Electrochemical Tandem Cyclization to Access Sulfonylated Fused Sultams *via* SO₂ Insertion with Sodium Metabisulfite

Yun-Hai Sun,^a Cheng-Jing Li,^a Ji-Ming Xi,^a Zhong-Lin Wei,^a Wei-Wei Liao*^{a,b}

^{*a*} Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

E-mail: wliao@jlu.edu.cn

Table of Contents

I.	General Information	SI-2
II.	Reaction Conditions Screening	SI-3
III.	Preparation of Substrates	SI-5
IV.	General Procedure and Experimental Details	SI-14
V.	Scale-up Reaction and Synthetic Transformations	SI-32
VI.	Control Experiments	SI-35
VII.	Cyclic Voltammetry (CV) Experiments	SI-36
VIII.	References	SI-36
IX.	Crystal Data and Structure Refinements	SI-37

X. NMR Spectral Copies

I. General Information

All reactions were carried out under inert atmospheric condition unless otherwise noted, and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC) visualizing with ultraviolet light (UV), and KMnO4; column chromatography purifications were carried out using silica gel. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a 300, 400 or 500 MHz spectrometer in CDCl₃ or DMSO, fluorine nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a 376 or 470 MHz spectrometer in CDCl₃ or DMSO, and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 125 or 100 MHz spectrometer in CDCl₃ or DMSO unless otherwise noted. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26 ppm, DMSO = δ 2.50 ppm). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane (TMS) and are referenced to the carbon resonances of the solvent residual peak (CDCl₃ = δ 77.16 ppm, DMSO = δ 39.52 ppm). NMR data are presented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz), integration. Mass spectra were recorded on the Bruker MicrOTOF Q II. Melting points were measured on a melting point apparatus and were uncorrected. Electrochemical reactions were performed under air using undivided glassware. Electrochemical reactions were conducted using DJS-292potentiostat in constant potential or current mode. Cyclic voltammetry experiments were carried out in DY2113 potentiostat (Digi Ivy).

II. Initial Investigation and Optimization of Reaction Conditions

ÇN N	✓ <mark>+</mark> TsNHNH₂ · (3.0 equiv.)	C(+)/C(-) undivid Na ₂ S ₂ O ₅ (additive (, cc 5 mA led cell 3.0 equiv.) 5.0 equiv.)		∕_Ts
1aa	2a	solvent, a	30 °C, 7 h	3aa	
Entry	Solvent	Additive	$\operatorname{Conv}(\%)^{b}$	Yield (%) ^b	
1	MeCN/H ₂ O(1/1)	-	68	17	
2	MeCN/H ₂ O(1/1)	K ₂ CO ₃	38	7.2	
3	MeCN/H ₂ O(1/1)	NaOAc	31	3.7	
4	MeCN/H ₂ O(1/1)	HOAc	38	17	
5	MeCN/H ₂ O(1/1)	TFA	61	32	
6	MeCN/H ₂ O(1/1)	MsOH	48	40	
7	DCM/H ₂ O(1/1)	MsOH	48	8	
8	Acetone/H ₂ O(1/1)	MsOH	84	trace	
9	$HFIP/H_2O(1/1)$	MsOH	49	21	
10	MeOH/H ₂ O(1/1)	MsOH	45	trace	
11	MeCN/H ₂ O(3/1)	MsOH	28	24	
12	$MeCN/H_2O(1/3)$	MsOH	79	38	

Table S1. Optimized reaction conditions: effects of additive and solvent.^a

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.9 mmol), Na₂S₂O₅ (3.0 equiv.), additive (5 equiv.) and solvent (c = 0.03 M) in an undivided cell with graphite rod anode (C-rod, Φ 6 mm), graphite plate cathode (C-plate, $1.5 \times 1.5 \times 0.2 cm$), constant current (cc = 5.0 mA), 30°C, 7h, 4.4 F mol⁻¹. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.

		CN N	+ TsN	HNH ₂ – N MsOH MeC	$\begin{array}{c} C(+)/C(-), \mbox{ cc}\\ \mbox{undivided cell}\\ \mbox{la}_2S_2O_5 \ (3.0 \ \mbox{equiv.})\\ \mbox{l} \ (5.0 \ \mbox{equiv.}), \ \mbox{electrolyte}\\ CN/H_2O \ (1/1), \ T \ \mbox{°C}, \ t \ \mbox{h} \end{array}$		
	E1 (1)		4 (1)	.d	$C \rightarrow (0/) h$	$\frac{3}{1100}$	
Entry	Electrolyte	$I(\mathbf{m}\mathbf{A})$	t (h)	I (°C)	$\operatorname{Conv}(\%)^{\circ}$	Yield (%)	$Q(F mol^{-1})$
1	-	5	7	30	48	40	4.4
2	Bu ₄ NBF ₄	5	7	30	50	40	4.4
3	Bu ₄ NOAc	5	7	30	45	35	4.4
4	CF ₃ SO ₃ Na	5	7	30	67	39	4.4
5	-	5	14	30	77	49	8.8
6	-	10	4	30	36	21	5.0
7	-	3	13	30	62	39	4.9
8	-	5	7	60	92	52	4.4
9	-	5	7	80	88	21	4.4

Table S2. Optimized reaction conditions: effects of electrolyte, current and temperature ^a

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.9 mmol), Na₂S₂O₅ (3.0 equiv.), MsOH (5 equiv.), electrolyte (0.3 mmol) and MeCN/H₂O (1/1) (c = 0.03 *M*) in an undivided cell with graphite rod anode (C-rod, Φ 6 mm), graphite plate cathode (C-plate, 1.5 × 1.5 × 0.2 cm),

constant current (cc = 5.0 mA), 30° C. ^b Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as the internal standard. Isolated yield in parenthesis.

	CN N +	TsNHNH ₂ $\frac{(+)/(-), \text{ cc or}}{\text{undivided cc}}$ $\frac{\text{Na}_2\text{S}_2\text{O}_5 (3.0 \text{ cc})}{\text{MsOH} (5.0 \text{ cc})}$	cp ell equiv.) uiv.) T°C th	`Ts
	1a	2a	3a	
Entry	Anodic/Cathode	cc/cp mode	Conv (%) ^b	Yield (%) ^b
1	C-rod/C-rod	сс	92	52
2	C-rod/Pt	сс	83	41
3	C-rod/Ni	сс	74	27
4	RVC/C-rod	сс	45	17
5	Pt/ C-rod	сс	80	Trace
6	C-plate/C-plate	сс	63	17
7	C-rod /C-rod	ср	83	52
8	C-rod/C-plate	ср	98	74 (71)
9	C-plate/C-rod	ср	92	60
10	C-plate/C-plate	ср	98	65
11 ^c	C-rod/C-plate	ср	88	58
12 ^d	C-rod/C-plate	ср	77	68
13 ^e	C-rod/C-plate	ср	91	63
14 ^f	C-rod/C-plate	ср	100	71
15 ^g	C-rod/C-plate	ср	92	58
16 ^h	C-rod/C-plate	ср	88	53
17 ⁱ	C-rod/C-plate	ср	100	68

Table S3. Optimized reaction conditions: effect of electrode and cc/cp mode^{*a*}

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.9 mmol), Na₂S₂O₅ (3.0 equiv.), MsOH (5 equiv.) and MeCN/H₂O (1/1) (c = 0.03 *M*) in an undivided cell with electrodes. The cc mode (cc = 5.0 mA): 60°C, 7 h; the cp mode (cp = 1.5 V, *V_{cell}*): 30 °C, 12 h. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as the internal standard. ^{*c*} Na₂S₂O₅ (1.0 eq). ^{*d*} Na₂S₂O₅ (5.0 eq). ^{*e*} MsOH (3.0 eq). ^{*f*} 60 °C. ^{*g*} K₂S₂O₅ (3.0 equiv.). ^{*h*} H₂SO₃ (aq.) (3 equiv.) without MsOH. ^{*l*} Under N₂. Cp = 1.5 V, 12 h, 4.6 F mol⁻¹.

cc: constant current; cp: constant potential. C-rod (graphite rod, Φ 6 mm); Pt (10 × 10 × 0.1 cm); Ni (10 × 10 × 0.1 cm); RVC: (100 PPI, 1 × 1 × 1 cm); C-plate (1.5 × 1.5 × 0.2 cm);

III. Preparation of Substrates

Substrates **1aa -1aq**, **1ba -1ja and 1la-1na** were prepared according to the known procedure. ^{1, 2} The NMR spectra data of compounds **1aa -1ag**, **1ai -1aq**, **1ba**, **1ga-1ja**, **and 1ma** were in accordance with the reported data of the known literatures. ^{1, 2} The NMR spectra data of compounds **1na** were in accordance with the reported data of the known literature. ³ Substrates **1ka** were prepared according to the known procedure. ⁴ The NMR spectra data of compounds **1ka** were in accordance with the reported data of the known literature.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (89% yield, 151 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.17 – 7.09 (m, 3H), 5.93 – 5.81 (m, 1H), 5.26 – 5.14 (m, 2H), 3.67 (t, *J* = 7.3 Hz, 2H), 2.59 (q, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 133.1, 129.7, 123.7, 118.6, 116.0, 113.5, 48.9, 31.7.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/15) to afford the title compound (88% yield, 164 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.12 (m, 2H), 7.06 – 6.96 (m, 2H), 5.83 (m, 1H), 5.26 – 5.08 (m, 2H), 3.62 (t, *J* = 7.2 Hz, 2H), 2.60 – 2.49 (m, 2H), 2.32 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 137.4, 133.4, 133.2, 130.2, 118.5, 116.2, 113.9, 49.0, 31.7, 20.6.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (87% yield, 175 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.11 – 7.02 (m, 2H), 6.97 – 6.80 (m, 2H), 5.90 – 5.74 (m, 1H), 5.22 – 5.11 (m, 2H), 3.79 (s, 3H), 3.59 (t, *J* = 7.3 Hz, 2H), 2.53 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 133.21, 133.17, 118.5, 118.4, 114.9, 114.5, 55.6, 49.8, 31.8.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/20) to afford the title compound (86% yield, 196 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.30 (m, 2H), 7.11 – 7.01 (m, 2H), 5.91 – 5.75 (m, 1H), 5.25 – 5.11 (m, 2H), 3.72 – 3.53 (m, 2H), 2.56 (q, *J* = 7.0 Hz, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 137.3, 133.2, 126.5, 118.5, 115.8, 113.8, 49.0, 34.3, 31.7, 31.3.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (88% yield, 167 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.03 (m, 4H), 5.91 – 5.75 (m, 1H), 5.24 – 5.13 (m, 2H), 3.62 (t, *J* = 7.2 Hz, 2H), 2.56 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (d, *J* = 243.8 Hz), 136.1 (d, *J* = 2.4 Hz), 132.9, 118.7, 118.0 (d, *J* = 8.1 Hz), 116.5 (d, *J* = 23.1 Hz), 113.7, 49.2, 31.7.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (85% yield, 176 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.08 – 7.02 (m, 2H), 5.88 – 5.76 (m, 1H), 5.22 – 5.15 (m, 2H), 3.63 (t, *J* = 7.2 Hz, 2H), 2.56 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 132.8, 129.7, 129.0, 118.9, 117.3, 113.0, 49.0, 31.6.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (89% yield, 223 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.42 (m, 2H), 7.07 – 6.91 (m, 2H), 5.91 – 5.73 (m, 1H), 5.25 – 5.09 (m, 2H), 3.63 (t, *J* = 7.2 Hz, 2H), 2.56 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 132.8, 132.7, 118.9, 117.7, 116.4, 112.9, 49.0, 31.6.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (77% yield, 229 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.9 Hz, 2H), 6.89 (d, *J* = 8.9 Hz, 2H), 5.91 – 5.72 (m, 1H), 5.27 – 5.08 (m, 2H), 3.63 (t, *J* = 7.2 Hz, 2H), 2.65 – 2.47 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 139.8, 138.5, 132.8, 118.9, 117.9, 112.8, 86.6, 48.8, 31.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂IN₂ 299.0040; Found 299.0036.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/5) to afford the title compound (75% yield, 183 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.9 Hz, 2H), 7.15 (d, *J* = 8.9 Hz, 1H), 5.84 (ddt, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.25 – 5.15 (m, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.72 (t, *J* = 7.2 Hz, 2H), 2.60 (q, *J* = 7.0 Hz, 1H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 143.7, 132.7, 131.4, 125.7, 119.0, 115.1, 112.4, 61.0, 48.7, 31.6, 14.4.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (90% yield, 168 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.16 (m, 4H), 5.88 – 5.70 (m, 1H), 5.24 – 5.10 (m, 2H), 3.49 (t, *J* = 7.3 Hz, 2H), 2.56 – 2.44 (m, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 134.0, 133.5, 131.8, 127.7, 127.2, 124.7, 118.3, 115.5, 53.1, 32.1, 17.9.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (90% yield, 168 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.9 Hz, 1H), 6.98 – 6.86 (m, 3H), 5.90 – 5.78 (m, 1H), 5.23 – 5.13 (m, 2H), 3.64 (t, *J* = 7.0 Hz, 2H), 2.62 – 2.52 (m, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 139.8, 133.1, 129.5, 124.5, 118.5, 116.8, 113.7, 113.0, 48.8, 31.7, 21.6.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (83% yield, 166 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.76 (s, 3H), 6.01 – 5.70 (m, 1H), 5.36 – 5.05 (m, 2H), 3.64 (t, J = 7.3 Hz, 2H), 2.76 – 2.52 (m, 2H), 2.34 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 139.8, 139.6, 133.2, 125.5, 118.5, 113.9, 48.8, 31.7, 21.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇N₂ 201.1386; Found 201.1387.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (83% yield, 166 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.2 Hz, 1H), 6.93 (d, *J* = 2.8 Hz, 1H), 6.82 (dd, *J* = 8.2, 2.8 Hz, 1H), 6.12 – 5.69 (m, 1H), 5.23 – 5.11 (m, 2H), 3.61 (t, *J* = 7.3 Hz, 2H), 2.60 – 2.48 (m, 2H), 2.26 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 137.6, 133.2, 132.1, 130.6, 118.4, 117.7, 114.1, 113.4, 49.0, 31.7, 20.0, 19.0.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (84% yield, 195 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (d, *J* = 8.7 Hz, 1H), 6.73 (d, *J* = 2.8 Hz, 1H), 6.60 (dd, *J* = 8.7, 2.8 Hz, 1H), 5.92 – 5.74 (m, 1H), 5.27 – 5.11 (m, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.60 (t, *J* = 7.2 Hz, 2H), 2.65 – 2.50 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.9, 145.9, 133.6, 133.2, 118.5, 114.3, 111.9, 108.2, 102.1, 56.3, 56.1, 49.7, 31.8.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (81% yield, 180 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.70 (m, 3H), 7.54 – 7.34 (m, 4H), 5.96 – 5.80 (m, 1H), 5.25 – 5.15 (m, 2H), 3.81 – 3.71 (m, 2H), 2.63 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 133.8, 133.1, 130.1, 130.0, 127.8, 127.24, 127.15, 125.3, 118.7, 116.5, 113.7, 112.2, 49.1, 31.7.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (84% yield, 189 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.54 – 7.45 (m, 1H), 7.47 – 7.34 (m, 3H), 5.96 – 5.78 (m, 1H), 5.27 – 5.13 (m, 2H), 3.85 – 3.71 (m, 2H), 2.68 – 2.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 133.9, 133.2, 130.2, 130.1, 127.9, 127.4, 127.3, 125.4, 118.8, 116.6, 113.8, 112.3, 49.2, 31.8.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (75% yield, 274 mg) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 9.0 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 3.6 Hz, 1H), 7.25 – 7.21 (m, 3H), 7.13 (dd, J = 9.0, 2.4 Hz, 1H), 6.61 (d, *J* = 3.6 Hz, 1H), 5.94 – 5.72 (m, 1H), 5.29 – 5.06 (m, 2H), 3.65 (t, *J* = 7.3 Hz, 2H), 2.55 (m, 2H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 136.2, 135.1, 133.1, 131.7, 131.5, 130.0, 128.0, 126.8, 118.6, 114.6, 114.4, 114.1, 108.9, 108.8, 49.7, 31.7, 21.6.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (71% yield, 176 mg) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.34 (m, 4H), 7.32 – 7.26 (m, 3H), 7.12 (d, J = 8.5 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), δ 5.95 – 5.75 (m, 1H), 5.27 (d, J = 16.8, 1H), 5.17 (d, J = 10.2, 1H), δ 4.69 (dd, J = 9.3, 6.0 Hz, 1H), 3.13 – 2.97 (m, 1H), 2.85 – 2.69 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 140.5, 139.3, 133.1, 129.7, 129.1, 128.5, 126.4, 124.1, 119.2, 117.3, 112.7, 62.5, 39.9.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (74% yield, 194 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 4H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 8.7 Hz, 2H), 7.05 (t, *J* = 7.4 Hz,1H), 5.94 – 5.70 (m, 1H), 5.43 – 5.08 (m, 2H), 4.66 (dd, *J* = 9.1, 6.1 Hz,1H), 3.10 – 2.96 (m, 1H), 2.85 – 2.69 (m, 1H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 140.5, 138.2, 136.1, 133.2, 129.7, 129.6, 126.3, 124.0, 120.0, 117.3, 112.7, 62.4, 39.8, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂ 263.1543; Found 263.1553.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (71% yield, 189 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 2H), 7.38 – 7.31 (m, 2H), 7.19 – 7.04 (m, 5H), 5.94 – 5.71 (m, 1H), 5.40 – 5.07 (m, 2H), 4.72 (dd, *J* = 9.0, 6.3 Hz, 1H), 3.17 – 2.97 (m, 1H), 2.89 – 2.68 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8 (d, *J* = 248.0 Hz), 140.3, 134.9, 132.8, 129.7, 128.2 (d, *J* = 8.4 Hz), 124.3, 119.4, 117.4, 116.1 (d, *J* = 21.6 Hz), 112.5, 62.1, 39.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.20. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆FN₂ 267.1292; Found 267.1300.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (69% yield, 195 mg) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (brs, 4H), 7.32 – 7.28 (m, 2H), 7.14 – 7.05 (m, 3H), 5.86 – 5.73 (m, 1H), 5.27 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.18 (dd, *J* = 10.3, 1.5 Hz, 1H), 4.70 – 4.63 (m, 1H), 3.08

- 2.95 (m, 1H), 2.81 - 2.67 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 140.2, 137.7, 134.3, 132.6, 129.7, 129.3, 127.8, 124.3, 119.5, 117.4, 112.4, 62.1, 39.6. HRMS (ESI) m/z: [M + H]⁺Calcd for C₁₇H₁₆ClN₂ 283.0997; Found 283.1002.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (75% yield, 245 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.12 – 7.06 (m, 3H), 5.89 – 5.69 (m, 1H), 5.34 – 5.11 (m, 2H), 4.65 (dd, *J* = 9.0, 6.2 Hz, 1H), 3.08 – 2.96 (m, 1H), 2.84 – 2.69 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 140.2, 138.2, 132.6, 132.3, 129.7, 128.1, 124.3, 122.4, 119.5, 117.4, 112.4, 62.1, 39.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆BrN₂ 327.0491; Found 327.0493.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/30) to afford the title compound (77% yield, 154 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.37 (m, 2H), 7.37 – 7.33 (m, 1H), 7.33 – 7.28 (m, 2H), 5.95 – 5.86 (m, 1H), 5.47 – 4.99 (m, 2H), 2.45 (dt, *J* = 7.3, 1.2 Hz, 2H), 1.32 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 138.1, 132.7, 129.4, 128.4, 128.2, 119.5, 115.8, 61.1, 44.9, 26.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇N₂ 201.1386; Found 201.1388

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/12) to afford the title compound (79% yield, 147 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.15 – 7.07 (m, 3H), 4.92 – 4.87 (m, 1H), 4.79 (s, 1H), 3.71 (t, *J* = 7.7 Hz, 2H), 2.51 (t, *J* = 7.5 Hz, 2H), 1.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 139.8, 129.7, 123.6, 116.0, 113.5, 113.3, 47.8, 35.1, 22.5.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/15) to afford the title compound (80% yield, 199 mg) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 7H), 7.11-7.04 (m, 3H), 5.41 (brs, 1H), 5.20-5.19 (m, 1H), 3.70-3.68 (m, 2H), 3.02 (t, *J* = 7.4, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 143.9, 139.8, 129.7, 128.7, 128.05, 126.2, 123.7, 116.1, 115.7, 113.5, 48.3, 33.4. HRMS(ESI): calcd. for C₁₇H₁₇N₂ ([M+H]⁺): 249.1386, found 249.1391.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/15) to afford the title compound (82% yield, 174 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.21 – 6.92 (m, 3H), 5.50 – 5.45 (m, 1H), 3.71 (t, *J* = 7.3 Hz, 2H), 2.58 (t, *J* = 7.3 Hz, 2H), 2.40 – 2.17 (m, 4H), 1.95 – 1.82 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.0, 139.4, 129.7, 127.0, 123.6, 116.0, 113.6, 48.0, 35.2, 32.7, 29.1, 23.4.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/15) to afford the title compound (71% yield, 152 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.41 (m, 3H), 7.38 – 7.31 (m, 2H), 6.23 (dd, J = 17.5, 10.6 Hz, 1H), 5.50 – 5.30 (m, 2H), 1.61 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 140.4, 136.1, 129.7, 129.1, 126.2, 117.0, 110.3, 47.2, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₅N₂O 215.1179; Found 215.1172.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/10) to afford the title compound (68% yield, 285 mg; the mixture of rotamers: 1/1) as a yellow oil. The mixture of rotamers: ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.31 (m, 10H), 7.15 (d, J = 9.3 Hz, 1H), 7.12 (d, J = 9.3 Hz, 1H), 7.04 (d, J = 9.1 Hz, 2H), 6.80 (d, J = 9.0 Hz,

2H), 5.90 - 5.80 (m, 2H), 5.28 (d, J = 12.3 Hz, 1H), 5.25 - 5.15 (m, 6H), 5.10 (d, J = 12.3 Hz, 1H), 4.61 (dd, J = 8.5, 4.3 Hz, 1H), 4.56 (dd, J = 8.7, 4.2 Hz, 1H), 3.77 - 3.51 (m, 8H), 2.65 - 2.52 (m, 4H), 2.47 - 2.33 (m, 2H), 2.28 - 2.14 (m, 2H), 2.15 - 1.91 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 171.4, 155.0, 154.2, 146.6, 146.3, 137.6, 137.6, 136.6, 136.4, 133.0, 132.9, 129.6, 128.6, 128.5, 128.2, 128.0, 127.9, 122.7, 122.5, 118.74, 118.72, 117.02, 116.96, 115.3, 113.4, 113.3, 67.3, 67.2, 59.4, 58.9, 49.20, 49.17, 47.1, 46.6, 31.6, 31.1, 30.0, 24.5, 23.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₆N₃O₄ 420.1918; Found 420.1912.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/8) to afford the title compound (84% yield, 156 mg) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.31 (m, 2H), 7.21 – 7.02 (m, 3H), 5.80 (ddt, *J* = 16.9, 10.1, 6.6 Hz, 1H), 5.28 – 4.93 (m, 2H), 3.62 – 3.57 (m, 2H), 2.22 (q, *J* = 7.1 Hz, 2H), 1.96-1.91 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.1, 136.7, 129.8, 123.7, 116.4, 116.0, 113.7, 48.8, 30.5, 26.6.

Purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/15) to afford the title compound (74% yield, 158 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, *J* = 7.6 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.92 – 5.73 (m, 1H), 5.18 – 5.04 (m, 2H), 3.53 (s, 2H), 2.15 (d, *J* = 7.4 Hz, 1H), 1.07 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 141.3, 133.5, 129.6, 123.7, 118.7, 116.7, 115.3, 59.4, 44.8, 37.3, 25.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₉N₂ 215.1543; Found 215.1540.

IV. General Procedure and Electrochemical Reactions

In an undivided flask (20 mL) equipped with a stir bar, a mixture of *N*-aryl cyanamides **1** (0.3 mmol), ArNHNH₂ **2** (0.9 mmol), Na₂S₂O₅ (0.9 mmol), MeSO₃H (1.5 mmol) and MeCN/H₂O (v/v = 1/1, 10 mL) were added. The cell was equipped with graphite rod anode (Φ 6 mm) and graphite plate cathode (1.5×1.5×0.2 cm), then connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant voltage of 1.5 V at 30 °C for 12 h. When the reaction

was finished, the mixture was extracted with EtOAc (10 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether) to

provide the desired products 3.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (71% yield, 83 mg) as a white solid. mp: 240.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.9 Hz, 2H), 7.68 (t, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 1H), 4.23 (t, *J* = 9.6 Hz, 1H), 4.09 – 3.98 (m, 1H), 3.95-3.91 (m, 1H), 3.75-3.67 (m, 1H), 3.26 (dd, *J* = 14.0, 11.2 Hz, 1H), 3.04 – 2.88 (m, 1H), 2.50 (s, 3H), 2.46 – 2.29 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 145.5, 136.0, 134.4, 133.3, 130.3, 128.0, 127.0, 125.3, 122.0, 115.0, 57.5, 48.3, 39.6, 25.8, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O₄S₂ 391.0781; Found 391.0792.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (68% yield, 82 mg) as a white solid. mp: 248.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 2H), 7.76 (s, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 8.5 Hz, 1H), 4.25 – 4.13 (m, 1H), 4.04 – 3.95 (m, 1H), 3.93 – 3.87 (m, 1H), 3.71 – 3.62 (m, 1H), 3.32 – 3.18 (m, 1H), 2.97 – 2.85 (m, 1H), 2.48 (s, 3H), 2.44 (s, 3H), 2.37 – 2.26 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.1, 145.5,

137.6, 136.0, 134.1, 132.1, 130.2, 128.0, 124.9, 121.8, 115.0, 57.5, 48.2, 39.6, 25.8, 21.7, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₄S₂ 405.0937; Found 405.0949.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (58% yield, 73 mg) as a white solid. mp: 228.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.80 (m, 2H), 7.52 – 7.37 (m, 3H), 7.19 (dd, *J* = 9.1, 2.8 Hz, 1H), 7.02 (d, *J* = 9.2 Hz, 1H), 4.24 – 4.14 (m, 1H), 4.05 – 3.94 (m, 1H), 3.94 – 3.84 (m, 4H), 3.72 – 3.60 (m, 1H), 3.29 – 3.15 (m, 1H), 2.98 – 2.84 (m, 1H), 2.47 (s, 3H), 2.41 – 2.27 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 158.3, 145.5, 136.0, 130.2, 128.0, 122.8, 121.8, 116.7, 107.0, 57.5, 56.0, 48.3, 39.5, 25.7, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₅S₂ 421.0886; Found 421.0889.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (66% yield, 88 mg) as a white solid. mp: 210.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 1H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.69 – 7.63 (m, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 8.8 Hz,1H), 4.22 – 4.13 (m, 1H), 4.03 – 3.94 (m, 1H), 3.92 – 3.84 (m, 1H), 3.70 – 3.58 (m, 1H), 3.29 – 3.20 (m, 1H), 2.91 – 2.79 (m, 1H), 2.46 (s, 3H), 2.36 – 2.19 (m, 1H), 1.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 161.2, 150.9, 145.5, 136.0, 132.0, 130.9, 130.2, 128.0, 121.5, 121.2, 115.1, 57.5, 48.3, 39.6, 35.1, 31.0, 25.7, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₇N₂O₄S₂ 447.1407; Found 447.1419.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (64% yield, 78 mg) as a white solid. mp:221.2 °C. ¹H NMR (400 MHz, CDCl₃)

δ 7.83 (d, J = 8.3 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.37 – 7.32 (m, 1H), 7.14 – 7.06 (m, 1H), 4.18 (td, J = 9.6, 2.0 Hz, 1H), 4.08 – 3.96 (m, 1H), 3.92 – 3.82 (m, 1H), 3.75 – 3.63 (m, 1H), 3.30 – 3.18 (m, 1H), 2.96 – 2.84 (m, 1H), 2.47 (s, 3H), 2.41 – 2.26 (m, 1H). ¹³C NMR (100 MHz, DMSO) δ 162.7, 159.7 (d, J = 247.7 Hz), 145.4, 136.4, 131.8, 130.6, 128.4, 122.9, 121.7 (d, J = 23.5 Hz), 119.9 (d, J = 8.3 Hz), 110.9 (d, J = 25.5 Hz), 57.0, 49.2, 25.2, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.68. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈FN₂O₄S₂ 409.0687; Found 409.0697.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (56% yield, 71 mg) as a white solid. mp: 231.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.77 (m, 3H), 7.60 – 7.50 (m, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.01 (d, *J* = 8.9 Hz, 1H), 4.18-4.13 (m, 1H), 4.04 – 3.95 (m, 1H), 3.87 – 3.80 (m, 1H), 3.73 – 3.62 (m, 1H), 3.25 (dd, *J* = 14.0, 11.0 Hz, 1H), 2.93 – 2.81 (m, 1H), 2.46 (s, 3H), 2.38 – 2.26 (m, 1H). ¹³C NMR (125MHz, CDCl₃) δ 161.8, 145.6, 135.9, 133.4, 132.9, 132.3, 130.3, 128.0, 124.8, 122.8, 116.8, 57.4, 48.5, 39.6, 25.6, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈ClN₂O₄S₂ 425.0391; Found 425.0403.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (55% yield, 77 mg) as a white solid. mp: 243.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (m, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.69 (m, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 1H), 4.17-4.11 (m, 1H), 4.02-3.96 (m, 1H), 3.88 – 3.77 (m, 1H), 3.73 – 3.58 (m, 1H), 3.37 – 3.18 (m, 1H), 2.93 – 2.79 (m, 1H), 2.46 (s, 3H), 2.36 – 2.23 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.8, 145.6, 136.2, 135.9, 133.3, 130.3, 128.0, 127.7, 123.0, 119.4, 117.0, 57.4, 48.5, 39.7, 25.5, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈BrN₂O₄S₂ 468.9886; Found 468.9879.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (42% yield, 64 mg) as a white solid. mp: 254.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 1.9 Hz, 1H), 7.93 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 1H), 4.19-4.15 (m, 1H), 4.05 – 3.96 (m, 1H), 3.98-3.85 (m, 1H), 3.74 – 3.59 (m, 1H), 3.26 (dd, *J* = 14.0, 11.0 Hz, 1H), 2.96 – 2.85 (m, 1H), 2.49 (s, 3H), 2.42 – 2.27 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6, 145.6, 141.9, 135.9, 133.8, 133.6, 130.3, 128.0, 123.2, 116.8, 89.5, 57.4, 48.3, 39.7, 25.6, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈IN₂O₄S₂ 516.9747; Found 516.9759.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (27% yield, 37 mg) as a white solid. mp: 217.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 1.9 Hz, 1H), 8.25 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.7 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 4.22 (td, *J* = 9.6, 1.8 Hz, 1H), 4.11 – 4.00 (m, 1H), 3.94 – 3.82 (m, 1H), 3.80 – 3.62 (m, 1H), 3.36 – 3.20 (m, 1H), 3.02 – 2.87 (m, 1H), 2.47 (s, 3H), 2.44 – 2.25 (m, 1H), 1.41 (t, *J* = 7.1 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 164.1, 162.0, 145.6, 137.3, 135.9, 134.1, 130.2, 129.0, 128.0, 127.1, 121.6, 115.2, 61.9, 57.4, 48.6, 39.7, 25.7, 21.7, 14.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃N₂O₆S₂ 463.0992; Found 463.1001.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (59% yield, 71 mg) as a white solid. mp: 237.1°C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.81 (m, 3H), 7.52 – 7.41 (m, 3H), 7.37 (t, *J* = 7.7 Hz, 1H), 4.69 – 4.59 (m, 1H), 4.57 – 4.46 (m, 1H), 3.97 (dd, *J* = 14.1, 2.6 Hz, 1H), 3.73 – 3.56 (m, 1H), 3.21 (dd, *J* = 14.1, 11.2 Hz, 1H), 2.99 – 2.90 (m, 1H), 2.77 (s, 3H),

2.51 (s, 3H), 2.33 – 2.16 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 163.3, 145.5, 137.7, 136.1, 134.3, 130.2, 127.9, 127.1, 125.4, 123.9, 123.6, 57.4, 53.2, 38.7, 27.2, 23.3, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₄S₂ 405.0937; Found 405.0930.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (57% yield, 37 mg) as an inseparable white solid ($\alpha/\beta = 1.3/1$). Major isomer (α) ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.43 – 7.36 (m, 2H), 7.26 – 7.18 (m, 2H), 6.86 (s, 1H), 4.21 – 4.11 (m, 1H), 4.03 – 3.92 (m, 1H), 3.93 – 3.83 (m, 1H), 3.72 – 3.55 (m, 1H), 3.25 – 3.13 (m, 1H), 2.93 – 2.81 (m, 1H), 2.46 (brs, 6H), 2.36 – 2.20 (m, 1H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 3H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.43 – 7.36 (m, 2H),), 6.90 (d, *J* = 8.4 Hz, 1H), 4.21 – 4.11 (m, 1H), 4.03 – 3.92 (m, 1H), 3.93 – 3.83 (m, 1H), 3.72 – 3.55 (m, 1H), 3.25 – 3.13 (m, 1H), 2.93 – 2.81 (m, 1H), 4.03 – 3.92 (m, 1H), 3.93 – 3.83 (m, 1H), 3.72 – 3.55 (m, 1H), 3.25 – 3.13 (m, 1H), 2.93 – 2.81 (m, 1H), 4.03 – 3.92 (m, 1H), 3.93 – 3.83 (m, 1H), 3.72 – 3.55 (m, 1H), 3.25 – 3.13 (m, 1H), 2.93 – 2.81 (m, 1H), 4.03 – 3.92 (m, 1H), 3.93 – 3.83 (m, 1H), 3.72 – 3.55 (m, 1H), 3.25 – 3.13 (m, 1H), 2.93 – 2.81 (m, 1H), 4.03 – 3.92 (m, 1H), 3.93 – 3.83 (m, 1H), 3.72 – 3.55 (m, 1H), 3.25 – 3.13 (m, 1H), 2.93 – 2.81 (m, 1H), 2.72 (s, 3H), 2.45 (s, 3H), 2.36 – 2.20 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 159.7, 145.5, 144.4, 138.1, 135.9, 134.6, 134.8, 132.5, 130.2, 129.8, 127.98, 127.96, 125.0, 120.9, 119.3, 115.2, 113.1, 57.5, 57.4, 48.7, 48.2, 39.6, 39.5, 25.8, 25.7, 22.0, 21.7, 19.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₄S₂ 405.0937; Found 463.0939.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (61% yield, 76 mg) as a white solid. mp: 253.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.04 (s, 1H), 6.69 (s, 1H), 4.15 (t, *J* = 9.7 Hz, 1H), 3.99-3.94 (m, 1H), 3.91-3.88 (m, 1H), 3.68-3.62 (m, 1H), 3.21 (dd, *J* = 14.1, 11.3 Hz, 1H), 2.93 – 2.82 (m, 1H), 2.68 (s, 3H), 2.47 (s, 3H), 2.40 (s, 3H), 2.35 – 2.22 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 145.5, 143.3, 137.9, 136.0, 134.6, 130.7, 130.2, 128.0, 118.4, 113.3, 57.4, 48.6, 39.5, 25.7, 21.7, 21.7, 19.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃N₂O₄S₂ 419.1094; Found 419.1090.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether (1/1) to afford the title compound (53 % yield, 66 mg) as an inseparable mixture white solid ($\alpha/\beta = 4.2/1$). Major isomer (α) ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.3, 2.9 Hz, 2H), 7.66 (s, 1H), 7.48 – 7.32 (m, 2H), 6.83 (s, 1H), 4.26 – 4.09 (m, 1H), 4.04 – 3.92 (m, 1H), 3.91 – 3.82 (m, 1H), 3.71 – 3.53 (m, 1H), 3.22 (dd, J = 14.1, 11.3 Hz, 1H), 2.85 (dt, J = 14.1, 7.6 Hz, 1H), 2.63 (s, 1H), 2.46 (s, 3H), 2.37 – 2.24 (m,3H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.3, 2.9 Hz, 2H), 7.48 – 7.32 (m, 2H), 7.36 (s, 1H), 6.80 (s, 1H), 4.26 – 4.09 (m, 1H), 4.04 – 3.92 (m, 1H), 3.71 – 3.53 (m, 1H), 3.22 (dd, J = 14.1, 11.3 Hz, 1H), 4.04 – 3.92 (m, 1H), 3.71 – 3.53 (m, 1H), 3.22 (dd, J = 14.1, 11.3 Hz, 1H), 4.04 – 3.92 (m, 1H), 3.91 – 3.82 (m, 1H), 3.71 – 3.53 (m, 2H), 7.36 (s, 1H), 6.80 (s, 1H), 4.26 – 4.09 (m, 1H), 4.04 – 3.92 (m, 1H), 3.91 – 3.53 (m, 1H), 3.22 (dd, J = 14.1, 11.3 Hz, 1H), 2.63 (s, 1H), 2.46 (s, 3H), 2.37 – 2.24 (m, 3H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.3, 2.9 Hz, 2H), 7.48 – 7.32 (m, 2H), 7.36 (s, 1H), 6.80 (s, 1H), 4.26 – 4.09 (m, 1H), 4.04 – 3.92 (m, 1H), 3.91 – 3.82 (m, 1H), 3.71 – 3.53 (m, 1H), 3.22 (dd, J = 14.1, 11.3 Hz, 1H), 2.85 (dt, J = 14.1, 7.6 Hz, 1H), 2.63 (s, 1H), 2.46 (s, 3H), 2.37 – 2.24 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 159.2, 145.5, 143.2, 136.9, 136.5, 136.01, 135.98, 134.0, 132.7, 132.3, 130.2, 129.5, 128.5, 128.0, 125.1, 121.6, 119.3, 115.8, 112.8, 57.5, 57.4, 48.5, 39.5, 39.4, 25.7, 25.6, 21.7, 20.5, 19.4, 16.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃N₂O₄S₂ 419.1094; Found 419.1098.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (29% yield, 38 mg) as a white solid. mp: 257.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 8.6 Hz, 1H), 7.99 – 7.93 (m, 2H), 7.97-7.94 (m, 3H), 7.74 – 7.64 (m, 2H), 7.44 (d, *J* = 7.9 Hz, 2H), 4.96 – 4.90 (m, 1H), 4.82-4.79 (m, 1H), 4.03 (dd, *J* = 14.4, 2.6 Hz, 1H), 3.84 – 3.74 (m, 1H), 3.23-3.21 (m, 1H), 3.13 – 3.02 (m, 1H), 2.51 (s, 3H), 2.34 – 2.20 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 164.2, 145.4, 136.4, 136.3, 133.4, 130.6, 129.8, 129.0, 128.40, 128.35, 127.9, 125.8, 123.2, 119.7, 118.1, 56.7, 55.6, 39.2, 27.4, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃N₂O₆S₂ 441.0937; Found 441.0922.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (44% yield, 58 mg) as a white solid. mp: 255.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.89-7.86 (m, 3H), 7.72 (t, J = 7.5 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 9.0 Hz, 1H), 4.34-4.16 (m, 1H), 4.18 – 4.06 (m, 1H), 3.97 (dd, J = 13.8, 2.6 Hz, 1H), 3.83 – 3.70 (m, 1H), 3.29 (dd, J = 13.7, 11.3 Hz, 1H), 3.06 – 2.91 (m, 1H), 2.51 (s, 3H), 2.46 – 2.30 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 161.4, 145.4, 136.4, 134.7, 134.3, 131.3, 130.6, 129.5, 129.5, 128.4, 127.1, 127.0, 124.3, 116.1, 115.1, 57.0, 49.6, 25.3, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃N₂O₆S₂ 441.0937; Found 441.0939.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (54% yield, 94 mg) as a white solid. mp: 225.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 9.0 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 2H), 7.74 – 7.65 (m, 3H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 3.7 Hz, 1H), 6.88 (d, *J* = 9.1 Hz, 1H), 4.19 – 4.01 (m, 1H), 4.01 – 3.90 (m, 1H), 3.85 (dd, *J* = 14.0, 2.6 Hz, 1H), 3.72 – 3.60 (m, 1H), 3.32 – 3.18 (m, 1H), 2.84-2.76 (m, 1H), 2.42 (s, 3H), 2.31 (s, 3H), 2.29 – 2.21 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.9, 146.0, 145.4, 136.0, 134.4, 132.8, 131.0, 129.7, 127.9, 125.8, 118.3, 112.8, 111.8, 107.7, 57.5, 48.9, 39.6, 25.6, 21.7, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₆N₃O₆S₃ 584.0978; Found 584.0965.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (an inseparable mixture, 60% yield, 83 mg, dr = 1.7:1) as a white solid. The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.79-7.76 (m, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.37 - 7.18 (m, 6H), 7.11 - 7.04 (m, 2H), 6.85 - 6.74 (m, 1H), 5.67 (d, *J* = 8.7 Hz, 1H), 3.92 - 3.80 (m, 1H), 3.78 - 3.63 (m, 1H), 3.41 - 3.22 (m, 1H), 2.88 - 2.72 (m, 1H), 2.69 - 2.56 (m, 1H), 2.40 (s, 3H). The minor isomer: ¹H

NMR (400 MHz, CDCl₃) δ 7.79-7.76 (m, 2H), 7.37 – 7.18 (m, 9H), 6.85 – 6.74 (m, 1H), 5.52 (t, *J* = 8.0 Hz, 1H), 3.92 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 3.41 – 3.22 (m, 2H), 2.40 (s, 3H), 2.11 – 1.99 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 164.1, 161.7, 145.5, 139.0, 137.4, 135.9, 134.5, 133.6, 133.1, 132.7, 130.3, 130.2, 129.7, 129.6, 129.5, 128.8, 128.7, 128.2, 128.0, 127.9, 127.0, 126.7, 125.5, 125.1, 124.8, 124.44, 122.41, 122.0, 117.0, 116.8, 64.9, 63.7, 57.9, 57.0, 38.7, 37.7, 37.3, 36.1, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₃N₂O₄S₂ 467.1094; Found 467.1107.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (an inseparable mixture, 55% yield, 79 mg, dr = 2.1:1) as a white solid. The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.28 (m, 3H), 7.15-7.11 (m, 3H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.83 – 6.78 (m, 1H), 5.61 (d, *J* = 8.4 Hz, 1H), 3.96 – 3.83 (m, 1H), 3.79 – 3.66 (m, 1H), 3.33 – 3.19 (m, 2H), 2.80 – 2.71 (m, 1H), 2.43 (s, 3H), 2.31 (s, 3H), The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 8.3 Hz, 2H), 7.43 – 7.28 (m, 6H), 7.15-7.11 (m, 2H), 6.83 – 6.78 (m, 1H), 5.46 (dd, *J* = 8.8, 7.1 Hz, 1H), 3.96 – 3.83 (m, 1H), 3.79 – 3.66 (m, 1H), 2.70 – 2.61 (m, 2H), 2.43 (s, 3H), 2.30 (s, 3H), 2.11 – 2.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 161.6, 145.5, 138.8, 138.7, 136.0, 135.9, 134.6, 134.2, 133.6, 133.1, 132.7, 130.4, 130.31, 130.26, 130.2, 129.9, 128.2, 128.0, 127.9, 126.9, 126.7, 125.4, 125.0, 124.6, 122.5, 122.1, 116.9, 116.8, 64.9, 63.6, 58.0, 57.1, 38.7, 37.6, 37.5, 36.3, 21.7, 21.2, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₅N₂O₄S₂ 481.1250; Found 481.1263.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (an inseparable mixture, 56% yield, 81 mg, dr = 2.0:1) as a white solid. The

major isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.5 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.42 – 7.37 (m, 1H), 7.37 – 7.29 (m, 2H), 7.08 (dd, J = 8.7, 5.0 Hz, 2H), 7.05 – 6.96 (m, 2H), 6.78 (d, J = 8.4 Hz, 1H), 5.65 (d, J = 8.7 Hz, 1H), 3.92 – 3.82 (m, 1H), 3.76 – 3.64 (m, 1H), 3.33 – 3.20 (m, 1H), 2.84 – 2.73 (m, 1H), 2.43 (s, 3H). The minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.75 (m, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.37 – 7.29 (m, 6H), 7.25 – 7.19 (m, 1H), 7.05 – 6.96 (m, 2H), 6.74 (d, J = 8.2 Hz, 1H), 5.54 – 5.47 (m, 1H), 3.92 – 3.82 (m, 1H), 3.76 – 3.64 (m, 1H), 3.33 – 3.20 (m, 1H), 2.68 – 2.58 (m, 2H), 2.43 (s, 3H), 2.10 – 2.00 (m, 1H).¹³C NMR (125 MHz, CDCl₃) δ 164.0, 162.6 (d, J = 248.4 Hz), 161.5, 145.6, 145.5, 135.9, 135.8, 134.8 (d, J = 3.3 Hz), 134.4, 133.4, 133.1, 132.7, 130.2, 127.9, 127.9, 127.4 (d, J = 8.2 Hz), 127.0, 126.9 (d, J = 8.3 Hz), 126.8, 125.0, 124.6, 122.6, 122.1, 116.8, 116.73 (d, J = 22.0 Hz), 116.71 (d, J = 22.5 Hz), 116.7, 64.3, 63.1, 57.8, 56.6, 38.6, 37.6, 37.5, 36.1, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.16, -112.41. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₂FN₂O₄S₂ 485.1000; Found 485.1019.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (an inseparable mixture, 49% yield, 73 mg, dr = 3.2:1) as a white solid. The major isomer:¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.45 – 7.39 (m, 1H), 7.39 – 7.29 (m, 5H), 7.04 (d, *J* = 8.2 Hz, 2H), 6.78 – 6.68 (m, 1H), 5.62 (d, *J* = 8.7 Hz, 1H), 3.95 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 3.36 – 3.17 (m, 1H), 2.85 – 2.74 (m, 1H), 2.74 – 2.60 (m, 1H), 2.45 (s, 3H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.1 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.29 (m, 6H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.78 – 6.68 (m, 1H), 5.48 (t, *J* = 8.0 Hz, 1H), 3.95 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 5.48 (t, *J* = 8.0 Hz, 1H), 3.95 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 5.48 (t, *J* = 8.0 Hz, 1H), 3.95 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 5.48 (t, *J* = 8.0 Hz, 1H), 3.95 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 5.48 (t, *J* = 8.0 Hz, 1H), 3.95 – 3.80 (m, 1H), 3.78 – 3.63 (m, 1H), 3.36 – 3.17 (m, 2H), 2.45 (s, 3H), 2.13 – 1.97 (m, 1H). ¹³C NMR (125 MHz, CDCl₃ δ 164.0, 161.4, 145.6, 137.4, 135.9, 135.84, 135.76, 134.7, 134.3, 133.4, 133.2, 132.7, 130.3, 129.9, 128.0, 127.9, 127.1, 126.9, 126.2, 125.2, 124.8, 122.6, 122.2, 116.6, 116.5, 64.3, 63.1, 57.8, 57.0, 38.5, 37.5, 37.4, 36.1, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₂CIN₂O₄S₂ 501.0704; Found 501.0714.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 2/1) to afford the title compound (an inseparable mixture, 51% yield, 83 mg, dr = 1.3:1) as a white solid. The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.5 Hz, 1H), 7.75 (d, J = 8.1 Hz, 2H), 7.55 – 7.32 (m, 6H), 7.00 (d, J = 8.1 Hz, 2H), 6.81 – 6.68 (m, 1H), 5.63 (d, J = 8.6 Hz, 1H), 3.98 – 3.83 (m, 1H), 3.82 – 3.62 (m, 1H), 3.40 – 3.13 (m, 1H), 2.89 – 2.76 (m, 1H), 2.75 – 2.64 (m, 1H), 2.47 (s, 3H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.84 (m, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.55 – 7.32 (m, 6H), 7.14 (d, J = 8.0 Hz, 2H), 6.81 – 6.68 (m, 1H), 5.49 (t, J = 8.0 Hz, 1H), 3.98 – 3.83 (m, 1H), 3.82 – 3.62 (m, 1H), 3.40 – 3.13 (m, 2H), 2.47 (s, 3H), 2.14 – 2.03 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 164.0, 161.4, 145.6, 138.0, 136.3, 135.9, 135.8, 134.3, 133.4, 133.2, 132.9, 132.9, 132.8, 130.3, 127.9, 127.9, 127.2, 127.1, 126.8, 125.2, 124.8, 122.8, 122.6, 122.1, 116.6, 116.5, 64.3, 63.2, 57.8, 57.0, 38.6, 37.5, 37.3, 36.0, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₂BrN₂O₄S₂ 545.0199; Found 545.0186.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (58% yield, 72 mg) as a white solid. mp: 241.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 7.8, 1.6 Hz, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.64-7.60 (m, 1H), 7.47-7.43 (m, 2H), 7.40 (d, J = 8.0 Hz, 2H), 3.95 (dd, J = 14.0, 2.6 Hz, 1H), 3.76 – 3.65 (m, 1H), 3.19 (dd, J = 13.9, 11.3 Hz, 1H), 2.83 (dd, J = 13.1, 8.2 Hz, 1H), 2.47 (s, 3H), 2.14 (t, J = 12.7 Hz, 1H), 1.83 (s, 3H), 1.71 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.9, 145.5, 136.1, 133.8, 132.7, 130.2, 127.9, 126.6, 125.9, 123.0, 116.1, 67.7, 57.6, 44.3, 36.8, 28.4, 23.9, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃N₂O₄S₂ 419.1094; Found 419.1098.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (47% yield, 57 mg) as a white solid. mp: 194.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.54 – 7.46 (m, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 1H), 4.12 – 4.02 (m, 1H), 3.99 – 3.89 (m, 1H), 3.46 (d, *J* = 14.4 Hz, 1H), 3.38 (d, *J* = 14.3 Hz, 1H), 2.87 – 2.74 (m, 1H), 2.28 (s, 3H), 2.25 – 2.17 (m, 1H), 1.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 145.2, 137.3, 134.4, 133.2, 130.1, 127.6, 126.8, 124.6, 121.7, 115.8, 62.2, 47.3, 46.8, 29.8, 25.1, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₄S₂ 405.0937; Found 405.0950.

After stirring at 30 °C for 18 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (43% yield, 55 mg) as a white solid. mp: 230.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 7.9, 1.5 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.71– 7.62 (m, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.6 Hz, 2H), 7.13 (d, J = 8.3 Hz, 1H), 4.33-4.29 (m, 1H), 4.13 – 4.07 (m, 1H), 4.04-4.00 (m, 1H), 3.41 – 3.31 (m, 1H), 2.38 (s, 3H), 2.36 – 2.25 (m, 1H), 2.24 – 2.13 (m, 2H), 2.09 – 1.88 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 145.1, 136.4, 134.7, 133.0, 130.0, 128.0, 126.8, 125.1, 122.2, 115.4, 69.5, 57.0, 47.8, 41.1, 27.1, 26.4, 22.1, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₃N₂O₄S₂ 431.1094; Found 431.1104.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (an inseparable mixture, 26% yield, 49 mg, dr = 1.4:1) as a white solid. The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.0 Hz, 2H), 7.40 – 7.27 (m, 9H), 6.93 (s, 1H), 5.31 – 4.94 (m, 2H), 4.62 – 4.44 (m, 1H), 4.15 – 4.03 (m, 1H), 3.96 – 3.86 (m, 1H), 3.85 – 3.76 (m, 1H), 3.70 – 3.49 (m, 3H), 3.33 – 3.11 (m, 1H), 2.84 – 2.70 (m, 1H), 2.45 (s, 3H), 2.41 – 2.31 (m, 1H), 2.29 – 2.13 (m, 2H), 2.11 – 1.90 (m, 2H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 2.4 Hz, 1H), 7.53 (s, 1H), 7.40 – 7.27 (m, 8H), 7.00 (d, J = 9.1 Hz, 1H), 5.31 – 4.94 (m, 2H), 4.62 – 4.44 (m, 1H), 4.15 – 4.03 (m, 1H), 3.96 – 3.86

(m, 1H), 3.85 - 3.76 (m, 1H), 3.70 - 3.49 (m, 3H), 3.33 - 3.11 (m, 1H), 2.84 - 2.70 (m, 1H), 2.45 (s, 3H), 2.41 - 2.31 (m, 1H), 2.29 - 2.13 (m, 2H), 2.11 - 1.90 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.8, 161.6, 161.6, 155.0, 154.1, 148.44, 148.42, 148.2, 145.52, 145.48, 136.5, 136.3, 135.94, 135.91, 132.1, 132.0, 130.3, 128.7, 128.5, 128.3, 128.2, 128.1, 127.98, 127.97, 127.8, 127.22, 127.19, 127.0, 122.5, 122.3, 117.6, 116.8, 116.7, 67.4, 67.2, 59.4, 58.8, 57.4, 48.2, 47.1, 46.6, 39.59, 39.56, 31.02, 29.96, 25.5, 24.6, 23.7, 21.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₃₂N₃O₈S₂ 638.1625; Found 638.1604.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (69% yield, 77 mg) as a white solid. mp: 220.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.92 (m, 3H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.70 – 7.61 (m, 3H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 4.23 (t, *J* = 9.6 Hz, 1H), 4.08-4.01 (m, 1H), 3.97-3.92 (m, 1H), 3.79 – 3.69 (m, 1H), 3.29 (dd, *J* = 14.0, 11.2 Hz, 1H), 3.01 – 2.89 (m, 1H), 2.43 – 2.30 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 139.0, 134.4, 133.3, 129.7, 128.0, 127.0, 125.3, 122.0, 115.1, 57.4, 48.3, 39.5, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₇N₂O4S₂ 377.0624; Found 377.0633.

After stirring at 30 °C for 18 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (58% yield, 70 mg) as a white solid. mp:208.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.87 (d, J = 8.9 Hz, 2H), 7.63 (t, J = 7.9 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.12 – 7.03 (m, 3H), 4.20-4.12 (m, 1H), 4.03-3.98 (m, 1H), 3.91 (s, 3H), 3.86 (dd, J = 14.0, 2.6 Hz, 1H), 3.71 – 3.61 (m, 1H), 3.24 (dd, J = 14.1, 11.1 Hz, 1H), 2.90 – 2.81 (m, 1H), 2.36 – 2.25 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 161.6, 134.4, 133.3, 130.4, 130.2, 127.0, 125.1, 121.9, 115.2, 114.8, 57.7, 55.8, 48.3, 39.7, 25.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O₅S₂ 407.0730; Found 407.0731.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (66% yield, 82 mg) as a white solid. mp: 217.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.48 – 7.43 (m, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.09 (dd, *J* = 8.4, 1.0 Hz, 1H), 4.22-4.18 (m, 1H), 4.04-3.99 (m, 1H), 3.89 (dd, *J* = 14.0, 2.6 Hz, 1H), 3.72-3.66 (m, 1H), 3.32 – 3.14 (m, 1H), 2.97 – 2.83 (m, 1H), 2.70 (t, *J* = 7.8 Hz, 2H), 2.40 – 2.23 (m, 1H), 1.76 – 1.65 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 150.1, 136.2, 134.4, 133.3, 129.7, 128.0, 127.0, 125.2, 122.0, 115.1, 57.5, 48.3, 39.6, 38.0, 25.8, 24.2, 13.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃N₂O₄S₂ 419.1094; Found 419.1099.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (67% yield, 86 mg) as a white solid. mp: 236.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.68 – 7.56 (m, 3H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 8.3 Hz, 1H), 4.19 (t, *J* = 9.5 Hz, 1H), 4.04-3.97 (m, 1H), 3.91 – 3.82 (m, 1H), 3.72 – 3.61 (m, 1H), 3.22 (dd, *J* = 14.0, 11.3 Hz, 1H), 2.92 (dt, *J* = 14.7, 7.9 Hz, 1H), 2.42 – 2.27 (m, 1H), 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 158.5, 135.8, 134.4, 133.3, 127.8, 127.0, 126.7, 125.2, 122.0, 115.1, 57.5, 48.3, 39.6, 35.4, 31.1, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₅N₂O₄S₂ 433.1250; Found 433.1243.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (51% yield, 69 mg) as a white solid. mp: 225.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.8 Hz, 2H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 2H), 7.67 – 7.62 (m, 3H), 7.56 – 7.41 (m, 4H), 7.10 (d, *J* = 8.4 Hz, 1H), 4.21 (t, *J* = 9.7 Hz, 1H), 4.08 – 3.98 (m, 1H), 3.95 (dd, *J* = 14.1, 2.5 Hz, 1H), 3.79

 $-3.66 \text{ (m, 1H)}, 3.32 \text{ (dd, } J = 14.0, 11.2 \text{ Hz}, 1\text{H}), 3.01 - 2.84 \text{ (m, 1H)}, 2.43 - 2.26 \text{ (m, 1H)}. {}^{13}\text{C NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 161.5, 147.3, 139.0, 137.3, 134.4, 133.3, 129.2, 128.8, 128.5, 128.3, 127.5, 127.0, 125.2, 121.9, 115.1, 57.5, 48.3, 39.6, 25.7. \text{HRMS} (ESI) m/z: [M + H]^+ Calcd for C_{23}H_{21}N_2O_4S_2 453.0937; Found 453.0933.$

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (58% yield, 68 mg) as a white solid. mp: 227.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.94 (m, 3H), 7.75 – 7.68 (m, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.38 – 7.31 (m, 2H), 7.13 (d, *J* = 8.3 Hz, 1H), 4.32 – 4.20 (m, 1H), 4.10-4.03 (m, 1H), 3.96 (dd, *J* = 14.0, 2.7 Hz, 1H), 3.85 – 3.72 (m, 1H), 3.30 (dd, *J* = 14.0, 11.0 Hz, 1H), 3.07 – 2.91 (m, 1H), 2.47 – 2.30 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 165.8 (d, *J* = 253.5 Hz), 162.6, 135.6 (d, *J* = 3.0 Hz), 134.9, 133.9, 131.7 (d, *J* = 10.0 Hz), 127.1, 124.5, 121.8, 117.4 (d, *J* = 22.7 Hz), 116.9, 57.0, 48.9, 39.9, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.99. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆FN₂O₄S₂ 399.0530; Found 399.0542.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (67% yield, 82 mg) as a white solid. mp: 211.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 2H), 7.70 (t, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.12 (d, *J* = 8.3 Hz, 1H), 4.25 (t, *J* = 9.6 Hz, 1H), 4.06 (td, *J* = 9.9, 7.1 Hz, 1H), 4.09-3.94 (m, 1H), 3.82 – 3.71 (m, 1H), 3.30 (dd, *J* = 14.0, 11.0 Hz, 1H), 3.03 – 2.91 (m, 1H), 2.51 – 2.24 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.2, 141.3, 137.4, 134.3, 133.3, 130.0, 129.5, 127.1, 125.4, 122.1, 115.0, 57.5, 48.2, 39.4, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆ClN₂O₄S₂ 411.0235; Found 411.0240.

SI-27

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (57% yield, 77 mg) as a white solid. mp: 219.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.81 (m, 3H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 4.18-4.12 (m, 1H), 4.04-3.97 (m, 1H), 3.85 (dd, *J* = 14.1, 2.5 Hz, 1H), 3.74 – 3.61 (m, 1H), 3.28 (dd, *J* = 14.1, 11.0 Hz, 1H), 2.83-2.76 (m, 1H), 2.33 – 2.17 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 137.9, 134.3, 133.2, 132.0, 129.7, 129.6, 126.9, 124.9, 121.7, 115.3, 57.4, 48.3, 39.5, 25.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆BrN₂O₄S₂ 454.9729; Found 454.9744.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (58% yield, 77 mg) as a white solid. mp: 217.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.1 Hz, 2H), 7.94 – 7.83 (m, 3H), 7.63 (t, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 4.24 – 4.13 (m, 1H), 4.09 – 3.99 (m, 1H), 3.93 (dd, *J* = 14.0, 2.6 Hz, 1H), 3.80 – 3.67 (m, 1H), 3.31 (dd, *J* = 14.0, 10.9 Hz, 1H), 2.96 – 2.85 (m, 1H), 2.41 – 2.25 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.1, 142.5, 136.0 (q, *J* = 33.2 Hz), 134.3, 128.7, 127.1, 126.8 (q, *J* = 3.6 Hz), 125.2, 123.0 (q, *J* = 275.7 Hz), 121.9, 115.1, 57.4, 48.3, 39.3, 25.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.25. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₆F₃N₂O₄S₂ 445.0498; Found 445.0510.

4j

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (70% yield, 81 mg) as a white solid. mp: 243.4 °C.¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 7.9, 1.5 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.71 – 7.64 (m, 1H), 7.54 – 7.47 (m, 3H), 7.15 – 7.06 (m, 1H), 4.26-4.20 (m, 1H), 4.07-4.01 (m, 1H), 3.94 (dd, J = 14.0, 2.6 Hz, 1H), 3.80 – 3.62 (m, 1H), 3.26 (dd, J = 14.0, 11.2 Hz, 1H), 3.05 – 2.82 (m, 1H), 2.50 (s, 3H), 2.45 – 2.29 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 140.1, 138.8, 135.2, 134.4, 133.3, 129.5, 128.2, 127.1, 125.4, 125.0, 122.1, 114.9, 57.4, 48.3, 39.5, 25.8, 21.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O₄S₂ 391.0781; Found 391.0776.

4k

41

4m

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (56% yield, 66 mg) as a white solid. mp: 236.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.74 – 7.62 (m, 3H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 4.36 – 4.21 (m, 1H), 4.12 – 4.03 (m, 1H), 3.99 (dd, *J* = 13.9, 2.7 Hz, 1H), 3.81-3.74 (m, 1H), 3.31 (dd, *J* = 14.0, 11.2 Hz, 1H), 3.07 – 2.91 (m, 1H), 2.47 – 2.31 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 162.5, 162.4 (d, *J* = 249.5 Hz), 141.3 (d, *J* = 6.7 Hz), 134.9, 133.9, 132.6 (d, *J* = 7.9 Hz), 127.1, 124.6 (d, *J* = 3.1 Hz), 124.5, 122.0 (d, *J* = 21.2 Hz), 121.8, 116.9, 115.6 (d, *J* = 24.5 Hz), 56.7, 48.9, 39.8, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.12. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆FN₂O₄S₂ 395.0530; Found 395.0540.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (67% yield, 82 mg) as a white solid. mp: 211.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, *J* = 5.6, 2.8 Hz, 2H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.74 – 7.65 (m, 2H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 4.24 (t, *J* = 9.6 Hz, 1H), 4.10-4.03 (m, 1H), 3.98-3.93 (m, 1H), 3.85 – 3.69 (m, 1H), 3.30 (dd, *J* = 14.0, 11.1 Hz, 1H), 3.04 – 2.87 (m, 1H), 2.45 – 2.27 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.1, 140.7, 135.9, 134.6, 134.3, 133.3, 131.1, 128.1, 127.1, 126.1, 125.3, 122.0, 115.0, 57.5, 48.3, 39.4, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆ClN₂O₄S₂ 411.0235; Found 411.0248.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (62% yield, 84 mg) as a white solid. mp: 223.2 °C.¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 7.5, 2.0 Hz, 1H), 8.10 – 7.96 (m, 1H), 7.94 – 7.80 (m, 1H), 7.75 – 7.65 (m, 1H), 7.62 – 7.55 (m, 2H), 7.55 – 7.49 (m, 1H), 7.12 (d, J = 8.4 Hz, 1H), 4.32 – 4.18 (m, 2H), 4.08-4.10 (m, 1H), 3.91 – 3.79 (m, 1H), 3.66 (dd,

J= 13.9, 11.2 Hz, 1H), 3.02 – 2.88 (m, 1H), 2.48 – 2.32 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.2, 138.4, 135.81, 135.3, 134.4, 133.3, 131.7, 128.3, 127.1, 125.3, 122.1, 121.1, 115.0, 55.4, 48.2, 39.4, 25.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆BrN₂O₄S₂ 454.9729; Found 454.9721.

4n

40

After stirring at 30 °C for 18 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (55% yield, 70 mg) as a white solid. mp: 239.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.08 (dd, *J* = 13.5, 8.3 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.95 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.78 – 7.62 (m, 3H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 4.25 (t, *J* = 9.6 Hz, 1H), 4.11 – 3.98 (m, 2H), 3.89 – 3.68 (m, 1H), 3.37 (dd, *J* = 14.1, 11.2 Hz, 1H), 3.09 – 2.95 (m, 1H), 2.50 – 2.34 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 135.8, 135.6, 134.4, 133.3, 132.2, 130.1, 130.0, 129.7, 129.5, 128.1, 128.0, 127.1, 125.3, 122.1, 122.0, 115.0, 57.4, 48.3, 39.6, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₉N₂O₄S₂ 427.0781; Found 427.0794.

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (56% yield, 64 mg) as a white solid. mp: 232.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 1H), 7.83-7.81 (m, 2H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.25 (t, *J* = 4.4 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 4.24 (t, *J* = 9.5 Hz, 1H), 4.15 – 3.97 (m, 2H), 3.86 – 3.69 (m, 1H), 3.45-3.38 (m, 1H), 2.99-2.93 (m, 1H), 2.44 – 2.31 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.1, 139.7, 134.9, 134.7, 134.3, 133.3, 128.4, 127.1, 125.4, 122.1, 115.0, 59.0, 48.2, 39.8, 25.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₅N₂O₄S₃ 383.0188; Found 383.0194.

4p

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (63% yield, 59 mg) as a white solid. mp: 209.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 7.9 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 4.22 (t, *J* = 9.5 Hz, 1H), 4.09-4.04 (m, 1H), 3.94 (dd, *J* = 13.8, 2.8 Hz, 1H), 3.89 – 3.78 (m, 1H), 3.26 (dd, *J* = 13.9, 10.4 Hz, 1H), 3.10 (s, 3H), 2.96 – 2.85 (m, 1H), 2.37 – 2.23 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 134.4, 133.3, 127.1, 125.2, 121.9, 115.1, 55.5, 48.3, 42.5, 39.1, 25.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₅N₂O₄S₂ 315.0468; Found 315.0472

4q

After stirring at 30 °C for 12 hours, the residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether: 1/1) to afford the title compound (67% yield, 66 mg) as a white solid. mp: 218.9 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.68 (t, *J* = 7.9 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 4.24-4.19 (m, 1H), 4.08-4.03 (m, 1H), 3.91 – 3.74 (m, 2H), 3.24 – 3.10 (m, 3H), 2.98 – 2.87 (m, 1H), 2.37 – 2.22 (m, 1H), 1.48 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.7, 134.4, 133.3, 127.1, 125.2, 122.0, 115.1, 52.7, 49.1, 48.3, 38.8, 26.0, 6.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₇N₂O₄S₂ 329.0624; Found 329.0602.

V. Scale-up Reaction and Synthetic Transformations

1) Scale-up Reaction for Preparation of Product 3aa

In an undivided cell (250 mL) equipped with a stir bar, a mixture of *N*-aryl cyanamides **1** (4.6 mmol, 0.791 g), TsNHNH₂ **2a** (13.8 mmol, 3 equiv.), Na₂S₂O₅ (13.8 mmol, 3 equiv.), MeSO₃H (23 mmol) and MeCN/H₂O (v/v = 1/1, 112 mL) were added. The cell was equipped with graphite plate anode ($15 \times 15 \times 0.2$ cm), and graphite plate cathode ($15 \times 15 \times 0.2$ cm), then connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 40 mA at 30 °C for 60 h. When the reaction was finished, the mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether) to provide the desired products **3aa** (57% yield, 1.02 g).

2) Synthetic Transformations

Reaction conditions: (a) DIBAL-H, toluene, reflux 10 h; (b) Allyl bromide, NaH, THF, 60 °C, 12 h; (c) Vinylmagnesium bromide, THF, rt, overnight

To solution of (0.2 mmol) in THF in a dried tube was added DIBAL-H (1.3 equiv.) dropwise at rt, then the reaction mixture was warmed to reflux and allowed to proceed for 10 h. The resulting mixture was cooled to rt and

quenched by addition the solution of ammonium chloride (aq.). The aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography on a silica gel column (EtOAc/petroleum ether = 1/2) to afford a white solid **5** (65 mg, 83%, dr = 4.0/1, an inseparable mixture). The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.38 (m, 3H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.61 (d, *J* = 8.5 Hz, 1H), 4.83 (dd, *J* = 13.2, 9.2 Hz, 1H), 4.18 (d, *J* = 13.2 Hz, 1H), 3.66 – 3.52 (m, 2H), 3.45 (q, *J* = 9.2 Hz, 1H), 3.18 (dd, *J* = 13.9, 10.8 Hz, 1H), 2.80 (dt, *J* = 13.5, 6.9 Hz, 1H), 2.70 – 2.61 (m, 1H), 2.50 (s, 3H), 2.09 – 1.94 (m, 1H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 3.66 – 3.52 (m, 2H), 3.45 (q, *J* = 9.2 Hz, 1H), 3.15 – 3.07 (m, 1H), 2.50 (s, 3H), 2.40 – 2.33 (m, 1H), 2.29 – 2.19 (m, 1H), 2.09 – 1.94 (m, 1H). ¹³C NMR (100 MHz, DMSO) δ 145.14, 145.08, 142.7, 141.9, 136.9, 134.1, 133.8, 130.5, 128.23, 128.15, 124.5, 124.4, 122.7, 120.6, 117.1, 116.1, 115.6, 113.8, 74.1, 71.7, 56.7, 54.9, 47.7, 46.2, 38.6, 36.0, 28.5, 27.6, 21.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁N₂O₄S₂ 393.0937; Found 393.0945.

To solution of **3aa** (0.2 mmol) in THF in a dried tube was added vinylmagnesium bromide (1.3 equiv., 1 *M* in THF) at 0 °C, Then, the mixture was stirred at rt for overnight. Upon completion, the reaction was quenched with saturated ammonium chloride solution (aq.) and the mixture was extracted with DCM. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄. The organic layer was then concentrated under vacuum. The crude product was purified by chromatography on a silica gel column (EtOAc/petroleum ether = 1/3) to afford product **6** as a yellow solid. (59 mg, 71%, dr = 7/1, an inseparable mixture). The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.52 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.35 – 7.30 (m, 3H), 6.79 – 6.66 (m, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 5.69 (dd, *J* = 17.0, 10.3 Hz, 1H), 5.22 (d, *J* = 10.3 Hz, 1H), 4.88 (d, *J* = 16.9 Hz, 1H), 4.81 (s, 1H), 3.57 (t, *J* = 9.2 Hz, 1H), 3.44 – 3.31 (m, 2H), 2.90 (dd, *J* = 13.7, 11.2 Hz, 1H), 2.65 – 2.52 (m, 2H), 2.40 (s, 3H), 1.94 – 1.73 (m, 1H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.62 – 7.58 (m, 1H), 7.35-7.29 (m, 3H), 6.79 – 6.75 (m, 1H), 3.44 – 3.31 (m, 2H), 2.65 – 2.52 (m, 1H), 2.35 (s, 3H), 2.28 – 2.20 (m, 2H), 4.69 (s, 1H), 3.57 (t, *J* = 9.2 Hz, 1H), 3.44 – 3.31 (m, 2H), 2.65 – 2.52 (m, 1H), 2.35 (s, 3H), 2.28 – 2.20 (m, 2H), 1.94 – 1.73 (m, 1H). ¹³C NMR (100 MHz, DMSO) δ 144.4, 139.1, 135.1, 133.2, 132.8, 129.3, 128.7, 126.7, 125.4, 124.1, 120.1,

118.4, 116.1, 112.2, 79.8, 54.9, 45.3, 44.0, 30.4, 29.2, 24.6, 21.7, 20.7, 13.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃N₂O₄S₂ 419.1094; Found 419.1098.

To a solution of a solution of 5 (0.10 mmol) and NaH (1.3 equiv.) in dry THF (2 mL), was added allyl bromide (1.2 equiv.). The resulting mixture was heated to 60 °C and allowed to proceed for 12 h. The resulting mixture was cooled to rt and quenched by dropwise addition the solution of ammonium chloride (aq). The aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography on a silica gel column (EtOAc/petroleum ether = 1/4) to afford an inseparable mixture as white solid (29 mg, 68%, dr = 4.3/1). The major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.70 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 – 7.40 (m, 3H), 6.85 (t, J = 7.6 Hz, 1H), 6.62 (d, J = 8.4 Hz, 1H), 5.77 - 5.63 (m, 1H), 5.35 - 5.19 (m, 2H), 5.11 (d, J = 10.2 Hz, 1H), 3.72 (dd, J = 16.8, 5.1 Hz, 1H), 3.64 (t, J = 9.2 Hz, 1H), 3.55 (dd, J = 13.8, 2.3 Hz, 1H), 3.47 - 3.30 (m, 2H), 3.15 (dd, J = 13.6, 11.2 Hz, 1H), 3.05 - 2.91 (m, 1H), 2.85-2.76 (m, 1H), 2.52 (s, 3H), 2.14 - 1.94 (m, 1H). The minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.70 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.34 (d, J = 8.1 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 6.62 (d, J = 8.4 Hz, 1H), 6.02 - 5.81 (m, 1H), 5.35 - 5.19 (m, 2H), 5.35 (5.11 (d, J = 10.2 Hz, 1H), 3.72 (dd, J = 16.8, 5.1 Hz, 1H), 3.64 (t, J = 9.2 Hz, 1H), 3.55 (dd, J = 13.8, 2.3 Hz, 1H), 3.47 - 3.30 (m, 1H), 3.05 - 2.91 (m, 1H), 2.82 (dt, J = 13.4, 6.8 Hz, 1H), 2.52 (s, 3H), 2.41 - 2.35 (m, 1H), 2.14 - 2.35 (m, 1H), 2.14 - 2.35 (m, 1H), 2.14 - 2.35 (m, 2H), 2.14 - 2.351.94 (m, 2H). ¹³C NMR (100 MHz, DMSO) δ 145.2, 141.2, 136.7, 134.6, 134.5, 130.5, 128.3, 125.8, 117.9, 117.3, 116.6, 113.7, 79.7, 77.8, 58.0, 56.6, 46.0, 45.3, 35.9, 27.5, 23.5, 21.6, 19.7, 14.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₅N₂O₄S₂ 433.1250; Found 433.1259.

VI. Control Experiments

Characterization of BHT-1a-CF₃ additive compound 8 by mass spectrometry

Reaction mixture was analyzed on a LC/MS (Agilent 1290 Infinity LC System connected to the Bruker micrOTOF-QII MS instrument). The high resolution mass spectrometry was performed to confirm the elemental compositions of additive compound **8**: HRMS (ESI) m/z: $[M + Na]^+$ For C₂₂H₃₀NaO₃S, 397.1813, Found: 397.1806.

 $\begin{array}{c} \mathsf{C}(+)/\mathsf{C}(\cdot), \ U_{cell} = 1.5 \ \mathsf{V} \\ \textbf{1aa} + \mathsf{TsNHNH}_2 \cdot \mathsf{MsOH} & \underbrace{ \begin{array}{c} \mathsf{undivided cell} \\ \mathsf{Na}_2 \mathsf{S}_2 \mathsf{O}_5 \ (3 \ \mathsf{equiv.}) \\ \mathsf{MsOH} \ (2 \ \mathsf{equiv.}) \\ \mathsf{MeCN/H}_2 \mathsf{O} \ (1/1) \\ \mathfrak{30} \ ^\circ \mathsf{C}, \ 12 \ \mathsf{h} \end{array}} & \begin{array}{c} \textbf{3aa} \\ \textbf{32\% \ \mathsf{yield}} \\ \textbf{32\% \ \mathsf{yield}} \end{array} & \begin{array}{c} \mathsf{eq} \mathsf{-3} \\ \mathsf{eq} \mathsf{-3} \\ \mathsf{ad} \mathsf{C} \mathsf{C} \\ \mathsf{ad} \mathsf{C} \mathsf{C} \\ \mathsf{C} \\$

Preparation of compound **9**: to a solution of a solution of **2a** (1.0 mmol) in dry ether (4 mL), was added methanesulfonic acid (1.1 equiv.) at 0 °C. The mixture was stirred at rt for 2 h. Upon completion, the solution was filtered and the residue was washed with ether to afford a white solid **9** (260 mg, 92%). ¹H NMR (400 MHz, D₂O) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 2.71 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, D₂O) δ 146.4, 131.6, 130.3, 127.9, 38.4, 20.8. HRMS (ESI) m/z: [M-(CH₃SO₃⁻)]⁺ Calcd for C₇H₁₁N₂O₂S⁺ 187.0536; Found 187.0530.

Procedure of eq-3: in an undivided flask (20 mL) equipped with a stir bar, a mixture of *N*-aryl cyanamide **1aa** (0.3 mmol), **9** (0.9 mmol), Na₂S₂O₅ (0.9 mmol), MeSO₃H (1.5 mmol) and MeCN/H₂O (v/v = 1/1, 10 mL) were added. The cell was equipped with graphite rod anode (Φ 6 mm) and graphite plate cathode (1.5×1.5×0.2 cm), then connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant voltage of 1.5 V at 30 °C for 12 h. When the reaction was finished, the mixture was extracted with EtOAc (10 mL× 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, EtOAc/Petroleum ether) to provide the desired products **3aa** in 32% yield.

VII. Cyclic Voltammetry (CV) Experiments

Cyclic voltammetry experiments were carried out in DY2113 potentiostat (Digi Ivy). Working electrode: glassy

carbon, counter electrode: Pt wire, reference electrode: SCE.

Figure S1. CV analysis. (a) blank (black line): ^{*n*}Bu₄NPF₆ (0.1 M) in acetonitrile and H₂O (1/1); **1a** (red line): $E_{ox} = 1.77$ V; **2a** (blue line): $E_{ox} = 1.36$ V; **3aa** (green line). (b) blank (black line): ^{*n*}Bu₄NPF₆ (0.1 M) in acetonitrile and H₂O (1/1); MsOH (red line); **1a** and MsOH (blue line): $E_{ox} = 1.77$ V; **2a** and MsOH (green line). (c) blank (black line): ^{*n*}Bu₄NPF₆ (0.1 M) in acetonitrile and H₂O (1/1); **2a** (red line): $E_{ox} = 1.36$ V; Na₂S₂O₅ (blue line): $E_{ox} = 1.46$ V; **2a** and MsOH (green line); **Na₂S₂O₅** and MsOH (purple line): $E_{ox} = 1.31$ V; **2a**, Na₂S₂O₅ and MsOH (orange line): $E_{ox} = 1.48$ V. Scan rate: 50 mV/s.

VIII. References

- 1. Z. Li, L. Jiao, Y. Sun, Z. He, Z. Wei and W.-W. Liao, Angew. Chem. Int. Ed., 2020, 59, 7266-7270..
- 2. D. Chen, M. Ji and C. Zhu, Chem. Commun., 2019, 55, 7796-7799.
- 3. Z. Li, Y.-H. Wu, J.-M. Xi, Z.-L. Wei and W.-W. Liao, Org. Lett., 2021, 23, 9591-9596.
- 4. Z. Pan, S. Wang, J. T. Brethorst and C. J. Douglas, J. Am. Chem. Soc., 2018, 140, 3331-3338.

IX. Crystal Data and Structure Refinement for Compounds 3a

CCDC number: 2216999

X-ray crystal structure of compound **3aa**. Single crystal of **3aa** was obtained by slow evaporation of Petroleum ether/EtOAc solution. Crystal measurement of **3aa** was measured on R-Axis RAPID of Rigaku Corporation plus 291.2 k. Thermal ellipsoids are set at 30% probability.

Table S- crystal-1	Crystal data and structure refiner	nent for 3aa .	
Identification code		3aa	
Empirical formula		C18 H18 N2 O4 S2	
Formula weight		390.46	
Temperature		293(2) K	
Wavelength		0.71073 Å	
Crystal system		Monoclinic	
Space group		P21/c	
Unit cell dimension	s	a = 13.181(2) Å	α= 90°.
		b = 8.8095(17) Å	β= 105.852(7)°.
		c = 16.111(3) Å	$\gamma = 90^{\circ}.$
Volume		1799.6(6) Å ³	
Z		4	
Density (calculated))	1.441 Mg/m ³	
Absorption coefficie	ent	0.323 mm ⁻¹	
F(000)		816	
Crystal size		0.200 x 0.190 x 0.170 mm	3
Theta range for data	a collection	2.628 to 27.593°.	
Index ranges		-17<=h<=17, -11<=k<=11	, -20<=1<=20
		31-37	

Reflections collected	60544
Independent reflections	4144 [R(int) = 0.0676]
Completeness to theta = 25.242°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4144 / 0 / 212
Goodness-of-fit on F ²	0.657
Final R indices [I>2sigma(I)]	R1 = 0.0383, wR2 = 0.1103
R indices (all data)	R1 = 0.0420, wR2 = 0.1163
Extinction coefficient	n/a
Largest diff. peak and hole	0.445 and -0.380 e.Å ⁻³

Table S- crystal-2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3)

for Y. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
C(1)	11002(2)	6961(3)	5662(2)	52(1)
C(2)	10321(1)	7377(2)	4769(1)	35(1)
C(3)	9441(1)	8298(2)	4679(1)	38(1)
C(4)	8811(1)	8664(1)	3862(1)	32(1)
C(5)	9060(1)	8111(1)	3134(1)	24(1)
C(6)	9940(1)	7190(2)	3223(1)	34(1)
C(7)	10570(1)	6823(2)	4041(1)	41(1)
C(8)	7011(1)	7675(2)	2011(1)	25(1)
C(9)	7005(1)	6002(2)	1784(1)	25(1)
C(10)	7560(1)	4883(2)	2489(1)	34(1)
C(11)	7028(1)	3375(2)	2162(1)	35(1)
C(12)	5903(1)	5349(2)	1493(1)	23(1)
C(13)	4166(1)	3415(1)	834(1)	24(1)

C(14)	3380(1)	2425(1)	397(1)	29(1)
C(15)	3554(1)	868(1)	450(1)	36(1)
C(16)	4515(1)	300(1)	941(1)	41(1)
C(17)	5302(1)	1290(1)	1378(1)	36(1)
C(18)	5128(1)	2847(1)	1324(1)	25(1)
N(1)	5095(1)	6129(2)	1057(1)	27(1)
N(2)	5943(1)	3864(2)	1712(1)	25(1)
O(1)	8038(1)	10194(2)	2101(1)	34(1)
O(2)	8698(1)	7964(2)	1459(1)	33(1)
O(3)	3476(1)	5682(2)	1538(1)	38(1)
O(4)	3340(1)	5859(2)	-3(1)	37(1)
S(1)	8248(1)	8583(1)	2110(1)	24(1)
S(2)	3935(1)	5368(1)	842(1)	24(1)

Table S- crystal-3 Bond lengths [Å] and angles $[\circ]$ for Y.

C(1)-C(2)	1.518(2)
C(2)-C(3)	1.3900
C(2)-C(7)	1.3900
C(3)-C(4)	1.3900
C(4)-C(5)	1.3900
C(5)-C(6)	1.3900
C(5)-S(1)	1.7530
C(6)-C(7)	1.3900
C(8)-C(9)	1.518(2)
C(8)-S(1)	1.7839(16)
C(9)-C(12)	1.512(2)
C(9)-C(10)	1.530(2)
C(10)-C(11)	1.528(3)

C(11)-N(2)	1.479(2)
C(12)-N(1)	1.301(2)
C(12)-N(2)	1.352(2)
C(13)-C(14)	1.3900
C(13)-C(18)	1.3900
C(13)-S(2)	1.7477
C(14)-C(15)	1.3900
C(15)-C(16)	1.3900
C(16)-C(17)	1.3900
C(17)-C(18)	1.3900
C(18)-N(2)	1.4076(16)
N(1)-S(2)	1.6182(15)
O(1)-S(1)	1.4452(14)
O(2)-S(1)	1.4454(13)
O(3)-S(2)	1.4385(14)
O(4)-S(2)	1.4398(14)
C(3)-C(2)-C(7)	120.0
C(3)-C(2)-C(1)	119.98(13)
C(7)-C(2)-C(1)	120.01(13)
C(4)-C(3)-C(2)	120.0
C(3)-C(4)-C(5)	120.0
C(6)-C(5)-C(4)	120.0
C(6)-C(5)-S(1)	120.94(6)
C(4)-C(5)-S(1)	119.05(6)
C(5)-C(6)-C(7)	120.0
C(6)-C(7)-C(2)	120.0
C(9)-C(8)-S(1)	113.68(12)
C(12)-C(9)-C(8)	112.70(14)
C(12)-C(9)-C(10)	102.06(13)

C(8)-C(9)-C(10)	118.48(15)
C(11)-C(10)-C(9)	102.89(14)
N(2)-C(11)-C(10)	101.93(14)
N(1)-C(12)-N(2)	128.31(15)
N(1)-C(12)-C(9)	122.78(15)
N(2)-C(12)-C(9)	108.78(14)
C(14)-C(13)-C(18)	120.0
C(14)-C(13)-S(2)	120.91(6)
C(18)-C(13)-S(2)	118.93(6)
C(13)-C(14)-C(15)	120.0
C(16)-C(15)-C(14)	120.0
C(17)-C(16)-C(15)	120.0
C(16)-C(17)-C(18)	120.0
C(17)-C(18)-C(13)	120.0
C(17)-C(18)-N(2)	120.50(9)
C(13)-C(18)-N(2)	119.34(9)
C(12)-N(1)-S(2)	118.88(12)
C(12)-N(2)-C(18)	121.96(13)
C(12)-N(2)-C(11)	111.88(14)
C(18)-N(2)-C(11)	123.40(13)
O(1)-S(1)-O(2)	118.62(9)
O(1)-S(1)-C(5)	107.98(7)
O(2)-S(1)-C(5)	109.04(7)
O(1)-S(1)-C(8)	105.78(8)
O(2)-S(1)-C(8)	108.17(8)
C(5)-S(1)-C(8)	106.62(7)
O(3)-S(2)-O(4)	116.21(9)
O(3)-S(2)-N(1)	109.11(8)
O(4)-S(2)-N(1)	108.50(8)
O(3)-S(2)-C(13)	107.88(8)

O(4)-S(2)-C(13)	109.86(7)
N(1)-S(2)-C(13)	104.67(7)

Symmetry transformations used to generate equivalent atoms:

Table S- crystal-4 Anisotropic displacement parameters ($Å^2x \ 10^3$) for Y. The anisotropic

displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	42(1)	69(2)	37(1)	10(1)	-3(1)	7(1)
C(2)	27(1)	41(1)	32(1)	3(1)	1(1)	0(1)
C(3)	31(1)	51(1)	31(1)	-4(1)	9(1)	1(1)
C(4)	24(1)	40(1)	32(1)	-3(1)	7(1)	6(1)
C(5)	20(1)	24(1)	27(1)	-1(1)	4(1)	-1(1)
C(6)	29(1)	38(1)	34(1)	-5(1)	7(1)	9(1)
C(7)	30(1)	45(1)	43(1)	-1(1)	2(1)	14(1)
C(8)	20(1)	22(1)	31(1)	-1(1)	4(1)	-1(1)
C(9)	23(1)	23(1)	28(1)	3(1)	4(1)	0(1)
C(10)	27(1)	28(1)	37(1)	7(1)	-5(1)	-1(1)
C(11)	28(1)	24(1)	44(1)	11(1)	-6(1)	1(1)
C(12)	23(1)	21(1)	24(1)	2(1)	5(1)	-1(1)
C(13)	27(1)	24(1)	22(1)	2(1)	7(1)	-2(1)
C(14)	26(1)	33(1)	28(1)	0(1)	5(1)	-5(1)
C(15)	38(1)	31(1)	38(1)	-3(1)	6(1)	-12(1)
C(16)	45(1)	23(1)	50(1)	1(1)	6(1)	-6(1)
C(17)	35(1)	23(1)	43(1)	5(1)	0(1)	-2(1)
C(18)	28(1)	22(1)	24(1)	2(1)	4(1)	-4(1)
N(1)	23(1)	23(1)	33(1)	3(1)	4(1)	0(1)

SI-42

N(2)	25(1)	20(1)	26(1)	5(1)	1(1)	-1(1)
O(1)	34(1)	21(1)	45(1)	5(1)	6(1)	-2(1)
O(2)	31(1)	42(1)	30(1)	-2(1)	12(1)	-4(1)
O(3)	35(1)	42(1)	40(1)	-12(1)	18(1)	-4(1)
O(4)	37(1)	32(1)	33(1)	1(1)	-3(1)	6(1)
S(1)	22(1)	22(1)	27(1)	2(1)	6(1)	-2(1)
S(2)	20(1)	25(1)	26(1)	-2(1)	4(1)	1(1)

Table S- crystal-5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3)

for Y.

	Х	У	Z	U(eq)
H(1A)	10727	7439	6090	78
H(1B)	11711	7301	5726	78
H(1C)	10998	5880	5734	78
H(3)	9274	8668	5166	45
H(4)	8222	9280	3802	39
H(6)	10107	6820	2736	41
H(7)	11159	6208	4101	49
H(8A)	6827	7780	2552	30
H(8B)	6473	8190	1569	30
H(9)	7325	5900	1305	30
H(10A)	8311	4843	2545	40
H(10B)	7450	5154	3042	40
H(11A)	7365	2883	1768	42
H(11B)	7034	2691	2635	42

H(14)	2737	2805	69	35
H(15)	3028	206	158	44
H(16)	4632	-742	976	49
H(17)	5945	910	1706	43