Nickel-Catalyzed Asymmetric Reductive Arylcyanation of Alkenes with Acetonitrile as the Cyano Source

Zhenbang Chen, and Zengming Shen*

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

shenzengming@sjtu.edu.cn

Table of Contents

1,	General information	S2
2、	Optimization of the racemic reaction conditions	S3
3、	Synthesis and characterization data of aryl triflates 1	S5
4、	General procedure for the synthesis of chiral 3-cyanomethyl oxindoles	S15
5、	Characterizationdata and spectra copies of products	S16
6,	Experimental Procedures and Characterization Data for Derivatization Studies	S49
7、	References	S61
8,	The copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S62
9、	The GC-MS date	S120
10	X-Ray crystallographic data	S121

1 General information

All reactions were set up with glovebox and carried out using Schlenk tubes. Anhydrous CH_3CN were purchased from damas-beta (99.9%, with molecular sieves, water ≤ 50 ppm) and used as received. Commercially available chemicals were obtained from Adamas, Acros Organics, Aldrich Chemical Co., Alfa Aesarand TCI, Energy Chemical and used as received unless otherwise stated. $Zn(OTf)_2$ was dried before use according to the standard methods. Zinc powder was activated with 1 M HCl aqueous solution, filtered and washed thoroughly with water, acetone and diethyl ether and dried under vacuum for 4 h.^[1]

Analytical thin layer chromatography (TLC) was performed on percolated silica gel 60 F254 plates. Visualization on TLC was achieved with UV light (254 nm) and potassium permanganate as visualization methods. ¹H NMR spectra were recorded on Bruker-400 (400 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. Data for ¹H NMR spectra are reported as follows: chemical shift (δ shift), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double of doublet, ddd = double of dd, dt = double of triplet, td = triple of doublet), integration, coupling constant (Hz), and assignment. ¹³C NMR spectra were also recorded on Bruker-400 (100 MHz). Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.16 ppm of chloroform-d. High resolution mass spectra were obtained with ACQUITYTM UPLC & Q-TOF MS Premier Spectrometer. Gas chromatograph-mass spectra analysis was performed on LECO Pegasus 4D GC×GC-TOFMS.

2、 Optimization of the racemic reaction conditions:

Entry	X	Catalyst	Ligand	Additive	<i>c</i> (1, y M)	Yield of 2a
1	C1	Ni(OTf) ₂	dppp	$ZnCl_2$ (30 mol%)	0.3	Trace
2	C1	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (30 mol%)	0.3	58 %
3	Cl	Ni(OTf) ₂	dppp	Zn(OAc) ₂ (30 mol%)	0.3	Trace
4	Cl	Ni(OTf) ₂	dppp	$Zn(acac)_2 (30 \text{ mol}\%)$	0.3	Trace
5	Cl	Ni(OTf) ₂	dppp	CoPC (10 mol%)	0.3	27 %
6	C1	Ni(OTf) ₂	dppb	$Zn(OTf)_2 (30 mol\%)$	0.3	Trace
7	C1	Ni(OTf) ₂	dppf	Zn(OTf) ₂ (30 mol%)	0.3	Trace
8	C1	Ni(OTf) ₂	PPh ₃	$Zn(OTf)_2 (30 mol\%)$	0.3	Trace
9	C1	Ni(OTf) ₂	XantPhos	Zn(OTf) ₂ (30 mol%)	0.3	NP
10	C1	Ni(OTf) ₂	S-Phos	$Zn(OTf)_2$ (30 mol%)	0.3	NP
11	C1	Ni(OTf) ₂	L1	Zn(OTf) ₂ (30 mol%)	0.3	40%
12	C1	Ni(OTf) ₂	L2	Zn(OTf) ₂ (30 mol%)	0.3	NP
13	C1	Ni(OTf) ₂	L3	Zn(OTf) ₂ (30 mol%)	0.3	NP
14	C1	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (50 mol%)	0.3	14 %
15	Cl	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (100 mol%)	0.3	Trace
16	Cl	Ni(OTf) ₂	dppp	-	0.3	18 %

17	Cl	NiCl ₂	dppp	$Zn(OTf)_2$ (30mol%)	0.3	25%
18	Cl	NiBr ₂	dppp	$Zn(OTf)_2$ (30 mol%)	0.3	27%
19	Cl	$Ni(OAc)_2$	dppp	$Zn(OTf)_2$ (30 mol%)	0.3	32%
20	Cl	$Ni(acac)_2$	dppp	$Zn(OTf)_2$ (30 mol%)	0.3	38%
21	Cl	$Ni(cod)_2$	dppp	$Zn(OTf)_2$ (30 mol%)	0.3	< 10%
22	Br	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (30 mol%)	0.3	45 %
23	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (30 mol%)	0.3	56 %
23	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (50 mol%)	0.3	59 %
25	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (100 mol%)	0.3	64 %
26	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (150 mol%)	0.3	46 %
27	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (200 mol%)	0.3	50 %
28	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (100 mol%)	0.2	73%
29	OTf	Ni(OTf) ₂	dppp	Zn(OTf) ₂ (100 mol%)	0.1	85 %

3、Synthesis and characterization data of aryl triflates 1

To a solution of 2-aminophenol derivative (1 equiv) and imidazole (1.5 equiv) in DMF (30 mL) was added a solution of TBSCl (1.2 equiv), the mixture was stirred at room temperature. After the reaction was completed (monitored by TLC), the mixture was quenched with saturated NH₄Cl solution (50 mL) and extracted with EtOAc (50 mL \times 3). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na₂SO₄ and filtrated. The solvent was evaporated in vacuo and the remaining residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield products **12** as red oil.

To a solution of **12** and triethylamine (2 equiv) in DCM (50 mL) at 0 °C was added dropwise acryloyl chloride under N₂ atmosphere. The mixture was warmed to room temperature and stirred until the amine was consumed completely (monitored by TLC). The mixture was poured into water (50 mL) and extracted by DCM (3×50 mL). The combined organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue (red oil) **13** was used for the next step without further purification.

To a stirred mixture of amide **13** in dry THF (50 mL) was added NaH (60% dispersion in mineral oil) (2 equiv) at 0 °C under N₂. After being stirred at rt for 30 min, the reaction was cooled to 0 °C and R³X (1.5 equiv) was added dropwise. The mixture was then stirred at room temperature overnight. After the reaction was finished (monitored by TLC), the mixture was quenched with saturated aqueous NH₄Cl at 0 °C and extracted with EtOAc (50 mL \times 3). The combined extracts were washed with water and brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue **14** was used for the next step without further purification.

To a solution of 14 in THF (50 mL) was added tetrabutylammonium fluoride (1 equiv). The mixture was stirred at rt until the TBS-protected substrate was consumed completely (monitored by TLC). The reaction was poured into water (50 mL) and extracted by EtOAc (3×50 mL). The combined organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield compound 15 as a yellow solid.

To a solution of phenol **15** and pyridine (2 equiv) in DCM (50 mL) at 0 °C was added dropwise Tf₂O (1.5 equiv) under N₂ atmosphere, the mixture was warmed to room temperature and stirred for 2 h. After completion of the reaction as indicated by TLC, the mixture was poured into water (50 mL) and extracted by DCM (3 × 50 mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was purified on a silica gel column using petroleum ether/EtOAc to afford the aryl triflate **1**.

Characterization data of aryl triflates 1:

2-(*N*-Methylmethacrylamido)phenyl trifluoromethanesulfonate (1a)^[2]

According to general procedure, **1a** was obtained in 32% yield (2.4 g, over five steps) as a white solid. Melting point: 59.5 - 62.1 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.45 – 7.27 (m, 4H), 5.04 (s, 1H), 4.77 (s, 1H), 3.34 (s, 3H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 144.5, 139.7, 137.8, 129.4, 129.2, 128.9, 122.6, 119.8, 118.6 (q, *J* = 320.2 Hz), 37.4, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.82 (s).

3-Methyl-2-(*N*-methylmethacrylamido)phenyl trifluoromethanesulfonate (1b)^[2]

According to general procedure, **1b** was obtained in 24% yield (3.2 g, over five steps) as a brown oil. Two rotamers were observed in 3:1 ratio, NMR data of the major rotamer were reported. ¹H NMR (400 MHz, CDCl₃): δ 7.30 – 7.26 (m, 2H), 7.16 (m, 1H), 4.96 (s, 1H), 4.71 (s, 1H), 3.21 (s, 3H), 2.34 (s, 3H), 1.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 145.2, 139.7, 138.7, 136.5, 131.1, 128.9, 119.9, 118.5 (q, *J* = 320.0 Hz), 118.5, 36.6, 19.8 18.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.89 (s).

4-Methyl-2-(N-methylmethacrylamido)phenyl trifluoromethanesulfonate (1c)^[2]

According to general procedure, **1c** was obtained in 29% yield (2.4 g, over five steps) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.19 – 7.09 (m, 3H), 5.03 (s, 1H), 4.77 (s, 1H), 3.32 (s, 3H), 2.36 (s, 3H), 1.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 142.1, 139.8, 139.6, 137.2, 129.2 (d, *J* = 4.9 Hz), 121.9, 119.4, δ 118.4 (q, *J* = 320.1 Hz), 37.2, 20.7, 19.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -74.07 (s).

4-(*tert*-Butyl)-2-(*N*-methylmethacrylamido)phenyl trifluoromethanesulfonate (1d)

According to general procedure, **1d** was obtained in 16% yield (1.8 g, over five steps) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.33 (dd, J = 8.7, 2.3 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 4.99 (s, 1H), 4.78 (s, 1H), 3.31 (s, 3H), 1.81 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 153.0, 141.9, 139.9, 136.9, 126.5, 125.79, 121.8, 119.3, δ 118.5 (q, J = 320.1 Hz), 37.3, 34.8, 31.1, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -74.00 (s).

HRMS (ESI): m/z Calcd for C₁₆H₂₀F₃NO₄SNa [M+Na]⁺ 402.0963; found: m/z 402.0983.

4-Methoxy-2-(N-methylmethacrylamido)phenyl trifluoromethanesulfonate (1e)^[3]

According to general procedure, **1e** was obtained in 39% yield (4.9 g, over five steps) as a brown oil.

¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, J = 9.4 Hz, 1H), 6.83 – 6.77 (m, 2H), 5.04 (s, 1H), 4.81 (s, 1H), 3.77 (s, 3H), 3.29 (s, 3H), 1.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 159.6, 139.7, 138.6, 137.9, 123.2, 119.5, δ 118.5 (q, J = 320.2 Hz), 114.2, 113.5, 6.85, 37.4, 19.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.74 (s).

4-Fluoro-2-(N-methylmethacrylamido)phenyl trifluoromethanesulfonate (1f)

According to general procedure, **1f** was obtained in 23% yield (3.0 g, over five steps) as a brown oil.

¹H NMR (400 MHz, CDCl₃): δ 7.29 (dd, J = 9.1, 5.0 Hz, 1H), 7.14 – 7.03 (m, 2H), 5.16 (s, 1H), 4.92 (s, 1H), 3.35 (s, 3H), 1.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 162.7, 160.2, 140.5, 139.4, 139.1, 123.7 (d, J = 9.8 Hz), 119.6, δ 118.4 (q, J = 320.2 Hz), 116.0, 115.7 (dd, J = 39.6, 24.1 Hz), 37.4, 19.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.73 (s), -109.69 (s).

HRMS (ESI): m/z Calcd for C₁₂H₁₂F₄NO₄S [M+H]⁺ 342.0423; found: m/z 342.0434.

5-Fluoro-2-(*N*-methylmethacrylamido)phenyl trifluoromethanesulfonate (1g)

According to general procedure, **1g** was obtained in 27% yield (2.7 g, over five steps) as a white solid. Melting point: 41.3 - 42.6 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.30 (m, 1H), 7.20 – 7.11 (m, 1H), 7.08 (dd, J = 7.9, 2.5 Hz, 1H), 5.08 (s, 1H), 4.78 (s, 1H), 3.32 (s, 3H), 1.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 164.9, 147.7, 139.6, 131.4, 130.4, 130.0, 122.8, 120.3, δ 118.6 (q, J = 320.3 Hz), 52.9, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.71 (d, J = 60.1 Hz), - 73.82 – -73.86 (m), -108.72 (s).

HRMS (ESI): m/z Calcd for C₁₂H₁₂F₄NO₄S [M+H]⁺ 342.0423; found: m/z 342.0423.

4-Chloro-2-(N-methylmethacrylamido)phenyl trifluoromethanesulfonate (1h)^[2]

According to general procedure, **1h** was obtained in 30% yield (3.7 g, over five steps) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 2.4 Hz, 1H), 7.30 (dd, J = 8.8, 2.3 Hz, 1H), 7.22 (d, J = 8.8 Hz, 1H), 5.14 (s, 1H), 4.89 (s, 1H), 3.32 (s, 3H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 143.0, 139.4, 138.8, 134.6, 129.0, 128.8, 123.6, 119.8, 118.4 (q, J = 320.4 Hz), 37.7, 19.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.70 (s).

3-(N-Methylmethacrylamido)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (1i)^[4]

According to general procedure, **1i** was obtained in 31% yield (2.5 g, over five steps) as a brown solid. Melting point: 64.5 - 66.7 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.55 (td, J = 5.3, 2.7 Hz, 4H), 7.47 (t, J = 7.3 Hz, 2H), 7.42 (d, J = 7.1 Hz, 1H), 7.40 – 7.36 (m, 1H), 5.13 (s, 1H), 4.91 (s, 1H), 3.42 (s, 3H), 1.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 143.6, 142.8, 139.7, 138.4, 129.1, 128.5, 127.5, 127.2, 127.1, 122.8, 119.8, 118.5 (q, J = 320.3 Hz), 37.5, 29.7, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.69 (s).

According to general procedure, **1j** was obtained in 29% yield (3.9 g, over five steps) as a brown oil.

¹H NMR (400 MHz, CDCl₃): δ 7.24 – 7.13 (m, 2H), 7.06 (s, 1H), 4.99 (s, 1H), 4.75 (s, 1H), 3.27 (s, 3H), 2.41 – 2.28 (m, 3H), 1.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 143.9, 139.7, 134.9, 130.0, 128.7, 122.8, 119.4, 118.5 (q, *J* = 320.1 Hz), 37.3, 21.0, 19.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -74.02 (s).

According to general procedure, **1k** was obtained in 6% yield (0.56 g, over five steps) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.22 (d, *J* = 11.0 Hz, 2H), 7.12 (s, 1H), 5.04 (s, 1H), 4.79 (s, 1H), 3.33 (s, 3H), 2.69 (q, *J* = 7.6 Hz, 2H), 1.86 (s, 3H), 1.25 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.6, 146.0, 144.2, 139.9, 135.2, 128.8 (d, *J* = 12.6 Hz), 121.8, 119.6, 118.6 (q, *J* = 320.3 Hz), 37.4, 28.4, 20.0, 15.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.83 (s).

HRMS (ESI): m/z Calcd for C₁₄H₁₆F₃NO₄SNa [M+Na]⁺ 374.0650; found: m/z 474.0654.

Methyl 4-(N-methylmethacrylamido)-3-(((trifluoromethyl)sulfonyl)oxy)benzoate (11)

According to general procedure, **11** was obtained in 39% yield (5.9 g, over five steps) as a yellow solid. Melting point: 41.3 - 44.3 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.14 – 7.97 (m, 2H), 7.38 (d, J = 8.4 Hz, 1H), 4.94 (d, J = 135.2 Hz, 2H), 3.94 (s, 3H), 3.38 (s, 3H), 1.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 164.9, 147.6, 139.6, 138.1, 131.4, 130.4, 130.0, 122.7, 120.4, 118.6 (q, J = 320.4 Hz), 52.9, 37.5, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.55 (s).

HRMS (ESI): m/z Calcd for C₁₄H₁₄F₃NO₆SNa [M+Na]⁺ 404.0392; found: m/z 404.0405.

1-Methacryloyl-1,2,3,4-tetrahydroquinolin-8-yl trifluoromethanesulfonate (1m)

According to general procedure, **1m** was obtained in 45% yield (2.2 g, over four steps) as a white solid. Melting point: 52.5 - 55.3 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.22 – 7.14 (m, 2H), 7.10 (dd, J = 7.0, 2.6 Hz, 1H), 5.19 (s, 1H), 4.76 (s, 1H), 4.20 (s, 1H), 3.45 (s, 1H), 2.89 – 2.64 (m, 2H), 2.17 (s, 1H), 2.01 (s, 3H), 1.85 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 143.2, 140.0, 136.5, 133.0, 128.2, 126.3, 120.1, 119.2, 118.7 (q, J = 320.8 Hz), 43.6, 26.5, 24.5, 19.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.49 (s).

HRMS (ESI): m/z Calcd for C₁₄H₁₄F₃NO₄SNa [M+Na]⁺ 372.0493; found: m/z 372.0494.

2-(N-Methylmethacrylamido)naphthalen-1-yl trifluoromethanesulfonate (1n)^[4]

According to general procedure, **1n** was obtained in 16% yield (1.5 g, over five steps) as a brown solid. Melting point: 64.6 - 66.2 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.6 Hz, 2H), 7.64 (dt, J = 14.9, 7.1 Hz, 2H), 7.41 (d, J = 8.8 Hz, 1H), 4.96 (s, 1H), 4.74 (s, 1H), 3.45 (s, 3H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 139.5, 134.9, 133.5, 129.7, 128.7, 128.2, 127.8, 127.4, 125.4, 121.6, 119.8, 118.7 (q, J = 320.4 Hz), 100.1, 37.1, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.24 (s).

2-Methacrylamidophenyl trifluoromethanesulfonate (10)

According to general procedure, **10** was obtained in 41% yield (0.78 g, over four steps) as a white solid. Melting point: 50.7 - 51.8 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.33 – 8.26 (m, 1H), 7.87 (s, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.28 (dd, *J* = 9.9, 2.6 Hz, 1H), 7.21 – 7.12 (m, 1H), 5.89 (s, 1H), 5.52 (s, 1H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 139.9, 139.4, 130.7, 129.2, 125.4, 124.0, 121.7, 121.5, 118.6 (q, *J* = 320.3 Hz), 18.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.59 (s). HRMS (ESI): m/z Calcd for C₁₁H₁₀F₃NO₄SNa [M+Na]⁺ 332.0180; found: m/z 332.0175.

2-(N-Benzylmethacrylamido)phenyl trifluoromethanesulfonate (1p)^[2]

According to general procedure, **1p** was obtained in 18% yield (3.6 g, over five steps) as a yellow solid. Melting point: 55.6 - 56.4 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.28 (m, 7H), 7.24 (dd, J = 8.3, 4.1 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 5.80 (s, 1H), 5.12 (s, 1H), 4.90 (s, 1H), 4.15 (s, 1H), 1.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 144.6, 139.9, 137.5, 136.5, 130.1, 129.1, 128.9, 128.8, 128.5, 127.8, 122.4, 120.0, 118.6 (q, J = 320.2 Hz), 52.7, 19.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.75 (s).

2-(2-Benzyl-N-methylacrylamido)phenyl trifluoromethanesulfonate (1q)^[2]

According to general procedure, **1q** was obtained in 43% yield (2.3 g, over five steps) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.44 – 6.75 (m, 9H), 5.05 (t, J = 103.0 Hz, 2H), 3.89 – 2.98 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 144.4, 143.6, 137.7, 137.4, 129.5, 129.2, 129.0, 128.5, 126.6, 122.3, 119.4, 118.5 (q, J = 320.2 Hz), 39.5, 37.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.83 (s).

2-(N-Methyl-2-phenylacrylamido)phenyl trifluoromethanesulfonate (1r)^[2]

According to general procedure, **1r** was obtained in 47% yield (4.0 g, over five steps) as a yellow oil. Two rotamers were observed in 3:1 ratio.

¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 6.5 Hz, 0.67H), 7.45 – 7.33 (m, 2.44H), 7.24 – 7.14 (m, 5H), 7.05 (d, J = 7.2 Hz, 3H), 6.89 (d, J = 7.8 Hz, 1H), 5.87 (s, 0.3H), 5.64 (s, 0.3H), 5.51 (s, 1H), 5.43 (s, 1H), 3.36 (s, 3H), 3.25 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 145.4, 144.6, 136.5, 136.2, 130.6, 129.4, 129.1, 128.9, 128.7, 128.4, 128.1, 125.9, 122.3, 121.9, 118.9, 118.5 (q, J = 320.0 Hz), 115.5, 39.5, 37.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.68 (s), -73.99 (s).

2-(N-Methyl-2-methylenebutanamido)phenyl trifluoromethanesulfonate (1s)

According to general procedure, **1s** was obtained in 36% yield (1.5 g, over five steps) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.30 (m, 4H), 5.05 (s, 1H), 4.90 (s, 1H), 3.36 (s, 3H), 2.26 (s, 2H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 145.6, 144.5, 137.7, 129.4, 129.3, 129.1, 122.5, 117.4, 118.6 (q, *J* = 320.1 Hz), 37.6, 25.9, 11.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -73.85 (s).

HRMS (ESI): m/z Calcd for C₁₃H₁₄F₃NO₄SNa [M+Na]⁺ 360.0493; found: m/z 360.0500.

According to general procedure, **1t** was obtained in 41% yield (1.8 g, over five steps) as a white solid. Melting point: 57.4 - 60.5 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.28 (m, 4H), 5.34 (s, 1H), 5.07 (s, 1H), 3.36 (s, 3H), 2.62 (m, 1H), 1.24 – 0.88 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 150.3, 144.8, 137.4, 130.1, 129.2, 122.4, 118.6 (q, *J* = 320.1 Hz), 116.4, 113.4, 39.6, 37.6, 31.1, 22.2, 21.3. ¹⁹F NMR (376 MHz, CDCl₃): -73.86 (s).

4. General procedure for the synthesis of chiral 3-cyanomethyl

To a 25 mL of Schlenk tube equipped with a magnetic stirring bar were added Ni(OTf)₂ (3.6 mg, 0.01 mmol, 10 mol%) and **L6** or **L7** (0.015 mmol, 15 mol%) in a N₂-filled glovebox. Then the tube was sealed with a septum and taken out of the N₂-filled glovebox. The Schlenk tube was evacuated and backfilled with N₂ for three times, MeCN (1 mL) was added and the mixture was stirred at r.t. for 30 min. Then Zn powder (13 mg, 2 equiv) was added and the mixture was stirred for additional 10 min. Reaction color would change from brownish to greenish. Aryl triflate **1** (0.1 mmol, 1 equiv), Zn(OTf)₂ (36.6 mg, 0.1 mmol, 100 mol%), base (75 mg, 0.6 mmol, 2 equiv) and MeCN (1 mL) were added into the continuous stirring greenish solution and the mixture was heated at 100 °C. After completion of the reaction monitored by TLC, the residue was purified on a silica gel column using petroleum ether/ EtOAc as the eluent to give the pure target product.

5. Characterizationdata and spectra copies of products

(S)-2-(1,3-Dimethyl-2-oxoindolin-3-yl)acetonitrile (2a)^[5]

Yellow oil (16.2 mg, 81% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.48 (d, *J* = 7.4 Hz, 1H), 7.36 (td, *J* = 7.8, 1.1 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 3.24 (s, 3H), 2.85 (d, *J* = 16.6 Hz, 1H), 2.56 (d, *J* = 16.6 Hz, 1H), 1.53 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.6, 142.8, 131.1, 129.3, 123.3 (d, J = 13.5 Hz), 116.7, 108.8, 45.0, 26.6, 26.4, 22.3.

Optical Rotation: $[\alpha]_D^{25} = 85.3$ (*c* = 0.36, CHCl₃)

92% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R= 11.0 min (major), t_R= 9.5 min (minor).

(S)-2-(1,3,7-Trimethyl-2-oxoindolin-3-yl)acetonitrile (2b)

Yellow oil (16.1 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 7.3 Hz, 1H), 7.07 (d, J = 7.7 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 3.52 (s, 3H), 2.81 (d, J = 16.6 Hz, 1H), 2.61 – 2.52 (m, 4H), 1.49 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 178.3, 140.5, 132.9, 131.7, 123.2, 121.0, 120.5, 116.7, 44.4, 29.9, 26.7, 22.6, 19.1.

HRMS (ESI): m/z Calcd for C₁₃H₁₄N₂ONa [M+Na]⁺ 237.1004; found: m/z 237.1015.

Optical Rotation: $[\alpha]_D^{25} = 63.7 (c = 0.62, CHCl_3)$

92% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R= 10.3 min (major), t_R= 7.7 min (minor).

1	7.681	BB	0.1524	3720.18701	372.	74234	49.9680
2	10.267	BB	0.2028	3724.95288	280.	76001	50.0320

(S)-2-(1,3,6-Trimethyl-2-oxoindolin-3-yl)acetonitrile (2c)^[5]

Colorless oil (14.6 mg, 68% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.35 (d, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.73 (s, 1H), 3.22 (s, 3H), 2.83 (d, *J* = 16.6 Hz, 1H), 2.54 (d, *J* = 16.6 Hz, 1H), 2.40 (s, 3H), 1.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 178.0, 142.9, 139.6, 128.2, 123.9, 123.0, 116.8, 109.7, 44.8, 26.6 (d, *J* = 4.9 Hz), 22.4, 22.0.

Optical Rotation: $[\alpha]_D^{25} = 53.0 \ (c = 0.54, \text{CHCl}_3)$

86% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R= 9.2 min (major), t_R= 8.0 min (minor).

(S)-2-(6-(tert-Butyl)-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (2d)

White solid (19.3 mg, 75% yield). Melting point: 98.3 - 103.0 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.40 (d, *J* = 7.8 Hz, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 6.90 (s, 1H), 3.25 (s, 3H), 2.84 (d, *J* = 16.6 Hz, 1H), 2.53 (d, *J* = 16.6 Hz, 1H), 1.51 (s, 3H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 178.0, 153.1, 142.7, 128.2, 122.8, 120.2, 116.9, 106.1, 44.7, 35.3, 31.5, 26.6 (d, *J* = 11.5 Hz), 22.3.

HRMS (ESI): m/z Calcd for $C_{16}H_{20}N_2ONa [M+Na]^+ 279.1437$; found: m/z 279.1485. Optical Rotation: $[\alpha]_D^{25} = 41.4 (c = 0.70, CHCl_3)$

93% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 95:5, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_R= 13.9 min (major), t_R= 12.8 min (minor).

(S)-2-(6-Methoxy-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (2e)^[5]

Colorless oil (17.3 mg, 75% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.36 (d, *J* = 8.2 Hz, 1H), 6.61 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.47 (d, *J* = 2.2 Hz, 1H), 3.83 (s, 3H), 3.21 (s, 3H), 2.81 (d, *J* = 16.6 Hz, 1H), 2.53 (d, *J* = 16.6 Hz, 1H), 1.49 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 178.2, 161.0, 144.1, 123.9, 123.0, 116.9, 106.9, 96.9, 55.7, 44.6, 26.7 (d, *J* = 6.1 Hz), 22.5.

Optical Rotation: $[\alpha]_D^{25} = 48.7$ (*c* = 0.74, CHCl₃)

82 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 10.3 min (major), t_R= 9.1 min (minor).

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
	·					
1	9.097	BV	0.2221	5967.75732	424.37466	8.9135
2	10.276	VB	0.2539	6.09838e4	3015.58887	91.0865

(S)-2-(6-Fluoro-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (2f)^[5]

Brown oil (16.4 mg, 75% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.41 (dd, *J* = 8.2, 5.2 Hz, 1H), 6.88 – 6.74 (m, 1H), 6.64 (dd, *J* = 8.7, 2.3 Hz, 1H), 3.22 (s, 3H), 2.83 (d, *J* = 16.6 Hz, 1H), 2.55 (d, *J* = 16.6 Hz, 1H), 1.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.9, 164.9, 162.5, 144.4 (d, *J* = 11.6 Hz), 126.4, 124.4 (d, *J* = 9.9 Hz), 116.6, 109.6, 109.3, 97.9, 97.6, 44.7, 26.8, 26.5, 22.4.

Optical Rotation: $[\alpha]_D^{25} = 50.1$ (*c* = 0.80, CHCl₃)

91% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 11.3 min (major), t_R= 9.8 min (minor).

(S)-2-(5-Fluoro-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (2g)

Colorless oil (17.7 mg, 81% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.23 (dd, *J* = 7.7, 2.5 Hz, 1H), 7.06 (td, *J* = 8.8, 2.5 Hz, 1H), 6.83 (dd, *J* = 8.5, 4.1 Hz, 1H), 3.24 (s, 3H), 2.85 (d, *J* = 16.7 Hz, 1H), 2.58 (d, *J* = 16.7 Hz, 1H), 1.52 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.3, 160.9, 138.8 (d, *J* = 2.0 Hz), 132.6 (d, *J* = 8.0 Hz), 116.4, 115.8, 115.5, 111.8, 111.5, 109.4 (d, *J* = 8.1 Hz), 45.4, 26.8, 26.3, 22.3.

HRMS (ESI): m/z Calcd for $C_{12}H_{11}FN_2ONa [M+Na]^+ 241.0753$; found: m/z 241.0764.

Optical Rotation: $[\alpha]_D^{25}$ = 32.5 (*c* = 0.45, CHCl₃)

89% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 13.7 min (major), t_R= 10.0 min (minor).

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	·					
1	10.464	BB	0.2015	2301.31226	174.89610	50.4972
2	14.359	BB	0.2706	2255.99536	127.39877	49.5028

(S)-2-(6-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (2h)^[5]

Colorless oil (17.1 mg, 73% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.39 (d, *J* = 8.0 Hz, 1H), 7.11 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.91 (s, 1H), 3.23 (s, 3H), 2.84 (d, *J* = 16.6 Hz, 1H), 2.55 (d, *J* = 16.6 Hz, 1H), 1.51 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.5, 144.1, 135.3, 129.4, 124.3, 123.3, 116.5, 109.7, 44.8, 26.8, 26.4, 22.3.

Optical Rotation: $[\alpha]_D^{25} = 58.6$ (*c* = 0.76, CHCl₃)

91 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 10.7 min (major), t_R= 9.6 min (minor).

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.571	BB	0.1852	599.55005	48.84973	4.6031
2	10.674	BB	0.2049	1.24253e4	924.16919	95.3969

(S)-2-(1,3-Dimethyl-2-oxo-6-phenylindolin-3-yl)acetonitrile (2i)^[6]

Yellow oil (12.1 mg, 44% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.61 – 7.57 (m, 2H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 6.6 Hz, 2H), 7.37 (ddd, *J* = 10.7, 9.2, 4.4 Hz, 2H), 7.09 (d, *J* = 1.3 Hz, 1H), 3.30 (s, 3H), 2.89 (d, *J* = 16.6 Hz, 1H), 2.60 (d, *J* = 16.6 Hz, 1H), 1.57 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.8, 143.4, 143.0, 140.8, 130.0, 129.0, 128.0, 127.4, 123.5, 122.4, 116.8, 107.8, 44.9, 26.7, 26.5, 22.4.

Optical Rotation: $[\alpha]_D^{25} = 55.1$ (*c* = 0.38, CHCl₃)

86% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 13.8 min (major), t_R= 11.8 min (minor).

(S)-2-(1,3,5-Trimethyl-2-oxoindolin-3-yl)acetonitrile (2j)^[5]

Colorless oil (15.8 mg, 74% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.29 (s, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 3.22 (s, 3H), 2.84 (d, *J* = 16.6 Hz, 1H), 2.55 (d, *J* = 16.6 Hz, 1H), 2.37 (s, 3H), 1.51 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.6, 140.4, 133.1, 131.2, 129.5, 124.1, 116.8, 108.5, 45.0, 26.7, 26.4, 22.3, 21.3.

Optical Rotation: $[\alpha]_D^{25} = 34.7$ (*c* = 0.72, CHCl₃)

81% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 8.9 min (major), t_R= 8.2 min (minor).

(S)-2-(5-Ethyl-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (2k)

Colorless oil (17.1 mg, 75% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.32 (s, 1H), 7.17 (d, *J* = 9.0 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 3.22 (s, 3H), 2.84 (d, *J* = 16.6 Hz, 1H), 2.66 (q, *J* = 7.6 Hz, 2H), 2.55 (d, *J* = 16.6 Hz, 1H), 1.52 (s, 3H), 1.24 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.6, 140.6, 139.7, 131.2, 128.4, 122.9, 116.8, 108.6, 45.0, 28.7, 26.6 (d, *J* = 19.7 Hz), 22.3, 16.1.

HRMS (ESI): m/z Calcd for $C_{14}H_{16}N_2ONa \ [M+Na]^+ 251.1160$; found: m/z 251.1167. Optical Rotation: $[\alpha]_D^{25} = 30.4 \ (c = 0.85, CHCl_3)$

67% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: i-PrOH =

90:10, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_R= 12.6 min (major), t_R= 12.0 min (minor).

Methyl-(S)-3-(cyanomethyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate (21)

White solid (8.5 mg, 33% yield). Melting point: 139.6 - 142.1 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 3.95 (s, 3H), 3.29 (s, 3H), 2.88 (d, J = 16.7 Hz, 1H), 2.59 (d, J = 16.6 Hz, 1H), 1.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.2, 166.5, 143.2, 136.0, 131.4, 125.1, 123.1, 116.4, 109.5, 52.5, 45.1, 26.8, 26.1, 22.1.

HRMS (ESI): m/z Calcd for $C_{14}H_{14}N_2O_3Na [M+Na]^+ 281.0902$; found: m/z 281.0911. Optical Rotation: $[\alpha]_D^{25} = 3.6$ (c = 0.11, CHCl₃)

73% ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 15.0 min (major), t_R= 12.2 min (minor).

(R)-2-(1-Methyl-2-oxo-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-1-

yl)acetonitrile (2m)^[7]

Colorless oil (18.9 mg, 84% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.30 (d, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 3.73 (td, *J* = 5.4, 2.5 Hz, 2H), 2.82 (dd, *J* = 18.3, 11.4 Hz, 3H), 2.56 (d, *J* = 16.6 Hz, 1H), 2.07 – 1.99 (m, 2H), 1.53 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.5, 138.6, 129.8, 128.1, 122.8, 121.0 (d, *J* = 18.2 Hz), 116.9, 46.2, 39.2, 26.3, 24.6, 22.1, 21.2.

Optical Rotation: $[\alpha]_D^{25} = -49.8$ (*c* = 0.52, CHCl₃)

80 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 11.3 min (major), t_R= 16.0 min (minor).
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-					
1	11.255	BB	0.2174	1.38702e4	978.58972	89.9854
2	2 16.011	BB	0.3142	1543.63245	76.25620	10.0146

(S)-2-(1,3-Dimethyl-2-oxo-2,3-dihydro-1*H*-benzo[e]indol-1-yl)acetonitrile (2n)

White solid (12.7 mg, 51% yield). Melting point:129.1 - 131.3 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (t, *J* = 9.2 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 3.41 (s, 3H), 3.19 (d, *J* = 16.6 Hz, 1H), 3.13 (d, *J* = 16.7 Hz, 1H), 1.75 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 178.8, 141.2, 130.9 (d, *J* = 6.0 Hz), 130.3, 129.2, 128.0, 124.1, 1221, 121.2, 116.2, 109.9, 47.4, 26.9, 26.2, 22.5.

HRMS (ESI): m/z Calcd for $C_{16}H_{14}N_2ONa \ [M+Na]^+ 273.1004$; found: m/z 273.1009. Optical Rotation: $[\alpha]_D^{25} = -2.4 \ (c = 0.65, CHCl_3)$

76 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 17.7 min (major), t_R= 15.8 min (minor).

(S)-2-(3-Methyl-2-oxoindolin-3-yl)acetonitrile (20)^[8]

Colorless oil (11.1 mg, 60% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 8.52 (s, 1H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.29 (td, *J* = 7.7, 1.1 Hz, 1H), 7.12 (t, *J* = 7.9 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 2.85 (d, *J* = 16.6 Hz, 1H), 2.63 (d, *J* = 16.6 Hz, 1H), 1.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 179.9, 139.9, 131.6, 129.3, 123.5 (d, *J* = 17.9 Hz), 116.6, 110.60, 45.4, 26.4, 22.3.

Optical Rotation: $[\alpha]_D^{25} = 34.9 \ (c = 0.38, \text{CHCl}_3)$

76 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_R= 23.4 min (major), t_R= 21.9 min (minor).

(R)-2-(1-Benzyl-3-methyl-2-oxoindolin-3-yl)acetonitrile (2p)^[9]

Colorless oil (19.3 mg, 70% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.48 (d, *J* = 7.4 Hz, 1H), 7.35 – 7.21 (m, 6H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 4.94 (s, 2H), 2.91 (d, *J* = 16.6 Hz, 1H), 2.65 (d, *J* = 16.6 Hz, 1H), 1.59 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.8, 141.9, 135.4, 131.1, 129.1 (d, *J* = 20.0 Hz), 128.0, 127.3, 123.4 (d, *J* = 11.1 Hz), 116.7, 109.9, 45.1, 44.1, 26.5, 22.7.

Optical Rotation: $[\alpha]_D^{25} = -46.2$ (c = 0.61, CHCl₃). Absolute stereochemistry was determined by comparing the optical rotation value $[\alpha]_D^{26} = 26.9$ (c = 0.90, CHCl₃), (S)-2-(1-Benzyl-3-methyl-2-oxoindolin-3-yl)acetonitrile (81% ee) in the literature.^[9]

90 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_R= 26.4 min (major), t_R= 28.1 min (minor).

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	•					
1	26.394	BV	0.4662	2.75557e4	912.75043	95.4242
2	28.090	VB	0.4848	1321.34692	40.91438	4.5758

(S)-2-(3-Benzyl-1-methyl-2-oxoindolin-3-yl)acetonitrile (2q)^[5]

White solid (14.0 mg, 51% yield). Melting point: 85.2 - 86.1 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.48 (d, J = 6.7 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.15 – 7.02 (m, 4H), 6.83 (dd, J = 7.9, 1.5 Hz, 2H), 6.64 (d, J = 7.8 Hz, 1H), 3.22 (q, J = 12.9 Hz, 2H), 3.01 – 2.94 (m, 4H), 2.74 (d, J = 16.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 176.3, 143.4, 134.3, 129.9, 129.4, 128.5, 127.9, 127.2, 124.0, 123.0, 116.7, 108.5, 50.6, 42.5, 26.2, 25.2.

Optical Rotation: $[\alpha]_D^{25} = 71.7 \ (c = 0.62, \text{CHCl}_3)$

86 % ee. Determined by HPLC (Daicel Chiralpak AS-H Column, *n*-Hexane: *i*-PrOH = 85:15, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 11.4 min (major), t_R= 15.4 min (minor).

(S)-2-(1-Methyl-2-oxo-3-phenylindolin-3-yl)acetonitrile (2r)^[5]

Colorless oil (13.6 mg, 52% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.53 (d, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.37 – 7.31 (m, 5H), 7.22 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 1H), 3.39 (d, *J* = 16.6 Hz, 1H), 3.24 (s, 3H), 3.05 (d, *J* = 16.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 175.8, 143.7, 136.6, 129.8, 129.5, 129.1, 128.5, 126.9, 125.4, 123.5, 116.6, 109.1, 52.8, 26.9, 26.5.

Optical Rotation: $[\alpha]_D^{25} = 53.0$ (*c* = 0.65, CHCl₃)

37 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = $\frac{10}{10}$ f = \frac{10}{10} f = \frac{10}{10}

(S)-2-(3-Ethyl-1-methyl-2-oxoindolin-3-yl)acetonitrile (2s)^[10]

Colorless oil (15.2 mg, 71% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.42 (dd, J = 7.4, 0.6 Hz, 1H), 7.36 (td, J = 7.8, 1.2 Hz, 1H), 7.15 (td, J = 7.6, 0.9 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 3.24 (s, 3H), 2.84 (d, J = 16.6 Hz, 1H), 2.59 (d, J = 16.6 Hz, 1H), 2.02 (q, J = 7.4 Hz, 2H), 0.61 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 143.7, 129.2 (d, J = 18.7 Hz), 123.4 (d, J = 1.5 Hz), 116.7, 108.6, 49.7, 29.5, 26.5, 25.8, 8.5.

Optical Rotation: $[\alpha]_D^{25} = 7.6$ (*c* = 0.11, CHCl₃)

76 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 8.1 min (major), t_R= 7.1 min (minor).

2-(3-Isopropyl-1-methyl-2-oxoindolin-3-yl)acetonitrile (2t)^[6]

Colorless oil (10.0 mg, 44% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.36 (ddd, J = 8.8, 5.6, 1.7 Hz, 2H), 7.12 (td, J = 7.7, 0.8 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.23 (s, 3H), 2.94 (d, J = 16.6 Hz, 1H), 2.68 (d, J = 16.6 Hz, 1H), 2.40 – 2.27 (m, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.8, 143.9, 129.1 (d, J = 16.1 Hz), 123.6, 123.1,

116.8, 108.5, 52.3, 34.5, 26.4, 24.0, 17.2, 17.0.

2 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 7.5 min (major), t_R= 6.9 min (minor).

6. Experimental Procedures and Characterization Data for Derivatization Studies

Ethyl (S, E)-3-amino-4-(1,3-dimethyl-2-oxoindolin-3-yl)but-2-enoate (5)

To a suspension of activated zinc powder (50 mg, 0.75 mmol, 5.0 equiv) in THF (0.5 mL) at reflux (70 °C), 2 drops of ethyl 2-bromoacetate was added. After the observation of a pale green colour, **2a** (30 mg, 0.15 mmol, 1.0 equiv) dissolved in THF(0.5 mL) was added in one portion into the above mixture. The remaining ethyl 2-bromoacetate (125 μ L, 0.75 mmol, 5.0 equiv) was added dropwise over 30 minutes and the mixture was stirred at 70 °C for 3 hours. After the reaction finished (monitored by TLC), the mixture was diluted with 2 mL of THF and quenched with 50% aqueous K₂CO₃. The resulting biphasic mixture was stirred overnight to allow separation. The resulting organic phase was transferred to a separate container. The remaining yellow residue was thoroughly rinsed with additional THF (3 x 2 mL) and the combined organic layers were sequentially dried over MgSO₄, filtered and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield product **5** as a yellow oil (24.4 mg, yield: 59%).

¹**H NMR (400 MHz, CDCl₃)**: δ 7.66 (s, 1H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.20 (s, 1H), 4.34 (s, 1H), 4.08 – 3.93 (m, 2H), 3.22 (s, 3H), 2.66 (d, *J* = 13.8 Hz, 1H), 2.56 (d, *J* = 13.8 Hz, 1H), 1.43 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.5, 170.1, 158.7, 143.0, 132.9, 128.4, 123.0, 122.8, 108.6, 86.1, 58.6, 48.1, 43.6, 26.5, 24.0, 14.6.

HRMS (ESI): m/z Calcd for $C_{16}H_{20}N_2NaO_3$ [M+Na⁺]: 311.1366; found 311.1368. Optical Rotation: $[\alpha]_D^{25} = 34.1$ (c = 0.27, CHCl₃)

87 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 80:20, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R= 9.0 min (major), t_R= 10.4 min (minor)

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	·					
1	9.046	VB R	0.1783	4.21633e4	3127.20288	93.6730
2	10.357	MM	0.2297	2847.84692	206.60307	6.3270

(S)-2-(1,3-Dimethylindolin-3-yl)ethan-1-amine (6)

The mixture of **2a** (30 mg, 0.15 mmol, 1.0 equiv) and $BH_3 \cdot Me_2S$ (1.5 mL, 1.0 M, 1.5 mmol, 10 equiv) in THF (1 mL) was heated at 70 °C for 12 hours. After the reaction was completed (monitored by TLC), the mixture was quenched with MeOH, and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (DCM/MeOH) to yield product **6** as a yellow oil (24 mg, yield: 84%).

¹**H NMR (400 MHz, CDCl₃):** δ 7.10 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.48 (d, *J* = 7.8 Hz, 1H), 3.23 (d, *J* = 8.7 Hz, 1H), 2.98 (d, *J* = 8.7 Hz, 1H), 2.79 – 2.69 (m, 4H), 2.68 – 2.57 (m, 1H), 1.87 – 1.79 (m, 1H), 1.75 – 1.67 (m, 3H), 1.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.4, 137.6, 127.8, 122.3, 117.9, 107.5, 68.5, 44.7, 43.0, 38.6, 36.1, 25.9.

HRMS (ESI): m/z Calcd for $C_{12}H_{19}N_2$ [M+H]:191.1543; found 191.1543. Optical Rotation:[α]_D²⁵ = 19.0 (*c* = 0.31, CHCl₃)

(S)-3-((4,5-Dihydrooxazol-2-yl)methyl)-1,3-dimethylindolin-2-one (7)

The mixture of **2a** (30 mg, 0.15 mmol, 1.0 equiv), 2-aminoethan-1-ol (45.8 mg, 0.75 mmol, 5.0 equiv), and $Zn(OAc)_2$ (6 mg, 0.03 mmol, 20 mol%) in Tol. (1 mL) was heated at 130 °C for 48 hours. After the reaction was completed (monitored by TLC), the mixture was concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield product **7** as a yellow oil (21.6 mg, yield: 59%).

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.21 (m, 2H), 7.05 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 4.04 (dd, J = 18.0, 8.4 Hz, 1H), 3.82 (dd, J = 18.7, 8.6 Hz, 1H), 3.57 (td, J = 9.4, 4.9 Hz, 2H), 3.24 (s, 3H), 2.86 (q, J = 14.8 Hz, 2H), 1.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.0, 164.5, 143.4, 132.6, 128.1, 123.1, 122.4, 108.0, 67.4, 54.3, 46.4, 35.8, 26.5, 24.2.

HRMS (ESI): m/z Calcd for $C_{16}H_{19}N_3O_2$ [M+CH₃CN]⁺ 285.1477; found: m/z 285.1430. Optical Rotation: $[\alpha]_D^{25} = 1.5$ (c = 0.41, CHCl₃)

92 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 80:20, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R= 8.2 min (major), t_R= 10.4 min (minor).

(S)-N-(tert-Butyl)-2-(1,3-dimethyl-2-oxoindolin-3-yl)acetamide (8)^[11]

The mixture of **2a** (25 mg, 0.125 mmol, 1.0 equiv) and H_2SO_4 (4 drops) in *t*-BuOAc (1 mL) was heated at 70 °C for 3 hours. After the reaction was completed (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution (20 mL) and extracted with EtOAc (20 mL × 3). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na₂SO₄ and filtrated, the filter was concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield product **8** as a white solid (33.9 mg, yield: 99%). Melting point: 137.4 - 139.7 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33 – 7.25 (m, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 5.99 (s, 1H), 3.24 (s, 3H), 2.69 (d, *J* = 14.1 Hz, 1H), 2.56 (d, *J* = 14.1 Hz, 1H), 1.43 (s, 3H), 1.17 (s, 9H).

¹³C NMR (100 MHz, CDCl₃):) δ 180.6, 168.2, 142.9, 133.2, 128.2, 123.1, 122.8, 108.2, 51.0, 46.7, 45.3, 28.5, 26.4, 23.6.

Optical Rotation: $[\alpha]_D^{25} = -17.3$ (*c* = 0.50, CHCl₃)

89 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 85:15, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R= 5.9 min (major), t_R= 6.4 min (minor).

(S)-2-(5-Bromo-1,3-dimethyl-2-oxoindolin-3-yl)acetonitrile (3)^[12]

The mixture of 2a (40 mg, 0.2 mmol, 1.0 equiv) and NBS(53.4 mg, 0.3 mmol, 1.5 equiv) in MeCN (1 mL) was stirred at r.t. for 12 hours. After the reaction was finished (monitored by TLC), the mixture was concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to yield product **3** as a yellow oil (51.4 mg, yield: 92%).

¹**H** NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 1.9 Hz, 1H), 7.47 (dd, J = 8.3, 1.9 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 3.22 (s, 3H), 2.83 (d, J = 16.7 Hz, 1H), 2.59 (d, J = 16.7 Hz, 1H), 1.51 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 141.8, 132.9, 132.1, 126.4, 116.2, 115.9, 110.2, 45.1, 26.7, 26.2, 22.2.

Optical Rotation: $[\alpha]_D^{25} = 17.9 \ (c = 0.69, \text{CHCl}_3)$

92 % ee. Determined by HPLC (Daicel Chiralpak AD-H Column, *n*-Hexane: *i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254$ nm): t_R= 11.1 min (major), t_R= 9.2 min (minor).

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	olo
	·					
1	9.207	BB	0.1918	322.02426	25.76472	3.8865
2	11.079	BB	0.2288	7963.64746	537.74072	96.1135

(3a *S*, 8a *R*)-5-Bromo-1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (4)^[12]

To a suspension of LiAlH₄ (11 mg, 0.28 mmol, 2.0 equiv) in THF (200 μ L) at room temperature, **2a** (40 mg, 0.14 mmol, 1.0 equiv) was added dropwise as a solution in THF (300 μ L). After the addition of **2a** was completed, the reaction was stirred for 1 hour under N₂ before being brought to reflux (70 °C) to stir for 1h. After the heating period had elapsed, the reaction was cooled to room temperature and complete consumption of **2a** was observed as indicated by TLC. The mixture was diluted with 2 mL of THF and carefully quenched with water (11 mg), 15% NaOH solution (11 mg) and water (33 mg), and the resulting mixture was stirred for 5 min. Then the mixture was allowed to separate and the remaining residue was washed with DCM (10 mL x 5). The combined organic layers were sequentially dried over MgSO4, filtered and concentrated in vacuo. The crude product was used for the next step without further purification.

To a stirring mixture of hexahydropyrrolo crude product (1.0 equiv) and paraformaldehyde (21 mg, 0.7 mmol, 5 equiv) in MeOH (3 mL) for 3 hours was added carefully NaBH₄ (25.9 mg, 0.7 mmol, 5 equiv), the reaction was stirred for additional 2 hours. After the reaction was completed (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution (10 mL) and extracted with DCM (20 mL \times 3). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na₂SO₄ and filtrated, the filter was concentrated in vacuo. The remaining residue was purified by

column chromatography on silica gel (DCM/MeOH) to yield product **4** as a colorless oil (31.7 mg, yield: 81%).

¹**H NMR (400 MHz, CDCl₃):** δ 7.15 (dd, J = 8.3, 1.9 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 6.26 (d, J = 8.3 Hz, 1H), 4.11 (s, 1H), 2.91 (s, 3H), 2.76 – 2.68 (m, 1H), 2.62 (dd, J = 15.8, 8.1 Hz, 1H), 2.54 (s, 3H), 1.95 (dd, J = 9.4, 5.0 Hz, 2H), 1.41 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 150.9, 139.0, 130.4, 125.5, 109.1, 108.0, 97.6, 53.3, 52.8, 40.7, 38.6, 36.4, 27.3.

Optical Rotation: $[\alpha]_D^{25} = -68.9$ (*c* = 10.0, CHCl₃)

(3a *S*, 8a *R*)-5-Methoxy-1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b] indole ((-)-Esermethole)^[12]

The mixture of **8**, CuI and NaOMe in DMF (1 mL) was stirred at 120 °C for 12 hours. After the reaction was completed (monitored by TLC), the mixture was diluted with water (10 mL) and extracted with DCM (10 mL \times 3). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na₂SO₄ and filtrated, the filter was concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (DCM/MeOH) to yield product (-)-**Esermethole** as a colorless oil (31.7 mg, yield: 74%).

¹**H** NMR (400 MHz, CDCl₃): δ 6.73 – 6.63 (m, 2H), 6.37 (d, J = 8.3 Hz, 1H), 4.15 (s, 1H), 3.75 (s, 3H), 2.90 (s, 3H), 2.80 (m, 1H), 2.61 (dd, J = 16.0, 8.8 Hz, 1H), 2.53 (s, 3H), 2.00 – 1.94 (m, 2H), 1.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 153.4, 146.2, 137.7, 112.6, 109.7, 108.0, 97.2, 56.0, 53.1, 52.8, 40.3, 38.3, 36.9, 27.2.

Optical Rotation: $[\alpha]_D^{25} = -76.3$ (*c* = 2.50, CHCl₃)

Absolute stereochemistry was determined by comparing the optical rotation value $[\alpha]_D^{22}$ = 98.0, *c* = 0.4, CHCl₃, (+)-**Esermethole** in the literature.^[13]

Synthesis of 1-(4-methoxyphenyl)ethan-1-imine (9)^[14]

A round-bottom flask was charged with nitrile (5 g, 40.0 mmol) and THF (40 mL). The mixture was cooled to -40 °C and MeLi (40.0 mL, 1.6 equiv, 1.6 M in diethyl ether) was added dropwise over 30 min. Next, the resulting mixture was stirred for 4 houes at -40 °C. The mixture was quenched with anhydrous MeOH (10 mL). The cooling bath was removed, and the reaction mixture was allowed to warm to r.t. overnight. The resulting white slurry was filtered through a 2 cm pad of Celite on a medium porosity stone frit filter, and the filtrate was concentrated on a rotary evaporator. The resulting turbid oil was dissolved in MTBE (40 mL) and filtered through a 2 cm pad of Celite on a medium porosity stone frit filter, and the filtrate, and the filtrate was concentrated on a rotary evaporator to furnish a yellow solid **9** (3.4 g, yield: 57%).

¹H NMR (400 MHz, THF-d₈): δ 9.52 (s, 1H), 7.81 (d, J = 6.0 Hz, 2H), 6.91 – 6.86 (m, 2H), 3.78 (s, 3H), 2.33 (s, 3H).

¹³C NMR (100 MHz, THF-d₈): δ 172.5, 162.5, 132.6, 129.1, 114.2, 55.7, 26.0.

Synthesis of σ-alkyl-Ni(II) complex11:^[15]

In a nitrogen filled glove box, a 50 mL round bottom flask containing a PTFE-coated stirring bar was charged with $Ni(COD)_2$ (0.5 mmol, 135 mg), dppp (0.5 mmol, 206 mg) and dry dioxane (5 mL), the mixture was stirred at r.t. overnight. **1a** (0.5 mmol, 161 mg) was added to the above orange mixture and stirred at 50 °C for 24 hours. Dry n-hexane (20 mL) was added to the brown mixture and filtered. The resulting participate was

washed with *n*-hexane (5 x 10 mL) to remove residual cyclooctadiene and **1a** was dried under vacuum to give the complex **11** as a orange-yellow solid (240 mg, 61%). **HRMS** (**ESI**): m/z Calcd for $C_{39}H_{39}F_3NNiO_4P_2S$ [M+H]⁺ 794.1381; found: m/z 794.1379. Crystallographic data for compounds **11**:

7、References

- [1] D. A. Everson, B. A. Jones, D. J. Weix, J.Am.Chem.Soc., 2012, 134, 6146-6159.
- [2] W. Kong, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2015, 137, 16028 16031.
- [3] W. Kong, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 3987-3991.
- [4] Y. Li, K. Wang, Y. Ping, Y.Wang, W. Kong, Org. Lett. 2018, 20, 921–924.
- [5] Y. Feng, S. Zhao, G. Du, S. Zhang, D. Zhang, H. Liu, X. Li, Y. Dong, F.-G. Sun, Org. Chem. Fron. 2021, 8, 1149-1154.
- [6] H. Li, J. Chen, J. Dong, W. Kong, Org. Lett. 2021, 23, 6466-6470.
- [7] Z. Ni, X. Huang, J. Wang, Y. Pan, RSC. Adv., 2016, 6, 522–526.
- [8] Y. Kobayashi, H. Kamisaki, H. Takeda, Y. Yasui, R. Yanada, Y. Takemoto, *Tetrahedron*, 2007, **63**, 2978–2989.
- [9] Y. Yasui, H. Kamisaki, Y. Takemoto, Org. Lett. 2008, 10, 3303-3306.
- [10] G. Wang, C. Shen, X. Ren, K. Dong, Chem. Commun. 2022, 58, 1135-1138.
- [11] W. Kong, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2016, 55, 9714-9718.
- [12] J. Xu, L. Liang, H. Zheng, Y. R. Chi, R. Tong, Nat. Commun., 2019, 10, 4754.
- [13] Chen, M.; Wang, X.: Yang, P.; Kou, X.; Ren, Z.; Guan, Z. Chem., Angew. Chem. Int.Ed. 2020, 59, 12199-12205.
- [14] V. N. Wakchaure, B. List, Angew. Chem. Int. Ed., 2016, 55, 15775 –15778.
- [15] K. Wang, Z. Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc., 2018, 140, 12364–12368.

8. The copies of ¹H, ¹³C and ¹⁹F NMR spectra

1a

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

1b

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

1d

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

---74.005

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

---74.021

11

1r

S90

1t

9、The GC-MS date

10、X-Ray crystallographic data

 Table 1-8.
 Crystal data and structure refinement for 8.

Identification code	8		
Empirical formula	C16 H22 N2 O2		
Formula weight	274.35		
Temperature	173(2) K		
Wavelength	1.54178 A		
Crystal system, space group	Monoclinic, P2(1)		
Unit cell dimensions	a = 8.7602(4) A alpha = 90 deg.		
	b = 9.7822(4) A beta = 114.580(2) deg.		
	c = 10.3505(4) A gamma = 90 deg.		
Volume	806.60(6) A^3		
Z, Calculated density	2, 1.130 Mg/m^3		
Absorption coefficient	0.597 mm^-1		
F(000)	296		
Crystal size	0.180 x 0.160 x 0.140 mm		

Theta range for data collection	4.698 to 68.353 deg.
Limiting indices	-10<=h<=10, -11<=k<=11, -12<=l<=12
Reflections collected / unique	11696 / 2932 [R(int) = 0.0636]
Completeness to theta = 67.679	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7531 and 0.5876
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2932 / 1 / 186
Goodness-of-fit on F^2	1.027
Final R indices [I>2sigma(I)]	R1 = 0.0374, $wR2 = 0.0904$
R indices (all data)	R1 = 0.0455, wR2 = 0.0959
Absolute structure parameter	0.21(18)
Extinction coefficient	n/a
Largest diff. peak and hole	0.125 and -0.199 e.A^-3

Table 2-8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 8.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
O(1)	10175(2)	4216(2)	6664(2)	42(1)
C(1)	6364(3)	4915(2)	6780(2)	28(1)
N(1)	7694(3)	4032(2)	6916(2)	31(1)
O(2)	6777(3)	5172(2)	3827(2)	48(1)
C(2)	4869(3)	4589(3)	6857(3)	34(1)
N(2)	7607(2)	6836(2)	2726(2)	31(1)
C(5)	5600(3)	7279(3)	6334(3)	34(1)
C(4)	4084(3)	6964(3)	6411(3)	39(1)
C(3)	3730(3)	5645(3)	6660(3)	39(1)
C(6)	6737(3)	6240(3)	6513(2)	28(1)
C(8)	8901(3)	4725(3)	6683(3)	31(1)
C(7)	8486(3)	6245(3)	6555(3)	30(1)

C(9)	8652(3)	6897(3)	5278(3)	32(1)
C(10)	7584(3)	6215(3)	3874(3)	32(1)
C(11)	6784(3)	6340(3)	1247(3)	35(1)
C(12)	4892(4)	6217(4)	775(3)	50(1)
C(13)	7530(5)	4976(4)	1106(4)	58(1)
C(14)	7122(4)	7412(4)	331(3)	50(1)
C(15)	7746(3)	2578(3)	7220(3)	39(1)
C(16)	9731(3)	6924(3)	7931(3)	39(1)

Table 3-8.Bond lengths [A] and angles [deg] for 8.

O(1)-C(8)	1.229(3)
C(1)-C(2)	1.382(3)
C(1)-C(6)	1.392(4)
C(1)-N(1)	1.409(3)
N(1)-C(8)	1.360(3)
N(1)-C(15)	1.453(3)
O(2)-C(10)	1.231(3)
C(2)-C(3)	1.392(4)
N(2)-C(10)	1.343(3)
N(2)-C(11)	1.477(3)
C(5)-C(6)	1.381(4)
C(5)-C(4)	1.398(4)
C(4)-C(3)	1.376(4)
C(6)-C(7)	1.515(3)
C(8)-C(7)	1.524(4)
C(7)-C(9)	1.528(3)
C(7)-C(16)	1.539(3)
C(9)-C(10)	1.517(4)
C(11)-C(13)	1.519(4)
C(11)-C(14)	1.523(4)
C(11)-C(12)	1.525(4)
C(2)-C(1)-C(6)	122.1(2)

(2)-C(1)-C(6)	122.1(2)

C(2)-C(1)-N(1)	128.0(2)
C(6)-C(1)-N(1)	109.8(2)
C(8)-N(1)-C(1)	110.37(19)
C(8)-N(1)-C(15)	124.7(2)
C(1)-N(1)-C(15)	124.9(2)
C(1)-C(2)-C(3)	117.4(2)
C(10)-N(2)-C(11)	126.0(2)
C(6)-C(5)-C(4)	118.7(2)
C(3)-C(4)-C(5)	120.7(3)
C(4)-C(3)-C(2)	121.3(2)
C(5)-C(6)-C(1)	119.8(2)
C(5)-C(6)-C(7)	131.8(2)
C(1)-C(6)-C(7)	108.4(2)
O(1)-C(8)-N(1)	125.4(2)
O(1)-C(8)-C(7)	125.4(2)
N(1)-C(8)-C(7)	109.1(2)
C(6)-C(7)-C(8)	101.6(2)
C(6)-C(7)-C(9)	115.9(2)
C(8)-C(7)-C(9)	112.2(2)
C(6)-C(7)-C(16)	110.3(2)
C(8)-C(7)-C(16)	106.8(2)
C(9)-C(7)-C(16)	109.5(2)
C(10)-C(9)-C(7)	113.7(2)
O(2)-C(10)-N(2)	124.1(2)
O(2)-C(10)-C(9)	121.2(2)
N(2)-C(10)-C(9)	114.7(2)
N(2)-C(11)-C(13)	110.1(2)
N(2)-C(11)-C(14)	106.3(2)
C(13)-C(11)-C(14)	110.0(2)
N(2)-C(11)-C(12)	110.8(2)
C(13)-C(11)-C(12)	110.7(3)
C(14)-C(11)-C(12)	108.7(2)

Symmetry transformations used to generate equivalent atoms:

Table 4-8. Anisotropic displacement parameters ($A^2 \times 10^3$) for 8.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U2	3	U13	U12
0(1)	38(1)	41(1)	52(1)	6(1)	25(1)	6(1)	
C(1)	29(1)	31(1)	22(1)	0(1)	10(1)	0(1)	
N(1)	33(1)	27(1)	34(1)	4(1)	15(1)	1(1)	
O(2)	70(1)	$\frac{2}{(1)}$	38(1)	-3(1)	22(1)	-20(1)	
C(2)	33(1)	36(2)	35(1)	4(1)	15(1)	-4(1)	
N(2)	38(1)	26(1)	29(1)	0(1)	15(1)	-2(1)	
C(5)	40(1)	$\frac{20(1)}{31(1)}$	$\frac{2}{31(1)}$	1(1)	15(1)	-(1)	
C(4)	35(1)	42(2)	39(2)	2(1)	15(1)	7(1)	
C(3)	32(1)	48(2)	39(2)	3(1)	16(1)	2(1)	
C(6)	32(1)	29(1)	24(1)	9(1) 0(1)	12(1)	-2(1)	
C(8)	32(1)	32(1)	$\frac{2}{30(1)}$	1(1)	14(1)	-(1)	
C(7)	30(1)	31(1)	29(1)	-1(1)	13(1)	-3(1)	
C(9)	36(1)	30(1)	32(1)	1(1)	16(1)	-4(1)	
C(10)	36(1)	28(1)	32(1)	0(1)	16(1)	-1(1)	
C(11)	40(1)	37(1)	28(1)	-3(1)	13(1)	4(1)	
C(12)	45(2)	62(2)	40(2)	-10(2)	13(1)	-4(2)	
C(12)	78(2)	49(2)	46(2)	-8(1)	25(2)	18(2)	
C(14)	60(2)	57(2)	32(2)	5(1)	17(1)	-3(2)	
C(15)	41(2)	30(1)	$\frac{32(2)}{44(2)}$	7(1)	16(1)	-3(2)	
C(15)	38(1)	44(2)	32(1)	-6(1)	12(1)	-10(1)	

Table 5-8. Hydrogen coordinates (x 10^4) and isotropic

displacement parameters (A 2 x 10 3) for 8.

x y z U(eq)

H(2)	4629	3680	7037	41
H(2A)	8164	7611	2868	37
H(5)	5843	8190	6161	41
H(4)	3290	7669	6291	46
H(3)	2686	5452	6698	47
H(9A)	8329	7872	5225	38
H(9B)	9843	6858	5428	38
H(12A)	4375	5867	-201	76
H(12B)	4425	7118	813	76
H(12C)	4662	5587	1408	76
H(13A)	7029	4686	109	87
H(13B)	7296	4290	1690	87
H(13C)	8747	5073	1428	87
H(14A)	6627	7114	-663	75
H(14B)	8336	7527	652	75
H(14C)	6620	8284	415	75
H(15A)	6673	2159	6603	58
H(15B)	7946	2446	8217	58
H(15C)	8655	2150	7046	58
H(16A)	10873	6837	7992	58
H(16B)	9663	6474	8752	58
H(16C)	9448	7894	7927	58

Table 6-8.Torsion angles [deg] for 8.

C(2)-C(1)-N(1)-C(8)	176.0(2)
C(6)-C(1)-N(1)-C(8)	-2.8(3)
C(2)-C(1)-N(1)-C(15)	-2.3(4)
C(6)-C(1)-N(1)-C(15)	179.0(2)
C(6)-C(1)-C(2)-C(3)	-0.2(4)
N(1)-C(1)-C(2)-C(3)	-178.8(2)
C(6)-C(5)-C(4)-C(3)	-0.1(4)

C(5)-C(4)-C(3)-C(2)	0.7(4)
C(1)-C(2)-C(3)-C(4)	-0.6(4)
C(4)-C(5)-C(6)-C(1)	-0.7(4)
C(4)-C(5)-C(6)-C(7)	-177.0(2)
C(2)-C(1)-C(6)-C(5)	0.8(4)
N(1)-C(1)-C(6)-C(5)	179.6(2)
C(2)-C(1)-C(6)-C(7)	177.9(2)
N(1)-C(1)-C(6)-C(7)	-3.2(3)
C(1)-N(1)-C(8)-O(1)	-176.5(2)
C(15)-N(1)-C(8)-O(1)	1.8(4)
C(1)-N(1)-C(8)-C(7)	7.5(3)
C(15)-N(1)-C(8)-C(7)	-174.2(2)
C(5)-C(6)-C(7)-C(8)	-176.2(3)
C(1)-C(6)-C(7)-C(8)	7.1(2)
C(5)-C(6)-C(7)-C(9)	-54.3(4)
C(1)-C(6)-C(7)-C(9)	129.0(2)
C(5)-C(6)-C(7)-C(16)	70.8(3)
C(1)-C(6)-C(7)-C(16)	-105.9(2)
O(1)-C(8)-C(7)-C(6)	175.2(2)
N(1)-C(8)-C(7)-C(6)	-8.8(2)
O(1)-C(8)-C(7)-C(9)	50.8(3)
N(1)-C(8)-C(7)-C(9)	-133.2(2)
O(1)-C(8)-C(7)-C(16)	-69.2(3)
N(1)-C(8)-C(7)-C(16)	106.7(2)
C(6)-C(7)-C(9)-C(10)	-59.6(3)
C(8)-C(7)-C(9)-C(10)	56.5(3)
C(16)-C(7)-C(9)-C(10)	174.9(2)
C(11)-N(2)-C(10)-O(2)	-4.4(4)
C(11)-N(2)-C(10)-C(9)	175.4(2)
C(7)-C(9)-C(10)-O(2)	-5.2(3)
C(7)-C(9)-C(10)-N(2)	175.0(2)
C(10)-N(2)-C(11)-C(13)	-62.6(3)
C(10)-N(2)-C(11)-C(14)	178.2(2)
C(10)-N(2)-C(11)-C(12)	60.2(3)

Symmetry transformations used to generate equivalent atoms:

Table 7-8. Hydrogen bonds for 8 [A and deg.].

 Table 1-11.
 Crystal data and structure refinement for 11.

Identification code	11		
Empirical formula	C54 H53 F3 N Ni O4 P2 S		
Formula weight	989.68		
Temperature	173(2) K		
Wavelength	1.54178 A		
Crystal system, space group	Triclinic, P-1		
Unit cell dimensions	a = 12.3940(7) A alpha = 79.158(2) deg.		
	b = 13.4581(7) A beta = 69.71 deg.		
	c = 17.8731(13) A gamma = 62.58 deg		
Volume	2480.8(3) A^3		
Z, Calculated density	2, 1.325 Mg/m^3		
Absorption coefficient	2.037 mm^-1		
F(000)	1034		
Crystal size	0.180 x 0.160 x 0.140 mm		
Theta range for data collection	4.210 to 66.574 deg.		

Limiting indices	-14<=h<=14, -16<=k<=16, -21<=l<=21
Reflections collected / unique	34415 / 8609 [R(int) = 0.0774]
Completeness to theta = 66.574	98.5 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8609 / 1 / 562
Goodness-of-fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.1044, $wR2 = 0.2880$
R indices (all data)	R1 = 0.1372, $wR2 = 0.3237$
Extinction coefficient	n/a
Largest diff. peak and hole	1.899 and -1.144 e.A^-3

Table 2-11. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 11.
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
P(1)	7886(1)	1674(1)	1216(1)	43(1)
F(1)	2824(7)	3054(8)	1558(7)	187(5)
O(1)	5987(4)	3967(3)	1153(2)	51(1)
N(1)	4982(5)	5873(4)	958(3)	51(1)
C(1)	3747(6)	6386(5)	2248(4)	52(1)
C(5)	3750(8)	7924(6)	1267(5)	66(2)
C(6)	4130(6)	6795(5)	1477(4)	56(2)
C(7)	5660(8)	5973(6)	122(4)	66(2)
C(52)	11768(19)	3276(18)	4822(11)	186(9)
C(8)	5162(6)	4933(5)	1389(4)	48(1)
C(9)	3239(7)	4772(6)	2324(5)	63(2)
C(10)	5161(6)	4336(5)	2745(4)	47(1)
C(11)	8549(5)	2289(5)	276(4)	50(1)
C(12)	8401(7)	2196(5)	-445(4)	58(2)
C(13)	8917(8)	2687(6)	-1139(4)	71(2)
C(14)	9565(8)	3277(7)	-1137(5)	80(2)

Ni(1)	6420(1)	3016(1)	2073(1)	41(1)
S(1)	1188(2)	2244(2)	2113(2)	99(1)
C(15)	9706(8)	3386(7)	-441(6)	79(2)
C(16)	9197(7)	2899(6)	278(5)	62(2)
C(17)	7246(6)	861(5)	955(4)	46(1)
C(18)	5937(6)	1271(5)	1118(4)	54(2)
C(19)	5409(7)	710(6)	900(5)	63(2)
C(20)	6190(8)	-257(6)	487(5)	71(2)
C(21)	7503(7)	-677(6)	303(5)	67(2)
C(22)	8026(7)	-131(5)	545(4)	58(2)
C(23)	9309(6)	656(5)	1482(4)	50(1)
C(24)	9012(6)	124(5)	2318(4)	51(1)
C(25)	8448(6)	969(5)	2973(4)	48(1)
C(26)	5903(6)	1140(5)	3425(4)	50(1)
C(27)	4828(7)	1445(6)	3183(5)	64(2)
C(28)	4201(8)	764(8)	3369(5)	79(2)
C(29)	4636(9)	-231(7)	3801(6)	83(2)
C(30)	5671(8)	-531(7)	4038(6)	80(2)
C(31)	6301(8)	162(6)	3852(5)	68(2)
C(32)	6446(6)	2703(5)	3985(4)	48(1)
C(33)	5479(7)	2742(5)	4678(4)	58(2)
C(34)	5264(8)	3285(6)	5337(4)	72(2)
C(35)	6026(9)	3817(6)	5297(5)	77(2)
C(36)	6968(8)	3793(6)	4606(5)	69(2)
C(37)	7196(7)	3246(5)	3943(4)	54(2)
C(38)	8782(8)	825(7)	5123(5)	73(2)
C(39)	9771(7)	972(6)	4525(5)	68(2)
C(40)	10993(7)	148(6)	4399(5)	64(2)
C(41)	-2443(10)	5800(8)	1291(8)	97(3)
C(42)	-2089(9)	5194(8)	1954(7)	92(3)
C(43)	-2305(13)	5752(11)	2613(8)	123(4)
C(44)	-2946(15)	6918(10)	2619(8)	136(6)
C(45)	-3331(11)	7496(9)	1929(9)	114(4)
C(46)	-3040(12)	6943(9)	1283(9)	110(4)
C(48)	10364(16)	2806(14)	6321(10)	138(5)
C(47)	1660(20)	3268(17)	1687(12)	159(6)

C(49)	10680(20)	3683(18)	6269(14)	184(7)
C(50)	11230(30)	4090(30)	5421(18)	271(14)
C(51)	4308(6)	5116(5)	2228(4)	47(1)
C(01J)	11361(16)	2487(14)	4982(10)	144(6)
C(01M)	10600(14)	2314(12)	5722(9)	129(4)
P(2)	6786(1)	1997(1)	3101(1)	42(1)
F(2)	905(8)	4234(6)	2156(8)	190(5)
O(2)	-70(7)	2589(6)	2111(6)	122(3)
C(2)	2931(8)	7139(6)	2831(5)	72(2)
O(3)	1803(17)	1377(15)	2562(10)	227(6)
F(3)	1129(14)	3851(13)	1090(9)	231(5)
C(3)	2541(9)	8281(6)	2638(6)	82(3)
O(4)	2017(18)	1522(16)	1392(11)	241(7)
C(4)	2920(9)	8665(6)	1872(6)	78(2)

Table 3-11.Bond lengths [A] and angles [deg] for 11.

P(1)-C(17)	1.815(6)
P(1)-C(23)	1.823(6)
P(1)-C(11)	1.824(6)
P(1)-Ni(1)	2.2358(16)
F(1)-C(47)	1.28(2)
O(1)-C(8)	1.264(7)
O(1)-Ni(1)	1.954(4)
N(1)-C(8)	1.318(8)
N(1)-C(6)	1.435(8)
N(1)-C(7)	1.454(9)
C(1)-C(2)	1.363(10)
C(1)-C(6)	1.390(10)
C(1)-C(51)	1.522(8)
C(5)-C(4)	1.383(12)
C(5)-C(6)	1.386(10)
C(52)-C(01J)	1.32(2)
C(52)-C(50)	1.432(17)
C(8)-C(51)	1.493(8)

C(9)-C(51)	1.542(9)
C(10)-C(51)	1.537(8)
C(10)-Ni(1)	1.996(5)
C(11)-C(16)	1.389(9)
C(11)-C(12)	1.399(9)
C(12)-C(13)	1.385(10)
C(13)-C(14)	1.366(13)
C(14)-C(15)	1.358(13)
Ni(1)-P(2)	2.1256(16)
S(1)-O(3)	1.356(18)
S(1)-O(2)	1.408(7)
S(1)-O(4)	1.514(18)
S(1)-C(47)	1.69(2)
C(15)-C(16)	1.407(11)
C(17)-C(18)	1.390(9)
C(17)-C(22)	1.394(9)
C(18)-C(19)	1.375(9)
C(19)-C(20)	1.372(11)
C(20)-C(21)	1.389(11)
C(21)-C(22)	1.377(9)
C(23)-C(24)	1.529(9)
C(24)-C(25)	1.534(8)
C(25)-P(2)	1.838(6)
C(26)-C(31)	1.358(9)
C(26)-C(27)	1.399(10)
C(26)-P(2)	1.826(6)
C(27)-C(28)	1.385(10)
C(28)-C(29)	1.383(12)
C(29)-C(30)	1.351(13)
C(30)-C(31)	1.402(11)
C(32)-C(33)	1.383(9)
C(32)-C(37)	1.399(9)
C(32)-P(2)	1.820(6)
C(33)-C(34)	1.384(10)
C(34)-C(35)	1.402(13)
C(35)-C(36)	1.367(12)

C(36)-C(37)	1.390(10)
C(38)-C(39)	1.385(12)
C(38)-C(40)#1	1.390(11)
C(39)-C(40)	1.372(11)
C(41)-C(46)	1.366(14)
C(41)-C(42)	1.389(15)
C(42)-C(43)	1.397(17)
C(43)-C(44)	1.394(17)
C(44)-C(45)	1.435(19)
C(45)-C(46)	1.343(17)
C(48)-C(01M)	1.240(19)
C(48)-C(49)	1.38(2)
C(47)-F(3)	1.37(2)
C(47)-F(2)	1.42(2)
C(49)-C(50)	1.54(3)
C(01J)-C(01M)	1.383(19)
C(2)-C(3)	1.395(12)
C(3)-C(4)	1.370(13)
C(17)-P(1)-C(23)	105.8(3)
$C(17)_{-}P(1)_{-}C(11)$	105 6(3)

C(17)-P(1)-C(11)	105.6(3)
C(23)-P(1)-C(11)	102.4(3)
C(17)-P(1)-Ni(1)	113.1(2)
C(23)-P(1)-Ni(1)	118.3(2)
C(11)-P(1)-Ni(1)	110.36(19)
C(8)-O(1)-Ni(1)	108.9(4)
C(8)-N(1)-C(6)	108.5(5)
C(8)-N(1)-C(7)	126.0(5)
C(6)-N(1)-C(7)	125.1(5)
C(2)-C(1)-C(6)	118.1(6)
C(2)-C(1)-C(51)	133.6(7)
C(6)-C(1)-C(51)	108.1(5)
C(4)-C(5)-C(6)	116.5(8)
C(5)-C(6)-C(1)	123.9(7)
C(5)-C(6)-N(1)	126.7(7)
C(1)-C(6)-N(1)	109.4(5)

C(01J)-C(52)-C(50)	117(2)
O(1)-C(8)-N(1)	125.7(6)
O(1)-C(8)-C(51)	121.5(5)
N(1)-C(8)-C(51)	112.8(5)
C(51)-C(10)-Ni(1)	104.6(4)
C(16)-C(11)-C(12)	118.6(6)
C(16)-C(11)-P(1)	118.9(5)
C(12)-C(11)-P(1)	122.5(5)
C(13)-C(12)-C(11)	120.0(7)
C(14)-C(13)-C(12)	121.3(8)
C(15)-C(14)-C(13)	119.4(7)
O(1)-Ni(1)-C(10)	87.3(2)
O(1)-Ni(1)-P(2)	176.90(15)
C(10)-Ni(1)-P(2)	91.12(18)
O(1)-Ni(1)-P(1)	87.50(12)
C(10)-Ni(1)-P(1)	173.49(19)
P(2)-Ni(1)-P(1)	94.27(6)
O(3)-S(1)-O(2)	125.0(8)
O(3)-S(1)-O(4)	88.0(10)
O(2)-S(1)-O(4)	104.9(8)
O(3)-S(1)-C(47)	123.5(10)
O(2)-S(1)-C(47)	109.4(8)
O(4)-S(1)-C(47)	92.1(9)
C(14)-C(15)-C(16)	121.1(8)
C(11)-C(16)-C(15)	119.6(8)
C(18)-C(17)-C(22)	118.2(6)
C(18)-C(17)-P(1)	119.4(4)
C(22)-C(17)-P(1)	122.3(5)
C(19)-C(18)-C(17)	121.6(6)
C(18)-C(19)-C(20)	119.5(7)
C(19)-C(20)-C(21)	120.2(6)
C(22)-C(21)-C(20)	120.1(6)
C(21)-C(22)-C(17)	120.4(6)
C(24)-C(23)-P(1)	113.2(4)
C(23)-C(24)-C(25)	112.0(5)
C(24)-C(25)-P(2)	115.6(4)

C(31)-C(26)-C(27)	117.9(6)
C(31)-C(26)-P(2)	122.2(5)
C(27)-C(26)-P(2)	119.8(5)
C(28)-C(27)-C(26)	120.9(7)
C(27)-C(28)-C(29)	119.9(8)
C(30)-C(29)-C(28)	119.7(7)
C(29)-C(30)-C(31)	120.3(7)
C(26)-C(31)-C(30)	121.4(7)
C(33)-C(32)-C(37)	119.4(6)
C(33)-C(32)-P(2)	123.2(5)
C(37)-C(32)-P(2)	117.4(5)
C(34)-C(33)-C(32)	120.9(7)
C(33)-C(34)-C(35)	119.6(7)
C(36)-C(35)-C(34)	119.4(7)
C(35)-C(36)-C(37)	121.5(8)
C(36)-C(37)-C(32)	119.2(7)
C(39)-C(38)-C(40)#1	120.9(7)
C(40)-C(39)-C(38)	119.9(7)
C(39)-C(40)-C(38)#1	119.2(8)
C(46)-C(41)-C(42)	120.7(11)
C(41)-C(42)-C(43)	120.1(10)
C(44)-C(43)-C(42)	119.5(13)
C(43)-C(44)-C(45)	117.8(12)
C(46)-C(45)-C(44)	121.5(10)
C(45)-C(46)-C(41)	120.2(12)
C(01M)-C(48)-C(49)	121.9(19)
F(1)-C(47)-F(3)	116.4(18)
F(1)-C(47)-F(2)	107.3(14)
F(3)-C(47)-F(2)	89.2(15)
F(1)-C(47)-S(1)	118.1(15)
F(3)-C(47)-S(1)	112.0(15)
F(2)-C(47)-S(1)	109.7(13)
C(48)-C(49)-C(50)	116(2)
C(49)-C(50)-C(52)	114(2)
C(8)-C(51)-C(1)	100.4(5)
C(8)-C(51)-C(10)	105.1(5)

C(1)-C(51)-C(10)	122.2(5)
C(8)-C(51)-C(9)	108.9(5)
C(1)-C(51)-C(9)	109.0(5)
C(10)-C(51)-C(9)	110.2(5)
C(52)-C(01J)-C(01M)	123.8(15)
C(48)-C(01M)-C(01J)	122.2(17)
C(32)-P(2)-C(26)	105.7(3)
C(32)-P(2)-C(25)	101.4(3)
C(26)-P(2)-C(25)	103.6(3)
C(32)-P(2)-Ni(1)	117.32(19)
C(26)-P(2)-Ni(1)	111.8(2)
C(25)-P(2)-Ni(1)	115.4(2)
C(1)-C(2)-C(3)	119.3(8)
C(4)-C(3)-C(2)	121.6(7)
C(3)-C(4)-C(5)	120.6(7)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1

Table 4-11. Anisotropic displacement parameters (A^2 x 10^3) for 11.The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	τ	J23	U13	U12
P(1)	38(1)	42(1)	44(1)	-4(1)	-13(1)	-12(1)	
F(1)	84(5)	168(7)	328(13)	-85(8)	-14(6)	-76(5)	
O(1)	54(2)	42(2)	44(2)	-1(2)	-22(2)	-7(2)	
N(1)	57(3)	46(3)	49(3)	2(2)	-22(2)	-17(2)	
C(1)	53(4)	46(3)	58(4)	-7(3)	-31(3)	-10(3)	
C(5)	74(5)	51(3)	81(5)	3(3)	-41(4)	-23(3)	
C(6)	55(4)	48(3)	68(4)	-6(3)	-32(3)	-12(3)	
C(7)	75(5)	66(4)	54(4)	8(3)	-24(3)	-26(4)	

C(52)	176(17)	205(19)	159(15)	-69(14)	46(13)	-113(16)
C(8)	48(3)	52(3)	46(3)	-4(2)	-20(3)	-18(3)
C(9)	52(4)	62(4)	74(4)	3(3)	-27(3)	-20(3)
C(10)	46(3)	42(3)	50(3)	-8(2)	-21(3)	-10(2)
C(11)	35(3)	44(3)	57(4)	-5(3)	-11(3)	-7(2)
C(12)	53(4)	50(3)	54(4)	0(3)	-15(3)	-9(3)
C(13)	68(5)	65(4)	53(4)	6(3)	-10(3)	-14(4)
C(14)	70(5)	63(4)	68(5)	13(4)	0(4)	-18(4)
Ni(1)	39(1)	39(1)	43(1)	-2(1)	-15(1)	-12(1)
S(1)	72(1)	62(1)	171(3)	27(1)	-60(2)	-31(1)
C(15)	58(4)	60(4)	101(7)	11(4)	-7(4)	-27(4)
C(16)	51(4)	57(4)	76(5)	-2(3)	-17(3)	-24(3)
C(17)	44(3)	42(3)	50(3)	0(2)	-18(3)	-13(2)
C(18)	47(3)	50(3)	63(4)	-7(3)	-16(3)	-17(3)
C(19)	53(4)	62(4)	83(5)	-3(3)	-29(4)	-24(3)
C(20)	73(5)	56(4)	100(6)	-6(4)	-48(4)	-25(4)
C(21)	69(5)	52(3)	84(5)	-16(3)	-34(4)	-17(3)
C(22)	48(3)	52(3)	70(4)	-10(3)	-22(3)	-13(3)
C(23)	41(3)	53(3)	56(3)	-6(3)	-17(3)	-14(3)
C(24)	44(3)	44(3)	60(4)	-1(3)	-23(3)	-9(2)
C(25)	46(3)	47(3)	47(3)	2(2)	-18(3)	-16(3)
C(26)	47(3)	47(3)	54(3)	-4(3)	-15(3)	-19(3)
C(27)	64(4)	62(4)	72(4)	9(3)	-23(4)	-32(3)
C(28)	72(5)	97(6)	94(6)	15(5)	-36(5)	-56(5)
C(29)	81(6)	75(5)	105(7)	5(5)	-24(5)	-50(5)
C(30)	75(5)	55(4)	110(7)	20(4)	-29(5)	-34(4)
C(31)	62(4)	60(4)	82(5)	12(4)	-28(4)	-25(3)
C(32)	52(3)	41(3)	47(3)	1(2)	-22(3)	-13(2)
C(33)	66(4)	49(3)	47(3)	-1(3)	-14(3)	-18(3)
C(34)	80(5)	58(4)	49(4)	0(3)	-14(3)	-12(4)
C(35)	100(6)	55(4)	63(5)	-6(3)	-44(5)	-9(4)
C(36)	86(5)	56(4)	79(5)	-5(3)	-50(5)	-22(4)
C(37)	60(4)	48(3)	59(4)	1(3)	-31(3)	-19(3)
C(38)	56(4)	65(4)	86(5)	-9(4)	-31(4)	-6(3)
C(39)	60(4)	63(4)	77(5)	8(3)	-32(4)	-20(3)
C(40)	59(4)	66(4)	66(4)	-6(3)	-23(3)	-22(3)

C(41)	92(7)	67(5)	154(10)	0(6)	-62(7)	-37(5)
C(42)	76(6)	65(5)	120(8)	-4(5)	-14(5)	-29(4)
C(43)	135(11)	105(8)	97(8)	23(7)	-7(7)	-56(8)
C(44)	167(13)	89(7)	103(8)	-23(7)	36(8)	-61(8)
C(45)	90(7)	66(5)	150(11)	6(7)	-12(7)	-24(5)
C(46)	110(8)	84(7)	161(11)	11(7)	-68(8)	-48(6)
C(51)	41(3)	44(3)	52(3)	-9(2)	-18(3)	-9(2)
C(01J)	146(13)	142(12)	142(12)	-48(10)	4(10)	-79(11)
C(01M)	114(10)	115(9)	131(11)	-24(8)	-23(8)	-29(8)
P(2)	41(1)	41(1)	44(1)	0(1)	-15(1)	-16(1)
F(2)	122(6)	87(4)	382(16)	-53(7)	-81(8)	-41(4)
O(2)	77(4)	88(4)	221(9)	4(5)	-57(5)	-46(4)
C(2)	72(5)	64(4)	72(5)	-14(3)	-36(4)	-8(4)
C(3)	83(6)	57(4)	93(6)	-25(4)	-47(5)	4(4)
C(4)	86(6)	46(3)	105(7)	-10(4)	-56(5)	-9(4)

Table 5-11.Hydrogen coordinates ($x \ 10^{4}$) and isotropic

displacement parameters ($A^2 \times 10^3$) for **11**.

	x	у	Z	U(eq)
H(5)	4044	8175	735	79
H(7A)	6312	5232	-70	100
H(7B)	6066	6471	64	100
H(7C)	5058	6285	-192	100
H(52)	12388	3305	4334	223
H(9A)	3612	3974	2221	94
H(9B)	2766	5212	1944	94
H(9C)	2658	4911	2869	94
H(10A)	4654	4107	3248	56
H(10B)	5596	4710	2875	56
H(12)	7946	1795	-458	69
H(13)	8818	2613	-1627	85

H(14)	9914	3609	-1619	96
H(15)	10155	3797	-439	95
H(16)	9296	2987	762	74
H(18)	5393	1955	1386	65
H(19)	4510	991	1034	76
H(20)	5831	-642	327	85
H(21)	8042	-1341	10	80
H(22)	8924	-433	431	69
H(23A)	9802	58	1088	61
H(23B)	9848	1031	1452	61
H(24A)	9804	-505	2392	62
H(24B)	8401	-183	2369	62
H(25A)	8980	1381	2852	57
H(25B)	8506	549	3486	57
H(27)	4524	2129	2888	77
H(28)	3473	980	3201	95
H(29)	4208	-700	3930	99
H(30)	5974	-1216	4332	96
H(31)	7022	-56	4028	82
H(33)	4954	2391	4703	69
H(34)	4604	3298	5812	86
H(35)	5889	4190	5745	92
H(36)	7479	4159	4579	83
H(37)	7852	3240	3467	65
H(38)	7938	1397	5206	88
H(39)	9604	1642	4204	81
H(40)	11676	242	3989	77
H(41)	-2269	5415	839	116
H(42)	-1698	4398	1960	110
H(43)	-2018	5341	3054	147
H(44)	-3122	7316	3065	163
H(45)	-3802	8287	1929	137
H(46)	-3250	7349	819	132
H(48)	9955	2572	6830	165
H(49)	10558	4020	6730	221
H(50)	11213	4810	5304	325

H(01J)	11605	2010	4566	173
H(01M)	10246	1802	5773	154
H(2)	2631	6890	3362	86
H(3)	1999	8805	3049	99
H(4)	2610	9449	1755	94

Table 6-11.Torsion angles [deg] for 11.

C(4)-C(5)-C(6)-C(1)	-1.4(11)
C(4)-C(5)-C(6)-N(1)	-179.8(7)
C(2)-C(1)-C(6)-C(5)	1.3(10)
C(51)-C(1)-C(6)-C(5)	177.2(6)
C(2)-C(1)-C(6)-N(1)	180.0(6)
C(51)-C(1)-C(6)-N(1)	-4.2(7)
C(8)-N(1)-C(6)-C(5)	176.5(7)
C(7)-N(1)-C(6)-C(5)	4.0(11)
C(8)-N(1)-C(6)-C(1)	-2.2(7)
C(7)-N(1)-C(6)-C(1)	-174.6(6)
Ni(1)-O(1)-C(8)-N(1)	153.3(5)
Ni(1)-O(1)-C(8)-C(51)	-23.9(7)
C(6)-N(1)-C(8)-O(1)	-169.5(6)
C(7)-N(1)-C(8)-O(1)	2.8(10)
C(6)-N(1)-C(8)-C(51)	7.9(7)
C(7)-N(1)-C(8)-C(51)	-179.8(6)
C(17)-P(1)-C(11)-C(16)	-175.3(5)
C(23)-P(1)-C(11)-C(16)	-64.7(5)
Ni(1)-P(1)-C(11)-C(16)	62.1(5)
C(17)-P(1)-C(11)-C(12)	6.4(6)
C(23)-P(1)-C(11)-C(12)	117.0(5)
Ni(1)-P(1)-C(11)-C(12)	-116.2(5)
C(16)-C(11)-C(12)-C(13)	1.3(9)
P(1)-C(11)-C(12)-C(13)	179.5(5)
C(11)-C(12)-C(13)-C(14)	-0.6(11)
C(12)-C(13)-C(14)-C(15)	-0.1(12)
C(13)-C(14)-C(15)-C(16)	0.1(12)

C(12)-C(11)-C(16)-C(15)	-1.2(9)
P(1)-C(11)-C(16)-C(15)	-179.5(5)
C(14)-C(15)-C(16)-C(11)	0.5(11)
C(23)-P(1)-C(17)-C(18)	147.0(5)
C(11)-P(1)-C(17)-C(18)	-104.8(5)
Ni(1)-P(1)-C(17)-C(18)	16.0(6)
C(23)-P(1)-C(17)-C(22)	-37.4(6)
C(11)-P(1)-C(17)-C(22)	70.7(6)
Ni(1)-P(1)-C(17)-C(22)	-168.5(5)
C(22)-C(17)-C(18)-C(19)	1.4(10)
P(1)-C(17)-C(18)-C(19)	177.1(6)
C(17)-C(18)-C(19)-C(20)	-2.3(11)
C(18)-C(19)-C(20)-C(21)	1.1(12)
C(19)-C(20)-C(21)-C(22)	1.0(12)
C(20)-C(21)-C(22)-C(17)	-1.9(12)
C(18)-C(17)-C(22)-C(21)	0.7(10)
P(1)-C(17)-C(22)-C(21)	-174.9(6)
C(17)-P(1)-C(23)-C(24)	-77.6(5)
C(11)-P(1)-C(23)-C(24)	172.0(4)
Ni(1)-P(1)-C(23)-C(24)	50.5(5)
P(1)-C(23)-C(24)-C(25)	-68.3(6)
C(23)-C(24)-C(25)-P(2)	74.2(6)
C(31)-C(26)-C(27)-C(28)	-0.6(11)
P(2)-C(26)-C(27)-C(28)	175.0(6)
C(26)-C(27)-C(28)-C(29)	0.2(13)
C(27)-C(28)-C(29)-C(30)	0.0(15)
C(28)-C(29)-C(30)-C(31)	0.3(15)
C(27)-C(26)-C(31)-C(30)	0.9(11)
P(2)-C(26)-C(31)-C(30)	-174.6(7)
C(29)-C(30)-C(31)-C(26)	-0.7(14)
C(37)-C(32)-C(33)-C(34)	-1.6(10)
P(2)-C(32)-C(33)-C(34)	179.6(5)
C(32)-C(33)-C(34)-C(35)	0.9(10)
C(33)-C(34)-C(35)-C(36)	0.2(11)
C(34)-C(35)-C(36)-C(37)	-0.5(11)
C(35)-C(36)-C(37)-C(32)	-0.3(10)

C(33)-C(32)-C(37)-C(36)	1.3(9)
P(2)-C(32)-C(37)-C(36)	-179.9(5)
C(40)#1-C(38)-C(39)-C(40)	0.2(13)
C(38)-C(39)-C(40)-C(38)#1	-0.2(13)
C(46)-C(41)-C(42)-C(43)	-2.0(16)
C(41)-C(42)-C(43)-C(44)	3.8(18)
C(42)-C(43)-C(44)-C(45)	-1(2)
C(43)-C(44)-C(45)-C(46)	-3(2)
C(44)-C(45)-C(46)-C(41)	4.6(19)
C(42)-C(41)-C(46)-C(45)	-2.3(18)
O(3)-S(1)-C(47)-F(1)	23(2)
O(2)-S(1)-C(47)-F(1)	-172.6(14)
O(4)-S(1)-C(47)-F(1)	-65.9(17)
O(3)-S(1)-C(47)-F(3)	162.4(14)
O(2)-S(1)-C(47)-F(3)	-33.2(17)
O(4)-S(1)-C(47)-F(3)	73.5(16)
O(3)-S(1)-C(47)-F(2)	-100.2(16)
O(2)-S(1)-C(47)-F(2)	64.2(15)
O(4)-S(1)-C(47)-F(2)	170.8(14)
C(01M)-C(48)-C(49)-C(50)	5(3)
C(48)-C(49)-C(50)-C(52)	-21(4)
C(01J)-C(52)-C(50)-C(49)	23(4)
O(1)-C(8)-C(51)-C(1)	167.7(5)
N(1)-C(8)-C(51)-C(1)	-9.8(7)
O(1)-C(8)-C(51)-C(10)	40.1(7)
N(1)-C(8)-C(51)-C(10)	-137.4(5)
O(1)-C(8)-C(51)-C(9)	-77.9(7)
N(1)-C(8)-C(51)-C(9)	104.6(6)
C(2)-C(1)-C(51)-C(8)	-177.0(7)
C(6)-C(1)-C(51)-C(8)	8.0(6)
C(2)-C(1)-C(51)-C(10)	-61.7(10)
C(6)-C(1)-C(51)-C(10)	123.3(6)
C(2)-C(1)-C(51)-C(9)	68.7(9)
C(6)-C(1)-C(51)-C(9)	-106.3(6)
Ni(1)-C(10)-C(51)-C(8)	-32.5(5)
Ni(1)-C(10)-C(51)-C(1)	-145.5(5)

Ni(1)-C(10)-C(51)-C(9)	84.7(5)
C(50)-C(52)-C(01J)-C(01M)	-9(4)
C(49)-C(48)-C(01M)-C(01J)	10(3)
C(52)-C(01J)-C(01M)-C(48)	-9(3)
C(33)-C(32)-P(2)-C(26)	-13.4(6)
C(37)-C(32)-P(2)-C(26)	167.9(5)
C(33)-C(32)-P(2)-C(25)	-121.2(5)
C(37)-C(32)-P(2)-C(25)	60.0(5)
C(33)-C(32)-P(2)-Ni(1)	112.1(5)
C(37)-C(32)-P(2)-Ni(1)	-66.7(5)
C(31)-C(26)-P(2)-C(32)	-76.2(6)
C(27)-C(26)-P(2)-C(32)	108.4(6)
C(31)-C(26)-P(2)-C(25)	30.1(7)
C(27)-C(26)-P(2)-C(25)	-145.3(5)
C(31)-C(26)-P(2)-Ni(1)	155.0(6)
C(27)-C(26)-P(2)-Ni(1)	-20.4(6)
C(24)-C(25)-P(2)-C(32)	173.6(5)
C(24)-C(25)-P(2)-C(26)	64.1(5)
C(24)-C(25)-P(2)-Ni(1)	-58.5(5)
C(6)-C(1)-C(2)-C(3)	-1.7(11)
C(51)-C(1)-C(2)-C(3)	-176.3(7)
C(1)-C(2)-C(3)-C(4)	2.5(13)
C(2)-C(3)-C(4)-C(5)	-2.7(13)
C(6)-C(5)-C(4)-C(3)	2.0(11)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1

Table 7-11 .	Hydrogen be	onds for 11 [A a	and deg.].
---------------------	-------------	-------------------------	------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)