = 4.4, 1.2 Hz, 1H), 3.47 (s, 1H), 3.20 (s, 1H), 3.04 (s, 1H), 1.91 - 1.79 (m, 1H), 1.75 (dd, J = 8.0, 4.0 Hz, 2H), 1.38 (dd, J = 10.8, 4.0 Hz, 1H), 0.97 (s, 3H), 0.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 162.2 (d, J = 247.4 Hz), 135.4, 135.3, 134.3, 133.9, 133.5, 130.6 (d, J = 3.6 Hz), 129.5, 128.8 (d, J = 8.6 Hz), 127.9, 127.8, 126.0 (d, J = 12.4 Hz), 123.9 (d, J = 3.2 Hz), 115.9 (d, J = 22.3 Hz), 41.7, 40.6, 31.3, 18.5, 15.9, 15.9, 12.6, 9.2. ¹⁹F NMR (500 MHz, CDCl₃) δ -101.10 - -154.70 (m). HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₉FNOSi: 418.1997, found:

418.2395. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 93% *ee*, *dr* > 19:1). tR = 9.101 min (major), tR = 7.675 min (minor).

(1*S*, 2*S*) - 1 - (3, 5 - difluorophenyl) - 2 - (diphenylsilyl) -*N*, *N* - diethylcyclopropane-1-carboxamide (5t): Colorless oil (19.2 mg, 22% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25}$ = 19.9 (c = 2.82, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (ddd, *J* = 9.2, 7.6, 1.6 Hz, 4H), 7.32 - 7.26 (m, 2H),

7.24 - 7.17 (m, 4H), 6.56 - 6.42 (m, 3H), 4.21 (d, J = 4.4 Hz, 1H), 3.46 - 2.99 (m, 4H), 1.68 - 1.54 (m, 1H), 1.48 - 1.36 (m, 1H), 1.17 (d, J = 6.8 Hz, 1H), 0.99 (t, J = 7.2 Hz, 3H), 0.60 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 162.9 (d, J = 247.3Hz), 162.8 (d, J = 247.1 Hz), 142.3 (t, J = 9.4 Hz), 135.3, 135.2, 133.3 (d, J = 53.1 Hz), 129.8, 129.7, 128.1, 127.9, 111.3 (d, J = 25.4 Hz), 102.5 (d, J = 25.3 Hz), 41.5, 40.1, 35.3, 15.4, 12.9, 12.4, 10.7. ¹⁹F NMR (500 MHz, CDCl₃) δ -109.76 (t, J = 8.5 Hz). HRMS (APCI) m/z: [M+H]⁺ calculated for C₂₆H₂₈F₂NOSi: 436.1903, found: 436.2118. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 96% *ee*, *dr* > 19:1). tR = 6.925 min (major), tR = 6.244 min (minor).

(1*S*, 2*S*)-2-(diphenylsilyl) - *N*, *N* - diethyl - 1 - (naphthalen-1-yl) cyclopropane-1-carboxamide (5u): Colorless oil (38.7 mg, 43% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{D}^{25} = 87.5$ (c = 3.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* =

8.0 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.04 - 6.98 (m, 8H), 6.98 - 6.88 (m, 5H), 3.64 (d, J = 4.4 Hz, 1H), 3.56 - 3.34 (m, 1H), 3.08 - 2.93 (m, 2H), 2.92 - 2.79 (m, 1H), 2.02 (s, 1H), 1.71 - 1.60 (m, 1H), 1.46 - 1.35 (m, 1H), 0.76 (t, J = 7.6 Hz, 3H), 0.00 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 135.4, 135.3, 135.0, 134.3, 134.2, 134.1, 133.7, 129.3, 129.2, 127.9, 127.7, 127.6, 126.3, 126.1, 126.1, 125.9, 124.9, 42.3, 41.4, 34.8, 27.0, 16.3, 12.6, 9.7. HRMS (APCI) m/z: [M+H]⁺ calculated for C₃₀H₃₂NOSi:

450.2248, found: 450.2457. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 78% *ee*, *dr* > 19:1). tR = 7.690 min (major), tR = 9.284 min (minor).

(2-methyl-2-phenylcyclopropyl)diphenylsilane (5v): Colorless oil (22.6 mg, 36% yield), purified by column chromatography (SiO₂, PE = 100%). $[\alpha]_{p}^{25} = 2.3$ (c = 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.39 (m, 4H), 7.23 - 7.15 (m, 6H), 7.12 - 7.05 (m, 4H), 6.99 - 6.92 (m, 1H), 4.73 (d, J = 5.6 Hz, 1H), 1.29 (s, 3H), 1.28 - 1.19 (m, 1H), 0.80 (dd, J = 7.6, 4.0 Hz, 1H), 0.42 (ddd, J = 10.4, 7.6, 5.6 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 148.2, 135.5, 135.3, 135.2, 134.8, 129.7, 129.7, 128.4, 128.2, 128.2, 126.9, 125.9, 25.7, 23.9, 20.2, 11.0. HRMS (APCI) m/z: [M+Na]⁺ calculated for C₂₂H₂₂NaSi: 337.1383, found: 337.3466. After conversion to the corresponding silanol, the enantiomeric excess was determined by HPLC with a Chiralpak Phenomenex column (hexanes: isopropanol = 98:2, 0.6 mL/min, 211 nm, 27% *ee*, dr = 7:1). tR = 33.845 min (major), tR = 27.516 min (minor).

2.4 Asymmetric Synthesis of Silicon-Stereogenic Silycyclopropanes

Under N₂ atmosphere, [PdCl(2-Me-C₃H₄)₂]₂ (1.5 mg, 1.5 mol%), L34 (9.8 mg, 7.5 mol%) and CuI (1.9 mg, 5.0 mol%) were dissolved in 2 mL anhydrous THF, and stirred at room temperature for 20 min. Cycloprop-2-ene-1-carboxamide 4a (0.2 mmol) was added and stirred for 20 min, then the dihydrosilane 2b (0.3 mmol) was added and stirred at 0 °C for 18 h. The mixture was filtered through celite and the filtrate was concentrated. A portion of the residue was analyzed with ¹H NMR to determine the diastereomeric ratio and recovered. The crude product was purified by column chromatography to give the products 6 (30.6 mg, 37% yield, 94% *ee*, 2: 1 *dr*).

N, *N* - diethyl - 1 - phenyl - 2 - (phenyl (*o* - tolyl) silyl) cyclopropane - 1- carboxamide (6): Colorless oil (30.6 mg, 37% yield), purified by column chromatography (Al₂O₃, PE/EA= 15:1). $[\alpha]_{p}^{25} = 22.4$ (c = 1.58, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43

(dd, J = 7.6, 1.6 Hz, 1H), 7.32 - 7.28 (m, 2H), 7.20 - 7.12 (m, 6H), 7.05 (s, 5H), 4.09 (d, J = 4.8 Hz, 1H), 3.38 (dq, J = 14.4, 7.2 Hz, 1H), 3.29 - 3.19 (m, 2H), 3.17 - 3.07 (m, 1H), 2.15 (s, 3H), 1.66 - 1.57 (m, 1H), 1.45 - 1.33 (m, 2H), 0.99 (t, J = 7.1 Hz, 3H), 0.48 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 172.2, 144.5, 138.1, 136.9, 135.2, 134.0, 133.3, 130.0, 129.6, 129.2, 128.4, 128.2, 127.8, 126.7, 125.1, 41.6, 39.3, 36.1, 23.0, 14.9, 12.7, 12.5, 10.1. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₇H₃₁NONaSi: 436.2065, found: 436.2067. UPLC: Chiralpak MD column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 94% *ee*, *dr* = 2:1). tR = 5.137 min (major), tR = 4.473 min (minor).

2.5 Transformation of Chiral Silylcyclopropanes

The procedure was followed the known literature ^[1]. Compound **3a** was obtained from **1a** (0.2 mmol) and **2a** (0.26 mmol) according to standard conditions. After the end of the reaction, DCM was directly removed without isolation. And then 1 mL of CH₃CN and 1 mL of H₂O were added and the mixture was stirred at 30 °C for 40 h. After reaction completed, the reaction was diluted with DCM and quenched with H₂O. The organic layer was separated and washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford **7** (41.1 mg, 53% yield, 91% *ee*, 10: 1 *dr*).

Methyl (1*S*, 2*S*) - 2 - (hydroxydiphenylsilyl) - 1 phenylcyclopropane - 1 - carboxylate (7): Yellow oil (41.1 mg, 53% yield), purified by column chromatography (SiO₂, PE/EA= 20:1). $[\alpha]_{\rm P}^{25}$ = 63.5 (c = 0.85, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ

7.52 - 7.41 (m, 2H), 7.37 - 7.22 (m, 6H), 7.22 - 7.11 (m, 3H), 7.11 - 7.01 (m, 4H), 3.53 (s, 3H), 1.83 (dd, J = 10.8, 3.2 Hz, 1H), 1.65 (dd, J = 8.4, 3.2 Hz, 1H), 1.55 (dd, J = 10.8, 8.4 Hz, 1H), 0.85 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 137.3, 136.0, 135.4, 134.3, 131.2, 130.1, 130.0, 128.3, 128.1, 127.9, 127.8, 52.8, 33.4, 18.3, 15.5. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₂NaO₃Si: 397.1230, found: 397.1235. UPLC: Chiralpak ND column (hexanes: isopropanol = 95:5, 0.6 mL/min, 211 nm, 91% *ee*, *dr* = 10:1). tR = 11.359 min (major), tR = 17.033 min (minor).

2.6 Gram Scale Reaction

Under N₂ atmosphere, [PdCl(2-Me-C₃H₄)₂]₂ (34.5 mg, 1.5 mol%), L34 (225.4 mg, 7.5 mol%) and CuI (43.7 mg, 5.0 mol%) were dissolved in 2 mL anhydrous THF, and stirred at room temperature for 20 min. Cycloprop-2-ene-1-carboxamide 4a (1g, 4.6 mmol) was added and stirred for 20 min, then the dihydrosilane 2a (6.9 mmol) was added and stirred at 0 °C for 18 h. The mixture was filtered through celite and the filtrate was concentrated. A portion of the residue was analyzed with ¹H NMR to determine the diastereomeric ratio and recovered. The crude product was purified by column chromatography to give the products 5a (0.92g, 50% yield, 96% *ee*, >19: 1 *dr*).4.6 mml

2.7 Experimental Mechanistic Study

2.7.1 Kinetic Study for the KIE

Figure S4. NMR analysis for Pd-catalyzed hydrosilylation of 2a and 4a.

2.7.2 The study of possible NLE in the Pd-catalyzed hydrosilylation of 4a

Figure S5. Non-linear effect for Pd-catalyzed hydrosilylation of 2a and 4a.

2.7.3 Comparison of ³¹P NMR of ligand and Pd/L34 complex in the reaction with 4a and 2a.

Figure S6. NMR analysis for Pd-catalyzed hydrosilylation of **2a** and **4a**. **A): L34** (0.015 mmol, 9.8 mg). **B): L34** (0.015 mmol, 9.8 mg) and $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg) were stirred for 20 min. **C): L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg) and CuI (0.01 mmol, 1.9 mg) were stirred for 20 min. **D) L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min. **D) L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min, then **4a** (0.2 mmol, 43.0 mg) was added and stirred for 20 min. **E) L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min, then **2a** (0.3 mmol, 55.3 mg) was added and stirred for 20 min. **F) L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min, then **4a** (0.2 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min, then **4a** (0.3 mmol, 55.3 mg) was added and stirred for 20 min. **F) L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min, then **4a** (0.2

mmol, 43.0 mg) was added and stirred for 20 min, then **2a** (0.3 mmol, 55.3 mg) was added and stirred for 20 min. **G) L34** (0.015 mmol, 9.8 mg), $[PdCl(2-Me-C_3H_4)_2]_2$ (0.003 mmol, 1.5 mg), CuI (0.01 mmol, 1.9 mg) were stirred for 20 min, then **4a** (0.2 mmol, 43.0 mg) was added and stirred for 20 min, then **2a** (0.3 mmol, 55.3 mg) was added and stirred for 12 h.

Figure S7. Circular dichroism spectroscopy analysis with 1.3×10^{-2} mol/L. CD spectra of the Pd-catalyzed hydrosilylation of amide **4a** with the aid of CuI, and the ratio is referred to L34/[Pd]/CuI/1a/4a = 1:0.2:0.7:1:1.5.

Figure S8. circular dichroism spectroscopy analysis with 2.4×10^{-5} mol/L. CD intensity spectra of the Pd-catalyzed hydrosilylation of amide **1a** without the aid of CuI.

Figure S9. circular dichroism spectroscopy analysis with 2.4×10^{-5} mol/L. CD intensity spectra of the Pd-catalyzed hydrosilylation of ester **1a** without the aid of CuI.

2.7.5 UV Spectra

(a)

(b)

Figure S10. UV-Vis spectroscopy analysis with 2.4×10^{-5} mol/L. (a) UV absorption spectra for the Pd-catalyzed hydrosilylation of amide **4a** with the aid of CuI. (b) UV absorption spectra of the Pd-catalyzed hydrosilylation of amide **4a** without CuI. (c) UV absorption spectra of the hydrosilylation of ester **1a**. The ratio of mixture is referred to L34/[Pd]/CuI/1a/4a = 1:0.2:0.7:1:1.5.

2.7.6 Control experiments

(a) The influence of hydrosilanes for the Pd-catalyzed hydrosilylation

Figure S11. The influence of hydrosilanes or cyclopropenes for the Pd-catalyzed hydrosilylation: The direct evidence for the importance of aryl groups on carbonyl cyclopropenes and the different reactivity of hydrosilanes in this work.

3. X-Ray Structure of 5n

Single crystals of **5n** were obtained by recrystallization from PE/DCM. The molecular structure and X-ray diffraction data/refinement of **5n** were shown below.

	Do-da
(1 <i>S</i> , 2 <i>S</i>)- 5n	(CCDC 2157919)
Empirical formula	C ₂₆ H ₂₈ ClNOSi
Formula weight	434.03
Temperature/K	296.15
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	6.7825(10)
b/Å	14.777(2)
c/Å	23.648(4)
$\alpha / ^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2370.1(6)
Z	4
$ ho_{calc}g/cm^3$	1.216
μ/mm^{-1}	0.229
F(000)	920.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.25 to 55.14
Index ranges	$-8 \le h \le 8, -18 \le k \le 19, -30 \le l \le 18$
Reflections collected	14333
Independent reflections	5375 [$R_{int} = 0.0575$, $R_{sigma} = 0.0660$]
Data/restraints/parameters	5375/0/273
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0602, wR_2 = 0.1540$
Final R indexes [all data]	$R_1 = 0.0990, wR_2 = 0.1835$
Largest diff. peak/hole / e Å ⁻³	0.71/-0.25
Flack parameter	0.05(6)

4. NOESY spectrum of 3a-d2

5. References

- [1] Zhao, Z. Y.; Nie, Y. X.; Tang, R. H.; Yin, G. W.; Cao, J.; Xu, Z.; Cui, Y. M.; Zheng,
- Z. J.; Xu, L. W. ACS Catal. 2019, 9, 9110-9116.
- [2] Wang, X. B.; Zheng, Z. J.; Xie, J. L.; Gu, X. W.; Mu, Q. C.; Yin, G. W.; Ye, F.; Xu,
- Z.; Xu, L. W. Angew. Chem. Int. Ed. 2020, 59, 790-797.
- [3] Edwards, A.; Rubin, M. Tetrahedron. 2015, 71, 3237-3246.
- [4] Yuan, Y.; Zheng, Z. J.; Ye, F.; Ma, J. H.; Xu, Z.; Bai, X. F.; Li, Li.; Xu, L. W. Org.
- Chem. Front. 2018, 5, 2759-2764.
- [5] Edwards, A.; Rubin, M. Org. Biomol. Chem. 2016, 14, 2883-2890.
- [6] Rubin, M.; Gevorgyan, V. Synthesis. 2004, 5, 796-800.
- [7] Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2004, 126, 3688-3689.
- [8] Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W, t.; Chu, Y. Y.; Lin, L, l.; Liu, X. H.;

Feng, X. M. J. Am. Chem. Soc. 2010, 132, 8532-8533.

S53

S56

7. HPLC and UPLC Charts

	Time/min	Area	Height	Area%
1	48.770	35847673	528231	94.44
2	67.476	2109211	21212	5.56

	11110/11111	11100	1101811	11100/0
1	15.069	20100783	898846	96.05
2	22.796	825678	18651	3.95

	Time/min	Area	Height	Area%
1	16.187	1998165	81020	52.27
2	23.242	1824894	35547	47.73

			0	
1	12.619	5605040	355400	52.54
2	15.882	5063678	199582	47.46

	Time/min	Area	Height	Area%
1	24.951	7535620	117053	49.00
2	35.474	7842137	40515	51.00

0.030

0.010

10.00 11.00

race-30

13.00 14.00

15.00 16.00

Time/min

17.508

21.435

17.00 18.00

12.00

1

2

Area

2177723

2006996

19.00 20.00 21.00 22.00 23.00 24.00 25.00

26.00 27.00

Height

86039

59345

28.00 29.00

Area%

52.04

47.96

30.00

	Time/min	Area	Height	Area%
1	20.603	22816460	831593	92.69
2	25.370	1800394	55243	7.31

1	22.080	28703466	881365	53.22
2	30.425	25230852	547929	46.78

	Time/min	Area	Height	Area%
1	23.598	74362487	1701934	91.58
2	32.870	6833276	136282	8.42

	Time/min	Area	Height	Area%
1	8.395	6351589	360830	57.04
2	10.595	4782853	230699	42.96

	1 mile, min	1100	mengine	1 Heave
1	7.403	478960	44488	2.58
2	9.169	18097995	1145217	97.42

	Time/min	Area	Height	Area%
1	5.670	642781	69634	2.97
2	7.964	21034281	2.97	97.03

	Time/min	Area	Height	Area%
1	16.450	2487029	90121	49.26
2	26.139	2561552	61767	50.74

	Time/min	Area	Height	Area%
1	16.119	23944759	888832	96.84
2	25.723	781109	20434	3.16

	Time/min	Area	Height	Area%
1	5.838	918022	83369	4.00
2	7.001	22041904	1575152	96.00

	Time/min	Area	Height	Area%
1	7.138	842907	75541	3.90
2	10.230	20794194	1225543	96.10

	Time/min	Area	Height	Area%
1	7.236	5393305	380793	56.32
2	9.343	4183457	241510	43.68

	Time/min	Area	Height	Area%
1	6.627	694828	73050	2.46
2	8.381	27607077	1831836	97.54

	Time/min	Area	Height	Area%
1	5.877	740487	69217	2.93
2	6.923	24536382	1718477	97.07

1	6.216	2365646	177689	46.49
2	7.883	2723087	174443	53.51

	Time/min	Area	Height	Area%
1	5.907	508323	58687	3.30
2	7.371	14889126	1295873	96.70

	Time/min	Area	Height	Area%
1	5.167	105041	12455	48.09
2	5.917	113390	12063	51.91

	Time/min	Area	Height	Area%
1	5.074	264550	30656	1.94
2	5.789	13395413	1216997	98.06

	Time/min	Area	Height	Area%
1	4.685	3443933	333297	48.84
2	7.468	3608184	258860	51.16

	Time/min	Area	Height	Area%
1	4.618	910830	96013	3.76
2	7.276	23323813	1579268	96.24

	Time/min	Area	Height	Area%
1	5.825	264274	29453	3.17
2	6.617	8066563	725140	96.83

	Time/min	Area	Height	Area%
1	8.285	2802610	196161	49.71
2	9.225	2835590	180647	50.29

1	8.117	705222	58319	2.98
2	9.010	22993106	1447552	97.02

020 040 060 080 1.00 120 140 160 180 2.00 220 240 260 280 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.8	80 10

	Time/min	Area	Height	Area%
1	6.157	2034130	176974	50.21
2	6.942	2017210	159639	49.79

	Time/min	Area	Height	Area%
1	5.991	337561	40621	1.89
2	6.723	17478725	1537968	98.11

	Time/min	Area	Height	Area%
1	6.795	98019	10205	2.02
2	7.701	4743671	407415	97.98

	Time/min	Area	Height	Area%
1	5.952	1738458	143186	49.05
2	6.509	1805939	141151	50.95

	Time/min	Area	Height	Area%
1	6.019	66940	6494	1.58
2	6.589	4166339	346568	98.42

	T IIIIC/ IIIIII	Inca	Height	/ lica/0
1	10.786	4192998	207163	52.42
2	12.730	3805638	170490	47.58

	Time/min	Area	Height	Area%
1	9.600	23701483	1481528	90.63
2	11.338	2450665	146637	9.37

	Time/min	Area	Height	Area%
1	7.939	2537438	210983	49.98
2	9.489	2539915	177971	50.02

	Time/min	Area	Height	Area%
1	7.675	367183	33930	3.48
2	9.101	10174063	719013	96.52

	Time/min	Area	Height	Area%
1	6.244	261164	26437	2.00
2	6.925	12805981	1083832	98.00

	Time/min	Area	Height	Area%
1	7.690	11164879	766531	88.99
2	9.284	1381604	85672	11.01

	Time/min	Area	Height	Area%
1	28.464	9094435	586631	49.94
2	35.854	9117072	426852	50.06

	Time/min	Area	Height	Area%
1	11.691	3050223	153456	50.61
2	17.687	2976185	83803	49.39

