Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

4,5-Disubstituted Pyrenes from Phenangermoles

Cheng-gang Qian and Bin Xiao*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

List of Content

1 General information	2
1.1 Reagent information	
1.2 Analytical information	
2. Compounds preparation and characterization	
2.1 Preparation and characterization of diarylacetylene	
2.2 Preparation and characterization of 4,5-diaryl pyrene	
2.3 Preparation and characterization of phenangermoles	
2.4 Preparation and characterization of multisubstitued pyrene	
3. Aromatization reaction	20
4. Conversion of propargyl bromide	
5. Competition experiments	
6. Crystal structure determination of 5b	
6.1 Experimental procedure and crystal data of 5b	
7. Reference	
8. NMR spectra	

1 General information

1.1 Reagent information

All reagents were purchased from commercial source and used without further purification unless otherwise noted. Dry DCE \times TMEDA \times n-BuLi and CD₃Cl were purchased from J&K Scientific Ltd., PdBr₂ were purchased form Sinocompound company. o-chloranil was purchased from TCI. Me₂GeCl₂ was purchased from Alfa, AgPF₆(collidine)₂¹ was synthesized according to reported literatures. Silica gel (300-400 mesh, pH = 6-7, HG/T2354-2010) was purchased from Branch Qingdao Haiyang Chemical Co., Ltd.. Other reagents and solvents were used as received unless otherwise noted.

1.2 Analytical information

 1 H-NMR spectra were recorded on 400 MHz spectrometers. Chemical shifts of 1 H-NMR spectra were reported in parts per million relative to tetramethylsilane ($\delta = 0$). Data for 1 H-NMR were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. 13 C-NMR spectra were recorded on 101 MHz spectrometers. Chemical shifts were reported in parts per million relative to the solvent resonance as the internal standard (CDCl₃, δ 77.2 ppm). Data for 13 C-NMR are reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). High-resolution mass spectra (HRMS) were recorded on an Acquity UPLC-Xevo G2 QTof instrument with ESI mode or Thermo Scientific Q Exactive GC Mass Spectrometer with EI mode unless otherwise stated. Organic solutions were concentrated under reduced pressure on a Buchi rotary evaporator. Chromatographic purification of products was accomplished using column chromatography on silica gel.

2. Compounds preparation and characterization

2.1 Preparation and characterization of diarylacetylene

General Procedure A:

Starting material iodide (2 mmol), $PdCl_2(PPh_3)_2$ (85.9 mg, 0.12 mmol, 6 mol%) and CuI (38.1 mg, 0.2 mmol, 10 mol%) was placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. While stirring, dry THF (10 mL) was added, DBU (1.8 mL, 12 mmol, 6 eq.) and distilled water (14.5 μL , 0.8 mmol, 40 mol%) were then added. Finally trimethylsilylacetylene (144 μL , 1 mmol, 0.5 eq.) was added. The reaction mixture was stirred at room temperature for 18 h, at the end of which the reaction mixture is partitioned in EtOAc and distilled water (20 mL each). The combined organic layers were washed with brine, and then dried over Na_2SO_4 . After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography.

1,2-bis(4-chlorophenyl)ethyne(2c)

According to General Procedure A, starting material: 1-chloro-4-iodobenzene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 81% yield, 199.9 mg, yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 4H), 7.36 – 7.30 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 134.51, 132.80, 128.77, 121.40, 89.17.

HRMS (EI) m/z (M+•) Calcd for C₁₄H₈Cl₂: 246.0003; Found:245.99988.

$$F_3C$$
 \longrightarrow CF_3

1,2-bis(4-(trifluoromethyl)phenyl)ethyne(2f)

According to General Procedure A, starting material: 4-iodobenzotrifluoride, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 75% yield, 236.1 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.58 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 131.98, 130.48 (q, J = 33 Hz), 126.36, 125.39 (q, J = 4 Hz), 123.83 (q, J = 271 Hz), 90.12.

¹⁹F NMR (471 MHz, CDCl₃) δ -62.86.

HRMS (ESI) m/z ([M+Na]⁺) Calcd for C₁₆H₈F₆Na: 337.0428; Found:337.0439.

1,2-bis(3-bromophenyl)ethyne(2g)

According to General Procedure A, starting material: 1-bromo-3-iodobenzene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 73% yield, 244.9 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, J = 1.8 Hz, 2H), 7.49 (ddd, J = 8.1, 2.0, 1.0 Hz, 2H), 7.44 (dt, J = 7.7, 1.3 Hz, 2H), 7.23 (t, J = 7.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 134.37, 131.76, 130.20, 129.85, 124.74, 122.22, 89.00.

HRMS (EI) m/z (M+•) Calcd for C₁₄H₈Br₂: 333.8993; Found: 333.8987.

1-methyl-2-(phenylethynyl)benzene(2j)

1-iodo-2-methylbenzene (0.26 mL, 2 mmol), $Pd(PPh_3)_2Cl_2$ (28.6 mg, 0.04 mmol, 2 mol%) and CuI (15.2 mg, 0.08 mmol, 4 mol%) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The $NEt_3(4.8 \text{ mL})$ was added under argon, then

phenylacetylene (0.22 mL, 2 mmol, 1eq.) was added dropwise at room temperature. The reaction mixture was stirred at room temperature for 2 h, at the end of which the reaction mixture is partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography (petroleum ether) to give 345.6 mg title product as a white oil. 90% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.47 (m, 3H), 7.39 – 7.29 (m, 3H), 7.23 (d, J = 4.5 Hz, 2H), 7.16 (dt, J = 8.6, 4.5 Hz, 1H), 2.52 (d, J = 1.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.23, 131.87, 131.56, 129.52, 128.41, 128.36, 128.23, 125.64, 123.56, 123.03, 93.39, 88.38, 20.84.

HRMS (ESI) m/z ([M+H]⁺) Calcd for $C_{15}H_{13}$: 193.1017; Found:193.1014.

1-bromo-2-(phenylethynyl)benzene(2k)

1-bromo-2-iodobenzene (0.25 mL, 2 mmol), Pd(PPh₃)₂Cl₂ (28.6 mg, 0.04 mmol, 2 mol%) and CuI (15.2 mg, 0.08 mmol, 4 mol%) was placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The NEt₃ (4.8 mL) was added under argon, then phenylacetylene (0.22 mL, 2 mmol, 1eq.) was added dropwise at room temperature. The reaction mixture was stirred at room temperature for 2 h, at the end of which the reaction mixture was partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography (petroleum ether) to give 488.5 mg title product as a white oil. 95% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 4H), 7.35 (dd, J = 4.7, 2.0 Hz, 3H), 7.27 (td, J = 7.6, 1.2 Hz, 1H), 7.16 (td, J = 7.8, 1.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 133.27, 132.49, 131.75, 129.45, 128.71, 128.44, 127.09, 125.68, 125.40, 122.91, 93.96, 88.07.

HRMS (EI) m/z (M+•) Calcd for C₁₄H₉Br: 255.9888; Found: 255.98851.

$$\begin{array}{c} CI \\ \\ \end{array} + N \\ \hline \\ I \end{array} \begin{array}{c} Pd(PPh_3)_2CI_2, CuI \\ \hline \\ 2I \end{array}$$

2-chloro-4-(phenylethynyl)pyridine(2l)

2-chloro-4-iodopyridine (0.4789 g, 2 mmol), Pd(PPh₃)₂Cl₂ (28.6 mg, 0.04 mmol, 2 mol%) and CuI (15.2 mg, 0.08 mmol, 4 mol%) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The NEt₃ (4.8 mL) was added under argon, then phenylacetylene (0.22 mL, 2 mmol, 1eq.) was added dropwise at room temperature. The reaction mixture

was stirred at room temperature for 2 h, at the end of which the reaction mixture was partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography (petroleum ether) to give 312.8 mg title product as a white oil. 73% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 2.3 Hz, 1H), 7.76 (dd, J = 8.3, 2.3 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.41 – 7.35 (m, 3H), 7.33 (dd, J = 8.3, 0.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 152.04, 150.39, 140.93, 131.70, 129.07, 128.52, 123.94, 122.16, 119.39, 93.76, 84.68.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₁₃H₉ClN: 214.0424; Found:214.0424.

2.2 Preparation and characterization of 4,5-diaryl pyrene

General Procedure B:

4,4-dimethyl-4H-phenanthro[4,5-bcd]germole (0.0418g, 0.15 mmol, 1.5 eq.) Diarylacetylene (0.1 mmol) PdBr₂ (0.0014g, 0.5 umol, 5 mol%) AgPF₆(collidine)₂ (0.0050g, 1 umol, 10 mol%) and ochloranil (0.0507g, 0.2 mmol, 2 eq.) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, DCE(0.5 mL) was added. The reaction mixture was stirred at 120°C for 2 h before being quenched with water. The reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography on silica gel.

4,5-diphenylpyrene(3a)

According to General Procedure B, using 1,2-diphenylethyne, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 78% yield, 27.5 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 7.5, 1.2 Hz, 2H), 8.14 (s, 2H), 7.91 (t, J = 7.7 Hz, 2H), 7.84 (dd, J = 7.9, 1.2 Hz, 2H), 7.32 – 7.21 (m, 10H).

¹³C NMR (126 MHz, CDCl₃) δ 139.50, 137.77, 131.37, 131.13, 127.68, 127.41, 126.60, 125.86, 125.05, 124.86, 124.22.

HRMS (ESI) m/z ([M+H]+) Calcd for C₂₈H₁₉: 355.1487; Found:355.1473.

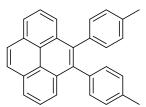
4,5-bis(4-bromophenyl)pyrene(3b)

According to General Procedure B, using 1,2-bis(4-bromophenyl)ethyne, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 87% yield, 44.5 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 7.6, 1.1 Hz, 2H), 8.13 (s, 2H), 7.91 (t, J = 7.7 Hz, 2H), 7.76 (dd, J = 7.9, 1.1 Hz, 2H), 7.52 – 7.43 (m, 4H), 7.16 – 7.09 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 138.18, 136.63, 132.70, 131.23, 131.07, 130.88, 127.53, 126.06, 125.51, 124.65, 124.24, 121.12.

HRMS (EI) m/z (M+•) Calcd for C₂₈H₁₆Br₂: 509.9619; Found:509.96168.


4,5-bis(4-chlorophenyl)pyrene(3c)

According to General Procedure B, using 1,2-bis(4-chlorophenyl)ethyne at 100°C for 12 h, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 99% yield, 42.1 mg, yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 7.7, 1.1 Hz, 2H), 8.14 (s, 2H), 7.91 (t, J = 7.8 Hz, 2H), 7.77 (dd, J = 7.9, 1.1 Hz, 2H), 7.30 (d, J = 8.4 Hz, 4H), 7.21 – 7.14 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 137.73, 136.74, 132.86, 132.36, 131.08, 130.97, 128.27, 127.53, 126.05, 125.48, 124.65, 124.25.

HRMS (EI) m/z (M+•) Calcd for C₂₈H₁₆Cl₂: 422.0629; Found:422.06243.

4,5-di-p-tolylpyrene(3d)

According to General Procedure B, using 1,2-di-p-tolylethyne, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 78% yield, 29.9 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 7.3, 1.3 Hz, 2H), 8.10 (s, 2H), 7.92 – 7.78 (m, 4H), 7.14 (dd, J = 8.0, 1.8 Hz, 4H), 7.09 (dd, J = 7.9, 1.7 Hz, 4H), 2.34 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 137.79, 136.61, 135.97, 131.71, 131.03, 131.00, 128.49, 127.42, 125.83, 124.93 (d, J = 2.2 Hz), 124.22, 21.38.

HRMS (ESI) m/z ([M+H]⁺) Calcd for $C_{30}H_{23}$: 383.1800; Found:383.1816.

4-(4-methoxyphenyl)-5-(4-propylphenyl)pyrene(3e)

According to General Procedure B, using 1-methoxy-4-((4-propylphenyl)ethynyl)benzene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 88% yield, 37.8 mg, yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.17 (m, 2H), 8.14 (s, 2H), 7.94 – 7.86 (m, 4H), 7.20 – 7.13 (m, 4H), 7.10 (d, J = 7.9 Hz, 2H), 6.87 – 6.80 (m, 2H), 3.81 (s, 3H), 2.60 (t, J = 7.6 Hz, 2H), 1.67 (q, J = 7.4 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.06, 140.68, 138.17, 137.45, 136.86, 132.23, 131.92, 131.77, 131.62, 131.01, 130.94, 127.83, 127.41, 127.39, 125.81, 124.95, 124.91, 124.83, 124.23, 113.11, 55.20, 37.72, 24.39, 13.72.

HRMS (EI) m/z (M+•) Calcd for C₃₂H₂₆O: 426.1984; Found:426.19792.

4,5-bis(4-(trifluoromethyl)phenyl)pyrene(3f)

According to General Procedure B, using 1,2-bis(4-(trifluoromethyl)phenyl)ethyne, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 79% yield, 38.6 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 7.6, 1.1 Hz, 2H), 8.17 (s, 2H), 7.95 (t, J = 7.8 Hz, 2H), 7.73 (dd, J = 8.0, 1.1 Hz, 2H), 7.59 (d, J = 7.9 Hz, 4H), 7.38 (d, J = 7.9 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.93, 136.56, 131.39, 131.13, 130.57, 129.26 (q, J = 32 Hz), 127.61, 126.20, 125.79, 125.00 (q, J = 4 Hz), 124.60, 124.15 (q, J = 271 Hz), 124.31.

¹⁹F NMR (471 MHz, CDCl₃) δ -62.46.

HRMS (EI) m/z (M+•) Calcd for $C_{30}H_{16}F_6$: 490.1156; Found: 490.11502.

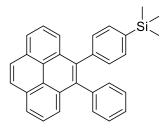
4,5-bis(3-bromophenyl)pyrene(3g)

According to General Procedure B, using 1,2-bis(3-bromophenyl)ethyne, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 42% yield, 21.3 mg, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 7.6, 1.1 Hz, 2H), 8.14 (s, 2H), 7.94 (t, J = 7.8 Hz, 2H), 7.80 (d, J = 7.9 Hz, 2H), 7.53 – 7.39 (m, 4H), 7.28 – 7.15 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 141.24, 141.21, 136.53, 133.97, 133.80, 131.06, 130.70, 130.12, 129.79, 129.67, 129.62, 129.43, 127.54, 126.13, 125.60, 124.73, 124.25, 122.09, 121.94.

HRMS (EI) m/z (M+•) Calcd for C₂₈H₁₆Br₂: 509.9619; Found:509.96155.

4,4,5,5-tetramethyl-2-(4-(5-phenylpyren-4-yl)phenyl)-1,3,2-dioxaborolane(3h)


According to General Procedure B, using 4,4,5,5-tetramethyl-2-(4-(phenylethynyl)phenyl)-1,3,2-dioxaborolane, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 49% yield, 23.3 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.19 (ddd, J = 7.5, 3.4, 1.1 Hz, 2H), 8.12 (s, 2H), 7.96 – 7.72 (m, 6H), 7.37 – 7.25 (m, 7H), 1.36 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 142.66, 139.35, 137.63, 137.56, 134.18, 131.41, 131.25, 131.11, 131.01, 130.60, 127.84, 127.44, 127.43, 126.72, 125.89, 125.11, 125.09, 124.91, 124.89, 124.24, 124.21, 83.82, 24.99.

¹¹B NMR (160 MHz, CDCl₃) δ 30.36.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₃₄H₃₀BO₂: 481.2339; Found:481.2347.

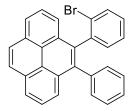
trimethyl(4-(5-phenylpyren-4-yl)phenyl)silane(3i)

According to General Procedure B, using trimethyl(4-(phenylethynyl)phenyl)silane, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 76% yield, 32.3 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, J = 7.4, 1.4 Hz, 2H), 8.11 (s, 2H), 7.93 – 7.79 (m, 4H), 7.46 – 7.37 (m, 2H), 7.33 – 7.17 (m, 7H), 0.32 – 0.22 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 140.85, 140.48, 139.31, 138.77, 138.67, 133.62, 132.42, 132.39, 132.16, 132.02, 131.43, 128.70, 128.43, 127.56, 126.87, 126.06, 125.99, 125.88, 125.24, 0.00.

HRMS (**ESI**) *m/z* ([M+H]⁺) Calcd for C₃₁H₂₇Si: 427.1882; Found:427.1892.

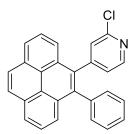

4-phenyl-5-(o-tolyl)pyrene(3j)

According to General Procedure B, using 1-methyl-2-(phenylethynyl)benzene at 100° C for 12 h, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 65% yield, 24.0 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.19 (ddd, J = 7.7, 4.0, 1.1 Hz, 2H), 8.13 (s, 2H), 7.92 – 7.87 (m, 2H), 7.84 (ddd, J = 8.0, 6.2, 1.1 Hz, 1H), 7.64 (dt, J = 7.9, 1.4 Hz, 1H), 7.33 – 7.23 (m, 5H), 7.19 – 7.09 (m, 4H), 2.00 (d, J = 1.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.47, 138.94, 137.54, 137.20, 136.81, 131.57, 131.49, 131.37, 131.15, 131.05, 130.86, 129.62, 129.43, 127.78, 127.65, 127.48, 127.45, 127.24, 126.82, 126.14, 125.87, 125.24, 125.13, 125.10, 124.83, 124.39, 124.34, 20.16.

HRMS (ESI) m/z ([M+Na]⁺) Calcd for C₂₉H₂Na: 391.1463; Found:391.1457.


4-(2-bromophenyl)-5-phenylpyrene(3k)

According to General Procedure B, using 1-bromo-2-(phenylethynyl)benzene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 68% yield, 29.3 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.21 (dt, J = 7.7, 1.7 Hz, 2H), 8.13 (s,2H), 7.91 (td, J = 7.7, 5.6 Hz, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.50 (dd, J = 7.7, 1.9 Hz, 2H), 7.34 – 7.25 (m, 4H), 7.22 (d, J = 4.6 Hz, 2H), 7.12 (dt, J = 8.7, 4.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 140.54, 139.13, 137.88, 136.71, 133.00, 132.38, 131.39, 131.20, 131.10, 130.85, 130.16, 129.68, 128.76, 128.08, 127.54, 127.50, 127.46, 127.04, 126.99, 126.17, 125.92, 125.42, 125.26, 125.19, 125.05, 124.52, 124.17.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₈H₁₈Br: 433.0592; Found:433.0605.

2-chloro-4-(5-phenylpyren-4-yl)pyridine(3l)

According to General Procedure B, using 2-chloro-4-(phenylethynyl)pyridine, the title compound was

isolated by silica gel column chromatography using petroleum ether as eluent in 74% yield, 32.4 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 2.4 Hz, 1H), 8.22 (dd, J = 7.6, 1.1 Hz, 2H), 8.13 (s, 2H), 7.91 (td, J = 7.7, 5.6 Hz, 2H), 7.81 (dd, J = 8.0, 1.1 Hz, 1H), 7.70 (dd, J = 7.9, 1.0 Hz, 1H), 7.52 (dd, J = 8.1, 2.4 Hz, 1H), 7.32 (tddd, J = 8.2, 6.5, 4.0, 2.0 Hz, 3H), 7.25 – 7.17 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.49, 149.75, 141.31, 139.35, 138.57, 134.40, 132.49, 131.21, 131.18, 131.06, 131.04, 130.96, 130.74, 128.50, 128.08, 127.69, 127.62, 127.47, 127.33, 126.19, 126.14, 125.84, 125.58, 125.21, 124.44, 124.21, 123.93, 123.54.

HRMS (ESI) m/z ([M+H]⁺) Calcd for $C_{27}H_{17}CIN : 390.1050$; Found:390.1055.

4-methyl-5-phenylpyrene(3m)

According to General Procedure B, using prop-1-yn-1-ylbenzene at 100° C for 12 h, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 37% yield, 10.9 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 7.9, 1.1 Hz, 1H), 8.23 (dd, J = 7.7, 1.0 Hz, 1H), 8.22 – 8.02 (m, 4H), 7.85 (td, J = 7.8, 1.2 Hz, 1H), 7.65 (dq, J = 8.0, 1.1 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.55 – 7.46 (m, 1H), 7.47 – 7.37 (m, 2H), 2.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.63, 137.62, 131.76, 131.34, 131.31, 130.84, 130.61, 130.50, 128.51, 127.40, 127.36, 127.19, 125.96, 125.68, 125.02, 124.62, 124.50, 124.21, 123.52, 122.02, 17.40.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₃H₁₇: 293.1330; Found:293.1324.

4-butyl-5-phenylpyrene(3n)

According to General Procedure B, using hex-1-yn-1-ylbenzene at 100°C for 12 h, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 48% yield, 16.1 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.43 (dt, J = 8.0, 1.3 Hz, 1H), 8.21 (d, J = 7.6 Hz, 1H), 8.17 – 8.00 (m, 4H), 7.83 (td, J = 7.8, 1.7 Hz, 1H), 7.62 – 7.50 (m, 3H), 7.55 – 7.46 (m, 1H), 7.45 – 7.36 (m, 2H), 3.08 – 2.98 (m, 2H), 1.70 (qdd, J = 7.9, 6.2, 5.4, 1.9 Hz, 2H), 1.36 (hd, J = 7.3, 2.0 Hz, 2H), 0.84 (td, J = 7.3, 2.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.42, 137.39, 135.63, 131.94, 131.53, 130.84, 130.35, 128.43, 127.43, 127.34, 127.18, 125.90, 125.65, 124.91, 124.69, 124.66, 124.43, 123.54, 122.21, 33.11, 30.41, 23.29, 13.84.

HRMS (ESI) m/z ([M+H]⁺) Calcd for $C_{26}H_{13}$: 335.1800; Found:335.1783.

trimethyl(5-phenylpyren-4-yl)silane(30)

According to General Procedure B, using trimethyl(phenylethynyl)silane at 100° C for 12 h, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 48% yield, 16.9 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.63 (dd, J = 8.0, 1.0 Hz, 1H), 8.20 (dd, J = 7.6, 1.0 Hz, 1H), 8.16 (dd, J = 7.6, 1.1 Hz, 1H), 8.13 – 8.06 (m, 2H), 8.04 (t, J = 7.8 Hz, 1H), 7.84 (t, J = 7.8 Hz, 1H), 7.67 (dd, J = 8.0, 1.1 Hz, 1H), 7.53 (dd, J = 5.2, 1.9 Hz, 3H), 7.48 (dt, J = 6.4, 2.2 Hz, 2H), 0.20 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 147.59, 142.49, 135.20, 134.00, 131.51, 131.44, 130.79, 128.05, 127.62, 127.01, 126.65, 125.55, 125.46, 125.04, 124.80, 124.68, 124.38, 2.74.

HRMS (EI) m/z (M+•) Calcd for C₂₅H₂₂Si: 350.1491; Found:350.14798.

2.3 Preparation and characterization of phenangermoles

General Procedure C:

Derivative of phenanthrene (2 mmol) and TMEDA (0.72 mL, 4.8 mmol 2.4 eq.) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, a solution of n-BuLi (2.4 M in Hexane, 1.84 mL, 4.4 mmol, 2.2 eq.) was added dropwise at 0 °C. After stirring at 60 °C for 3 h,³ dry THF (4.8 mL) was added, dichlorodimethylgermane (0.4 mL, 3.4 mmol, 1.7 eq.) was added at –78 °C. The reaction mixture was stirred at room temperature for 24 h before being quenched with water. The reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography on silica gel.

4,4-dimethyl-4H-phenanthro[4,5-bcd]germole (1a)

According to General Procedure C, using phenanthrene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 30% yield, 167.4 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.86 (m, 4H), 7.77 (s, 2H), 7.63 (dd, J = 7.9, 6.8 Hz, 2H), 0.73 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.82, 142.47, 132.45, 132.22, 129.44, 129.09, 128.78, 128.44, 0.00. HRMS (EI) m/z (M⁺⁺) Calcd for C₁₆H₁₄Ge: 280.0307; Found:280.02992.

4,4-dimethyl-4H-triphenyleno[1,12-bcd]germole(1b)

According to General Procedure C, using triphenylene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 51% yield, 337.9 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.70 – 8.64 (m, 2H), 8.56 (dd, J = 8.2, 1.0 Hz, 2H), 7.88 (dd, J = 6.8, 1.0 Hz, 2H), 7.71 – 7.64 (m, 4H), 0.73 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.84, 142.28, 133.49, 132.51, 130.57, 129.59, 129.34, 125.76, 125.20, 2.34.

HRMS (EI) m/z (M+•) Calcd for C₂₀H₁₆Ge: 330.0464; Found:330.04562.

$$Br$$
 + $B(OH)_2$ $Pd(PPh_3)_4$, K_2CO_3 Ph General Procedure C Ge Ph Ii Ic

9-Phenanthracenylboronic acid (0.5329 g, 2.4 mmol, 1.2 eq.), Pd(PPh₃)₄ (0.0924 g, 0.08 mmol, 4 mol%) and K₂CO₃ (0.6634 g, 4.8 mmol, 2.4 eq.) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The dry THF (20 mL) was added under argon, then bromobenzene (0.21 mL, 2 mmol, 1 eq.) was added dropwise. The reaction mixture was refluxed for 24 h, at the end of which the reaction mixture is partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography (petroleum ether) to give 278.7 mg title product as a white oil. 55% yield.

According general procedure C to get compound 1c.

9-phenylphenanthrene(1i)

¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 8.3 Hz, 1H), 8.78 (d, J = 8.1 Hz, 1H), 8.00 (dd, J = 8.2, 1.3 Hz, 1H), 7.95 (dd, J = 7.7, 1.5 Hz, 1H), 7.78 – 7.65 (m, 4H), 7.64 – 7.49 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 140.87, 138.84, 131.63, 131.20, 130.70, 130.15, 130.03, 128.75, 128.40, 127.61, 127.45, 127.01, 126.93, 126.67, 126.59, 126.54, 122.99, 122.62, 77.34.

HRMS (EI) m/z (M+•) Calcd for C₂₀H₁₄: 254.1096; Found: 254.10904.

4,4-dimethyl-8-phenyl-4H-phenanthro[4,5-bcd]germole(1c)

According to General Procedure C, using 9-phenylphenanthrene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 22% yield, 155.9 mg, white oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.2, 1.0 Hz, 1H), 7.88 – 7.84 (m, 3H), 7.70 (s, 1H), 7.64 – 7.61 (m, 1H), 7.57 (ddd, J = 9.1, 7.4, 1.5 Hz, 3H), 7.52 – 7.47 (m, 2H), 7.46 – 7.41 (m, 1H), 0.73 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.06, 142.80, 142.78, 142.52, 142.10, 141.07, 132.54, 132.43, 132.20, 131.85, 131.37, 130.53, 129.54, 129.53, 129.34, 129.08, 128.88, 128.15, 0.00. HRMS (EI) m/z (M+•) Calcd for C₂₂H₁₈Ge: 356.0620; Found:356.06132.

4-Biphenylboronic acid (0.9902 g, 5 mmol, 1 eq.), Pd(PPh₃)₄ (0.3178 g, 0.275 mmol, 5.5 mol%) and Na₂CO₃ (5.2995 g, 50 mmol, 10 eq.) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The toluene/EtOH/H₂O (25/25/25 mL) was added under argon, then 2-bromobenzaldehyde (0.58 mL, 1 eq.) was added dropwise. The reaction mixture was stirred at 80°C for 3 h, at the end of which the reaction mixture is partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 1.172 g title product as a white oil. 91% yield.

Cool a solution of the above compound (1.0667 g, 4.13 mmol, 1 eq.) and CBr₄ (2.7952g, 8.26 mmol, 2 eq.) in DCM (30 mL) to 0 °C. Add P(Oi-Pr)₃ (4 mL , 16.52 mmol, 4 eq.) dropwise. The mixture was stirred for 2.5 h and warmed to RT,⁴ at the end of which the reaction mixture was partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 1.4419 g title product as a white solid. 85% yield.

The above compound (1.4129 g, 3.4 mmol, 1 eq.) was dissolved in dry THF (23 mL) and cooled to -78 °C. n-BuLi (5.7 mL, 2.4 M in Hexane, 13.6 mmol, 4 eq.) was added dropwise. The mixture was stirred under nitrogen for 6 h. The cold solution was quenched with H₂O dropwise and warmed to RT. The solution was extracted with MTBE. The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to

give the crude product. The crude product is purified by silica gel column chromatography to give 605.31 mg title product as a white oil. 70% yield.

The above compound (0.6060 g, 2.38 mmol, 1 eq.) and PtCl₂ (0.0505 g, 0.19 mmol, 8 mol%) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. the DCE (14 mL) was added under argon. The reaction mixture was stirred at 100° C for 24 h, at the end of which the reaction mixture is partitioned in CH₂Cl₂ and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 473.7 mg title product as a white solid. 78% yield.

According general procedure C to get compound 1d.

[1,1':4',1"-terphenyl]-2-carbaldehyde(1j)

¹H NMR (400 MHz, CDCl₃) δ 10.07 (d, J = 0.7 Hz, 1H), 8.06 (dt, J = 7.6, 1.2 Hz, 1H), 7.73 – 7.68 (m, 2H), 7.68 – 7.64 (m, 3H), 7.55 – 7.45 (m, 6H), 7.42 – 7.37 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 192.48, 145.55, 141.06, 140.29, 136.65, 133.77, 133.64, 130.77, 130.58, 128.93, 127.84, 127.71, 127.69, 127.16.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₁₉H₁₅O: 259.1123; Found: 259.1122.

2-(2,2-dibromovinyl)-1,1':4',1"-terphenyl(1k)

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.63 (m, 5H), 7.53 – 7.34 (m, 8H), 7.28 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 139.56, 139.47, 139.27, 137.96, 136.49, 132.81, 128.92, 128.79, 128.32, 127.82, 127.69, 126.44, 126.15, 126.06, 125.93, 89.86.

HRMS (EI) m/z (M+•) Calcd for C₂₀H₁₄Br₂: 411.9462; Found: 411.94601.

2-ethynyl-1,1':4',1"-terphenyl(11)

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 7H), 7.48 – 7.41 (m, 4H), 7.38 – 7.29 (m, 2H), 3.08 (d, J = 1.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 143.93, 140.78, 140.35, 139.17, 134.01, 129.66, 129.57, 129.06, 128.80, 127.37, 127.14, 127.07, 126.75, 120.40, 83.16, 80.36.

HRMS (EI) m/z (M+•) Calcd for C₂₀H₁₄: 254.1096; Found: 254.10927.

2-phenylphenanthrene(1m)

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 8.7 Hz, 1H), 8.72 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 2.0 Hz, 1H), 7.92 (ddd, J = 7.9, 4.6, 1.7 Hz, 2H), 7.84 – 7.76 (m, 4H), 7.68 (ddd, J = 8.3, 6.9, 1.6 Hz, 1H), 7.62 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.52 (dd, J = 8.4, 7.0 Hz, 2H), 7.44 – 7.38 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 140.81, 139.24, 132.38, 132.07, 130.16, 129.43, 128.93, 128.63, 127.47, 127.39, 127.38, 127.12, 126.72, 126.61, 125.85, 123.28, 122.72.

HRMS (EI) m/z (M+•) Calcd for C₂₀H₁₄: 254.1096; Found:254.10870.

4,4-dimethyl-2-phenyl-4H-phenanthro[4,5-bcd]germole (1d)

According to General Procedure C, using 2-phenylphenanthrene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 20% yield, 144.2 mg, white oil.

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 1.7 Hz, 1H), 8.06 (d, J = 1.6 Hz, 1H), 7.87 (ddd, J = 6.9, 4.6,

1.0 Hz, 2H), 7.83 – 7.75 (m, 4H), 7.62 (dd, J = 7.9, 6.8 Hz, 1H), 7.50 (dd, J = 8.4, 7.0 Hz, 2H), 7.42 – 7.35 (m, 1H), 0.75 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 144.07, 143.15, 142.56, 142.49, 142.11, 141.95, 132.50, 132.22, 132.18, 131.90, 130.95, 129.82, 129.41, 129.31, 129.04, 128.79, 128.50, 127.93, 0.00.

HRMS (EI) m/z (M+•) Calcd for C₂₂H₁₈Ge: 356.0620; Found: 356.06104.

8-bromo-4,4-dimethyl-4H-phenanthro[4,5-bcd]germole(1e)

4,4-dimethyl-4H-phenanthro[4,5-bcd]germole (0.2789g, 1 mmol, 1 eq.), K₂Cr₂O₇ (0.3236g, 1.1 mmol, 1.1 eq) and CuBr₂ (0.2234g, 1 mmol, 1 eq.) was placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, CH₃COOH (1 mL) was added. The reaction mixture was stirred at room temperature for 1 h,⁵ at the end of which the reaction mixture is partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 125.1 mg title product as a white oil. 35% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 8.2, 1.0 Hz, 1H), 8.10 (s, 1H), 7.89 (ddd, J = 12.4, 6.8, 1.0 Hz, 2H), 7.80 (dd, J = 8.0, 1.0 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.62 (dd, J = 8.0, 6.8 Hz, 1H), 0.74 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.53, 142.77, 142.39, 142.36, 133.52, 132.93, 132.60, 131.64, 131.38, 130.03, 129.69, 129.27, 128.71, 123.75, 0.00.

HRMS (EI) m/z (M+•) Calcd for C₁₆H₁₃BrGe: 357.9412; Found: 357.93997.

9-Bromophenanthrene (1.0285 g, 4 mmol, 1 eq.) was dissolved in dry Et₂O (8 mL) and cooled to 78 °C. n-BuLi (1.7 mL, 2.4 M in Hexane, 4.2 mmol, 1 eq.) was added dropwise. The mixture was stirred under nitrogen for 30 min. Then TMSCl (0.52 mL, 1.05 eq.) was added. The reaction mixture was stirred at room temperature for 3 h, at the end of which the reaction mixture is partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 908.6 mg title product as a white oil. 91% yield.

According general procedure C to get compound 1f.

trimethyl(phenanthren-9-yl)silane(1n)

¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.71 (m, 1H), 8.64 (d, J = 8.4 Hz, 1H), 8.16 – 8.13 (m, 1H), 7.95 (s, 1H), 7.87 (dd, J = 7.8, 1.5 Hz, 1H), 7.66 – 7.55 (m, 4H), 0.51 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 136.37, 134.98, 134.63, 130.84, 130.68, 129.79, 128.60, 128.54, 126.84, 126.31, 125.92, 125.70, 123.04, 122.13, 0.00.

HRMS (EI) m/z (M+•) Calcd for $C_{17}H_{18}Si: 250.1178$; Found:250.11693.

(4,4-dimethyl-4H-phenanthro[4,5-bcd|germol-8-yl)trimethylsilane(1f)

According to General Procedure C, using 2-phenylphenanthrene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 25% yield, 174.9 mg, white oil.

¹H NMR (500 MHz, CDCl₃) δ 8.11 (dd, J = 8.1, 1.0 Hz, 1H), 7.96 (s, 1H), 7.86 – 7.83 (m, 3H), 7.64 – 7.57 (m, 2H), 0.70 (s, 6H), 0.52 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 141.15, 140.98, 139.99, 139.64, 136.51, 133.99, 132.80, 130.53, 129.63, 129.14, 127.65, 127.17, 126.67, 126.24, 0.00, -2.52.

HRMS (EI) m/z (M+•) Calcd for C₁₉H₂₂GeSi: 352.0703; Found:352.06921.

9-Phenanthracenylboronic acid (1.1103 g, 5 mmol, 1 eq.) was placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The dry THF (10 mL) was added under argon and cooled to 0° C, then H_2O_2 (0.6 mL) was added dropwise. The reaction mixture was stirred at room temperature for 2 h, at the end of which the reaction mixture is partitioned in DCM and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na_2SO_4 . After filtration, the solvents were removed under reduced pressure to give the crude product without purification .

The above compound (0.8239 g, 2 mmol, 1 eq.) and imidazole (0.3404 g, 5 mmol, 2.5 eq.) was placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. The DCM (25 mL) was added under argon, then TIPSCl (0.51 mL, 1.2 eq.) was added dropwise. The reaction mixture was stirred at room temperature for 1 h, at the end of which the reaction mixture is partitioned in CH_2Cl_2 and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na_2SO_4 . After filtration, the solvents

were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 322.5 mg title product as a white oil. 46% yield. According general procedure C to get compound 1g.

triisopropyl(phenanthren-9-yloxy)silane(10)

¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, J = 7.6, 1.7 Hz, 1H), 8.63 (dd, J = 7.6, 1.7 Hz, 1H), 8.47 – 8.41 (m, 1H), 7.78 – 7.73 (m, 1H), 7.73 – 7.64 (m, 2H), 7.54 (pd, J = 7.0, 1.6 Hz, 2H), 7.11 (s, 1H), 1.52 (dt, J = 14.9, 7.4 Hz, 3H), 1.24 (d, J = 7.5 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 150.10, 133.05, 131.69, 128.59, 127.11, 126.91, 126.75, 126.70, 126.34, 124.27, 123.30, 122.61, 122.53, 109.78, 18.24, 13.17.

HRMS (ESI) m/z ([M+H]⁺) Calcd for $C_{23}H_{31}OSi: 351.2144$; Found: 351.2143.

((4,4-dimethyl-4H-phenanthro[4,5-bcd]germol-8-yl)oxy)triisopropylsilane(1g)

According to General Procedure C, using triisopropyl(phenanthren-9-yloxy)silane, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 31% yield, 278.9 mg, white oil.

¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, J = 8.1, 1.1 Hz, 1H), 7.89 (dd, J = 6.8, 1.1 Hz, 1H), 7.73 (d, J = 7.3 Hz, 2H), 7.66 (dd, J = 8.1, 6.7 Hz, 1H), 7.60 – 7.55 (m, 1H), 7.09 (s, 1H), 1.52 (dt, J = 14.9, 7.5 Hz, 3H), 1.24 (d, J = 7.5 Hz, 18H), 0.74 (s, 6H).

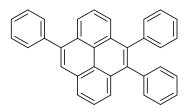
¹³C NMR (101 MHz, CDCl₃) δ 153.14, 144.18, 142.23, 141.83, 139.25, 132.92, 132.80, 129.95, 129.17, 128.93, 128.77, 127.97, 124.98, 110.97, 20.43, 15.34.

HRMS (EI) m/z (M+•) Calcd for C₂₅H₃₄GeOSi: 452.1591; Found:452.15848.

2.4 Preparation and characterization of multisubstitued pyrene

General Procedure D:

Phenangermole (0.15 mmol)、diphenylethyne (0.0178g, 0.1 mmol)、PdBr₂ (0.0014g, 5 umol, 5 mol%)、AgPF₆(collidine)₂ (0.0050g, 10 umol, 10 mol%) and o-chloranil(0.0507g, 0.2 mmol, 2 eq.) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, DCE (0.5 mL) was added. The reaction mixture was stirred at 120°C for 2 h before being quenched with water. The reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography on silica gel.

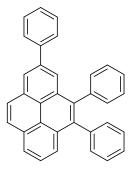

4,5-diphenylbenzo[e]pyrene(4a)

According to General Procedure D, using 4,4-dimethyl-4H-triphenyleno[1,12-bcd]germole at 100°C for 12 h, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 41% yield, 16.6 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, J = 7.9, 1.1 Hz, 2H), 8.90 (dt, J = 6.3, 3.5 Hz, 2H), 7.94 (t, J = 7.9 Hz, 2H), 7.85 (dd, J = 8.0, 1.1 Hz, 2H), 7.78 (dt, J = 6.2, 3.4 Hz, 2H), 7.32 – 7.24 (m, 11H).

¹³C NMR (101 MHz, CDCl₃) δ 139.69, 137.70, 131.79, 131.14, 130.19, 129.03, 127.72, 127.58, 126.62, 126.07, 125.96, 123.98, 123.83, 120.33.

HRMS (**ESI**) *m*/*z* ([**M**+**H**]⁺) Calcd for C₃₂H₂₁: 405.1643; Found: 405.1646.


4,5,9-triphenylpyrene(4b)

According to General Procedure D, using 4,4-dimethyl-8-phenyl-4H-phenanthro[4,5-bcd]germole, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 67% yield, 28.7 mg, white solid.

 1 H NMR (500 MHz, CDCl₃) δ 8.21 (td, J = 6.2, 5.4, 1.5 Hz, 2H), 8.09 (s, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.88 – 7.81 (m, 3H), 7.72 – 7.68 (m, 2H), 7.58 (t, J = 7.4 Hz, 2H), 7.53 – 7.48 (m, 1H), 7.33 – 7.22 (m, 10H).

¹³C NMR (126 MHz, CDCl₃) δ 140.97, 139.64, 139.53, 139.51, 137.96, 137.76, 131.61, 131.31, 131.18, 131.17, 130.65, 130.36, 130.18, 128.47, 127.90, 127.75, 127.74, 127.57, 126.66, 126.17, 125.74, 125.27, 125.09, 124.84, 124.58, 123.98, 123.80.

HRMS (**ESI**) *m/z* ([M+H]⁺) Calcd for C₃₄H₂₃: 431.1800; Found: 431.1780.

2,4,5-triphenylpyrene(4c)

According to General Procedure D, using 4,4-dimethyl-2-phenyl-4H-phenanthro[4,5-bcd]germole, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 43% yield, 18.5 mg, yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 1.7 Hz, 1H), 8.15 – 8.06 (m, 3H), 8.00 (d, J = 1.7 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.79 – 7.75 (m, 1H), 7.62 (dd, J = 7.5, 1.6 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.28 – 7.18 (m, 10H).

¹³C NMR (101 MHz, CDCl₃) δ 141.65, 139.51, 139.35, 138.79, 138.24, 137.98, 131.86, 131.49, 131.39, 131.16, 131.02, 128.90, 128.05, 127.86, 127.79, 127.73, 127.58, 127.31, 126.72, 126.65, 125.94, 125.24, 125.09, 124.14, 123.84, 123.67, 123.49.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₃₄H₂₂: 430.1722; Found: 430.17130.

9-bromo-4,5-diphenylpyrene(4d)

According to General Procedure D, using 8-bromo-4,4-dimethyl-4H-phenanthro[4,5-bcd]germole, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 45% yield, 19.3 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 7.7 Hz, 1H), 8.50 (s, 1H), 8.13 (d, J = 7.1 Hz, 1H), 7.99 (t, J = 7.9 Hz, 1H), 7.89 (dt, J = 11.0, 6.7 Hz, 3H), 7.35 – 7.20 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 139.29, 139.18, 137.91, 137.87, 131.52, 131.41, 131.14, 131.09, 131.08, 130.92, 129.55, 127.80, 127.76, 126.79, 126.77, 126.45, 126.42, 126.12, 125.56, 125.13, 125.07, 124.67, 123.37, 122.47.

HRMS (EI) m/z (M+•) Calcd for C₂₈H₁₇Br: 432.0514; Found:432.05044.

(9,10-diphenylpyren-4-yl)trimethylsilane(4e)

According to General Procedure D, using (4,4-dimethyl-4H-phenanthro[4,5-bcd]germol-8-yl)trimethylsilane, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 79% yield, 33.5 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 7.7, 1.1 Hz, 1H), 8.36 (s, 1H), 8.23 – 8.18 (m, 1H), 7.92 (q, J = 7.5 Hz, 2H), 7.84 (dt, J = 7.9, 1.3 Hz, 2H), 7.33 – 7.23 (m, 10H), 0.62 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 139.40, 139.24, 137.65, 137.21, 135.34, 133.61, 131.63, 130.87, 130.84, 129.89, 127.41, 127.39, 126.29, 125.59, 125.38, 125.13, 125.01, 124.98, 124.30, 123.93, 0.00.

HRMS (EI) m/z (M+•) Calcd for C₃₁H₂₆Si: 426.1804; Found: 426.17980.

((9,10-diphenylpyren-4-yl)oxy)triisopropylsilane(4f)

According to General Procedure D, using ((4,4-dimethyl-4H-phenanthro[4,5-bcd]germol-8-yl)oxy)triisopropylsilane, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 50% yield, 26.4 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.66 (dd, J = 7.7, 1.2 Hz, 1H), 8.04 (dd, J = 7.6, 1.0 Hz, 1H), 7.93 (t, J = 7.8 Hz, 1H), 7.88 – 7.81 (m, 2H), 7.68 (dd, J = 7.9, 1.1 Hz, 1H), 7.33 – 7.20 (m, 12H), 1.57 (q, J = 7.5 Hz, 3H), 1.26 (d, J = 7.5 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 150.90, 139.63, 137.74, 137.63, 132.04, 131.33, 131.18, 127.68, 127.62, 126.57, 126.54, 126.07, 125.52, 125.35, 123.62, 122.79, 120.80, 120.34, 110.08, 18.27, 14.16, 13.23. HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₃₇H₃₈OSi: 527.2770; Found: 527.2756.

3. Aromatization reaction

Compound 3k (0.0433g, 0.1 mmol)、 $PdCl_2$ (0.0071g, 0.04 mmol, 0.4 eq.)、 PCy_3 (0.0229g, 0.08 mmol, 0.8 eq.) and Cs_2CO_3 (0.0665g, 0.2 mmol, 2 eq.) were placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, DBU (30 uL, 0.2 mmol, 2 eq.) and toluene (2.5 mL) was added. The reaction mixture was stirred at $100^{\circ}C$ for 48 h before being quenched with water. The reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na_2SO_4 . After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography on silica to give 24.9 mg title product as a yellow solid. 71% yield.

tribenzo[f,ij,no]tetraphene (5a)

¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 8.0 Hz, 1H), 8.85 (d, J = 8.2 Hz, 1H), 8.70 (d, J = 8.1 Hz, 1H), 8.15 (d, J = 7.6 Hz, 1H), 8.06 (s, 1H), 7.98 (t, J = 7.8 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.62 – 7.56 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 131.22, 130.93, 129.73, 128.75, 128.40, 128.03, 127.36, 126.86, 126.68, 126.30, 125.57, 125.15, 124.72, 123.68.

HRMS (EI) m/z (M+•) Calcd for C₂₈H₁₆: 352.1252; Found: 352.12462.

4. Conversion of propargyl bromide

A 25 mL Schlenk tube was charged with 4-ethynyltoluene (580.8 mg, 0.65mL, 5 mmol) and dry THF (5 mL). The solution was cooled to -78 °C and n-BuLi (2.4 M in Hexane, 2.3 mL, 5.5 mmol) was added dropwise. Paraformaldehyde (0.18 g, 6 mmol) was added under argon. The reaction was stirred at ambient temperature for 12 h and acidified with HCl at 0°C.⁷ The reaction mixture was extracted with EtOAc/H₂O. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude 3-(4-methylphenyl)prop-2-yn-1-ol (white solid) was kept for a few hours under vacuum and used for next step without further purification.

The propargyl alcohol (estimated as 5 mmol) in dry CH_2Cl_2 (10 mL) was loaded into a 25 mL Schlenk tube. Carbon tetrabromide (2.03 g, 6 mol) was added under argon. The homogeneous solution was cooled to $0^{\circ}C$ and PPh_3 (1.57 g, 6 mmol) was added in small portions under argon (highly exothermic). The reaction mixture was stirred at room temperature for 16 h. EtOH (5 mL) was added to quench the reaction, followed by ice-water . The combined organic layers were washed with brine, and then dried over Na2SO4. After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography (petroleum ether) to give 894.1 mg title product as a yellow oil. 94% yield.

1-(3-bromoprop-1-yn-1-yl)-4-methylbenzene(2p)

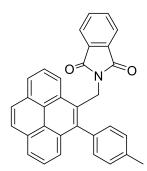
¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 4.17 (s, 2H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.13, 131.80, 129.12, 119.03, 86.99, 83.59, 21.58, 15.70.

HRMS (EI) m/z (M+•) Calcd for C₁₀H₉Br: 207.9888; Found: 207.98819.

Compound 3p (0.0385g, 0.1 mmol. 1 eq.) and Potassium phthalimide (0.0189g, 0.1 mmol, 1 eq.) were

placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, DMF (0.5 mL) was added.⁸ The reaction mixture was stirred at room temperature for 4 h before being quenched with water. The reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography on silica to give 30.3 mg title product as a white solid. 67% yield.


4-(bromomethyl)-5-(p-tolyl)pyrene (3p)

According to General Procedure B, using 1-(3-bromoprop-1-yn-1-yl)-4-methylbenzene, the title compound was isolated by silica gel column chromatography using petroleum ether as eluent in 37% yield, 14.3 mg, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.54 (dd, J = 8.0, 1.1 Hz, 1H), 8.25 (dd, J = 7.7, 1.1 Hz, 1H), 8.18 (dd, J = 7.6, 1.2 Hz, 1H), 8.19 – 8.05 (m, 3H), 7.92 – 7.79 (m, 1H), 7.77 – 7.66 (m, 1H), 7.44 – 7.32 (m, 4H), 5.04 (s, 2H), 2.53 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.44, 137.67, 135.36, 131.49, 131.28, 130.90, 130.06, 129.78, 129.34, 129.29, 128.92, 127.61, 127.57, 127.35, 126.33, 125.97, 125.90, 125.88, 125.77, 125.49, 124.67, 124.55, 122.09, 42.60, 21.47.

HRMS (ESI) *m/z* ([M+H]⁺) Calcd for C₂₄H₁₈Br: 385.0592; Found:385.0580.

2-((5-(p-tolyl)pyren-4-yl)methyl)isoindoline-1,3-dione (5b)

¹H NMR (500 MHz, CDCl₃) δ 8.34 (dd, J = 8.0, 1.0 Hz, 1H), 8.16 (ddd, J = 7.7, 5.3, 1.0 Hz, 2H), 8.10 - 8.05 (m, 2H), 7.97 (t, J = 7.8 Hz, 1H), 7.87 (t, J = 7.7 Hz, 1H), 7.74 (dd, J = 7.9, 1.1 Hz, 1H), 7.70 (dd, J = 5.5, 3.1 Hz, 2H), 7.61 - 7.57 (m, 2H), 7.56 - 7.54 (m, 2H), 7.38 (d, J = 7.7 Hz, 2H), 5.40 (s, 2H), 2.49 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 168.22, 141.08, 137.21, 136.22, 133.80, 131.86, 131.74, 131.56, 131.07, 130.87, 129.35, 129.00, 127.42, 127.38, 127.20, 126.24, 125.78, 125.64, 125.49, 125.09, 124.54, 124.35, 123.07, 121.32, 39.50, 21.44.

HRMS (ESI) m/z ([M+H]⁺) Calcd for C₃₂H₂₂NO₂: 452.1651; Found:452.1642.

5. Competition experiments

2,2'-Dibromo-1,1'-biphenyl (0.6367 g, 2 mmol, 1 eq.) was dissolved in dry THF (10 mL) and cooled to -78 °C. n-BuLi (2.4 M in Hexane, 1.7 mL, 4 mmol, 2 eq.) was added dropwise. The mixture was stirred under nitrogen for 1 h. Then Me₂SiCl₂ (0.24 mL, 2.4 mmol, 1.2 eq.) was added. The reaction mixture was stirred at room temperature for 2 h,⁹ at the end of which the reaction mixture is partitioned in EtOAc and distilled water (10 mL each). The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The crude product is purified by silica gel column chromatography to give 397.7 mg title product as a white solid. 95% yield.

5,5-dimethyl-5H-dibenzo[b,d]silole(2h)

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.8 Hz, 2H), 7.64 (ddd, J = 7.0, 1.4, 0.7 Hz, 2H), 7.44 (td, J = 7.6, 1.4 Hz, 2H), 7.29 (td, J = 7.3, 0.9 Hz, 2H), 0.43 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 147.78, 138.92, 132.73, 130.17, 127.35, 120.82, -3.22.

HRMS (EI) m/z (M+•) Calcd for C₁₄H₁₄Si: 210.0865; Found: 210.08557.

Trimethyl(phenanthren-9-yl)silane (1.0017g, 4 mmol, 1 eq.) and TMEDA (1.44mL, 9.6 mmol, 2.4 eq) were placed into a Schlenk tube equipped with a stir bar. the tube was vacuumed and backfilled with argon for three cycles. Then, a solution of n-BuLi (2.4 M in Hexane, 3.68mL, 8.8 mmol, 2.2 eq.) was added dropwise at 0 °C. After stirring at 60 °C for 3 h, anhydrous THF (9.6 mL) was added, Me₂SiCl₂ (0.67mL, 6.8 mmol, 1.7 eq.) was added at –78 °C. The reaction mixture was stirred at room temperature for 24 h before being quenched with water. The reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure to give the crude product. The purification by flash column chromatography on silica gel to give 245.5 mg title product as a white oil. 20% yield.

4,4-dimethyl-8-(trimethylsilyl)-4H-phenanthro[4,5-bcd]silole(2i)

¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, J = 8.2, 1.0 Hz, 1H), 8.32 (s, 1H), 8.24 – 8.17 (m, 3H), 7.95 (ddd, J = 11.8, 8.1, 6.8 Hz, 2H), 0.89 (s, 6H), 0.87 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 142.41, 141.22, 138.57, 137.25, 136.44, 133.66, 132.19, 130.55, 129.66, 128.56, 128.16, 127.63, 126.76, 126.36, 0.00, -3.10.

HRMS (EI) m/z (M+•) Calcd for C₁₉H₂₂Si₂: 306.1260; Found: 306.12518.

Competition experiment 1: 4,4-dimethyl-4H-phenanthro[4,5-bcd]germole (0.1 mmol) 、 5,5-dimethyl-5H-dibenzo[b,d]silole (0.1 mmol) 、 diphenylethyne(0.1 mmol) 、 PdBr₂ (5 mol%) 、 AgPF₆(collidine)₂ (10 mol%) and o-chloranil (2 eq.) was placed into a Schlenk tube equipped with a stir bar. The tube was vacuumed and backfilled with argon for three cycles. Then, DCE (0.5 mL) was added. The reaction mixture was stirred at 120°C for 2 h before being quenched with water. Then triphenylmethane (0.1 mmol) was added, the reaction mixture was extracted with Et₂O. The solvents were removed under reduced pressure to give the crude product. The yield was determined by ^{1}H NMR. The competition experiment 2 and 3 were same as above.

6. Crystal structure determination of 5b

6.1 Experimental procedure and crystal data of 5b

Single crystals of $C_{32}H_{21}NO_2$ (5b) were grown by slow cooling of saturated EtOAc/Et₂O solution from 50 °C to room temperature. A suitable crystal was selected and intensity data was collected on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 296.15 K during data collection. Using Olex2¹⁰, the structure was solved with the SHELXT¹¹ structure solution program using Intrinsic Phasing and refined with the SHELXL¹¹ refinement package using Least Squares minimisation. **Crystal Data** for $C_{32}H_{21}NO_2$ (M =451.50 g/mol): monoclinic, space group C2/c (no. 15), a = 30.6180(6) Å, b = 14.6059(3) Å, c = 20.4158(5) Å, β = 92.2370(10)°, V = 9123.1(3) Å3, Z = 16, T = 213.00 K, μ (GaK α) = 0.410 mm⁻¹, Dcalc = 1.315 g/cm³, 42094 reflections measured (5.026° \leq 2 Θ \leq 109.974°), 8685 unique (R_{int} = 0.1352, R_{sigma} = 0.1167) which were used in all calculations. The final R₁ was 0.0763 (I > 2 σ (I)) and wR₂ was 0.2144 (all data).

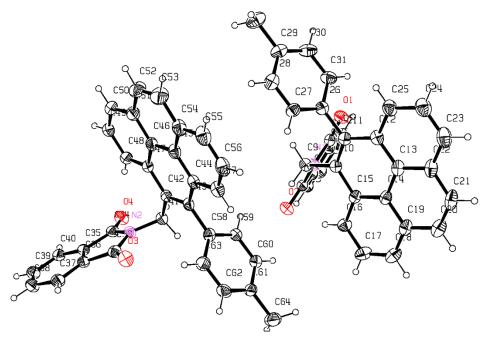


Figure S1. X-ray Structure of compound 5b.

Index ranges

Table 1 Crystal data and structure refinement for $C_{32}H_{21}NO_2$ (5b).

Identification code	$C_{32}H_{21}NO_2$
Empirical formula	$C_{32}H_{21}NO_2$
Formula weight	451.50
Temperature/K	213.00
Crystal system	monoclinic
Space group	C2/c
a/Å	30.6180(6)
b/Å	14.6059(3)
c/Å	20.4158(5)
α/°	90
β/°	92.2370(10)
γ/°	90
$Volume/\mathring{A}^3$	9123.1(3)
Z	16
$\rho_{calc}g/cm^3$	1.315
μ/mm^{-1}	0.410
F(000)	3776.0
Crystal size/mm ³	$0.07\times0.07\times0.05$
Radiation	$GaK\alpha (\lambda = 1.34139)$
2Θ range for data collection/°	5.026 to 109.974

 $-36 \le h \le 37, -17 \le k \le 15, -24 \le l \le 24$

Reflections collected 42094

 $\label{eq:second_ent_second} Independent \ reflections \qquad \qquad 8685 \ [R_{int} = 0.1352, \ R_{sigma} = 0.1167]$

Data/restraints/parameters 8685/0/633

 $Goodness-of-fit \ on \ F^2 \qquad \qquad 1.001$

Final R indexes [I>= 2σ (I)] $R_1 = 0.0763$, $wR_2 = 0.1542$ Final R indexes [all data] $R_1 = 0.2010$, $wR_2 = 0.2144$

Largest diff. peak/hole / e Å-3 0.20/-0.27

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for $C_{32}H_{21}NO_2$ (5b). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{LJ} tensor.

Atom	\boldsymbol{x}	у	z	U(eq)
O1	3300.4(8)	7788.3(18)	6040.9(13)	55.9(8)
O2	2893.0(8)	8978.1(18)	4040.0(13)	54.1(7)
N1	3213.6(9)	8379(2)	4990.3(14)	41.8(8)
C1	3075.3(12)	8162(3)	5620(2)	44.3(10)
C2	2868.2(12)	8749(2)	4609(2)	41.0(9)
C3	2487.1(11)	8801(2)	5032.3(18)	39.6(9)
C4	2612.6(11)	8465(2)	5643.1(18)	38.2(9)
C5	2329.9(13)	8446(3)	6144(2)	50.4(10)
C6	1907.2(13)	8773(3)	6017(2)	55.7(11)
C7	1781.7(13)	9105(3)	5401(2)	52.3(11)
C8	2070.4(12)	9119(2)	4891(2)	46.3(10)
C9	3640.5(11)	8122(3)	4736.1(18)	44.1(10)
C10	4023.7(11)	8576(2)	5098.8(17)	39.9(9)
C11	4299.0(11)	8065(3)	5492.7(18)	43.2(10)
C12	4639.3(11)	8498(3)	5896.5(18)	46.4(10)
C13	4698.7(11)	9467(3)	5842.7(19)	47.0(10)
C14	4433.6(12)	9981(3)	5389.0(19)	43.3(10)
C15	4091.2(11)	9557(2)	5015.8(18)	41.6(10)
C16	3846.0(12)	10075(3)	4565(2)	49.9(11)
C17	3929.7(14)	10999(3)	4492(2)	63.7(13)
C18	4250.5(14)	11427(3)	4866(2)	63.3(12)
C19	4507.8(12)	10933(3)	5318(2)	51.3(11)
C20	4841.6(14)	11357(3)	5716(2)	66.3(13)

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for $C_{32}H_{21}NO_2$ (5b). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	y	z	U(eq)
C21	5089.1(14)	10873(3)	6151(2)	69.3(14)
C22	5029.0(13)	9908(3)	6230(2)	56.4(12)
C23	5282.8(14)	9399(4)	6684(2)	74.3(14)
C24	5220.4(14)	8469(4)	6734(2)	71.9(14)
C25	4909.0(13)	8021(3)	6342(2)	60.0(12)
C26	4280.6(11)	7033(3)	5504(2)	45.1(10)
C27	4437.7(12)	6557(3)	4979(2)	49.3(10)
C28	4451.2(12)	5609(3)	4978(2)	55.8(11)
C29	4307.7(12)	5104(3)	5502(2)	52.7(11)
C30	4147.3(13)	5584(3)	6022(2)	63.2(13)
C31	4131.7(13)	6531(3)	6031(2)	56.6(11)
C32	4331.2(13)	4071(3)	5499(3)	75.3(15)
О3	3445.6(9)	7047.3(19)	747.5(14)	60.4(8)
O4	2047.5(9)	6280.5(19)	1230.2(13)	58.9(8)
N2	2775.8(10)	6658(2)	1158.0(15)	43.7(8)
C33	3072.9(13)	6764(2)	667(2)	46.8(10)
C34	2365.9(14)	6386(3)	900(2)	48.0(10)
C35	2417.4(13)	6266(2)	186.0(19)	44.7(10)
C36	2843.1(13)	6478(2)	43.8(19)	45.0(10)
C37	2992.6(14)	6421(3)	-580(2)	55.2(11)
C38	2697.6(17)	6117(3)	-1063(2)	65.7(13)
C39	2268.2(16)	5900(3)	-926(2)	62.2(12)
C40	2119.5(14)	5979(2)	-297(2)	52.2(11)
C41	2860.8(12)	6911(3)	1846.1(17)	45.5(10)
C44	3984.7(12)	6471(3)	2685.3(18)	44.7(10)
C42	3252.3(12)	6424(3)	2168.9(17)	41.6(9)
C47	3238.1(12)	5444(3)	2245.7(18)	42.8(10)
C43	3606.9(11)	6929(3)	2381.5(17)	41.0(9)
C45	3978.5(12)	5509(3)	2757.7(18)	48.3(10)
C58	3620.4(11)	7951(3)	2331.0(19)	43.2(10)
C46	3607.9(13)	4991(3)	2543.2(18)	46.1(10)
C48	2881.1(13)	4910(3)	2043.8(19)	49.0(11)
C49	2884.1(14)	3967(3)	2108.5(19)	56.7(12)
C50	3240.3(15)	3531(3)	2395(2)	61.8(12)

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for $C_{32}H_{21}NO_2$ (5b). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{LJ} tensor.

Atom	x	у	z	U(eq)
C51	3601.6(14)	4025(3)	2626(2)	55.9(11)
C52	3975.7(16)	3592(3)	2930(2)	75.7(15)
C53	4330.1(16)	4084(3)	3131(3)	81.8(16)
C54	4349.4(13)	5054(3)	3053(2)	60.2(12)
C55	4715.9(14)	5572(4)	3252(2)	69.2(13)
C56	4717.0(13)	6510(4)	3184(2)	64.1(13)
C57	4358.3(12)	6954(3)	2906.3(19)	55.9(11)
C59	3406.3(12)	8482(3)	2778.1(18)	44.8(10)
C60	3423.5(12)	9424(3)	2757.8(19)	48.2(10)
C61	3658.0(13)	9869(3)	2296(2)	48.9(10)
C62	3870.4(14)	9337(3)	1849(2)	61.1(12)
C63	3855.3(13)	8397(3)	1861(2)	57.5(11)
C64	3678.5(15)	10903(3)	2278(2)	74.6(14)

Table 3 Anisotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for $C_{32}H_{21}NO_2$ (5b). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O1	52.6(17)	64.4(19)	50.1(18)	9.5(15)	-5.1(14)	1.4(14)
O2	52.5(17)	69(2)	41.1(17)	5.3(14)	-0.1(14)	1.2(14)
N1	36.6(18)	51(2)	38.5(19)	5.4(16)	3.5(15)	1.0(15)
C1	47(2)	42(2)	44(3)	-5(2)	-2(2)	-4.4(19)
C2	45(2)	38(2)	40(2)	-0.6(19)	1(2)	-5.2(18)
C3	37(2)	34(2)	47(3)	-2.8(19)	1.1(19)	-6.4(17)
C4	39(2)	36(2)	41(2)	-2.9(18)	4.7(19)	-5.6(17)
C5	55(3)	49(3)	47(3)	-2(2)	4(2)	-6(2)
C6	53(3)	56(3)	59(3)	-7(2)	18(2)	-5(2)
C7	44(2)	45(3)	68(3)	-2(2)	2(2)	-4.8(19)
C8	49(3)	42(3)	48(3)	-0.5(19)	1(2)	-8.5(19)
C9	39(2)	51(3)	42(2)	-0.5(19)	2.0(19)	0.7(19)
C10	35(2)	44(2)	41(2)	-2.0(19)	4.3(18)	-0.5(18)
C11	39(2)	47(3)	44(2)	-1(2)	6.7(19)	-1.6(19)
C12	38(2)	56(3)	45(3)	-5(2)	3.0(19)	5(2)
C13	33(2)	56(3)	52(3)	-12(2)	6(2)	-0.8(19)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for $C_{32}H_{21}NO_2$ (5b). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U_{22}	U33	U_{23}	U ₁₃	U_{12}
C14	40(2)	43(3)	47(3)	-10(2)	11(2)	-1.9(19)
C15	38(2)	40(3)	47(2)	-4.8(19)	6.5(19)	-2.8(18)
C16	44(2)	48(3)	58(3)	4(2)	0(2)	2(2)
C17	61(3)	47(3)	83(4)	12(3)	5(3)	3(2)
C18	56(3)	46(3)	88(4)	-2(3)	12(3)	-7(2)
C19	40(2)	53(3)	61(3)	-15(2)	12(2)	-8(2)
C20	56(3)	58(3)	85(4)	-17(3)	11(3)	-8(2)
C21	52(3)	75(4)	80(4)	-33(3)	0(3)	-16(3)
C22	42(2)	65(3)	62(3)	-22(2)	2(2)	-2(2)
C23	53(3)	95(4)	74(4)	-20(3)	-13(3)	-3(3)
C24	56(3)	87(4)	71(3)	-6(3)	-14(3)	6(3)
C25	52(3)	66(3)	61(3)	-6(2)	-12(2)	5(2)
C26	36(2)	48(3)	51(3)	1(2)	-1.6(19)	-0.5(19)
C27	48(2)	43(3)	57(3)	1(2)	10(2)	-3(2)
C28	42(2)	56(3)	69(3)	-7(2)	5(2)	-1(2)
C29	31(2)	45(3)	82(3)	9(3)	-1(2)	0.0(19)
C30	53(3)	61(3)	77(3)	26(3)	16(3)	8(2)
C31	58(3)	58(3)	54(3)	12(2)	12(2)	7(2)
C32	54(3)	52(3)	119(4)	9(3)	3(3)	-5(2)
О3	44.0(17)	75(2)	62(2)	-2.0(15)	2.3(15)	3.7(15)
O4	49.7(17)	76(2)	50.7(18)	6.1(15)	0.8(15)	-9.9(15)
N2	44.6(19)	46(2)	40(2)	1.0(16)	-1.3(16)	1.5(16)
C33	48(3)	40(3)	53(3)	3(2)	4(2)	11(2)
C34	51(3)	45(3)	47(3)	7(2)	-8(2)	1(2)
C35	53(3)	40(2)	40(2)	3.6(19)	-6(2)	5(2)
C36	56(3)	38(2)	41(3)	3.4(19)	-2(2)	10.5(19)
C37	62(3)	51(3)	53(3)	4(2)	2(2)	12(2)
C38	92(4)	61(3)	44(3)	4(2)	3(3)	13(3)
C39	82(4)	56(3)	48(3)	3(2)	-11(3)	10(3)
C40	63(3)	45(3)	48(3)	4(2)	-5(2)	1(2)
C41	47(2)	50(3)	40(2)	-1.5(19)	1.1(19)	1.5(19)
C44	43(2)	56(3)	36(2)	-4(2)	2.7(19)	1(2)
C42	44(2)	45(3)	35(2)	-2.1(19)	-0.3(18)	4.0(19)
C47	51(2)	41(3)	36(2)	-2.2(18)	-2.2(19)	1(2)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for $C_{32}H_{21}NO_2$ (5b). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U_{23}	U ₁₃	U_{12}
C43	44(2)	45(3)	33(2)	-6.1(18)	3.4(18)	2.9(19)
C45	44(2)	58(3)	42(2)	-8(2)	-1(2)	9(2)
C58	37(2)	49(3)	44(2)	-4(2)	1.0(19)	-4.3(19)
C46	51(3)	47(3)	40(2)	-5(2)	0(2)	5(2)
C48	55(3)	47(3)	45(3)	2(2)	-5(2)	1(2)
C49	72(3)	53(3)	44(3)	-3(2)	-9(2)	-5(2)
C50	85(3)	43(3)	57(3)	-5(2)	-5(3)	1(2)
C51	64(3)	52(3)	51(3)	-4(2)	0(2)	16(2)
C52	82(4)	53(3)	91(4)	-1(3)	-18(3)	22(3)
C53	75(4)	72(4)	97(4)	-2(3)	-22(3)	36(3)
C54	55(3)	69(3)	55(3)	-9(2)	-11(2)	21(2)
C55	49(3)	95(4)	62(3)	-15(3)	-11(2)	15(3)
C56	45(3)	89(4)	57(3)	-14(3)	-7(2)	1(3)
C57	52(3)	68(3)	48(3)	-6(2)	-1(2)	5(2)
C59	50(2)	45(3)	40(2)	0(2)	3.9(19)	-1(2)
C60	55(3)	45(3)	45(3)	-2(2)	1(2)	1(2)
C61	54(3)	44(3)	48(3)	3(2)	-8(2)	-9(2)
C62	69(3)	69(3)	45(3)	7(2)	12(2)	-23(3)
C63	61(3)	59(3)	54(3)	-1(2)	17(2)	-7(2)
C64	86(3)	60(3)	77(3)	16(3)	-11(3)	-9(3)

Table 4 Bond Lengths for C₃₂H₂₁NO₂ (5b).

Atom	1 Atom	Length/Å	Aton	1 Atom	Length/Å
01	C 1	1.210(4)	О3	C33	1.219(4)
O2	C2	1.214(4)	O4	C34	1.217(4)
N1	C1	1.405(5)	N2	C33	1.389(5)
N1	C2	1.398(4)	N2	C34	1.399(5)
N1	C9	1.473(4)	N2	C41	1.466(4)
C1	C4	1.486(5)	C33	C36	1.489(5)
C2	C3	1.481(5)	C34	C35	1.483(5)
C3	C4	1.381(5)	C35	C36	1.382(5)
C3	C8	1.378(5)	C35	C40	1.381(5)
C4	C5	1.366(5)	C36	C37	1.373(5)

Table 4 Bond Lengths for C₃₂H₂₁NO₂ (5b).

Atom	Atom	Length/Å	Atom Atom Length/Å			
C5	C6	1.394(5)	C37	C38	1.384(6)	
C6	C 7	1.388(5)	C38	C39	1.391(6)	
C 7	C8	1.391(5)	C39	C40	1.385(6)	
C9	C10	1.515(5)	C41	C42	1.522(5)	
C10	C11	1.365(5)	C44	C43	1.454(5)	
C10	C15	1.458(5)	C44	C45	1.414(5)	
C11	C12	1.449(5)	C44	C57	1.403(5)	
C11	C26	1.508(5)	C42	C47	1.441(5)	
C12	C13	1.431(5)	C42	C43	1.369(5)	
C12	C25	1.391(5)	C47	C46	1.427(5)	
C13	C14	1.422(5)	C47	C48	1.392(5)	
C13	C22	1.415(5)	C43	C58	1.496(5)	
C14	C15	1.415(5)	C45	C46	1.419(5)	
C14	C19	1.417(5)	C45	C54	1.429(5)	
C15	C16	1.389(5)	C58	C59	1.383(5)	
C16	C17	1.382(5)	C58	C63	1.384(5)	
C17	C18	1.371(6)	C46	C51	1.420(5)	
C18	C19	1.393(6)	C48	C49	1.384(5)	
C19	C20	1.423(5)	C49	C50	1.374(5)	
C20	C21	1.346(6)	C50	C51	1.388(5)	
C21	C22	1.431(6)	C51	C52	1.429(5)	
C22	C23	1.400(6)	C52	C53	1.353(6)	
C23	C24	1.376(6)	C53	C54	1.427(6)	
C24	C25	1.386(5)	C54	C55	1.400(6)	
C26	C27	1.380(5)	C55	C56	1.378(6)	
C26	C31	1.393(5)	C56	C57	1.378(5)	
C27	C28	1.386(5)	C59	C60	1.377(5)	
C28	C29	1.385(5)	C60	C61	1.371(5)	
C29	C30	1.379(6)	C61	C62	1.380(5)	
C29	C32	1.511(5)	C61	C64	1.512(5)	
C30	C31	1.384(6)	C62	C63	1.374(5)	

Table 5 Bond Angles for C₃₂H₂₁NO₂ (5b).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C9	124.6(3)	C33	N2	C34	111.3(3)
C2	N1	C1	110.4(3)	C33	N2	C41	124.6(3)
C2	N1	C9	124.4(3)	C34	N2	C41	123.7(3)
O1	C1	N1	124.6(4)	О3	C33	N2	125.2(4)
O1	C1	C4	129.0(4)	О3	C33	C36	128.3(4)
N1	C1	C4	106.5(3)	N2	C33	C36	106.5(3)
O2	C2	N1	124.4(3)	O4	C34	N2	123.6(4)
O2	C2	C3	128.7(4)	O4	C34	C35	130.4(4)
N1	C2	C3	106.9(3)	N2	C34	C35	106.0(3)
C4	C3	C2	108.1(3)	C36	C35	C34	108.5(3)
C8	C3	C2	129.8(4)	C40	C35	C34	130.2(4)
C8	C3	C4	122.1(4)	C40	C35	C36	121.3(4)
C3	C4	C1	108.0(3)	C35	C36	C33	107.6(3)
C5	C4	C1	130.6(4)	C37	C36	C33	130.2(4)
C5	C4	C3	121.4(3)	C37	C36	C35	122.2(4)
C4	C5	C6	117.6(4)	C36	C37	C38	116.7(4)
C7	C6	C5	120.7(4)	C37	C38	C39	121.7(4)
C6	C7	C8	121.4(4)	C40	C39	C38	121.0(4)
C3	C8	C7	116.7(4)	C35	C40	C39	117.1(4)
N1	C9	C10	113.4(3)	N2	C41	C42	113.8(3)
C11	C10	C9	119.8(3)	C45	C44	C43	119.2(3)
C11	C10	C15	121.3(3)	C57	C44	C43	122.1(4)
C15	C10	C9	118.9(3)	C57	C44	C45	118.7(4)
C10	C11	C12	120.7(3)	C47	C42	C41	119.0(3)
C10	C11	C26	122.2(3)	C43	C42	C41	119.2(3)
C12	C11	C26	117.0(3)	C43	C42	C47	121.8(3)
C13	C12	C11	118.6(3)	C46	C47	C42	118.7(3)
C25	C12	C11	123.3(4)	C48	C47	C42	123.4(3)
C25	C12	C13	118.1(4)	C48	C47	C46	117.8(4)
C14	C13	C12	120.1(3)	C44	C43	C58	117.7(3)
C22	C13	C12	119.9(4)	C42	C43	C44	119.7(3)
C22	C13	C14	120.0(4)	C42	C43	C58	122.6(3)
C15	C14	C13	120.8(4)	C44	C45	C46	120.8(3)
C15	C14	C19	119.6(4)	C44	C45	C54	119.5(4)
C19	C14	C13	119.7(4)	C46	C45	C54	119.6(4)

Table 5 Bond Angles for C₃₂H₂₁NO₂ (5b).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C14	C15	C10	118.2(3)	C59	C58	C43	120.0(3)
C16	C15	C10	122.5(3)	C59	C58	C63	117.7(4)
C16	C15	C14	119.2(3)	C63	C58	C43	122.3(4)
C17	C16	C15	120.4(4)	C45	C46	C47	119.7(4)
C18	C17	C16	121.1(4)	C45	C46	C51	120.5(4)
C17	C18	C19	120.5(4)	C51	C46	C47	119.8(4)
C14	C19	C20	118.9(4)	C49	C48	C47	121.8(4)
C18	C19	C14	119.2(4)	C50	C49	C48	120.3(4)
C18	C19	C20	121.9(4)	C49	C50	C51	120.9(4)
C21	C20	C19	121.4(4)	C46	C51	C52	118.5(4)
C20	C21	C22	121.3(4)	C50	C51	C46	119.3(4)
C13	C22	C21	118.6(4)	C50	C51	C52	122.1(4)
C23	C22	C13	119.6(4)	C53	C52	C51	121.1(4)
C23	C22	C21	121.8(4)	C52	C53	C54	122.0(4)
C24	C23	C22	119.9(4)	C53	C54	C45	118.3(4)
C23	C24	C25	121.2(4)	C55	C54	C45	119.1(4)
C24	C25	C12	121.3(4)	C55	C54	C53	122.7(4)
C27	C26	C11	118.5(4)	C56	C55	C54	120.9(4)
C27	C26	C31	118.0(4)	C55	C56	C57	120.3(4)
C31	C26	C11	123.5(4)	C56	C57	C44	121.5(4)
C26	C27	C28	121.0(4)	C60	C59	C58	121.4(4)
C29	C28	C27	121.4(4)	C61	C60	C59	121.0(4)
C28	C29	C32	120.8(4)	C60	C61	C62	117.5(4)
C30	C29	C28	117.2(4)	C60	C61	C64	120.8(4)
C30	C29	C32	122.0(4)	C62	C61	C64	121.7(4)
C29	C30	C31	122.1(4)	C63	C62	C61	122.3(4)
C30	C31	C26	120.3(4)	C62	C63	C58	120.1(4)

Table 6 Torsion Angles for C₃₂H₂₁NO₂ (5b).

A	В	C	D	Angle/°	A	В	C	D	Angle/°
O1	C 1	C4	C3	-176.0(4)	О3	C33	C36	C35	-176.0(4)
O 1	C1	C4	C5	3.7(7)	О3	C33	C36	C37	3.2(7)
O2	C2	C3	C4	-179.9(4)	O4	C34	C35	C36	179.5(4)
O2	C2	C3	C8	-0.3(6)	O4	C34	C35	C40	-1.7(7)

Table 6 Torsion Angles for C₃₂H₂₁NO₂ (5b).

rab	ie o i	LOTSI	on A	ngies for C	32П2	INU	(30)	•	
A	В	C	D	Angle/°	A	В	C	D	Angle/°
N1	C1	C4	C3	2.9(4)	N2	C33	C36	C35	3.3(4)
N1	C1	C4	C5	-177.4(4)	N2	C33	C36	C37	-177.5(4)
N1	C2	C3	C4	-0.1(4)	N2	C34	C35	C36	-0.9(4)
N1	C2	C3	C8	179.5(3)	N2	C34	C35	C40	177.9(4)
N1	C9	C10	C11	109.8(4)	N2	C41	C42	C47	-64.2(4)
N1	C9	C10	C15	-70.4(4)	N2	C41	C42	C43	116.1(4)
C1	N1	C2	O2	-178.2(3)	C33	N2	C34	O4	-177.3(4)
C1	N1	C2	C3	2.0(4)	C33	N2	C34	C35	3.1(4)
C1	N1	C9	C10	-65.0(4)	C33	N2	C41	C42	-58.7(5)
C1	C4	C5	C6	-179.3(4)	C33	C36	C37	C38	179.3(4)
C2	N1	C1	O1	176.0(3)	C34	N2	C33	О3	175.4(4)
C2	N1	C1	C4	-3.0(4)	C34	N2	C33	C36	-4.0(4)
C2	N1	C9	C10	124.9(4)	C34	N2	C41	C42	129.7(4)
C2	C3	C4	C1	-1.7(4)	C34	C35	C36	C33	-1.4(4)
C2	C3	C4	C5	178.5(3)	C34	C35	C36	C37	179.3(3)
C2	C3	C8	C7	-178.1(3)	C34	C35	C40	C39	-177.7(4)
C3	C4	C5	C6	0.4(5)	C35	C36	C37	C38	-1.6(6)
C4	C3	C8	C7	1.4(5)	C36	C35	C40	C39	1.0(5)
C4	C5	C6	C7	-0.1(6)	C36	C37	C38	C39	1.4(6)
C5	C6	C7	C8	0.4(6)	C37	C38	C39	C40	-0.1(6)
C6	C7	C8	C3	-1.1(5)	C38	C39	C40	C35	-1.1(6)
C8	C3	C4	C1	178.6(3)	C40	C35	C36	C33	179.7(3)
C8	C3	C4	C5	-1.1(5)	C40	C35	C36	C37	0.4(6)
C9	N1	C1	O1	4.7(6)	C41	N2	C33	О3	2.9(6)
C9	N1	C1	C4	-174.3(3)	C41	N2	C33	C36	-176.4(3)
C9	N1	C2	O2	-6.9(6)	C41	N2	C34	O4	-4.7(6)
C9	N1	C2	C3	173.3(3)	C41	N2	C34	C35	175.7(3)
C9	C10	C11	C12	-173.5(3)	C41	C42	C47	C46	179.4(3)
C9	C10	C11	C26	9.7(5)	C41	C42	C47	C48	-0.5(5)
C9	C10	C15	C14	176.1(3)	C41	C42	C43	C44	-179.4(3)
C9	C10	C15	C16	-6.9(5)	C41	C42	C43	C58	2.2(5)
C10	C11	C12	C13	-3.9(5)	C44	C43	C58	C59	-100.1(4)
C10	C11	C12	C25	175.2(4)	C44	C43	C58	C63	77.5(5)
C10	C11	C26	C27	73.5(5)	C44	C45	C46	C47	0.5(6)
C10	C11	C26	C31	-109.5(4)	C44	C45	C46	C51	-179.1(4)

Table 6 Torsion Angles for C₃₂H₂₁NO₂ (5b).

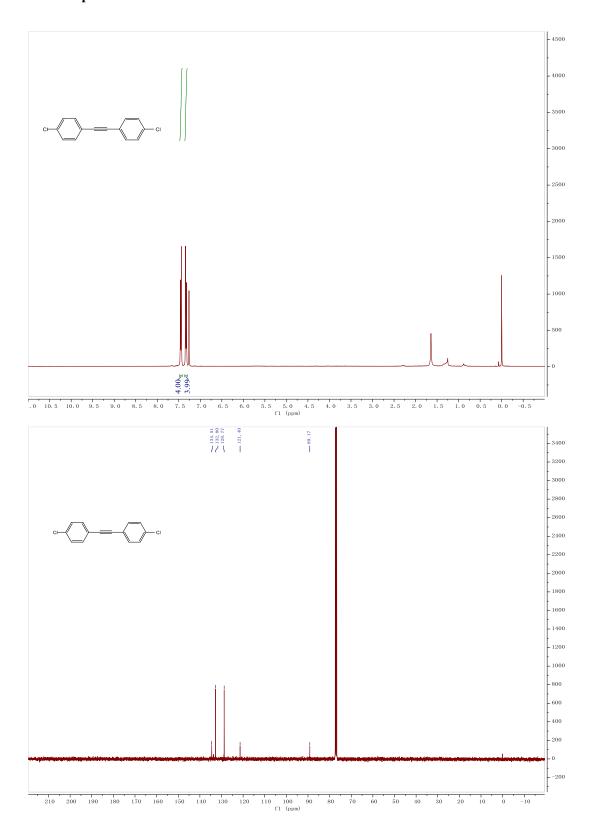
A B	C	D	Angle/°	A	В	C	D	Angle/°
C10 C15	C16	C17	-178.3(4)	C44	C45	C54	C53	178.7(4)
C11 C10	C15	C14	-4.2(5)	C44	C45	C54	C55	-1.4(6)
C11 C10	C15	C16	172.8(4)	C42	C47	C46	C45	0.2(5)
C11 C12	C13	C14	-1.5(5)	C42	C47	C46	C51	179.8(3)
C11 C12	C13	C22	-179.9(3)	C42	C47	C48	C49	178.1(4)
C11 C12	C25	C24	-177.7(4)	C42	C43	C58	C59	78.3(5)
C11 C26	C27	C28	176.4(3)	C42	C43	C58	C63	-104.1(4)
C11 C26	C31	C30	-176.3(4)	C47	C42	C43	C44	0.9(5)
C12 C11	C26	C27	-103.3(4)	C47	C42	C43	C58	-177.4(3)
C12 C11	C26	C31	73.6(5)	C47	C46	C51	C50	2.3(6)
C12 C13	C14	C15	4.0(5)	C47	C46	C51	C52	-179.6(4)
C12 C13	C14	C19	-177.2(3)	C47	C48	C49	C50	1.9(6)
C12 C13	C22	C21	178.2(4)	C43	C44	C45	C46	-0.6(5)
C12 C13	C22	C23	-2.8(6)	C43	C44	C45	C54	179.7(3)
C13 C12	C25	C24	1.4(6)	C43	C44	C57	C56	-179.0(4)
C13 C14	C15	C10	-1.3(5)	C43	C42	C47	C46	-0.9(5)
C13 C14	C15	C16	-178.4(3)	C43	C42	C47	C48	179.1(4)
C13 C14	C19	C18	179.1(4)	C43	C58	C59	C60	178.0(3)
C13 C14	C19	C20	-1.4(5)	C43	C58	C63	C62	-177.7(4)
C13 C22	C23	C24	2.3(6)	C45	C44	C43	C42	-0.2(5)
C14 C13	C22	C21	-0.3(6)	C45	C44	C43	C58	178.3(3)
C14 C13	C22	C23	178.8(4)	C45	C44	C57	C56	0.6(6)
C14 C15	C16	C17	-1.3(6)	C45	C46	C51	C50	-178.1(4)
C14 C19	C20	C21	0.7(6)	C45	C46	C51	C52	0.0(6)
C15 C10	C11	C12	6.8(5)	C45	C54	C55	C56	1.9(6)
C15 C10	C11	C26	-170.0(3)	C58	C59	C60	C61	-0.6(6)
C15 C14	C19	C18	-2.1(5)	C46	C47	C48	C49	-1.8(6)
C15 C14	C19	C20	177.4(3)	C46	C45	C54	C53	-1.0(6)
C15 C16	C17	C18	-0.9(6)	C46	C45	C54	C55	178.9(4)
C16 C17	C18	C19	1.6(7)	C46	C51	C52	C53	-0.4(7)
C17 C18	C19	C14	-0.1(6)	C48	C47	C46	C45	-179.9(3)
C17 C18	C19	C20	-179.6(4)	C48	C47	C46	C51	-0.2(5)
C18 C19	C20	C21	-179.9(4)	C48	C49	C50	C51	0.2(6)
C19 C14	C15	C10	179.9(3)	C49	C50	C51	C46	-2.3(6)
C19 C14	C15	C16	2.8(5)	C49	C50	C51	C52	179.7(4)

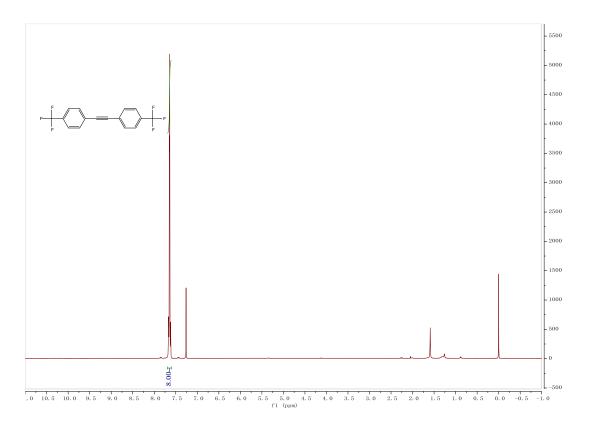
Table 6 Torsion Angles for C₃₂H₂₁NO₂ (5b).

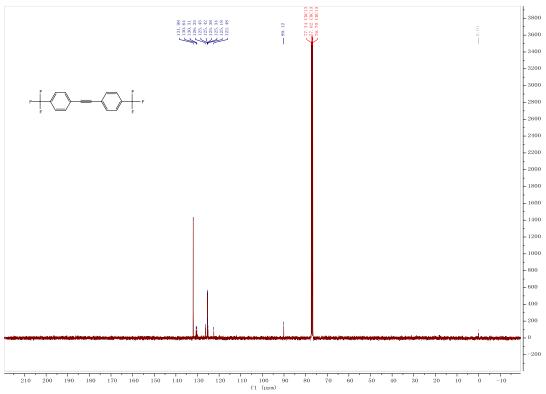
A	В	C	D	Angle/°	A	В	C	D	Angle/°
C19	C20	C21	C22	0.3(7)	C50	C51	C52	C53	177.7(5)
C20	C21	C22	C13	-0.5(6)	C51	C52	C53	C54	0.0(8)
C20	C21	C22	C23	-179.6(4)	C52	C53	C54	C45	0.7(7)
C21	C22	C23	C24	-178.6(4)	C52	C53	C54	C55	-179.2(5)
C22	C13	C14	C15	-177.6(3)	C53	C54	C55	C56	-178.2(4)
C22	C13	C14	C19	1.3(5)	C54	C45	C46	C47	-179.7(3)
C22	C23	C24	C25	0.0(7)	C54	C45	C46	C51	0.7(6)
C23	C24	C25	C12	-1.9(7)	C54	C55	C56	C57	-1.3(7)
C25	C12	C13	C14	179.3(4)	C55	C56	C57	C44	0.0(6)
C25	C12	C13	C22	0.9(5)	C57	C44	C43	C42	179.4(4)
C26	C11	C12	C13	173.0(3)	C57	C44	C43	C58	-2.2(5)
C26	C11	C12	C25	-7.8(5)	C57	C44	C45	C46	179.9(4)
C26	C27	C28	C29	0.1(6)	C57	C44	C45	C54	0.1(5)
C27	C26	C31	C30	0.6(6)	C59	C58	C63	C62	0.0(6)
C27	C28	C29	C30	0.5(6)	C59	C60	C61	C62	0.8(6)
C27	C28	C29	C32	-179.0(4)	C59	C60	C61	C64	-179.6(4)
C28	C29	C30	C31	-0.6(6)	C60	C61	C62	C63	-0.5(6)
C29	C30	C31	C26	0.0(6)	C61	C62	C63	C58	0.1(6)
C31	C26	C27	C28	-0.7(6)	C63	C58	C59	C60	0.2(5)
C32	C29	C30	C31	179.0(4)	C64	C61	C62	C63	179.9(4)

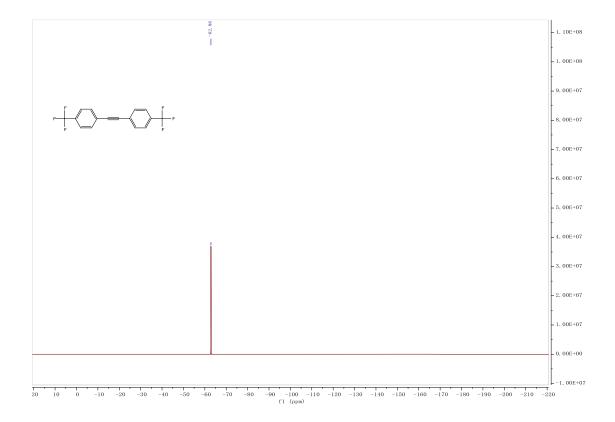
Table 7 Hydrogen Atom Coordinates ($\mathring{A}\times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2\times 10^3$) for $C_{32}H_{21}NO_2$ (5b).

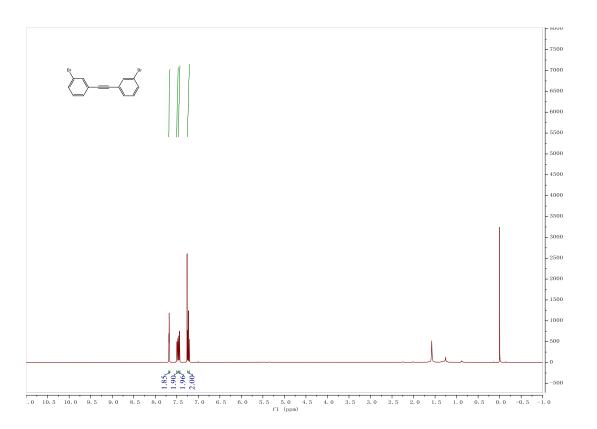
Atom	\boldsymbol{x}	У	z	U(eq)
H5	2417.11	8219.93	6560.12	60
Н6	1705.05	8767.83	6351.51	67
H7	1495.74	9326.25	5326.74	63
Н8	1985.35	9334.17	4471.65	56
H9A	3645	8289.91	4271.57	53
Н9В	3674.69	7456.5	4766.92	53
H16	3621.75	9796.59	4308.49	60
H17	3763.81	11339.24	4180.86	76
H18	4297.07	12059.38	4816.22	76
H20	4890.26	11989.47	5674.87	80


Table 7 Hydrogen Atom Coordinates ($\mathring{A}\times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2\times 10^3$) for $C_{32}H_{21}NO_2$ (5b).


Atom	\boldsymbol{x}	y	z	U(eq)
H21	5306.01	11174.06	6408.8	83
H23	5495.46	9691.78	6954.71	89
H24	5392.11	8131.54	7040.28	86
H25	4879.36	7382.68	6377.08	72
H27	4536.99	6881.11	4615.56	59
H28	4560.21	5301.5	4614.62	67
H30	4045.23	5257.96	6382.75	76
H31	4020.26	6836.49	6393.5	68
H32A	4122.39	3830.77	5173.32	113
H32B	4262.63	3838.51	5928.38	113
H32C	4623.59	3879.06	5394.06	113
H37	3280.81	6580.56	-674.41	66
H38	2789.75	6055.72	-1494.98	79
H39	2076.12	5696.79	-1265.99	75
H40	1828.56	5844.03	-202.04	63
H41A	2600.72	6771.17	2092.7	55
H41B	2909.53	7573.61	1872.06	55
H48	2631.13	5198.13	1858.36	59
H49	2641.44	3622.71	1955.75	68
H50	3239.46	2889.91	2435.07	74
H52	3975.46	2953.58	2990.42	91
H53	4571.08	3778.15	3329.17	98
H55	4964.5	5275.05	3434.02	83
H56	4963.42	6849.27	3328.23	77
H57	4364.05	7594.42	2863.79	67
H59	3245.53	8194.93	3102.75	54
H60	3272.19	9767.78	3065.44	58
H62	4031.06	9627.81	1525.74	73
H63	4004.56	8056.36	1549.5	69
H64A	3408.3	11141.38	2081.09	112
H64B	3921.95	11093.6	2020.08	112
H64C	3718.21	11136.96	2720.75	112


7. Reference


- 1. Savelli, C.; Salvio, R., Guanidine-based polymer brushes grafted onto silica nanoparticles as efficient artificial phosphodiesterases. *Chem. Eur. J.*, 2015, *21*, 5856-63.
- 2. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A., One-pot synthesis of symmetrical and unsymmetrical bisarylethynes by a modification of the sonogashira coupling reaction. *Org. Lett.*, 2002, *4*, 3199-202.
- 3. Zhukhovitskiy, A. V.; Kobylianskii, I. J.; Wu, C. Y.; Toste, F. D., Migratory Insertion of Carbenes into Au(III)-C Bonds. *J. Am. Chem. Soc.*, 2018, *140*, 466-474.
- 4. Rusali, L. E.; Schramm, M. P., Au-Cavitands: Size governed arene-alkyne cycloisomerization. *Tetrahedron Lett.*, 2020, *61*, 152333.
- 5. Badri, R.; Shushizadeh, M. R., A New Method for the Oxybromination of Aromatic Compounds with Copper(II)bromide and Potassium Dichromate. *Phosphorus, Sulfur, and Silicon*, 2005, **180**, 533-536.
- 6. Umeda, R.; Ueda, R.; Tanaka, T.; Hayashi, A.; Ikeshita, M.; Suzuki, S.; Naota, T.; Nishiyama, Y., Selective synthesis of 1-halonaphthalenes by copper-catalyzed benzannulation. *Tetrahedron*, 2021, 79, 131872.
- 7. Tian, T.; Wang, X.; Lv, L.; Li, Z., Iron-Catalyzed [2+2+2] Annulation of Aliphatic Bridged 1,n -Enynes with Aldehydes for the Synthesis of Fused Pyrans. *Eur. J. Org. Chem.*, 2020, 4425-4428.
- 8. Keller, F.; Rippert, A. J., New, Axially Chiral, Bimetallic Catalysts for Asymmetric Alkylation of Aldehydes with Diethylzinc. *Helv. Chim. Acta.*, 1999, **82**, 125-137.
- 9. Sasaki, H.; Akioka, I.; Imoto, H.; Naka, K., Arsenic-Bridged Silafluorene and Germafluorene as a Novel Class of Mixed-Heteroatom-Bridged Heterofluorenes. *Eur. J. Org. Chem.*, 2021, 1390-1395.
- 10. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.*, 2009, 42, 339-341.
- 11. Sheldrick, G. M., SHELXT integrated space-group and crystal-structure determination. *Acta. Cryst.*, 2015, 71, 3-8.


8. NMR spectra

