Supporting Information

K₂CO₃- Accelerated Amidation of Carboxylic Acids with α-Oxo Ketene-*N*, *S*-Acetals as Amine Surrogates

Haifeng Yu*, Xue Zhang, Liangliang Li, Hui Luo, Guangbo Che*

College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China

* E-mail: yuhf68105@sina.com; guangboche@bcnu.edu.cn.

Tables of Contents:

I.	Detection of S-ethyl 3-oxobutanethioate A from LC-MS	-S3
II.	Copies of NMR spectra for 1	S4
III.	Copies of NMR spectra for 3	S24
IV.	Copies of NMR spectra for 4	·S44
V.	Copies of NMR spectra for A	-S69

I. Detection of S-ethyl 3-oxobutanethioate A from LC-MS

1. General Information. The chromatographic separation was performed on an Agilent 1260 Infinity HPLC apparatus equipped with a reverse phase SepaChrom Srl C18 (50 mm × 4.6 mm, 5.0 µm particle size) analytical column. LC flow rate: 3.5 mL min⁻¹, The mass spectrometry shunt flow rate is 0.3 mL min⁻¹. The ultra-pure water was prepared by a Millipore purification device (New York, USA). The column temperature was set at 35 °C. The injection volume was set at 2 µL. HPLC grade Acetonitrile (0.1% HPLC grade methanoic acid) and ultrapure water (0.1% HPLC grade methanoic acid) were used as mobile phase A and mobile phase B, respectively. The gradient was set as follows: $0\rightarrow 5$ min, $30\%\rightarrow 80\%$ A; $5\rightarrow 6$ min, 80% A. A Thermofisher TSQ Quantum Access MAX mass spectrometer was used for the identification and quantification of analytes with a Full Scan mode (m/z 100 – 1000). The parameters of the ESI source (positive ionization mode) were carefully optimized.

2. Total ion chromatogram

3. The MS of components based on retention time 1 minute

O O A SEt C₆H₁₁O₂S⁺(M+H⁺), 147.0474

II. Copies of NMR spectra for 1

¹³ CNMR of **1e**

¹³ CNMR of **1f**

¹³ CNMR of **1m**

III. Copies of NMR spectra for 3

¹³ CNMR of **3a**

yu20052908, CDCl₃, 400

¹³ CNMR of **3c**

yu20052926, CDCl₃, 400

S27

¹³ CNMR of **3h**

¹³ CNMR of **3**k

S36

¹³ CNMR of **3p**

IV. Copies of NMR spectra for 4

¹³ CNMR of **4g**

¹³ CNMR of **4p**

0

¹³ CNMR of 4x

yu20052910, CDCl₃, 400

