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SI-1. Measurements

Photophysical Measurements UV−vis absorption spectra were recorded on a Hitachi 

U-4100 spectrophotometer. Fluorescence measurements were recorded on a Hitachi F-

4600 spectrophotometer. The photoluminescence (PL) efficiencies in THF, films and 

solid state，low temperature fluorescence and phosphorescence spectra were measured 

with a FLS980 spectrometer. The lifetimes of solid state and film state were measured 

on an Edinburgh FLS-1000 spectrometer with an EPL-375 optical laser.

Thermal Stability Measurements Thermal gravimetric analysis was undertaken on a 

Perkin-Elmer thermal analysis system from 30 to 650 °C at a heating rate of 10 K/ min 

and a nitrogen flow rate of 80 mL/min. Differential scanning calorimetry (DSC) 

analysis was carried out using a NETZSCH (DSC-204) instrument from 30 to 450 °C 

at a heating rate of 10 K/min while flushing with nitrogen.

Cyclic voltammetry measurements Cyclic voltammetry (CV) was performed using a 

BAS 100W (Bioanalytical Systems), using a glass carbon disk (diameter =3 mm) as the 

working electrode, a platinum wire with a porous ceramic wick as the auxiliary 

electrode, and Ag/Ag+ as the reference electrode standardized by the redox couple 

ferrocenium/ferrocene. Anhydrous N,N-dimethylformamide (DMF) and 

dichloromethane (CH2Cl2) containing 0.1 M tetrakis(n-butyl)-ammonium 

hexafluorophosphate (NBu4PF6) as the supporting electrolyte were used as solvents 

under a nitrogen atmosphere. All solutions were purged with a nitrogen stream for 10 

min before measurements. The procedure was performed at room temperature, and a 

nitrogen atmosphere was maintained over the solution during measurements. A scan 

rate of 50 mV s-1 was applied.
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Lippert-Mataga model The influence of solvent environment on the optical property 

of our compounds can be understood using the Lippert-Mataga equation, a model that 

describes the interactions between the solvent and the dipole moment of solute:
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where f is the orientational polarizability of solvents, μe is the dipole moment of excited 

state, μg is the dipole moment of ground state; a is the solvent cavity (Onsager) radius, 

ε and n are the solvent dielectric and the solvent refractive index, respectively.

The EQE measurement method for the non-doped device The measured parameters 

included luminance, current and EL spectrum. EQE was calculated according to the 

formula below:

                (2)

𝐸𝑄𝐸=
𝜋 ∙ 𝐿 ∙ 𝑒

683 ∙ 𝐼 ∙ ℎ ∙ 𝑐
∙

780

∫
380

𝐼(𝜆) ∙ 𝜆𝑑𝜆

780

∫
380

𝐼(𝜆) ∙ 𝐾(𝜆)𝑑𝜆

where L (cd m-2) is the total luminance of device, I (A) is the current flowing into the 

EL device, λ (nm) is EL wavelength, I(λ) is the relative EL intensity at each wavelength 

and obtained by measuring the EL spectrum, K(λ) is the Commision International de 

L'Eclairage chromaticity (CIE) standard photopic efficiency function, e is the charge of 

an electron, h is the Planck's constant, c is the velocity of light.

The radiative exciton ratio of the device The theoretical value of the radiative exciton 

ratio was calculated by the following equation: 

                     （3）outSPLEQE  

where EQE is the external quantum efficiency; γ is the carrier recombination efficiency, 

which in the ideal case is supposed to be unity if the injected holes and electrons are 

fully recombined and degrade to excitons in the emissive layer, ΦPL is 
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photoluminescence efficiency of the emission layer (~57% for DTPCZTZ film); ηs is 

the radiative exciton ratio; and ηout is the light out-coupling efficiency (20%).

SI-2 Supporting Figures

Scheme S1. Molecular structure and synthetic route to DTPCZTZ.
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Figure S1. 1H-NMR Spectrum of DTPCZTZ in CDCl3.

Figure S2. 13C-NMR Spectrum of DTPCZTZ in CDCl3.
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Figure S3. The time-of-flight mass spectrum of DTPCZTZ.

Figure S4. a)TGA curve and b)DSC curve of DTPCZTZ.

Figure S5. CV curve of DTPCZTZ.
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Figure S6. Transient spectra in neat film state of DTPCZTZ.

Figure S7. The exciton energy levels of DTPCZTZ.

Figure S8. The fluorescence and phosphorescence at 77K in THF.
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Figure S9. The luminance-current density curve of Device-b;

Figure S10. The device energy level structure diagram of (a) Device-g and (b) 

Device-r.

SI-3 Supporting tables 

Table S1 Single crystal structural parameters of DTPCZTZ.

Compound DTPCZPHTZ

Chemical formula C46H42N4

Formula weight 650.84

Crystal system Triclinic

a/Å a=10.689(6)

b/ Å b=12.283(6)
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c/ Å c=30.617(16)

α/° 86.897(12)

β/° 87.912(12)

γ/° 66.464(10)

Unit cell volume/ Å3 3680(3)

Temperature/K 296 K

Space group P -1

Z 4

Density (calculated) /g cm-3 1.175

F(000) 1384.0

Theta range for data collection 2.49 to 18.49

Index ranges -12<=h<=12,

-14<=k<=11,

-36<=l<=30

Reflections measured 19004

Independent reflections 12854

Rint 0.0797

Completeness to theta = 72.13° 0.997

Absorption correction 0.070

Max. and min. transmission 0.983 and 0.988

Data / restraints / parameters 12854 / 54 / 901

Goodness-of-fit on F2 1.018

Final R1 values (I> 2σ(I)) 0.0972

Final wR(F2) values (I> 2σ(I)) 0.1930

Final R1values (all data) 0.2620

Final wR(F2) values (all data) 0.2284

CCDC number 1985906
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Table S2. The fluorescence quantum efficiency efficiency (ΦPL) of DTPCZTZ in 

different solvents.

solvent n-hexane
isopropyl 

ether
diethyl 
ether

tetrahydrofuran acetonitrile film

ΦPL(%) 84.8 100 90.7 85.3 72.1 57.3

Table S3 EL properties summary of non-doped pure organic deep-blue OLEDs with 

400 nm < λEL < 450 nm and CIEy ~ 0.06 based on organic fluorescent small molecules 

recently.

Compound Von 
(a) CEmax

 (b)

(cd A-1)

PEmax
 (c)

(lm W-1)

EQEmax
(d) EL CIE (x, y) Ref

DTPCZTZ 4.0 3.63 2.85 7.6 424 (0.17,0.06) This 

work

TPA-(3)-F - 0.39 - - 428 (0.16, 0.06) [1]

PATPA 3.8 0.34 0.24 0.72 424 (0.15, 0.06) [2]

M2 1.53 0.86 3.02 428 (0.166, 0.056) [3]

p-DSiTP 4.0 1.11 0.79 2.7 416 (0.162, 0.061) [4]

P2MPC 3.1 3.42 3.36 7.15 (0.157, 0.064) [5]

PTPC 3.1 2.66 2.60 6.78 411 (0.156, 0.059) [6]

TPA-PI-SPF 3.1 3.61 3.50 6.76 448 (0.152, 0.059) [7]

B1 3.0 1.19 1.25 5.3 406 (0.16, 0.06) [8]

B2 3.2 1.39 1.25 7.1 404 (0.16, 0.06) [8]

TPBCzC2 3.4 2.01 1.57 4.78 423 (0.159, 0.06) [9]
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A 2.8 4.12 3.2 6.4 444 (0.151, 0.066) [10]

3-CzPOPPI 2.9 2.71 2.73 5.08 436 (0.156, 0.061) [11]

Ⅰ-A 3.0 5.1 5.3 8.9 444 (0.15, 0.06) [12]

Ⅰ-B 2.9 5.2 5.6 8.0 444 (0.149, 0.068) [12]

TPIBCz 3.0 1.7 1.44 3.38 435 (0.154, 0.063) [13]

B2 2.75 2.3 2.06 5.29 424 (0.155, 0.058) [14]

PPi-Xid 3.3 1.94 - 3.83 - (0.152, 0.057) [15]

PPi-Mid 3.1 2.20 - 4.08 - (0.154, 0.058) [15]

PPI-2TPA(B) 3.0 2.9 3.03 4.69 442 (0.15, 0.063) [16]

PPI-2NPA(B) 3.0 2.5 2.45 4.10 448 (0.152, 0.063) [16]

(a) Opening voltage (b) Maximum current efficiency (c) Maximum power efficiency (d) 

Maximum external quantum efficiency (e) Emission peak of electroluminescence 

spectrum
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