Supporting Information For

Synthesis of 2,4-Diarylated Pyrimidines Enabled by Ni-catalyzed C-Sulfone Bond Activation

Qian Zhang,[‡] Wei Zhang,[‡] Ruoyan Cui, Yang Zhang* and Dawen Niu*

Table of Contents

1. General Information	S2
2. General Procedure for the Ni-Catalyzed Cross-Coupling Reaction	S3
3. Condition Optimization	S4
4. General Procedures for Control Experiments	S5
5. General Procedures for the Scale-Up Experiment	S8
6. General Procedures for Pyrimidinyl Sulfone Electrophiles	S9
7. Characterization Data for Compounds in Scheme 2	S17
8. Characterization Data for Compounds in Scheme 3 and 4	S35
9. References	S43
10. NMR Spectra	S44

1. General Information

Flash column chromatography was performed using silica gel (300-400 mesh) purchased from Qindao Haiyang. Ni(COD)₂, PCy₃·HBF₄, dry THF and other dry solvents were purchased from Energy Chemicals or TCI Chemicals and used as received. Dry toluene was freshly distilled from sodium/benzophenone under N₂ atmosphere. Other ligands were purchased from Energy Chemicals, TCI Chemicals, or Sigma-Aldrich and used without further purification.

Unless otherwise noted, all reported yields of the reactions are isolated yields of purified products. NMR yields were determined by using 1,3,5-trimethoxybenzene as an internal standard. All new compounds were characterized by NMR spectroscopy, IR spectroscopy, high-resolution mass spectroscopy (HR-MS), and melting point (if solids). NMR spectra were recorded on a Bruker AMX 400 spectrometer and were calibrated using TMS (0.00 ppm) or residual deuterated solvent as an internal reference (CDCl₃: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR; (CD₃)₂SO: 2.50 ppm for ¹H NMR and 39.52 ppm for ¹³C NMR), and the tabulated data were reported in ppm. IR spectra were taken on Thermo Scientific Nicolet iS5 spectrometer (iD5 ATR, diamond). HR-MS spectra were recorded on a Waters Q-TOF Premier. Melting points (m.p.) were recorded on an INESA SGW X-4 melting point apparatus.

Figure S1. Reaction Vials (8 mL)

2. General Procedure for the Ni-Catalyzed Cross-Coupling Reaction

Pyrimidinyl sulfone **SI-1** (0.2 mmol, 1.0 equiv.), aryl boronic acid (or boronic acid pinacol ester) **SI-2** (0.4 mmol, 2.0 equiv.), and Cy₃P•HBF₄ (0.04 mmol, 20 mol%) were weighed into a dried screw-capped vial containing a magnetic stir bar. The vial was loosely capped and transferred into a nitrogen-filled glovebox. To the vial was sequentially added Ni(COD)₂ (0.02 mmol, 10 mol%), powderized KOH (0.4 mmol, 2.0 equiv.), and THF (0.1 M). The vial was tightly sealed with a Teflon-lined cap, and taken out of the glovebox. The mixture was stirred at 60 °C for 12 h. After completion, the reaction was cooled to room temperature, diluted with ethyl acetate (5 mL) and washed with saturated NH₄Cl. The aqueous phase was then extracted with ethyl acetate (10 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to silica gel chromatography to give product **SI-3**.

Figure S2. Reactor used in this study

3. Condition Optimization

Me──	N	Q,		Me [.] Liga	tal 10 mol% and 20 mol%	N N	
	└──┘ Ñ	⁺ ≻ D₂Ph	B(O 14	DH) ₂ base 2.0 equiv. solvent (0.1 M) temperature, 12 h		Me 0 15	
entry	Metal	Ligand	base	solvent	temperature	conversion of 13a	yield of 15
1	Pd(PPh ₃) ₄	-	K ₂ CO ₃	THF	40 °C	7%	0%
2	NiBr ₂	PPh_3	K ₂ CO ₃	THF	40 °C	17%	0%
3	Ni(OTf) ₂	PPh ₃	K ₂ CO ₃	THF	40 °C	22%	0%
4	Ni(COD) ₂	PPh ₃	K ₂ CO ₃	THF	40 °C	40%	11%
5	Ni(COD) ₂	L1	K ₂ CO ₃	THF	40 °C	7%	0%
6	Ni(COD) ₂	L2	K ₂ CO ₃	THF	40 °C	10%	0%
7	Ni(COD) ₂	L3	K ₂ CO ₃	THF	40 °C	8%	0%
8	Ni(COD) ₂	L4	K ₂ CO ₃	THF	40 °C	22%	3%
9	Ni(COD) ₂	S-Phos	K ₂ CO ₃	THF	40 °C	43%	4%
10	Ni(COD) ₂	RuPhos	K ₂ CO ₃	THF	40 °C	26%	5%
11	Ni(COD) ₂	BINAP	K ₂ CO ₃	THF	40 °C	26%	6%
12	Ni(COD) ₂	dppm	K ₂ CO ₃	THF	40 °C	33%	11%
13	Ni(COD) ₂	dpppe	K ₂ CO ₃	THF	40 °C	96%	59%
14	Ni(COD) ₂	PCy ₃	K ₂ CO ₃	THF	40 °C	93%	48%
15	Ni(COD) ₂	PCy ₃ •HBF ₄	Et ₃ N	THF	40 °C	48%	25%
16	Ni(COD) ₂	PCy ₃ •HBF ₄	K ₃ PO ₄	THF	40 °C	59%	48%
17	Ni(COD) ₂	PCy ₃ •HBF ₄	Na ₃ PO ₄	THF	40 °C	10%	8%
18	Ni(COD) ₂	PCy ₃ •HBF ₄	KF	THF	40 °C	40%	12%
19	Ni(COD) ₂	PCy ₃ •HBF ₄	<i>t</i> -BuOK	THF	40 °C	95%	37%
20 ^b	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	DCM	40 °C	15%	4%
21 ^b	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	EA	40 °C	25%	8%
22 ^b	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	MeCN	40 °C	40%	20%
23 ^b	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	dioxane	40 °C	35%	8%
24 ^b	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	THF	60 °C	82%	77%
25 ^c	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	THF	60 °C	100%	87%
26 ^d	Ni(COD) ₂	PCy ₃ •HBF ₄	КОН	THF	60 °C	20%	0%

Table S1. Other Representative Conditions Not Listed in Table 1

^a Unless otherwise specified, Reactions in this **Table S1** were performed under a N₂ atmosphere, using **13a** (0.05 mmol, 1.0 equiv.), **14** (0.10 mmol, 2.0 equiv.), and solvent (0.5 mL) for 12 h. Yield and conversion were determined by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. ^b **14** (0.075 mmol, 1.5 equiv.), and KOH (0.075 mmol, 1.5 equiv.) was used. ^c Ni(COD)₂ (5 mol%), and PCy₃+HBF₄ (10 mol%) was used. ^d Under air condition.

4. General Procedures for Control Experiments

The reaction was prepared according to the literature reported.^[1]

Dibromopyridine (SI-4 5.0 mmol), 4-tolylboronic acid (SI-5, 5.0 mmol, 1.0 equiv.), K_2CO_3 (5.0 mmol, 2.0 equiv.), Pd(OAc)₂ (5 mol%), PPh₃ (10 mol%) were weighed into a dried 50 mL thick wall pressure bottle containing a magnetic stir bar. The bottle was then transferred into a nitrogen-filled glovebox. The reaction mixture was dissolved in dried CH₃CN/CH₃OH (2:1). The round bottom flask was tightly sealed, and taken out of the glovebox. The thick wall pressure bottle was stirred at 50 °C under N₂ atmosphere for 24 h. After completion, the reaction mixture was cooled to room temperature and the solid was filtered off. The filtrate was then concentrated and the resulting crude product was dissolved in DCM (30 mL). The solution was washed with water (10 mL×3) and brine (10 mL×1), and dried over Na₂SO₄. Upon removal of the solvent under vacuum, the resulting residue was subjected to flash silica gel column chromatography (petroleum ether/DCM) to give the desired product SI-6.

The reaction was prepared according to the literature reported.^[2]

A sealable tube equipped with a magnetic stir bar was charged with the aryl bromide **SI-6** (4.0 mmol, 1.0 equiv.), KOH (8.0 mmol, 2.0 equiv.), and thiophenol **SI-7** (4.0 mmol, 1.0 equiv.). The reaction tube was loosely capped and transferred into a nitrogen-filled glovebox. Dry DMSO (10 mL) was added by syringe. The reaction tube was screw capped and put into a preheated oil bath (110-130 °C) for 8 h. The reaction mixture was then allowed to reach room

temperature before it was treated with DCM (5 mL) and H_2O (10 mL). The aqueous phase was separated and extracted with DCM (3 x 5 mL), and the combined organic phase was washed with H_2O (10 mL×3) and brine (10 mL×1), dried with Na₂SO₄, filtered and concentrated under reduced pressure. After removal of the solvent the residue was purified by flash column chromatography on silica gel (petroleum ether/DCM) to obtain the corresponding product **SI-8**.

To a DCM solution (30 mL) of **SI-8** (4.0 mmol, 1.0 equiv.) cooled at 0 °C was added *m*-CPBA (9.6 mmol, 2.4 equiv.) dropwise over 10 min. The reaction was allowed to warm to room temperature and stirred for another 2h, and then diluted by addition of DCM. The mixture washed by sat. aq. NaHCO₃ (30 mL×2), and brine (10 mL×1). The mixture was extracted with DCM, and the combined organic layers were dried and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to give Product **SI-9** as a white solid.

Following **General Procedure**, 1,3-dibromobenzene (5.0 mmol, 1.18 g) was used. Compound **19a** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 10/1) as a white solid (0.42 g, 3 steps yield 27%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.97 (d, J = 6.8 Hz, 2H), 7.88 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.60–7.40 (m, 6H), 7.26 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.2, 141.7, 138.4, 136.3, 133.3, 131.6, 129.9, 129.8, 129.4, 127.7, 127.1, 126.1, 125.9, 21.2. IR (thin film, cm⁻¹): 3083, 2917, 1587, 1547, 1445, 1313, 1270, 1159, 1133, 1083, 987, 798, and 758 cm⁻¹. m.p.: 98.9–101.9 °C. HRMS (DART-TOF) calculated for $C_{19}H_{17}O_2S^+$ [M+H]⁺ m/z 309.0944, found 309.0955.

Following **General Procedure**, 2,4-dibromopyridine (5.0 mmol, 1.18 g) was used. Compound **19b** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 5/1) as a white solid (0.52 g, 3 steps yield 34%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 5.2 Hz, 1H), 8.17 (s, 1H), 8.00 (d, *J* = 6.0 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.74–7.60 (m, 2H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 159.4, 151.0, 150.7, 140.5, 140.0, 135.0, 134.2, 129.9, 129.7, 128.2, 127.1, 118.5, 117.0, 21.5. IR (thin film, cm⁻¹): 3059, 2920, 1611, 1575, 1551, 1447, 1387, 1323, 1270, 1158, 1110, 1080, 1018, 818, and 758 cm⁻¹. m.p.: 106.8– 109.8 °C. HRMS (DART-TOF) calculated for C₁₈H₁₆NO₂S⁺ [M+H]⁺ m/z 310.0896, found 310.0909.

Following **General Procedure**, 2,5-dibromopyridine (5.0 mmol, 1.18 g) was used. Compound **19c** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 5/1) as a light yellow solid (0.22 g, 3 steps yield 14%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 9.15 (d, J = 2.4 Hz, 1H), 8.21 (dd, J = 8.4, 2.4 Hz, 1H), 8.00 (d, J = 7.2 Hz, 2H), 7.92 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 161.4, 148.9, 141.4, 141.0, 136.1, 135.9, 134.8, 133.8, 129.9, 129.7, 127.8, 127.5, 120.0, 21.5. **IR** (thin film, cm⁻¹): 3059, 2925, 1579, 1555, 1465, 1447, 1371, 1323, 1309, 1278, 1260, 1160, 1116, 1078, 1011, 815, 765, 752 and 747 cm⁻¹. **m.p.**: 177.1–180.1 °C. **HRMS (DART-TOF)** calculated for $C_{18}H_{16}NO_2S^+$ [M+H]⁺ m/z 310.0896, found 310.0906.

Following **General Procedure**, 2,6-dibromopyridine (5.0 mmol, 1.18 g) was used. Compound **19d** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 5/1) as a white solid (0.48 g, 3 steps yield 31%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.2 Hz, 2H), 8.05 (d, J = 7.2 Hz, 1H), 7.90 (t, J = 7.2 Hz, 1H), 7.85–7.77 (m, 3H), 7.61–7.57 (m, 1H), 7.54–7.51 (m, 2H), 7.23 (d, J = 8.0 Hz, 2H), 2.38 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.6, 158.1, 140.4, 139.1, 138.7, 134.4, 133.7, 129.7, 129.3, 129.0, 127.0, 122.9, 119.5, 21.4. **IR** (thin film, cm⁻¹): 3062, 2917, 1595, 1472, 1446, 1304, 1270, 1154, 1105, 1074, 832, 793, 777, and 752 cm⁻¹. m.p.: 143.2–146.2 °C. **HRMS** (DART-TOF) calculated for C₁₈H₁₆NO₂S⁺ [M+H]⁺ m/z 310.0896, found 310.0897.

5. General Procedures for the Scale-Up Experiment

To a dried 100 mL thick wall pressure bottle equipped with a stir bar was added pyrimidinyl sulfone **13a** (1.40 g, 4.5 mmol, 1.0 equiv.), 3-Aminophenylboronic acid monohydrate **16l** (1.40 g, 9.0 mmol, 2.0 equiv.), and PCy₃•HBF₄ (0.33 g, 0.9 mmol, 0.2 equiv.). The bottle was loosely capped and transferred into a nitrogen-filled glovebox. To the thick wall pressure bottle was sequentially added Ni(COD)₂ (0.12 g, 0.45 mmol, 0.1 equiv.), powderized KOH (0.45 g, 9.0 mmol, 2.0 equiv.), and THF (45 mL, 0.1 M). The thick wall pressure bottle was tightly sealed, and taken out of the glovebox. The mixture was stirred at preheated oil bath (60 °C) for 12 h. After completion, the reaction was cooled to room temperature, and removed the solvent under vacuum. The crude mixture was dissolved in EtOAc and washed with an aqueous solution of NH₄Cl (30 mL×2), NaHCO₃ (30 mL×1), and brine (20 mL×1). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) to give product **17l** as a white solid (0.85g, 72%).

6. General Procedures for Pyrimidinyl Sulfone Electrophiles

6.1 Procedures for the Synthesis of General Pyrimidinyl Sulfones

The reaction was prepared according to the literature reported.

Thiophenol (1.0 equiv.) was added dropwise to a stirred solution of DIPEA (1.2 equiv.) and 2,4-Dichloropyrimidine (SI-10, 1.0 equiv.) in THF at 0 °C. The reaction mixture was heated to 50 °C (or room temperature) overnight. After completion, the solvents were removed and the crude mixture was dissolved in EtOAc and washed with an aqueous solution of NH₄Cl (30 mL×2), NaHCO₃ (30 mL×1), and brine (20 mL×1). The organic phase was collected, dried over anhydrous Na₂SO₄, filtered and concentrated. The crude residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to give the crude Product SI-11.^[3]

The crude Product **SI-11** (1.0 equiv.), 4-tolylboronic acid (1.5 equiv.), base (K₂CO₃, or Cs₂CO₃, or K₃PO₄·7H₂O, 2.0equiv.), were weighed into a dried 50 mL thick wall pressure bottle containing a magnetic stir bar. The bottle was then transferred into a nitrogen-filled glovebox. To the bottle was added Pd(PPh₃)₄ (5 mol%) and solvent dioxane/ H₂O (5:1). The thick wall pressure bottle was tightly sealed, and taken out of the glovebox. The solution was stirred at 70 °C under oil bath for 12 h. After completion, the reaction mixture was cooled to room

temperature and the solid was filtered off. The filtrate was then concentrated and the resulting crude product was dissolved in EtOAc (30 mL). The solution was washed with water (10 mL×3) and brine (10 mL×1), and dried over Na₂SO₄. Upon removal of the solvent under vacuum, the resulting residue was subjected to flash silica gel column chromatography (petroleum ether/EtOAc) to give the crude product **SI-12**.^[4]

To a DCM solution of crude product **SI-12** (1.0 equiv.) cooled at 0 °C was added *m*-CPBA (2.4 equiv.) dropwise over 10 min. The reaction was allowed to warm to room temperature and stirred for another 2h, and then diluted by addition of DCM. The mixture washed by sat. aq. NaHCO₃ (30 mL×2), and brine (10 mL×1). The mixture was extracted with DCM, and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to give Product **SI-13** as a white solid.

Following **General Procedure**, 2,4-dichloropyrimidine (10.0 mmol, 1.49 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use $K_3PO_4 \cdot 7H_2O$ (20.0 mmol, 6.77 g) as base. Compound **13a** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 5/1) as a white solid (1.21 g, 3 steps yield 39%).

¹**H NMR (400 MHz, CDCl₃)** δ 9.04 (d, J = 4.8 Hz, 1H), 8.24 (d, J = 8.0 Hz, 2H), 8.15 (d, J = 7.2 Hz, 2H), 7.89 (d, J = 4.8 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 167.0, 165.7, 160.4, 142.5, 137.5, 134.6, 133.2, 129.7, 129.6, 129.3, 128.7, 114.4, 21.7 (d, J = 3.8 Hz). **IR (thin film, cm⁻¹)**: 3069, 3017, 2917, 1612, 1558, 1532, 1406, 1381, 1325, 1170, 1144, 751, 727, 592, and 579 cm⁻¹. **m.p.**: 149.9–152.9 °C. **HRMS (DART-TOF)** calculated for C₁₇H₁₅N₂O₂S⁺ [M+H]⁺ m/z 311.0849, found 311.0850.

Following General Procedure, 2,4-dichloro-5-methylpyrimidine (10.0 mmol, 1.63 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use $K_3PO_4 \cdot 7H_2O$ (20.0 mmol, 6.77g) as base. Compound **13b** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 10/1) as a white solid (1.69 g, 3 steps yield 52%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.75 (s, 1H), 8.08 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.75 (s, 3H), 2.35 (s, 3H). ¹³**C NMR** (101 **MHz, CDCl**₃) δ 164.1, 162.3, 162.2, 141.8, 137.4, 134.2, 133.2, 130.1, 129.4, 128.9, 128.0, 125.4, 21.6 (d, *J* = 3.8 Hz), 15.2 (d, *J* = 3.6 Hz). **IR** (thin film, cm⁻¹): 3005, 2984, 1696, 1570, 1516, 1420, 1307, 1275, 1261, 1152, 1110, 763, 749, and 690 cm⁻¹. m.p.: 176.8–179.8 °C. **HRMS** (**DART-TOF**) calculated for C₁₈H₁₇N₂O₂S⁺ [M+H]⁺ m/z 325.1005, found 325.1012.

$$Me \xrightarrow{N}_{OMe} OMe \qquad 5-methoxy-4-(phenylsulfonyl)-2-(p-tolyl) pyrimidine (13c)$$
13c

Following General Procedure, 2,4-dichloro-5-methoxypyrimidine (10.0 mmol, 1.79 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use Cs_2CO_3 (20.0 mmol, 6.51g) as base. Compound **13c** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 5/1) as a white solid (1.09 g, 3 steps yield 32%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.08 (d, *J* = 7.6 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.08 (s, 3H), 2.36 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 156.7, 153.2, 148.4, 144.3, 141.0, 137.8, 134.2, 133.2, 130.0, 129.4, 128.9, 127.7, 57.2 (d, *J* = 5.4 Hz), 21.5 (d, *J* = 4.0 Hz). IR (thin film, cm⁻¹): 3050, 3008, 2946, 2865, 1554, 1414, 1318, 1276, 1195, 1139, 1082, 1005, 764, 750, 690, and 579 cm⁻¹. m.p.: 207.1–210.1 °C. HRMS (DART-TOF) calculated for C₁₈H₁₇N₂O₃S⁺ [M+H]⁺ m/z 341.0954, found 341.0950.

Following General Procedure, ethyl 2,4-dichloropyrimidine-5-carboxylate (10.0 mmol, 2.21 g) was used and the SNAr reaction was react at room temperature. The Suzuki reaction was use K_3PO_4 ·7H₂O (20.0 mmol, 6.51g) as base. Compound **13d** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 10/1) as a white solid (1.11 g, 3 steps yield 29%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 9.16 (s, 1H), 8.12 (d, J = 7.2 Hz, 2H), 7.99 (d, J = 8.4 Hz, 2H), 7.72 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.56 (q, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 165.5, 164.8, 163.9, 160.1, 143.4, 137.6, 134.4, 132.4, 130.2, 129.7, 129.0, 129.0, 121.0, 63.2, 21.7 (d, J = 3.7 Hz,), 14.1. **IR** (**thin film, cm**⁻¹): 3069, 2986, 1730, 1564, 1511, 1426, 1328, 1305, 1260, 1154, 793, 751, 727, and 591 cm⁻¹. **m.p.**: 92.1–95.1 °C. **HRMS** (**DART-TOF**) calculated for C₂₀H₁₉N₂O₄S⁺ [**M**+**H**]⁺ m/z 383.1060, found 383.1061.

Following **General Procedure**, 2,4,5-trichloropyrimidine (10.0 mmol, 1.83 g) was used and the SNAr reaction was react at room temperature. The Suzuki reaction was use $K_3PO_4 \cdot 7H_2O$ (20.0 mmol, 6.51g) as base. Compound **13e** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 10/1) as a white solid (1.31 g, 3 steps yield 38%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (s, 1H), 8.10 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 162.1, 161.7, 160.5, 142.7, 136.7, 134.6, 132.2, 130.2, 129.6, 129.1, 128.5, 124.5, 21.6 (d, *J* = 3.3 Hz). **IR** (thin film, cm⁻¹): 3069, 3036, 2927, 1608, 1546, 1506, 1448, 1405, 1326, 1178, 1153, 1090, 779, 756, 727, 688, 594, and 588 cm⁻¹. **m.p.**: 187.7– 190.7 °C. **HRMS (DART-TOF)** calculated for $C_{17}H_{14}ClN_2O_2S^+$ [M+H]⁺ m/z 345.0459, found 345.0454.

Following General Procedure, 2,4-dichloro-6-methylpyrimidine (10.0 mmol, 1.63 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use Cs_2CO_3 (20.0 mmol, 6.51g) as base. Compound **13f** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 10/1) as a white solid (0.62 g, 3 steps yield 19%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.25 (d, J = 8.0 Hz, 2H), 8.14 (d, J = 7.2 Hz, 2H), 7.77 (s, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.67 (s, 3H), 2.39 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 171.1, 166.6, 165.2, 142.1, 137.7, 134.4, 133.5, 129.6, 129.4, 129.2, 128.7, 114.0, 25.0 (d, J = 3.2 Hz), 21.6 (d, J = 3.1 Hz). **IR** (**thin film, cm**⁻¹): 3005, 2979, 1565, 1531, 1447, 1381, 1275, 1261, 1160, 764, 750, 604, and 579 cm⁻¹. **m.p.**: 141.2– 144.2 °C. **HRMS** (**DART-TOF**) calculated for C₁₈H₁₇N₂O₂S⁺ [M+H]⁺ m/z 325.1005, found 325.1010.

Following General Procedure, 2,4-dichloro-6-(trifluoromethyl)pyrimidine (10.0 mmol, 2.17 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use Cs_2CO_3 (20.0 mmol, 6.51g) as base. Compound **13g** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 8/1) as a white solid (0.57 g, 3 steps yield 15%).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.2 Hz, 2H), 8.18–8.15 (m, 3H), 7.70 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 169.6, 166.6, 159.0 (q, J = 37.0 Hz), 140.2 (d, J = 702.7 Hz), 135.0, 131.9, 129.9, 129.8, 129.5, 129.1, 121.1 (d, J = 292.6 Hz), 120.1 (d, J = 822.2 Hz), 110.3 (d, J = 2.8 Hz), 21.7 (d, J = 3.0 Hz). ¹⁹**F NMR (376 MHz, CDCl**₃) δ -69.85. **IR (thin film, cm**⁻¹): 3069, 3006, 2989, 1564, 1549, 1386, 1331, 1275, 1210, 1156, 1085, 764, 750, 595, and 579 cm⁻¹. **m.p.**: 144.3–147.3 °C. **HRMS (DART-TOF)** calculated for C₁₈H₁₄F₃N₂O₂S⁺ [M+H]⁺ m/z 379.0723, found 379.0728.

Following General Procedure, 2,4-dichloro-6-(trifluoromethyl)pyrimidine (10.0 mmol, 1.89 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use Cs_2CO_3 (20.0 mmol, 6.51g) as base. Compound **13i** was isolated by silica gel chromatography (petroleum ether/EtOAc = 1/0 to 8/1) as a white solid (1.23 g, 3 steps yield 35%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (t, J = 7.6 Hz, 4H), 7.67 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 3.45 (t, J = 7.6 Hz, 2H), 3.09 (t, J = 8.0 Hz, 2H), 2.38 (s, 3H), 2.23 (p, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 180.7, 163.7, 160.6, 141.6, 138.1, 134.3, 133.7, 129.6, 129.4, 129.1, 128.4, 34.4, 29.3, 22.3, 21.6 (d, J = 3.5 Hz). IR (thin film, cm⁻¹): 3073, 2978, 1579, 1524, 1384, 1325, 1162, 1137, 1081, 775, 727, 687, and 593 cm⁻¹. m.p.: 188.3–191.3 °C. HRMS (DART-TOF) calculated for C₂₀H₁₉N₂O₂S⁺ [M+H]⁺ m/z 351.1162, found 351.1161.

Following General Procedure, 2,6-dichloro-9-methyl-9H-purine (10.0 mmol, 2.03 g) was used and the SNAr reaction was react at 50 °C. The Suzuki reaction was use K_2CO_3 (20.0 mmol, 2.76 g) as base. Compound **13j** was isolated by silica gel chromatography (petroleum

ether/DCM/EtOAc = 1/0/0 to 0/4/1) as a white solid (1.53 g, 3 steps yield 42%).

¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 8.2 Hz, 2H), 8.23–8.21 (m, 3H), 7.65 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.97 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 155.2, 153.1, 147.4, 142.7, 138.7, 133.9, 131.7, 131.4, 130.2, 129.7, 129.6, 129.0, 30.5, 21.8. IR (thin film, cm⁻¹): 3065, 3012, 2960, 1596, 1549, 1508, 1447, 1383, 1334, 1276, 1226, 1162, 1141, 1083, 763, 750, 725, 697, 685, 634, and 585 cm⁻¹. m.p.: 191.5–194.5 °C. HRMS (DART-TOF) calculated for C₁₉H₁₇N₄O₂S⁺ [M+H]⁺ m/z 365.1067, found 365.1064.

6.2 Procedures for the Synthesis of N-phenyl-6-(phenylsulfonyl)-2-(*p*-tolyl) pyrimidin-4-amine (13h)

Thiophenol (1.0 equiv.) was added dropwise to a stirred solution of DIPEA (1.2 equiv.) and 2,4,6-trichloropyrimidine (**SI-14**, 1.0 equiv.) in THF at 0 °C. The reaction mixture was heated to 50 °C (or room temperature) overnight. After completion, the solvents were removed and the crude mixture was dissolved in EtOAc and washed with an aqueous solution of NH₄Cl (30 mL×2), NaHCO₃ (30 mL×1), and brine (20 mL×1). The organic phase was collected, dried over anhydrous Na₂SO₄, filtered and concentrated. The crude residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to give the crude Product.^[3]

The crude Product was added to a stirred solution of DIPEA (1.2 equiv.) and aniline (1.0 equiv.) in EtOH and refluxed for 8 h. After completion, the reaction was cooled to ambient temperature and removed the solvent by evaporation. The crude mixture was dissolved in EtOAc and washed with an aqueous solution of NH₄Cl (30 mL×2), NaHCO₃ (30 mL×1), and brine (20 mL×1). The organic phase was collected, dried over anhydrous Na₂SO₄, filtered and concentrated. The crude residue was purified by flash column chromatography on silica gel

(petroleum ether/EtOAc) to give the crude Product SI-15.^[5]

The crude Product **SI-15** (1.0 equiv.), 4-tolylboronic acid (1.5 equiv.), Cs_2CO_3 (2.0 equiv.), were weighed into a dried 50 mL thick wall pressure bottle containing a magnetic stir bar. The bottle was then transferred into a nitrogen-filled glovebox. To the bottle was added Pd(PPh₃)₄ (5 mmol%) and solvent dioxane/ H₂O (5:1). The thick wall pressure bottle was tightly sealed, and taken out of the glovebox. The solution was stirred at 70 °C under oil bath for 12 h. After completion, the reaction mixture was cooled to room temperature and the solid was filtered off. The filtrate was then concentrated and the resulting crude product was dissolved in EtOAc (30 mL). The solution was washed with water (10 mL×3) and brine (10 mL×1), and dried over Na₂SO₄. Upon removal of the solvent under vacuum, the resulting residue was subjected to flash silica gel column chromatography (petroleum ether/EtOAc) to give the crude product **SI-16**.^[4]

To a DCM solution of crude product **SI-16** (1.0 equiv.) cooled at 0 °C was added *m*-CPBA (2.4 equiv.) dropwise over 10 min. The reaction was allowed to warm to room temperature and stirred for another 2h, and then diluted by addition of DCM. The mixture washed by sat. aq. NaHCO₃ (30 mL×2), and brine (10 mL×1). The mixture was extracted with DCM, and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to give Product **13h** as a white solid.

Following General Procedure, 2,4,6-trichloropyrimidine (10.0 mmol, 1.83 g) was used. Compound 13h was isolated by silica gel chromatography (petroleum ether/DCM = 1/0 to 1/1) as a white solid (1.16 g, 4 steps yield 29%).

¹**H NMR (400 MHz, DMSO-***d*₆) δ 10.30 (s, 1H), 8.13–8.10 (m, 4H), 7.80–7.76 (m, 3H), 7.71 (t, *J* = 7.6 Hz, 2H), 7.48 – 7.36 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 2.33

(s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.2, 161.3, 141.4, 138.8, 137.5, 134.6, 133.7, 129.6, 129.3, 129.0, 128.9, 127.9, 123.5, 120.4, 21.0 (d, *J* = 3.5 Hz). **IR** (thin film, cm⁻¹): 3363, 3006, 2979, 1609, 1562, 1497, 1438, 1350, 1275, 1176, 1161, 764, 750, and 578 cm⁻¹. **m.p.**: 240.6–243.6 °C. **HRMS** (DART-TOF) calculated for C₂₃H₂₀N₃O₂S⁺ [M+H]⁺ m/z 402.1271, found 402.1271.

7. Characterization Data for Compounds in Scheme 2

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4-fluorophenyl)boronic acid **16a** (56.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (49.7 mg, 94%).

¹**H NMR** (**400 MHz, CDCl**₃) δ 8.73 (d, J = 5.2 Hz, 1H), 8.44 (d, J = 8.0 Hz, 2H), 8.21–8.13 (m, 2H), 7.43 (d, J = 5.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.23–7.05 (m, 2H), 2.41 (s, 3H). ¹³**C NMR** (**101 MHz, CDCl**₃) δ 164.7 (d, J = 249.7 Hz) 164.7, 163.5, 162.7, 157.9, 141.2, 135.3, 133.2 (d, J = 3.1 Hz), 129.4, 129.3, 129.2, 128.3, 116.0 (d, J = 78.4 Hz), 113.9, 21.6 (d, J = 3.9 Hz). ¹⁹**F NMR** (**376 MHz, CDCl**₃) δ -109.59. **IR** (**thin film, cm**⁻¹): 2926, 2851, 1600, 1583, 1562, 1548, 1507, 1436, 1411, 1380, 1232, 1176, 1158, 949, 874, 821, 788, and 750 cm⁻¹. **m.p.**: 87.3–90.3 °C. **HRMS (DART-TOF)** calculated for C₁₇H₁₄FN₂⁺ [M+H]⁺ m/z 265.1136, found 265.1134.

4-(4-chlorophenyl)-2-(p-tolyl)pyrimidine (17b)

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4chlorophenyl)boronic acid **16b** (62.5 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (41.8 mg, 74%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 5.2 Hz, 1H), 8.44 (d, *J* = 8.0 Hz, 2H), 8.13 (d, *J* = 8.4 Hz, 2H), 7.50–7.46 (m, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 162.6, 158.1, 141.2, 137.2, 135.6, 135.1, 129.4, 129.3, 128.6, 128.4, 114.0, 21.6 (d, *J* = 4.0 Hz). IR (thin film, cm⁻¹): 2998, 2922, 1582, 1560, 1544, 1489, 1437, 1404, 1265, 1175, 1108, 874, 817, 785, and 739 cm⁻¹. m.p.: 144.8–147.8 °C. HRMS (DART-TOF) calculated for C₁₇H₁₄ClN₂⁺ [M+H]⁺ m/z 281.0840, found 281.0837.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4methoxyphenyl)boronic acid **16c** (60.8 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (55.1 mg, 99%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 5.2 Hz, 1H), 8.45 (d, J = 8.0 Hz, 2H), 8.16 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 5.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 163.3, 162.1, 157.6, 140.9, 135.4,

129.5, 129.3, 128.8, 128.3, 114.3, 113.4, 55.5 (d, J = 5.7 Hz), 21.6 (d, J = 4.4 Hz). **IR (thin film, cm⁻¹)**: 2922, 2832, 1606, 1582, 1560, 1544, 1510, 1434, 1415, 1381, 1252, 1173, 822, 788, 765, and 748 cm⁻¹. **m.p.**: 115.6–118.6 °C. **HRMS (DART-TOF)** calculated for $C_{18}H_{17}N_2O^+$ [M+H]⁺ m/z 277.1335, found 277.1333.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4-(dimethylamino)phenyl)boronic acid **16d** (66.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (55.6 mg, 96%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.63 (d, *J* = 5.2 Hz, 1H), 8.46 (d, *J* = 8.0 Hz, 2H), 8.12 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 5.2 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 2H), 3.00 (s, 6H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.3, 163.7, 157.0, 152.4, 140.6, 135.8, 129.3, 128.4, 128.2, 124.2, 112.7, 111.8, 40.2 (d, *J* = 2.3 Hz), 21.6 (d, *J* = 4.4 Hz). **IR** (thin film, cm⁻¹): 2922, 2850, 2803, 1608, 1581, 1560, 1540, 1520, 1424, 1330, 1288, 1197, 1174, 947, 874, 814, 786, 764, and 750 cm⁻¹. **m.p.**: 189.1–192.1 °C. **HRMS** (**DART-TOF**) calculated for C₁₉H₂₀N₃⁺ [M+H]⁺ m/z 290.1652, found 290.1651.

4-(2-(p-tolyl) pyrimidin-4-yl) benzonitrile (17e)

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4cyanophenyl)boronic acid **16e** (58.8 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (53.3 mg, 98%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 5.2 Hz, 1H), 8.43 (d, *J* = 8.0 Hz, 2H), 8.28 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 5.2 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 161.7, 158.5, 141.5, 141.2, 134.7, 132.7, 129.5, 128.4, 127.8, 118.5, 114.6, 114.3, 21.6 (d, *J* = 4.3 Hz). **IR** (thin film, cm⁻¹): 2908, 1580, 1558, 1501, 1383, 1334, 1174, 949, 874, 819, 786, and 750 cm⁻¹. **m.p.**: 163.2–165.2 °C. **HRMS** (**DART-TOF**) calculated for C₁₈H₁₄N₃⁺ [M+H]⁺ m/z 272.1182, found 272.1181.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4-(trifluoromethyl)phenyl)boronic acid **16f** (76.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (62.0 mg, 99%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 5.2 Hz, 1H), 8.45 (d, J = 8.4 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 5.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 162.4, 158.3, 141.4, 140.5, 134.9, 132.6 (q, J = 3.4 Hz, 2H), 7.53 (d, J = 5.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 2.43

= 32.4 Hz), 129.5, 128.4, 127.6, 126.0 (d, J = 11.3 Hz), 126.0 (d, J = 3.8 Hz), 124.1 (d, J = 270.6 Hz), 124.1 (d, J = 812.2 Hz), 114.6, 21.6 (d, J = 4.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.77. IR (thin film, cm⁻¹): 2998, 1585, 1560, 1496, 1391, 1329, 1175, 1131, 949, 874, 826, 790, 764, and 750 cm⁻¹. m.p.: 155.1–158.1 °C. HRMS (DART-TOF) calculated for $C_{18}H_{14}F_{3}N_{2}^{+}$ [M+H]⁺ m/z 315.1104, found 315.1106.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4formylphenyl)boronic acid **16g** (60.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a white solid (44.5 mg, 81%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 10.10 (s, 1H), 8.85 (d, J = 5.2 Hz, 1H), 8.46 (d, J = 8.0 Hz, 2H), 8.34 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 5.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 191.9 (d, J = 2.2 Hz), 165.0, 162.4, 158.3, 142.6, 141.4, 137.8, 134.9, 130.2, 129.5, 128.4, 127.9, 114.9, 21.6 (d, J = 3.9 Hz). **IR** (**thin film**, **cm**⁻¹): 3008, 2927, 1690, 1582, 1559, 1547, 1503, 1380, 1299, 1172, 949, 874, 817, and 784 cm⁻¹. **m.p.**: 137.9–140.9 °C. **HRMS** (**DART-TOF**) calculated for C₁₈H₁₅N₂O⁺ [M+H]⁺ m/z 275.1179, found 275.1181.

4-(2-(p-tolyl) pyrimidin-4-yl) phenol (17h)

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4hydroxyphenyl)boronic acid **16h** (55.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a white solid (45.2 mg, 78%).

¹**H** NMR (400 MHz, DMSO) δ 10.14 (s, 1H), 8.79 (d, J = 5.2 Hz, 1H), 8.40 (d, J = 8.0 Hz, 2H), 8.21 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 5.2 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 163.2, 162.8, 160.6, 158.0, 140.5, 135.0, 129.3, 128.9, 127.8, 127.0, 115.9, 113.5, 21.1 (d, J = 4.5 Hz). IR (thin film, cm⁻¹): 3309, 3012, 2932, 1584, 1560, 1545, 1509, 1386, 1276, 1265, 1172, 949, 874, 825, 764, and 749 cm⁻¹. m.p.: 210.3–213.3 °C. HRMS (DART-TOF) calculated for C₁₇H₁₅N₂O⁺ [M+H]⁺ m/z 263.1179, found 263.1182.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (2-fluorophenyl)boronic acid **16i** (56.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (45.7 mg, 86%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.80 (d, J = 5.2 Hz, 1H), 8.44 (d, J = 8.4 Hz, 2H), 8.36 (td, J = 8.0, 2.0 Hz, 1H), 7.68 (dd, J = 5.2, 2.0 Hz, 1H), 7.51–7.41 (m, 1H), 7.34–7.30 (m, 3H), 7.18 (ddd, J = 11.6, 8.4, 1.2 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.8, 162.9,

160.4, 160.1 (d, J = 2.5 Hz), 157.8, 141.1, 135.2, 132.3, 132.3, 131.1 (d, J = 2.5 Hz), 129.4, 128.3, 125.3 (d, J = 10.3 Hz), 124.8 (d, J = 3.5 Hz), 118.6 (d, J = 22.0 Hz), 116.5 (d, J = 22.8Hz), 21.6 (d, J = 4.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.73. IR (thin film, cm⁻¹): 3031, 2922, 1613, 1583, 1560, 1490, 1429, 1405, 1381, 1300, 1249, 1212, 1176, 831, 792, and 759 cm⁻¹. m.p.: 49.4–52.4 °C. HRMS (DART-TOF) calculated for C₁₇H₁₄FN₂⁺ [M+H]⁺ m/z 265.1136, found 265.1137.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), [1,1'biphenyl]-2-ylboronic acid **16j** (79.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a white solid (57.4 mg, 89%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 5.2 Hz, 1H), 8.24 (d, *J* = 8.0 Hz, 2H), 7.95–7.75 (m, 1H), 7.56–7.47 (m, 2H), 7.49–7.40 (m, 1H), 7.31–7.14 (m, 7H), 6.76 (d, *J* = 5.2 Hz, 1H), 2.40 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.5, 164.7, 156.3, 141.5, 141.1, 140.9, 137.4, 135.2, 131.0, 130.7, 129.8, 129.7, 129.3, 128.4, 128.3, 127.9, 127.2, 119.5, 21.6 (d, *J* = 3.6 Hz). IR (thin film, cm⁻¹): 3030, 2932, 2855, 1580, 1558, 1540, 1478, 1427, 1404, 1378, 1176, 832, 795, 764, 746, and 701 cm⁻¹. m.p.: 78.3–81.3 °C. HRMS (DART-TOF) calculated for C₂₃H₁₉N₂⁺ [M+H]⁺ m/z 323.1543, found 323.1544.

4-(*m*-tolyl)-2-(*p*-tolyl) pyrimidine (17k)

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), mtolylboronic acid **16k** (54.4 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (42.8 mg, 82%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.79 (d, *J* = 5.2 Hz, 1H), 8.47 (d, *J* = 8.0 Hz, 2H), 8.03 (s, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 5.2 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 3H), 2.48 (s, 3H), 2.44 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 164.8, 164.1, 157.8, 141.0, 138.7, 137.2, 135.4, 131.8, 129.4, 128.9, 128.4, 128.0, 124.5, 114.5, 21.7, 21.6. **IR** (**thin film**, **cm**⁻¹): 2920, 2855, 1583, 1561, 1548, 1490, 1430, 1406, 1382, 1176, 949, 874, 830, 763, and 750 cm⁻¹. **m.p.**: 67.4–70.4 °C. **HRMS** (**DART-TOF**) calculated for C₁₈H₁₇N₂⁺ [M+H]⁺ m/z 261.1386, found 261.1388.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), 3-Aminophenylboronic acid monohydrate **16l** (62.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (42.0 mg, 80%).

¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 5.2 Hz, 1H), 8.46 (d, J = 8.0 Hz, 2H), 7.58 (s, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.47 (d, J = 5.2 Hz, 1H), 7.34–7.24 (m, 3H), 6.79 (s, 1H), 3.91 (s, 2H), 2.42 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 164.6, 164.0, 157.7, 147.1, 141.0, 138.2, 135.3,

129.9, 129.4, 128.3, 117.7, 117.5, 114.5, 113.6, 21.6 (d, J = 3.7 Hz). **IR (thin film, cm⁻¹)**: 3342, 2908, 1609, 1583, 1561, 1546, 1495, 1429, 1405, 1384, 1330, 1307, 1276, 1176, 949, 874, 830, 780, 765, and 750 cm⁻¹. **m.p.**: 129.4–132.4 °C. **HRMS (DART-TOF)** calculated for C₁₇H₁₆N_{3⁺} [M+H]⁺ m/z 262.1339, found 262.1342.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (3,5dimethylphenyl)boronic acid **16m** (60.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (49.9 mg, 91%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 5.2 Hz, 1H), 8.46 (d, *J* = 8.0 Hz, 2H), 7.79 (s, 2H), 7.50 (d, *J* = 5.2 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.13 (s, 1H), 2.42 (s, 3H), 2.41 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 164.7, 164.2, 157.7, 140.9, 138.6, 137.1, 135.4, 132.7, 129.4, 128.3, 125.1, 114.5, 21.6 (d, *J* = 4.0 Hz), 21.5 (d, *J* = 3.9 Hz). **IR** (thin film, cm⁻¹): 3032, 3011, 2919, 2855, 1582, 1561, 1546, 1423, 1405, 1376, 1329, 1306, 1276, 1175, 825, 789, 748, and 665 cm⁻¹. **m.p.**: 79.1–82.1 °C. **HRMS** (DART-TOF) calculated for C₁₉H₁₉N₂⁺ [M+H]⁺ m/z 275.1543, found 275.1541.

Following the General Procedure, pyrimidinyl sulfone 13a (62.1 mg, 0.2 mmol), (3,5-di-tert-

butylphenyl)boronic acid **16n** (93.7 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (66.3 mg, 92%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 5.2 Hz, 1H), 8.48 (d, *J* = 8.0 Hz, 2H), 8.03 (s, 1H), 8.03 (s, 1H), 7.61 (s, 1H), 7.56 (d, *J* = 5.2 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H), 1.42 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 164.6, 157.7, 151.6, 140.9, 136.7, 135.4, 129.4, 128.3, 125.2, 121.7, 114.8, 35.2, 31.6, 21.6 (d, *J* = 4.4 Hz). **IR** (thin film, cm⁻¹): 2962, 2865, 1582, 1560, 1547, 1417, 1377, 1362, 1249, 1176, 881, 826, 791, 764, 750, and 665 cm⁻¹. **m.p.**: 125.4–128.4 °C. **HRMS** (DART-TOF) calculated for C₂₅H₃₁N₂⁺ [M+H]⁺ m/z 359.2482, found 359.2487.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), trans-betastyrylboronic acid **16o** (59.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 20:1) afforded the title product as a white solid (42.5 mg, 78%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.71 (d, *J* = 5.2 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 2H), 7.99 (d, *J* = 16.0 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.16–7.03 (m, 2H), 2.43 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.6, 162.4, 157.8, 141.0, 137.0, 136.0, 135.3, 129.4, 129.4, 129.0, 128.3, 127.8, 126.4, 116.2, 21.6. **IR** (thin film, cm⁻¹): 3017, 2917, 1637, 1581, 1558, 1541, 1494, 1449, 1432, 1404, 1388, 1276, 1175, 968, 873, 819, 788, 764, 751, and 690 cm⁻¹. m.p.: 112.5–115.5 °C. HRMS (DART-TOF) calculated for C₁₉H₁₇N₂⁺ [M+H]⁺ m/z 273.1386, found 273.1386.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), thiophen-2ylboronic acid **16p** (51.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 20:1) afforded the title product as a light yellow solid (48.0 mg, 95%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.69 (d, J = 5.2 Hz, 1H), 8.41 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 2.4 Hz, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.36 (d, J = 5.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.14 (t, J = 4.4 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.7, 159.0, 157.6, 143.1, 141.1, 134.9, 130.1, 129.4, 128.4, 128.3, 127.4, 112.6, 21.6 (d, J = 4.4 Hz). **IR** (thin film, cm⁻¹): 3041, 2922, 2860, 1610, 1582, 1559, 1546, 1438, 1419, 1406, 1385, 1342, 1275, 1176, 822, 785, 749, and 710 cm⁻¹. **m.p.**: 62.1–65.1 °C. **HRMS** (**DART-TOF**) calculated for C₁₅H₁₃N₂S⁺ [**M**+H]⁺ m/z 253.0794, found 253.0792.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), 4dibenzothiophene boronic acid **16q** (91.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a light yellow solid (66.3 mg, 94%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.76 (d, J = 5.2 Hz, 1H), 8.64 (d, J = 8.0 Hz, 2H), 8.22 (d, J = 7.2 Hz, 1H), 8.13 (d, J = 7.2 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 5.2 Hz, 1H), 7.60 (d, J = 5.2 Hz, 1H), 7.50–7.40 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 2.46 (s, 3H). ¹³C **NMR** (101

MHz, CDCl₃) δ 164.8, 163.1, 157.5, 142.0, 141.2, 138.0, 137.6, 135.2, 134.4, 131.0, 129.5, 129.0, 127.1, 125.9, 124.5, 124.4, 123.9, 122.6, 121.4, 114.6, 21.7 (d, J = 4.3 Hz). **IR (thin film, cm⁻¹)**: 2932, 2851, 1582, 1560, 1539, 1430, 1406, 1371, 1276, 1177, 828, 800, 785, and 750 cm⁻¹. **m.p.**: 147.6–150.6 °C. **HRMS (DART-TOF**) calculated for C₂₃H₁₇N₂S⁺ [M+H]⁺ m/z 353.1107, found 353.1110.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), furan-2ylboronic acid **16r** (44.7 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 20:1) afforded the title product as a white solid (37.7 mg, 80%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.75 (d, J = 5.2 Hz, 1H), 8.40 (d, J = 8.0 Hz, 2H), 7.59 (s, 1H), 7.43 (d, J = 5.2 Hz, 1H), 7.39 (d, J = 3.6 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 6.58 (dd, J = 3.6, 2.0 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 164.6, 157.8, 155.6, 152.3, 145.0, 141.0, 135.0, 129.4, 128.3, 112.6, 112.3, 112.2, 21.6 (d, J = 3.1 Hz). **IR** (**thin film, cm**⁻¹): 3031, 2927, 2855, 1600, 1557, 1479, 1428, 1393, 1368, 1223, 1176, 1006, 917, 884, 821, 787, 746, and 682 cm⁻¹. **m.p.**: 64.4–67.4 °C. **HRMS** (**DART-TOF**) calculated for C₁₅H₁₃N₂O⁺ [M+H]⁺ m/z 237.1022, found 237.1023.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), benzofuran-2-ylboronic acid **16s** (64.8 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 20:1) afforded the title product as a white solid (55.2 mg, 96%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 5.2 Hz, 1H), 8.43 (d, *J* = 8.0 Hz, 2H), 7.77 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 5.2 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.33–7.25 (m, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 158.2, 155.9, 155.8, 153.7, 141.2, 134.9, 129.4, 128.5, 128.4, 126.4, 123.6, 122.4, 113.3, 111.8, 108.3, 21.6 (d, *J* = 3.4 Hz). IR (thin film, cm⁻¹): 2916, 2865, 1604, 1560, 1530, 1450, 1391, 1178, 832, 815, 787, and 748 cm⁻¹. m.p.: 168.2–171.2 °C. HRMS (DART-TOF) calculated for C₁₉H₁₅N₂O⁺ [M+H]⁺ m/z 287.1179, found 287.1182.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), dibenzofuran-4-ylboronic acid **16t** (84.8 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 20:1) afforded the title product as a white solid (63.5 mg, 94%).

¹**H NMR** (400 MHz, **CDCl**₃) δ 8.88 (d, J = 5.2 Hz, 1H), 8.64 (d, J = 8.8 Hz, 1H), 8.48 (d, J = 8.8 Hz, 2H), 8.29 (d, J = 5.2 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.36 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 2.43 (s, 3H). ¹³**C NMR** (101 MHz, **CDCl**₃) δ 164.5, 160.1, 158.0, 156.1, 154.6, 141.0, 135.4, 129.4, 128.3, 127.6, 127.3, 125.5, 123.7, 123.3, 123.2, 121.9, 120.8, 118.2, 111.9, 21.6 (d, J = 3.3 Hz). **IR** (thin film, cm⁻¹): 2903, 2851, 1583, 1559, 1474, 1441, 1377, 1300, 1175, 830, 802, and 754 cm⁻¹. **m.p.**: 176.4–179.4 °C. **HRMS** (**DART-TOF**) calculated for C₂₃H₁₇N₂O⁺ [M+H]⁺ m/z 337.1335, found 337.1343.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (6-(trifluoromethyl)pyridin-3-yl)boronic acid **16aa** (76.4 mg, 0.4 mmol), $Ni(COD)_2$ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a light yellow solid (46.3 mg, 73%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 8.90 (d, *J* = 5.1 Hz, 1H), 8.69 (d, *J* = 8.1 Hz, 1H), 8.43 (d, *J* = 8.3 Hz, 2H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 5.1 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 160.1, 158.70, 149.7 (q, *J* = 34.4 Hz), 148.8, 141.8, 136.2, 135.5, 134.5, 129.6, 128.4, 120.7 (d, *J* = 2.9 Hz), 121.5 (d, *J* = 172.6 Hz), 114.7, 21.6 (d, *J* = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.96. IR (thin film, cm⁻¹): 2993, 1585, 1559, 1492, 1399, 1341, 1276, 1178, 1134, 947, 874, 829, 790, 764, and 750 cm⁻¹. m.p.: 175.2–178.2 °C. HRMS (DART-TOF) calculated for C₁₇H₁₃F₃N₃⁺ [M+H]⁺ m/z 316.1056, found 316.1057.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (6methoxypyridin-3-yl)boronic acid **16ab** (61.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a white solid (49.4 mg, 89%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.98 (d, J = 2.4 Hz, 1H), 8.75 (d, J = 5.2 Hz, 1H), 8.50–8.24 (m, 3H), 7.45 (d, J = 5.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.8 Hz, 1H), 4.01 (s,

3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 164.7, 161.6, 157.8, 146.7, 141.2, 137.4, 135.1, 129.4, 128.3, 126.3, 113.3, 111.2, 53.9 (d, *J* = 4.1 Hz), 21.6 (d, *J* = 3.1 Hz). IR (thin film, cm⁻¹): 3005, 2841, 1603, 1562, 1543, 1495, 1438, 1394, 1358, 1276, 1260, 1174, 950, 875, 821, 785, 764, and 750 cm⁻¹. m.p.: 94.2–97.2 °C. HRMS (DART-TOF) calculated for C₁₇H₁₆N₃O⁺ [M+H]⁺ m/z 278.1288, found 278.1290.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), tert-butyl 4-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)piperazine-1-carboxylate (**16ac**) (155.7 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (79.4 mg, 92%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 2.4 Hz, 1H), 8.69 (d, J = 5.2 Hz, 1H), 8.43 (d, J = 8.0 Hz, 2H), 8.31 (dd, J = 8.8, 2.4 Hz, 1H), 7.39 (d, J = 5.2 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 8.8 Hz, 1H), 3.70–3.62 (m, 4H), 3.60–3.52 (m, 4H), 2.42 (s, 3H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 161.8, 160.0, 157.4, 154.8, 147.8, 140.9, 136.2, 135.3, 129.3, 128.2, 122.0, 112.5, 106.3, 80.1, 44.7, 43.3, 28.5, 21.5 (d, J = 3.2 Hz). IR (thin film, cm⁻¹): 2984, 1688, 1601, 1502, 1403, 1276, 1173, 949, 874, 818, 789, 764, and 750 cm⁻¹. m.p.: 189.2–192.2 °C. HRMS (DART-TOF) calculated for C₂₅H₃₀N₅O₂⁺ [M+H]⁺ m/z 432.2394, found 432.2400.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), 1-methyl-4pyrazole boronic acid pinacol ester **16ad** (83.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (30.5 mg, 61%).

¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 5.2 Hz, 1H), 8.38 (d, J = 8.0 Hz, 2H), 8.11 (s, 1H), 8.07 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 5.2 Hz, 1H), 3.97 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 158.8, 157.4, 140.9, 138.5, 135.2, 130.4, 129.3, 128.2, 122.1, 113.6, 39.4 (d, J = 4.1 Hz), 21.6 (d, J = 3.4 Hz). IR (thin film, cm⁻¹): 2936, 1587, 1561, 1537, 1405, 1226, 1176, 978, 950, 872, 827, 789, 765, and 750 cm⁻¹. m.p.: 117.2–120.2 °C. HRMS (DART-TOF) calculated for C₁₅H₁₅N₄⁺ [M+H]⁺ m/z 251.1291, found 251.1292.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trifluoromethyl)-1H-pyrazole **16ae** (110.4 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (51.2 mg, 80%).

¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 5.2 Hz, 1H), 8.38 (d, J = 8.0 Hz, 2H), 8.14 (s, 1H), 7.32 (d, J = 5.2 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 4.00 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 158.0, 156.8, 141.2, 139.4 (q, J = 37.3 Hz), 134.9, 133.8, 129.4, 128.3, 125.4, 122.8, 120.4, 120.1, 115.4 (d, J = 2.9 Hz), 39.90, 21.59. ¹⁹F NMR (**376** MHz, CDCl₃) δ -60.37. **IR** (thin film, cm⁻¹): 2903, 1586, 1573, 1559, 1490, 1430, 1407, 1327, 1281, 1174, 1138, 1088, 825, 789, 764, and 749 cm⁻¹. **m.p.**: 109.3–112.3 °C. **HRMS** (**DART-TOF**) calculated for C₁₆H₁₄F₃N₄⁺ [M+H]⁺ m/z 319.1165, found 319.1164.

2'-methoxy-2-(p-tolyl)-4,5'-bipyrimidine (17af)

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (2methoxypyrimidin-5-yl)boronic acid **16af** (61.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (41.2 mg, 74%).

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 9.30 (s, 2H), 8.82 (d, *J* = 5.2 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 5.2 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.12 (s, 3H), 2.44 (s, 3H). ¹³**C NMR** (101 **MHz**, **CDCl**₃) δ 166.9, 165.1, 159.3, 158.5, 158.3, 141.6, 134.7, 129.5, 128.4, 124.6, 113.2, 55.6 (d, *J* = 4.1 Hz), 21.6 (d, *J* = 3.3 Hz). **IR** (thin film, cm⁻¹): 2960, 2922, 1597, 1582, 1566, 1487, 1445, 1409, 1363, 1325, 1306, 1275, 1169, 1036, 949, 830, 789, 764, and 750 cm⁻¹. **m.p.**: 158.1–161.1 °C. **HRMS** (**DART-TOF**) calculated for C₁₆H₁₅N₄O⁺ [M+H]⁺ m/z 279.1240, found 279.1243.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), quinolin-4ylboronic acid **16ag** (69.2 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a white solid (26.4 mg, 44%).

¹**H NMR** (400 MHz, **CDCl**₃) δ 9.06 (d, J = 4.4 Hz, 1H), 8.96 (d, J = 5.2 Hz, 1H), 8.44 (d, J = 8.0 Hz, 2H), 8.28 (d, J = 8.4Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 7.82–7.76 (m, 1H), 7.64–7.55 (m, 2H), 7.47 (d, J = 5.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³**C NMR** (101 MHz, **CDCl**₃) δ 165.0, 164.3, 158.1, 150.1, 149.1, 144.2, 141.6, 134.7, 130.2, 129.8, 129.6, 128.5, 127.6, 125.5, 125.4, 121.5, 119.2, 21.7. **IR** (thin film, cm⁻¹): 3008, 1580, 1557, 1542, 1507, 1462, 1437, 1395, 1382, 1276, 1177, 949, 874, 831, 794, 764, and 750 cm⁻¹. **m.p.**: 126.7–129.7 °C. **HRMS** (**DART-TOF**) calculated for C₂₀H₁₆N₃⁺ [M+H]⁺ m/z 298.1339, found 298.1343.

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (1methylindol-5-yl)boronic acid **16ah** (70.0 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), $PCy_3 \cdot HBF_4$ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 8:1) afforded the title product as a white solid (45.7 mg, 76%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.71 (d, *J* = 5.2 Hz, 1H), 8.52 (d, *J* = 2.0 Hz, 1H), 8.50 (d, *J* = 8.0 Hz, 2H), 8.11 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.56 (d, *J* = 5.2 Hz, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 3.2 Hz, 1H), 6.60 (d, *J* = 3.2 Hz, 1H), 3.76 (s, 3H), 2.43 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.0, 164.5, 157.3, 140.7, 138.5, 135.7, 130.1, 129.3, 128.9, 128.4, 128.3, 120.9, 120.7, 114.0, 109.6, 102.4, 33.1 (d, *J* = 4.1 Hz), 21.6 (d, *J* = 3.5 Hz). **IR** (thin film, cm⁻¹): 2920, 1583, 1558, 1512, 1433, 1421, 1405, 1337, 1275, 1175, 875, 831, 806, 786, 764, and 750 cm⁻¹. m.p.: 174.4–177.4 °C. **HRMS** (DART-TOF) calculated for C₂₀H₁₈N₃⁺ [M+H]⁺ m/z 300.1495, found 300.1495.

1-methyl-5-(2-(p-tolyl) pyrimidin-4-yl)-1H-indazole (17ai)

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), 1-Methyl-1H-indazol-5-boronic acid **16ai** (70.4 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (32.0 mg, 53%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.77 (d, *J* = 5.2 Hz, 1H), 8.61 (s, 1H), 8.48 (d, *J* = 8.0 Hz, 2H), 8.27 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.11 (s, 1H), 7.57 (d, *J* = 5.2 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.10 (s, 3H), 2.44 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.7, 164.0, 157.7, 141.1, 141.0, 135.4, 134.2, 129.9, 129.4, 128.3, 125.5, 124.6, 121.0, 114.0, 109.4, 35.8 (d, *J* = 3.9 Hz), 21.6 (d, *J* = 2.9 Hz). **IR** (thin film, cm⁻¹): 3031, 2921, 1582, 1560, 1503, 1430, 1406, 1348, 1276, 1175, 1108, 949, 874, 831, 806, 786, 764, and 750 cm⁻¹. **m.p.**: 151.9– 154.9 °C. **HRMS** (**DART-TOF**) calculated for C₁₉H₁₇N₄⁺ [M+H]⁺ m/z 301.1448, found 301.1444.

8. Characterization Data for Compounds in Scheme 3 and 4

Following the **General Procedure**, pyrimidinyl sulfone **13a** (62.1 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue

was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 5:1) afforded the title product as a white solid (52.6 mg, 91%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 5.2 Hz, 1H), 8.45 (d, J = 8.0 Hz, 2H), 8.27 (d, J = 8.4 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 5.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 2.65 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 164.9, 162.6, 158.2, 141.3 (d, J = 5.1 Hz), 138.7, 135.0, 129.5, 128.9, 128.4, 127.5 (d, J = 3.1 Hz), 114.7, 26.9 (d, J = 3.9 Hz), 21.6 (d, J = 4.0 Hz). IR (thin film, cm⁻¹): 3017, 2908, 1684, 1580, 1559, 1435, 1406, 1380, 1265, 1177, 957, 870, 821, 787, 764, and 750 cm⁻¹. m.p.: 137.8–140.8 °C. HRMS (DART-TOF) calculated for C₁₉H₁₇N₂O⁺ [M+H]⁺ m/z 289.1335, found 289.1341.

Following the **General Procedure**, pyrimidinyl sulfone **13b** (64.9 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (35.7 mg, 59%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.37 (d, *J* = 8.0 Hz, 2H), 8.08 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.66 (s, 3H), 2.41 (s, 3H), 2.38 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 197.8, 163.7, 162.8, 159.5, 143.0, 140.8, 137.4, 134.9, 129.5, 129.4, 128.4, 128.1, 125.4, 26.9, 21.6, 17.0. IR (thin film, cm⁻¹): 2922, 2860, 1685, 1581, 1532, 1424, 1356, 1265, 956, 873, 840, 792, and 748 cm⁻¹. m.p.: 144.9–147.9 °C. HRMS (DART-TOF) calculated for C₂₀H₁₉N₂O⁺ [M+H]⁺ m/z 303.1492, found 303.1498.

Following the **General Procedure**, pyrimidinyl sulfone **13c** (68.1 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 4:1) afforded the title product as a white solid (59.2 mg, 93%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.32 (dd, *J* = 13.2, 8.0 Hz, 4H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.98 (s, 3H), 2.64 (s, 3H), 2.41 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 197.9, 157.6, 151.8, 149.9, 141.5, 140.2, 140.1, 137.7, 134.8, 130.0, 129.4, 128.1, 127.7, 56.3, 26.9, 21.5. IR (thin film, cm⁻¹): 2927, 2841, 1682, 1606, 1556, 1449, 1429, 1378, 1285, 1267, 1231, 1174, 1012, 957, 849, and 788 cm⁻¹. m.p.: 132.3–135.3 °C. HRMS (DART-TOF) calculated for C₂₇H₂₆ClF₃N₃O₃⁺ [M+H]⁺ m/z 319.1441, found 319.1449.

Following the **General Procedure**, pyrimidinyl sulfone **13d** (73.7 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (60.2 mg, 83%).

¹**H NMR (400 MHz, CDCl₃)** δ9.21 (s, 1H), 8.45 (d, J = 8.0 Hz, 2H), 8.07 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.26 (q, J = 7.2 Hz, 2H), 2.67 (s, 3H), 2.43

(s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 165.9, 165.7, 165.4, 159.5, 142.7, 142.5, 137.9, 133.9, 129.6, 129.4, 129.0, 128.2, 121.5, 61.9, 26.9, 21.7, 13.9. IR (thin film, cm⁻¹): 2998, 2922, 2846, 1721, 1686, 1572, 1556, 1527, 1426, 1363, 1266, 1176, 1134, 801, 749 and 684 cm⁻¹. m.p.: 109.0–112.0 °C. HRMS (DART-TOF) calculated for C₂₇H₂₆ClF₃N₃O₃⁺ [M+H]⁺ m/z 361.1547, found 361.1552.

Following the **General Procedure**, pyrimidinyl sulfone **13e** (69.0 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (22.6 mg, 35%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.36 (d, J = 8.0 Hz, 2H), 8.08 (q, J = 8.4 Hz, 4H), 7.29 (d, J = 8.0 Hz, 2H), 2.67 (s, 3H), 2.42 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 197.7, 162.9, 161.1, 158.1, 141.7, 140.5, 138.2, 133.8, 130.0, 129.6, 128.4, 128.3, 126.6, 26.9 (d, J =5.2 Hz, 2H), 21.7 (d, J = 5.3 Hz). **IR** (thin film, cm⁻¹): 2913, 1689, 1584, 1496, 1412, 1330, 1175, 950, 874, 783, 678, and 662 cm⁻¹. **m.p.**: 136.9–139.9 °C. **HRMS** (DART-TOF) calculated for C₁₉H₁₆ClN₂O⁺ [M+H]⁺ m/z 323.0946, found 323.0945.

Following the **General Procedure**, pyrimidinyl sulfone **13f** (64.9 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (47.0 mg, 78%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.0 Hz, 2H), 8.26 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 2H), 7.44 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.65 (s, 3H), 2.63 (s, 3H), 2.43 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 197.8, 168.2, 164.6, 162.4, 141.7, 141.0, 138.5, 135.2, 129.4, 128.8, 128.4, 127.4, 114.2, 26.9 (d, *J* = 5.7 Hz), 24.7 (d, *J* = 5.6 Hz), 21.6 (d, *J* = 5.5 Hz). **IR (thin film, cm⁻¹)**: 2926, 2852, 1684, 1587, 1568, 1504, 1368, 1265, 1176, 957, 837, 784, 764, and 750 cm⁻¹. **m.p.**: 164.0–167.0 °C. **HRMS (DART-TOF)** calculated for C₂₀H₁₉N₂O⁺ [M+H]⁺ m/z 303.1492, found 303.1489.

Following the **General Procedure**, pyrimidinyl sulfone **13g** (75.7 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a light yellow solid (60.6 mg, 85%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.47 (d, J = 8.0 Hz, 2H), 8.29 (d, J = 8.0 Hz, 2H), 8.09 (d, J = 8.0 Hz, 2H), 7.83 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 2.66 (s, 3H), 2.43 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 197.5, 165.7, 165.1 157.1 (q, J = 35.8 Hz), 142.4, 139.3 136.8 (d, J = 640.7 Hz), 133.6, 129.6, 129.0, 128.8, 127.7, 120.9 (d, J = 273.9 Hz), 120.8 (d, J = 852.8 Hz), 110.1, 26.9 (d, J = 5.5 Hz), 21.7 (d, J = 5.5 Hz). ¹⁹**F NMR** (**376 MHz**, **CDCl**₃) δ -69.98. **IR** (**thin film**, **cm**⁻¹): 3089, 2913, 1690, 1578, 1509, 1431, 1394, 1379, 1267, 1183, 1159, 1139, 895, 839, 786, and 750 cm⁻¹. **m.p.**: 169.4–172.4 °C. **HRMS** (**DART-TOF**) calculated for C₂₀H₁₆F₃N₂O⁺ [**M**+H]⁺ m/z 357.1209, found 357.1203.

Following the **General Procedure**, pyrimidinyl sulfone **13h** (80.3 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc: DCM = 1:0:0 to 4:1:1) afforded the title product as a light yellow solid (69.8 mg, 92%).

¹**H** NMR (400 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 8.38 (d, *J* = 8.0 Hz, 2H), 8.27 (d, *J* = 8.0 Hz, 2H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.23 (s, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 2.64 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 197.6, 163.2, 161.4, 160.3, 141.4, 140.4, 140.0, 137.9, 135.3, 129.1, 128.9, 128.8, 127.8, 126.7, 122.4, 119.8, 101.1, 26.9 (d, *J* = 7.1 Hz), 21.0 (d, *J* = 6.5 Hz). IR (thin film, cm⁻¹): 3360, 3008, 1587, 1497, 1441, 1358, 1275, 1177, 949, 874, 826, 764, and 750 cm⁻¹. m.p.: 216.6–219.6 °C. HRMS (DART-TOF) calculated for C₂₅H₂₂N₃O⁺ [M+H]⁺ m/z 380.1757, found 380.1764.

1-(4-(2-(*p*-tolyl)-6, 7-dihydro-5H-cyclopenta[d]pyrimidin-4yl) phenyl) ethan-1-one (18i)

Following the **General Procedure**, pyrimidinyl sulfone **13i** (70.1 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a light yellow solid (48.2 mg, 73%).

¹**H NMR** (400 **MHz, CDCl**₃) δ 8.42 (d, *J* = 8.0 Hz, 2H), 8.10 (q, *J* = 8.4 Hz, 4H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.20 (t, *J* = 7.6 Hz, 2H), 3.11 (t, *J* = 7.6 Hz, 2H), 2.66 (s, 3H), 2.42 (s, 3H), 2.17 (p, *J* = 7.6 Hz, 2H). ¹³**C NMR** (101 **MHz, CDCl**₃) δ 197.9, 177.0, 163.4, 158.1, 142.6, 140.6, 137.7, 135.4, 129.3, 129.2, 129.0, 128.5, 128.2, 34.5, 30.9, 26.9 (d, *J* = 5.9 Hz), 22.9, 21.6 (d, *J* = 5.9 Hz). **IR** (thin film, cm⁻¹): 2920, 1685, 1580, 1545, 1500, 1385, 1359, 1264, 1170, 959, 867, 777, and 590 cm⁻¹. **m.p.**: 204.2–207.2 °C. **HRMS** (**DART-TOF**) calculated for C₂₂H₂₁N₂O⁺ [M+H]⁺ m/z 329.1648, found 329.1651.

Following the **General Procedure**, pyrimidinyl sulfone **13j** (72.9 mg, 0.2 mmol), (4acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc: DCM = 1:0:0 to 0:4:1) afforded the title product as a white solid (35.6 mg, 52%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 8.0 Hz, 2H), 8.68 (d, *J* = 8.0 Hz, 2H), 8.04 (d, *J* = 8.0 Hz, 2H), 8.00 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.87 (s, 3H), 2.65 (s, 3H), 2.46 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 198.2, 157.2, 154.1, 153.6, 145.1, 142.7, 141.5, 137.9, 133.3, 129.8, 129.7, 129.4, 128.5, 128.4, 29.7, 26.9, 21.7. IR (thin film, cm⁻¹): 3003, 2908, 1591, 1496, 1386, 1336, 1276, 1261, 1173, 950, 873, 764, and 750 cm⁻¹. m.p.: 228.4–231.4 °C. HRMS (DART-TOF) calculated for C₂₁H₁₉N₄O⁺ [M+H]⁺ m/z 343.1553, found 343.1558.

Following the **General Procedure**, pyridinyl sulfone **19d** (61.9 mg, 0.2 mmol), (4-acetylphenyl)boronic acid **14** (65.6 mg, 0.4 mmol), Ni(COD)₂ (5.5 mg, 0.02 mmol), PCy₃·HBF₄ (14.7 mg, 0.04 mmol), KOH (22.4 mg, 0.4 mmol), and THF (2.0 mL) were used. The residue was purification by flash chromatography (SiO₂, petroleum ether: EtOAc = 1:0 to 10:1) afforded the title product as a white solid (41.4 mg, 72%).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.23 (d, J = 8.0 Hz, 2H), 8.05 (t, J = 8.4 Hz, 4H), 7.80 (t, J = 8.0 Hz, 1H), 7.69 (dd, J = 8.0, 2.8 Hz, 2H), 7.30 (d, J = 7.6 Hz, 2H), 2.64 (s, 3H), 2.42 (s, 3H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 198.0, 143.9, 139.3, 137.7, 137.2, 136.5, 129.6, 128.8, 127.2, 126.9, 119.2, 118.9, 26.8, 21.4. **IR** (**thin film, cm**⁻¹): 3056, 2925, 1685, 1588, 1419, 1279, 1265, 1116, 893, 855, 797, 760, and 753 cm⁻¹. **m.p.**: 165.4–168.4 °C. **HRMS** (**DART-TOF**) calculated for C₂₀H₁₈NO⁺ [M+H]⁺ m/z 288.1383, found 288.1390.

9. References

1 Q. Z. Zhou, B. Zhang, L. J. Su, T. S. Jiang, R. N. Chen, T. Q. Du, Y. Y. Ye, J. F. Shen, G. L. Dai, D. M. Han and H. J. Jiang, Palladium-catalyzed highly regioselective 2-arylation of 2,x-dibromopyridines and its application in the efficient synthesis of a 17b-HSD1 inhibitor, *Tetrahedron*, 2013, **69**, 10996–11003.

2 Y. Yuan, I. Thomé, S. H. Kim, D. T. Chen, A. Beyer, J. Bonnamour, E. Zuidema, S. Chang and C. Bolm, Dimethyl Sulfoxide/Potassium Hydroxide: A Superbase for the Transition Metal-Free Preparation of Cross-Coupling Products, *Adv. Synth. Catal.*, 2010, **352**, 2892–2898.

3 M. G. Bursavich, D. Dastrup, M. Shenderovich, K. M. Yager, D. M. Cimbora, B. Williams and D. V. Kumar, Novel Mps1 kinase inhibitors: From purine to pyrrolopyrimidine and quinazoline leads, *Bioorg. Med. Chem. Lett.*, 2013, **23**, 6829–6833.

4 X. H. Hong, H. Wang, B. X. Liu and B. Xu, Ruthenium-catalyzed double-fold C–H tertiary alkoxycarbonylation of arenes using di-*tert*-butyl decarbonate, *Chem. Commun.*, 2014, **50**, 14129–14132.

5 W. J. Sun, S. Q. Hu, S. B. Fang and H. Yan, Design, synthesis and biological evaluation of pyrimidine-based derivatives as VEGFR-2 tyrosine kinase inhibitors, *Bioorg. Chem.*, 2018, **78**, 393–405.

10. NMR Spectra

PhO₂S² 19a 1.00 0.97 1.00 6.04 2.05 3.00+ 9 7 2 6 8 5 3 Ò 4 1 f1 (ppm)

¹³C NMR Spectrum of **19a**

- 21.22

- 0.00

SO₂Ph

¹H NMR Spectrum of **19b**

¹³C NMR Spectrum of **19b**

N SO₂Ph

¹H NMR Spectrum of **19c**

¹³C NMR Spectrum of **19c**

N SO₂Ph

¹H NMR Spectrum of **19d**

¹³C NMR Spectrum of **19d**

 $Me \xrightarrow{N}_{N \xrightarrow{N}} SO_2Ph$ 13a

¹H NMR Spectrum of **13a**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **13a**

Me N = MeN SO_2Ph 13b

¹H NMR Spectrum of **13b**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **13b**

 $Me \xrightarrow{N} OMe \\ SO_2Ph \\ 13c$

¹H NMR Spectrum of **13c**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **13c**

¹H NMR Spectrum of **13d**

¹³C NMR Spectrum of **13d**

¹H NMR Spectrum of **13e**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **13e**

 $Me \xrightarrow{N} \\ N \xrightarrow{N} \\ SO_2Ph \\ 13f$

¹³C NMR Spectrum of **13f**

 CF_3

Me SO₂Ph 13g 1.00 1.99 2.10 2.94 3.01 0 2 10 6 5 4 3 9 8 7 1 f1 (ppm)

¹H NMR Spectrum of 13g

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **13g**

Ме

,CF₃

SO₂Ph

13g

¹H NMR Spectrum of **13h**

DMSO, 100.62 MHz

¹³C NMR Spectrum of **13h**

¹H NMR Spectrum of **13i**

¹³C NMR Spectrum of **13i**

 $Me \xrightarrow{N} \stackrel{N}{\longrightarrow} \stackrel{N}$

¹H NMR Spectrum of **13**j

¹H NMR Spectrum of **17a**

¹³C NMR Spectrum of **17a**

Me

17a

¹H NMR Spectrum of **17b**

¹³C NMR Spectrum of **17b**

Me оМе 17c 1.02 2.02 2.02 1.00 2.00 2.00 3.05 3.03 8 2 3 10 9 7 6 5 Ò 4 1 f1 (ppm)

¹H NMR Spectrum of **17c**

¹³C NMR Spectrum of **17c**

CDCI3, 100.62 MHz

¹H NMR Spectrum of **17d**

¹³C NMR Spectrum of **17d**

Me

10

f1 (ppm) ¹H NMR Spectrum of **17e**

¹³C NMR Spectrum of **17e**

¹H NMR Spectrum of **17f**

¹³C NMR Spectrum of **17f**

Me 17f

¹H NMR Spectrum of **17g**

¹³C NMR Spectrum of **17g**

¹H NMR Spectrum of **17h**

¹³C NMR Spectrum of **17h**

10

¹H NMR Spectrum of **17i**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17i**

Me Ph 17j

¹H NMR Spectrum of **17**j

¹³C NMR Spectrum of **17j**

¹H NMR Spectrum of **17k**

¹³C NMR Spectrum of **17k**

Me H_2N 171 1.00 1.02 1.03 1.04 3.13 1.02 1.93 3.23 2.04] 10 8 ò 9 7 3 6 5 2 4 1 f1 (ppm)

¹³C NMR Spectrum of **17**I

Me N N N Me Me 17m

¹H NMR Spectrum of **17m**

Me −*t*-Bu *t*-Bú **17n** 18.274 1.00 2.04 0.99 1.02 1.04 2.08 3.16 2 7 3 10 9 8 6 5 Ö 4 1 f1 (ppm)

¹H NMR Spectrum of **17n**

¹³C NMR Spectrum of **17n**

¹H NMR Spectrum of **170**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **170**

¹H NMR Spectrum of **17p**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17p**

Me 17q 1.02 1.05 1.05 1.05 1.05 1.05 3.08 3.08 1.02 3.03 2 7 3 10 9 8 5 Ò 6 4 1 f1 (ppm)

¹H NMR Spectrum of **17q**

17r

¹H NMR Spectrum of **17r**

¹H NMR Spectrum of **17s**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17s**

¹H NMR Spectrum of **17t**

¹³C NMR Spectrum of **17t**

¹H NMR Spectrum of **17aa**

¹³C NMR Spectrum of **17aa**

¹H NMR Spectrum of **17ab**

¹H NMR Spectrum of **17ac**

¹³C NMR Spectrum of **17ac**

Me

17ad Mé 2.02 3.09 1.00-2.02 1.02 0.98 3.12 7 0 10 2 9 8 6 5 4 3 1

¹H NMR Spectrum of **17ad**

f1 (ppm)

¹³C NMR Spectrum of **17ad**

Me ,CF₃ **17ae** Me 1.00 2.06 1.01 1.07 2.02 3.13 3.13 7 4 2 9 8 6 5 3 Ó 1 f1 (ppm)

¹³C NMR Spectrum of **17ae**

Me ,CF₃ **17ae** Me

¹H NMR Spectrum of **17af**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17af**

Me 17ag 1.00 2.00 1.00 1.00 2.00 3.09 7 0 10 9 8 5 3 2 1 6 4 f1 (ppm)

¹H NMR Spectrum of **17ag**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17ag**

¹H NMR Spectrum of **17ah**

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17ah**

Me

17ai

Mé

3.06 1.00 1.00 2.01 1.03 0.97 1.01 1.02 2.00 3.03 10 3 7 5 9 8 6 . 4 2 0 1 f1 (ppm)

CDCI3, 100.62 MHz

¹³C NMR Spectrum of **17ai**

¹H NMR Spectrum of **18a**

¹³C NMR Spectrum of **18a**

¹H NMR Spectrum of **18b**

¹³C NMR Spectrum of **18b**

Me

10

·ОМе

Mé

8

9

18c

=O

7

6

4

2

1

Ò

3

¹H NMR Spectrum of **18c**

f1 (ppm)

5

¹³C NMR Spectrum of **18c**

Me

-CO₂Et

Mé

18d

¹H NMR Spectrum of **18d**

¹³C NMR Spectrum of **18d**

¹H NMR Spectrum of **18e**

10

f1 (ppm)

¹H NMR Spectrum of **18f**

¹³C NMR Spectrum of **18f**

¹H NMR Spectrum of **18g**

¹³C NMR Spectrum of **18g**

-200

— 2.50 HN-Ph Me 18h Mé 3.00<u>4</u> 1.00 2.03 2.00 2.06 2.07 2.20 2.06 1.04 1.02 10 2 9 7 5 3 Ö 8 6 4 1 f1 (ppm)

¹H NMR Spectrum of **18h**

¹³C NMR Spectrum of **18h**

¹H NMR Spectrum of **18i**

¹³C NMR Spectrum of **18i**

Me

Me

Mé

18j

2.02₄ 3.04[±] 3.04[±] 2.02 1.00[¥] 2.13H 3.02[±] 10 8 3 2 7 5 4 Ó 9 6 1 f1 (ppm)

¹H NMR Spectrum of **18j**

CDCI3, 100.62 MHz

20d 3.04 2.09 1.07 2.02 2.02 7.00 2.02 f1 (ppm)

¹H NMR Spectrum of **20d**

¹³C NMR Spectrum of **20d**