Electronic Supplementary Information

HTE and machine learning-assisted development of iridium(I)catalyzed selective O–H bond insertion reactions toward carboxymethyl ketones

Yougen Xu, ^{a,b} Feixiao Ren,^d Lebin Su,^{*b,c} Zhaoping Xiong,^d Xinwei Zhu,^b Xinyuan Lin,^d Nan

Qiao,^d Hao Tian,^b Changen Tian^a and Kuangbiao Liao*^{b,c}

^aSchool of Life Sciences, Guangzhou University, Guangzhou 510006, China

^bGuangzhou Laboratory, Guangzhou 510320, China

^cBioland Laboratory, Guangzhou 510005, China

^dLaboratory of Health Intelligence, Huawei Cloud Computing Technologies Co., Ltd, Guizhou

550025, China

E-mail: su_lebin@gzlab.ac.cn; liao_kuangbiao@gzlab.ac.cn

Table of Contents

1. General Information	
2. Sulfoxonium Ylide Substrates	S3
3. General Experimental Procedure	
4. Reaction Mechanism	S8
5. HTE for Substrate Scope	S9
6. HTE for 235 Unknown Reactions	S15
7. Development of Machine Learning Model	S17
8. Characterization Data for the Products	S23
9. Characterization Data for Sulfoxonium Ylides	S52
10. References	S61
11. NMR Spectral Data for Isolated Products and Sulfoxonium Ylides	

1. General Information

Materials. Reactions were carried out under a nitrogen atmosphere in oven-dried Schlenk tubes unless otherwise specified. The heat source is IKA magnetic stirrer with RCT Basic. Reagents were purchased from commercial suppliers (Energy, Aladdin, Bidepharm, Alfa Aesar, Sigma-Aldrich, and J&K Scientific) and used with no further purification. Catalysts and ligands were stored in glovebox. Anhydrous solvents in sure-seal bottle were purchased from Energy and used with no further purification. All reactions were set up inside Vigor glovebox with constant N_2 purge (oxygen typically < 5 ppm). Organic solutions were concentrated under reduced pressure on a Heidolph rotary evaporator using a water bath.

Instruments. ¹H and ¹³C NMR spectra were recorded at either 500 MHz (¹³C at 125 MHz) or 600 MHz (¹³C at 150 MHz) on Bruker Avance III 500 MHz or Bruker Avance III 600 MHz spectrometer, as indicated. NMR spectra run in solutions of deuterated chloroform (CDCl₃) with residual chloroform as internal standard (7.26 ppm for ¹H, and 77.00 ppm for ¹³C) or in solutions of deuterated dimethyl sulfoxide (DMSO-*d*₆) with residual dimethyl sulfoxide as internal standard (2.50 ppm for ¹H, and 39.50 ppm for ¹³C), and chemical shifts were reported in parts per million (ppm). ¹⁹F NMR spectra were recorded on a Bruker Avance III 600 MHz (¹⁹F at 564 MHz), and were reported unreferenced. Abbreviations for signal multiplicity are as follow: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, etc. Coupling constants (*J* values) were calculated directly from the spectra. Flash column chromatography was performed on silica gel (300–400 mesh) with the solvents given in the procedures. Thin layer chromatographic (TLC) analysis was performed with glass-backed silica gel plates, visualizing with UV light (254 nm). Liquid was handled with Eppendorf continuous manual dispenser and/or pipetting with Opentrons 8-channels pipetting device. The high resolution mass spectra (HRMS) were measured on a Waters Xevo G2-XS using electrospray ionization time-of-flight (ESI-TOF).

Standard Workflow

mmol, 4 mol %), ligand (0.008 mmol, 8 mol %), carboxylic acid (0.10 mmol, 1.0 equiv), and sulfoxonium ylide (0.20 mmol, 2.0 equiv); then DCE (0.5 mL) was added. The reaction mixture was stirred at 110 °C for 12 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature, the plate was opened and add internal standard to each well (100 μ L of 1.0 M 1,3,5-trimethoxybenzene solution in MeOH). The Opentrons 8-channels pipetting device was used to add 200 μ L MeOH to each well, mixed dissolution. Then, the Opentrons 8-channels pipetting device was used to transfer 200 μ L of reaction liquor to a deep well plate (each well, 2 mL). At that point, organic solutions for 2 mL deep well plate were concentrated under reduced pressure on a miniVac at 37 °C for 4 h under 10 mbar. Finally, pipette was used to add 300 μ L CDCl₃ to each well, mixed dissolution, were sampled into 3 mm NMR tube and analyzed by ¹H NMR.

2. Sulfoxonium Ylide Substrates

The following sulfoxonium ylides were used in this study and were prepared according to the previous literature.¹⁻³

3. General Experimental Procedure

Table S1. HTE screening of catalyst and ligand for O-H bond insertion reaction of 1a and 2a^a

Layout of catalyst and ligand Optimization

	1	2	3	4	5	6	7
А	C1+L1	C1+L2	C1+L3	C1+L4	C1+L5	C1+L6	C1+none
В	C2+L1	C2+L2	C2+L3	C2+L4	C2+L5	C2+L6	C2+none
С	C3+L1	C3+L2	C3+L3	C3+L4	C3+L5	C3+L6	C3+none
D	C4+L1	C4+L2	C4+L3	C4+L4	C4+L5	C4+L6	C4+none
Е	C5+L1	C5+L2	C5+L3	C5+L4	C5+L5	C5+L6	C5+none
F	C6+L1	C6+L2	C6+L3	C6+L4	C6+L5	C6+L6	C6+none
G	C7+L1	C7+L2	C7+L3	C7+L4	C7+L5	C7+L6	C7+none
Н	none+L1	none+L2	none+L3	none+L4	none+L5	none+L6	none+none

Reaction Yield (%) of 3a Presented as Heatmap

	1	2	3	4	5	6	7
А	50	43	78	91	87	79	35
В	13	8	27	31	29	28	16
С	33	34	40	51	43	39	19
D	37	36	49	63	50	55	25
Е	6	6	5	7	5	8	4
F	10	11	8	15	13	14	10
G	5	3	2	0	0	0	0
Н	0	0	4	5	0	0	0

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), catalyst (4 mol%), and ligand (8 mol%) in DCE (500 μ L) at 110 °C under N₂ for 12 h. Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as internal standard.

[lr(COD)Cl]2 \cap 1.10-phen Ρh solvent 2a 3 temp (°C) yield (%)^b entry cat. ligand solovent [lr(COD)Cl]2 L4 THF 1 110 55 2 [lr(COD)Cl]₂ L4 1,4-dioxane 110 62 3 [lr(COD)Cl]₂ 77 L4 toluene 110 [lr(COD)Cl]2 L4 EtOH 110 30 4 5 [lr(COD)Cl]2 L4 DMF 110 95 6 [lr(COD)Cl]2 DMSO 80 14 110 [lr(COD)Cl]₂ L4 DMF 75 7 90 8 [lr(COD)Cl]2 L4 DMF 130 86

Table S2. Screening of solvent and temperature for O–H bond insertion reaction of 1a and 2a^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), $[Ir(COD)Cl]_2$ (**C1**, 4 mol%), and 1,10-phen (**L4**, 8 mol%) in solvent (0.5 mL) at 110 °C under N₂ for 12 h. ^{*b*}Yields were determined by ¹H NMR using 1,3,5-trimethoxybenzene as internal standard.

Solvent screening showed that DMF was the best solvent and the product **3** was obtained in 95% yield (Table S2, entries 1–6). Both decreased and elevated temperatures had negative effects on the yields (Table S2, entries 7 and 8).

b) General Experimental Procedure for the Synthesis of Carboxymethyl Ketones

A 900 μ L-glass tube equipped with a magnetic stir bar (C3*5 mm) and was charged with [Ir(COD)Cl]₂ (2.7 mg, 0.004 mmol, 4 mol%), 1,10-phen (1.4 mg, 0.008 mmol, 8 mol%), carboxylic acid (0.10 mmol, 1.0 equiv), and sulfoxonium ylide (0.20 mmol, 2.0 equiv); then DMF (0.5 mL) was added. The plate was sealed and stirred (820 r/min in IKA RCT basic) at 110 °C for 12 h under N₂. After completion, the reaction mixture was cooled to room temperature. The crude product was extracted with ethyl acetate (3 × 3.0 mL), and the solution was washed with saturated solution of NH₄Cl (3.0 mL), and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give the desired products.

c) Gram-Scale Synthesis of 6

An oven dried Schlenk tube of 100 mL equipped with a magnetic stir bar was charged with $[Ir(COD)CI]_2$ (108 mg, 0.16 mmol, 4 mol %) and 1,10-phen (57.7 mg, 0.32 mmol, 8 mol %), 2-(5-bromo-1*H*-indol-3-yl)acetic acid (4.0 mmol, 1.0 equiv), and sulfoxonium ylide **2** (8.0 mmol, 2.0 equiv); then DMF (20 mL) was added. The reaction mixture was stirred (820 r/min in IKA RCT basic) at 110 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was extracted with ethyl acetate (3 × 15 mL), and the solution was washed with saturated solution of NH₄Cl (15 mL), and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to afford carboxymethyl ketone **6** in 73% yield (1.087 g).

d) Synthesis of Carboxymethyl Ketone 73

An oven dried Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with $[Ir(COD)Cl]_2$ (5.4 mg, 0.008 mmol, 8 mol%) and 1,10-phen (2.9 mg, 0.016 mmol, 16 mol%), isophthalic acid **69** (0.1 mmol, 1.0 equiv), and sulfoxonium ylide **2a** (0.4 mmol, 4.0 equiv); then DMF (1.0 mL) was added. The reaction mixture was stirred (820 r/min in IKA RCT basic) at 110 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was extracted with ethyl acetate (3 × 3.0 mL), and the solution was washed with saturated solution of NH₄Cl (3.0 mL), and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to afford carboxymethyl ketone **70** in 67% yield (30.0 mg).

e) Synthesis of Cyclized Product 74

The preparation of this compound was performed according to a literature reference.⁴ A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with carboxymethyl ketone **6** (74.4 mg, 0.2 mmol) in CH₃CN (1.0 mL); then, DBU (0.4 mmol, 2.0 equiv) was added. Then the reaction mixture was stirred at 0 °C for 24 h under air. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was extracted with ethyl acetate (3×3.0 mL), and the solution was washed with saturated solution of NH₄Cl (3.0 mL), and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to afford cyclized product **71** in 79% yield (55.8 mg).

f) Synthesis of Alkynyl Functionalized Carboxymethyl Ketone 73

The preparation of this compound was performed according to a literature reference.⁵ A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with Pd(PPh₃)₂Cl₂ (5.6 mg, 0.008 mmol, 4 mol%) and CuI (1.5 mg, 0.008 mmol, 4 mol%) in THF (1.0 mL); then, Br-substituted carboxymethyl ketone **43** (0.2 mmol), phenylacetylene (**72**, 0.24 mmol, 1.2 equiv), and (*i*-Pr)₂NH (0.4 mmol, 2.0 equiv) were added. Then the reaction mixture was stirred at 100 °C for 24 h under N₂. After the starting material was consumed, the reaction mixture was quenched with 3 N HCl solution, extracted with dichloromethane, washed with water and brine followed by drying over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give the desired product (**73**, 65.3 mg, 83%).

4. Reaction Mechanism

Scheme S1. Proposed Reaction Mechanism

First, the coordination of sulfoxonium ylide **2a** to [Ir(COD)Cl]₂ species generates intermediate **A**, which then undergoes an elimination to release one molecule of dimethyl sulfoxide, leading to highly active iridium carbene intermediate **B**. Subsequently, insertion of the O–H bond of carboxylic acid into **B** via the transition state **C** produces the desired esterification product (**TM**) with concomitant regeneration of the iridium catalyst.

5. HTE for Substrate Scope

a) Reaction Setup

A 900 μ L-glass tube equipped with a magnetic stir bar (C3*5 mm) and was charged with [Ir(cod)Cl]₂ (0.08 M in DMF, 10 μ L, 4 mol%) and 1,10-phenanthroline (0.16 M in DMF, 10 μ L, 8 mol%). Then, sulfoxonium ylide (1.0 M in DMF, 40 μ L, 2.0 equiv), carboxylic acid (0.5 M in DMF, 40 μ L, 0.02 mmol) were added. The plate was sealed and stirred (820 r/min in IKA RCT basic) at 110 °C for 12 h under N₂. After completion, the reaction mixture was cooled to room temperature, the plate was opened and internal standard was added to each well (100 μ L of 0.2 M 1,3,5-trimethoxybenzene solution in MeOH). The Opentrons 8-channels pipetting device was used to add 200 μ L MeOH to each well, mixed dissolution. Then, the Opentrons 8-channels pipetting device was used to transfer 200 μ L of reaction liquor to a deep well plate (each well, 2 mL). At that point, organic solutions for 2 mL deep well plate were concentrated under reduced pressure on a miniVac at 50 °C for 5 h under 10 mbar. Finally, pipette was used to add 300 μ L CDCl₃ to each well, mixed dissolution, were sampled into 3 mm NMR tube and analyzed by ¹H NMR.

b) Plate Layout

Under optimal conditions, below is a summary (Figure S2) of other 80 carboxylic acids and 9 sulfoxonium ylides used in this work, furnishing 352 scattered of micromolar reactions via HTE.

Figure S2. All reaction components for 352 scattered of micromolar reactions.

Table S3–S7 describe the components of each well for each plate.

	1	2	3	4	5	6	7	8	9	10
А	A1/2c	A9/2c	A17/2c	A25/2c	A33/2c	A41/2c	A49/2c	A57/2c	A65/2c	A73/2c
В	A2/2c	A10/2c	A18/2c	A26/2c	A34/2c	A42/2c	A50/2c	A58/2c	A66/2c	A74/2c
С	A3/2c	A11/2c	A19/2c	A27/2c	A35/2c	A43/2c	A51/2c	A59/2c	A67/2c	A75/2c
D	A4/2c	A12/2c	A20/2c	A28/2c	A36/2c	A44/2c	A52/2c	A60/2c	A68/2c	A76/2c
Е	A5/2c	A13/2c	A21/2c	A29/2c	A37/2c	A45/2c	A53/2c	A61/2c	A69/2c	A77/2c
F	A6/2c	A14/2c	A22/2c	A30/2c	A38/2c	A46/2c	A54/2c	A62/2c	A70/2c	A78/2c
G	A7/2c	A15/2c	A23/2c	A31/2c	A39/2c	A47/2c	A55/2c	A63/2c	A71/2c	A79/2c
Н	A8/2c	A16/2c	A24/2c	A32/2c	A40/2c	A48/2c	A56/2c	A64/2c	A72/2c	A80/2c

Table S3. Layout of plate 1.

 Table S4. Layout of plate 2.

	1	2	3	4	5	6	7	8	9	10
А	A1/2d	A9/2d	A17/2d	A25/2d	A33/2d	A41/2d	A49/2d	A57/2d	A65/2d	A73/2d
В	A2/2d	A10/2d	A18/2d	A26/2d	A34/2d	A42/2d	A50/2d	A58/2d	A66/2d	A74/2d
С	A3/2d	A11/2d	A19/2d	A27/2d	A35/2d	A43/2d	A51/2d	A59/2d	A67/2d	A75/2d
D	A4/2d	A12/2d	A20/2d	A28/2d	A36/2d	A44/2d	A52/2d	A60/2d	A68/2d	A76/2d
Е	A5/2d	A13/2d	A21/2d	A29/2d	A37/2d	A45/2d	A53/2d	A61/2d	A69/2d	A77/2d
F	A6/2d	A14/2d	A22/2d	A30/2d	A38/2d	A46/2d	A54/2d	A62/2d	A70/2d	A78/2d
G	A7/2d	A15/2d	A23/2d	A31/2d	A39/2d	A47/2d	A55/2d	A63/2d	A71/2d	A79/2d
Н	A8/2d	A16/2d	A24/2d	A32/2d	A40/2d	A48/2d	A56/2d	A64/2d	A72/2d	A80/2d

 Table S5. Layout of plate 3.

	1	2	3	4	5	6	7	8	9	10
А	A1/2j	A9/2j	A17/2j	A25/2j	A33/2j	A41/2j	A49/2j	A57/2j	A65/2j	A73/2j
В	A2/2j	A10/2j	A18/2j	A26/2j	A34/2j	A42/2j	A50/2j	A58/2j	A66/2j	A74/2j
С	A3/2j	A11/2j	A19/2j	A27/2j	A35/2j	A43/2j	A51/2j	A59/2j	A67/2j	A75/2j
D	A4/2j	A12/2j	A20/2j	A28/2j	A36/2j	A44/2j	A52/2j	A60/2j	A68/2j	A76/2j
Е	A5/2j	A13/2j	A21/2j	A29/2j	A37/2j	A45/2j	A53/2j	A61/2j	A69/2j	A77/2j
F	A6/2j	A14/2j	A22/2j	A30/2j	A38/2j	A46/2j	A54/2j	A62/2j	A70/2j	A78/2j
G	A7/2j	A15/2j	A23/2j	A31/2j	A39/2j	A47/2j	A55/2j	A63/2j	A71/2j	A79/2j
Н	A8/2j	A16/2j	A24/2j	A32/2j	A40/2j	A48/2j	A56/2j	A64/2j	A72/2j	A80/2j

Table S6. Layout of plate 4.

	1	2	3	4	5	6
А	A33/2g	A41/2g	A49/2g	A57/2g	A65/2b	A73/2b
В	A34/2g	A42/2g	A50/2g	A58/2g	A66/2b	A74/2b
С	A35/2g	A43/2g	A51/2g	A59/2g	A67/2b	A75/2b
D	A36/2g	A44/2g	A52/2g	A60/2g	A68/2b	A76/2b
Е	A37/2g	A45/2g	A53/2g	A61/2g	A69/2b	A77/2b
F	A38/2g	A46/2g	A54/2g	A62/2g	A70/2b	A78/2b
G	A39/2g	A47/2g	A55/2g	A63/2g	A71/2b	A79/2b
Н	A40/2g	A48/2g	A56/2g	A64/2g	A72/2b	A80/2b

 Table S7. Layout of plate 5.

	1	2	3	4	5	6	7	8
А	A1/21	A71/21	A1/2i	A71/2i	A1/2v	A71/2v	A1/2k	A71/2k
В	A2/21	A72/21	A2/2i	A72/2i	A2/2v	A72/2v	A2/2k	A72/2k
С	A3/21	A73/21	A3/2i	A73/2i	A3/2v	A73/2v	A3/2k	A73/2k
D	A4/21	A74/21	A4/2i	A74/2i	A4/2v	A74/2v	A4/2k	A74/2k
Е	A5/21	A75/21	A5/2i	A75/2i	A5/2v	A75/2v	A5/2k	A75/2k
F	A6/21	A76/21	A6/2i	A76/2i	A6/2v	A76/2v	A6/2k	A76/2k
G	A7/21	A77/21	A7/2i	A77/2i	A7/2v	A77/2v	A7/2k	A77/2k
Н	A8/21	A78/21	A8/2i	A78/2i	A8/2v	A78/2v	A8/2k	A78/2k

c) Yield Determination

0.02 mmol 2.0 equiv

Figure S3. Reaction summary for plate 1, row 1, column 1.

In light of the unique ¹H NMR shift of the α -H of carboxymethyl ketones, we were able to identify the reaction yield by ¹H NMR analysis. The reaction above (**Figure S3**) was set up in 96-well plate 1 (80 reactions) following the HTE protocol described in the general section. After 24 h, the reaction was analyzed by ¹H NMR (CDCl₃) and the yield determined using 1,3,5-trimethoxybenzene as an internal standard (**Figure S4** and Table S8).

Figure S4.	Crude ¹ H N	MR spectra	for plate 1	row 1	column 1
Figure 54.	Clude III	with specia	i foi plate i	, 10 1 1,	column 1.

Table S8. Chemical shifts of characteristic peaks of product and internal standard (¹H NMR).

entry	characteristic peak	chemical shift	results
product	sp ³ H (s, 2H)	5.51 ppm	1.83, 92% yield
1	OMe (s, 3H)	3.87 ppm	2.75, 92% yield
internal standard	sp ² H (s, 3H)	6.08 ppm	3
	OMe (s, 9H)	3.76 ppm	9

d) Reaction Yield Presented as Heatmap

	1	2	3	4	5	6	7	8	9	10
А	92	95	78	0	92	91	88	81	20	83
В	86	93	95	89	85	79	83	76	91	94
С	96	79	90	42	89	95	92	74	89	82
D	91	42	93	85	83	9	89	68	91	93
E	96	96	70	92	89	90	93	74	87	57
F	96	82	49	92	88	74	88	68	94	39
G	85	95	86	91	91	15	75	6	93	94
Н	93	47	80	88	93	89	42	84	90	92

Figure S5. Plate 1 yields (%).

	1	2	3	4	5	6	7	8	9	10
А	83	98	80	15	87	89	85	41	12	80
В	78	87	85	93	83	53	67	38	41	35
С	71	81	88	36	87	91	85	27	69	42
D	82	47	85	85	65	7	75	31	46	47
Е	76	91	87	59	47	61	84	33	57	67
F	70	79	38	75	45	58	68	30	63	33
G	72	90	67	94	44	6	70	3	88	56
Н	75	61	75	69	52	93	12	39	55	89

Figure S6. Plate 2 yields (%).

	1	2	3	4	5	6	7	8	9	10
Α	92	93	85	8	93	93	93	87	12	78
В	86	92	78	89	94	75	91	66	84	81
С	90	75	88	48	88	96	92	58	82	74
D	87	45	91	86	82	9	91	52	87	87
Е	93	95	84	91	92	95	92	34	88	77
F	91	75	33	76	65	70	92	47	85	41
G	87	93	73	92	84	7	51	2	87	93
Н	95	55	78	91	89	91	28	85	89	87

Figure S7. Plate 3 yields (%).

	1	2	3	4	5	6
А	91	90	88	82	13	88
В	85	60	91	44	95	83
С	89	90	90	58	93	81
D	85	7	73	56	90	87
E	89	93	89	65	90	60
F	70	60	89	63	91	46
G	82	3	46	2	86	90
Н	87	95	31	83	86	85

Figure S8. Plate 4 yields (%).

	1	2	3	4	5	6	7	8
А	55	63	77	84	76	80	83	85
В	59	40	81	68	81	41	78	49
С	51	45	82	63	71	33	76	54
D	57	43	87	65	79	36	80	52
Е	55	42	77	57	45	45	79	40
F	56	49	84	72	72	43	81	58
G	58	40	73	46	63	66	75	59
Н	58	25	84	37	64	32	81	40

Figure S9. Plate 5 yields (%).

6. HTE for 235 Unknown Reactions

a) Plate Layout

Under optimal conditions, we performed the 235 reactions for external dataset prediction via THE, which were randomly designed by experimenters. As shown in **Figure S10**, those new reactions included some unseen substrates, such as carboxylic acids (**A81–A95**) and sulfoxonium ylides (**2y** and **2z**).

Figure S10. Unseen substrates.

Table S9-S11 describe the components of each well for each plate (95 carboxylic acids and 7 sulfoxonium

ylides).

		-								
	1	2	3	4	5	6	7	8	9	10
А	A1/2z	A9/2z	A17/2z	A25/2z	A33/2z	A41/2z	A49/2z	A57/2z	A65/2z	A73/2z
В	A2/2z	A10/2z	A18/2z	A26/2z	A34/2z	A42/2z	A50/2z	A58/2z	A66/2z	A74/2z
С	A3/2z	A11/2z	A19/2z	A27/2z	A35/2z	A43/2z	A51/2z	A59/2z	A67/2z	A75/2z
D	A4/2z	A12/2z	A20/2z	A28/2z	A36/2z	A44/2z	A52/2z	A60/2z	A68/2z	A76/2z
Е	A5/2z	A13/2z	A21/2z	A29/2z	A37/2z	A45/2z	A53/2z	A61/2z	A69/2z	A77/2z
F	A6/2z	A14/2z	A22/2z	A30/2z	A38/2z	A46/2z	A54/2z	A62/2z	A70/2z	A78/2z
G	A7/2z	A15/2z	A23/2z	A31/2z	A39/2z	A47/2z	A55/2z	A63/2z	A71/2z	A79/2z
Н	A8/2z	A16/2z	A24/2z	A32/2z	A40/2z	A48/2z	A56/2z	A64/2z	A72/2z	A80/2z

Table S9. Layout of plate 6.

Table S10. Layout of plate 7.

	1	2	3	4	5	6	7	8	9	10
А	A1/2n	A9/2n	A17/2n	A25/2n	A33/2e	A41/2e	A49/2e	A57/2e	A65/2y	A73/2y
В	A2/2n	A10/2n	A18/2n	A26/2n	A34/2e	A42/2e	A50/2e	A58/2e	A66/2y	A74/2y
С	A3/2n	A11/2n	A19/2n	A27/2n	A35/2e	A43/2e	A51/2e	A59/2e	A67/2y	A75/2y
D	A4/2n	A12/2n	A20/2n	A28/2n	A36/2e	A44/2e	A52/2e	A60/2e	A68/2y	A76/2y
Е	A5/2n	A13/2n	A21/2n	A29/2n	A37/2e	A45/2e	A53/2e	A61/2e	A69/2y	A77/2y
F	A6/2n	A14/2n	A22/2n	A30/2n	A38/2e	A46/2e	A54/2e	A62/2e	A70/2y	A78/2y
G	A7/2n	A15/2n	A23/2n	A31/2n	A39/2e	A47/2e	A55/2e	A63/2e	A71/2y	A79/2y
Н	A8/2n	A16/2n	A24/2n	A32/2n	A40/2e	A48/2e	A56/2e	A64/2e	A72/2y	A80/2y

	1	2	3	4	5	6	7	8	9	10
А	A81/2c	A89/2c	A81/2j	A89/2j	A81/2z	A89/2z	A81/2y	A89/2y	A81/2b	A89/2b
В	A82/2c	A90/2c	A82/2j	A90/2j	A82/2z	A90/2z	A82/2y	A90/2y	A82/2b	A90/2b
С	A83/2c	A91/2c	A83/2j	A91/2j	A83/2z	A91/2z	A83/2y	A91/2y	A83/2b	A91/2b
D	A84/2c	A92/2c	A84/2j	A92/2j	A84/2z	A92/2z	A84/2y	A92/2y	A84/2b	A92/2b
Е	A85/2c	A93/2c	A85/2j	A93/2j	A85/2z	A93/2z	A85/2y	A93/2y	A85/2b	A93/2b
F	A86/2c	A94/2c	A86/2j	A94/2j	A86/2z	A94/2z	A86/2y	A94/2y	A86/2b	A94/2b
G	A87/2c	A95/2c	A87/2j	A95/2j	A87/2z	A95/2z	A87/2y	A95/2y	A87/2b	A95/2b
Н	A88/2c		A88/2j		A88/2z		A88/2y		A88/2b	

 Table S11. Layout of plate 8.

b) Reaction Yield Presented as Heatmap

	1	2	3	4	5	6	7	8	9	10
Α	78	91	66	5	88	91	86	41	11	52
В	61	83	83	87	75	60	74	43	54	53
С	76	67	63	36	72	88	87	32	84	45
D	89	38	91	66	67	7	66	28	64	48
Е	71	84	69	59	80	64	61	39	70	65
F	91	55	27	76	59	35	53	38	81	40
G	55	92	63	92	45	8	46	5	81	78
Н	85	51	56	77	80	76	28	60	53	91

Figure S11. Plate 6 yields (%).

	1	2	3	4	5	6	7	8	9	10
А	93	94	83	8	90	96	95	80	14	73
В	87	71	86	88	84	70	88	70	85	64
С	91	70	72	44	90	96	82	50	89	57
D	94	45	90	93	73	8	81	65	87	75
Е	89	81	87	80	86	82	90	62	80	51
F	90	79	33	81	67	67	75	42	84	43
G	79	93	62	93	72	6	54	3	92	76
Н	91	50	71	85	93	93	29	73	73	94

Figure S12. Plate 7 yields (%).

	1	2	3	4	5	6	7	8	9	10
А	86	90	75	90	56	78	67	90	80	95
В	92	77	75	91	46	61	64	87	90	91
С	84	90	82	92	84	94	81	93	82	93
D	92	93	93	88	91	83	97	97	92	95
Е	88	89	93	95	90	85	94	86	89	91
F	91	94	95	95	85	86	93	90	95	90
G	93	90	93	92	76	83	94	88	95	93
Н	87		92		65		92		86	

Figure S13. Plate 8 yields (%).

7. Development of Machine Learning Model

a) Preparation

All codes were executed in KNIME (the Konstanz Information Miner), which is a free and open-source data analytics platform and can be easily used by chemists without programming background. All workflows for modelling were provided in <u>https://hub.knime.com/theliaogroup/spaces/O-H_bond_insertion.</u> PanGu Fine-tuned model was available at <u>http://www.pangu-drug.com/ylide.</u>

b) Date Set

In our study, two datasets were used, one dataset for modelling and one dataset for external validation. The SMILES of carboxylic acids, sulfoxonium ylides, and products, as well as the corresponding yields were included in datasets.

(1) Data set A (412 reaction data), including 60 examples (**3–62**) of millimolar reactions and 352 micromolar reactions (random combinations of another 80 carboxylic acids and 9 sulfoxonium ylides). The yield distribution of the 412 reactions (**Figure S14**) showed that over 90% of the reactions gave desired products, which demonstrated that our reaction was generally applicable for a wider range of substrates.

Figure S14. Yield distribution of the 412 reactions.

(2) Data set B (235 unknown reaction data) included 15 unseen carboxylic acids and 2 unseen sulfoxonium ylides, which were used as an external set for the model built from dataset. We used dataset A to build model, and then used dataset B as an external validation for the model built from dataset A.

(3) As shown in the **Figure S15**, dataset A was split as 80/20 at the work unit (named Partitioning), 330 reaction data were inputted the work unit [named XGBoost Tree Ensemble Learner (Regression)] as training set and the training set will be divided into two parts, training set and validation set, automatically by this work unit. But we cannot know how this unit divides the dataset. At the same time, remaining dataset A (evaluate set, including 82 reaction data) will be input to the work unit [named XGBoost Predictor (Regression)]. This unit is used to confirm if the hyper-parameters are best for models by the results (R², MAE and RMSE).

Figure S15. Part of the workflow of KNIME (one of the workflows).

c) Molecular additive fingerprints (MAF)

We provided a representation, molecular additive fingerprints (MAF) as inputs, that show the capacity of reaction prediction in good practices. The example for MAF development in this reaction were shown in **Figure S16**. Besides, we also employed commonly used descriptor for yield prediction: RDKit descriptors.

Figure S16. Example of the generation of MAF fingerprints in this reaction.

d) RDKit descriptors

RDKit descriptor generation was conducted in a KNIME workflow. In total, 119 descriptors were calculated for each reaction component using "RDKit Descriptors Calculation" node. The descriptors we used are as following: SlogP, SMR, LabuteASA, TPSA, AMW, ExactMW, NumLipinskiHBA, NumLipinskiHBD, NumRotatableBonds, NumHBD, NumHBA, NumAmideBonds, NumHeteroAtoms, NumHeavyAtoms, NumAtoms, NumStereocenters, NumUnspecifiedStereocenters, NumRings, NumAromaticRings, NumSaturatedRings, NumAliphaticRings, NumAromaticHeterocycles, NumSaturatedHeterocycles, NumAliphaticHeterocycles, NumAromaticCarbocycles, NumSaturatedCarbocycles, NumAliphaticCarbocycles, FractionCSP3, Chi0v, Chi1v, Chi2v, Chi3v, Chi4v, Chi1n, Chi2n, Chi3n, Chi4n, HallKierAlpha, kappa1, kappa2, kappa3, slogp VSA1, slogp VSA2, slogp VSA3, slogp VSA4, slogp_VSA5, slogp_VSA6, slogp_VSA7, slogp_VSA8, slogp_VSA9, slogp_VSA10, slogp_VSA11, slogp_VSA12, smr VSA1, smr VSA2, smr VSA3, smr VSA4, smr VSA5, smr VSA6, smr VSA7, smr VSA8, smr VSA9, smr VSA10, peoe VSA1, peoe VSA2, peoe VSA3, peoe VSA4, peoe VSA5, peoe VSA6, peoe VSA7, peoe VSA8, peoe_VSA9, peoe_VSA10, peoe_VSA11, peoe_VSA12, peoe_VSA13, peoe_VSA14, MQN1, MQN2, MQN3, MQN4, MQN5, MQN6, MQN7, MQN8, MQN9, MQN10, MQN11, MQN12, MQN13, MQN14, MQN15, MQN16, MQN17, MQN18, MQN19, MQN20, MQN21, MQN22, MQN23, MQN24, MQN25, MQN26, MQN27, MQN28, MQN29, MQN30, MQN31, MQN32, MQN33, MQN34, MQN35, MQN36, MQN37, MQN38, MQN39, MQN40, MQN41, MQN42.

e) One-hot encoding

A one-hot encoding based on all available reaction substrates was generated. The bit value '0' or '1' corresponds to the absence or presence for specific reaction component. The creation of one-hot descriptor was done via a KNIME workflow and an array of one-hot encodings of substrates and products was calculated in "One to Many" node. As shown in **Figure S17**, the generation of one-hot encoding in substrate exploration, respectively.

	Substrate1	Substrate2
One-hot encoding $(total length m = 89)$	$A_1A_2A_3\ldotsA_{80}$	$B_1 B_2 B_3 \dots B_9$
(total lengal in (05))	$[0 \ 1 \ 0 \ \dots \ 0$	1 0 0 0]

Figure S17. The generation of one-hot encoding in substrate exploration.

f) Machine Learning Methods

Four commonly used ML methods were proceeded for modelling, including eXtreme Gradient Boosting (XGB), Gradient Boosted Trees (GBT), Random Forest Regression (RF), and Support Vector Regression (SVR). 80% of the dataset (330 reactions) were used to train our regression model and the remaining 20% were used as test set (82 reactions). The model performance was then evaluated by coefficient of determination (R²), mean absolute error (MAE), and root mean squared error (RMSE).

Table S12. The hyper-parameters of 4 model	s.
--	----

Model	Hyper-parameters
	Enable Hilighting (#patterns to store) = 2000, tree depth = 100, Minimum node
Random Forest	size = 5, number of models = 1000, Use static random seed = 68909
	Limit number of levels = 10, number of models (n_estimators) = 100, learning
Gradient Tree Boosting	rate = 0.1, $alpha = 0.95$
	Boosting rounds = 150, Use static random seed = 68909, Manual numbers of
YCD (threads = 4, Objective = 'linear', Booster = 'tree', Eta = 0.133, Gamma = 0,
AGBOOSI	Maximum depth = 8, Minimum child weight = 6. Maximum delta step = 0,
	Subsampling rate $= 0.8$
CV/D	Type of SVR = 'nu-SVM', Kernal = 'linear', Cost = 1, nu = 0.5, Cachesize =
SVR	1000, Epsilon = 0.001

Table S13. The hyper-parameters of XGB model for grid search.

Hyper-parameters	Considered values
booster	tree
eta	{0.1, 0.133 , 0.166, 0.199}
min child weight	{5, 6, 7}
max depth	<i>{</i> 6, 8 <i>}</i>
boosting rounds	{50, 100, 150 }

As shown in Figure S18, we can get the following page by open the work unit of model, and where we can

change all kinds of hype-parameters of four models.

options O)bjective	Booster	Flow Variables Job Manager Selection	
Booster:			Tree	
Bta:				0. 133 🌩
Gamma:				0 🌩
Maximum dep	pth:			8 🌩
Minimum ch	ild weigh	t:		6 🌲
Maximum de	lta step:			0 🌲
Subsamplin	g rate:			0.8 🌩
Column sam	pling rat	e by tree		1 🛋
Column sam	pling rat	e by leve		1 🛓
Lambda:				1 🚖
Alpha:				1 🛋
Iree metho	d :		Auto	~
Sketch eps	ilon:			0.03 🖨
Scale posit	tive weig	ht:		1 🌲
Grow policy	y:		DepthWise	~
Maximum nuv	mber of 1	eaves		0
faximum nu	mber of b	ins:		256 🜲
Sample type	e:		Uniform	
Normalize ·	type:		Tree	
)ropout ra	te:			0 💠
)rop at le	ast one t	ree:		
Skip dropor	ut rate:			0

Figure 18. The page of changing hype-parameters.

g) The Development of ML-Based Models using MAF, RDKit and One-hot

As shown in Table S14, three types of descriptor were applied for model building and 12 models were obtained

in total.

 Table S14. The development of ML-based models using MAF, RDKit and One-hot.

	MAF			RDKit			One-hot		
model	R ²	RMSE	MAE	R ²	RMSE	MAE	\mathbb{R}^2	RMSE	MAE
XGB	0.84	8.04	10.50	0.75	9.75	13.18	0.05	19.22	25.79
GBT	0.76	9.57	13.06	0.47	13.16	19.24	0.61	12.85	16.49
RF	0.49	14.91	18.88	0.62	12.90	16.39	0.02	20.91	26.25
SVR	0.60	12.21	16.76	0.76	10.56	13.09	0.09	18.91	25.27

h) The Development of PanGu Fine-tuned Model

As shown in **Figure S19**, PanGu Fine-tuned Model directly integrating the encoder of PanGu with a predictor, to make the encoder better capture the intrinsic pattern of the task, and the model parameters are learnable.

The size of PanGu Fingerprint is 2048, the hidden size of predictor is [512, 256]. We train the model using Adam optimizer at weight-decay 1e-11, the learning rate of predictor is 0.0001, while the learning rate of PanGu

Encoder is 1e-7. The batch size is 32.

Figure S19. The diagram of PanGu Fine-tuned model.

i) Performance of PanGu Fine-tuned Model

As shown in **Figure S20**, Finetuning the pre-trained PanGu model deliver the best performance overall, with a result of R^2 value of 0.85, MAE of 6.2%, and RMSE of 9.4%.

Figure S20. Prediction results on validation set (test set) for PanGu Fine-tuned model.

Under the obtained best model (PanGu Fine-tuned), we also evaluated 10 random splits of the entire data set (412 reaction data). The results are shown in Table S15, with a best result of R² value of 0.85, MAE of 6.2%, and RMSE of 9.4%.

splits	R ²	MAE	RMSE
splits 01	0.83	6.9	10.5
splits 02	0.85	7.1	9.0
splits 03	0.82	7.1	10.0
splits 04	0.83	6.9	10.1
splits 05	0.85	7.2	10.4
splits 06	0.84	7.0	9.3
splits 07	0.84	7.7	10.5
splits 08	0.82	6.9	10.4
splits 09	0.84	8.4	11.0
splits 10	0.85	6.2	9.4
average	0.84	7.1	10.1

Table S15. Results for 10 random splits of 412 reaction data.

j) Performance of External Dataset

Our best model in yield prediction (PanGu Fine-tuned, as shown in **Figure S20**) was then evaluated on external dataset conducted with HTE. The performance of external test is shown in **Figure S21**, with a result of R^2 value of 0.74, MAE of 8.8%, and RMSE of 11.2%.

Figure S21. Regression plot for external dataset (235 scattered reactions).

8. Characterization Data for the Products

2-oxo-2-phenylethyl 2-(1H-indol-3-yl)acetate (3)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 91% yield (26.7 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.14 (br s, 1H), 7.89 (d, *J* = 7.7 Hz, 2H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.25 (s, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 5.36 (s, 2H), 3.98 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 192.3, 171.4, 136.1, 134.3, 133.8, 128.8, 127.8, 127.3, 123.3, 122.2, 119.7, 118.9, 111.2, 108.1, 66.3, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₃⁺ ([M+Na]⁺) 316.0944. found, 316.0951.

2-oxo-2-phenylethyl 2-(5-fluoro-1*H*-indol-3-yl)acetate (4)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 77% yield (23.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.43 (br s, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.31–7.23 (m, 1H), 7.17 (dd, *J* = 8.8, 4.3 Hz, 1H), 7.09 (s, 1H), 6.93–6.83 (m, 1H), 5.36 (s, 2H), 3.88 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.4, 171.5, 158.6, 157.0, 133.9 (d, *J* = 3.3 Hz), 132.6, 128.8, 127.7, 127.5 (d, *J* = 9.9 Hz), 125.3, 111.9 (d, *J* = 9.6 Hz), 110.4 (d, *J* = 26.3 Hz), 107.7 (d, *J* = 4.7 Hz), 103.6 (d, *J* = 23.6 Hz), 66.3, 30.7. ¹⁹F NMR (564 MHz, CDCl₃): δ -124.4 (s, 1F). HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄FNNaO₃⁺ ([M+Na]⁺) 334.0850. found, 334.0866.

2-oxo-2-phenylethyl 2-(6-chloro-1*H*-indol-3-yl)acetate (5)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 84% yield (27.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.26 (br s, 1H), 7.89 (d, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.30 (s, 1H), 7.16 (s, 1H), 7.09 (d, *J* = 10.3 Hz, 1H), 5.37 (s, 2H), 3.93 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.2, 171.3, 136.4, 134.1, 133.9, 128.9, 128.1, 127.7, 125.8, 124.0, 120.4, 119.8, 111.1, 108.1, 66.35, 30.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₃⁺ ([M+Na]⁺) 350.0554. found, 350.0552.

2-oxo-2-phenylethyl 2-(5-bromo-1*H*-indol-3-yl)acetate (6)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 81% yield (30.1 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.26 (s, 1H), 7.89 (d, *J* = 7.4 Hz, 2H), 7.76 (s, 1H), 7.60 (t, *J* = 7.0 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 2H), 7.20 (d, *J* = 11.9 Hz, 3H), 5.38 (s, 2H), 3.91 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.2, 171.2, 134.7, 134.1, 133.9, 129.0, 128.9, 127.8, 125.1, 124.6, 121.5, 113.0, 112.7, 107.6, 66.4, 30.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄BrNNaO₃⁺ ([M+Na]⁺) 394.0049. found, 394.0056.

2-oxo-2-phenylethyl 2-(5-methoxy-1*H*-indol-3-yl)acetate (7)

The title compound was prepared according to the general procedure and purified by column chromatography on

silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 83% yield (26.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.23 (br s, 1H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.14 (d, *J* = 2.4 Hz, 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 6.85 (dd, *J* = 8.8, 2.4 Hz, 1H), 5.34 (s, 2H), 3.92 (s, 1H), 3.88 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 171.6, 154.0, 134.0, 133.8, 131.2, 128.8, 127.7, 127.5, 124.2, 112.4, 112.0, 107.4, 100.4, 66.3, 55.8, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₇NNaO₄⁺ ([M+Na]⁺) 346.1050. found, 346.1050

2-oxo-2-phenylethyl 2-(2-methyl-1*H*-indol-3-yl)acetate (8)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 61% yield (18.8 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.93 (br s, 1H), 7.85 (d, *J* = 7.2 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 2H), 7.48–7.40 (m, 2H), 7.29–7.21 (m, 1H), 7.15–7.07 (m, 2H), 5.29 (s, 2H), 3.87 (s, 2H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 192.4, 171.4, 135.1, 134.2, 133.8, 132.9, 128.8, 128.5, 127.8, 121.3, 119.6, 118.1, 110.2, 104.1, 66.3, 29.9, 11.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₇NNaO₃⁺ ([M+Na]⁺) 330.1101. found, 330.1103.

2-oxo-2-phenylethyl 3-(1*H*-indol-3-yl)propanoate (9)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 73% yield (22.4 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.07 (br s, 1H), 7.91 (d, *J* = 7.2 Hz, 2H), 7.67–7.57 (m, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.1 Hz, 1H), 7.13 (t, *J* = 7.0 Hz, 1H), 7.05 (s, 1H), 5.35 (s, 2H), 3.19 (t, *J* = 7.7 Hz, 2H), 2.97–2.87 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.4, 172.8, 136.2, 134.2, 133.9, 128.8, 127.7, 127.1, 122.0, 121.5, 119.3, 118.6, 114.7, 111.1, 65.9, 34.5, 20.5. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₇NNaO₃⁺ ([M+Na]⁺) 330.1101. found, 330.1102.

2-oxo-2-phenylethyl 4-(1H-indol-3-yl)butanoate (10)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 75% yield (24.1 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.05 (br s, 1H), 7.91 (d, *J* = 7.2 Hz, 2H), 7.64 (d, *J* = 8.6 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 7.0 Hz, 1H), 7.12 (t, *J* = 7.0 Hz, 1H), 7.02 (s, 1H), 5.33 (s, 2H), 2.88 (t, *J* = 7.7 Hz, 2H), 2.57 (t, *J* = 7.4 Hz, 2H), 2.13 (p, *J* = 7.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 173.2, 136.3, 134.2, 133.8, 128.8, 127.7, 127.4, 121.8, 121.7, 119.1, 118.9, 115.4, 111.1, 65.8, 33.4, 25.2, 24.3. HRMS (ESI-TOF) *m/z* calcd. for C₂₀H₁₉NNaO₃⁺ ([M+H]⁺) 344.1257. found, 344.1265.

2-oxo-2-phenylethyl 1H-indole-3-carboxylate (11)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 70% yield (19.5 mg). ¹H NMR (600 MHz, DMSO-*d*₆): δ 12.04 (br s, 1H), 8.19 (d, *J* = 3.0 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 3H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 2H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.26–7.18 (m, 2H), 5.68 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 194.1, 164.1, 136.9, 134.7, 134.3, 133.5, 129.4, 128.3, 126.2, 123.0, 121.9, 121.0, 112.9, 106.3, 66.3. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₃NNaO₃⁺ ([M+Na]⁺) 302.0788. found, 302.0786.

2-oxo-2-phenylethyl 5-methyl-1*H*-indole-3-carboxylate (12)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 62% yield (18.2 mg). ¹H NMR

(600 MHz, CDCl₃): δ 8.63 (br s, 1H), 8.01 (d, *J* = 7.2 Hz, 3H), 7.97 (d, *J* = 3.0 Hz, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 5.58 (s, 2H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.1, 164.3, 134.6, 134.4, 133.8, 131.8, 131.7, 128.8, 127.9, 126.2, 124.9, 121.3, 111.1, 107.4, 65.6, 21.6. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₃⁺ ([M+Na]⁺) 316.0944. found, 316.0947.

2-oxo-2-phenylethyl 6-methyl-1*H*-indole-3-carboxylate (13)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 64% yield (18.8 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.56 (br s, 1H), 8.09 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 9.6 Hz, 2H), 7.95 (d, *J* = 3.0 Hz, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.55–7.49 (m, 2H), 7.21 (s, 1H), 7.11 (d, *J* = 9.0 Hz, 1H), 5.57 (s, 2H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.1, 164.2, 136.5, 134.5, 133.8, 133.3, 131.1, 128.8, 127.9, 124.0, 123.7, 121.3, 111.4, 107.8, 65.6, 21.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₃⁺ ([M+Na]⁺) 316.0944. found, 316.0947

2-oxo-2-phenylethyl 7-methyl-1H-indole-3-carboxylate (14)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 54% yield (15.8 mg). ¹H NMR (600 MHz, DMSO-*d*₆): δ 12.07 (br s, 1H), 8.17 (d, *J* = 3.1 Hz, 1H), 8.04 (d, *J* = 7.1 Hz, 2H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 7.1 Hz, 1H), 5.68 (s, 2H), 2.52 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 194.1, 164.2, 136.4, 134.7, 134.3, 133.0, 129.4, 128.3, 126.0, 123.5, 122.2, 122.1, 118.6, 106.7, 66.3, 17.2. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₃⁺ ([M+Na]⁺) 316.0944. found, 316.0947.

2-oxo-2-phenylethyl 1-methyl-1H-indole-3-carboxylate (15)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 78% yield (22.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.25–8.22 (m, 1H), 7.99 (d, *J* = 7.1 Hz, 2H), 7.90 (s, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.38–7.34 (m, 1H), 7.32–7.28 (m, 2H), 5.57 (s, 2H), 3.83 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.1, 164.0, 137.2, 135.8, 134.5, 133.7, 128.8, 127.8, 126.7, 122.9, 122.1, 121.7, 109.8, 105.9, 65.5, 33.5. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₃⁺ ([M+Na]⁺) 316.0944. found, 314.0947.

2-oxo-2-phenylethyl 1*H*-indole-2-carboxylate (16)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford a white solid in 68% yield (19.0 mg). ¹H NMR (600 MHz, CDCl₃): δ 9.01 (br s, 1H), 7.98 (d, *J* = 7.1 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.56–7.47 (m, 2H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.39 (dd, *J* = 2.1, 0.9 Hz, 1H), 7.34 (t, *J* = 8.2 Hz, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 5.60 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.9, 161.1, 137.1, 134.2, 134.0, 129.0, 127.9, 127.5, 126.3, 125.7, 122.8, 120.9, 111.9, 110.0, 66.3. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₃NNaO₃⁺ ([M+Na]⁺) 302.0788. found, 302.0787.

2-oxo-2-phenylethyl 1H-indole-5-carboxylate (17)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 58% yield (16.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.52 (s, 1H), 8.44 (br s, 1H), 7.99 (t, *J* = 8.6 Hz, 3H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 8.6 Hz, 1H), 7.33–7.26 (m, 1H), 6.65 (s, 1H), 5.59 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.8, 167.1, 138.6, 134.5, 133.8, 128.9, 127.9, 127.5, 125.5, 124.3, 123.7, 121.0, 110.8, 104.2, 66.3. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₃NNaO₃⁺ ([M+Na]⁺) 302.0788. found, 302.0789.

2-oxo-2-phenylethyl 1H-pyrrole-3-carboxylate (18)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 45% yield (10.3 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.99 (br s, 1H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.46 (dt, *J* = 3.2, 1.8 Hz, 1H), 6.74 (q, *J* = 2.4 Hz, 1H), 6.70 (td, *J* = 2.7, 1.5 Hz, 1H), 5.48 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 193.3, 164.2, 134.4, 133.8, 128.8, 127.9, 124.4, 119.0, 115.1, 110.0, 65.6. HRMS (ESI-TOF) *m/z* calcd. for C₁₃H₁₁NNaO₃⁺ ([M+Na]⁺) 252.0631. found, 252.0631.

2-oxo-2-phenylethyl nicotinate (19)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 50% yield (12.1 mg). ¹H NMR (600 MHz, CDCl₃): δ 9.34 (br s, 1H), 8.83 (br s, 1H), 8.40 (d, *J* = 7.9 Hz, 1H), 7.97 (d, *J* = 7.1 Hz, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.43 (dd, *J* = 7.8, 4.8 Hz, 1H), 5.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.5, 164.8, 153.8, 151.2, 137.4, 134.1, 134.0, 129.0, 127.8, 125.5, 123.3, 66.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₁₁NNaO₃⁺ ([M+Na]⁺) 264.0631. found, 264.0635.

2-oxo-2-phenylethyl 2-methylnicotinate (20)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 61% yield (15.6 mg). ¹H NMR (500 MHz, CDCl₃): δ 8.64 (s, 1H), 8.35 (d, *J* = 7.9 Hz, 1H), 7.96 (d, *J* = 7.7 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 5.9 Hz, 1H), 5.59 (s, 2H), 2.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 191.8, 166.0, 160.3, 152.1, 138.8, 134.2, 134.1, 129.0, 127.8, 124.8, 120.9, 66.5, 24.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₅H₁₃NNaO₃⁺ ([M+Na]⁺) 278.0788. found, 278.0792.

2-oxo-2-phenylethyl 5-fluoronicotinate (21)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 83% yield (21.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 9.13 (s, 1H), 8.67 (d, *J* = 2.8 Hz, 1H), 8.08-8.06 (m, 1H), 7.94 (d, *J* = 7.1 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 5.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.1, 163.7 (d, *J* = 2.1 Hz), 159.0 (d, *J* = 258.6 Hz), 146.9, 142.5 (d, *J* = 23.3 Hz), 134.1, 133.8, 128.9, 127.7, 126.7 (d, *J* = 3.6 Hz), 123.9 (d, *J* = 19.6 Hz), 66.9. ¹⁹F NMR (564 MHz, CDCl₃): δ -125.7 (s, 1F). HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₁₁FNO₃⁺ ([M+H]⁺) 260.0717. found, 260.0717.

2-oxo-2-phenylethyl 4,6-dichloronicotinate (22)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow oil in 87% yield (26.9 mg). ¹H NMR

(600 MHz, CDCl₃): δ 9.02 (s, 1H), 7.94 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.54–7.47 (m, 3H), 5.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 190.9, 162.4, 155.1, 152.7, 146.3, 134.2, 133.8, 129.0, 127.8, 126.0, 123.9, 67.0. HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₉Cl₂NNaO₃⁺ ([M+Na]⁺) 331.9852. found, 331.9857.

2-oxo-2-phenylethyl 5-hydroxynicotinate (23)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/1) to afford a yellow oil in 41% yield (10.5 mg). ¹H NMR (600 MHz, DMSO-*d*₆): δ 10.51 (s, 1H), 8.65 (d, *J* = 1.8 Hz, 1H), 8.41 (d, *J* = 2.8 Hz, 1H), 8.01 (d, *J* = 7.1 Hz, 2H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.69 (dd, *J* = 2.8, 1.8 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 2H), 5.79 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.5, 164.4, 153.7, 142.8, 140.8, 134.1, 133.8, 129.0, 127.9, 125.7, 122.0, 67.5. HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₁₂NO₄⁺ ([M+H]⁺) 258.0761. found, 258.0760.

2-oxo-2-phenylethyl 5-aminopicolinate (24)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/2) to afford a white solid in 30% yield (7.7 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.84 (s, 1H), 8.10 (d, *J* = 8.6 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 6.50 (d, *J* = 8.7 Hz, 1H), 5.54 (s, 2H), 4.91 (br s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 165.1, 161.2, 152.0, 139.3, 134.3, 133.9, 128.9, 127.8, 115.7, 107.4, 66.1. HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₁₃N₂O₃⁺ ([M+H]⁺) 257.0921. found, 257.0923.

2-oxo-2-phenylethyl picolinate (25)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a brown oil in 63% yield (15.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.79 (d, *J* = 3.1 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.90–7.85 (m, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.54–7.46 (m, 3H), 5.67 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.3, 164.6, 149.9, 147.3, 137.1, 134.1, 134.0, 128.9, 127.8, 127.3, 125.6, 67.1. HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₁₁NNaO₃⁺ ([M+Na]⁺) 264.0631. found, 264.0637.

2-oxo-2-phenylethyl isonicotinate (26)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 89% yield (21.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.80 (d, *J* = 4.4 Hz, 2H), 7.94 (t, *J* = 7.1 Hz, 4H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 2H), 5.61 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.2, 164.6, 150.6, 136.6, 134.1, 133.9, 128.9, 127.8, 123.1, 66.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₄H₁₂NO₃⁺ ([M+H]⁺) 242.0812. found, 242.0817.

2-oxo-2-phenylethyl pyrimidine-5-carboxylate (27)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with dichloromethane/ethyl acetate (3/1) to afford a yellow solid in 63% yield (15.3 mg). ¹H NMR (600 MHz, CDCl₃): δ 9.40 (s, 1H), 9.38 (s, 2H), 7.95 (d, J = 7.2 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 5.65 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 190.9, 163.1, 161.7, 158.2, 134.3, 133.8, 129.0, 127.8,

123.7, 66.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₃H₁₁N₂O₃⁺ ([M+H]⁺) 243.0764. found, 243.0774.

2-oxo-2-phenylethyl quinoline-2-carboxylate (28)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 65% yield (18.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.34–8.26 (m, 2H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.76 (t, *J* = 8.4 Hz, 1H), 7.62 (t, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 5.73 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.2, 164.7, 147.5, 147.2, 137.2, 134.0, 133.9, 130.7, 130.2, 129.4, 128.8, 128.7, 127.7, 127.5, 121.2, 67.3. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄NO₃⁺ ([M+H]⁺) 292.0968. found, 292.0968.

2-oxo-2-phenylethyl benzo[d]oxazole-6-carboxylate (29)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 81% yield (22.8 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.37 (s, 1H), 8.23 (s, 1H), 8.19 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.95 (d, *J* = 7.2 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 5.61 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.8, 165.4, 155.0, 149.6, 144.1, 134.1, 133.9, 128.9, 127.7, 127.0, 126.6, 120.4, 113.2, 66.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₁N₂NaO₄⁺ ([M+Na]⁺) 304.0580. found, 304.0583.

2-oxo-2-phenylethyl benzofuran-2-carboxylate (30)

The title compound was prepared according to the general procedure and purified by column chromatography on

silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow solid in 97% yield (27.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.65 (s, 1H), 7.59 (t, *J* = 8.0 Hz, 2H), 7.50–7.43 (m, 3H), 7.30 (t, *J* = 7.1 Hz, 1H), 5.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.3, 158.7, 155.8, 144.6, 133.9, 133.9, 128.8, 127.8, 127.7, 126.8, 123.8, 122.9, 115.0, 112.3, 66.5. HRMS (ESI-TOF) *m/z* calcd. for C_{17H12}NaO₄⁺ ([M+Na]⁺) 303.0628. found, 303.0626.

2-oxo-2-phenylethyl benzo[b]thiophene-2-carboxylate (31)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow solid in 94% yield (27.8 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.18 (s, 1H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.88 (t, *J* = 8.6 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.53–7.44 (m, 3H), 7.41 (t, *J* = 7.0 Hz, 1H), 5.58 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.6, 162.1, 142.4, 138.6, 134.1, 133.9, 132.4, 131.5, 128.9, 127.8, 127.1, 125.6, 124.9, 122.7, 66.7. HRMS (ESI-TOF) *m/z* calcd. for C_{17H12}NaO₃S⁺ ([M+Na]⁺) 319.0399. found, 319.0405.

2-oxo-2-phenylethyl 4-(methylamino)benzoatee (32)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 75% yield (20.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.99–7.93 (m, 4H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 6.56 (d, *J* = 8.8 Hz, 2H), 5.50 (s, 2H), 4.28 (br s, 1H), 2.88 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.0, 166.2, 153.2, 134.5, 133.7, 1320., 128.8, 127.8, 117.1, 111.1, 66.0, 30.1. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₅NNaO₃⁺ ([M+Na]⁺) 292.0944. found, 292.0946.

2-oxo-2-phenylethyl 4-hydroxybenzoate (33)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 81% yield (20.7 mg). ¹H NMR (600 MHz, DMSO-*d*₆): δ 10.44 (br s, 1H), 8.01 (d, *J* = 9.6 Hz, 2H), 7.90 (d, *J* = 8.8 Hz, 2H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 5.68 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 193.5, 165.5, 162.8, 134.5, 132.2, 129.4, 128.2, 120.2, 115.9, 67.1, 55.3. HRMS (ESI-TOF) *m/z* calcd. for C₁₅H₁₂NaO₄⁺ ([M+Na]⁺) 279.0628. found, 279.0629.

2-oxo-2-phenylethyl 4-(hydroxymethyl)benzoate (34)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 96% yield (25.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.08 (d, *J* = 8.2 Hz, 2H), 7.95 (d, *J* = 7.2 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 5.56 (s, 2H), 4.74 (s, 2H), 2.41 (br s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 165.9, 146.6, 134.2, 133.9, 130.1, 128.9, 128.3, 127.8, 126.4, 66.4, 64.5. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₄NaO₄⁺ ([M+Na]⁺) 293.0784. found, 293.0783.

2-oxo-2-phenylethyl 4-vinylbenzoate (35)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow solid in 88% yield (23.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.09 (d, J = 8.3 Hz, 2H), 7.96 (d, J = 7.2 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.49 (t, J =

7.8 Hz, 4H), 6.76 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.88 (d, *J* = 18.2 Hz, 1H), 5.56 (s, 2H), 5.39 (d, *J* = 11.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 192.1, 165.7, 142.3, 135.9, 134.2, 133.8, 130.2, 128.8, 128.4, 127.8, 126.1, 116.7, 66.4. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₄NaO₃⁺ ([M+Na]⁺) 289.0835. found, 289.0840.

2-oxo-2-phenylethyl 4-ethynylbenzoate (36)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow oil in 30% yield (8.0 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.10 (d, *J* = 8.5 Hz, 2H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51 (t, *J* = 7.8 Hz, 2H), 5.58 (s, 2H), 3.25 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 191.9, 165.4, 134.2, 134.0, 132.1, 129.8, 129.4, 128.9, 127.8, 127.2, 82.8, 80.3, 66.6. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₂NaO₃⁺ ([M+Na]⁺) 287.0679. found, 287.0682.

2-oxo-2-phenylethyl cinnamate (37)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow solid in 96% yield (25.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.95 (d, *J* = 7.1 Hz, 2H), 7.81 (d, *J* = 16.0 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.57–7.54 (m, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.43–7.37 (m, 3H), 6.60 (d, *J* = 16.0 Hz, 1H), 5.48 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.2, 166.2, 146.1, 134.2, 134.2, 133.9, 130.5, 128.9, 128.8, 128.2, 127.8, 116.9, 66.1. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₄NaO₃⁺ ([M+Na]⁺) 289.0835. found, 289.0837.
2-oxo-2-phenylethyl acetate (38)⁶

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow oil in 77% yield (13.7 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.90 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 5.33 (s, 2H), 2.22 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 192.1, 170.4, 134.1, 133.9, 128.8, 127.7, 66.0, 20.5. HRMS (ESI-TOF) *m/z* calcd. for C₁₀H₁₀NaO₃⁺ ([M+Na]⁺) 201.0522, found, 201.0519.

2-oxo-2-phenylethyl 10-hydroxydecanoate (39)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 83% yield (25.4 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.89 (d, *J* = 7.1 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 5.31 (s, 2H), 3.59 (t, *J* = 6.7 Hz, 2H), 2.46 (t, *J* = 7.6 Hz, 2H), 1.84 (br s, 1H), 1.65–1.70 (m, 2H), 1.51–1.55 (m, 2H), 1.39–1.24 (m, 10H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 173.2, 134.1, 133.8, 128.8, 127.7, 65.8, 62.8, 33.8, 32.6, 29.3, 29.2, 29.0, 28.9, 25.6, 24.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₂₆NaO₄⁺ ([M+Na]⁺) 329.1723, found, 329.1724.

2-oxo-2-(p-tolyl)ethyl 2-(1H-indol-3-yl)acetate (40)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 83% yield (25.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.23 (br s, 1H), 7.79 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.2 Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.21–7.12 (m, 3H), 5.33 (s, 2H), 3.96 (s, 2H), 2.41 (s, 3H). ¹³C NMR (150 MHz,

CDCl₃): δ 191.9, 171.5, 144.8, 136.1, 131.6, 129.5, 127.8, 127.2, 123.4, 122.1, 119.6, 118.8, 111.2, 107.8, 66.2, 30.9, 21.7. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₇NNaO₃⁺ ([M+Na]⁺) 330.1101, found, 330.1112.

2-(4-methoxyphenyl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (41)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 92% yield (29.7 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.18 (br s, 1H), 7.87 (d, *J* = 9.0 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.23 (s, 1H), 7.20 (t, *J* = 7.0 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 9.0 Hz, 2H), 5.31 (s, 2H), 3.97 (s, 2H), 3.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 190.8, 171.5, 164.0, 136.1, 130.1, 127.2, 127.2, 123.3, 122.2, 119.7, 118.9, 114.0, 111.2, 108.0, 66.1, 55.5, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₇NNaO₄⁺ ([M+Na]⁺) 346.1050, found, 346.1056.

2-(4-fluorophenyl)-2-oxoethyl 2-(1*H*-indol-3-yl)acetate (42)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 88% yield (27.4 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.26 (br s, 1H), 7.86 (dd, J = 8.7, 5.4 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H), 7.09 (t, J = 8.4 Hz 3H), 5.27 (s, 2H), 3.94 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 190.9, 171.5, 166.8, 165.1, 136.0, 130.4 (d, J = 9.4 Hz), 127.1 123.4, 122.1, 119.6, 118.7, 115.9 (d, J = 22.0 Hz), 111.3, 107.5, 66.1, 30.8. ¹⁹F NMR (564 MHz, CDCl₃): δ -103.3 (s, 1F). HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄FNNaO₃⁺ ([M+Na]⁺) 334.0850, found, 334.0859.

2-(4-bromophenyl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (43)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 87% yield (32.3 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.17 (s, 1H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.35–7.33(m, 1H), 7.23–7.12 (m, 3H), 5.26 (s, 2H), 3.95 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.6, 171.4, 136.0, 132.8, 132.1, 129.2, 129.0, 127.1, 123.3, 122.2, 119.7, 118.8, 111.2, 107.7, 66.2, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄BrNNaO₃⁺ ([M+Na]⁺) 394.0049, found, 394.0052.

2-(4-iodophenyl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (44)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 60% yield (25.1 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.12 (br s, 1H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.23–7.19 (m, 2H), 7.14 (t, *J* = 7.0 Hz, 1H), 5.27 (s, 2H), 3.95 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.9, 171.3, 138.1, 136.0, 133.4, 129.1, 127.2, 123.2, 122.3, 119.8, 118.8, 111.2, 107.9, 101.9, 66.1, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄INNaO₃⁺ ([M+Na]⁺) 441.9911, found, 441.9916.

2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl 2-(1*H*-indol-3-yl)acetate (45)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 90% yield (32.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.21 (br s, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.65 (dd, *J* = 8.0, 2.9 Hz, 3H), 7.29 (d, *J* = 8.0 Hz,

1H), 7.19 (t, J = 7.0 Hz, 1H), 7.15 (t, J = 6.9 Hz, 1H), 7.09 (s, 1H), 5.28 (s, 2H), 3.94 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.8, 171.5, 136.6, 136.0, 134.9 (q, J = 32.9 Hz), 128.1 127.1, 125.7 (q, J = 3.6 Hz), 123.4, 123.3 (d, J = 272.9 Hz), 122.1, 119.6, 118.7, 111.3, 107.5, 66.3, 30.8. ¹⁹F NMR (564 MHz, CDCl₃): δ -63.2 (s, 3F). HRMS (ESI-TOF) m/z calcd. for C₁₉H₁₄F₃NNaO₃⁺ ([M+Na]⁺) 384.0818, found, 384.0815.

2-(4-cyanophenyl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (46)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 67% yield (21.3 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.20 (br s, 1H), 7.85 (d, *J* = 8.5 Hz, 2H), 7.63–7.60 (m, 3H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 8.1 Hz, 1H), 7.16–7.09 (m, 2H), 5.25 (s, 2H), 3.93 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.8, 171.3, 137.0, 136.0, 132.4, 128.2, 127.1, 123.3, 122.3, 119.7, 118.7, 117.7, 116.8, 111.3, 107.5, 66.4, 30.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₄N₂NaO₃⁺ ([M+Na]⁺) 341.0897, found, 341.0895.

2-oxo-2-(m-tolyl)ethyl 2-(1H-indol-3-yl)acetate (47)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 77% yield (23.6 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.22 (br s, 1H), 7.71 (s, 1H), 7.68–7.65 (m, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.22–7.17 (m, 2H), 7.14 (t, *J* = 7.9 Hz, 1H), 5.35 (s, 2H), 3.97 (s, 2H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 192.5, 171.5, 138.7, 136.1, 134.6, 134.2, 128.7, 128.2, 127.2, 124.9, 123.4, 122.1, 119.6, 118.8, 111.2, 107.8, 66.3, 30.9, 21.3. HRMS (ESI-TOF) *m*/*z* calcd. for C₁₉H₁₇NNaO₃⁺ ([M+Na]⁺) 330.1101, found, 330.1099.

2-(2-fluorophenyl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (48)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 83% yield (25.8 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.26 (br s, 1H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.60–7.59 (m, 1H), 7.58–7.56 (m, 1H), 7.41–7.38 (m, 1H), 7.30–7.25 (m, 2H), 7.19 (t, *J* = 8.1 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 7.08 (s, 1H), 5.27 (s, 2H), 3.95 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 190.6 (d, *J* = 4.9 Hz), 171.6, 162.19 (d, *J* = 254.3 Hz), 136.0, 135.6 (d, *J* = 9.1 Hz), 130.6 (d, *J* = 2.9 Hz), 127.1, 124.7 (d, *J* = 3.1 Hz), 123.5, 122.2 (d, *J* = 14.5 Hz), 121.9, 119.5, 118.7, 116.4 (d, *J* = 23.5 Hz), 111.2, 107.5, 69.3, 30.7. ¹⁹F NMR (564 MHz, CDCl₃): δ -107.7 (s, 1F). HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₄FNNaO₃⁺ ([M+Na]⁺) 334.0850, found, 334.0846.

2-([1,1'-biphenyl]-4-yl)-2-oxoethyl 2-(1*H*-indol-3-yl)acetate (49)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 66% yield (24.4 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.10 (br s, 1H), 7.96 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 3H), 7.62 (d, *J* = 7.1 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 2.4 Hz, 1H), 7.21 (t, *J* = 7.0 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 5.39 (s, 2H), 3.99 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.9, 171.4, 146.5, 139.6, 136.1, 132.9, 129.0, 128.4, 128.4, 127.4, 127.3, 123.3, 122.2, 119.8, 118.9, 112.8, 111.2, 108.0, 66.3, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₂₄H₁₉NNaO₃⁺ ([M+Na]⁺) 392.1257, found, 392.1261.

2-(naphthalen-1-yl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (50)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 51% yield (17.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, *J* = 8.8 Hz, 1H), 8.21 (br s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 7.4 Hz, 1H), 7.77 (d, *J* = 6.1 Hz, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.60 (t, *J* = 7.0 Hz, 1H), 7.55 (t, *J* = 6.9 Hz, 1H), 7.42 (dd, *J* = 8.2, 7.2 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.0 Hz, 1H), 7.14 (t, *J* = 6.9 Hz, 1H), 7.12 (s, 1H), 5.31 (s, 2H), 3.97 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 196.5, 171.8, 136.2, 133.9, 133.5, 132.4, 130.2, 128.5, 128.4, 127.6, 127.2, 126.8, 125.6, 124.3, 123.5, 122.2, 119.7, 118.8, 111.3, 107.8, 67.9, 31.0. HRMS (ESI-TOF) *m/z* calcd. for C₂₂H₁₇NNaO₃⁺ ([M+Na]⁺) 366.1101, found, 366.1102.

2-(naphthalen-2-yl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (51)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 57% yield (19.6 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.39 (s, 1H), 8.14 (br s, 1H), 7.95 (d, J = 6.9 Hz, 1H), 7.92–7.86 (m, 3H), 7.67 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.24 (s, 1H), 7.20 (t, J = 7.0 Hz, 1H), 7.15 (t, J = 7.0 Hz, 1H), 5.49 (s, 2H), 4.00 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 171.5, 136.1, 135.9, 132.3, 131.5, 129.6, 129.5, 128.8, 128.8, 127.8, 127.2, 127.0, 123.3, 123.3, 122.2, 119.7, 118.9, 111.2, 108.0, 66.4, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₂₂H₁₇NNaO₃⁺ ([M+Na]⁺) 366.1101, found, 366.1107.

2-oxo-2-(thiophen-2-yl)ethyl 2-(1*H*-indol-3-yl)acetate (52)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 72% yield (21.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.25 (br s, 1H), 7.68–7.62 (m, 3H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 7.0 Hz, 1H), 7.17–7.11 (m, 2H), 7.09 (dd, *J* = 4.9, 3.9 Hz, 1H), 5.22 (s, 2H), 3.95 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 185.6, 171.4, 140.2, 136.0, 134.3, 132.1, 128.2, 127.1, 123.4, 122.1, 119.6, 118.7, 111.2, 107.6, 66.0, 30.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₃NNaO₃S⁺ ([M+Na]⁺) 322.0508, found, 322.0504.

2-(furan-2-yl)-2-oxoethyl 2-(1H-indol-3-yl)acetate (53)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 50% yield (19.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.25 (br s, 1H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.57 (d, *J* = 1.0 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 3.0 Hz, 1H), 7.21–7.17 (m, 2H), 7.14 (t, *J* = 6.9 Hz, 1H), 6.52 (dd, *J* = 3.6, 1.7 Hz, 1H), 5.20 (s, 2H), 3.95 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 181.8, 171.4, 150.4, 146.8, 136.1, 127.2, 123.4, 122.1, 119.6, 118.8, 117.9, 112.4, 111.2, 107.7, 65.6, 30.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₃NNaO₄⁺ ([M+Na]⁺) 306.0737, found, 306.0738.

(E)-2-oxo-4-phenylbut-3-en-1-yl 2-(1H-indol-3-yl)acetate (54)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 62% yield (19.8 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.29 (br s, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 16.2 Hz, 1H), 7.42–7.39 (m, 3H), 7.39–7.33 (m, 3H), 7.21 (t, *J* = 8.1 Hz, 1H), 7.17–7.13 (m, 2H), 6.69 (d, *J* = 16.1 Hz, 1H), 4.93 (s, 2H), 3.94 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 192.9, 171.4, 144.3, 136.1, 133.9, 130.9, 128.9, 128.5, 127.1, 123.4, 122.1, 121.1, 119.7, 118.7, 111.3, 107.6, 67.7, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₂₀H₁₇NNaO₃⁺ ([M+Na]⁺) 342.1101, found,

342.1099.

2-cyclohexyl-2-oxoethyl 2-(1H-indol-3-yl)acetate (55)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 75% yield (22.4 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.31 (br s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 8.1 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.07 (s, 1H), 4.75 (s, 2H), 3.89 (s, 2H), 2.39–2.34 (m, 1H), 1.83–1.72 (m, 4H), 1.65–1.63 (m, 1H), 1.40–1.33 (m, 2H), 1.25–1.15 (m, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 206.8, 171.4, 136.0, 127.1, 123.4, 122.0, 119.5, 118.6, 111.2, 107.5, 66.9, 47.1, 30.8, 28.0, 25.5, 25.3. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₂₁NNaO₃⁺ ([M+Na]⁺) 322.1414, found, 322.1414.

3-cyclohexyl-2-oxopropyl 2-(1H-indol-3-yl)acetate (56)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 96% yield (30.0 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.31 (br s, 1H), 7.63 (d, *J* = 8.9 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.20 (t, *J* = 8.1 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 7.06 (s, 1H), 4.64 (s, 2H), 3.90 (s, 2H), 2.21 (d, *J* = 6.9 Hz, 2H), 1.86–1.78 (m, 1H), 1.67–1.64 (m, 5H), 1.29–1.20 (m, 2H), 1.16–1.08 (m, 1H), 0.91–0.83 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 203.9, 171.4, 136.0, 127.0, 123.4, 122.0, 119.5, 118.6, 111.2, 107.4, 68.6, 46.2, 33.5, 32.9, 30.7, 26.0, 25.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₂₃NNaO₃⁺ ([M+Na]⁺) 336.1570, found, 336.1565.

2-cyclobutyl-2-oxoethyl 2-(1H-indol-3-yl)acetate (57)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford a yellow oil in 89% yield (24.1 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.29 (br s, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 8.1 Hz, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 7.11 (s, 1H), 4.66 (s, 2H), 3.90 (s, 2H), 3.28–3.22 (m, 1H), 2.31–2.22 (m, 2H), 2.14–2.04 (m, 2H), 2.00–1.89 (m, 1H), 1.88–1.79 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 205.0, 171.4, 136.0, 127.1, 123.4, 122.1, 119.6, 118.6, 111.2, 107.6, 66.5, 41.8, 30.8, 24.0, 18.1. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₇NNaO₃⁺ ([M+Na]⁺) 294.1101, found, 294.1101.

2-oxo-2-(2-phenylcyclopropyl)ethyl 2-(1H-indol-3-yl)acetate (58)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a colorless oil in 96% yield (32.0 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.14 (br s, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.22 (q, *J* = 7.6 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.11 (s, 1H), 7.01 (d, *J* = 7.6 Hz, 2H), 4.83 (s, 2H), 3.89 (s, 2H), 2.60–2.57 (m, 1H), 2.12–2.09 (m, 1H), 1.74–1.71 (m, 1H), 1.43–1.33 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 202.3, 171.3, 139.6, 136.0, 128.5, 127.1, 126.7, 126.0, 123.3, 122.2, 119.7, 118.7, 111.2, 107.7, 68.8, 30.9, 29.5, 28.8, 19.2. HRMS (ESI-TOF) *m/z* calcd. for C₂₁H₁₉NNaO₃⁺ ([M+Na]⁺) 356.1257, found, 356.1256.

2-oxo-2-phenoxyethyl 2-(1H-indol-3-yl)acetate (59)

The title compound was prepared according to the general procedure and purified by column chromatography on

silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow oil in 58% yield (17.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.14 (br s, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.43–7.36 (m, 3H), 7.27 (d, *J* = 7.5 Hz, 1H), 7.24–7.21 (m, 2H), 7.16 (t, *J* = 7.0 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 4.91 (s, 2H), 3.97 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 171.4, 166.5, 150.0, 136.0, 129.5, 127.1, 126.2, 123.2, 122.3, 121.3, 119.8, 118.8, 111.2, 107.7, 61.0, 30.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₅NNaO₄⁺ ([M+Na]⁺) 332.0893, found, 332.0898.

2-oxo-2-phenoxyethyl 2-(1H-indol-3-yl)acetate (60)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a colorless oil in 62% yield (17.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.15 (br s, 1H), 7.63 (d, *J* = 7.0 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 8.2 Hz, 1H), 7.18 (d, *J* = 2.4 Hz, 1H), 7.14 (t, *J* = 7.0 Hz, 1H), 4.66 (s, 2H), 3.94 (d, *J* = 6.7 Hz, 2H), 3.90 (s, 2H), 1.91–1.87 (m, 1H), 0.90 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 171.4, 167.9, 136.0, 127.2, 123.2, 122.2, 119.7, 118.8, 111.2, 107.8, 71.3, 61.0, 30.8, 27.6, 18.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₆H₁₉NNaO₄⁺ ([M+Na]⁺) 312.1206, found, 312.1207.

2-oxo-1,2-diphenylethyl 2-(1H-indol-3-yl)acetate (61)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a white solid in 50% yield (18.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.21 (br s, 1H), 7.93 (d, J = 7.4 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.51–7.45 (m, 3H), 7.41–7.33 (m, 5H), 7.29 (d, J = 8.1 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.13–7.09 (m, 2H), 6.91 (s, 1H), 4.03–3.87 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 194.0, 171.6, 136.0, 134.5, 133.5, 133.4, 129.2, 129.0, 128.8, 128.6, 127.2, 123.4, 122.0, 119.5, 118.8, 111.2, 107.6, 77.9, 30.8. HRMS (ESI-TOF) *m/z* calcd. for C₂₄H₁₉NNaO₃⁺ ([M+Na]⁺) 329.1257, found, 392.1253.

methyl 2-(2-(1H-indol-3-yl)acetoxy)-2-phenylacetate (62)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford a white solid in 47% yield (15.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.18 (br s, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.49–7.45 (m, 2H), 7.40–7.37 (m, 3H), 7.33 (d, J = 8.1 Hz, 1H), 7.19 (t, J = 8.1 Hz, 1H), 7.15 (d, J = 2.4 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H), 5.99 (s, 1H), 4.00–3.88 (m, 2H), 3.69 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 171.4, 169.3, 136.0, 133.7, 129.2, 128.7, 127.6, 127.1, 123.3, 122.1, 119.6, 118.8, 111.2, 107.6, 74.7, 52.6, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₁₉H₁₇NNaO₄⁺ ([M+Na]⁺) 346.1050, found, 346.1047.

2-oxo-2-phenylethyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (63)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford a yellow solid in 88% yield (35.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.25 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 5.62 (s, 2H), 3.13–3.05 (m, 4H), 1.58–1.51 (m, 4H), 0.87 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 191.5, 164.7, 144.5, 134.1, 134.0, 132.7, 130.6, 128.9, 127.8, 127.0, 66.8, 49.9, 21.9, 11.1. HRMS (ESI-TOF) *m/z* calcd. for C₂₁H₂₅NNaO₅S⁺ ([M+Na]⁺) 426.1346. found, 426.1357.

2-oxo-2-phenylethyl 2-acetoxybenzoate (64)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/2) to afford a yellow solid in 74% yield (22.1 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.16 (d, *J* = 9.5 Hz, 1H), 7.94 (d, *J* = 9.4 Hz, 2H), 7.64–7.56 (m, 2H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.1 Hz, 1H), 7.13 (d, *J* = 9.1 Hz, 1H), 5.53 (s, 2H), 2.33 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 191.6, 169.7, 163.8, 150.8, 134.2, 134.1, 133.9, 132.0, 128.9, 127.8, 126.0, 123.8, 122.6, 66.4, 21.0. HRMS (ESI-TOF) *m/z* calcd. for C₁₇H₁₄NaO₅⁺ ([M+Na]⁺) 321.0733. found, 321.0688.

2-oxo-2-phenylethyl 4'-((1,7'-dimethyl-2'-propyl-1*H*,3'*H*-[2,5'-bibenzo[*d*]imidazol]-3'-yl)methyl)-[1,1'biphenyl]-2-carboxylate (65)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/4) to afford a yellow oil in 64% yield (40.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, *J* = 6.6 Hz, 1H), 7.81 (d, *J* = 7.2 Hz, 2H), 7.77 (d, *J* = 7.4 Hz, 1H), 7.54–7.51 (m, 2H), 7.45–7.36 (m, 5H), 7.34–7.28 (m, 3H), 7.25–7.22 (m, 3H), 7.07 (d, *J* = 8.2 Hz, 2H), 5.39 (s, 2H), 5.33 (s, 2H), 3.68 (s, 3H), 2.95–2.85 (m, 2H), 2.76 (s, 3H), 1.87–1.81 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 191.7, 167.0, 156.4, 154.5, 143.0, 142.8, 142.3, 140.7, 136.6, 134.8, 134.7, 134.0, 133.7, 131.8, 130.9, 130.5, 129.3, 129.3, 129.2, 128.7, 127.6, 127.4, 125.8, 123.8, 123.7, 122.3, 122.1, 119.4, 109.4, 108.8, 66.3, 47.0, 31.7, 29.7, 21.8, 16.8, 14.0. HRMS (ESI-TOF) *m/z* calcd. for C₄₁H₃₇N4O₃⁺ ([M+H]⁺) 633.2860. found, 633.2874.

2-oxo-2-phenylethyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (66)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford a yellow solid in 78% yield (27.2 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, *J* = 7.2 Hz, 2H), 7.74–7.69 (m, 3H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 10.3 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.16–7.10 (m, 2H), 5.37 (d, *J* = 16.3 Hz, 1H), 5.22 (d, *J* = 16.3 Hz, 1H), 4.06 (q, *J* = 7.2 Hz, 1H), 3.91 (s, 3H), 1.67 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 192.3, 174.2, 157.7, 135.3, 134.2, 133.8, 133.8, 129.4, 128.8, 127.8, 127.2, 126.4, 126.2, 119.0, 105.6, 66.4, 55.3, 45.2, 18.7. HRMS (ESI-TOF) *m/z* calcd. for C₂₂H₂₀NaO₄⁺ ([M+Na]⁺) 371.1254. found, 371.1247.

2-oxo-2-phenylethyl (Z)-2-(5-fluoro-2-methyl-1-(4-(methylsulfinyl)benzylidene)-1H-inden-3-yl)acetate (67)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 62% yield (29.5 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.87 (d, J = 9.6 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.16–7.12 (m, 2H), 6.95 (d, J = 11.2 Hz, 1H), 6.57–6.52 (m, 1H), 5.35 (s, 2H), 3.74 (s, 2H), 2.79 (s, 3H), 2.22 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 191.8, 169.7, 164.1, 162.5, 145.4, 141.6, 139.6, 138.5, 134.0, 133.9, 131.3 (d, J = 2.3 Hz), 130.2, 129.4 (d, J = 2.7 Hz), 128.8, 128.2 (d, J = 1.3 Hz), 127.7, 123.8, 123.6 (d, J = 9.1 Hz), 110.7 (d, J = 22.7 Hz), 106.2 (d, J = 23.9 Hz), 66.5, 43.8, 31.1, 10.5. ¹⁹F NMR (564 MHz, CDCl₃): δ -112.7 (s, 1F). HRMS (ESI-TOF) *m*/*z* calcd. for C₂₈H₂₃FNaO4S⁺ ([M+Na]⁺) 497.1193. found, 497.1196.

2-oxo-2-phenylethyl-(8S,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1*H*-cyclopenta[*a*]phenanthrene-17-carboxylate (68)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow oil in 85% yield (36.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.89 (d, J = 9.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 5.70 (s, 1H), 5.45 (d, J = 16.4 Hz, 1H), 5.20 (d, J = 16.4 Hz, 1H), 2.50 (t, J = 9.5 Hz, 1H), 2.45–2.34 (m, 2H), 2.33–2.29 (m, 1H), 2.27–2.23 (m, 2H), 2.20–2.11 (m, 1H), 2.04–1.97 (m, 1H), 1.91–1.80 (m, 2H), 1.75–1.64 (m, 2H), 1.61–1.52 (m, 2H), 1.49–1.41 (m, 1H), 1.39–1.26 (m, 2H), 1.16 (s, 3H), 1.16–1.09 (m, 1H), 1.09–0.99 (m, 1H), 0.98–0.92 (m, 1H), 0.83 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 199.4, 192.3, 173.2, 171.1, 134.2, 133.7, 128.7, 127.6, 123.7, 65.6, 55.3, 54.7, 53.6, 44.2, 38.5, 37.6, 35.6, 35.6, 33.8, 32.7, 31.8, 24.3, 23.7, 20.8, 17.3, 13.0. HRMS (ESI-TOF) *m/z* calcd. for C₂₈H₃₅O₄⁺ ([M+H]⁺) 435.2530. found, 435.2537.

bis(2-oxo-2-phenylethyl) isophthalate (70)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford a yellow oil in 67% yield (26.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.90 (s, 1H), 8.37 (d, *J* = 9.5 Hz, 2H), 7.97 (d, *J* = 9.6 Hz, 4H), 7.67–7.58 (m, 3H), 7.51 (t, *J* = 7.8 Hz, 4H), 5.61 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 191.7, 165.2, 134.6, 134.2, 134.0, 131.5, 130.0, 128.9, 128.8, 127.8, 66.7. HRMS (ESI-TOF) *m/z* calcd. for C₂₄H₁₈NaO₆⁺ ([M+Na]⁺) 425.0996. found, 425.1003.

3-(5-bromo-1*H*-indol-3-yl)-4-phenylfuran-2(5*H*)-one (71)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 79% yield (55.8 mg). ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.74 (s, 1H), 7.74 (d, *J* = 2.7 Hz, 1H), 7.42–7.40 (m, 4H), 7.38–7.34 (m, 2H), 7.18 (d, *J* = 10.5 Hz, 1H), 6.79 (d, *J* = 1.8 Hz, 1H), 5.41 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 173.7, 153.8, 134.9, 131.7, 130.1, 128.7, 128.6, 127.5, 126.3, 123.9, 122.6, 118.6, 113.9, 111.7, 104.1, 70.8. HRMS (ESI-TOF) *m/z* calcd. for C₁₈H₁₂BrNNaO₂⁺ ([M+Na]⁺) 357.9944. found, 357.9947.

2-oxo-2-(4-(phenylethynyl)phenyl)ethyl 2-(1H-indol-3-yl)acetate (73)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (2/1) to afford a yellow solid in 83% yield (65.3 mg). ¹H NMR (600 MHz, CDCl₃): δ 8.13 (br s, 1H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.56–7.53 (m, 2H), 7.39–7.35 (m, 5H), 7.21 (t, *J* = 8.1 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 5.34 (s, 2H), 3.98 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 191.6, 171.4, 136.1, 133.2, 131.9, 131.8, 129.0, 128.9, 128.5, 127.8, 127.2, 123.2, 122.5, 122.3, 119.8, 118.9, 111.2, 108.0, 93.2, 88.4, 66.3, 30.9. HRMS (ESI-TOF) *m/z* calcd. for C₂₀H₁₉NNaO₃⁺ ([M+Na]⁺) 416.1257. found, 416.1255.

2-oxo-2-phenylethyl-1-d acetate (38-d)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford a yellow oil in 75% yield (13.4 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.89 (d, J = 9.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 5.32 (s, 1H), 2.21 (s, 3H).

9. Characterization Data for Sulfoxonium Ylides

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-phenylethan-1-one (2a)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 88% yield (1.174 g). ¹H NMR (500 MHz, CDCl₃): δ 7.80–7.73 (m, 2H), 7.43–7.38 (m, 1H), 7.38–7.34 (m, 2H), 4.98 (s, 1H), 3.47 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 182.3, 138.8, 130.7, 128.1, 126.4, 68.5, 42.3.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(*p*-tolyl)ethan-1-one (2b)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 89% yield (1.273 g). ¹H NMR (600 MHz, CDCl₃): δ 7.68 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 4.95 (s, 1H), 3.49 (s, 6H), 2.36 (s, 3H). ¹³C

NMR (150 MHz, CDCl₃): δ 182.3, 141.0, 136.1, 128.8, 126.5, 67.8, 42.5, 21.4.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-phenylethan-1-one (2c)¹

MeO

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 87% yield (1.338 g). ¹H NMR (600 MHz, CDCl₃): δ 7.74 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.91 (s, 1H), 3.82 (s, 3H), 3.48 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 181.9, 161.6, 131.6, 128.3, 113.4, 67.4, 55.4, 42.6.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-1-(4-fluorophenyl)ethan-1-one (2d)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 87% yield (1.267 g). ¹H NMR (600 MHz, CDCl₃): δ 7.80–7.75 (m, 2H), 7.04 (t, *J* = 8.7 Hz, 2H), 4.92 (s, 1H), 3.50 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 181.0, 164.4 (d, *J* = 250.3 Hz), 135.0 (d, *J* = 2.9 Hz), 128.7 (d, *J* = 8.8 Hz), 115.0 (d, *J* = 21.7 Hz), 68.2, 42.4. ¹⁹F NMR (564 MHz, CDCl₃): δ -109.9 (s, 1F).

1-(4-bromophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)ethan-1-one (2e)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 88% yield (1.646 g). ¹H NMR

(500 MHz, CDCl₃): δ 7.63 (d, *J* = 7.9 Hz, 2H), 7.49 (d, *J* = 7.9 Hz, 2H), 4.94 (s, 1H), 3.48 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 181.0, 137.8, 131.3, 128.2, 125.2, 68.7, 42.4.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-1-(4-iodophenyl)ethan-1-one (2f)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a white solid in 87% yield (1.906 g). ¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 4.94 (s, 1H), 3.49 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 181.1, 138.3, 137.3, 128.2, 97.5, 68.6, 42.3.

 $\label{eq:linear} 2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-1-(4-(trifluoromethyl)phenyl)ethan-1-one~(2g)^1$

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a white solid in 78% yield (1.402 g). ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, *J* = 8.1 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 5.00 (s, 1H), 3.52 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 180.5, 142.1, 132.3 (q, *J* = 32.4 Hz), 126.9, 125.2 (q, *J* = 3.7 Hz), 123.9 (d, *J* = 272.3 Hz), 69.4, 42.3. ¹⁹F NMR (564 MHz, CDCl₃): δ -62.7 (s, 3F).

4-(2-(dimethyl(oxo)- λ^6 -sulfaneylidene)acetyl)benzonitrile (2h)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 80% yield (1.204 g). ¹H NMR

(600 MHz, CDCl₃): δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 5.00 (s, 1H), 3.53 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 179.7, 142.8, 132.1, 127.1, 118.6, 114.0, 69.9, 42.3.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-1-(*m*-tolyl)ethan-1-one (2i)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 72% yield (1.030 g). ¹H NMR (600 MHz, CDCl₃): δ 7.57 (s, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.24–7.17 (m, 2H), 5.00 (s, 1H), 3.45 (s, 6H), 2.32 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 182.5, 138.7, 137.7, 131.3, 127.9, 127.1, 123.5, 69.0, 42.0, 21.2.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(3-fluorophenyl)ethan-1-one (2j)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 88% yield (1.282 g). ¹H NMR (600 MHz, CDCl₃): δ 7.54 (d, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 9.8 Hz, 1H), 7.35–7.32 (m, 1H), 7.15–7.07 (m, 1H), 4.95 (s, 1H), 3.50 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 180.6 (d, *J* = 2.1 Hz), 162.8 (d, *J* = 246.3 Hz), 141.3 (d, *J* = 6.3 Hz), 129.7 (d, *J* = 7.7 Hz), 122.1 (d, *J* = 2.8 Hz), 117.5 (d, *J* = 21.4 Hz), 113.5 (d, *J* = 22.3 Hz), 68.8, 42.3. ¹⁹F NMR (564 MHz, CDCl₃): δ -113.0 (s, 1F).

1-([1,1'-biphenyl]-4-yl)-2-(dimethyl(oxo)-λ⁶-sulfaneylidene)ethan-1-one (2k)¹

The title compound was prepared according to the general procedure and purified by column chromatography on

silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 84% yield (1.556 g). ¹H NMR (600 MHz, CDCl₃): δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.62 (dd, *J* = 7.7, 3.4 Hz, 4H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 5.03 (s, 1H), 3.52 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 181.8, 143.4, 140.3, 137.6, 128.8, 127.6, 127.1, 127.0, 126.8, 68.3, 42.4.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-1-(naphthalen-1-yl)ethan-1-one (2l)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 80% yield (1.340 g). ¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 7.3 Hz, 2H), 7.64 (d, *J* = 7.0 Hz, 1H), 7.514–7.454 (m, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 4.83 (s, 1H), 3.56 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 186.2, 139.0, 133.8, 130.2, 129.7, 128.1, 126.4, 125.9, 125.1, 124.7, 72.2, 42.3.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(naphthalen-2-yl)ethan-1-one (2m)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a white solid in 83% yield (1.390 g). ¹H NMR (600 MHz, CDCl₃): δ 8.34 (s, 1H), 7.94–7.86 (m, 4H), 7.55–7.50 (m, 2H), 5.15 (s, 1H), 3.57 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 182.2, 136.2, 134.6, 132.8, 129.1, 127.8, 127.6, 127.1, 126.8, 126.3, 123.7, 68.7, 42.5.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(thiophen-2-yl)ethan-1-one (2n)¹

The title compound was prepared according to the general procedure and purified by column chromatography on

silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 77% yield (1.059 g). ¹H NMR (600 MHz, CDCl₃): δ 7.43 (d, *J* = 3.6 Hz, 1H), 7.39 (d, *J* = 4.9 Hz, 1H), 7.03 (t, *J* = 4.2 Hz, 1H), 4.88 (s, 1H), 3.50 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 175.6, 145.6, 129.0, 127.5, 127.0, 67.1, 42.7.

2-(dimethyl(oxo)-λ⁶-s ulfaneylidene)-1-(furan-2-yl)ethan-1-one (2o)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 88% yield (1.114 g). ¹H NMR (600 MHz, CDCl₃): δ 7.39 (dd, J = 1.6, 0.7 Hz, 1H), 6.90 (d, J = 3.4 Hz, 1H), 6.41 (dd, J = 3.4, 1.7 Hz, 1H), 5.27 (s, 1H), 3.49 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 173.7, 172.2, 153.3, 143.5, 111.5 (d, J = 11.3 Hz), 68.3, 42.5.

(*E*)-1-(dimethyl(oxo)- λ^6 -sulfaneylidene)-4-phenylbut-3-en-2-one (2p)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a brown solid in 65% yield (0.983 g). ¹H NMR (600 MHz, CDCl₃): δ 7.45–7.42 (m, 2H), 7.38 (d, *J* = 15.8 Hz, 1H), 7.28 (t, *J* = 7.2 Hz, 2H), 7.26–7.23 (m, 1H), 6.53 (d, *J* = 15.8 Hz, 1H), 4.64 (s, 1H), 3.44 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 180.0, 136.4, 135.4, 128.9, 128.5, 127.5, 126.8, 72.7, 42.0.

1-cyclohexyl-2-(dimethyl(oxo)-λ⁶-sulfaneylidene)ethan-1-one (2q)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a white solid in 74% yield (1.018 g). ¹H NMR (600

MHz, CDCl₃): δ 4.32 (s, 1H), 3.35 (s, 6H), 2.02 (t, *J* = 9.9 Hz, 1H), 1.79 (d, *J* = 11.7 Hz, 2H), 1.72 (d, *J* = 9.9 Hz, 2H), 1.61 (d, *J* = 9.8 Hz, 1H), 1.33–1.11 (m, 5H). ¹³C NMR (150 MHz, CDCl₃): δ 194.8, 67.5, 49.0, 42.3, 30.0, 26.0, 26.0.

1-cyclohexyl-3-(dimethyl(oxo)-λ⁶-sulfaneylidene)propan-2-one (2r)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 65% yield (0.956 g). ¹H NMR (600 MHz, CDCl₃): δ 4.35 (s, 1H), 3.38 (s, 6H), 2.02 (d, *J* = 6.4 Hz, 2H), 1.71 (d, *J* = 12.0 Hz, 3H), 1.68–1.60 (m, 3H), 1.24 (q, *J* = 12.4 Hz, 2H), 1.12 (q, *J* = 12.3 Hz, 1H), 0.91 (q, *J* = 11.9 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 190.6, 69.9, 49.0, 42.3, 35.6, 33.3, 26.4, 26.2.

$1\-cyclobutyl-2\-(dimethyl(oxo)\-\lambda^6\-sulfaneylidene)ethan\-1\-one\ (2s)^1$

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a white solid in 66% yield (0.782 g).¹H NMR (600 MHz, CDCl₃): δ 4.31 (s, 1H), 3.38 (s, 6H), 3.07–2.97 (m, 1H), 2.23–2.13 (m, 2H), 2.11–2.02 (m, 2H), 1.96–1.84 (m, 1H), 1.79–1.74 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 192.9, 67.1, 43.9, 42.4, 25.6, 17.9.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(2-phenylcyclopropyl)ethan-1-one (2t)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a brown solid in 59% yield (0.948 g). ¹H NMR (600 MHz, CDCl₃): δ 7.23 (t, J = 7.5 Hz, 2H), 7.14 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 7.6 Hz, 2H), 4.57 (s, 1H), 3.37 (d, J = 3.6 Hz, 6H), 2.42–2.38 (m, 1H), 1.84–1.81 (m, 1H), 1.57–1.53 (m, 1H), 1.16–1.10 (m, 1H). ¹³C NMR (150 MHz,

CDCl₃): δ 187.9, 141.8, 128.3, 126.0, 125.9, 69.6, 42.3, 31.1, 25.3, 16.6.

phenyl 2-(dimethyl(oxo)-\lambda⁶-sulfaneylidene)acetate (2u)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/4) to afford a white solid in 61% yield (0.880 g). ¹H NMR (600 MHz, CDCl₃): δ 7.33 (t, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 2H), 3.39 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 165.7, 151.4, 129.2, 124.9, 122.3, 55.7, 42.2.

isobutyl 2-(dimethyl(oxo)- λ^6 -sulfaneylidene)acetate (2v)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/4) to afford a white solid in 53% yield (0.693 g). ¹H NMR (600 MHz, CDCl₃): δ 3.90 (s, 1H), 3.71–3.67 (m, 2H), 3.29 (s, 6H), 1.82–1.77 (m, 1H), 0.82 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 167.3, 68.7, 55.5, 41.9, 27.8, 19.0.

$\label{eq:linear} 2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-1, 2-diphenylethan-1-one~(2w)^2$

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with dichloromethane/ethyl acetate (2/1) to afford a yellow solid in 62% yield (168.9 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.35 (d, J = 7.2 Hz, 2H), 7.21–7.18 (m, 4H), 7.16–7.10 (m, 4H), 3.58 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 182.8, 140.0, 134.6, 131.9, 129.2, 128.5, 128.1, 127.3, 127.1, 86.9, 42.8.

methyl 2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-2-phenylacetate (2x)³

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (1/2) to afford a white solid in 63% yield (142.6 mg). ¹H NMR (600 MHz, CDCl₃): δ 7.34–7.29 (m, 4H), 7.27–7.24 (m, 1H), 3.60 (s, 3H), 3.40 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 166.7, 133.7, 132.3, 128.4, 127.2, 70.2, 50.5, 43.1.

1-(4-chlorophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)ethan-1-one (2y)¹

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 91% yield (1.428 g).¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 4.94 (s, 1H), 3.49 (s, 6H).¹³C NMR (150 MHz, CDCl₃): δ 180.9, 137.3, 136.7, 128.3, 127.9, 68.5, 42.4.

$\label{eq:linear} 2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-1-(2-fluorophenyl)ethan-1-one~(2z)^1$

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with ethyl acetate/methanol (20/1) to afford a yellow solid in 91% yield (1.326 g).¹H NMR (600 MHz, CDCl₃): δ 7.87 (t, *J* = 7.8 Hz, 1H), 7.37–7.31 (m, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.02 (dd, *J* = 12.4, 8.2 Hz, 1H), 5.15 (s, 1H), 3.50 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ 177.4 (d, *J* = 2.8 Hz), 160.7 (d, *J* = 251.1 Hz), 131.9 (d, *J* = 8.8 Hz), 129.9 (d, *J* = 2.9 Hz), 126.7 (d, *J* = 12.9 Hz), 124.0 (d, *J* = 3.5Hz), 115.9 (d, *J* = 24.1 Hz), 73.6 (d, *J* = 12.9 Hz), 42.2. ¹⁹F NMR (564 MHz, CDCl₃): δ -111.9 (s, 1F).

10. References

- Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.-K.; Xia, X.-F., Wang, D.; Zou, L.-H. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β-Tricarbonyl Sulfoxonium Ylides. Org. Lett. 2020, 22, 1504–1509.
- Talero, A. G.; Martins, B. S.; Burtoloso, A. C. Coupling of Sulfoxonium Ylides with Arynes: A Direct Synthesis of Pro-Chiral Aryl Ketosulfoxonium Ylides and Its Application in the Preparation of α-Aryl Ketones. *Org. Lett.* 2018, *20*, 7206–7211.
- Lu, J.; Li, L.; He, X.-K.; Xu, G.-Y.; Xuan, J. Visible Light-Promoted Sulfoxonium Ylides Synthesis from Aryl Diazoacetates and Sulfoxides. *Chin. J. Chem.* 2021, *39*, 1646–1650.
- Ji, K.; Zhao, Y.; Zhang, L. Optimizing P,N-Bidentate Ligands for Oxidative Gold Catalysis: Efficient Intermolecular Trapping of α-Oxo Gold Carbenes by Carboxylic Acids. *Angew. Chem., Int. Ed.* 2013, *52*, 6508– 6512.
- Su, L.; Ren, T.; Dong, J.; Liu, L.; Xie, S.; Yuan, L.; Zhou, Y.; Yin, S.-F. Cu(I)-Catalyzed 6-endo-dig Cyclization of Terminal Alkynes, 2-Bromoaryl Ketones, and Amides toward 1-Naphthylamines: Applications and Photophysical Properties. J. Am. Chem. Soc. 2019, 141, 2535–2544.
- Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. Iodobenzene-Catalyzed α-Acetoxylation of Ketones. In Situ Generation of Hypervalent (Diacyloxyiodo)benzenes Using m-Chloroperbenzoic Acid. J. Am. Chem. Soc. 2005, 127, 12244–12245.

11. NMR Spectral Data for Isolated Products and Sulfoxonium Ylides

¹H NMR (500 MHz, CDCl₃) Spectrum of **3**

¹³C NMR (125 MHz, CDCl₃) Spectrum of **3**

¹³C NMR (150 MHz, CDCl₃) Spectrum of 4

¹H NMR (600 MHz, CDCl₃) Spectrum of **5**

-5.377

¹H NMR (600 MHz, CDCl₃) Spectrum of 7

¹H NMR (600 MHz, CDCl₃) Spectrum of 8

¹H NMR (600 MHz, CDCl₃) Spectrum of 9

074 6521 6521 6521 744 745 745 745 745 745 745 745 745 745	201 176 929 904
8	1000000

Image: state state

¹H NMR (600 MHz, CDCl₃) Spectrum of **12**

¹H NMR (600 MHz, CDCl₃) Spectrum of **13**

¹H NMR (600 MHz, DMSO-*d*₆) Spectrum of 14

¹H NMR (600 MHz, CDCl₃) Spectrum of 15

¹H NMR (600 MHz, CDCl₃) Spectrum of 16

¹H NMR (600 MHz, CDCl₃) Spectrum of 17

¹H NMR (600 MHz, CDCl₃) Spectrum of 18

¹H NMR (600 MHz, CDCl₃) Spectrum of **19**

¹H NMR (500 MHz, CDCl₃) Spectrum of **20**

¹H NMR (600 MHz, CDCl₃) Spectrum of **21**

¹⁹F NMR (564 MHz, CDCl₃) Spectrum of **21**

¹³C NMR (150 MHz, CDCl₃) Spectrum of 22

191.300	164.557	149.921 147.274 137.091 133.054 133.963 123.886 127.790 127.255 127.255	77.211 77.000 76.788 67.096
1	1	11 VY VA	\checkmark 1

N

¹H NMR (600 MHz, CDCl₃) Spectrum of **29**

N M T OLO	m = m m	m 10 m -	0 00 00 00
000000	N (0 4 4	NEOD	0.01 10.0
77700	-0000	0000	44400
000000	11100	NNNN	NNNN
		i i i i	
	10 11		

5 of

-000-	N04-	01-40	000707	2005
88996 18	000000000000000000000000000000000000000	5666	4444	525 41
111100	1111	1111		NNN0
- In the barbo			1	

¹H NMR (600 MHz, DMSO-*d*6) Spectrum of **33**

¹³C NMR (150 MHz, DMSO-*d*6) Spectrum of **33**

o	00 00	0000400		
5	40 1-	0000000	o	00000-N0
0	ON	0 0 0 1 0 1	5	4-1-000000
122	10 01		(0)	0000000000
8	4) (4	0, - 0, - 0, 0	10	
0)	ωw		w w	
×	E E	~~~~~~	ω ω	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
1		(1//1)	8	

Ĭ~

40000077
<u> </u>

10 0	-	Si	8	24
27	N	Si	2	in.
200	5	1- 5	Ø	8
a u	12	2	2	Ŷ

-5.477

Y

	-170.396	 √134.121 √133.853 √128.812 √127.697 	₹77.211 77.000 76.788	-65.971	-20.519
--	----------	--	-----------------------------	---------	---------

8	3	0004	201700	10031043	
and and	5	212	8031	35.50	000000000000000000000000000000000000000
N	3	7007	100	00 -1	1000000
OD I	1~	NNNN	N-1-1	50 CV	000000070 4
	<u> </u>			မို့လို	000000000
9	1		\checkmark	1 (

¹³C NMR (150 MHz, CDCl₃) Spectrum of 41

 ^1H NMR (600 MHz, CDCl₃) Spectrum of 43

¹H NMR (600 MHz, CDCl₃) Spectrum of 44

¹H NMR (600 MHz, CDCl₃) Spectrum of **45**

¹⁹F NMR (564 MHz, CDCl₃) Spectrum of 45

-191.786 -171.293 -171.293 137.015 138.016 1128.1422 122.276 112.276 111.255 107.528 -66.395	30.835
--	--------

¹H NMR (600 MHz, CDCl₃) Spectrum of 50

¹H NMR (600 MHz, CDCl₃) Spectrum of 54

¹H NMR (600 MHz, CDCl₃) Spectrum of 55

¹H NMR (600 MHz, CDCl₃) Spectrum of 56

Gy of C

292 640 627 627 627 1198 1184 1184 1184 1184 1184 1184 1184	664	896 277 262 262 234 219 219	285 255 2255 2255 2255 2255 007 007 007 007 007 007 007 007 007 0	828
	4.	n'n'n'n'n'n	44444444444444444	T

¹H NMR (600 MHz, CDCl₃) Spectrum of 58

¹H NMR (600 MHz, CDCl₃) Spectrum of **59**

40000000000000	\sim	400	00000040000
0000-000-0000	40	400	40-000-00
	Q	0,0,0,0	0,0,0,0,0,0,0,0,0,0
000000000000000000000000000000000000000	4	~~~	
1 V V			V V

N40	00	00	(40 -	- 01	0	00	40	N	0	0	6	6	40	N	0	3	-	40	N	N	-	4	-	3
2.0	808	000	00	00 00	10	10	21	80	8	22	8	8	22	00	2	0	2	5	2	0	5	90	8	32	20
mb	2010	N N	N	N N	N	1	N	2	2	2	N	24	24	N	i.	~	~	2	~	~	0	0	0	0	0
w	1.1.1		1	-		1	1	-	1	2	2	1	1	1	1	1	1	1	1	1	-	1	1	2	2
						-																	- 72	n-	

¹⁹F NMR (564 MHz, CDCl₃) Spectrum of 2d

¹³C NMR (150 MHz, CDCl₃) Spectrum of **2j**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CDCl₃) Spectrum of **2**x

-3.602

¹³C NMR (150 MHz, CDCl₃) Spectrum of **2z**

355	529	903 945 916 916 916 932 994 834 834	77.212 77.000 76.788 73.640 73.554	-42.173
44	59	15,23,26,6,2,3,1,1,5,2,3,2,2,2,3,3,1,1,5,2,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1		
Ý	22	The second second		

 $^{19}\mathrm{F}$ NMR (564 MHz, CDCl₃) Spectrum of 2z

---111.860

