Supporting Information

Cooperative Photocatalysis and L-/D-Proline Catalysis Enables Enantioselective Oxidative Cross-Dehydrogenative Coupling of Acyclic Benzylic Secondary Amines with Ketones

Chao-Jiu Long, ${ }^{[a]}$ Hong-Ping Pu, ${ }^{[a]}$ Ya-Nan Zhao, ${ }^{[b]}$ Yan-Hong He* ${ }^{[a]}$ and Zhi Guan*[a]

[a] Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

Emails: heyh@ swu.edu.cn (for Y.-H. He); guanzhi@swu.edu.cn (for Z. Guan)
[b] Analytical and Testing Center, Southwest University, Chongqing 400715, China

Table of Contents

1. General considerations S1
2. General procedure for the visible-light-induced enantioselective oxidative cross-dehydrogenative coupling of acyclic benzylic secondary amines with ketonesS2
3. Preparation and characterization of substrates 1 S2
4. General procedure for preparing racemic products as chiral HPLC controls S8
5. Optimization details S9
6. Scale-up experiments S16
7. Crystallographic data of compound 3a S17
8. Stern-Volmer luminescence quenching experiments S24
9. Cyclic voltammetry studies S25
10. Unsuccessful substrates S29
11. Possible mechanism for the reaction without KHCO_{3} S29
12. Characterization data of the products $\mathbf{3}$ and $\mathbf{4}$ S30
13. References S62
14. NMR spectra S65
15. HRMS spectra S128
16. Chiral HPLC spectra S139

1. General considerations

Unless otherwise noted, all chemicals and reagents were purchased from commercial suppliers and were used without further purification. All glassware was oven-dried at $120^{\circ} \mathrm{C}$. All photoreactions were conducted in single neck round bottom flask unless otherwise noted. The light source was a 9 W blue LED lamp (450 nm , placed approximately 5 cm from the reaction flask) without any filters. All reactions were monitored by thin-layer chromatography (TLC) with GF 254 silica gel pre-coated plates (0.25 mm , Qingdao Haiyang chemical industry Co. Ltd., Qingdao, China) using UV light and vanillic aldehyde as visualizing agents. Flash chromatography was performed using silica gel (200300 mesh) at increased pressure. NMR spectra were recorded on Bruker AVANCE III (400 MHz) and Bruker AVANCE DMX600 (600 MHz) spectrometers. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were referenced to TMS (0.00 ppm) or residual undeuterated solvent signals (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR in CDCl_{3}) respectively. ${ }^{19} \mathrm{~F}$ NMR data were calibrated using CFCl_{3} as an external reference (0.0 ppm). Data for NMR are reported as follows: chemical shift (ppm), integration, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, dd $=$ doublet of doublets, $\mathrm{br}=$ broad and $\mathrm{m}=$ multiplet $)$, and coupling constant (Hz). High-resolution mass spectra (HRMS) were acquired on Bruker Impact II TOF mass spectrometer using ESI ionization sources. Optical rotations were measured on a Perkin Elmer 341 Polarimeter at $\lambda=589$ nm . The diastereomeric ratio (dr) and enantiomeric excess (ee) of products were determined by chiral HPLC analysis carried out on a Shimadzu LC-20A instrument using Chiralpak AD-H, Chiralpak OD-H, Chiralpak AS-H, Chiralpak IC and Chiralpak OJ-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}, 5 \mu \mathrm{~m}$, Daicel Chiral Technologies CO., LTD.). Cyclic voltammograms were obtained on a CHI 700E potentiostat (CH Instruments, Inc.). Single-crystal X-ray diffraction measurements were carried out on an Agilent SuperNova, Dual, Cu at home/near EosS2 diffractometer.

2. General procedure for the visible-light-induced enantioselective oxidative

 cross-dehydrogenative coupling of acyclic benzylic secondary amines with ketones

To a 10 mL round-bottom flask equipped with a magnetic stirring bar was added $\mathbf{1}(0.3 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%$), and DMF (dried over $3 \AA$ molecular sieves, 2 mL). The mixture was irradiated with a 9 W blue LED lamp under the air atmosphere at room temperature. After full conversion of $\mathbf{1}$ as monitored by TLC, the light was turned off. 2 (1.5-6.0 mmol, 5.0-20.0 equiv, as indicated), the chiral catalyst ($0.009 \mathrm{mmol}, 30 \mathrm{~mol} \% \mathbf{A}$ or \mathbf{B}, as indicated) and the base ($0.6 \mathrm{mmol}, 2.0$ equiv KHCO_{3} or KOH , as indicated) were added, then the mixture was stirred without light. The reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with 20 mL EtOAc, and washed with brine ($10 \mathrm{~mL} \times 2$). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was collected and concentrated in vacuum to remove the solvent. The residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (v/v, 25:1 to 5:1) as eluent to obtain the corresponding product $\mathbf{3}$ or $\mathbf{4}$.

3. Preparation and characterization of substrates 1

The following substrates $\mathbf{1}$ were purchased from commercial sources (Figure S1).

1a
CAS No.103-32-2

1q
CAS No. 5405-15-2

1b CAS No. 3526-43-0

$1 r$ CAS No. 90811-55-5

1v
CAS No. 213814-61-0

1w
CAS No. 13672-18-9

1p CAS No. 17377-95-6

1s
CAS No. 50798-94-2

1al
CAS No. 71182-60-0

Figure S1. Substrates 1 purchased from commercial sources.
The other substrates $\mathbf{1}$ were synthesized according to literature:

General procedure ${ }^{[1]}$

A 100 mL round-bottomed flask equipped with a magnetic stirring bar was charged with 5 (5.0 mmol, 1.0 equiv), $\mathbf{6}$ ($7.5 \mathrm{mmol}, 1.5$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MeCN}(70$ $\mathrm{mL})$. The reaction mixture was vigorously stirred at room temperature. The reaction was monitored by TLC. Upon completion, the reaction mixture was filtered by Celite and washed with EtOAc. The filtrate was collected and concentrated in vacuum to remove the solvent. The residue was directly submitted to flash column chromatography on silica gel using petroleum ether/EtOAc (300:1 to 20:1) to obtain the corresponding compound 1 .

N-(4-(tert-butyl)benzyl)aniline (1c) ${ }^{[1]}$

White solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.7$
$\mathrm{Hz}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 150.3,148.2,136.3,129.3,127.4,125.6,117.6,113.0,34.5,31.4$.

1d
N-(4-methylbenzyl)aniline (1d) ${ }^{[2]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.69(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 148.3,136.9,136.5,129.4,129.3,127.6,117.6,113.0,48.2$, 21.1.

N-(3-methylbenzyl)aniline (1e) ${ }^{[3]}$
Yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\left.600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.3,139.4,138.3,129.2,128.5,128.3,128.0,124.6,117.6$, 112.9, 48.4, 21.4 .

$1 f$
N-(2-methylbenzyl)aniline (1f) ${ }^{[4]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.4,137.1,136.3,130.4,129.3,128.3,127.4,126.2,117.6$, $112.8,46.5,18.9$.

1 g
N-(4-nitrobenzyl)aniline (1 g$)^{[4]}$
Red oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.6,147.4,147.3,129.4,127.7,123.9,118.2,113.0,47.7$.

1h
N-(4-fluorobenzyl)aniline (1h) ${ }^{[1]}$
Yellow oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.6 \mathrm{~Hz}$, 2H), $6.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$): $\delta 162.1(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 147.9,135.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.3,129.0$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}), 117.9,115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 113.0,47.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-115.6$.

$1 i$
N-(4-chlorobenzyl)aniline (1i) ${ }^{[4]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.29-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 147.9,138.1,132.9,129.3,128.8,128.7,117.9,113.0,47.7$.

1j
N-(4-bromobenzyl)aniline ($\mathbf{1} \mathbf{j})^{[4]}$

Yellow oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 147.8,138.6,131.7,129.3,129.1,121.0,117.9,113.0,47.8$.

1-(4-((Phenylamino)methyl)phenyl)ethan-1-one (1k) ${ }^{[1]}$
White solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 197.6,147.7,145.1,136.3,129.3,128.7,127.3,118.0,113.0,48.1$, 26.5.

11
N-(3-bromobenzyl)aniline (11) ${ }^{[3]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{q}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{br} \mathrm{s}$, 1H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 147.8,142.1,130.4,130.3,130.2,129.4,125.9,122.8,117.9$, 113.0, 47.8 .

1m
N-(2-bromobenzyl)aniline (1m) ${ }^{[1]}$
Yellow oil.
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$): $\delta 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.40(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.6,138.2,132.8,129.3 \times 2(129.29,129.26), 128.7,127.6$, 123.3, 117.9, 113.1, 48.5.

1 n
N-(2,4-difluorobenzyl)aniline (1n) ${ }^{[1]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.72$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 162.3(\mathrm{dd}, J=248.2,12.0 \mathrm{~Hz}), 160.8(\mathrm{dd}, J=248.8,11.9 \mathrm{~Hz})$, $147.6,130.2(\mathrm{dd}, J=9.6,6.1 \mathrm{~Hz}), 129.3,122.3(\mathrm{dd}, J=14.8,3.5 \mathrm{~Hz}), 118.0,113.0,111.2(\mathrm{dd}, J=$ $21.0,3.7 \mathrm{~Hz}), 103.8(\mathrm{t}, J=25.4 \mathrm{~Hz}), 41.5(\mathrm{~d}, J=3.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR (565 MHz, CDCl $_{3}$): $\delta-115.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}),-114.9(\mathrm{~d}, J=7.1 \mathrm{~Hz})$.

10
N-(naphthalen-2-ylmethyl)aniline (10) ${ }^{[1]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.84-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.71$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 148.2,137.0,133.6,132.8,129.3,128.4,127.8,127.7,126.2$, $126.0,125.8 \times 2(125.78,125.76), 117.7,113.0,48.6$.

$1 t$
N-benzyl-4-fluoroaniline (1t) ${ }^{[4]}$
Yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 7.40-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.59-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right): \delta 155.9(\mathrm{~d}, J=235.9 \mathrm{~Hz}), 144.5(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 139.3,128.7,127.5$, $127.3,115.7(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 49.0$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-127.8$.

1u
N-benzyl-3-fluoroaniline (1u) $)^{[5]}$
Yellow oil.
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.33(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.42-6.34(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.28(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl $)_{3}$): $\delta 164.2(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 150.0(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 138.9,130.3(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}), 128.7,127.5,127.4,108.8,104.0(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 99.6(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 48.3$.
${ }^{19}$ F NMR ($\left.565 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta-112.8$.

Ethyl (4-methoxyphenyl)glycinate (1am) ${ }^{[6]}$
Yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.4,152.7,141.4,114.9,114.4,61.2,55.7,46.8,14.2$.

4. General procedure for preparing racemic products as chiral HPLC controls ${ }^{[7]}$

A round-bottomed flask equipped with a magnetic stirring bar was charged with $7(0.3 \mathrm{mmol}, 1.0$ equiv), 6 ($0.3 \mathrm{mmol}, 1.0$ equiv), $2\left(6.0 \mathrm{mmol}, 20.0\right.$ equiv), $\operatorname{Hf}(\mathrm{OTf})_{4}(1.2 \mathrm{mg}, 0.0015 \mathrm{mmol}, 0.5$
$\mathrm{mol} \%)$ and DMSO $(3.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature and monitored by TLC. After completion of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to the reaction to dissolve the residue. the crude material was purified by preparative thin layer chromatography (silica gel, petroleum ether/EtOAc $=5: 1$ to $1: 1)$ to give the desired racemic product $(\boldsymbol{R a c} \mathbf{- 3}$ or $\boldsymbol{R a c} \mathbf{- 4})$.

5. Optimization details

Table S1. Screening of catalysts. ${ }^{[a]}$

A

B

C
HO,

D

E
[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ (dried over $3 \AA$ molecular sieves, 666 $\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(6 \mathrm{mg}, 0.009 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and Catalyst (0.09 mmol, $30 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 3.0 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column.

Table S2. Screening of the amounts of A. ${ }^{[a]}$

Entry	$\mathbf{A}[\mathrm{mol} \%]$	Yield $[\%]^{[\mathrm{b}]}$	ee $[\%]^{[\mathrm{c}]}$
1	10	38	90
2	20	46	90
3	30	50	90
4	40	50	90
5	50	50	90

[a] Reaction conditions: $\mathbf{1 a}$ ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ (dried over $3 \AA$ molecular sieves, 666 $\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv), $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(6 \mathrm{mg}, 0.009 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and \mathbf{A} in DMF (dried over $3 \AA \AA$ molecular sieves, 3.0 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column.

Table S3. Screening of photocatalysts. ${ }^{[a]}$

[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), 2a (dried over $3 \AA$ molecular sieves, 666
$\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv), Photocatalyst ($0.009 \mathrm{mmol}, 3 \mathrm{~mol} \%$) and $\mathbf{A}(11 \mathrm{mg}, 0.09 \mathrm{mmol}, 30$ mol\%) in DMF (dried over $3 \AA$ molecular sieves, 3.0 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column. [d] No reaction.

Table S4. Screening of the amounts of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{[\mathrm{a}]}$

Entry	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{mol} \%)$	Yield [\%] ${ }^{[6]}$	ee [\%] ${ }^{[\mathrm{c}]}$
1	1	31	90
2	2	50	90
3	3	50	90
4	4	47	91
5	5	46	88

[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), 2a (dried over $3 \AA$ molecular sieves, 666 $\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{A}(11 \mathrm{mg}, 0.09 \mathrm{mmol}, 30 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 3.0 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column.

Table S5. Screening of solvents. ${ }^{[a]}$

5
THF
N.R. ${ }^{[\text {[e] }}$
6
DMSO
7
DCE
48
Trace
\qquad
54
\qquad
[a] Reaction conditions: $\mathbf{1 a}$ ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ (dried over $3 \AA$ molecular sieves, 666 $\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $\mathbf{A}(11 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 30 \mathrm{~mol} \%$) in solvent (dried over molecular sieves, 3.0 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column. [d] Not detected. [e] No reaction.

Table S6. Screening of the amounts of DMF. ${ }^{[a]}$

Entry	DMF $[\mathrm{mL}]$	Yield $[\%]^{[b]}$	ee $[\%]^{[\mathrm{cc}]}$
1	1.0	46	89
2	2.0	50	90
3	3.0	50	90
4	4.0	49	88

[a] Reaction conditions: $\mathbf{1 a}$ ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ (dried over $3 \AA$ molecular sieves, 666 $\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv), $\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $\mathbf{A}(11 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 30 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak ADH column.

Table S7. Screening of additives. ${ }^{[\text {a] }}$

Entry	Additive	Yield [\%] ${ }^{\text {[b] }}$	ee [\%] ${ }^{[\mathrm{c}]}$

1	None	50	90
2	$\mathrm{CH}_{3} \mathrm{COOH}$	44	89
3	PhCOOH	Trace	-
4	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	N.R. ${ }^{[d]}$	-
5	CuI	N.R. ${ }^{[d]}$	-
6	2,6-Lutidine	50	91
7	$\mathrm{K}_{2} \mathrm{CO}_{3}$	55	97
$8{ }^{[\mathrm{e}]}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	60	96
$9{ }^{[\mathrm{e}]}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	42	97
$10^{\text {[e] }}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Trace	-
$11^{[\mathrm{e}]}$	KHCO_{3}	65	97
$12^{\text {[e] }}$	KOH	Trace	-

[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), 2a (dried over $3 \AA$ molecular sieves, 666 $\mu \mathrm{L}, 9.0 \mathrm{mmol}, 30.0$ equiv $), \mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathbf{A}(11 \mathrm{mg}, 0.09 \mathrm{mmol}$, $30 \mathrm{~mol} \%$) and additive ($0.6 \mathrm{mmol}, 2.0$ equiv) in DMF (dried over $3 \AA$ molecular sieves, 2.0 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column. [d] No reaction. [e] 2a, A and additive were added after the photo-oxidation process was completed, and then the mixture was stirred without light.

Table S8. Screening of the amounts of $\mathrm{KHCO}_{3}{ }^{\left[{ }^{[a]}\right.}$

Entry	KHCO_{3} (x equiv)	Yield [\%] ${ }^{\text {[b] }}$	ee [\%] ${ }^{[\mathrm{c}]}$
1	0.5	50	91
2	1.0	54	94
3	1.5	56	94
4	2.0	65	97
5	2.5	65	97

[a] Reaction conditions: $1 \mathbf{1 a}\left(55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.0 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. $\mathbf{2 a}$ (dried over $3 \AA$ molecular sieves, $666 \mu \mathrm{~L}, 9.0 \mathrm{mmol}, 30.0$ equiv), A ($11 \mathrm{mg}, 0.09 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and KHCO_{3} were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column.

Table S9. Screening of the amounts of 2a. ${ }^{[\text {a] }}$

[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.0 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. 2a (dried over $3 \AA$ molecular sieves), A ($11 \mathrm{mg}, 0.09 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{KHCO}_{3}(60 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column. [d] All components were added at one time and irradiation.

Table S10. Screening of additives (for the reaction using cyclohexanone). ${ }^{[a]}$

			$\begin{gathered} (\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2) \\ \mathbf{A}(30 \mathrm{~mol} \%) \\ \text { dditive }(2.0 \text { equiv), } \\ \hline \begin{array}{c} \text { W Blue LEDs } \\ \text { Air, R.T. } \end{array} \end{gathered}$	
Entry	Additive	Yield [\%] ${ }^{[6]}$	dr $\left[\right.$ syn/anti] ${ }^{[\mathrm{c}]}$	ee $[\%[s y n] / \%[a n t i]]^{[c]}$
1	None	45	37/63	50/19
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	63	58/42	75/35
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	69	51/49	72/29
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	51	54/46	85/79
5	KHCO_{3}	74	55/45	80/43
6	KOH	74	62/38	87/58

[a] Reaction conditions: $1 \mathbf{1 a}\left(55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.0 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. $\mathbf{2 f}(156 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$, 5.0 equiv), A ($11 \mathrm{mg}, 0.09 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and additive ($0.6 \mathrm{mmol}, 2.0$ equiv) were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column.

Table S11. Screening of the amounts of KOH (for the reaction using cyclohexanone). ${ }^{[a]}$

	Ph	$+$ $2 f$		
Entry	KOH (equiv)	Yield [\%] ${ }^{\text {[b] }}$	$\mathrm{dr}[\text { syn/anti }]^{[\mathrm{c}]}$	ee $[\%[s y n] / \%[a n t i]]{ }^{[c]}$
1	0.3	68	48/52	60/27
2	0.6	73	56/44	60/27
3	0.9	72	42/58	65/33
4	1.5	73	56/44	76/26
5	2.0	74	62/38	87/58
6	2.5	73	54/46	81/48

[a] Reaction conditions: $1 \mathbf{1 a}\left(55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006$ mmol, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.0 mL) irradiated with 9 W blue LEDs
under air at room temperature. After full conversion of 1a, the light was turned off. $\mathbf{2 f}$ ($156 \mu \mathrm{~L}, 1.5$ mmol, 5.0 equiv), A ($11 \mathrm{mg}, 0.09 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and KOH were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column.

6. Scale-up experiments

Figure S2. Scale-up experiments.
Reaction conditions:
a) $\mathbf{1 a}\left(183 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(13 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ in DMF (dried over $3 \AA$ molecular sieves, 7 mL) irradiated with 9 W blue LEDs under air at room temperature for 17 h . Then, the light was turned off. 2a ($1.5 \mathrm{~mL}, 20 \mathrm{mmol}, 20.0$ equiv), $\mathbf{A}(34 \mathrm{mg}$, $0.3 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) were added at room temperature for 24 h .
b) $\mathbf{1 w}\left(933 \mathrm{mg}, 4.0 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(51 \mathrm{mg}, 0.08 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ in DMF (dried over $3 \AA$ molecular sieves, 27 mL) irradiated with 40 W blue LEDs under air at room temperature for 16 h . Then, the light was turned off. $\mathbf{2 e}(7.4 \mathrm{~mL}, 80 \mathrm{mmol}, 20.0$ equiv), B (138 mg , $1.2 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{KHCO}_{3}(801 \mathrm{mg}, 8.0 \mathrm{mmol}, 2.0$ equiv) were added at room temperature for 19 h .

Isolated yield. ee and dr of products were determined by chiral HPLC analysis

7. Crystallographic data of compound 3a

Crystallographic data (excluding structure factors) for the structure reported in this work has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2217984. Copy of the data can be obtained free of charge on application to The director, CCDC, 12 Union Road, Cambridge DB21EZ, UK (fax: +44 (1223) 336033; e-mail: deposit@ccdc.cam.ac.uk).

Table S12. Crystal data and structure refinement for 3a.

Identification code	gz-6-14
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$
Formula weight	239.30
Temperature/K	$289(1)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a/A	$6.1534(5)$
b / \AA	$14.2426(10)$
c/A	$7.9499(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$93.172(7)$

$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	695.66 (9)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.142
μ / mm^{-1}	0.554
$F(000)$	256.0
Crystal size/mm ${ }^{3}$	$0.44 \times 0.43 \times 0.21$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	11.146 to 143.44
Index ranges	$-7 \leq h \leq 6,-17 \leq \mathrm{k} \leq 16,-9 \leq 1 \leq 9$
Reflections collected	6709
Independent reflections	$2605\left[\mathrm{R}_{\text {int }}=0.0768, \mathrm{R}_{\text {sigma }}=0.0578\right]$
Data/restraints/parameters	2605/1/164
Goodness-of-fit on F^{2}	1.058
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0763, \mathrm{wR}_{2}=0.2125$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0827, \mathrm{wR}_{2}=0.2356$
Largest diff. peak/hole / e \AA^{-3}	0.21/-0.35
Flack parameter	-0.1 (8)

Table S13. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $3 \mathbf{3}$. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{\text {IJ }}$ tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
O1	$-1010(7)$	$-2981(3)$	$-1991(8)$	$95.1(15)$
N1	$-7142(7)$	$-4154(3)$	$-2719(5)$	$60.3(10)$
C1	$-9761(9)$	$-5344(5)$	$-3497(7)$	$72.8(14)$
C2	$-10316(12)$	$-6277(6)$	$-3778(11)$	$96(2)$
C3	$-8797(12)$	$-6974(6)$	$-3494(11)$	$100(2)$
C4	$-6702(12)$	$-6745(4)$	$-2916(9)$	$86.0(17)$

C5	$-6121(10)$	$-5815(4)$	$-2610(7)$	$70.4(12)$
C6	$-7655(8)$	$-5099(4)$	$-2905(5)$	$57.1(10)$
C7	$-5111(7)$	$-3834(3)$	$-1881(5)$	$54.1(9)$
C8	$-4952(7)$	$-4052(3)$	$-1(5)$	$52.5(9)$
C9	$-3038(8)$	$-4443(4)$	$723(6)$	$61.8(11)$
C10	$-2878(9)$	$-4626(4)$	$2440(7)$	$74.6(14)$
C11	$-4539(9)$	$-4407(4)$	$3437(6)$	$72.1(13)$
C12	$-6432(8)$	$-4014(4)$	$2733(6)$	$65.9(12)$
C13	$-6622(8)$	$-3834(3)$	$1012(6)$	$58.6(10)$
C14	$-4818(9)$	$-2788(3)$	$-2235(7)$	$65.2(12)$
C15	$-2525(9)$	$-2452(4)$	$-1968(7)$	$66.9(12)$
C16	$-2157(14)$	$-1411(5)$	$-1775(13)$	$104(2)$

Table S14. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 a}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
O 1	$69(2)$	$61(2)$	$156(4)$	$11(3)$	$20(3)$	$15.5(18)$
N 1	$61(2)$	$54(2)$	$64.0(18)$	$-0.3(17)$	$-7.1(16)$	$16.0(17)$
C 1	$59(2)$	$81(3)$	$77(3)$	$-15(3)$	$-6(2)$	$5(2)$
C2	$78(4)$	$93(5)$	$116(5)$	$-25(4)$	$2(3)$	$-16(3)$
C3	$98(5)$	$72(4)$	$129(6)$	$-13(4)$	$4(4)$	$-17(4)$
C4	$89(4)$	$59(3)$	$109(4)$	$2(3)$	$-4(3)$	$9(3)$
C5	$69(3)$	$57(3)$	$84(3)$	$3(2)$	$-3(2)$	$11(2)$
C6	$61(2)$	$56(2)$	$53.6(18)$	$-4.3(18)$	$-2.9(17)$	$10.0(19)$
C7	$59(2)$	$43.9(19)$	$58.8(19)$	$6.6(17)$	$0.4(16)$	$9.4(17)$
C8	$57(2)$	$40.0(18)$	$60.1(19)$	$1.2(17)$	$-4.6(16)$	$1.9(16)$
C9	$57(2)$	$61(3)$	$67(2)$	$10(2)$	$-3.0(17)$	$12.2(19)$
C10	$75(3)$	$75(3)$	$72(3)$	$13(3)$	$-17(2)$	$5(3)$

C 11	$83(3)$	$74(3)$	$58(2)$	$5(2)$	$-5(2)$	$-5(3)$
C 12	$66(2)$	$66(3)$	$65(2)$	$-6(2)$	$4.7(19)$	$-7(2)$
C 13	$59(2)$	$48(2)$	$68(2)$	$0(2)$	$-2.9(18)$	$1.9(19)$
C 14	$69(3)$	$46(2)$	$81(3)$	$11(2)$	$4(2)$	$16(2)$
C 15	$72(3)$	$48(2)$	$81(3)$	$10(2)$	$14(2)$	$5(2)$
C 16	$104(5)$	$58(3)$	$152(7)$	$-2(4)$	$30(5)$	$0(3)$

Table S15. Bond lengths for 3a.

Atom	Atom	Length $/ \AA$
O1	C15	$1.200(6)$
N1	C6	$1.388(7)$
N1	C7	$1.456(6)$
C1	C2	$1.387(10)$
C1	C6	$1.399(7)$
C2	C3	$1.374(12)$
C3	C4	$1.384(10)$
C4	C5	$1.389(9)$
C5	C6	$1.401(7)$
C7	C8	$1.524(6)$
C7	C14	$1.529(6)$
C15	C16	C15

Table S16. Bond angles for 3a.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C6	N1	C7	122.4 (3)
C2	C1	C6	120.6 (6)
C3	C2	C1	120.5 (6)
C2	C3	C4	119.8 (7)
C3	C4	C5	120.7 (6)
C4	C5	C6	120.0 (6)
N1	C6	C1	118.6 (4)
N1	C6	C5	122.8 (5)
C1	C6	C5	118.5 (5)
N1	C7	C8	113.1 (4)
N1	C7	C14	109.1 (4)
C8	C7	C14	112.1 (4)
C9	C8	C7	119.5 (4)
C13	C8	C7	121.2 (4)
C13	C8	C9	119.3 (4)
C10	C9	C8	119.5 (5)
C11	C10	C9	120.9 (5)
C10	C11	C12	119.9 (5)
C11	C12	C13	119.7 (5)
C8	C13	C12	120.6 (4)
C15	C14	C7	114.0 (4)
O1	C15	C14	121.7 (5)
O1	C15	C16	120.5 (6)
C14	C15	C16	117.8 (5)

Table S17. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3a.

Atom	x	y	z	U (eq)
H1	-8057	-3742	-3112	72
H1A	-10799	-4877	-3705	87
H2	-11725	-6432	-4162	115
H3	-9176	-7599	-3688	120
H4	-5673	-7217	-2731	103
H5	-4713	-5669	-2209	84
H7	-3923	-4169	-2393	65
H9	-1880	-4579	59	74
H10	-1621	-4903	2917	90
H11	-4398	-4521	4590	87
H12	-7574	-3871	3408	79
H13	-7890	-3563	541	70
H14A	-5317	-2661	-3391	78
H14B	-5731	-2432	-1509	78
H16A	-1848	-1264	-608	155
H16B	-3439	-1080	-2182	155
H16C	-948	-1226	-2413	155

Experimental

Single crystals of $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$ [3a] were obtained by slow evaporation of the solvent from a petroleum ether and EtOAc (v/v, 25/1) solution of 3a. A suitable crystal was selected and [] on a SuperNova, Dual, Cu at home/near, EosS2 diffractometer. The crystal was kept at 289 (1) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst., 40, 786-790; Palatinus, L. \& van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984; Palatinus, L., Prathapa, S. J. \& van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of 3a

Crystal Data for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}(M=239.30 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1}$ (no. 4), $a=6.1534$
(5) $\AA, b=14.2426$ (10) $\AA, c=7.9499$ (6) $\AA, \beta=93.172(7)^{\circ}, V=695.66$ (9) $\AA^{3}, Z=2, T=289$
(1) $\mathrm{K}, \mu(\mathrm{CuK} \alpha)=0.554 \mathrm{~mm}^{-1}$, Dcalc $=1.142 \mathrm{~g} / \mathrm{cm}^{3}, 6709$ reflections measured $\left(11.146^{\circ} \leq 2 \Theta \leq\right.$ 143.44°), 2605 unique ($R_{\mathrm{int}}=0.0768, \mathrm{R}_{\mathrm{sigma}}=0.0578$) which were used in all calculations. The final R_{1} was $0.0763(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.2356 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C (H) groups, All C (H, H) groups, All N (H) groups
At 1.5 times of:
All C (H, H, H) groups
2.a Ternary CH refined with riding coordinates:

C7 (H7)
2.b Secondary CH 2 refined with riding coordinates:

C14 (H14A, H14B)
2.c Aromatic/amide H refined with riding coordinates:

N1 (H1), C1 (H1A), C2 (H2), C3 (H3), C4 (H4), C5 (H5), C9 (H9), C10 (H10), C11 (H11), C12 (H12), C13 (H13)
2.d Idealised Me refined as rotating group:

C16 (H16A, H16B, H16C)

8. Stern-Volmer luminescence quenching experiments

The measurements were performed using a 0.05 mM solution of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in DMF with varying concentration of a quencher. The samples were excited at 450 nm and emission intensity was recorded at 622 nm . The results revealed that $\mathbf{1 a}$ could significantly quench $\mathrm{Ru}(\mathrm{bpy}))^{2+}$ (Figure S3, Figure S4).

Figure S3. Fluorescence quenching of $0.05 \mathrm{mM} \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (in DMF) by increasing concentration of 1a.

Figure S4. Stern-Volmer plots of fluorescence quenching $0.05 \mathrm{mM} \mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (in DMF) by 1 a .

9. Cyclic voltammetry studies

The cyclic voltammetry experiments were performed in a three-electrode undivided cell, and were recorded with a CHI 700E potentiostat (CH Instruments, Inc.) at room temperature in DMF or $\mathrm{MeCN}(15 \mathrm{~mL}) . n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.05 \mathrm{M})$ was used as the supporting electrolyte, and the concentration of the tested compound was 2.0 mM . The scan rate was $100 \mathrm{mV} / \mathrm{s}$. The potential ranges investigated for oxidations were 0 to $+4.5 \mathrm{~V} v s$. SCE (saturated aqueous KCl). CV plotting convention is IUPAC.

Working electrode: The working electrode is a 3 mm diameter glassy carbon working electrode. Polished with $0.05 \mu \mathrm{~m}$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Reference electrode: The reference electrode is SCE (saturated aqueous KCl) that was washed with water and ethanol before measurements.

Counter electrode: The counter electrode is a platinum wire that was polished with $0.05 \mu \mathrm{~m}$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Figure S5. Cyclic voltammograms of background, 1a (2 mM) and 3a (2 mM) in an electrolyte of n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.05 \mathrm{mM})$ in DMF from 0 to +2.0 V . The onset potential for the oxidation of $\mathbf{1 a}$ is around +0.70 V and the E_{ox} is approximately +1.02 V . The onset potential for the oxidation of $\mathbf{3 a}$ is around +0.86 V and the E_{ox} is approximately +1.09 V .

Figure S6. Cyclic voltammograms of background and $\mathbf{1 a}(2 \mathrm{mM})$ in an electrolyte of n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ $(0.05 \mathrm{mM})$ in MeCN from 0 to +2.0 V . The onset potential for the oxidation of $\mathbf{1 a}$ is around +0.72 V and the E_{ox} is approximately +1.07 V .

Figure S7. Cyclic voltammograms of background and 3a (2 mM) in an electrolyte of n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ $(0.05 \mathrm{mM})$ in MeCN from 0 to +2.0 V . The onset potential for the oxidation of $\mathbf{3 a}$ is around +0.86 V and the E_{ox} is approximately +1.15 V .

Figure S8. Cyclic voltammograms of background and proline (2 mM) in an electrolyte of n $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.05 \mathrm{mM})$ in MeCN from 0 to +2.0 V . Proline has no oxidation peak in this range.

Figure S9. Cyclic voltammograms of background, N-benzylacetamide (2 mM) and N benzylacrylamide $(2 \mathrm{mM})$ in an electrolyte of $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.05 \mathrm{mM})$ in MeCN from 0 to +4.5 V . The onset potential for the oxidation of N-benzylacetamide is around +1.89 V and the E_{ox} is
approximately +2.20 V . The onset potential for the oxidation of N-benzylacrylamide is around +2.23 V and the E_{ox} is approximately +2.56 V .

10. Unsuccessful substrates

Figure S10. Unsuccessful substrates.

11. Possible mechanism for the reaction without KHCO_{3}

A possible mechanism for the reaction without KHCO_{3} was proposed, as illustrated in Figure S 11 . Initially, the visible light irradiation of $\mathrm{Ru}(\mathrm{II})$ generates the excited state ${ }^{*} \mathrm{Ru}(\mathrm{II})$. A subsequent SET between ${ }^{*} \mathrm{Ru}(\mathrm{II})$ and 1a produces $\mathrm{Ru}(\mathrm{I})$ and the N -centered radical cation $\mathbf{I} . \mathrm{Ru}(\mathrm{I})$ is oxidized by O_{2} to regenerate $\mathrm{Ru}(\mathrm{II})$, and the active species superoxide anion $\mathrm{O}_{2}{ }^{-}$is produced at the same time. Next, $\mathrm{O}_{2}{ }^{-}$abstracts a hydrogen atom from \mathbf{I} to generate the iminium ion II, which deprotonates to afford the imine III. Meanwhile, in the L-proline catalysis cycle, 2a is converted to enamine VII in the presence of catalyst \mathbf{A}. The acidic proton of L-proline can activate intermediate III through a hydrogen bond ${ }^{[8]}$ Subsequently, the nucleophilic attack of VII to the imine III via VIII-a from the Si face may be more favorable due to the more suitable position for the C-C bond formation (VIIIa), ${ }^{[9,10]}$ thus leading to the target product $\mathbf{3 a}$ with the S-configuration in good stereoselectivity.

Figure S11 Possible mechanism for the reaction without KHCO_{3}.

12. Characterization data of the products 3 and 4

3a
(S)-4-phenyl-4-(phenylamino)butan-2-one (3a) ${ }^{[1]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$47 \mathrm{mg}, 65 \%$ yield, white solid.
Enantiomeric excess (ee): 97\%.
$[\alpha]_{\mathrm{D}}^{20}=+20.0^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.40($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl ${ }_{3}$): $\delta 207.1,146.8,142.5,129.1,128.8,127.4,126.3,117.9,113.8,54.4$,
51.2, 30.7.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: 20.194 min (major), 14.566 min (minor).

(S)-4-(4-methoxyphenyl)-4-(phenylamino)butan-2-one (3b) ${ }^{[1]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$58 \mathrm{mg}, 72 \%$ yield, yellow oil.
Enantiomeric excess (ee): 90\%.
$[\alpha]_{\mathrm{D}}^{20}=+11.2^{\circ}\left(c=0.80, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.40($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 207.1,158.9,146.8,134.5,129.1,127.4,117.9,114.2,113.9,55.2$, 54.0, 51.2, 30.7.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1489$. Found: 270.1488; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 292.1308$, Found: 292.1308; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 308.1047, Found: 308.1046.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 28.909 min (major), 23.131 min (minor).

(S)-4-(4-(tert-butyl)phenyl)-4-(phenylamino)butan-2-one (3c)

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$51 \mathrm{mg}, 58 \%$ yield, yellow oil.
Enantiomeric excess (ee): 84\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+25.2^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.60($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl3): $\delta 207.1,150.2,146.9,139.4,129.1,125.9,125.6,117.8,113.8,54.0$,
51.1, 34.4, 31.3, 30.6.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$296.2009. Found: 296.2009; Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 318.1828$, Found: 318.1829; Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 334.1568, Found: 334.1569.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 44.807 min (major), 20.985 min (minor).

(S)-4-(phenylamino)-4-(p-tolyl)butan-2-one (3d) ${ }^{[11]}$

Followed the general procedure (Irradiation was conducted for 19 h , followed by the asymmetric catalytic reaction for 25 h).
$41 \mathrm{mg}, 54 \%$ yield, yellow oil.
Enantiomeric excess (ee): 84\%.
$[\alpha]_{\mathrm{D}}^{20}=+12.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.50($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}$, 2H), $6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.89$ (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl $_{3}$): $\delta 207.1,146.9,139.5,137.0,129.5,129.1,126.2,117.8,113.8,54.2$, 51.3, 30.7, 21.0.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 16.794 min (major), 13.114 min (minor).

(S)-4-(phenylamino)-4-(m-tolyl)butan-2-one (3e)

Followed the general procedure (Irradiation was conducted for 19 h , followed by the asymmetric catalytic reaction for 25 h).
$38 \mathrm{mg}, 54 \%$ yield, yellow oil.
Enantiomeric excess (ee): 86\%.
$[\alpha]_{\mathrm{D}}^{20}=-6.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.50($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($\left.600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 207.1, 147.0, 142.6, 138.4, 129.2, 128.7, 128.2, 127.0, 123.3, $117.8,113.8,54.5,51.3,30.7,21.5$.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 254.1538$. Found: 254.1538; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 276.1359$, Found: 276.1358; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 292.1098, Found: 292.1097.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 13.454 min (major), 11.026 min (minor).

(S)-4-(phenylamino)-4-(o-tolyl)butan-2-one (3f)

Followed the general procedure (Irradiation was conducted for 19 h , followed by the asymmetric catalytic reaction for 25 h).
$46 \mathrm{mg}, 61 \%$ yield, yellow oil.
Enantiomeric excess (ee): 90\%.
$[\alpha]_{\mathrm{D}}^{20}=+14.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.50($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.65$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{dd}, J=7.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90-$ $2.80(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 207.1,146.8,140.2,134.8,130.9,129.2,127.2,126.7,125.6$, $117.9,113.6,50.9,49.6,30.5,19.1$.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 254.1539. Found: 254.1538; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 276.1359$, Found: 276.1358; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 292.1098, Found: 292.1100.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 14.990 min (major), 11.345 min (minor).

(S)-4-(4-nitrophenyl)-4-(phenylamino)butan-2-one (3g) ${ }^{[12]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 23 h).
$33 \mathrm{mg}, 39 \%$ yield, yellow oil.
Enantiomeric excess (ee): 84\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+13.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.30($ Petroleum ether/EtOAc, v/v, 3:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}$, 2H), $6.70(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 2.97$ (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 205.8,150.4,146.1,129.3,127.4,124.2,124.0,118.6,113.9,53.9$, 50.6, 30.6.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 285.1234. Found: 285.1232; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 307.1053$, Found: 307.1052.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 24.755 min (major), 19.082 min (minor).

3h

(S)-4-(4-fluorophenyl)-4-(phenylamino)butan-2-one (3h)

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$55 \mathrm{mg}, 71 \%$ yield, yellow oil.

Enantiomeric excess (ee): 66\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+14.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.50($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 7.32(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right): \delta 206.9,162.0(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 146.6,138.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 129.2$, $127.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 118.1,115.6(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 113.8,53.7,51.2,30.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-115.3$.
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 258.1289$, Found: 258.1287; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$280.1108, Found: 280.1107.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 21.894 min (major), 15.443 min (minor).

3i
(S)-4-(4-chlorophenyl)-4-(phenylamino)butan-2-one (3i) ${ }^{[12]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$56 \mathrm{mg}, 68 \%$ yield, yellow oil.
Enantiomeric excess (ee): 96\%.
$[\alpha]_{\mathrm{D}}^{20}=+13.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.30($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$): $\delta 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.43$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$): $\delta 206.6,146.6,141.2,133.0,129.2,129.0,127.8,118.2,113.9,53.8$, 51.0, 30.7.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 22.484 min (major), 19.843 min (minor).

3j
(S)-4-(4-bromophenyl)-4-(phenylamino)butan-2-one (3j)

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$67 \mathrm{mg}, 70 \%$ yield, yellow oil.
Enantiomeric excess (ee): 36\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+9.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.30($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}$, 2H), $6.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.88$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 206.6,146.6,141.8,131.9,129.2,128.2,121.1,118.2,113.9,53.9$, 51.0, 30.7.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 318.0488, Found: 318.0487; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 340.0307$, Found: 340.0306.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 23.849 min (major), 17.741 min (minor).

(S)-4-(4-acetylphenyl)-4-(phenylamino)butan-2-one (3k)

Followed the general procedure (Irradiation was conducted for 19 h , followed by the asymmetric catalytic reaction for 25 h).
$38 \mathrm{mg}, 45 \%$ yield, yellow oil.
Enantiomeric excess (ee): 82\%.
$[\alpha]_{\mathrm{D}}^{20}=+14.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.15$ (Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}$, $2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.94$ (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 206.5,197.6,148.2,146.5,136.4,129.2,128.9,126.6,118.2$, 113.8, 54.1, 50.8, 30.7, 26.6.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$282.1489, Found: 282.1487; Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 304.1308$, Found: 304.1307; Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 320.1047, Found: 320.1047.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 80.081 min (major), 73.352 min (minor).

(S)-4-(3-bromophenyl)-4-(phenylamino)butan-2-one (31)

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$45 \mathrm{mg}, 47 \%$ yield, yellow oil.
Enantiomeric excess (ee): 54\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+11.7^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl 3): $\delta 206.4,146.5,145.2,130.5,130.4,129.4,129.2,125.0,123.0$, 118.2, 113.9, 54.0, 51.0, 30.6.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 318.0488$, Found: 318.0486; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 340.0307$, Found: 340.0306.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 17.909 min (major), 14.631 min (minor).

(S)-4-(2-bromophenyl)-4-(phenylamino)butan-2-one (3m) ${ }^{[1]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$41 \mathrm{mg}, 43 \%$ yield, yellow oil.
Enantiomeric excess (ee): 84\%.
$[\alpha]_{\mathrm{D}}^{20}=+10.7^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=9.1,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=15.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 207.2,146.3,140.6,133.2,129.2,128.9,128.1,128.0,122.6$, 118.1, 113.6, 54.0, 49.2, 30.1.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 318.0488, Found: 318.0486; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 340.0307$, Found: 340.0306 .

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 30.511 min (major), 26.070 min (minor).

(S)-4-(2,4-difluorophenyl)-4-(phenylamino)butan-2-one (3n)

Followed the general procedure (Irradiation was conducted for 19 h , followed by the asymmetric catalytic reaction for 25 h).
$45 \mathrm{mg}, 54 \%$ yield, yellow solid.
Enantiomeric excess (ee): 84\%.
$[\alpha]_{\mathrm{D}}^{20}=+14.6^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.70$ $-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.00-2.88(\mathrm{~m}$, 2H), 2.12 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 206.8,162.1(\mathrm{dd}, J=249.3,12.2 \mathrm{~Hz}), 160.4(\mathrm{dd}, J=248.2,11.9$ $\mathrm{Hz}), 146.3,134.6,129.3,124.9(\mathrm{dd}, J=13.4,3.7 \mathrm{~Hz}), 118.3,113.7,111.5(\mathrm{dd}, J=21.1,3.5 \mathrm{~Hz})$, $104.0(\mathrm{t}, J=25.8 \mathrm{~Hz}), 49.2,48.5,30.4$.
${ }^{19}$ F NMR (565 MHz, CDCl ${ }_{3}$): $\delta-111.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}),-115.6(\mathrm{~d}, J=6.1 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 276.1194, Found: 276.1192; Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 298.1014, Found: 298.1013; Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 314.0753, Found: 314.0753.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 15.396 min (major), 10.056 min (minor).

(S)-4-(naphthalen-2-yl)-4-(phenylamino)butan-2-one (30) ${ }^{[1]}$

Followed the general procedure (Irradiation was conducted for 24 h , followed by the asymmetric catalytic reaction for 24 h).
$56 \mathrm{mg}, 64 \%$ yield, yellow oil.
Enantiomeric excess (ee): 90\%.
$[\alpha]_{\mathrm{D}}^{20}=+7.5^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.50($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.82-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 206.8,146.9,140.1,133.5,132.9,129.2,128.7,127.9,127.7$, $126.2,125.8,125.1,124.4,118.0,113.9,54.7,51.2,30.7$.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 290.1539$, Found: 290.1537; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 312.1359$, Found: 312.1358; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 328.1098, Found: 328.1099.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 24.756 min (major), 21.974 min (minor).

(S)-4-((4-methoxyphenyl)amino)-4-phenylbutan-2-one (3p) ${ }^{[13]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 31 h).
$37 \mathrm{mg}, 46 \%$ yield, yellow oil.
Enantiomeric excess (ee): 91\%.
$[\alpha]_{\mathrm{D}}^{20}=+55.5^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.66(\mathrm{~m}, 2 \mathrm{H})$,
$6.53-6.49(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 207.2,152.4,142.7,141.0,128.8,127.3,126.3,115.4,114.8,55.7$, 55.4, 51.4, 30.7.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 66.631 min (major), 53.004 min (minor).

(S)-4-phenyl-4-(p-tolylamino)butan-2-one (3q) ${ }^{[11]}$

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 23 h).
$49 \mathrm{mg}, 64 \%$ yield, white solid.
Enantiomeric excess (ee): 96\%.
$[\alpha]_{\mathrm{D}}^{20}=-15.6^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.30($ Petroleum ether/EtOAc, v/v, 3:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.82(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 207.1,144.5,142.7,129.6,128.8,127.3,127.1,126.3,114.0,54.8$, 51.3, 30.6, 20.3.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 24.049 min (major), 17.663 min (minor).

3r
(S)-4-((3-methoxyphenyl)amino)-4-phenylbutan-2-one (3r)

Followed the general procedure (Irradiation was conducted for 13 h , followed by the asymmetric catalytic reaction for 34 h).
$62 \mathrm{mg}, 77 \%$ yield, yellow oil.
Enantiomeric excess (ee): 94\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+66.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.{ }_{3}\right): \delta 7.37-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.23(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 207.1,160.7,148.2,142.5,129.9,128.8,127.4,126.2,106.8$, 103.2, 99.8, 55.0, 54.4, 51.2, 30.7.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$270.1489, Found: 270.1489.
HPLC: Daicel Chiralpak AS-H, hexane/isopropanol $=88: 12$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 11.470 min (major), 15.769 min (minor).

3s
(S)-4-((2-methoxyphenyl)amino)-4-phenylbutan-2-one (3s) ${ }^{[14]}$

Followed the general procedure (Irradiation was conducted for 13 h , followed by the asymmetric catalytic reaction for 35 h).
$50 \mathrm{mg}, 62 \%$ yield, yellow oil.
Enantiomeric excess (ee): 21%.
$[\alpha]_{\mathrm{D}}^{20}=+43.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.20($ Petroleum ether/Acetone, v/v, 10:1).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.38-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 1 \mathrm{H})$, $6.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.76(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.10$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 206.7,147.0,142.7,136.6,128.8,127.3,126.3,121.1,117.0$, $111.4,109.5,55.5,54.2,51.7,30.6$.

HPLC: Daicel Chiralpak AS-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 13.699 min (major), 10.262 min (minor).

$3 t$
(S)-4-((4-fluorophenyl)amino)-4-phenylbutan-2-one (3t)

Followed the general procedure (Irradiation was conducted for 13 h , followed by the asymmetric catalytic reaction for 36 h).
$45 \mathrm{mg}, 58 \%$ yield, yellow solid.
Enantiomeric excess (ee): 95\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+16.4^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.20($ Petroleum ether/EtOAc, v/v, 10:1).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.65(\mathrm{~m}, 2 \mathrm{H})$,
$6.50-6.44(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\left._{3}\right): \delta 207.1,156.1(\mathrm{~d}, J=236.5 \mathrm{~Hz}), 143.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 142.3,128.8$, $127.5,126.3,115.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 55.1,51.2,30.8$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-127.4$.
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 258.1289, Found: 258.1287; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 280.1108$, Found: 280.1108.

HPLC: Daicel Chiralpak IC, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 11.805 min (major), 14.095 min (minor).

34
(S)-4-((3-fluorophenyl)amino)-4-phenylbutan-2-one (3u) ${ }^{[15]}$

Followed the general procedure (Irradiation was conducted for 18 h , followed by the asymmetric catalytic reaction for 22 h).
$47 \mathrm{mg}, 61 \%$ yield, white solid.
Enantiomeric excess (ee): 81\%.
$[\alpha]_{\mathrm{D}}^{20}=+23.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.35$ (Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$): $\delta 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.36$ $-6.30(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=6.3$ Hz, 2H), 2.09 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $\left._{3}\right): \delta 207.0,163.9(\mathrm{~d}, J=243.8 \mathrm{~Hz}), 148.6(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 142.0,130.2$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}), 128.9,127.5,126.2,109.6,104.3(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 100.5(\mathrm{~d}, J=25.5 \mathrm{~Hz}), 54.4$, 50.9, 30.8.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-112.8$.
HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 17.645 min (major), 13.648 min (minor).

3v
(S)-4-((3-bromophenyl)amino)-4-phenylbutan-2-one (3v)

Followed the general procedure (Irradiation was conducted for 13 h , followed by the asymmetric catalytic reaction for 35 h).
$71 \mathrm{mg}, 74 \%$ yield, yellow solid.
Enantiomeric excess (ee): 93\%.
$[\alpha]_{\mathrm{D}}^{20}=+29.5^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.20($ Petroleum ether/EtOAc, v/v, 10:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{H}_{3}\right): \delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.40(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 207.0,148.2,141.9,130.5,128.9,127.6,126.2,123.1,120.6$, $116.5,112.3,54.2,50.9,30.8$.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 318.0488, Found: 318.0487; Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 340.0307$, Found: 340.0308.

HPLC: Daicel Chiralpak AS-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 12.098 min (major), 16.541 min (minor).

(S)-4-(naphthalen-2-ylamino)-4-phenylbutan-2-one (3w)

Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 19 h).
$73 \mathrm{mg}, 84 \%$ yield, white solid.
Enantiomeric excess (ee): 90\%.
$[\alpha]_{\mathrm{D}}^{20}=+33.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H})$, $6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.08$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 207.0,144.4,142.2,135.0,128.9,128.8,127.8,127.6,127.5$, $126.3,126.2,126.1,122.2,118.2,106.4,54.5,51.0,30.7$.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$290.1539, Found: 290.1535; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 312.1359$, Found: 312.1358; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 328.1098, Found: 328.1098.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 30.621 min (major), 37.347 min (minor).

(3S,4S)-3-methyl-4-phenyl-4-(phenylamino)butan-2-one (3x) and (S)-1-phenyl-1-(phenylamino)pentan-3-one (3y) ${ }^{[11]}$ (inseparable mixture of regioisomers, $3 x: 3 y=63: 37$)

Followed the general procedure (Irradiation was conducted for 18 h , followed by the asymmetric catalytic reaction for 40 h).
$54 \mathrm{mg}, 71 \%$ yield, white solid.
Diastereomeric ratio (dr): > 99:1 (3x).
Enantiomeric excess (ee): 99% (3x), 90% ($\mathbf{3 y}$).
$\boldsymbol{R}_{f}=0.40($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1.18 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 5.18 \mathrm{H}), 7.23-7.20$ $(\mathrm{m}, 1.59 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 3.18 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 1.59 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.18 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{t}, J=6.4 \mathrm{~Hz}, 0.59 \mathrm{H}), 4.74(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 1.59 \mathrm{H}), 3.01(\mathrm{p}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.18 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 1.18 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1.77 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 210.5,209.8,147.0,146.9,142.7,141.1,129.1 \times 2(129.13$, $129.10), 128.8,128.6,127.3 \times 2(127.325,127.316), 126.9,126.3,117.8 \times 2(117.82,117.77), 113.8$, $113.7,59.0,54.6,53.1,50.0,36.9,29.3,11.1,7.4$.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 254.1539$, Found: 254.1540; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 276.1359$, Found: 276.1359; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 292.1098, Found: 292.1098.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time of $\mathbf{3 x}$: 19.735 min (major), 13.867 min (minor); retention time of $\mathbf{3 y}: 28.980 \mathrm{~min}$ (major), 20.763 min (minor).

(3S,4S)-4-(4-methoxyphenyl)-3-methyl-4-(phenylamino)butan-2-one $(3 z)^{[16]}$ and (S)-1-(4-methoxyphenyl)-1-(phenylamino)pentan-3-one (3aa) ${ }^{[16]}$ (inseparable mixture of regioisomers, $3 z: 3 a a=57: 43)$

Followed the general procedure (Irradiation was conducted for 15 h , followed by the asymmetric catalytic reaction for 26 h).
$58 \mathrm{mg}, 68 \%$ yield, yellow oil.
Diastereomeric ratio (dr): > 99:1 (3z).
Enantiomeric excess (ee): 96\% (3z), 95\% (3aa).
$\boldsymbol{R}_{f}=0.25($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 7.30-7.18(\mathrm{~m}, 3.50 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 3.50 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 3.5 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 1.50 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.50 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.67(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-3.93(\mathrm{~m}, 1.75 \mathrm{H}), 3.77(\mathrm{~s}, 5.25 \mathrm{H}), 3.02-2.95(\mathrm{~m}$, $1 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 1.50 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1.50 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2.25 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 210.8,210.0,158.8 \times 2(158.80,158.77), 147.0,146.8,134.5$, $132.9,129.1 \times 2(129.12,129.07), 127.9,127.4,117.8,117.7,114.2,114.0,113.9,113.6,58.4,55.2$ $\times 2(55.24,55.22), 54.1,53.2,50.0,36.9,29.5,11.3,7.4$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 284.1645$, Found: 284.1644; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 306.1464$, Found: 306.1463.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time of $\mathbf{3 z}: 16.518 \mathrm{~min}$ (major), 14.325 min (minor); retention time of 3aa: 23.656 min (major), 19.386 min (minor).

3ab
(1S,2S)-2-methyl-1-phenyl-1-(phenylamino)pentan-3-one (3ab) ${ }^{[17]}$
Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 32 h).
$11 \mathrm{mg}, 14 \%$ yield, white solid.
Diastereomeric ratio (dr): 56:44.
Enantiomeric excess (ee): 18\% (syn), 4\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+5.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.65($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.65-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 0.56 \mathrm{H}), 4.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 0.44 \mathrm{H})$, $3.07-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.40-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.32 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.68 \mathrm{H})$, $0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.68 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.32 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 215.3,213.3,147.1,147.0,141.7,141.3,129.1 \times 2$ (129.14, 129.11), 128.7, 128.6, 127.4, 127.3, 126.9, 126.6, 117.7, 117.3, 113.7, 113.4, 60.7, 59.3, 52.3, 52.2, 36.3, 35.6, 15.6, 11.7, 7.6, 7.3.

HPLC: Daicel Chiralpak IC, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 7.698 min (syn major enantiomer), 5.978 min (syn minor enantiomer), 10.406 min (anti major enantiomer), 9.114 min (anti minor enantiomer).

(3S,4R)-3-hydroxy-4-phenyl-4-(phenylamino)butan-2-one (3ac) ${ }^{[18]}$
Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 24 h).
$55 \mathrm{mg}, 72 \%$ yield, yellow solid.
Diastereomeric ratio (dr): 96:4.
Enantiomeric excess (ee): 76\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-13.0^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.25($ Petroleum ether/EtOAc, v/v, 3:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H})$,
$7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$): $\delta 207.3,146.2,139.3,129.2,128.7,127.6,127.0,118.2,113.9,80.8$, 58.4, 25.2.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 28.110 min (syn major enantiomer), 17.779 min (syn minor enantiomer).

(3S,4R)-3-methoxy-4-phenyl-4-(phenylamino)butan-2-one (3ad)
Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 26 h).
$67 \mathrm{mg}, 83 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 91:9.
Enantiomeric excess (ee): 94\% (syn), 97\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+62.6^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.30($ Petroleum ether/EtOAc, v/v, 5:1).

Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H})$,
$7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 0.09 \mathrm{H}), 6.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.09 \mathrm{H}), 6.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.18 \mathrm{H})$, $6.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1.82 \mathrm{H}), 4.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.91 \mathrm{H}), 4.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.91 \mathrm{H}), 3.92(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 0.09 \mathrm{H}), 3.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.91 \mathrm{H}), 3.37(\mathrm{~s}, 0.27 \mathrm{H}), 3.28(\mathrm{~s}, 2.73 \mathrm{H}), 2.16(\mathrm{~s}, 2.73 \mathrm{H}), 1.82(\mathrm{~s}$, 0.27 H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.7,210.0,146.4,146.2,139.7,138.5,129.2 \times 2$ (129.20, $129.16), 128.6,128.5,127.8 \times 2(127.85,127.77), 127.5,127.0,118.1,117.9,114.0,113.8,90.6$, 89.7, 59.7, 59.4, 59.1, 58.7, 27.3, 26.6.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$270.1489, Found: 270.1490; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 292.1308$, Found: 292.1310; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 308.1047, Found: 308.1049.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=99: 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 23.324 min (syn major enantiomer), 20.982 min (syn minor enantiomer), 43.307 min (anti major enantiomer), 27.774 min (anti minor enantiomer).

(3S,4R)-3-methoxy-4-(4-methoxyphenyl)-4-(phenylamino)butan-2-one (3ae)
Followed the general procedure (Irradiation was conducted for 15 h , followed by the asymmetric catalytic reaction for 26 h).
$77 \mathrm{mg}, 86 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 83:17.
Enantiomeric excess (ee): 96\% (syn), 98\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=-46.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.63$ $(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.34 \mathrm{H}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.66 \mathrm{H}), 4.83-4.69(\mathrm{~m}, 1.83 \mathrm{H})$,
$4.64(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.17 \mathrm{H}), 3.90(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.17 \mathrm{H}), 3.80(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0.83 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.37(\mathrm{~s}, 0.51 \mathrm{H}), 3.31(\mathrm{~s}, 2.49 \mathrm{H}), 2.14(\mathrm{~s}, 2.49 \mathrm{H}), 1.83(\mathrm{~s}, 0.51 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 210.8,210.2,159.2,159.0,146.5,146.2,131.6,130.4,129.2$, $129.1,128.8,128.1 \times 2(128.11,128.08), 117.8,114.1,114.0,113.9,113.8,90.6,89.8,59.6,59.4$, 58.5, 58.2, 55.2, 27.3, 26.6.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.1594$, Found: 300.1592; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 322.1414$, Found: 322.1412; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{KNO}_{3}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 338.1153, Found: 338.1151.

HPLC: Daicel Chiralpak OJ-H, hexane/isopropanol $=80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 12.846 min (syn major enantiomer), 20.152 min (syn minor enantiomer), 21.892 min (anti major enantiomer), 16.583 min (anti minor enantiomer).

(3S,4R)-3-methoxy-4-((4-methoxyphenyl)amino)-4-phenylbutan-2-one (3af)

Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 27 h).
$71 \mathrm{mg}, 79 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 90:10.
Enantiomeric excess (ee): 98\% (syn), 83\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+57.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.20($ Petroleum ether/EtOAc, v/v, 10:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.65$
$-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.49-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0.90 \mathrm{H}), 4.68-4.47(\mathrm{~m}, 1.1 \mathrm{H}), 3.90(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.90 \mathrm{H}), 3.64(\mathrm{~s}, 0.30 \mathrm{H}), 3.62(\mathrm{~s}, 2.70 \mathrm{H}), 3.33(\mathrm{~s}, 0.30 \mathrm{H}), 3.25(\mathrm{~s}$, $2.70 \mathrm{H}), 2.14(\mathrm{~s}, 2.70 \mathrm{H}), 1.81(\mathrm{~s}, 0.30 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.6,210.1,152.6,152.4,140.6,140.3,139.9,138.7,128.5$, $128.4,127.8 \times 2(127.83,127.79), 127.4,127.1,115.6,115.2,114.8 \times 2(114.84,114.81), 90.7$, $89.8,60.2,59.7,59.6,59.3,55.7,55.6,27.3,26.5$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.1594$, Found: 300.1593; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 322.1414$, Found: 322.1413; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{KNO}_{3}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 338.1153, Found: 338.1154.

HPLC: Daicel Chiralpak OD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 12.688 min (syn major enantiomer), 11.280 min (syn minor enantiomer), 14.065 min (anti major enantiomer), 16.083 min (anti minor enantiomer).

(3S,4R)-3-methoxy-4-((3-methoxyphenyl)amino)-4-phenylbutan-2-one (3ag)
Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 27 h).
$72 \mathrm{mg}, 80 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 87:13.
Enantiomeric excess (ee): 97\% (syn), 91\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+34.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.30($ Petroleum ether/EtOAc, v/v, 10:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.97$
$-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.21-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.77(\mathrm{~m}$, $1.87 \mathrm{H}), 4.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.13 \mathrm{H}), 3.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0.13 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 0.87 \mathrm{H}), 3.65$ (s, 0.39 H$), 3.63(\mathrm{~s}, 2.61 \mathrm{H}), 3.33(\mathrm{~s}, 0.39 \mathrm{H}), 3.26(\mathrm{~s}, 2.61 \mathrm{H}), 2.13(\mathrm{~s}, 2.61 \mathrm{H}), 1.80(\mathrm{~s}, 0.39 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 210.5,209.8,160.7 \times 2(160.75,160.73), 147.9,147.7,139.8$, $138.5,130.0,129.9,128.6,128.5,127.9,127.8,127.5,127.0,107.0,106.8,103.4,103.2,100.1$, $99.9,90.4,89.7,59.7,59.4,59.1,58.7,55.0 \times 2(54.99,54.97), 27.3,26.6$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.1594$, Found: 300.1593; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 322.1414$, Found: 322.1412 .

HPLC: Daicel Chiralpak AS-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 22.080 min (syn major enantiomer), 13.843 min (syn minor enantiomer), 21.425 min (anti major enantiomer), 16.762 min (anti minor enantiomer).

(3S,4R)-3-methoxy-4-((2-methoxyphenyl)amino)-4-phenylbutan-2-one (3ah)
Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 27 h)
$48 \mathrm{mg}, 53 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 79:21.

Enantiomeric excess (ee): 70\% (syn), 51\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+61.3^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 10:1).
Mixture of two diastereomers
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.75$ $-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 0.21 \mathrm{H}), 6.32(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}$, $0.79 \mathrm{H}), 5.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 0.79 \mathrm{H}), 4.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.21 \mathrm{H}), 3.92(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $0.21 \mathrm{H}), 3.86(\mathrm{~s}, 2.37 \mathrm{H}), 3.84(\mathrm{~s}, 0.63 \mathrm{H}), 3.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.79 \mathrm{H}), 3.35(\mathrm{~s}, 0.21 \mathrm{H}), 3.26(\mathrm{~s}, 2.37 \mathrm{H})$, 2.17 (s, 2.37H), $1.84(\mathrm{~s}, 0.63 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): δ 210.7, 210.4, 147.3, 147.2, 139.9, 138.7, 136.4, 136.1, 128.5, $128.4,127.8,127.7,127.4,127.0,121.2,118.5,117.4,117.0,111.6,111.4,109.8,109.7,90.9,90.0$, $59.8,59.5,59.0,58.8,55.6 \times 2(55.61,55.60), 27.4,26.4$

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.1594$, Found: 300.1594; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 322.1414$, Found: 322.1412; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{KNO}_{3}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 338.1153, Found: 338.1153.

HPLC: Daicel Chiralpak OD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$,
retention time: 11.633 min (syn major enantiomer), 12.532 min (syn minor enantiomer), 10.623 min (anti major enantiomer), 11.217 min (anti minor enantiomer).

3ai
(3S,4R)-4-((4-fluorophenyl)amino)-3-methoxy-4-phenylbutan-2-one (3ai)
Followed the general procedure (Irradiation was conducted for 17 h , followed by the asymmetric catalytic reaction for 27 h).
$64 \mathrm{mg}, 74 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 90:10.
Enantiomeric excess (ee): 99\% (syn), 83\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+43.5^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.40($ Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.52$
$-6.48(\mathrm{~m}, 0.20 \mathrm{H}), 6.46-6.42(\mathrm{~m}, 1.80 \mathrm{H}), 4.82-4.64(\mathrm{~m}, 1.90 \mathrm{H}), 4.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 0.20 \mathrm{H}), 3.91$ $(\mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}, 0.10 \mathrm{H}), 3.81(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0.90 \mathrm{H}), 3.34(\mathrm{~s}, 0.30 \mathrm{H}), 3.25(\mathrm{~s}, 2.70 \mathrm{H}), 2.14(\mathrm{~s}, 2.70 \mathrm{H})$, $1.80(\mathrm{~s}, 0.30 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 210.7,209.9,156.1(\mathrm{~d}, J=236.7 \mathrm{~Hz}), 156.0(\mathrm{~d}, J=236.4 \mathrm{~Hz})$, $142.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 142.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 139.5,138.3,128.8,128.6,127.9,127.8,127.6,127.1$, $115.6 \times 2[115.63(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 115.57(\mathrm{~d}, J=22.4 \mathrm{~Hz})], 115.1(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=7.5$ Hz), 90.5, 89.6, 59.8, 59.7 59.4, 59.3, 27.3, 26.6.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-127.0,-127.4$.
HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 288.1394, Found: 288.1393; Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FNNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 310.1214$, Found: 310.1213

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 89.488 min (syn major enantiomer), 9.511 min (syn minor enantiomer), 16.912 min (anti major enantiomer), 11.515 min (anti minor enantiomer).

(3S,4R)-3-methoxy-4-(naphthalen-2-ylamino)-4-phenylbutan-2-one (3aj)
Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 19 h).
$79 \mathrm{mg}, 82 \%$ yield, white solid.
Diastereomeric ratio (dr): 85:15.
Enantiomeric excess (ee): 92% (syn), 74% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+63.6^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.35($ Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=6.9,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.73$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 0.15 \mathrm{H}), 6.64-6.61(\mathrm{~m}, 0.85 \mathrm{H}), 5.06-4.85(\mathrm{~m}, 1.85 \mathrm{H}), 4.84-4.82(\mathrm{~m}, 0.15 \mathrm{H}), 4.01$ $-3.98(\mathrm{~m}, 0.15 \mathrm{H}), 3.88(\mathrm{~s}, 0.85 \mathrm{H}), 3.36(\mathrm{~s}, 0.45 \mathrm{H}), 3.29(\mathrm{~s}, 2.55 \mathrm{H}), 2.16(\mathrm{~s}, 2.55 \mathrm{H}), 1.82(\mathrm{~s}, 0.45 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 210.7,209.91,144.2,143.9,139.50,138.3,135.0 \times 2(135.00$, $134.95), 129.4,129.2,129.1,129.0,128.6 \times 2(128.63,128.59), 128.0 \times 2(128.01,127.97), 127.8$, $127.7,127.6,127.0,126.3,126.2,126.0,125.8,122.4,122.2,118.3,118.0,108.6,106.5,90.5,89.5$, 59.7, 59.4, 59.1, 58.7, 27.3, 26.7.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 320.1645$, Found: 320.1645; Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 342.1464$, Found: 342.1465; Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 358.1204, Found: 358.1207.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 15.559 min (syn major enantiomer), 14.849 min (syn minor enantiomer), 24.594 min (anti major enantiomer), 17.174 min (anti minor enantiomer).

(S)-2-((S)-phenyl(phenylamino)methyl)cyclohexan-1-one (3ak) ${ }^{[19]}$

Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 25 h).
$62 \mathrm{mg}, 74 \%$ yield, white solid.
Diastereomeric ratio (dr): 62:38.
Enantiomeric excess (ee): 87% (syn), 58% (anti).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-33.0^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right) .\left\{\right.$ Ref. $\left.18,[\boldsymbol{\alpha}]_{\mathrm{D}}^{25}=-44.2^{\circ}\left(c=0.98, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)\right\}$.
$\boldsymbol{R}_{f}=0.35($ Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10$ $-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 0.62 \mathrm{H}), 4.76-4.28$ $(\mathrm{m}, 1.38 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 0.62 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 0.38 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 212.6,211.2,147.5,147.2,141.7,141.6,129.0 \times 2(129.04$, $129.00), 128.5,128.4,127.5,127.3,127.2,127.0,117.7,117.6,114.1,113.8,58.2,57.4 \times 2(57.45$, 57.41), 56.6, 42.4, 41.8, 31.2, 28.8, 27.8, 26.9, 24.8, 23.7.

HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 280.1696, Found: 280.1696; Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 302.1515$, Found: 302.1515; Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 318.1255, Found: 318.1255.

HPLC: Daicel Chiralpak OJ-H, hexane/isopropanol $=80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 25.390 min (syn major enantiomer), 19.037 min (syn minor enantiomer), 16.664 min (anti major enantiomer), 12.149 min (anti minor enantiomer).

3al
(3S,4R)-3-methoxy-4-((4-methoxyphenyl)amino)-5-methylhexan-2-one (3al)

Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 28 h)
$57 \mathrm{mg}, 72 \%$ yield, yellow oil.
Diastereomeric ratio (dr): > 99:1.
Enantiomeric excess (ee): 83\%.
$[\alpha]_{\mathrm{D}}^{20}=+14.7^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.30($ Petroleum ether/EtOAc, v/v, 3:1).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 6.80-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.54(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.67$
$(\mathrm{m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): ~ \delta 203.8,147.4,136.9,110.3,110.2,73.3,54.5,51.6,51.0,35.9$, 26.9, 14.0, 13.6.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$266.1751, Found: 266.1751; Calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$288.1570, Found: 288.1572.

HPLC: Daicel Chiralpak AS-H, hexane $/$ isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 23.463 min (syn major enantiomer), 31.452 min (syn minor enantiomer).

$3 a m$
Ethyl (2S,3S)-3-methoxy-2-((4-methoxyphenyl)amino)-4-oxopentanoate (3am) ${ }^{[20]}$
Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 28 h).
$67 \mathrm{mg}, 76 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 96:4.
Enantiomeric excess (ee): 98\%.
$[\alpha]_{\mathrm{D}}^{20}=+65.5^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.30($ Petroleum ether/EtOAc, v/v, 3:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 6.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.28$ $-4.12(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 204.6,166.5,148.6,136.1,111.4,110.0,82.7,56.7,55.9,55.1$, 50.9, 22.4, 9.4.

HPLC: Daicel Chiralpak AD-H, hexane $/$ isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, retention time: 27.804 min (syn major enantiomer), 30.092 min (syn minor enantiomer).

(R)-4-phenyl-4-(phenylamino)butan-2-one (4a) ${ }^{[1]}$
Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 24 h).
$46 \mathrm{mg}, 64 \%$ yield, white solid.
Enantiomeric excess (ee): 95\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-18.9^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.40($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.0,146.9,142.6,129.2,128.8,127.4,126.3,117.9,113.8,54.5$, 51.2, 30.7.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: 12.943 min (major), 16.832 min (minor).

(R)-4-(naphthalen-2-ylamino)-4-phenylbutan-2-one (4b)

Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 19 h).
$69 \mathrm{mg}, 79 \%$ yield, white solid.
Enantiomeric excess (ee): 90\%.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=-30.1^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.20($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (br s, 1H), $2.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 206.0,143.4,141.2,133.9,127.9,127.8,126.7,126.5,126.4$, $125.3,125.2,125.1,121.2,117.2,105.3,53.4,50.0,29.7$.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 290.1539$, Found: 290.1536; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 312.1359$, Found: 312.1357; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{KNO}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 328.1098, Found: 328.1097.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 37.366 min (major), 30.320 min (minor).

(3R,4R)-4-(4-methoxyphenyl)-3-methyl-4-(phenylamino)butan-2-one (4c) ${ }^{[16]}$ and (S)-1-(4-methoxyphenyl)-1-(phenylamino)pentan-3-one (4d) ${ }^{[16]}$ (inseparable mixture of regioisomers, $4 \mathrm{c}: 4 \mathrm{~d}=52: 48$)

Followed the general procedure (Irradiation was conducted for 15 h , followed by the asymmetric catalytic reaction for 26 h).
$55 \mathrm{mg}, 65 \%$ yield, yellow oil.
Diastereomeric ratio (dr): > 99:1 (4c).
Enantiomeric excess (ee): 89% ($\mathbf{4 c}$), 94% ($\mathbf{4 d}$).
$\boldsymbol{R}_{f}=0.25($ Petroleum ether/EtOAc, v/v, 5:1).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.84 \mathrm{H}), 7.10-7.04(\mathrm{~m}$, $3.84 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3.84 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 1.84 \mathrm{H}), 6.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1.84 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 0.92 \mathrm{H}), 4.67(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.12(\mathrm{~m}, 1.92 \mathrm{H}), 3.76(\mathrm{~s}$, $5.76 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 1.84 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1.84 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2.76 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 210.6,209.9,158.8 \times 2(158.86,158.83), 147.0,146.9,134.6$, $133.0,129.1 \times 2(129.10,129.06), 127.9,127.4,117.8,117.7,114.2,114.1,113.9,113.7,58.5,55.2$ $\times 2(55.23,55.21), 54.1,53.2,49.9,36.9,29.4,11.4,7.4$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$284.1645, Found: 284.1644; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 306.1464$, Found: 306.1463; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 322.1204, Found: 322.1205.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time of $\mathbf{4 c}: 14.038 \mathrm{~min}$ (major), 16.241 min (minor); retention time of $\mathbf{4 d}: 19.007 \mathrm{~min}$ (major), 23.184 min (minor).

(3R,4S)-3-methoxy-4-phenyl-4-(phenylamino)butan-2-one (4e)
Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 24 h).
$66 \mathrm{mg}, 82 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 86:14.
Enantiomeric excess (ee): 98\% (syn), 91\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=-62.4^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.30($ Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C l}_{3}\right): \delta 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}$, $1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.56(\mathrm{~m}, 0.28 \mathrm{H}), 6.54-6.50(\mathrm{~m}, 1.72 \mathrm{H}), 4.85$
$-4.74(\mathrm{~m}, 1.86 \mathrm{H}), 4.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.14 \mathrm{H}), 3.92(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 0.14 \mathrm{H}), 3.83(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $0.86 \mathrm{H}), 3.36(\mathrm{~s}, 0.42 \mathrm{H}), 3.28(\mathrm{~s}, 2.58 \mathrm{H}), 2.15(\mathrm{~s}, 2.58 \mathrm{H}), 1.82(\mathrm{~s}, 0.42 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.6,210.0,146.4,146.2,139.7,138.5,129.2 \times 2(129.21$, $129.16), 128.6,128.5,127.8 \times 2(127.86,127.78), 127.5,127.0,118.2,117.9,114.1,113.8,90.6$, 89.7, 59.7, 59.4, 59.1, 58.7, 27.3, 26.6.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1489$, Found: 270.1488; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 292.1308$, Found: 292.1307; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 308.1047, Found: 308.1048.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=99: 1$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 21.007 min (syn major enantiomer), 22.543 min (syn minor enantiomer), 26.512 min (anti major enantiomer), 42.136 min (anti minor enantiomer).

4f
(3R,4S)-3-methoxy-4-(4-methoxyphenyl)-4-(phenylamino)butan-2-one (4f)
Followed the general procedure (Irradiation was conducted for 15 h , followed by the asymmetric catalytic reaction for 26 h).
$74 \mathrm{mg}, 82 \%$ yield, yellow oil.
Diastereomeric ratio (dr): 85:15.
Enantiomeric excess (ee): 96% (syn), 86% (anti).
$[\alpha]_{\mathrm{D}}^{20}=+49.7^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{\boldsymbol{f}}=0.20$ (Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.67$ $-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.30 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.70 \mathrm{H}), 4.84-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.90$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 0.15 \mathrm{H}), 3.79(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 0.85 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 0.45 \mathrm{H}), 3.30(\mathrm{~s}, 2.55 \mathrm{H})$, $2.13(\mathrm{~s}, 2.55 \mathrm{H}), 1.83(\mathrm{~s}, 0.45 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 210.6,210.0,159.2,159.0,146.6,146.3,131.6,130.5,129.2$, $129.1,128.9,128.1 \times 2(128.12,128.08), 118.1,117.8,114.1,114.0,113.9,90.6,89.8,59.6,59.4$, $58.6,58.2,55.2 \times 2(55.19,55.18), 27.3,26.6$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.1594$, Found: 300.1592; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 322.1414$, Found: 322.1412; Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{KNO}_{3}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 338.1153, Found: 338.1152.

HPLC: Daicel Chiralpak OJ-H, hexane/isopropanol $=80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 19.951 min (syn major enantiomer), 13.448 min (syn minor enantiomer), 16.756 min (anti major enantiomer), 22.922 min (anti minor enantiomer).

(3R,4S)-3-methoxy-4-(naphthalen-2-ylamino)-4-phenylbutan-2-one (4g)
Followed the general procedure (Irradiation was conducted for 16 h , followed by the asymmetric catalytic reaction for 19 h).
$74 \mathrm{mg}, 77 \%$ yield, white solid.
Diastereomeric ratio (dr): 89:11.
Enantiomeric excess (ee): 94\% (syn), 79\% (anti).
$[\alpha]_{\mathrm{D}}^{20}=-67.6^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
$\boldsymbol{R}_{f}=0.35($ Petroleum ether/EtOAc, v/v, 5:1).
Mixture of two diastereomers:
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 0.11 \mathrm{H}), 6.62(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.89 \mathrm{H}), 5.02-4.89(\mathrm{~m}, 1.89 \mathrm{H}), 4.82(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $0.11 \mathrm{H}), 3.99(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.11 \mathrm{H}), 3.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.89 \mathrm{H}), 3.36(\mathrm{~s}, 0.33 \mathrm{H}), 3.29(\mathrm{~s}, 2.67 \mathrm{H})$, $2.16(\mathrm{~s}, 2.67 \mathrm{H}), 1.82(\mathrm{~s}, 0.33 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.7,209.9,144.1,143.9,139.5,138.3,135.0 \times 2$ (135.02, $134.95), 129.0 \times 2(129.06,129.00), 128.6 \times 2(128.62,128.58), 128.0,127.8 \times 2(127.84,127.81)$, 59.7, 59.4, 59.1, 58.7, 27.3, 26.7.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 320.1645$, Found: 320.1643 ; Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 342.1464$, Found: 342.1463; Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 358.1204, Found: 358.1200.

HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 14.000 min (syn major enantiomer), 14.438 min (syn minor enantiomer), 16.069 min (anti major enantiomer), 23.398 min (anti minor enantiomer).

13. References

[1] Leng, L. and J. M. Ready, Photocatalytic α-alkylation of amines with alkyl halides, ACS Catal., 2020, 10, 13196-13201.
[2] X. Yu, C. Liu, L. Jiang and Q. Xu, Manganese dioxide catalyzed N-alkylation of sulfonamides and amines with alcohols under air, Org. Lett., 2011, 13, 6184-6187.
[3] Y. Zhao, S. W. Foo and S. Saito, Iron/amino acid catalyzed direct N-alkylation of amines with alcohols, Angew. Chem. Int. Ed., 2011, 50, 3006-3009.
[4] M. Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng, and H. Hu, Direct reductive amination of aromatic aldehydes catalyzed by gold(I) complex under transfer hydrogenation conditions, Chem. Commun., 2011, 47, 6605-6607.
[5] L. Ou, J. Shao, G. Zhang and Y. Yu, Metal-free carbon-nitrogen bond-forming coupling reaction between arylboronic acids and organic azides, Tetrahedron Lett., 2011, 52, 1430-1431.
[6] Z.-H. Wang, P.-S. Gao, X. Wang, J.-Q. Gao, X.-T. Xu, Z. He, C. Ma and T.-S. Mei, TEMPOenabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones, J. Am. Chem. Soc., 2021, 143, 15599-15605
[7] S.-B. Han, J.Y. Wei, X.-C. Peng, R. Liu, S.-S, Gong, Q. Sun, Hf(OTf) 4 as a highly potent catalyst for the synthesis of Mannich base under solvent-free conditions, Molecules, 2020, 25, 388.
[8] C.-L. Dong, X. Ding, L.-Q. Huang, Y.-H. He, and Z. Guan, Merging visible light photocatalysis and L-/D-proline catalysis: direct asymmetric oxidative dearomatization of 2-arylindoles to
access C2-quaternary indolin-3-ones, Org. Lett., 2020, 22, 1076-1080.
[9] G. Kang, Z. Luo, C. Liu, H. Gao, Q. Wu, H. Wu, and J. Jiang, Amino acid salts catalyzed asymmetric aldol reaction of Tryptanthrin: a straightforward synthesis of Phaitanthrin A and its derivatives, Org. Lett., 2013, 15, 4738-4741.
[10] B. List, The direct catalytic asymmetric three-component Mannich reaction, J. Am. Chem. Soc., 2000, 122, 9336-9337.
[11] X.-D. Jia, X.-E, Wang, C.-X, Yang, C.-D. Huo, W.-J. Wang, Y. Ren and X.-C. Wang, Synthesis of β-aminoketones and construction of highly substituted 4-piperidones by Mannich reaction induced by persistent radical cation salts, Org. Lett., 2010, 12, 732-735.
[12] K. Li, T. He, C. Li, X.-W, Feng, N. Wang and X.-Q. Yu, Lipase-catalysed direct Mannich reaction in water: utilization of biocatalytic promiscuity for C-C bond formation in a "one-pot" synthesis, Green Chem., 2009, 11, 777-779.
[13] W. Notz, S.-I. Watanabe, N. S. Chowdari, G. Zhong, J. M. Betancort, F. Tanaka and C. F. Barbas III, The scope of the direct proline-catalyzed asymmetric additioin of ketone to imines, $A d v$. Synth. Catal., 2004, 346, 1131-1140.
[14] N. S. Josephsohn, M. L. Snapper and A. H. Hoveyda, Ag-catalyzed asymmetric Mannich reactions of enol ethers with aryl, alkyl, alkenyl, and alkynyl imines, J. Am. Chem. Soc., 2004, 126, 3734-3735.
[15] V. Kumar, U. Sharma, P. K. Verma, N. Kumar, and B. Singh, Silica-supported boric acid with ionic liquid: a novel recyclable catalytic system for one-pot three-component Mannich reaction, Chem. Pharm. Bull., 2011, 59, 639-645.
[16] M. Xia, and Y.-D. Lu, A novel direct and one-pot Mannich synthesis of fluorinated β aminobutanones with sulfamic acid as a green catalyst, J. Fluorine Chem., 2006, 127, 11191124.
[17] J. Lei, L. Peng, R. Qiu, Y. Liu, Y. Chen, C.-T. Au and S.-T, Yin, Establishing thecorrelation between catalytic performance and $\mathrm{N} \rightarrow \mathrm{Sb}$ donor-acceptor interaction: systematic assessment of azastivocine halide derivatives as water tolerant Lewis acids, Dalton Trans., 2019, 48, 84788487.
[18] Y. An, Q. Qin, C. Wang and J. Tao, Isosteviol-amino acid conjugates as highly efficient organocatalysts for the asymmetric one-pot three-component Mannich reactions, Chin. J.

Chem., 2011, 29, 1511-1517.
[19] A. Yanagisawa, Y. Lin, R. Miyake and K. Yoshida, Catalytic Enantioselective Mannich-Type Reaction via a Chiral Silver Enolate, Org. Lett., 2014, 16, 86-89.
[20] H. Zhang, S. Mitsumori, N. Utsumi, M. Imai, N. Garcia-Delgado, M. Mifud, K. Albertshofer, P. H. -Y. Cheong, K. N. Houk, F. Tanaka and C. F. Barbas, Catalysis of 3-pyrrolidinecarboxylic acid andrelated pyrrolidine derivatives in enantioselective anti-Mannich-type reactions: importance of the 3-acid group on pyrrolidine for stereocontrol, J. Am. Chem. Soc., 2008, 130, 875-886.

14．NMR spectra

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 c}$

${ }^{13} \mathrm{C}$ NMR Spectrum（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 1c

$\stackrel{\infty}{\infty} \stackrel{\rightharpoonup}{\infty}$	
$\stackrel{\infty}{\square}$	¢ั入入へ
1／	，＜1 11

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 d

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 d

[^0]${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 e

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 e

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\underset{\sim}{+}} \\ & \stackrel{\infty}{+} \\ & \stackrel{1}{\mid} \end{aligned}$	

$$
\begin{array}{llllllllllllllllllllll}
200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}
110 \\
\mathrm{f} 1
\end{array} \mathrm{l} \begin{array}{l}
100 \\
(\mathrm{ppm})
\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{array}
$$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 f

[^1]${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 g

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 g

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 h

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$

Non	
- -	
,	- - - - -

1h

$\begin{array}{lllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{fl} \\ 100 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{19}$ F NMR Spectrum ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 i}$
(

$1 i$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 i}$
-147.8820

\int| 138.0797 |
| ---: |
| 132.9473 |
| 129.3219 |
| 128.7788 |
| 128.7340 |
| -117.9055 |
| -113.0004 |

$1 i$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 j}$

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(\mathbf{1 5 1 ~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 j}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 k

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 k

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 m

1 m

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 m

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 n}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 n

${ }^{19}$ F NMR Spectrum ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 n

$1 n$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 o}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 10

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of 1 t

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 t}$

$1 t$
${ }^{19}$ F NMR Spectrum ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{1 t}$

$1 t$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 u

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 u

${ }^{19}$ F NMR Spectrum ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 u

1u

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1 am

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1 am

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 a

3a

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a

3a

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1 C\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 b

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 b}$

$\overline{0}$
1

-30.7119

3b

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 c

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 c

3c

[^2]${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 d

[^3]f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3e

$\begin{array}{ll}\infty & 0 \\ n & 0 \\ \hat{n} & \underset{\sim}{i} \\ 0 & \underset{\sim}{i} \\ 1 & 1\end{array}$

3e

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 f}$

$3 f$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 g}$

3g

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 h}$

3h

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 h

3h

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 i}$
$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty}$
$\stackrel{0}{0}$
$\stackrel{\rightharpoonup}{0}$
1

$3 i$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 j

3j

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 k

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 k

3k

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 31

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 31

31

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 m}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 m}$
-207.1750

$\begin{array}{cc}n & \hat{n} \\ \hat{n} \pi & 0 \\ \underset{\sim}{n} & 0 \\ n & 0 \\ 1 & 1\end{array}$

3m

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 n

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 n

3n

[^4]${ }^{19}$ F NMR Spectrum $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 o

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 o}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 p}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 p}$

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$ f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 q}$

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 r}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 r}$

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 s

3s

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 s

3s

$\underset{\sim}{0}$
in
in
in
in 691908-
$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\ 0 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathbf{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 t}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 t

$210200190180170160150140130120110100 \quad 90$ f1 (ppm)
${ }^{19}$ F NMR Spectrum ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 3 t
$--127.3788$

3t

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 u}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 u}$

${ }^{19}$ F NMR Spectrum ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{3 u}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 v

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 v

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 w}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 w}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $3 x$ and $3 y$

$3 y$
$3 x$
inseparable mixture of regioisomers
$3 x / 3 y=63 / 37$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $3 x$ and $3 y$

3x

 -36.9012 -29.3234 -11.1175
-7.4371
inseparable mixture of regioisomers

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 z and 3 aa

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3 z and 3 aa

inseparable mixture of regioisomers
$3 z / 3$ aa $=57 / 43$

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of $\mathbf{3 a b}$

3ab

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ab

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 ac

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ac

3ac

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{3 a d}$

${ }^{13}$ C NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ad
\qquad

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ae

${ }^{13}$ C NMR Spectrum (101 MHz, CDCl_{3}) of 3ae

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3af

3af

$\begin{aligned} & \substack{\infty \\ \stackrel{\infty}{0} \\ \stackrel{0}{0} \\ \stackrel{0}{4} \\ \underset{\sim}{N} \\ \hline} \end{aligned}$	 	

3af

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}-10$ f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ag

${ }^{13}$ C NMR Spectrum (101 MHz, CDCl_{3}) of 3 ag

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 ah

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1(\mathrm{ppm})\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 ai

$\begin{aligned} & 8 \pm Z 9^{\circ} 9 Z \\ & \varsigma \varepsilon I \varepsilon^{\prime} L Z \end{aligned}$
$9 ¢ 1 \varepsilon 66 ¢$
$98 \angle \varepsilon^{\circ} 6 \mathrm{~S} \downarrow$
t¢89．6s ${ }^{\text {¢ }}$
szi8．6s
£¢1968
¢ILt•06
tszL＇til
て66L＇ちII
IIE0＇sil
zsol＇sil
68St．Sil
LEZS＇sil
［189 ${ }^{\text {c SII }}$
09tく ¢ ¢
8 888 ${ }^{\circ} \mathrm{LZI}$
LLZ6＊LI
82zs＊8で
9985：82I
1018．82I
828688 I
ZL00＇62I
L99で8\＆ı
＋88t．6et
8609 でっI
ャ8て9\％で
とんち8でで
¢¢98でI
0z6L＇tS 1
zsc6．tsi
てZ¢1＇LSI
066でL¢
SL06．602
980s．0ıZ

3ai

$210200190180170160150140130120110100 \quad 90$ f1（ppm）
${ }^{19}$ F NMR Spectrum（ $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3ai

3ai

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz, CDCl_{3}) of 3aj

${ }^{13}$ C NMR Spectrum (101 MHz, CDCl_{3}) of 3aj

3aj

[^5]
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 ak

3ak

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ak

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of 3al

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 3al
n
n
n
n
n
\cdots
1
1

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a m}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of 3am

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum} \mathrm{(151} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 a}$
-206.9550

$\begin{aligned} & n \\ & \underset{\sim}{\infty} \\ & +1 \end{aligned}$	∞ n 0 0
赈	-
11	

4a

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4 b

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 4 c and 4 d

4c
4d
inseparable mixture of regioisomers
$4 c / 4 d=52 / 48$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4 c and 4 d

4c
inseparable mixture of regioisomers
$4 c / 4 d=52 / 48$

4d
$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 e}$

${ }^{13}$ C NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4 e

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 f}$

[^6]
${ }^{1} \mathrm{H}$ NMR Spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 g}$

[^7]
15. HRMS spectra

HRMS spectrum of 3b

$$
\begin{array}{rrlrlrrrrrr}
\text { Meas. m/z } & \# & \text { Ion Formula } & \mathrm{m} / \mathrm{z} & \text { Adduct } & \text { err } & \text { [ppm] } & \text { mSigma } & \text { Score } & \text { rdb } & \mathrm{N} \text {-Rule } \\
270.1488 & 1 & \text { C17H20NO2 } & 270.1489 & \mathrm{M}+\mathrm{H} & 0.0 & 0.5 & 100.00 & 9.0 & \text { ok } \\
292.1308 & 1 & \text { C17H19NNaO2 } & 292.1308 & \mathrm{M}+\mathrm{Na} & & -0.0 & 4.9 & 100.00 & 9.0 & \text { ok } \\
308.1046 & 1 & \text { C17H19KNO2 } & 308.1047 & \text { M+K } & & 0.3 & 8.2 & 100.00 & 9.0 & \text { ok }
\end{array}
$$

HRMS spectrum of 3c

HRMS spectrum of 3 e

HRMS spectrum of $\mathbf{3 f}$

HRMS spectrum of $\mathbf{3 g}$

HRMS spectrum of $\mathbf{3 h}$

HRMS spectrum of $\mathbf{3 j}$

HRMS spectrum of $\mathbf{3 k}$

HRMS spectrum of 31

HRMS spectrum of $\mathbf{3 m}$

HRMS spectrum of $\mathbf{3 n}$

HRMS spectrum of 30

HRMS spectrum of $\mathbf{3 r}$

HRMS spectrum of 3t

HRMS spectrum of $\mathbf{3 v}$

HRMS spectrum of 3w

HRMS spectrum of $3 x$ and $3 y$

HRMS spectrum of $3 z$ and 3aa

HRMS spectrum of 3ad

HRMS spectrum of 3ae

HRMS spectrum of 3af

HRMS spectrum of 3ag

HRMS spectrum of 3ah

HRMS spectrum of 3ai

HRMS spectrum of 3aj

HRMS spectrum of 3ak

HRMS spectrum of 3al

HRMS spectrum of $\mathbf{4 b}$

HRMS spectrum of $\mathbf{4 c}$ and 4 d

HRMS spectrum of $\mathbf{4 e}$

HRMS spectrum of $\mathbf{4 f}$

HRMS spectrum of $\mathbf{4 g}$

16．Chiral HPLC spectra

HPLC spectrum of Rac－3a

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.793	17298352	582071	49.940
2	18.448	17339828	550914	50.060
总计		34638180	1132986	

HPLC spectrum of 3a
mV

检测器A $254 n \mathrm{~nm}$

No．	Retention Time	Area	Height	Concentration
1	14.566	580753	21116	1.594
2	20.194	35848146	1094676	98.406
总计		36428899	1115793	

HPLC spectrum of Rac－3b

mV

检测器A $254 n \mathrm{~nm}$

No．	Retention Time	Area	Height	Concentration
1	23.110	25711822	427918	50.301
2	28.706	25403755	527540	49.699
总计		51115577	955458	

HPLC spectrum of 3b

mV

检测器A $254 n \mathrm{~nm}$

No．	Retention Time	Area	Height	Concentration
1	23.131	1298524	18706	5.399
2	28.909	22750813	380107	94.601
总计		24049337	398812	

HPLC spectrum of Rac－3c

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	21.003	50756399	420770	50.506
2	46.141	49738554	150384	49.494
总计		100494952	571154	

HPLC spectrum of 3c

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.985	2162867	16784	8.223
2	44.807	24140643	88744	91.777
总计		26303509	105528	

HPLC spectrum of Rac-3d

HPLC spectrum of 3d

HPLC spectrum of Rac－3e

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.085	73545034	3022307	50.033
2	13.565	73446743	2751768	49.967
总计		146991777	5774076	

HPLC spectrum of 3e

HPLC spectrum of Rac－3f

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.352	10904811	486349	50.070
2	14.945	10874229	458775	49.930
总计		21779040	945124	

HPLC spectrum of $3 f$

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.345	1222300	47497	4.794
2	14.990	24274435	925955	95.206
总计		25496735	973452	

HPLC spectrum of Rac－3g

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.412	2510402	90361	50.702
2	25.335	2440849	63192	49.298
总计		4951251	153553	

HPLC spectrum of $\mathbf{3 g}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.082	630027	23749	7.771
2	24.755	7477222	207572	92.229
总计		8107249	231322	

HPLC spectrum of Rac－3h

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	15.649	6264032	177462	49.893
2	22.515	6290845	168328	50.107
总计		12554876	345790	

HPLC spectrum of $\mathbf{3 h}$

HPLC spectrum of Rac－3i

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	18.035	3904688	38643	47.598
2	22.705	4298796	39427	52.402
总计		8203484	78070	

HPLC spectrum of $\mathbf{3 i}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.843	120277	2795	2.102
2	22.484	5601409	51474	97.898
总计		5721687	54269	

HPLC spectrum of Rac－3j

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	17.901	8081210	229506	50.124
2	24.080	8041180	187141	49.876
总计		16122390	416647	

HPLC spectrum of $\mathbf{3} \mathbf{j}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	17.741	17785103	511741	31.614
2	23.849	38472636	842736	68.386
总计		56257739	1354477	

HPLC spectrum of Rac－3k

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	75.710	37138987	321319	49.593
2	82.820	37749177	304821	50.407
总计		74888165	626141	

HPLC spectrum of $\mathbf{3 k}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	73.352	5925311	52571	8.893
2	80.081	60700886	497214	91.107
总计		66626197	549786	

HPLC spectrum of Rac－31

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.575	66716361	1826711	50.072
2	17.750	66525308	1569246	49.928
总计		133241668	3395957	

HPLC spectrum of 31

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.631	11773871	365332	23.320
2	17.909	38714202	938699	76.680
总计		50488072	1304030	

HPLC spectrum of Rac－3m

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	24.233	31818690	474067	50.093
2	28.315	31700421	350041	49.907
总计		63519110	824108	

HPLC spectrum of $\mathbf{3 m}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	26.070	11629549	207997	8.127
2	30.511	131475123	1090508	91.873
总计		143104672	1298505	

HPLC spectrum of Rac－3n

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.725	8288294	281055	49.884
2	16.204	8326980	276668	50.116
总计		16615275	557723	

HPLC spectrum of $\mathbf{3 n}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.056	4097811	135221	17.087
2	15.396	19884798	699505	82.913
总计		23982609	834726	

HPLC spectrum of Rac－3o

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	21.941	23712287	478713	48.866
2	24.861	24812747	594243	51.134
总计		48525035	1072956	

HPLC spectrum of $\mathbf{3 o}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	21.974	783990	19251	5.053
2	24.756	14730790	363209	94.947
总计		15514780	382460	

HPLC spectrum of Rac－3p

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	52.704	9909718	128286	49.844
2	65.853	9971752	96931	50.156
总计		19881470	225217	

HPLC spectrum of 3p

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	53.004	178446	2348	4.329
2	66.631	3943312	37355	95.671
总计		4121757	39704	

HPLC spectrum of Rac－3q

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	15.757	18849285	534289	49.918
2	22.286	18911229	481089	50.082
总计		37760515	1015378	

HPLC spectrum of $\mathbf{3 q}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	17.663	761540	26694	1.895
2	24.049	39419943	1051871	98.105
总计		40181483	1078564	

HPLC spectrum of Rac－3r

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.587	18391791	504034	49.760
2	15.322	18569474	366301	50.240
总计		36961265	870335	

HPLC spectrum of $\mathbf{3 r}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.470	54330255	1267118	96.982
2	15.769	1690497	40842	3.018
总计		56020752	1307960	

HPLC spectrum of Rac－3s

HPLC spectrum of 3s

mV

检测器A 254nm

No．	Retention Time	Area	Height	Concentration
1	10.262	5940262	203277	39.461
2	13.699	9113256	251682	60.539
总计		15053519	454959	

HPLC spectrum of Rac－3t

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.961	8317069	343751	50.079
2	14.291	8290663	314652	49.921
总计		16607731	658403	

HPLC spectrum of $\mathbf{3 t}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.805	2898902	120950	97.377
2	14.095	78096	3023	2.623
总计		2976998	123973	

HPLC spectrum of Rac－3u

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.489	2874563	104710	49.369
2	17.728	2948080	102912	50.631
总计		5822643	207622	

HPLC spectrum of 3u

HPLC spectrum of Rac－3v

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.395	20479247	549359	49.788
2	16.276	20653310	413818	50.212
总计		41132557	963177	

HPLC spectrum of $3 v$

HPLC spectrum of Rac－3w

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	30.473	24759110	503934	50.302
2	37.002	24461397	486009	49.698
总计		49220506	989943	

HPLC spectrum of 3w

HPLC spectrum of Rac－3x and Rac－3y

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.150	16133583	267776	32.547
2	17.706	18050218	324084	36.414
3	19.825	7675784	115335	15.485
4	26.735	7709782	141732	15.554
总计		49569366	848927	

HPLC spectrum of $3 x$ and $3 y$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.867	189225	6276	0.426
2	19.735	27790910	399155	62.555
3	20.763	833813	16851	1.877
4	28.980	15612331	232514	35.142
总计		44426279	654796	

HPLC spectrum of Rac－3z and Rac－3aa

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.338	12092532	446138	21.493
2	16.615	13893959	471479	24.695
3	19.420	14902202	510749	26.487
4	23.810	15373957	384940	27.325
总计		56262650	1813306	

HPLC spectrum of $3 z$ and 3aa

HPLC spectrum of Rac-3ab

HPLC spectrum of 3ab

mV

No.	Retention Time	Area	Height	Concentration
1	5.978	8474214	552525	22.509
2	7.160	278525	18536	0.740
3	7.698	12291072	619090	32.647
4	9.114	7953531	388165	21. 126
5	10.406	8651098	414941	22.979
总计		37648439	1993256	

HPLC spectrum of Rac－3ac

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.882	4464762	99388	43.170
2	18.378	683405	14137	6.608
3	19.160	688807	15161	6.660
4	24.465	4505327	88517	43.562
总计		10342301	217202	

HPLC spectrum of 3ac

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	17.779	2344638	55775	11.826
2	22.521	165981	6746	0.837
3	23.175	619605	12750	3.125
4	28.110	16695519	352442	84.211
总计		19825742	427712	

HPLC spectrum of Rac－3ad

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	18.497	4055546	39268	41.100
2	23.065	4393606	40964	44.526
3	24.388	697707	11271	7.071
4	39.865	720581	5721	7.303
总计		9867439	97224	

HPLC spectrum of 3ad

mV

No．	Retention Time	Area	Height	Concentration
1	20.982	172306	4333	2.926
2	23.324	5187235	48710	88.101
3	27． 774	8161	126	0．139
4	43.307	520155	5153	8.834
总计		5887858	58323	

HPLC spectrum of Rac－3ae

mV

No．	Retention Time	Area	Height	Concentration
1	13.161	12207029	580706	35.883
2	16.644	4867054	173552	14.307
3	20.034	12166936	346606	35.765
4	22.221	4777768	138889	14.044
总计		34018787	1239754	

HPLC spectrum of 3ae

mV

No．	Retention Time	Area	Height	Concentration
1	12.846	96950854	3527224	81.377
2	16.583	1225897	56447	1． 029
3	20．152	2048794	59828	1． 720
4	21.892	18912538	526788	15.874
总计		119138083	4170287	

HPLC spectrum of Rac－3af

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.151	2189728	86109	30.576
2	12.813	2179205	75999	30.429
3	13.982	1362001	42518	19.018
4	15.409	1430734	42007	19.978
总计		7161668	246633	

HPLC spectrum of 3af
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.280	153595	6114	0.868
2	12.688	15842790	515810	89.536
3	14.065	1554711	44235	8.786
4	16.083	143306	6410	0.810
总计		17694402	572569	

HPLC spectrum of Rac－3ag

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.704	2774164	62493	31.446
2	16.462	1376328	30133	15.601
3	17.556	223293	6345	2.531
4	19.923	1706228	28550	19.340
5	21.865	2742033	39826	31.082
总计		8822046	167348	

HPLC spectrum of 3ag

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.843	8895	224	1.390
2	16.762	3800	95	0.594
3	21.425	76569	2528	11.965
4	22.080	550672	13772	86.051
总计		639936	16618	

HPLC spectrum of Rac－3ah

mV

No．	Retention Time	Area	Height	Concentration
1	10.622	4819800	221719	23.666
2	11． 150	4606410	197412	22.618
3	11.671	5385490	195486	26.444
4	12.515	5554295	194359	27.272
总计		20365995	808976	

HPLC spectrum of 3ah

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.623	1592634	69449	15.612
2	11.217	520801	35238	5.105
3	11.633	6872395	246428	67.366
4	12.532	1215742	43084	11.917
总计		10201572	394199	

HPLC spectrum of Rac－3ai

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	9.444	1795703	78487	29.711
2	10.512	1832244	77469	30.316
3	11.458	1084629	42043	17.946
4	12.184	237274	10406	3.926
5	16.727	1094050	36452	18.102
总计		6043901	244857	

HPLC spectrum of 3ai

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	9.511	98415	4881	0.661
2	10.580	13317156	563811	89.488
3	11.515	128064	5038	0.861
4	16.912	1337870	44678	8.990
总计		14881506	618408	

HPLC spectrum of Rac－3aj

mV

No．	Retention Time	Area	Height	Concentration
1	13.970	35213422	1349077	31.127
2	14.470	40594571	1378470	35.884
3	16.058	17579209	666429	15.539
4	23.311	19739584	560217	17.449
总计		113126786	3954193	

HPLC spectrum of 3aj

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.849	697129	28110	3.396
2	15.559	16794462	714230	81.813
3	17.174	401246	13801	1.955
4	24.594	2634962	82447	12.836
总计		20527799	838587	

HPLC spectrum of Rac－3ak

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.995	10845118	550533	32.201
2	14.803	10933003	364964	32.462
3	16.552	5908103	193950	17.542
4	22.158	5993649	108212	17.796
总计		33679873	1217658	

HPLC spectrum of 3ak
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.149	871622	34754	8.463
2	16.664	3109569	74608	30.192
3	19.037	383158	9766	3.720
4	25.390	5934820	74283	57.624
总计		10299169	193411	

HPLC spectrum of Rac－3al

mV

No．	Retention Time	Area	Height	Concentration
1	24.671	2166855	168975	50.051
2	34.211	2162402	15862	49.949
总计		4329257	184837	

HPLC spectrum of 3al

mV

No．	Retention Time	Area	Height	Concentration
1	23.463	2276615	210864	91.315
2	31.452	216519	1495	8.685
总计		2493134	212360	

HPLC spectrum of Rac－3am

mV

检测器A 214 nm

No．	Retention Time	Area	Height	Concentration
1	28.059	3924433	93884	48.382
2	30.216	3733797	82751	46.032
3	41.396	221407	3691	2.730
4	44.601	231652	3536	2.856
总计		8111288	183862	

HPLC spectrum of 3am

mV

检测器A 214 nm

No．	Retention Time	Area	Height	Concentration
1	27.804	7688640	179610	95.365
2	30.092	59761	1332	0.741
3	41.383	31667	615	0.393
4	44.628	282260	4370	3.501
总计		8062328	185927	

HPLC spectrum of Rac－4a

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.049	14853059	619249	49.676
2	16.970	15047056	548490	50.324
总计		29900115	1167739	

HPLC spectrum of 4a

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.943	22417274	948331	97.372
2	16.832	604957	24023	2.628
总计		23022230	972354	

HPLC spectrum of Rac－4b

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	31.551	24173100	485771	50.312
2	38.577	23872976	473308	49.688
总计		48046076	959080	

HPLC spectrum of 4b

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	30.320	1480819	30535	5.096
2	37.366	27576134	522405	94.904
总计		29056953	552940	

HPLC spectrum of Rac－4c and Rac－4d

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.252	11854063	439571	21.584
2	15.133	1181434	46745	2.151
3	16.418	13325754	461627	24.264
4	19.321	14130994	482755	25.730
5	23.549	14427114	366662	26.270
总计		54919359	1797360	

HPLC spectrum of 4c and 4d

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.038	6902397	245828	47.270
2	14.873	463776	18338	3.176
3	16.241	412298	12907	2.824
4	19.007	6604605	234504	45.230
5	23.184	219066	5428	1.500
总计		14602142	517005	

HPLC spectrum of Rac－4e

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.671	3712079	38835	43.246
2	22.370	3710810	37636	43.231
3	26.552	574835	5995	6.697
4	42.128	585966	6304	6.827
总计		8583690	88770	

HPLC spectrum of 4 e
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	21.007	126808201	1396919	85.162
2	22.543	1383489	21959	0.929
3	26.512	19762638	279239	13.272
4	42.136	948666	12365	0.637
总计		148902994	1710481	

HPLC spectrum of Rac－4f

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.240	11985141	594082	35.323
2	16.647	4419346	176029	13.025
3	20.251	12750932	360545	37.580
4	22.639	4774588	140941	14.072
总计		33930008	1271598	

HPLC spectrum of $\mathbf{4 f}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.448	807153	41426	1.547
2	16.756	7400046	273727	14.181
3	19.951	43376115	958641	83.123
4	22.922	599813	17808	1.149
总计		52183127	1291602	

HPLC spectrum of Rac－4g

mV

No．	Retention Time	Area	Height	Concentration
1	13.914	40017783	1423786	32.564
2	14.393	41121893	1449377	33.463
3	15．997	19833856	721905	16．140
4	23.271	21915001	615831	17.833
总计		122888533	4210899	

HPLC spectrum of $\mathbf{4 g}$

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	14.000	13820479	559848	86.116
2	14.438	395704	28802	2.466
3	16.069	1638031	68564	10.207
4	23.398	194504	6742	1.212
总计		16048719	663955	

[^0]: $\begin{array}{llllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{fl} 100 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)

[^3]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^4]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^5]:

[^6]:

[^7]:

