Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

For

Hydrogen Bonding-directed Sequential 1,6/1,4-Addition of Heteroatom Nucleophiles onto Electron-deficient 1,3-Diynes

Erandi Liyanage Perera[†] and Daesung Lee ^{†*}

† Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States.

*E-mail: dsunglee@uic.edu (D. L.)

Contents

General Information	S1
Experimental Details and General Procedures	S2-S9
Supplementary Table	S10
Characterization Data of Substrates	S11-S14
Characterization Data of Products	S15-S25
¹ H and ¹³ C NMR Spectra of Substrates	S26-S46
¹ H and ¹³ C NMR Spectra of Products	S47-S104

General Information

All reactions were carried out in oven or flame-dried glassware unless otherwise noted. Reagents which were commercially available, were purchased from Sigma - Aldrich, Alfa Aesar, Acros, and Oakwood Products unless otherwise noted. Known compounds were prepared according to literature procedure. Anhydrous acetonitrile from Sigma-Aldrich was distilled over calcium hydride (CaH2) under nitrogen atmosphere. Acetic acid was purchased from Fischer Scientific. Column chromatography was performed using silica gel 60 Å (32-63 mesh) purchased from Silicycle Inc. Analytical thin layer chromatography (TLC) was performed on 0.25 mm E. Merck precoated silica gel 60 (particle size 0.040-0.063 mm). Yield was calculated on basis of chromatographically and spectroscopically pure isolated compound. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV-500 spectrometer at 298 K, unless otherwise stated. 1 H NMR chemical shifts (δ) were reported in parts per million (ppm) downfield of TMS and were referenced relative to the residual proteated solvent peak (CDCl₃ (7.26 ppm)). 13 C chemical shifts (δ) were reported in parts per million downfield of TMS and are referenced to the carbon resonance of the solvent (CDCl₃, δ 77.2 ppm). Multiplicities in ¹H NMR were abbreviated by s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sext (sextet), sept (septet) or m (multiplet). ¹H NMR signals that fall within a ca. 0.3 ppm range are generally reported as a multiplet, with a range of chemical shift values corresponding to the peak or center of the peak. Coupling constants, J, are reported in Hz (Hertz). Electrospray ionization (ESI) mass spectra were recorded on a Waters Micromass Q-Tof Ultima (Waters Corporation, Milford, MA, USA) at the University of Illinois at Urbana-Champaign.

Experimental Details

Procedure for synthesis of diynone substrates

To a stirred solution of alkyne $\bf S1$ (5.05 g, 60.0 mmol) in acetone at 25 °C, *N*-bromosuccinimide (12.81 g, 72.0 mmol) and AgNO₃ (1.02 g, 6.0 mmol) were sequentially added under N₂ atmosphere in the dark. After addition, the mixture was stirred for 3 h. Upon complete consumption of the alkyne, the reaction mixture was concentrated under reduced pressure and filtered through silica gel. Purification by flash column chromatography (SiO₂, EtOAc–hexane, 1:5 to 1:3) provided the bromide $\bf S2$ (8.81–9.30 g, 90–95% yield) as clear oil.

To a mixture of 30% aqueous n-BuNH₂ (20 mL, 2 mL per 1.0 mmol of terminal alkyne), CuCl (0.29 g, 3.0 mmol) and a pinch of NH₂OH·HCl in a two-necked round-bottomed flask, a solution of terminal alkyne (0.98 g, 10.0 mmol) in CH₂Cl₂ was added slowly at 0 °C under N₂ atmosphere. Then, **S2** (1.96 g, 12.0 mmol) diluted in CH₂Cl₂ was added dropwise into the reaction mixture over 30 min. After 5 min, the ice bath was removed and stirring was continued for additional 25 min at room temperature (TLC monitoring). A pinch of NH₂OH·HCl was added several times into the reaction mixture when the solution becomes blue. The reaction was quenched by a saturated solution of NH₄Cl and extracted with CH₂Cl₂. The combined organic extracts were washed with water and brine sequentially and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAc—hexane, 1:50 to 1:20) to provide the pure diyne **S3** (1.30—1.84 g, 60—85% yield) as white solid.

To a stirred solution of **S3** (1.37 g, 4.0 mmol) in MeOH at 25 °C, K_2CO_3 (0.55 g, 4.0 mmol) was added and the stirring was continued for additional 3 h. Then, the reaction was quenched by a saturated solution of NH_4Cl and extracted with Et_2O . The combined organic extracts were washed with water and brine sequentially and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure and ice. The crude material was purified by flash column chromatography (SiO_2 , Et_2O —pentane, 1:10 to 1:5) to provide the pure diyne **S4** (0.58–0.70 g, 70–85% yield) as clear oil.

To a stirred solution of **S5** (0.27g, 2.0 mmol) in THF at -78 °C, n-BuLi (2.5 M, 1.76 mL, 4.4 mmol) in hexane was added slowly under N_2 atmosphere and the stirring was continued for additional 40 min. The dry ice bath was removed and the diyne **S4** (0.24 g, 2.2 mmol) in THF was added. The stirring was continued for additional 1 h at room temperature. The reaction was quenched by aqueous NH_4Cl and extracted with EtOAc. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO_2 , EtOAc—hexane, 1:40 to 1:10) to provide pure product **S6** (0.27–0.44 g, 50–80% yield) as yellow oil.

To a stirred solution of **S5** (1.06 g, 10.0 mmol) in THF at 0 °C, ethynyl magnesium-bromide (0.5 M, 24 mL, 12.0 mmol) in hexane was added slowly under N_2 atmosphere and the mixture was stirred for 30 min and additional 2 h at room temperature. The reaction was quenched by a saturated solution of NH₄Cl and extracted with EtOAc. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:50 to 1:20) to provide the pure product **S7** (1.05–1.19 g, 80–90% yield) as yellow oil.

To a mixture of 30% aqueous n-BuNH₂ (20 mL, 2 mL per 1.0 mmol of terminal alkyne), CuCl (0.29 g, 3.0 mmol) and a pinch of NH₂OH·HCl in a two-necked round-bottomed flask, a solution of terminal alkyne, **S7** (1.32 g, 10.0 mmol) in CH₂Cl₂ was added slowly at 0 °C under N₂ atmosphere. Then, **S2** (1.96 g, 12.0 mmol) diluted in CH₂Cl₂ was added dropwise into the reaction mixture over 30 min. After 5 min, the mixture was stirred for additional 25 min at room temperature (TLC monitoring). A pinch of NH₂OH·HCl was added several times into the reaction mixture when the solution becomes blue. The reaction was quenched by a saturated solution of NH₄Cl and extracted with CH₂Cl₂. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:50 to 1:20) to provide the pure product **S6** (1.28–1.82 g, 60–85% yield) as pale-yellow oil.

To a stirred solution of **S6** (0.21 g, 1.0 mmol) in CH_2CI_2 at 25 °C, MnO_2 (1.30 g, 15.0 mmol) was added and the mixture was stirred for 6 h. After the completion of the reaction, the reaction mixture was filtered through a celite column. Purification by flash column chromatography (SiO₂, EtOAc–hexane, 1:40 to 1:10) provided the pure product **S8** (0.16–0.19 g, 75–90% yield) as pale-yellow solid.

To a stirred solution of **\$9** (2.02 g, 15.0 mmol) in DMF (2 mL, 1 mL per 7.5 mmol of the alcohol) at 25 °C, TBSCI (2.49 g, 16.5 mmol) and imidazole (1.23 g, 18.00 mmol) were added, and the stirring was continued for 2 h. Upon completion of the reaction, the reaction mixture was filtered through silica gel with hexane. The filtration provided the product **\$10** (2.64–3.01 g, 70–80% yield) as clear oil and was used for the next step without any further purification.

For the deprotection of the alcohol, to a stirred solution of **\$10** (0.32 g, 1.0 mmol) in CH_2Cl_2 :MeOH (5:1) at 25 °C, (1S)-(+)-Camphorsulfonic acid (23.2 mg, 0.1 mmol) was added and the stirring was continued for 12 h. The reaction was quenched by a saturated solution of NH_4Cl and extracted with EtOAc. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO_2 , EtOAc—hexane, 1:50 to 1:20) to provide the pure alcohol **\$8** (0.13–0.15 g, 65–75% yield) as yellow oil.

To a mixture of Al (0.27 g, 10.0 mmol) and $HgCl_2$ (27.2 mg, 0.1 mmol) in THF at 45 °C, bromide **S11** (1.19 g, 10.0 mmol) in THF was added and the mixture was stirred for 30 min. Then the reaction mixture was cooled down to 0 °C and acetone (0.9 mL, 12 mmol) in THF was added. The reaction mixture was again heated up to 45 °C and the stirring was continued for another 30 min. The reaction was quenched by pouring the reaction mixture to a solution of ice water and saturated solution of NH₄Cl and extracted with El_2O . The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure and ice. The crude material was purified by flash column chromatography (SiO_2 , El_2O —pentane, 1:10 to 1:5) to provide the pure terminal alkyne **S12** (0.19 g, 85% yield) as clear oil.

To a stirred solution of bromide **S13** (1.00 g, 8.27 mmol) in THF at 25 °C, Pd(PPh₃)₂Cl₂ (0.17 g, 0.25 mmol) and terminal alkyne (1.06 g, 10.7 mmol) were added sequentially under N₂ atmosphere. Then CuI (81.3 mg, 0.58 mmol) and Et₃N (1.7 mL, 12.4 mmol) were added and the reaction mixture was stirred at 50 °C for 4 h. Upon completion of the reaction, the reaction mixture was concentrated under reduced pressure and filtered through silica gel. Purification by flash column chromatography (SiO, EtOAc–hexane, 1:20) provided the enyne **S14** (0.69 g, 60% yield) as white solid.

To a stirred solution of enyne **S15** (1.00 g, 7.2 mmol) in acetone at 0 °C, NMO (1.02 g, 8.7 mmol) and OsO_4 in water (0.09 g, 0.36 mmol) were added and the mixture was stirred at 25 °C for 6 h. The reaction was quenched by aqueous NH₄Cl and extracted with CH₂Cl₂. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAchexane, 1:15 to 1:10) to provide the pure diol **S16** (0.75 g, 60% yield) as white soild.

To a stirred solution of amine **S17** (1.00 g, 18 mmol) in CH_2Cl_2 at 10 °C, NEt_3 (2.5 mL, 18 mmol) and Boc anhydride in CH_2Cl_2 (7.86 g, 36 mmol) were added and the mixture was stirred at 25 °C for 2 h. The reaction was quenched by water and extracted with CH_2Cl_2 . The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAchexane, 1:50 to 1:20) to provide the pure product **S18** (2.76 g, 98% yield) as pale-yellow soild.

To a stirred solution of amine **S19** (0.54 g, 6.5 mmol) in CH_2CI_2 at 0 °C, pyridine (0.74 mL, 9.1 mmol) tosyl chloride (1.24 g, 7.8 mmol) and DMAP (6.11 mg, 0.08 mmol) were added and the mixture was stirred at 25 °C for 6 h. The reaction was quenched by water and extracted with CH_2CI_2 . The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO_2 , EtOAc-hexane, 1:50 to 1:20) to provide the pure product **S20** (1.00 g, 65% yield) as pale-yellow oil.

H
$$\longrightarrow$$
 R \longrightarrow R \longrightarrow HOOC \longrightarrow R S21 THF \longrightarrow -78 °C, 2 h \longrightarrow 75–85%

To a stirred solution of **S4** (1.00g, 9.2 mmol) in THF at -78 °C, n-BuLi (2.5 M, 7.40 mL, 1.8 mmol) in hexane was added slowly under N₂ atmosphere and the stirring was continued for additional 30 min. Then CO₂ was bubbled into the reaction mixture at -78 °C and the dry ice bath was removed. The stirring was continued for additional 1 h at room temperature. The reaction was quenched by aqueous HCl (1M) and extracted with EtOAc. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:20 to 1:5) to provide pure product **S21** (1.06–1.20 g, 75–85% yield) as pale-yellow soild.

HOOC
$$\longrightarrow$$
 R \longrightarrow MeOOC \longrightarrow R \longrightarrow MeOOC \longrightarrow R \longrightarrow S22 \bigcirc 0 °C, 2 h \bigcirc 65%

To a stirred solution of **S21** (0.20 g, 1.3 mmol) in DMF at 0 °C under N_2 atmosphere, K_2CO_3 (0.20 g, 1.5 mmol) and MeI (0.40 g, 2.8 mmol) were added and the mixture was stirred at 0 °C for 30 minutes. Then the ice bath was removed and stirring was continued for additional 1 h at room temperature. The reaction was quenched by aqueous NH_4CI and extracted with EtOAc. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO_2 , EtOAc–hexane, 1:10 to 1:4) to provide the pure product **S22** (0.14 g, 65% yield) as pale-yellow oil.

HOOC
$$\longrightarrow$$
 R $\xrightarrow{\text{PivCl, Et}_3\text{N}}$ $\xrightarrow{\text{THF}}$ $\xrightarrow{\text{-20 °C, 2 h}}$ $\xrightarrow{\text{TsHN}}$ $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{S23}}$ 0 °C, 2 h $\xrightarrow{\text{80\%}}$

To a stirred solution of **S21** (0.10 g, 0.7 mmol) in THF at $-20\,^{\circ}$ C under N₂ atmosphere, PivCl (0.11 g, 0.9 mmol) and Et₃N (0.23 mL, 1.6 mmol) were added and the mixture was stirred at $-20\,^{\circ}$ C for 2 hours. Then LiCl (0.04g, 1.0 mmol) and the amine (0.17g, 0.7 mmol) were added and the dry ice bath was removed and stirring was continued for additional 1 h at room temperature. The reaction was quenched by aqueous NH₄Cl and extracted with EtOAc. The combined organic extracts were washed sequentially with water and brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by flash column chromatography (SiO₂, EtOAchexane, 1:20 to 1:10) to provide the pure product **S23** (0.21 g, 80% yield) as pale-yellow oil.

Nu-H = amines
toluene

$$25 \, ^{\circ}\text{C}, \, 0.5\text{-}1 \, \text{h}$$

1a-f, 1h-k, 1l-m, R^2
1o-r

Nu
R

 R^1
 $25 \, ^{\circ}\text{C}, \, 0.5\text{-}1 \, \text{h}$
 $23\text{-}86\%$
2aa-ad, 2ba-fa, 2ha-ka, 2la, 2ma-mb, 2oa-ra

To a stirred solution of **1a-f**, **1h-k**, **1l-m**, **1o-r** (45 mg, 0.2 mmol) in toluene at 25 °C, Nu-H (0.04 mL, 0.4 mmol) was added. Then the reaction mixture was stirred for 0.5–1 h. Upon completion of the reaction, the crude material was purified by flash column chromatography (SiO₂, EtOAc—hexane, 1:10 to 1:1) to provide pure products **2aa-ad**, **2ba-fa**, **2ha-ka**, **2la**, **2ma-mb**, **2oa-ra** (15–54 mg, 23–86% yield) as an oil.

Nu-H = amine salt

$$R^1$$
 Et_3N , CH_3CN
 $25 \, ^{\circ}C$, 0.5 -1 h

 R^2
 XH
 Et_3N , CH_3CN
 $At a = 2$
 $At a = 2$

To a stirred solution of 1a, 1q, 1r (45 mg, 0.2 mmol) in CH₃CN at 25 °C, Et₃N (0.09 mL, 0.6 mmol) and Nu-H (0.04 mL, 0.4 mmol) were added. Then the reaction mixture was stirred for 0.5–1 h. Upon completion of the reaction, the crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:10 to 1:1) to provide pure products 2ae, 2qb-qd, 2rb-rd (25–49 mg, 40–78% yield) as an oil.

To a stirred solution of **1a**, **1c-f**, **1h**, **1j-k**, **1l**, **1o** (45 mg, 0.2 mmol) in toluene at 70 °C, DABCO (5 mg, 0.04 mmol) and MeOH (0.04 mL, 1.0 mmol) were added. Then the reaction mixture was stirred for 2–3 h. Upon completion of the reaction, the crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:10 to 1:5) to provide pure products **2ag**, **2cb-fb**, **2hb**, **2jb-kb**, **2lb**, **2ob** (13–44 mg, 24–85% yield) as an oil.

RX'H = alcohols, thiols DABCO (20 mol%)

toluene

80–100 °C, 2–3 h

1a, 1g-h, R² XH

1m, 1p-r

RX'H = alcohols, thiols X'H

$$R^1$$
 R^1
 R^2

2af, 2ah-ai, 2ga, 2hc, 2mc-md, 2pb-pd, 2qe-re

To a stirred solution of **1a**, **1g-h**, **1m**, **1p-r** (45 mg, 0.2 mmol) in toluene at 80–100 °C, DABCO (5 mg, 0.04 mmol) and RX'H (46 mg, 0.4 mmol) were added. Then the reaction mixture was stirred for 2–3 h. Upon completion of the reaction, the crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:10 to 1:5) to provide pure products **2af**, **2ah-ai**, **2ga**, **2hc**, **2mc-md**, **2pb-pd**, **2qe-re** (14–53 mg, 20–78% yield) as an oil.

To a stirred solution of 1a (0.28 g, 1.3 mmol) in toluene at 25 °C, piperidine (0.28 mL, 2.6 mmol) was added. Then the reaction mixture was stirred for 0.5 h. Upon completion of the reaction, the crude material was purified by flash column chromatography (SiO₂, EtOAc–hexane, 1:10 to 1:2) to provide pure product 2aa (0.32 g, 81% yield) as a pale-yellow oil.

References:

- 1. H. Hofmeister, K. Annen, H. Laurent, H. Wiechert, Angew. Chem., Int. Ed. 1984, 23, 727.
- 2. (a) W. Chodkiewicz, *Ann. Chim.* **1957**, *2*, 819. (b) P. Cadiot, W. Chodkiewicz, In *Chemistry of Acetylenes* (Ed.: H. G. Viehe), Marcel Dekker, New York, **1969**, pp. 597.
- 3. For **2al**': (a) Fan, M.-J.; Li. G.-Q.; Liang, Y.-M. DABCO-catalyzed reaction of various nucleophiles with activated alkynes leading to the formation of alkenoic acid esters, 1,4-dioxane, morpholine, and piperazinone derivatives. *Tetrahedron* **2006**, *62*, 6782–6791. (b) Nguyen, Van T. H.; Anders, J. T.; Ma, Q.; Herbs-Irmer, R.; Langer, P. Synthesis of 5-alkylidene-2,5-dihydropyrrol-2-ones and their ring-transformation into 5,6-dihydrobenzo[h]chromones, 5,6,7,8-tetrahydrochromones and pyran-4-ones. *Tetrahedron* **2007**, *63*, 12975.

Table S1. Optimizing Reaction Conditions with Screening Solvents, Temperature and Base Additives

Ph OH
$$\frac{\text{Condition}^a}{\text{Nu-H}}$$
 additive (20 mol%) $\frac{\text{Nu-H}}{\text{ph}}$ $\frac{\text{Nu}}{\text{ph}}$ $\frac{\text{Nu}}$

toluene

toluene

toluene

DABCO

pyridine

 Et_3N

8

9

10

MeOH

MeOH

MeOH

^aCondition: undistilled solvents and reagents. ^bIsolated yield. ^cLower amount of piperidine (0.5 and 1 equiv) led to incomplete conversion and reaction was completed with 2 equiv amines. ^dWith 5 equiv of MeOH.

70

70

70

72

66

61

2.5

4.0

5.0

Characterization Data of Substrates

130 mg (88% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹**H NMR** (CDCl₃, 500 MHz): δ 7.95 (d, 2H, J = 7.6 Hz), 7.48 (t, 1H, J = 7.5 Hz), 7.39–7.30 (m, 2H), 4.39 (s, 1H), 1.54 (s, 6H); ¹³**C NMR** (CDCl₃, 125 MHz): δ 177.1, 136.2, 134.8, 129.6, 128.7, 92.8, 77.6, 74.6, 65.5, 65.3, 30.7; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₃O₂ 213.0916; found 213.0915.

200 mg (86% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.03 (d, 2H, J = 8.6 Hz), 8.03 (d, 2H, J = 8.6 Hz), 3.84 (s, 3H), 3.27 (s, 1H), 1.58 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 175.5, 164.9, 132.1, 129.9, 114.0, 91.5, 76.2, 75.0, 65.6, 65.7, 55.7, 30.8; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₅O₃ 243.1021; found 243.1021.

800 mg (89% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.88 (d, 2H, J = 8.5 Hz), 7.56 (d, 2H, J = 8.5 Hz), 3.46 (s, 1H), 1.57 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 175.9, 135.1, 132.1, 130.9, 130.3, 92.9, 77.8, 74.4, 65.6, 65.4, 30.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₂BrO₂ 291.0021; found 291.0018.

180 mg (85% yield), off white solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.01–7.94 (m, 1H), 7.60–7.52 (m, 1H), 7.25–7.20 (m, 1H), 7.15–7.09 (m, 1H), 3.00 (s, 1H), 1.57 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 173.3, 162.1 (d, J = 263.1 Hz), 136.2 (d, J = 9.2 Hz), 132.0, 125.0 (d, J = 7.4 Hz), 124.4 (d, J = 4.2 Hz), 117.2 (d, J = 21.3 Hz), 92.9, 77.1, 75.7, 65.7, 65.6, 30.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₂FO₂ 231.0821; found 231.0820.

220 mg (84% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.02–7.96 (m, 1H), 7.61–7.54 (m, 1H), 7.27–7.22 (m, 1H), 7.17–7.11 (m, 1H), 4.68 (q, J = 6.9 Hz, 1H), 2.65 (s, 1H), 1.53 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 173.5, 161.1, 136.2 (d, J = 9.2 Hz), 132.0, 124.9, 124.4 (d, J = 4.0 Hz), 117.2 (d, J = 21.7 Hz), 90.1, 76.8, 75.6, 67.3, 58.7, 23.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₀FO₂ 217.0665; found 217.0659.

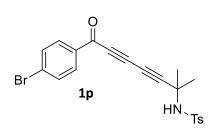
180 mg (84% yield), pale-yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.01–7.90 (m, 1H), 7.62–7.48 (m, 1H), 7.28–7.20 (m, 1H), 7.17–7.07 (m, 1H), 4.45 (s, 2H), 3.11 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 173.5, 163.2, 161.1, 136.4 (d, J = 9.7 Hz), 132.1, 124.4 (d, J = 4.2 Hz), 117.2 (d, J = 21.7 Hz), 87.2, 77.1, 75.3, 68.6, 51.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₈FO₂ 203.0508; found 203.0511.

40 mg (85% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.10 (d, 2H, J = 7.7 Hz), 7.63 (t, 1H, J = 7.5 Hz), 7.49 (t, 2H, J = 7.7 Hz), 4.47 (s, 2H), 2.43 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.1, 136.3, 134.8, 129.7, 128.8, 86.0, 76.9, 74.5, 68.8, 51.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₉O₂ 185.0603, found 185.0602.

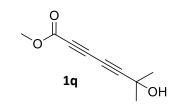
400 mg (80% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 3.68 (s, 1H), 2.52 (q, 2H, J = 7.3 Hz), 1.47 (s, 6H), 1.06 (t, 3H, J = 7.3 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 187.9, 92.2, 75.2, 75.1, 65.4, 65.1, 38.8, 30.6, 7.8; HRMS (EI) m/z: [M]⁺ calcd for C₁₀H₁₃O₂ 165.09156, found 165.09078.

420 mg (78% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc—hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 3.81 (s, 1H), 2.57 (hept, 1H, J = 6.9 Hz), 1.46 (s, 6H), 1.09 (d, 6H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 191.4, 92.1, 76.0, 74.5, 65.4, 65.1, 43.1, 30.6, 17.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₅O₂ 179.1072, found 179.1071.

200 mg (78% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 2.95 (s, 1H), 2.38 (tt, 1H, J = 11.1, 3.6 Hz), 1.97–1.89 (m, 2H), 1.75 (dt, 2H, J = 13.1, 3.9 Hz), 1.66–1.58 (m, 1H), 1.53 (s, 6H), 1.43–1.33 (m, 2H), 1.32–1.21 (m, 2H), 1.23–1.14 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 190.6, 91.8, 75.5, 75.1, 65.6, 65.4, 52.3, 30.7, 28.0, 25.6, 25.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₉O₂ 219.1385, found 219.1380.


200 mg (83% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 2.21 (s, 1H), 1.56 (s, 6H), 1.20 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 193.1, 91.2, 75.9, 74.3, 65.7, 65.6, 45.1, 30.8, 25.8; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₁₇O₂ 193.1229, found 193.1219.

220 mg (80% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc—hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.03 (d, 2H, J = 7.8 Hz), 7.56 (t, 1H, J = 7.4 Hz), 7.42 (t, 2H, J = 7.8 Hz), 5.31 (s, 1H), 4.08 (s, 2H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 176.8, 155.3, 136.4, 134.6, 129.6, 128.7, 84.9, 80.5, 77.0, 73.3, 66.2, 31.2, 28.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₈NO₃ 284.1106, found 284.1102.


500 mg (85% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.86 (d, 2H, J = 8.5 Hz), 7.55 (d, 2H, J = 8.5 Hz), 5.31 (s, 1H), 4.08 (d, 2H, J = 6.0 Hz), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 175.6, 155.3, 135.1, 132.1, 130.9, 130.2, 85.7, 80.4, 77.6, 72.8, 65.9, 31.2, 28.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₇BrNO₃ 362.0211, found 362.0207.

80 mg (88% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc—hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.11 (d, 2H, J = 7.7 Hz), 7.61 (t, 1H, J = 7.4 Hz), 7.48 (t, 2H, J = 7.7 Hz), 4.79 (s, 1H), 1.62 (s, 6H), 1.47 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.0, 153.9, 136.5, 134.5, 129.7, 128.7, 91.3, 80.3, 77.4, 74.1, 64.3, 47.6, 29.1, 28.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₂NO₃ 312.1419, found 312.1421.

250 mg (86% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.04 (d, 2H, J = 8.2 Hz), 7.84 (d, 2H, J = 8.3 Hz), 7.65–7.58 (m, 1H), 7.48 (t, 2H, J = 7.8 Hz), 7.31 (d, 2H, J = 8.3 Hz), 5.88 (s, 1H), 2.32 (s, 3H), 1.60 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 176.6, 144.0, 137.9, 136.4, 134.7, 129.6, 129.6, 128.8, 127.7, 88.6, 76.3, 74.8, 66.5, 50.2, 30.2, 21.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀NO₃S 366.1164, found 366.1157.

250 mg (87% yield), white solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.89 (d, 2H, J = 8.6 Hz), 7.83 (d, 2H, J = 8.3 Hz), 7.62 (d, 2H, J = 8.6 Hz), 7.31 (d, 2H, J = 8.3 Hz), 5.86 (s, 1H), 2.34 (s, 3H), 1.59 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 175.5, 144.0, 137.9, 135.2, 132.1, 130.9, 130.2, 129.7, 127.7, 89.1, 76.9, 74.4, 66.4, 50.2, 30.1, 21.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉NO₃SBr 444.0269, found 444.0262.

80 mg (76% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc–hexan es, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 3.78 (s, 3H), 3.72 (s, 1H), 1.55 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.1, 100.2, 89.2, 70.6, 68.8, 65.5, 53.1, 30.7; HRMS (EI) m/z: [M]⁺ calcd for for C₉H₁₁O₃ 167.07083, found 167.07094.

130 mg (77% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.55 (d, 2H, J = 8.4 Hz), 7.38–7.29 (m, 5H), 7.19 (d, 2H, J = 8.4 Hz), 5.17 (s, 2H), 2.38 (s, 3H), 1.53 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 151.7, 145.4, 135.8, 135.3, 129.4, 128.8, 128.7, 128.3, 128.1, 92.5, 78.2, 69.1, 65.6, 65.0, 50.2, 30.7, 21.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂NO₄S 396.1270, found 396.1264.

30 mg (80% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.11 (d, 2H, J = 7.8 Hz), 7.64 (t, 1H, J = 7.4 Hz), 7.50 (t, 2H, J = 7.8 Hz), 3.78 (d, 1H, J = 10.6 Hz), 3.58 (d, 1H, J = 10.6 Hz), 2.93 (s, 1H), 2.21 (s, 1H), 1.54 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 176.8, 136.3, 134.7, 129.7, 128.8, 89.0, 76.2, 74.9, 70.2, 69.3, 67.5, 24.8; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₃O₃ 229.0786, found 229.0786.

100 mg (82% yield), pale-yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.10 (d, 2H, J = 8.4 Hz), 7.61 (t, 1H, J = 7.7 Hz), 7.48 (t, 2H, J = 7.7 Hz), 3.84 (t, 2H, J = 6.4 Hz), 2.69 (t, 2H, J = 6.4 Hz), 2.16 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.1, 136.5, 134.5, 129.6, 128.7, 87.3, 77.9, 71.8, 65.5, 60.3, 24.1; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₁O₂ 199.0759, found 199.0758.

30 mg (81% yield), pale-yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 8.07 (d, 2H, J = 8.3 Hz), 7.57 (t, 1H, J = 7.8 Hz), 7.44 (t, 2H, J = 7.8 Hz), 2.59 (s, 2H), 2.51 (s, 1H), 1.35 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.2, 136.4, 134.5, 129.6, 128.7, 87.7, 78.2, 71.8, 70.6, 66.2, 35.2, 29.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₅O₂ 227.1072, found 227.1070.

Characterization Data of Products

22 mg (78% yield), red oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.90 (d, 2H, J = 8.1 Hz), 7.50–7.24 (m, 3H), 6.53 (s, 1H), 5.96 (s, 1H), 3.40 (t, 4H, J = 5.4 Hz), 1.69–1.62 (m, 6H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.1, 177.3, 171.0, 141.5, 130.4, 128.0, 127.2, 90.2, 87.2, 85.8, 49.7, 25.9, 25.6, 24.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₄NO₂ 298.1807, found 298.1802.

34 mg (86% yield), orange oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, 2H, J = 6.0 Hz), 7.43–7.32 (m, 3H), 6.32 (s, 1H), 5.97 (s, 1H), 3.45 (t, 4H, J = 6.8 Hz), 2.01–1.96 (m, 4H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.0, 177.5, 169.3, 141.5, 130.3, 128.0, 127.2, 90.6, 87.1, 85.7, 49.1, 25.4, 24.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₂NO₂ 284.1651, found 284.1650.

12 mg (72% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.86 (d, 2H, J = 6.7 Hz), 7.41–7.29 (m, 7H), 7.29–7.26 (m, 1H), 6.49 (s, 1H), 5.90 (s, 1H), 4.89 (d, 1H, J = 6.1 Hz), 3.85 (p, 1H, J = 6.6 Hz), 3.00 (s, 3H), 1.73 (s, 1H), 1.43 (s, 3H), 1.38–1.34 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.3, 177.1, 172.0, 141.7, 141.4, 130.4, 128.6, 128.1, 128.0, 127.2, 126.1, 90.8, 87.3, 86.0, 75.7, 61.1, 34.0, 25.4, 25.3, 13.2; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₈O₃N 378.2069, found 378.2066.

14 mg (40% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.92 (d, 2H, J = 8.3 Hz), 7.44 (t, 1H, J = 7.2 Hz), 7.40 (t, 2H, J = 7.2 Hz), 7.34 (t, 2H, J = 8.0 Hz), 7.23 (d, 2H, J = 7.5 Hz), 7.14–7.07 (m, 2H), 6.49 (s, 1H), 6.19 (s, 1H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.9, 177.8, 164.0, 140.9, 139.6, 130.9, 129.6, 128.2, 127.3, 124.4, 120.1, 91.8, 89.7, 86.6, 25.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₀NO₂ 306.1494, found 306.1489.

17 mg (78% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, 2H, J = 6.8 Hz), 7.47–7.36 (m, 3H), 6.54 (s, 1H), 6.14 (s, 1H), 3.70 (s, 3H), 3.16 (s, 3H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 189.1, 175.8, 170.6, 140.8, 130.9, 128.2, 127.4, 93.6, 90.0, 88.0, 60.8, 39.0, 25.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₂₀O₃N 274.1443, found 274.1443.

38 mg (78% yield), orange oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.90 (d, 2H, J = 7.6 Hz), 7.46 (t, 1H, J = 7.2 Hz), 7.41 (t, 2H, J = 7.6 Hz), 6.72 (s, 1H), 6.23 (s, 1H), 4.25 (t, 2H, J = 6.3 Hz), 3.79 (t, 2H, J = 6.3 Hz), 2.08–2.00 (m, 2H), 1.46 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 189.6, 179.7, 176.3, 140.5, 131.3, 128.3, 127.4, 92.5, 91.7, 85.6, 69.7, 58.9, 31.5, 24.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₂₁O₄ 289.1440, found 289.1438.

12 mg (72% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.92 (d, 2H, J = 7.0 Hz), 7.47 (t, 1H, J = 7.2 Hz), 7.42 (t, 2H, J = 7.2 Hz), 6.74 (s, 1H), 6.25 (s, 1H), 3.93 (s, 3H), 1.47 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 189.5, 180.6, 176.0, 140.5, 131.3, 128.2, 127.5, 92.3, 91.7, 85.5, 59.5, 24.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₇O₃ 245.1178, found 245.1178.

10 mg (20% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.87 (d, 2H, J = 7.1 Hz), 7.49–7.36 (m, 5H), 7.29 (t, 1H, J = 7.5 Hz), 7.20–7.17 (m, 2H), 6.50 (s, 1H), 6.28 (s, 1H), 1.65 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 189.3, 178.7, 175.3, 154.7, 140.2, 131.4, 130.3, 128.3, 127.5, 126.5, 120.1, 95.3, 92.5, 85.6, 24.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₉O₃ 307.1334, found 307.1335.

40 mg (76% yield), orange oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.87–7.83 (m, 2H), 7.63–7.58 (m, 2H), 7.50–7.46 (m, 3H), 7.45–7.43 (m, 1H), 7.41–7.36 (m, 2H), 6.84 (s, 1H), 6.22 (s, 1H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 189.3, 173.5, 168.1, 140.2, 134.6, 131.5, 130.3, 130.2, 128.3, 128.2, 127.5, 114.4, 91.7, 91.1, 26.5; **HRMS** (ESI) m/z: [M + H]⁺ calcd for $C_{20}H_{19}O_2S$ 323.1106, found 323.1106.

48–13 mg, (84–42% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.72 (d, 2H, J = 6.3 Hz), 7.51–7.44 (m, 3H), 6.68 (d, 1H, J = 2.2 Hz), 6.63 (d, 1H, J = 2.2 Hz), 4.01 (s, 1H), 1.63 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 181.1, 174.0, 163.6, 131.5, 131.2, 129.1, 125.8, 110.7, 110.2, 71.1, 28.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₅O₃ 231.1021, found 231.1024.

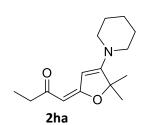
20 mg (68% yield), red oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, 2H, J = 8.9 Hz), 6.89 (d, 2H, J = 8.9 Hz), 6.52 (s, 1H), 5.95 (s, 1H), 3.84 (s, 3H), 3.40 (s, 4H), 1.72–1.63 (m, 6H), 1.62 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 187.0, 176.8, 170.6, 161.6, 134.1, 129.1, 113.2, 90.3, 86.9, 85.8, 55.3, 49.6, 25.9, 25.7, 24.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₆NO₃ 328.1913, found 328.1914.

30 mg (73% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.77 (d, 2H, J = 8.4 Hz), 7.50 (d, 2H, J = 8.4 Hz), 6.51 (s, 1H), 5.89 (s, 1H), 3.54–3.27 (m, 4H), 1.83–1.61 (m, 6H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 186.6, 177.7, 171.3, 140.4, 131.2, 128.8, 124.9, 90.1, 86.8, 85.9, 49.7, 25.9, 25.6, 24.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₃BrNO₂ 376.0912, found 376.0909.

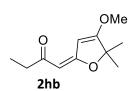
43 mg (85% yield), off-white solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.78 (d, 2H, J = 8.5 Hz), 7.54 (d, 2H, J = 8.5 Hz), 6.71 (s, 1H), 6.17 (s, 1H), 3.93 (s, 3H), 1.46 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.2, 181.0, 176.5, 139.3, 131.5, 129.1, 126.0, 92.3, 91.3, 85.7, 59.5, 24.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₆BrO₃ 323.0283, found 323.0284.

38 mg (76% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.93–7.62 (m, 1H), 7.35–7.27 (m, 1H), 7.18–7.09 (m, 1H), 7.05–6.99 (m, 1H), 6.50 (s, 1H), 5.84 (s, 1H), 3.44–3.35 (m, 4H), 1.73–1.61 (m, 6H), 1.60 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 184.9, 177.4, 171.5, 160.5 (d, J = 250.6 Hz), 131.2 (d, J = 8.8 Hz), 130.5, 130.4 (d, J = 3.2 Hz), 123.8 (d, J = 3.7 Hz), 116.0 (d, J = 24.0 Hz), 91.4 (d, J = 7.9 Hz), 90.4, 85.9, 49.7, 25.9, 25.5, 24.0; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₃FNO₂ 316.1713, found 316.1711.

38 mg (77% yield), pale-yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.81–7.74 (m, 1H), 7.42–7.34 (m, 1H), 7.21–7.13 (m, 1H), 7.10–7.03 (m, 1H), 6.70 (s, 1H), 6.13 (s, 1H), 3.93 (s, 3H), 1.45 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 186.9, 181.1, 176.2, 160.7 (d, J = 252.0 Hz), 132.2 (d, J = 8.3 Hz), 130.4 (d, J = 3.2 Hz), 129.5 (d, J = 13.4 Hz), 124.1 (d, J = 3.2 Hz), 116.3 (d, J = 24.0 Hz), 95.9 (d, J = 7.4 Hz), 92.6, 85.7, 59.5, 24.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₆FO₃ 263.1083, found 263.1085.


28 mg (81% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.84–7.74 (m, 1H), 7.36–7.29 (m, 1H), 7.18–7.10 (m, 1H), 7.07–6.98 (m, 1H), 6.54 (s, 1H), 5.91 (s, 1H), 5.10 (q, 1H, J = 6.4 Hz) 3.30 (t, 4H, J = 4.4 Hz), 1.71–1.58 (m, 6H), 1.51 (d, 3H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 185.0, 179.6, 169.9, 161.5, 159.5, 131.3 (d, J = 8.3 Hz), 130.4 (d, J = 3.7 Hz), 123.9 (d, J = 3.7 Hz), 116.0 (d, J = 23.6 Hz), 92.0 (d, J = 7.4 Hz), 90.7, 78.2, 49.8, 25.5, 23.8, 19.9; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₁O₂NF 302.1556, found 302.1556.

6 mg (24% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹**H NMR** (CDCl₃, 500 MHz): δ 7.82–7.74 (m, 1H), 7.44–7.36 (m, 1H), 7.22–7.15 (m, 1H), 7.11–7.04 (m, 1H), 6.79 (s, 1H), 6.17 (s, 1H), 4.97 (q, 1H, J = 7.0 Hz), 3.94 (s, 3H), 1.46 (d, 3H, J = 7.0 Hz); ¹³**C NMR** (CDCl₃, 125 MHz): δ 186.9, 178.5, 177.5, 160.7 (d, J = 252.0 Hz), 132.3 (d, J = 8.8 Hz), 131.1, 130.4, 124.1, 116.3 (d, J = 24.0 Hz), 102.1 (d, J = 22.2 Hz), 95.9, 94.2, 59.4 (d, J = 7.9 Hz), 17.9; **HRMS** (EI) m/z: [M]⁺ calcd for for C₁₄H₁₄O₃F 248.08488, found 248.08507.


25 mg (77% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.83–7.76 (m, 1H), 7.36–7.30 (m, 1H), 7.20–7.12 (m, 1H), 7.07–7.00 (m, 1H), 6.54 (s, 1H), 5.93 (s, 1H), 4.89 (s, 2H), 3.27 (s, 4H), 1.71–1.60 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 184.7, 181.6, 165.4, 161.5, 159.5, 131.4 (d, J = 8.3 Hz), 130.4 (d, J = 3.7 Hz), 123.9 (d, J = 3.7 Hz), 116.1 (d, J = 24.0 Hz), 91.9 (d, J = 7.4 Hz), 90.4, 71.3, 49.5, 25.4, 23.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₉O₂NF 288.1400, found 288.1402.

25 mg (50% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.99 (d, 2H, J = 7.8 Hz), 7.59 (t, 1H, J = 7.5 Hz), 7.48 (t, 2H, J = 7.8 Hz), 7.39 (s, 1H), 6.31 (s, 1H), 5.35 (d, 1H, J = 8.6 Hz), 4.53–4.46 (m, 1H), 4.27 (s, 2H), 3.58 (s, 3H), 3.15–3.04 (m, 2H), 1.44 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 194.3, 171.1, 155.1, 149.6, 144.5, 136.1, 133.6, 128.8, 128.6, 115.8, 112.7, 80.2, 52.9, 52.3, 38.3, 38.0, 28.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₆O₆NS 420.1300, found 420.1302.

25 mg (12% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 8.24 (d, 2H, J = 7.7 Hz), 7.62 (t, 1H, J = 7.4 Hz), 7.52 (t, 2H, J = 7.7 Hz), 6.17 (s, 1H), 5.45 (d, 1H, J = 6.9 Hz), 4.72–4.53 (m, 1H), 4.39 (d, 2H, J = 6.2 Hz), 3.74 (s, 3H), 3.53 (dd, 1H, J = 14.3, 5.2 Hz), 3.36 (dd, 1H, J = 14.3, 5.2 Hz), 2.52 (s, 1H), 1.44 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.8, 170.9, 156.2, 155.3, 136.9, 134.1, 129.8, 128.7, 106.7, 94.7, 89.0, 80.7, 64.9, 53.6, 52.9, 33.8, 28.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₆O₆NS 420.1300, found 420.1295.

13 mg (23% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹**H NMR** (CDCl₃, 500 MHz): δ 6.31 (s, 1H), 5.25 (s, 1H), 3.34 (t, 4H, J = 5.5 Hz), 2.32 (q, 2H, J = 7.5 Hz), 1.68 –1.60 (m, 6H), 1.56 (s, 6H), 1.09 (t, 3H, J = 7.5 Hz); ¹³**C NMR** (CDCl₃, 125 MHz): δ 199.0, 175.3, 169.9, 89.8, 89.2, 85.5, 49.5, 36.2, 25.8, 25.7, 24.0, 9.9; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₅H₂₄O₂N 250.1807, found 250.1806.

12 mg (48% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 6.54 (s, 1H), 5.51 (s, 1H), 3.88 (s, 3H), 2.38 (q, 2H, J = 7.4 Hz), 1.41 (s, 6H), 1.09 (t, 3H, J = 7.5 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 200.3, 179.5, 173.6, 94.0, 91.9, 85.1, 59.3, 36.7, 24.4, 9.2; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₁H₁₇O₃ 197.1178, found 197.1180.

5 mg (10% yield), orange oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹**H NMR** (CDCl₃, 500 MHz): δ 7.11 (s, 1H), 5.51 (s, 1H), 3.08–3.02 (m, 2H), 2.66 (q, 2H, J = 7.2 Hz), 2.39–2.37 (m, 2H), 2.09–2.00 (m, 2H), 1.44 (s, 6H), 1.09 (t, 3H, J = 7.2 Hz); ¹³**C NMR** (CDCl₃, 125 MHz): δ 200.1, 171.5, 152.5, 112.7, 93.5, 91.1, 36.7, 31.8, 30.9, 25.3, 23.4, 9.0; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₃H₂₁O₂S₂ 273.0983, found 273.0980.

10 mg (20% yield), orange oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 5.77 (s, 1H), 3.94 (s, 2H), 3.13–3.07 (m, 2H), 2.83 (q, 2H, J = 7.6 Hz), 2.45–2.40 (m, 2H), 2.18–2.09 (m, 1H), 1.93–1.81 (m, 1H), 1.49 (s, 6H), 1.07 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 201.0, 171.2, 99.1, 90.4, 59.1, 47.0, 36.9, 28.1, 26.4, 23.5, 8.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₂₁O₂S₂ 273.0983, found 273.0980.

15 mg (32% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹**H NMR** (CDCl₃, 500 MHz): δ 6.34 (s, 1H), 5.27 (s, 1H), 3.34 (t, 4H, J = 5.5 Hz), 2.49 (h, 1H, J = 6.8 Hz), 1.71–1.58 (m, 6H), 1.57 (s, 6H), 1.09 (d, 6H, J = 6.8 Hz); ¹³**C NMR** (CDCl₃, 125 MHz): δ 202.5, 175.8, 169.9, 90.0, 88.3, 85.5, 49.5, 40.7, 25.8, 25.7, 24.0, 19.7; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₆H₂₆O₂N 264.1858, found 264.1852.

20 mg (18% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 5.49 (s, 1H), 2.61 (hept, 1H, J = 6.8 Hz), 2.17 (s, 1H), 2.03 (s, 1H), 1.93 (s, 3H), 1.81 (s, 3H), 1.54 (s, 6H), 1.43 (s, 6H), 1.16 (d, 6H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 192.0, 172.1, 135.2, 129.7, 92.3, 88.4, 87.5, 81.8, 77.6, 72.6, 71.8, 66.7, 65.7, 42.8, 31.0, 28.0, 20.3, 18.1, 17.9; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₉O₄ 357.2060, found 357.2060.

19 mg (34% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 6.33 (s, 1H), 5.26 (s, 1H), 3.34 (t, 4H, J = 5.4 Hz), 2.19 (tt, 1H, J = 11.6, 3.4 Hz), 1.85–1.79 (m, 2H), 1.78–1.71 (m, 2H), 1.69–1.57 (m, 6H), 1.56 (s, 6H), 1.44–1.33 (m, 2H), 1.31–1.14 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz): δ 201.7, 175.7, 169.8, 90.0, 88.6, 85.5, 51.3, 49.5, 29.8, 26.2, 25.8, 25.7, 24.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₃₀NO₂ 304.2277, found 304.2275.

19 mg (64% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 6.55 (s, 1H), 5.53 (s, 1H), 3.86 (s, 3H), 2.25 (tt, 1H, J = 11.5, 3.4 Hz), 1.87–1.79 (m, 2H), 1.80–1.73 (m, 2H), 1.41 (s, 6H), 1.40–1.33 (m, 2H), 1.32–1.15 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz): δ 203.0, 179.5, 174.2, 93.4, 92.0, 85.0, 59.2, 51.5, 29.4, 26.1, 26.0, 24.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₂₃O₃ 251.1647. found 251.1653.

18 mg (76% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 6.36 (s, 1H), 5.47 (s, 1H), 3.34 (t, 4H, J = 5.4 Hz), 1.70–1.58 (m, 6H), 1.57 (s, 6H), 1.14 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 204.1, 176.2, 169.8, 90.0, 85.8, 85.4, 49.5, 42.3, 27.8, 25.8, 25.7, 24.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₂₈NO₂ 278.2120, found 278.2120.

14 mg (70% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 6.58 (s, 1H), 5.74 (s, 1H), 3.86 (s, 3H), 1.42 (s, 6H), 1.15 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 205.2, 179.4, 174.7, 92.0, 90.6, 85.0, 59.2, 42.8, 27.3, 24.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₂₁O₃ 225.1491, found 225.1494.

20 mg (81% yield), orange oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, 2H, J = 8.0 Hz), 7.43–7.36 (m, 3H), 7.26 (s, 1H), 6.97 (s, 1H), 4.38 (s, 2H), 3.29 (t, 4H, J = 4.9 Hz), 1.69–1.61 (m, 6H), 1.59 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.9, 161.9, 158.6, 158.6, 142.0, 130.5, 128.0, 127.5, 93.7, 92.0, 82.4, 52.3, 48.7, 29.7, 28.4, 25.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₉N₂O₃ 369.2178, found 369.2175.

12 mg (45% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc—hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.99 (d, 2H, J = 7.7 Hz), 7.57 (t, 1H, J = 7.4 Hz), 7.47 (t, 2H, J = 7.7 Hz), 6.72 (s, 1H), 5.87 (s, 1H), 4.49 (s, 2H), 3.72 (s, 3H), 1.45 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 196.1, 149.1, 148.9, 136.9, 133.0, 129.6, 128.6, 128.2, 107.0, 100.9, 83.3, 57.4, 39.4, 28.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₂O₄N 316.1368, found 316.1366.

30 mg (86% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.82 (d, 2H, J = 8.5 Hz), 7.51 (d, 2H, J = 8.5 Hz), 7.21 (s, 1H), 6.94 (s, 1H), 4.37 (s, 2H), 3.29 (t, 4H, J = 4.9 Hz), 1.69–1.60 (m, 6H), 1.57 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 187.3, 162.5, 162.5, 159.0, 140.8, 131.2, 129.1, 125.0, 93.6, 91.3, 82.5, 52.3, 48.8, 28.4, 25.4, 23.8; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₈N₂O₃Br 447.1283, found 447.1279.

11 mg (44% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.83 (d, 2H, J = 8.5 Hz), 7.53 (d, 2H, J = 8.5 Hz), 7.39–7.35 (m, 2H), 7.34–7.30 (m, 3H), 7.00 (s, 1H), 4.73 (s, 1H), 4.39 (s, 2H), 4.38 (s, 2H), 1.56 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.1, 161.8, 159.0, 156.8, 140.4, 136.8, 131.3, 129.2, 129.0, 128.2, 127.8, 125.4, 94.1, 92.8, 82.5, 53.0, 49.1, 28.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₆O₃N₂Br 469.1127, found 469.1123.

20 mg (63% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.86 (d, 2H, J = 8.6 Hz), 7.62 (d, 2H, J = 8.6 Hz), 7.47 (s, 1H), 7.27–7.21 (m, 4H), 7.14–7.10 (m, 1H), 6.13 (s, 1H), 4.50 (s, 2H), 1.48 (t, 9H, J = 1.7 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 195.0, 148.6, 138.3, 135.5, 132.0, 129.7, 129.1, 128.9, 128.2, 127.0, 126.6, 125.4, 118.9, 112.7, 84.5, 39.0, 27.9; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₃NO₃SBr 472.0582, found 472.0595.

45 mg (72% yield), yellow solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:10). ¹H NMR (CDCl₃, 500 MHz): δ 7.84 (d, 2H, J = 7.1 Hz), 7.62 (d, 2H, J = 7.1 Hz), 7.30 (s, 1H), 6.11 (s, 1H), 5.35 (s, 1H), 4.57–4.35 (m, 3H), 3.66 (s, 3H), 3.13 (s, 2H), 1.47 (s, 9H), 1.44 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 194.9, 171.3, 155.1, 148.5, 135.5, 132.0, 129.7, 128.6, 128.2, 125.0, 118.0, 114.2, 84.4, 80.1, 53.1, 52.3, 38.9, 38.4, 28.3, 27.9; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₃₄N₂O₇SBr 597.1090, found 597.1118.

30 mg (70% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.86 (d, 2H, J = 8.4 Hz), 7.76 (d, 2H, J = 6.9 Hz), 7.42–7.33 (m, 3H), 7.27 (d, 2H, J = 8.4 Hz), 6.91 (s, 1H), 6.48 (s, 1H), 3.44 (t, 4H, J = 5.3 Hz), 2.39 (s, 3H), 1.96 (s, 6H), 1.72–1.62 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.1, 166.6, 159.0, 144.1, 141.7, 138.3, 130.6, 129.7, 128.1, 127.4, 127.3, 92.3, 90.9, 71.9, 49.8, 25.8, 25.5, 24.09, 21.5; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₆H₃₁N₂O₃S 451.2055, found 451.2059.

30 mg (80% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.86 (d, 2H, J = 8.4 Hz), 7.82 (d, 2H, J = 7.4 Hz), 7.48 (t, 1H, J = 7.3 Hz), 7.42 (t, 2H, J = 7.4 Hz), 7.30 (d, 2H, J = 8.4 Hz), 6.95 (s, 1H), 6.78 (s, 1H), 3.89 (s, 3H), 2.40 (s, 3H), 1.74 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 189.2, 175.7, 157.4, 144.5, 140.6, 137.4, 131.5, 129.8, 128.3, 127.6, 127.4, 95.1, 92.9, 70.6, 58.6, 24.9, 21.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₄S 398.1426, found 398.1424.

28 mg (71% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹**H NMR** (CDCl₃, 500 MHz): δ 7.83 (d, 2H, J = 8.3 Hz), 7.62 (d, 2H, J = 8.6 Hz), 7.49 (d, 2H, J = 8.6 Hz), 7.28 (d, 2H, J = 8.3 Hz), 6.89 (s, 1H), 6.39 (s, 1H), 3.44 (t, 4H, J = 5.3 Hz), 2.39 (s, 3H), 1.96 (s, 6H), 1.75–1.61 (m, 6H); ¹³**C NMR** (CDCl₃, 125 MHz): δ 186.6, 167.1, 159.5, 144.3, 140.6, 138.2, 131.2, 129.7, 129.0, 127.2, 125.2, 92.2, 90.3, 72.0, 49.9, 25.9, 25.5, 24.1, 21.6; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₆H₃₀N₂O₃SBr 529.1161, found 529.1154.

25 mg (61% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.84 (d, 2H, J = 8.4 Hz), 7.67 (d, 2H, J = 8.5 Hz), 7.54 (d, 2H, J = 8.5 Hz), 7.30 (d, 2H, J = 8.4 Hz), 6.89 (s, 1H), 6.68 (s, 1H), 4.12 (q, 2H, J = 7.1 Hz), 2.41 (s, 3H), 1.74 (s, 6H), 1.41 (t, 3H, J = 7.1 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 187.8, 175.3, 158.4, 144.6, 139.5, 137.3, 131.5, 129.8, 129.2, 127.4, 126.3, 94.3, 92.9, 70.8, 67.6, 24.9, 21.6, 14.2; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₅NO₄SBr 490.0688, found 490.0682.

25 mg (70% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.84 (d, 2H, J = 8.3 Hz), 7.66 (d, 2H, J = 8.5 Hz), 7.54 (d, 2H, J = 8.5 Hz), 7.30 (d, 2H, J = 8.3 Hz), 6.93 (s, 1H), 6.68 (s, 1H), 4.21 (t, 2H, J = 6.2 Hz), 3.82–3.74 (m, 2H), 2.41 (s, 3H), 2.04 (t, 2H, J = 6.2 Hz), 1.74 (s, 6H), 1.62 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 187.9, 175.1, 158.1, 144.7, 139.5, 137.3, 131.5, 129.8, 129.2, 127.4, 126.3, 94.5, 93.2, 70.8, 68.7, 59.1, 31.4, 24.9, 21.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₇NO₅SBr 520.0793, found 520.0789.

9 mg (23% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.83 (d, 2H, J = 8.3 Hz), 7.66 (d, 2H, J = 8.5 Hz), 7.55 (d, 2H, J = 8.5 Hz), 7.48 (s, 1H), 7.31 (d, 2H, J = 8.3 Hz), 6.63 (s, 1H), 3.13 (t, 2H, J = 7.1 Hz), 2.72–2.63 (m, 2H), 2.41 (s, 3H), 2.05 (t, 2H, J = 7.1 Hz), 1.81 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 178.2, 159.3, 144.3, 137.4, 134.1, 131.6, 131.4, 129.9, 129.3, 127.4, 126.6, 113.4, 94.6, 71.6, 31.7, 30.2, 23.4, 22.7, 21.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₇NO₃S₃Br 552.0336, found 552.0334.

17 mg (47% yield), orange solid, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.88 (d, 2H, J = 8.3 Hz), 7.61 (d, 2H, J = 8.5 Hz), 7.53 (d, 2H, J = 8.5 Hz), 7.35 (d, 2H, J = 8.3 Hz), 6.93 (s, 1H), 4.09 (s, 2H), 3.08 (t, 2H, J = 13.8 Hz), 2.83–2.75 (m, 2H), 2.44 (s, 3H), 2.19–2.09 (m, 2H), 1.78 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.7, 156.7, 144.7, 138.7, 137.4, 131.6, 129.9, 129.4, 127.1, 126.9, 100.4, 65.6, 61.0, 44.1, 27.5, 27.2, 25.2, 24.2; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₇NO₃S₃Br 552.0336, found 552.0334.

15 mg (71% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 6.00 (s, 1H), 4.74 (s, 1H), 3.64 (s, 3H), 3.30 (t, 4H, J = 5.4 Hz), 1.68–1.59 (m, 6H), 1.56 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 175.6, 170.2, 167.6, 88.9, 86.2, 78.3, 50.1, 49.3, 25.9, 25.7, 24.0; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₂₂NO₃ 252.1600, found 252.1601.

9 mg (75% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 6.00 (s, 1H), 4.85 (s, 1H), 4.68 (s, 1H), 4.16 (q, 2H, J = 7.2 Hz), 3.65 (s, 3H), 3.44 (q, 2H, J = 6.1 Hz), 2.62 (q, 2H, J = 6.1 Hz), 1.40 (s, 6H), 1.27 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 176.1, 172.4, 170.1, 165.7, 86.7, 85.9, 80.0, 61.0, 50.3, 40.6, 32.7, 25.4, 14.2; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₂₂NO₅ 284.1498, found 284.1500.

9 mg (62% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.31–7.23 (m, 3H), 7.04 (d, 2H, J = 6.0 Hz), 6.06 (s, 1H), 4.89 (s, 1H), 4.53 (d, 1H, J = 7.5 Hz), 4.35 (dt, 1H, J = 7.5, 5.3 Hz), 3.78 (s, 3H), 3.66 (s, 3H), 3.28 (dd, 1H, J = 14.0, 5.1 Hz), 3.12 (dd, 1H, J = 14.0, 5.1 Hz), 1.40 (d, 6H, J = 8.2 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 175.7, 171.5, 170.0, 163.7, 135.0, 129.3, 128.6, 127.4, 87.6, 86.2, 80.7, 57.7, 52.6, 50.3, 36.7, 25.6, 25.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₄NO₅ 346.1654, found 346.1649.

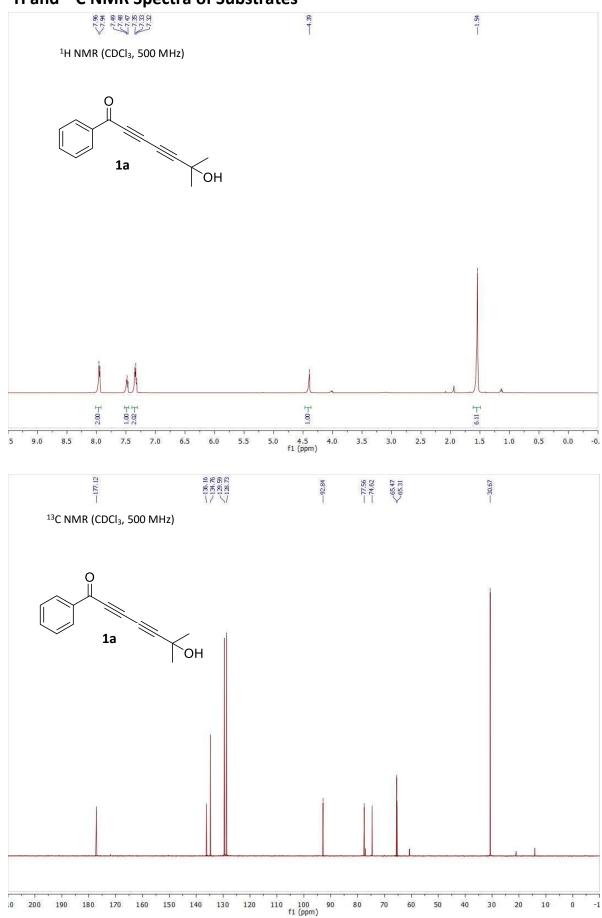
6 mg (40% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.39–7.30 (m, 5H), 5.87 (s, 1H), 5.20 (d, 1H, J = 12.1 Hz), 5.13 (d, 1H, J = 12.1 Hz), 4.79 (s, 1H), 4.32 (dd, 1H, J = 8.7, 2.2 Hz), 3.64 (s, 3H), 3.51–3.45 (m, 1H), 2.31–2.20 (m, 1H), 2.14–1.99 (m, 4H), 1.51 (s, 3H), 1.46 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 175.0, 172.0, 169.8, 164.5, 135.2, 128.7, 128.6, 128.5, 91.0, 86.3, 79.6, 67.3, 62.1, 50.2, 48.8, 30.3, 25.4, 24.8; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₆NO₅ 372.1811, found 372.1808.

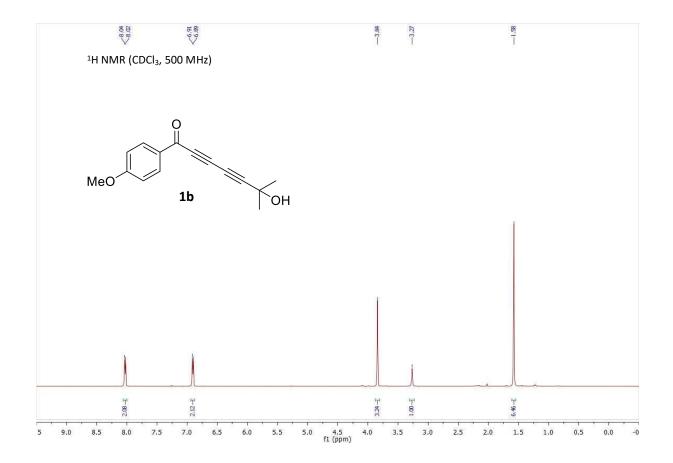
14 mg (58% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 6.95 (s, 1H), 5.34–5.28 (m, 1H), 5.04 (s, 1H), 4.69 (s, 1H), 3.77 (s, 3H), 3.67 (s, 3H), 3.49 (dd, 1H, J = 13.2, 6.1 Hz), 3.33 (dd, 1H, J = 13.2, 6.1 Hz), 1.45 (s, 9H), 1.44 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 172.1, 170.5, 168.9, 161.6, 154.9, 112.7, 91.8, 84.8, 80.6, 53.0, 52.1, 50.7, 35.4, 28.3, 26.5, 26.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₈NO₇S 402.1586, found 402.1580.

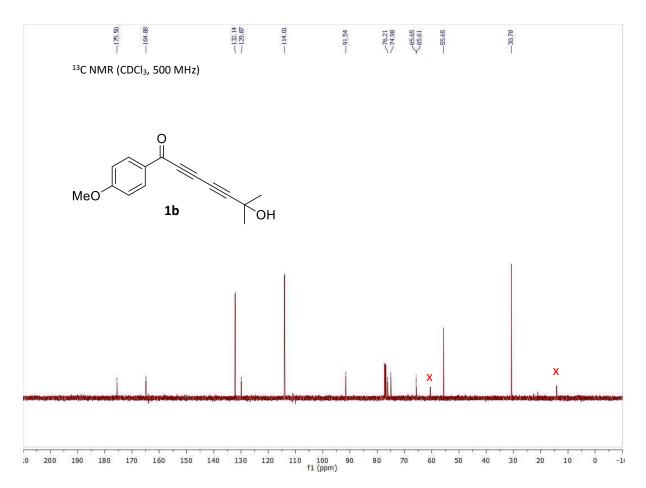
25 mg (76% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.71 (d, 2H, J = 8.4 Hz), 7.39 (d, 2H, J = 7.8 Hz), 7.30 (t, 2H, J = 7.6 Hz), 7.25–7.18 (m, 3H), 6.04 (s, 1H), 5.34 (s, 1H), 5.08 (s, 2H), 3.30 (t, 4H, J = 5.5 Hz), 2.38 (s, 3H), 1.68–1.61 (m, 2H), 1.58 (t, 4H, J = 5.5 Hz), 1.51 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.7, 169.8, 167.2, 143.3, 138.3, 138.2, 129.2, 128.4, 127.7, 127.3, 126.9, 89.6, 86.1, 80.4, 49.5, 49.1, 25.8, 25.6, 23.9, 21.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₃₃N₂O₄S 481.2161, found 481.2164.

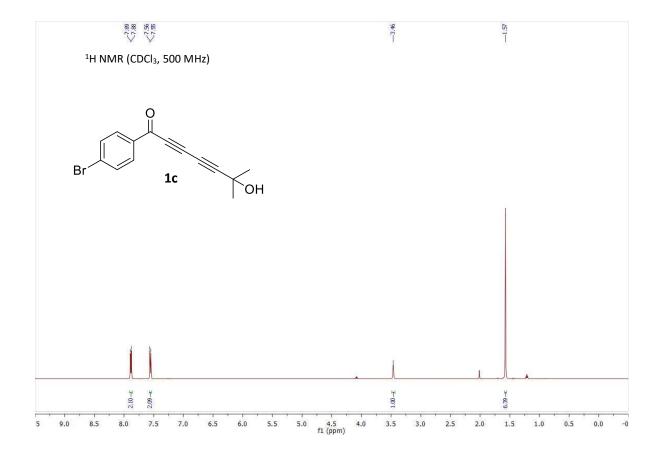
20 mg (77% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.71 (d, 2H, J = 8.3 Hz), 7.39 (d, 2H, J = 7.8 Hz), 7.30 (t, 2H, J = 7.6 Hz), 7.26–7.19 (m, 3H), 6.04 (s, 1H), 5.45 (s, 1H), 5.09 (s, 2H), 4.86 (t, 1H, J = 6.2 Hz), 4.14 (q, 2H, J = 7.2 Hz), 3.40 (q, 2H, J = 6.1 Hz), 2.57 (t, 2H, J = 5.9 Hz), 2.38 (s, 3H), 1.34 (s, 6H), 1.25 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 178.3, 172.3, 168.2, 167.3, 143.4, 138.1, 129.3, 128.4, 127.7, 127.3, 127.0, 87.6, 85.8, 81.9, 61.0, 49.2, 40.6, 32.8, 25.3, 21.6, 14.2; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₇H₃₃N₂O₆S 513.2059, found 513.2064.

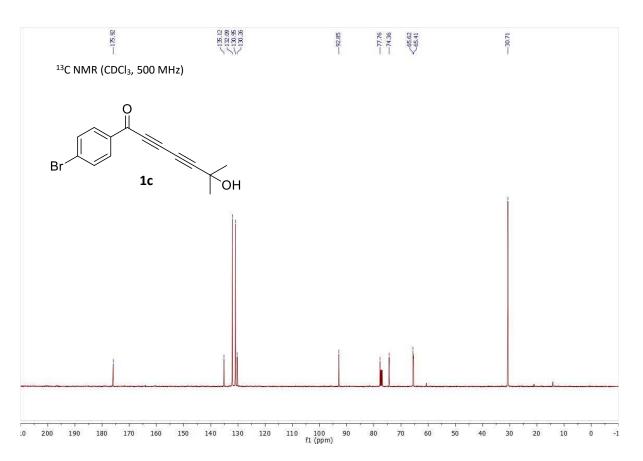
8 mg (55% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.73 (d, 2H, J = 8.3 Hz), 7.40 (d, 2H, J = 7.2 Hz), 7.32 (t, 2H, J = 7.6 Hz), 7.27–7.17 (m, 6H), 6.99 (d, 2H, J = 7.6 Hz), 6.10 (s, 1H), 5.50 (s, 1H), 5.10 (s, 2H), 4.63 (d, 1H, J = 7.6 Hz), 4.33 (dt, 1H, J = 7.6, 5.2 Hz), 3.77 (s, 3H), 3.23 (dd, 1H, J = 14.0, 5.4 Hz), 3.08 (dd, 1H, J = 14.0, 5.4 Hz), 2.39 (s, 3H), 1.34 (d, 6H, J = 5.3 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 177.9, 171.3, 167.2, 166.1, 143.5, 138.1, 138.0, 134.8, 129.3, 128.6, 128.5, 127.8, 127.5, 127.3, 127.1, 88.5, 86.1, 82.6, 57.5, 52.7, 49.2, 36.7, 25.5, 25.2, 21.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₂H₃₅N₂O₆S 575.2216, found 575.2214.

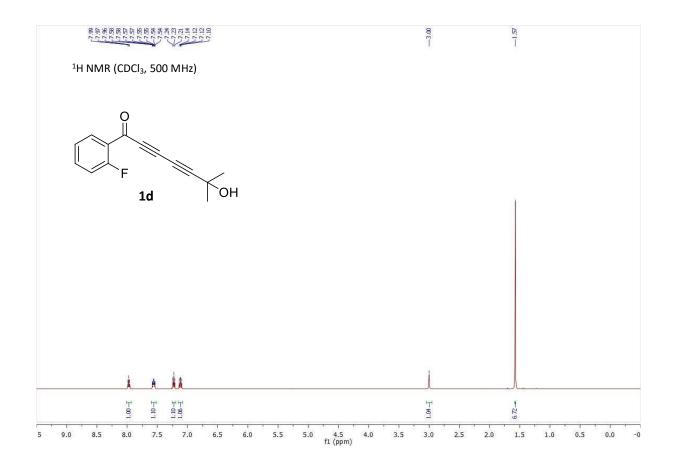

6 mg (50% yield), pale-yellow oil, purified by flash column chromatography (SiO₂, EtOAc—hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.67 (d, 2H, J = 8.3 Hz), 7.36–7.25 (m, 9H), 7.25–7.20 (m, 1H), 7.19 (d, 2H, J = 8.3 Hz), 5.89 (s, 1H), 5.47 (s, 1H), 5.35 (d, 1H, J = 7.1 Hz), 5.01 (d, 1H, J = 7.1 Hz), 4.62 (s, 2H), 3.74 (s, 3H), 2.37 (s, 3H), 1.45 (s, 3H), 1.41 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 177.7, 171.0, 166.9, 165.7, 143.5, 138.1, 137.9, 135.2, 129.3, 129.2, 129.0, 128.4, 128.1, 127.7, 127.3, 127.0, 89.6, 86.1, 83.0, 60.7, 53.3, 49.0, 25.4, 25.2, 21.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₁H₃₃N₂O₆S 561.2059, found 561.2054.

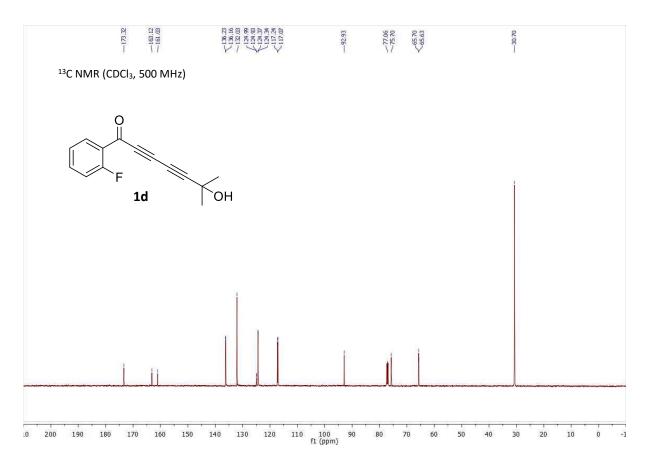

15 mg (41% yield), clear oil, purified by flash column chromatography (SiO₂, EtOAc—hexanes, 1:5). ¹**H NMR** (CDCl₃, 500 MHz): δ 7.70 (d, 2H, J = 8.4 Hz), 7.37 (d, 2H, J = 7.8 Hz), 7.31 (t, 2H, J = 7.5 Hz), 7.28–7.22 (m, 3H), 6.92 (s, 1H), 5.71 (s, 1H), 5.31–5.25 (m, 1H), 5.09 (s, 2H), 4.64 (s, 1H), 3.66 (s, 3H), 3.46 (dd, 1H, J = 13.6, 5.1 Hz), 3.29 (dd, 1H, J = 13.6, 5.1 Hz), 2.40 (s, 3H), 1.43 (s, 9H), 1.38 (d, 6H, J = 2.5 Hz); ¹³C NMR (CDCl₃, 125 MHz): δ 174.0, 170.4, 166.6, 164.6, 154.9, 143.9, 137.6, 129.4, 128.5, 127.8, 127.4, 127.3, 113.3, 92.0, 86.0, 80.6, 52.9, 52.0, 49.2, 35.5, 28.3, 26.4, 26.2, 21.6; **HRMS** (ESI) m/z: [M + H]⁺ calcd for $C_{31}H_{39}N_2O_8S_2$ 631.2148, found 631.2141.

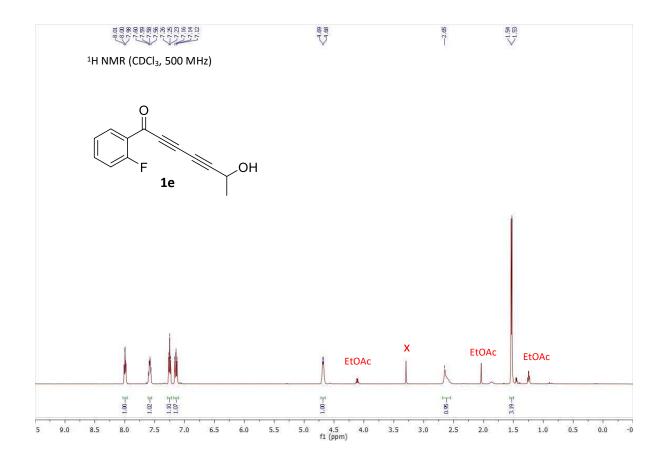

8 mg (65% yield), red oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, 2H, J = 7.9 Hz), 7.44–7.35 (m, 3H), 6.62 (s, 1H), 6.03 (s, 1H), 3.93–3.82 (m, 2H), 3.41 (t, 4H, J = 5.3 Hz), 2.08 (s, 1H), 1.69–1.62 (m, 6H), 1.59 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.2, 177.1, 167.2, 141.3, 130.6, 128.1, 127.2, 92.5, 89.0, 87.5, 67.2, 49.9, 25.8, 24.0, 20.6; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₄NO₃ 314.1572, found 314.1567.

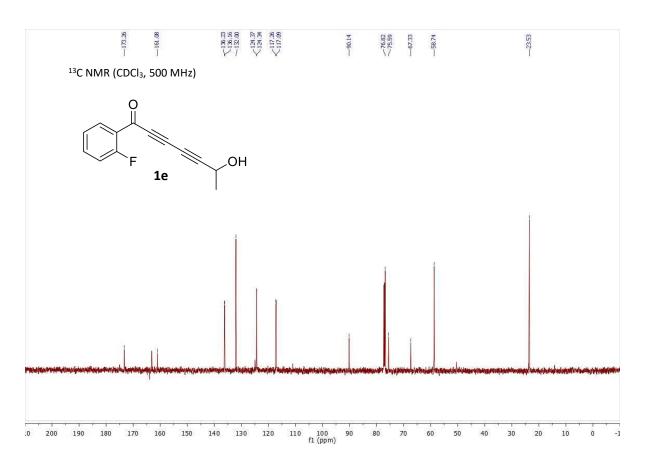

9 mg (20% yield), yellow oil, purified by flash column chromatography (SiO₂, EtOAc–hexanes, 1:5). ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, 2H, J = 8.2 Hz), 7.42–7.34 (m, 3H), 7.31 (s, 1H), 5.96 (s, 1H), 3.40 (t, 4H, J = 5.3 Hz), 2.44 (s, 2H), 1.72–1.60 (m, 6H), 1.42 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 188.4, 169.7, 154.3, 142.2, 130.2, 127.9, 127.2, 93.9, 89.0, 75.0, 47.5, 37.6, 27.2, 25.7; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₆NO₂ 312.1964, found 312.1960.

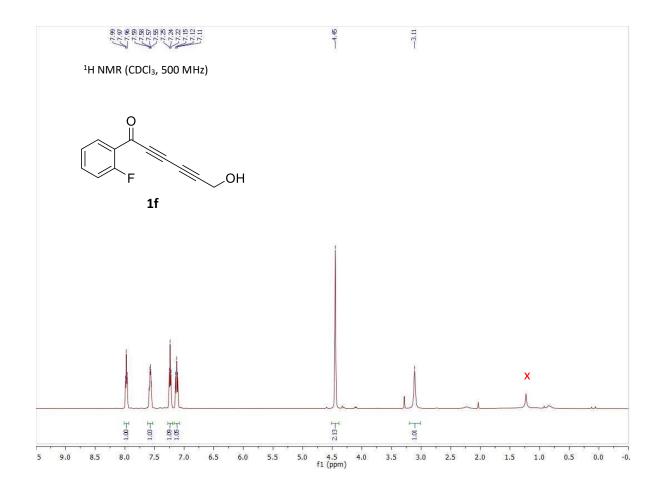

¹H and ¹³C NMR Spectra of Substrates

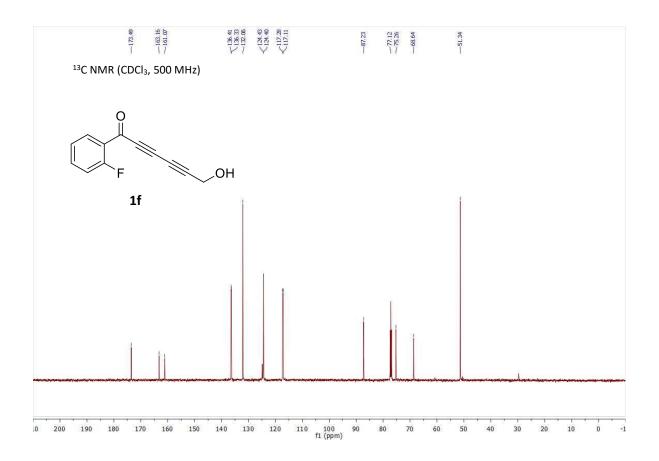


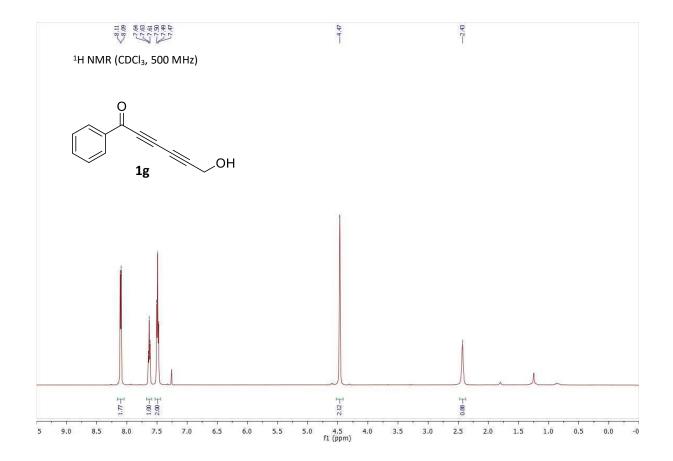


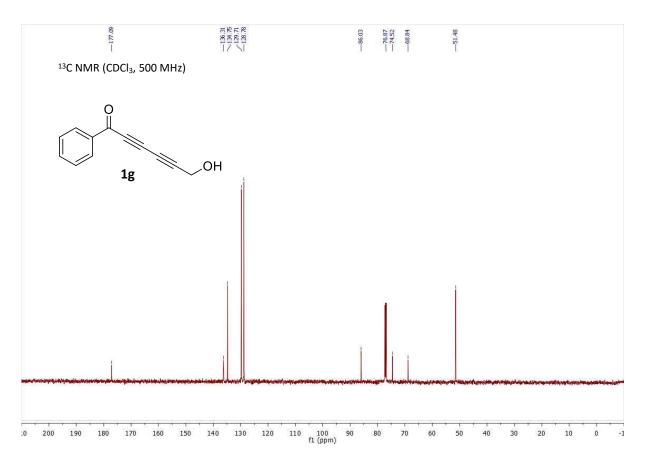


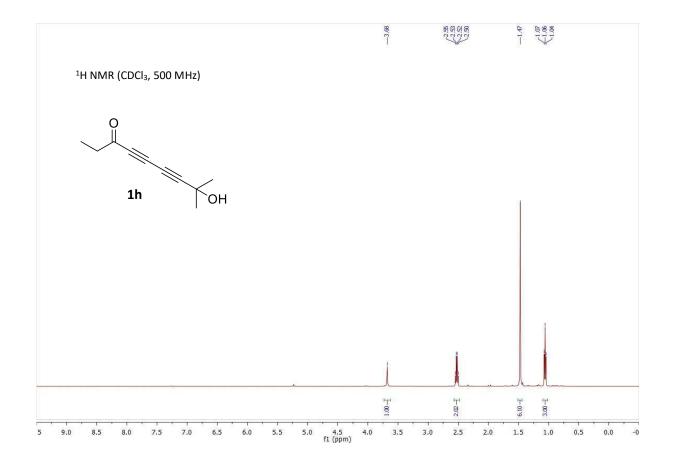


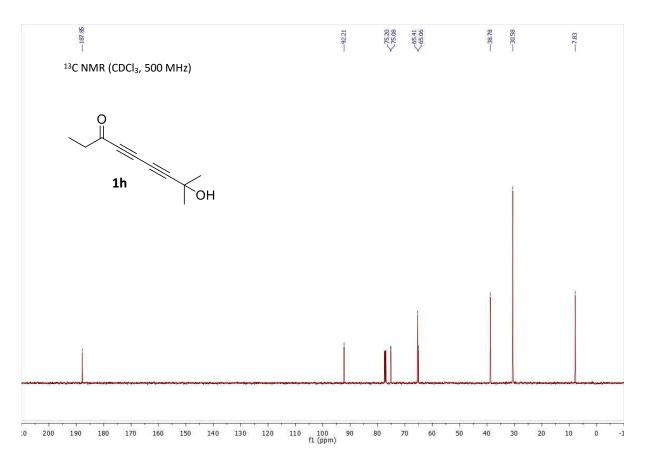


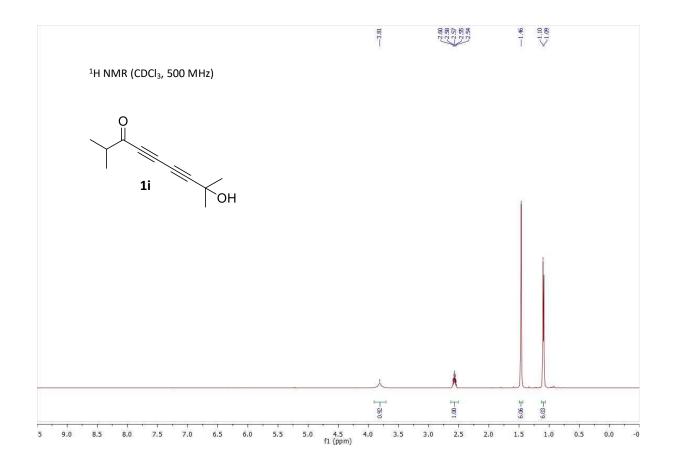


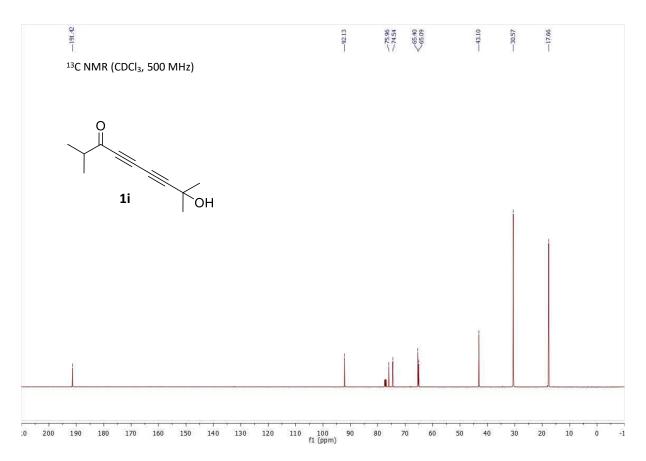


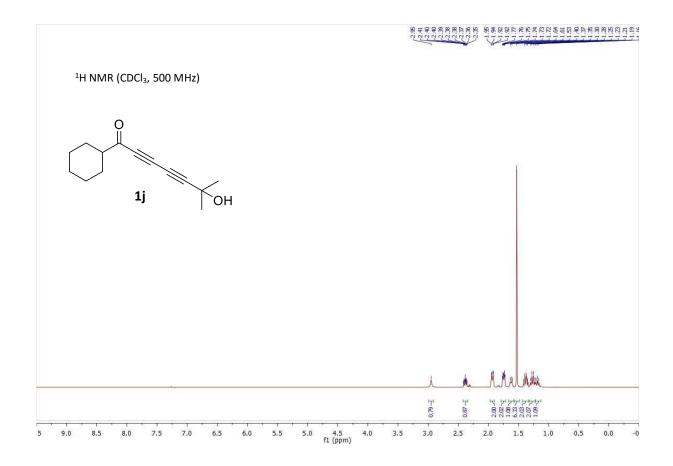


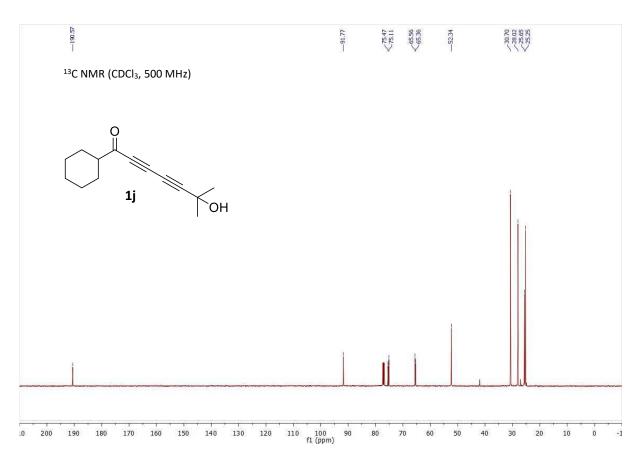


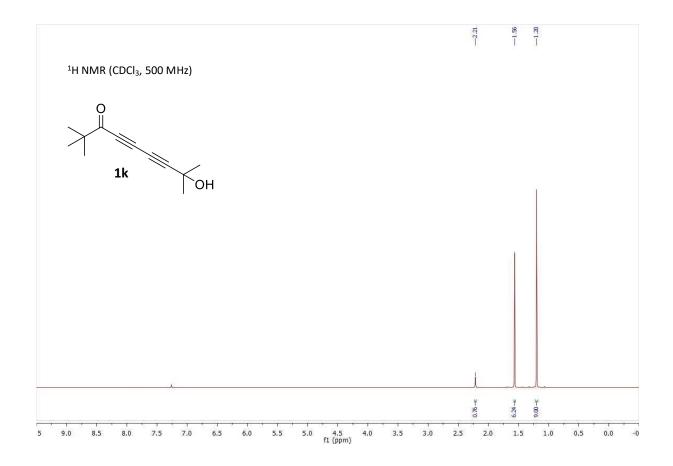


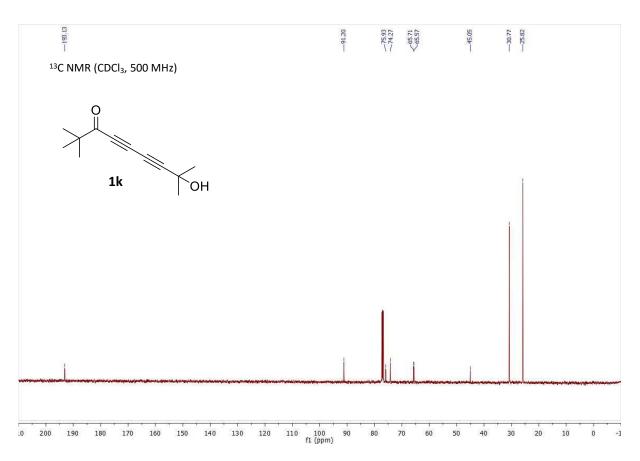


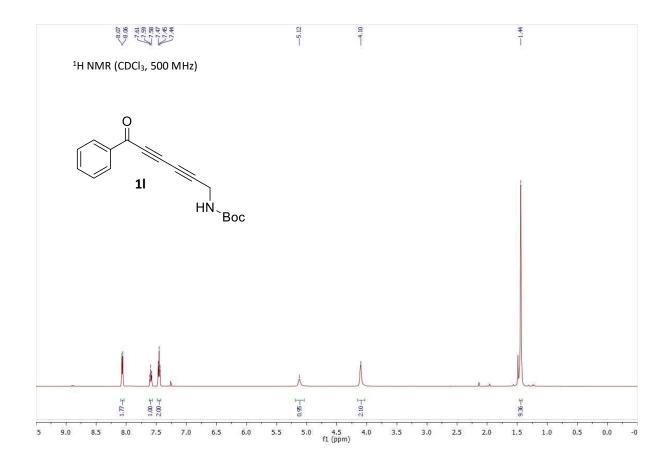


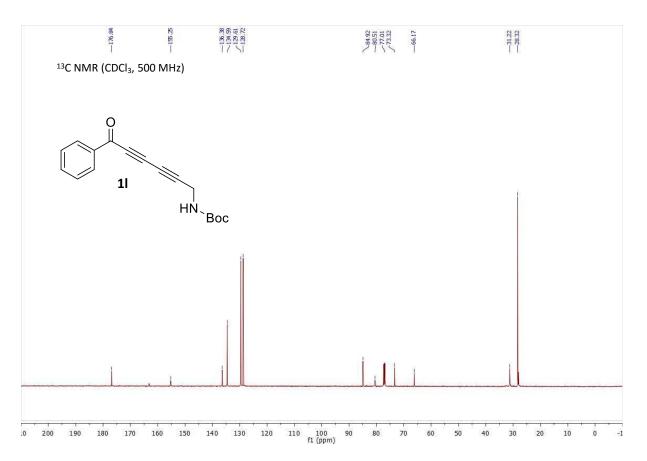


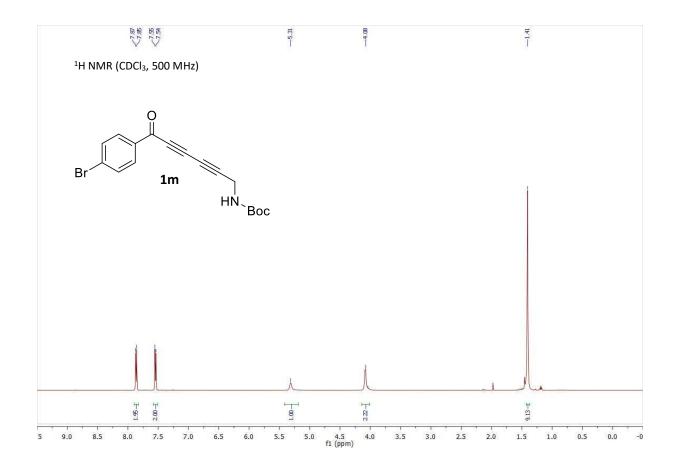


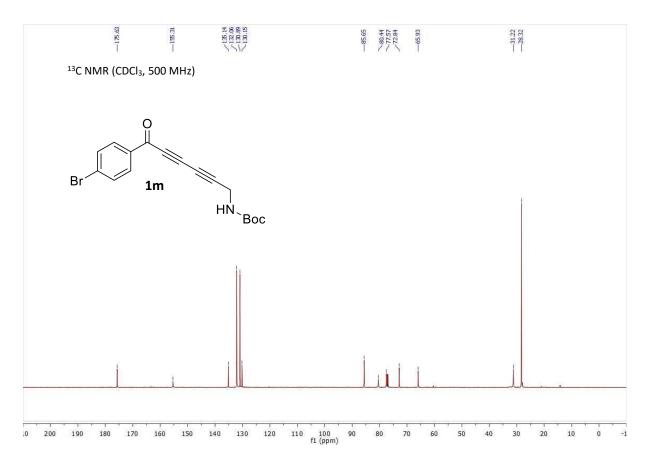


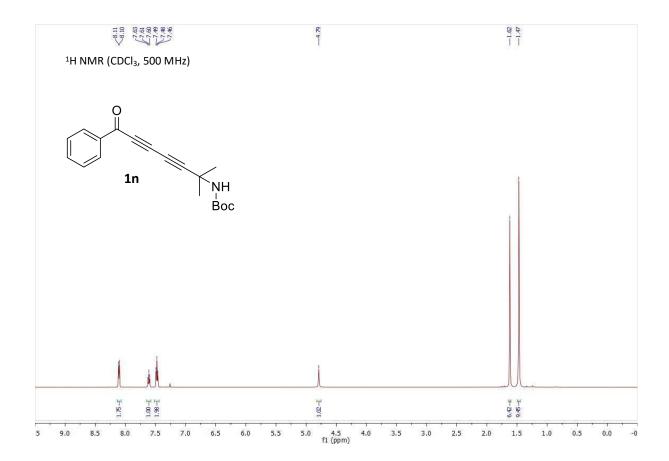


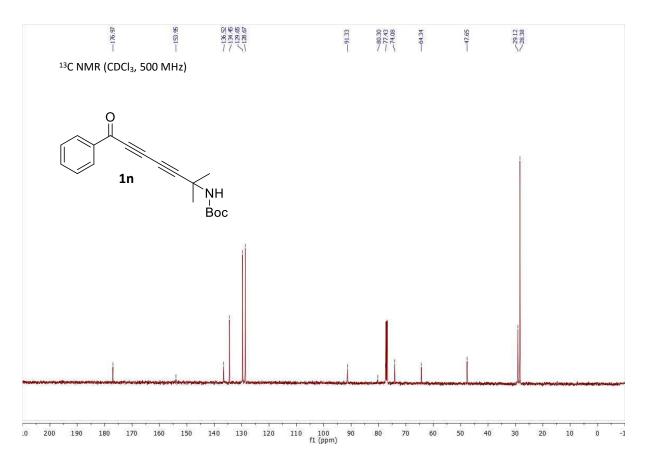


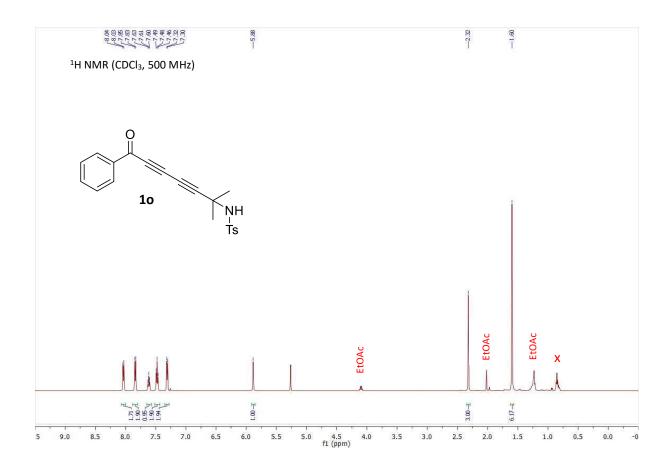


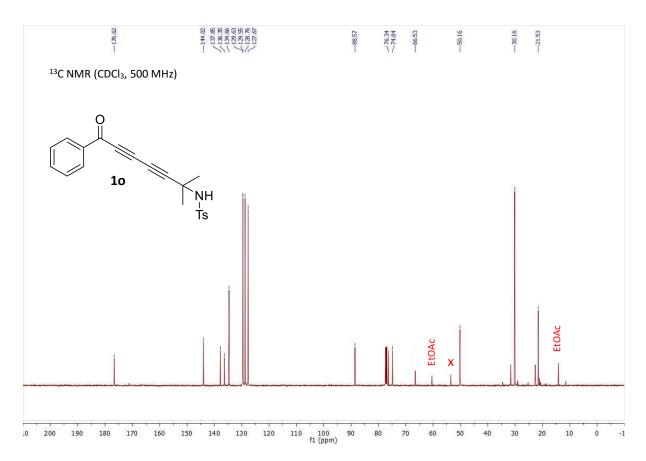


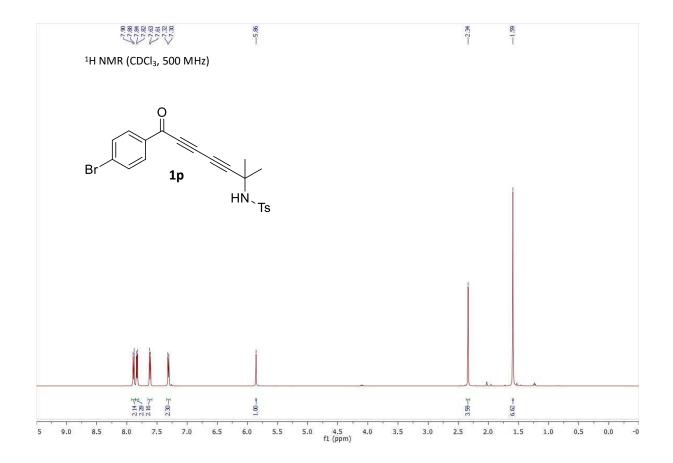


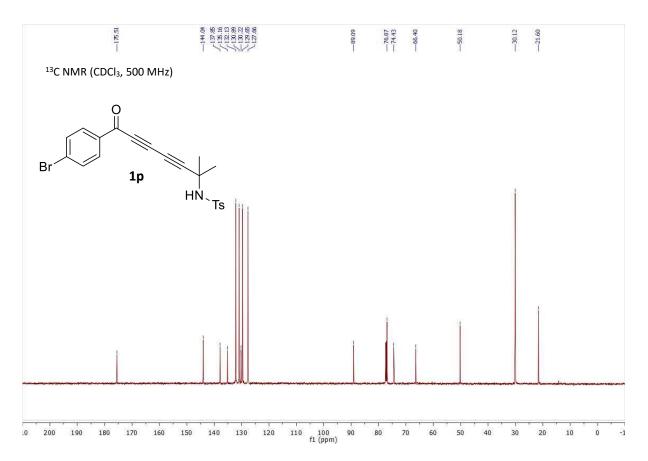


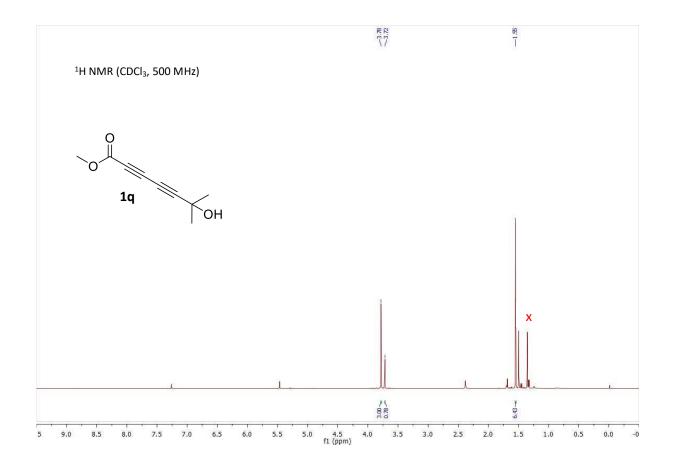


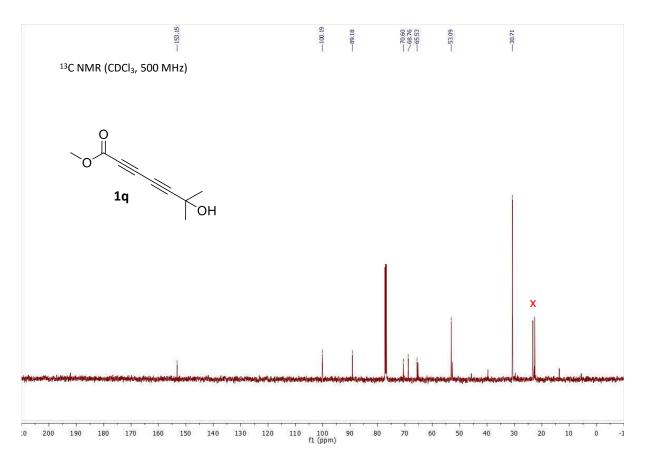


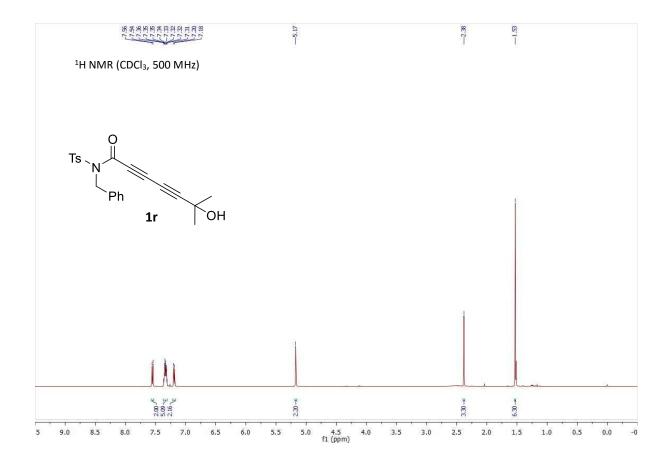


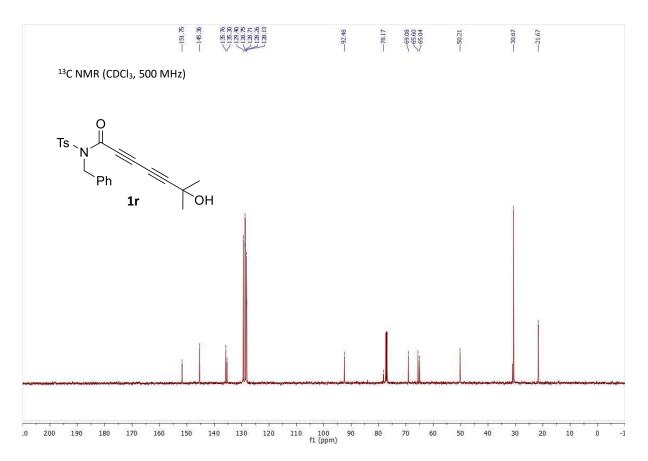


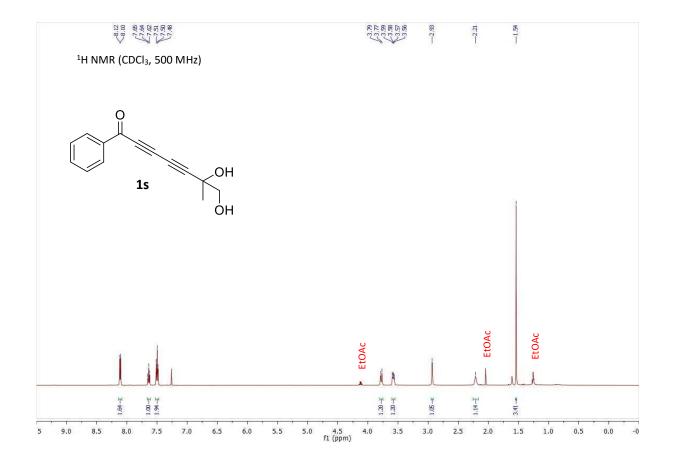


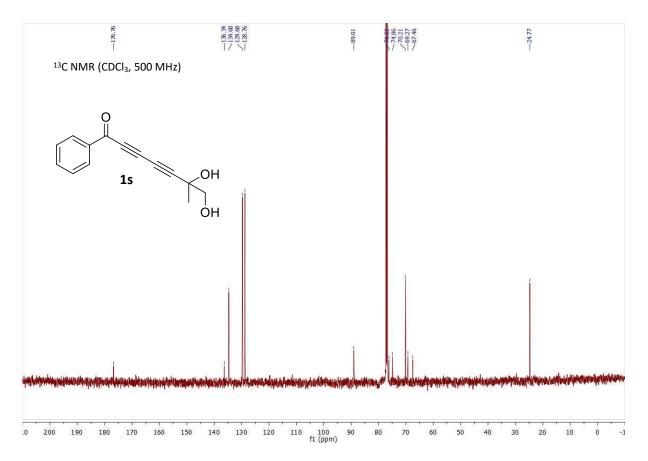


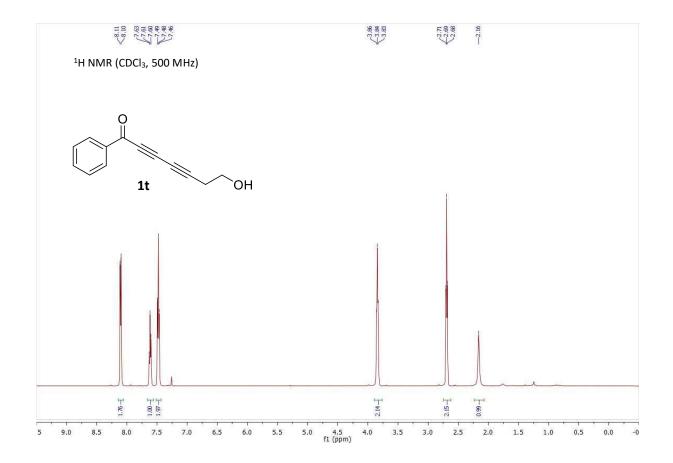


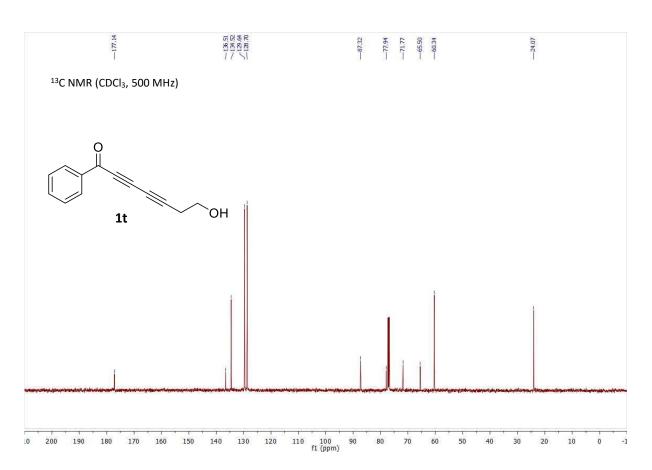


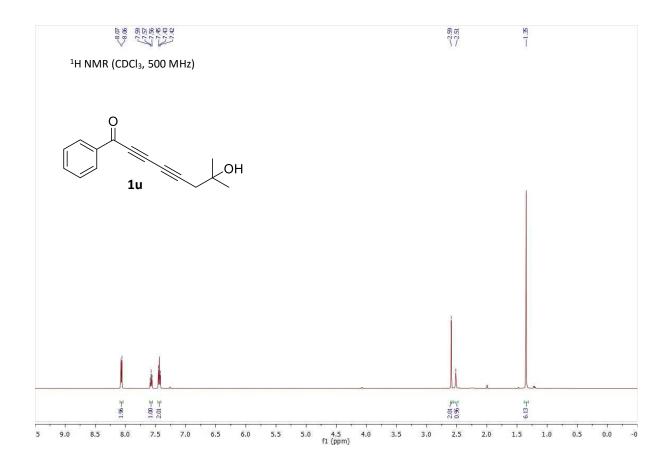


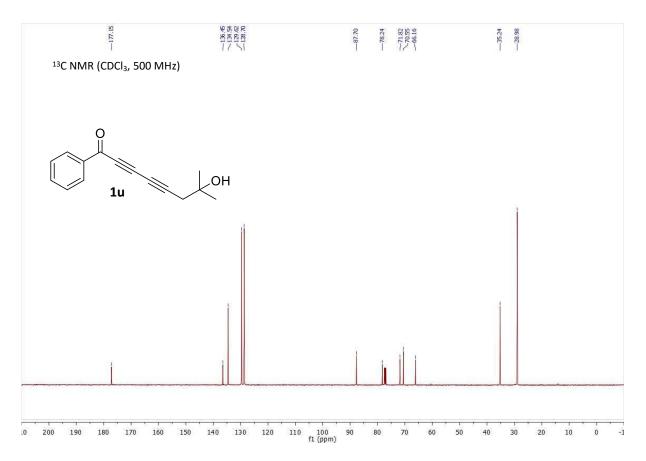


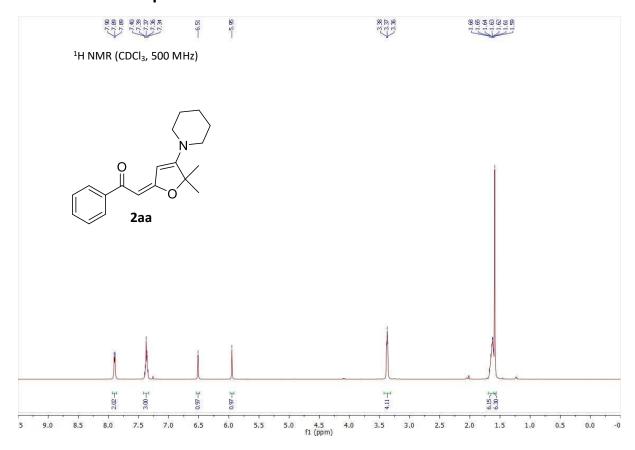


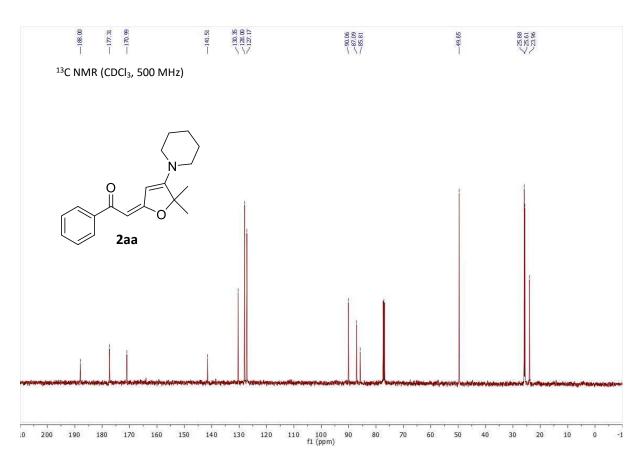


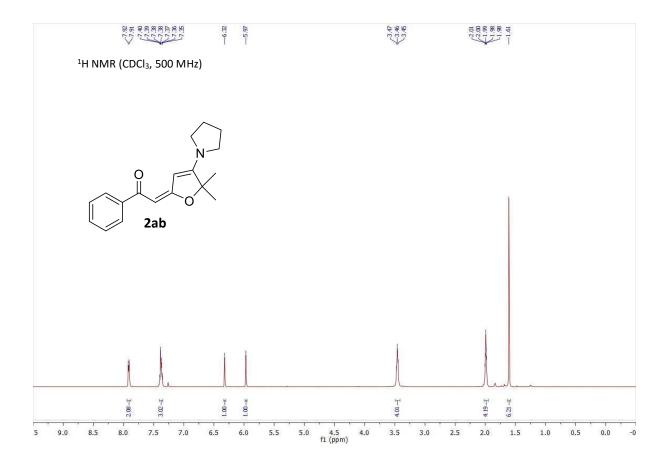


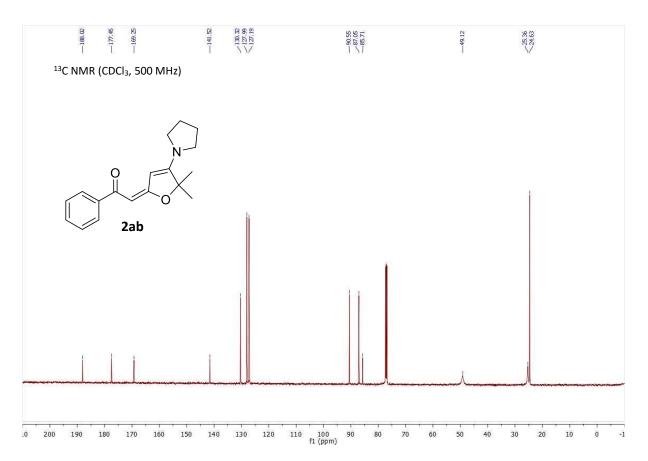


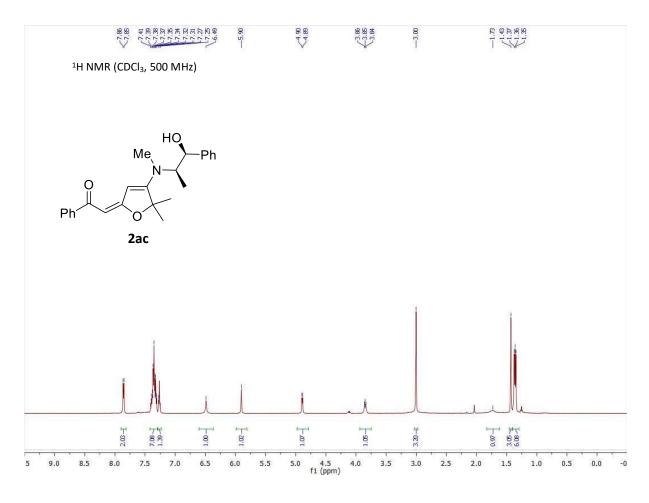











¹H and ¹³C NMR Spectra of Products

