Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

For

Fe (III)-Catalyzed Reduction Radical Tandem Strategy to Access

Poly-Substituted β-Alkenyl Valerolactones

Fu-Yu Li, Bei Wang, Hong Xu, Yao Xiao, Dong-Wei Huang, Ji-Yu Wang*

Contents

1. General Information	S2
2. Substrate of Synthesis	S2-S3
3. Typical Synthesis Procedure of 3a	S3
4. Optimization of the Reaction Conditions	S4
5. Scale-up Reaction	S4-S5
6. Typical Synthesis Procedure of 4a	S5
7. Proposed Mechanism	S5-S6
8. Characterization of 3, 4a, 5a	S6-S23
9. X-Ray Analysis	S23-S38
10. References	S39
11. Copies of NMR and IR Spectra	S40-S145

1. General Information:

All template reaction experiments were carried out under atmospheric conditions. Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at 300 or 400MHz on an Agilent spectrometer. CDCl₃ was used as solvent. Chemical shifts were referenced relative to residual solvent. Coupling constants (J) were reported in Hertz (Hz). Thin layer chromatography was carried out in the ultraviolet light using a GF-254 silica gel plate. Melting points were measured with micro melting point apparatus. HRMS were performed on an Agilent 6210 ESI/TOF. Infrared (IR) spectra were recorded on Nicolet 380. Samples were scanned in the 400-4000 cm⁻¹ region with KBr pellet

2. Substrate synthesis:

All starting materials **1a-1m** are known compounds and are prepared according to literature. ^[1,2]**1n** is new compound and is prepared according to literatures.^[3]

Colorless liquid, yield: 70%; R_f = 0.45 (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3023, 2969, 2928, 1705, 1491, 1447, 1368, 1297, 1268, 1137, 1031, 985, 950, 906, 756, 698 cm⁻¹ ¹**H NMR (300 MHz, CDCl₃):** δ 7.34 (q, J = 2.64, 2.11 Hz, 1H), 7.32 (d, J = 2.12 Hz, 2H), 7.31 – 7.24 (m, 2H), 6.51 (q, J = 2.94 Hz, 1H), 4.97 (dd, J = 1.61, 0.86 Hz, 1H), 4.89 (q, J = 1.33 Hz, 1H), 4.66 – 4.53 (m, 2H), 2.04 (d, J = 2.97 Hz, 3H), 1.75 – 1.71 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 212.5, 166.5, 139.8, 132.3, 128.7, 127.6, 127.2, 112.3, 99.1, 97.2, 67.9, 19.3, 14.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{17}O_2$ 229.1228; found 229.1231.

All starting materials **2a-2p** are known compounds. **2a** is commercially available. **2b-2c** are prepared according to literature.^[4] **2d-2o** are prepared according to literature.^[5] **2p** is prepared according to literature.^[6]

3. Typical Procedure for Synthesis of 3a:

Fe(acac)₃ (32 mg, 0.09 mmol) and 2,3-dienoates **1a** (56.4 mg,0.3 mmol) was added to the reaction tube and dissolved with ethanol (2 ml). Afterwards, 2-Methyl-2-propen-1-ol **2a** (64.9 mg, 0.9 mmol), and PhSiH₃ (64.9 mg, 0.6 mmol) were added via syringe. The solution was heated to 50°C for 2 h. After the reaction completed and quenched

with water, then ethyl acetate extracted the solution. Finally, the purification by column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:20) as eluent to give **3a** as a colorless liquid. (53 mg, 82% yield).

Table 1. Optimization of the Reaction Conditions a, b									
CO ₂ Et + CO ₂ Et + COH conditions									
	14	Za		Ja					
entry	catalyst	reductant	solvent	T(°C)	Yield(%)				
					3a				
1	Fe(acac) ₃	PhSiH ₃	EtOH	60	60				
2	Fe ₂ (ox) ₃ ·6H ₂ O	PhSiH₃	EtOH	60	0				
3	CoCl ₂	PhSiH₃	EtOH	60	trace				
4	Cu(acac) ₂	PhSiH₃	EtOH	60	trace				
5	Ni(acac) ₂	PhSiH₃	EtOH	60	0				
6	FeCl ₃	PhSiH₃	EtOH	60	0				
7	Fe(acac) ₃	NaBH ₄	EtOH	60	trace				
8	Fe(acac) ₃	Et₃SiH	EtOH	60	0				
9	Fe(acac) ₃	(EtO)₃SiH	EtOH	60	30				
10	Fe(acac) ₃	Ph_2SiH_2	EtOH	60	60				
11	Fe(acac) ₃	PhSiH₃	MeOH	60	20				
12	Fe(acac) ₃	PhSiH ₃	THF	60	0				
13	Fe(acac) ₃	PhSiH₃	CH₃CN	60	48				
14	Fe(acac) ₃	PhSiH₃	1,4-Dioxane	60	35				
15	Fe(acac) ₃	$PhSiH_3$	EtOH	75	30				
16	Fe(acac) ₃	PhSiH₃	EtOH	50	82				
17	Fe(acac) ₃	PhSiH ₃	EtOH	30	15				
18 ^c	Fe(acac) ₃	PhSiH ₃	EtOH	50	34				
19 ^d	Fe(acac) ₃	PhSiH₃	EtOH	50	24				

4. Optimization of the Reaction Conditions.

^a Reaction conditions: **1a** (0.3 mmol), **2a** (0.9 mmol), catalyst (30 mol %), reductant (2 equiv), solvent (2 mL), 2h; ^b yield refers to isolated product. ^c Fe(acac)₃ (10 mol %) was used. ^d conducted the reaction in an argon atmosphere.

5. Scale-up Reaction

 $Fe(acac)_3$ (160 mg, 0.45 mmol) and 2,3-dienoates **1a** (282 mg, 1.5 mmol) was added to the reaction tube and dissolved with ethanol (10 ml). Afterwards, 2-Methyl-2-

propen-1-ol **2a** (324.5 mg, 4.5 mmol), and PhSiH₃ (324.5 mg, 3.0 mmol) were added via syringe. The solution was heated to 50°C for 2 h. After the reaction completed and quenched with water, then ethyl acetate extracted the solution. Finally, the purification by column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:20) as eluent to give **3a** as a colorless liquid. (200 mg, 62% yield).

6. Typical Procedure for Synthesis of 4a.

3a (106 mg, 0.5 mmol), TsN₃ (130 mg, 1.5 eq), DBU (110 mg, 1.5 eq) are added to reaction tube under argon atmosphere, then dissolve with anhydrous acetonitrile (0.3 M). The solution was reacted for 5 hours in 0 °C. After the reaction was completed, it was quenched with water and extracted with ethyl acetate to obtain azo ester compound intermediate, which was added to the next step without purification. Add azo ester intermediate, B(C₆F₅)₃ (50 mg, 0.2 eq) to a dry reaction tube in an argon atmosphere, then dissolve with anhydrous DMF (0.2 M). The solution was reacted for 2 hours in 100 °C in an oxygen atmosphere. After the reaction is completed, it was quenched with water and extracted with ethyl acetate. Finally, the purification by column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:30) as eluent to give **4a** as white solid. (81 mg, 67% yield).

7. Proposed Mechanism

The reaction went through second path: 2,3-dienoates and allyl alcohol **B** formed allyl ester intermediate **G** under Fe (III) catalysis. Then allyl ester intermediate **G** and ferrohydride species **A** underwent hydrogen atom transfer to form radical intermediates **H**, which underwent intramolecular Michael addition to form radicals **I**. Finally, **I** formed anionic intermediates **J** through single electron transfer and **J** abstracted the proton from the ethanol and **B** to generate product.

8. Characterization of 3, 4a, 5a:

(E)-4-benzylidene-5,5-dimethyltetrahydro-2H-pyran-2-one (3a)

3a

Colorless liquid, 53 mg, yield: 82%; R_f = 0.26 (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3034, 2971, 2928, 1718, 1462, 1389, 1256, 1241, 1129, 1064, 1023, 860, 802, 744, 706, 577, 492 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 (t, *J* = 7.56 Hz, 2H), 7.24 (d, *J* = 7.29 Hz, 1H), 7.16 (d, *J* = 7.50 Hz, 2H), 6.50 (d, *J* = 2.45 Hz, 1H), 4.08 (s, 2H), 3.57 – 3.52 (m, 2H), 1.28 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.6, 137.9, 136.2, 128.6, 128.4, 127.1, 125.2, 77.0, 36.4, 33.8, 25.6.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{17}O_2$ 217.1228; found 217.1230.

(E)-4-benzylidene-5,5-dimethyltetrahydro-2H-pyran-2-one-3-dc (3aD)

3aD

Colorless liquid, 13 mg, yield: 20%; R_f = 0.33 (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3025, 2960, 2928, 1746, 1492, 1376, 1294, 1254, 1195, 1057, 966, 920, 859, 761, 702 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.37 – 7.32 (m, 2H), 7.26 – 7.21 (m, 1H), 7.16 (d, *J* = 7.58 Hz, 2H), 6.51 (s, 1H), 4.08 (s, 2H), 3.53 (d, *J* = 11.76 Hz, 1H), 1.27 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.6, 137.9, 136.2, 128.6, 128.4, 127.1, 125.2, 77.0, 36.4, 33.9, 25.6.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{16}DO_2$ 218.1291; found 218.1281.

(E)-5-benzylidene-2-oxaspiro[5.5]undecan-3-one (3b)

3b

White crystalline solid, m.p. 104-106°C, 57 mg, yield: 75%; $R_f = 0.45$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3007, 2936, 2853, 1745, 1485, 1456, 1385, 1243, 1164, 1135, 1056, 914, 871, 837, 756, 729, 704, 594, 550 cm⁻¹

¹H NMR (300 MHz, CDCl₃): δ 7.35 (t, J = 7.35 Hz, 2H), 7.23 (d, J = 6.10 Hz, 1H), 7.15 (d, J = 7.30 Hz, 2H), 6.56 (s, 1H), 4.30 (s, 2H), 3.53 (s, 2H), 1.73 (s, 4H), 1.67 (d, J = 9.09 Hz, 3H), 1.46 (dt, J = 22.30, 10.16 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 138.5, 136.4, 128.7, 128.4, 127.0, 125.5, 72.3, 39.3, 33.8, 33.4, 25.8, 21.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{21}O_2$ 257.1541; found 257.1546.

(E)-10-benzylidene-7-oxaspiro[4.5]decan-8-one (3c)

3c

White crystalline solid, m.p. 135-138°C, 53 mg, yield: 74%; $R_f = 0.35$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3061, 2959, 2865, 1728, 1660, 1597, 1447, 1391, 1260, 1231, 1102, 1052, 889, 802, 741, 691, 610 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 (t, *J* = 7.51 Hz, 2H), 7.23 (d, *J* = 7.42 Hz, 1H), 7.15 (d, *J* = 7.29 Hz, 2H), 6.50 (s, 1H), 4.11 (s, 2H), 3.58 (d, *J* = 2.10 Hz, 2H), 1.91 – 1.83 (m, 4H), 1.82 – 1.70 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 170.7, 138.6, 136.3, 128.7, 128.4, 127.0, 124.5, 74.7, 48.2, 36.6, 34.8, 24.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{19}O_2$ 243.1385; found 243.1389.

(E)-4-benzylidene-5,5-dimethyl-6-phenyltetrahydro-2H-pyran-2-one

(3d)

3d

White crystalline solid, m.p. 140-142°C, 44 mg, yield: 50%; $R_f = 0.35$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3053, 3028, 2978, 1730, 1495, 1451, 1368, 1364, 1295, 1258, 1170, 1039, 1002, 929, 908, 868, 748, 691, 592 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.36 (d, *J* = 6.20 Hz, 5H), 7.30 (dd, *J* = 16.00, 7.38 Hz, 4H), 7.19 (d, *J* = 7.42 Hz, 2H), 6.53 (s, 1H), 5.23 (s, 1H), 3.83 – 3.62 (m, 2H), 1.23 (s, 3H), 1.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.1, 138.0, 136.4, 135.4, 128.7, 128.5, 128.5, 128.0, 127.9, 127.1, 125.6, 87.3, 40.5, 34.0, 25.4, 22.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{20}O_2Na$ 315.1361; found 315.1363.

(E)-4-benzylidene-5-(o-tolyl)tetrahydro-2H-pyran-2-one (3e)

White crystalline solid, m.p. 138-140°C, 36 mg, yield: 40%; $R_f = 0.35$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3055, 3019, 2967, 1733, 1493, 1470, 1393, 1360, 1327, 1264, 1170, 1035, 1008, 925, 902, 868, 748, 694, 594, 560, 508 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.40 (td, *J* = 6.71, 2.66 Hz, 3H), 7.33 – 7.27 (m, 2H), 7.23 (dt, *J* = 8.59, 4.12 Hz, 4H), 6.53 (s, 1H), 5.61 (s, 1H), 3.86 – 3.68 (m, 2H), 2.43 (s, 3H), 1.26 (s, 3H), 1.21 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ 170.2, 138.2, 136.3, 136.0, 133.9, 130.5, 128.7, 128.4, 128.3, 128.2, 127.1, 125.6, 125.1, 82.4, 41.4, 34.1, 25.0, 22.3, 20.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₃O₂ 307.1698; found 307.1692.

(E)-4-benzylidene-5-(2-chlorophenyl)tetrahydro-2H-pyran-2-one (3f)

3f

White crystalline solid, m.p. 155-158°C, 39 mg, yield: 40%; $R_f = 0.34$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3067, 3028, 2971, 2936, 2869, 1735, 1576, 1476, 1443, 1406, 1329, 1291, 1268, 1166, 1048, 1033, 1004, 923, 900, 868, 771, 746, 733, 694, 650, 598, 569, 512 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.52 – 7.45 (m, 1H), 7.45 – 7.37 (m, 3H), 7.35 – 7.27 (m, 3H), 7.22 (d, *J* = 7.34 Hz, 2H), 6.55 (s, 1H), 5.91 (s, 1H), 3.87 – 3.67 (m, 2H), 1.31 (s, 3H), 1.20 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 169.8, 137.6, 136.2, 133.6, 133.4, 129.9, 129.6, 129.5, 128.7, 128.4, 127.1, 126.5, 125.5, 82.0, 41.5, 34.0, 24.6, 22.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{21}ClO_2$ 349.0971; found 349.0968.

(E)-4-benzylidene-5,5-dimethyl-6-(m-tolyl)tetrahydro-2H-pyran-2-

one (3g)

3g

White crystalline solid, m.p. 143-146°C, 53 mg, yield: 58%; $R_f = 0.36$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3053, 3028, 2965, 2919, 1737, 1597, 1451, 1406, 1333, 1260, 1172, 1029, 1004, 925, 871, 794, 741, 691, 589, 502 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.37 (t, *J* = 7.38 Hz, 2H), 7.30 – 7.27 (m, 1H), 7.24 (s, 1H), 7.22 – 7.15 (m, 3H), 7.15 – 7.07 (m, 2H), 6.53 (s, 1H), 5.20 (s, 1H), 3.78 (dd, *J* = 19.53, 1.10 Hz, 1H), 3.64 (dd, *J* = 19.04, 2.68 Hz, 1H), 2.38 (s, 3H), 1.23 (s, 3H), 1.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.1, 138.1, 137.5, 136.4, 135.3, 129.2, 128.7, 128.7,

128.4, 127.7, 127.1, 125.5, 125.2, 87.4, 87.4, 40.5, 34.0, 25.5, 22.1, 21.5. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₂₁H₂₃O₂ 307.1698; found 307.1697.

(E)-4-benzylidene-6-(3-chlorophenyl)-5,5-dimethyltetrahydro-2H-

pyran-2-one (3h)

3h

White crystalline solid, m.p. 157-160°C, 48 mg, yield: 50%; $R_f = 0.32$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3065, 3028, 2976, 2965, 1739, 1595, 1574, 1431, 1366, 1322, 1260, 1177, 1033, 918, 808, 771, 750, 696, 508 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.41 – 7.34 (m, 4H), 7.33 – 7.25 (m, 3H), 7.23 – 7.16 (m, 3H), 6.55 (s, 1H), 5.20 (s, 1H), 3.84 – 3.72 (m, 1H), 3.64 (dd, *J* = 19.30, 2.55 Hz, 1H), 1.24 (s, 3H), 1.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 169.6, 137.5, 137.4, 136.2, 134.0, 129.2, 128.7, 128.5, 128.5, 128.2, 127.2, 126.2, 125.9, 86.5, 86.4, 40.5, 33.9, 25.3, 21.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}ClO_2$ 327.1151; found 327.1154.

(E)-4-benzylidene-6-(4-fluorophenyl)-5,5-dimethyltetrahydro-2H-

pyran-2-one (3i)

White crystalline solid, m.p. 127-130°C, 55 mg, yield: 60%; $R_f = 0.24$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3055, 2976, 2930, 1737, 1608, 1510, 1418, 1289, 1247, 1156, 1027, 904,

835, 777, 604, 508 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.37 (t, J = 7.48 Hz, 2H), 7.28 (td, J = 7.65, 6.63, 4.42 Hz, 3H), 7.18 (d, J = 7.43 Hz, 2H), 7.07 (t, J = 8.61 Hz, 2H), 6.53 (s, 1H), 5.22 (s, 1H), 3.82 – 3.71 (m, 1H), 3.64 (dd, J = 19.26, 2.46 Hz, 1H), 1.21 (s, 3H), 1.08 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃):** δ 169.8, 137.7, 136.3, 131.3, 129.8, 129.7, 128.7, 128.5,

127.2, 125.7, 115.0, 114.8, 86.6, 40.5, 33.9, 25.3, 21.9.

¹⁹F NMR (**376** MHz, CDCl₃): δ -113.30.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}FO_2$ 311.1447; found 311.1449.

(E)-4-benzylidene-6-(4-chlorophenyl)-5,5-dimethyltetrahydro-2H-

pyran-2-one (3j)

White crystalline solid, m.p. 145-148°C, 63 mg, yield: 65%; $R_f = 0.24$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3053, 3028, 2976, 2921, 1741, 1599, 1495, 1410, 1283, 1250, 1160, 1089, 1033, 1008, 906, 833, 771, 702 cm⁻¹

¹H NMR (300 MHz, CDCl₃): δ 7.34 (d, J = 8.13 Hz, 4H), 7.24 (t, J = 9.05 Hz, 3H), 7.16 (d, J = 7.57 Hz, 2H), 6.51 (s, 1H), 5.19 (s, 1H), 3.75 (d, J = 19.30 Hz, 1H), 3.62 (dd, J = 19.28, 2.09 Hz, 1H), 1.19 (s, 3H), 1.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 169.7, 137.6, 136.2, 134.4, 134.0, 129.3, 128.7, 128.5, 128.1, 127.2, 125.8, 86.5, 40.5, 33.9, 25.3, 21.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}ClO_2$ 327.1151; found 327.1156.

(E)-4-benzylidene-6-(4-bromophenyl)-5,5-dimethyltetrahydro-2H-

pyran-2-one (3k)

White crystalline solid, m.p. 154-157°C, 66 mg, yield: 60%; $R_f = 0.32$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3051, 3023, 2971, 2932, 1730, 1597, 1489, 1410, 1289, 1243, 1168, 1073, 1033, 1008, 906, 827, 775, 706, 550, 481 cm⁻¹

¹H NMR (300 MHz, CDCl₃): δ 7.52 (d, J = 8.47 Hz, 2H), 7.37 (t, J = 7.27 Hz, 2H), 7.29 (d, J = 7.33 Hz, 1H), 7.23 – 7.14 (m, 4H), 6.54 (s, 1H), 5.20 (s, 1H), 3.78 (dd, J = 19.22, 1.46 Hz, 1H), 3.64 (dd, J = 19.25, 2.50 Hz, 1H), 1.21 (s, 3H), 1.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 169.7, 137.5, 136.2, 134.5, 131.1, 129.7, 128.7, 128.5, 127.2, 125.8, 122.6, 86.5, 40.4, 33.9, 25.3, 21.9.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₁BrO₂ 371.0646; found 371.0649.

(E)-4-benzylidene-5,5-dimethyl-6-(p-tolyl)tetrahydro-2H-pyran-2-one

(**3**I)

31

White crystalline solid, m.p. 140-142°C, 71 mg, yield: 78%; $R_f = 0.35$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3030, 2974, 2924, 2878, 1728, 1520, 1470, 1358, 1293, 1264, 1172, 1035, 1008, 906, 835, 762, 737, 700, 600, 510 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.37 (t, *J* = 7.47 Hz, 2H), 7.29 – 7.20 (m, 2H), 7.22 – 7.08 (m, 6H), 6.52 (t, *J* = 2.12 Hz, 1H), 5.20 (s, 1H), 3.77 (dd, *J* = 19.25, 1.46 Hz, 1H), 3.64 (dd, *J* = 19.26, 2.61 Hz, 1H), 2.37 (s, 3H), 1.22 (s, 3H), 1.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.1, 138.3, 138.1, 136.4, 132.5, 128.7, 128.5, 128.4,

127.9, 127.1, 125.5, 87.3, 87.3, 40.5, 34.0, 25.5, 22.0, 21.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{23}O_2$ 307.1698 ; found 307.1693.

(E)-4-benzylidene-6-(4-methoxyphenyl)-5,5-dimethyltetrahydro-2H-

pyran-2-one (3m)

3m

White crystalline solid, m.p. 104-106°C, 67 mg, yield: 70%; $R_f = 0.29$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3048, 2959, 2838, 1741, 1616, 1552, 1308, 1256, 1179, 1035, 993, 831, 764, 698, 594 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.37 (t, J = 7.46 Hz, 2H), 7.31 – 7.21 (m, 4H), 7.18 (d, J = 7.24 Hz, 2H), 6.90 (d, J = 8.68 Hz, 2H), 6.52 (s, 1H), 5.19 (s, 1H), 3.83 (s, 3H), 3.79 – 3.72 (m, 1H), 3.64 (dd, J = 19.26, 2.40 Hz, 1H), 1.21 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.1, 159.7, 138.1, 136.4, 129.2, 128.7, 128.4, 127.6,

127.1, 125.5, 113.3, 87.1, 87.1, 55.3, 40.6, 34.0, 25.5, 22.0. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₂₁H₂₂O₃ 323.1647 ,found 323.1646.

(E)-4-benzylidene-6-(3,4-dimethylphenyl)-5,5-dimethyltetrahydro-

2H-pyran-2-one (3n)

White crystalline solid, m.p. 145-148°C, 76 mg, yield: 80%; $R_f = 0.37$

(EtOAc/Petroleum ether 1:7).

IR (KBr) 3026, 2971, 2921, 1737, 1639, 1443, 1354, 1262, 1170, 1039, 1002, 918, 827, 739, 694, 510 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.36 (t, *J* = 7.50 Hz, 2H), 7.28 (s, 1H), 7.22 – 7.15 (m, 2H), 7.15 – 7.06 (m, 2H), 7.02 (dd, *J* = 7.59, 1.60 Hz, 1H), 6.52 (s, 1H), 5.17 (s, 1H), 3.76 (dd, *J* = 19.26, 1.47 Hz, 1H), 3.63 (dd, *J* = 19.21, 2.63 Hz, 1H), 2.27 (s, 6H), 1.22 (s, 3H), 1.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.2, 138.2, 136.9, 136.5, 136.1, 132.8, 129.2, 129.0, 128.7, 128.4, 127.1, 125.5, 125.4, 87.4, 40.5, 34.0, 25.5, 22.1, 19.8, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₅O₂ 321.1854 ,found 321.1855.

(E)-6-(benzo[d][1,3]dioxol-5-yl)-4-benzylidene-5,5-dimethyltetrahy-

dro-2H-pyran-2-one (30)

30

White crystalline solid, m.p. 103-105°C, 65 mg, yield: 65%; $R_f = 0.28$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3053, 2976, 2909, 1728, 1497, 1439, 1254, 1204, 1162, 1102, 1039, 1010, 937, 831, 769, 696 cm⁻¹

¹**H** NMR (400 MHz, CDCl₃): δ 7.36 (t, J = 7.48 Hz, 2H), 7.26 (d, J = 14.65 Hz, 2H), 7.18 (d, J = 7.32 Hz, 2H), 6.85 – 6.82 (m, 1H), 6.82 – 6.73 (m, 2H), 6.53 (t, J = 2.10 Hz, 1H), 5.99 (s, 2H), 5.14 (s, 1H), 3.75 (dd, J = 19.26, 1.38 Hz, 1H), 3.62 (dd, J = 19.30, 2.41 Hz, 1H), 1.21 (s, 3H), 1.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 169.9, 147.7, 147.4, 138.0, 129.2, 128.7, 128.5, 127.1, 125.5, 121.8, 108.5, 107.6, 101.2, 87.1, 87.1, 40.6, 33.9, 25.5, 22.0.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{21}O_4$ 337.1440, found 337.1438.

(E)-4-benzylidene-4a-methyloctahydrocyclohepta[b]pyran-2(3H)-one

(3p)

3р

White crystalline solid, m.p. 150-152°C, 34 mg, yield: 34%; $R_f = 0.35$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3073, 2973, 2934, 2876, 1742, 1651, 1598, 1507, 1485, 1411, 1383, 1301, 1220, 1161, 1046, 1103, 942, 878, 820, 780, 743 cm⁻¹

¹**H** NMR (400 MHz, CDCl₃): δ 7.34 (t, J = 7.48 Hz, 2H), 7.25 (s, 1H), 7.15 (d, J = 7.38 Hz, 2H), 6.50 (s, 1H), 4.31 – 4.23 (m, 1H), 3.72 – 3.52 (m, 1H), 3.46 (dd, J = 18.57, 2.06 Hz, 1H), 2.02 – 1.88 (m, 3H), 1.86 – 1.67 (m, 3H), 1.59 (dd, J = 25.70, 13.10 Hz, 4H), 1.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 171.2, 170.8, δ 139.9, 138.8, 136.6, 136.6, 128.7, 128.7, 128.5, 128.4, 126.9, 126.5, 125.8, 124.4, 86.3, 85.2, 43.1, 42.7, 37.3, 37.1, 34.2, 33.8, 30.2, 28.6, 28.1, 27.5, 26.8, 24.0, 23.1, 22.1, 22.0, 20.4.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{18}H_{23}O_2$ 271.1698, found 271.1697.

(E)-5,5-dimethyl-4-(4-methylbenzylidene)tetrahydro-2H-pyran-2-one

(3q)

White crystalline solid, m.p. 85-89°C, 48 mg, yield: 70%; $R_f = 0.27$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3023, 2971, 2936, 1724, 1601, 1520, 1468, 1377, 1295, 1245, 1179, 1114, 1060, 1018, 887, 864, 831, 777, 752, 552 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.15 (d, *J* = 7.70 Hz, 2H), 7.05 (d, *J* = 7.75 Hz, 2H), 6.46 (s, 1H), 4.07 (s, 2H), 3.54 (d, *J* = 2.21 Hz, 2H), 2.34 (s, 3H), 1.26 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.7, 137.1, 136.8, 133.3, 129.1, 128.6, 125.1, 125.1, 77.0, 36.3, 33.9, 33.9, 25.5, 21.1.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₉O₂ 231.1385 ; found 231.1387.

(E)-4-(4-fluorobenzylidene)-5,5-dimethyltetrahydro-2H-pyran-2-one

(**3**r)

Colorless liquid, 47 mg, yield: 68%; R_f = 0.26 (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3058, 3026, 2936, 2854, 1742, 1594, 1498, 1448, 1381, 1259, 1155, 1020, 868, 748, 702 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.17 – 7.06 (m, 2H), 7.03 (t, *J* = 8.60 Hz, 2H), 6.45 (s, 1H), 4.07 (s, 2H), 3.50 – 3.48 (m, 2H), 1.26 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.4, 160.5, 138.1, 132.1, 130.3, 130.2, 124.2, 115.5, 115.3, 76.9, 36.4, 33.8, 25.6.

¹⁹F NMR (376 MHz, CDCl₃): δ -114.71.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{16}FO_2$ 235.1134; found 235.1131.

(E)-4-(4-chlorobenzylidene)-5,5-dimethyltetrahydro-2H-pyran-2-one

(**3**s)

3s

White crystalline solid, m.p. 95-98°C, 45 mg, yield: 60%; $R_f = 0.25$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3073, 2967, 2884, 1745, 1485, 1404, 1377, 1306, 1239, 1156, 1093, 1050, 1014, 879, 816, 748, 604, 519 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.30 (d, *J* = 8.22 Hz, 2H), 7.08 (d, *J* = 8.22 Hz, 2H), 6.43 (s, 1H), 4.07 (s, 2H), 3.49 (s, 2H), 1.26 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.3, 138.8, 134.6, 132.9, 130.0, 128.6, 124.1, 76.9, 36.5, 33.8, 25.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{16}ClO_2 251.0838$; found 251.0835.

(E)-4-(4-bromobenzylidene)-5,5-dimethyltetrahydro-2H-pyran-2-one

(3t)

3t

White crystalline solid, m.p. 110-114°C, 55 mg, yield: 63%; $R_f = 0.28$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3071, 2969, 2932, 2894, 1718, 1597, 1493, 1470, 1387, 1291, 1243, 1137, 1068, 1010, 860, 821, 769, 702, 498 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.47 (d, *J* = 8.27 Hz, 2H), 7.02 (d, *J* = 8.13 Hz, 2H), 6.42 (s, 1H), 4.08 (s, 2H), 3.49 (s, 2H), 1.27 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.2, 138.9, 135.1, 131.6, 130.3, 124.2, 121.0, 76.8, 36.5, 33.8, 25.5.

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₁BrO₂ 295.0333 ; found 295.0339.

(E)-5,5-dimethyl-4-(2-methylbenzylidene)tetrahydro-2H-pyran-2-one

3u

Colorless liquid, 34 mg, yield: 50%; $R_f = 0.22$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3063, 3021, 2965, 2930, 1747, 1462, 1372, 1272, 1231, 1154, 1058, 850, 754, 737, 554, 452 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.16 (d, *J* = 6.30 Hz, 3H), 7.03 – 6.95 (m, 1H), 6.50 (s, 1H), 4.08 (s, 2H), 3.34 – 3.31 (m, 2H), 2.20 (s, 3H), 1.30 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 138.1, 136.2, 135.2, 130.1, 128.7, 127.4, 125.7, 124.8, 77.0, 36.3, 33.6, 25.8, 19.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{18}O_2Na$ 253.1204; found 253.1208.

(E)-5,5-dimethyl-4-(3-(trifluoromethyl)benzylidene)tetrahydro-2H-

pyran-2-one (3v)

Colorless liquid, 42 mg, yield: 50%; $R_f = 0.18$ (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3061, 3019, 2969, 2926, 1758, 1462, 1379, 1272, 1235, 1150, 1110,1045, 946, 848, 756, 735, 562, 446 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.48 (dt, J = 15.34, 7.72 Hz, 2H), 7.39 (s, 1H), 7.34 (d, J = 7.38 Hz, 1H), 6.52 (s, 1H), 4.09 (s, 2H), 3.52 – 3.48 (m, 2H), 1.29 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 170.1, 140.0, 136.9, 131.8, 131.8, 128.9, 125.4, 125.4, 124.0, 123.9, 123.8, 123.8, 76.8, 36.5, 33.8, 25.5

¹⁹F NMR (**376** MHz, CDCl₃): δ -62.74.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{16}F_3O_2$ 285.1102; found 285.1102.

(E)-4-(2,5-dimethylbenzylidene)-5,5-dimethyltetrahydro-2H-pyran-2-

one (3w)

3w

Colorless liquid, 29 mg, yield: 40%; $R_f = 0.23$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3013, 2974, 2926, 1718, 1479, 1383, 1283, 1241, 1056, 943, 864, 810, 769, 677, 592, 496 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.07 (d, *J* = 7.68 Hz, 1H), 6.98 (d, *J* = 7.78 Hz, 1H), 6.82 (s, 1H), 6.48 (s, 1H), 4.08 (s, 2H), 3.35 – 3.33 (m, 2H), 2.30 (s, 3H), 2.15 (s, 3H), 1.29 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 137.8, 135.0, 132.9, 129.9, 129.2, 128.0, 124.8, 77.0, 36.2, 33.6, 25.7, 20.9, 19.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{20}O_2Na$ 267.1361; found 267.1367.

(E)-4-(2,3-dichlorobenzylidene)-5,5-dimethyltetrahydro-2H-pyran-2-

one (3x)

3x

Colorless liquid, 56 mg, yield: 66%; $R_f = 0.20$ (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3076, 2969, 2934, 2884, 1716, 1476, 1418, 1381, 1237, 1133, 1064, 939, 860, 789, 746, 704, 498 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.39 (d, *J* = 8.05 Hz, 1H), 7.18 (t, *J* = 7.85 Hz, 1H), 7.03 (d, *J* = 7.60 Hz, 1H), 6.52 (s, 1H), 4.09 (s, 2H), 3.34 (s, 2H), 1.31 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.2, 140.5, 136.7, 133.5, 132.0, 129.4, 129.4, 128.3, 127.0, 123.0, 76.8, 36.6, 33.7, 25.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{15}Cl_2O_2$ 285.0449; found 285.0452.

(E)-4-benzylidene-3,5,5-trimethyltetrahydro-2H-pyran-2-one (3y)

Colorless liquid, 30 mg, yield: 44%; R_f = 0.32 (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3053, 2976, 2934, 2886, 1701, 1474, 1379, 1295, 1250, 1147, 1039, 989, 921, 846, 733, 689, 577,490 cm⁻¹

¹**H** NMR (300 MHz, CDCl₃): δ 7.34 (t, J = 7.49 Hz, 2H), 7.25 (d, J = 7.28 Hz, 1H), 7.19 (d, J = 7.41 Hz, 2H), 6.49 (s, 1H), 4.29 (d, J = 11.26 Hz, 1H), 3.99 (d, J = 11.26 Hz, 1H), 3.86 (q, J = 6.82 Hz, 1H), 1.38 (d, J = 7.63 Hz, 3H), 1.27 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 174.1, 144.2, 136.4, 128.6, 128.2, 127.1, 125.5, 76.1, 38.0, 36.3, 27.4, 25.3, 19.1.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{19}O_2$ 231.1385; found 231.1385.

(E)-3-benzyl-4-benzylidene-5,5-dimethyltetrahydro-2H-pyran-2-one (3z)

White crystalline solid, m.p. 100-102°C, 45 mg, yield: 50%; $R_f = 0.33$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3065, 3028, 2967, 2930, 1739, 1606, 1491, 1454, 1374, 1252, 1145, 1064, 1031, 960, 921, 754, 702, 567, 500 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.35 (t, J = 7.38 Hz, 2H), 7.26 (d, J = 14.65 Hz, 2H), 7.23 – 7.16 (m, 5H), 6.93 (dd, J = 6.59, 2.77 Hz, 2H), 6.61 (s, 1H), 4.27 – 4.16 (m, 1H), 3.78 – 3.70 (m, 2H), 2.92 (dd, J = 6.74, 2.04 Hz, 2H), 1.26 (s, 3H), 1.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.4, 142.7, 137.2, 136.7, 129.2, 128.7, 128.4, 128.2, 127.1, 127.0, 126.4, 75.3, 45.6, 38.5, 36.0, 28.8, 24.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{23}O_2$ 307.1698; found 307.1700.

(E)-4-benzylidene-5,5-dimethyl-3-(4-(trifluoromethyl)benzyl)tetra-

hydro-2H-pyran-2-one (3aa)

3aa

White crystalline solid, m.p. 110-112°C, 37 mg, yield: 33%; $R_f = 0.36$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3019, 2976, 2928, 2874, 1735, 1620, 1422, 1322, 1287, 1170, 1127, 1068, 1043, 1018, 835, 769, 700, 635, 502 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.39 (d, J = 8.04 Hz, 2H), 7.36 – 7.26 (m, 3H), 7.10 (d, J = 6.97 Hz, 2H), 6.94 (d, J = 8.03 Hz, 2H), 6.62 (s, 1H), 4.27 – 4.18 (m, 1H), 4.03 (d, J = 11.44 Hz, 1H), 3.91 (d, J = 11.38 Hz, 1H), 2.95 (dd, J = 7.00, 3.50 Hz, 2H), 1.29 (s, 3H), 1.23 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.0, 142.1, 141.3, 136.4, 129.4, 128.8, 128.1, 127.2, 127.0, 125.2, 125.2, 75.7, 45.1, 38.4, 36.1, 28.5, 24.7.

¹⁹F NMR (376 MHz, CDCl₃): -62.53.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{22}H_{22}BF_3O_2$ 375.15719; found 375.1570.

(E)-3-allyl-4-benzylidene-5,5-dimethyltetrahydro-2H-pyran-2-one

(**3ab**)

Colorless liquid, 38 mg, yield: 50%; $R_f = 0.32$ (EtOAc/Petroleum ether 1:7). **IR (KBr)** 3073, 3055, 2980, 2928, 1724, 1599, 1443, 1368, 1291, 1135, 998, 918, 858, 741, 696, 639, 492 cm⁻¹

¹H NMR (300 MHz, CDCl₃): δ 7.34 (t, J = 7.44 Hz, 2H), 7.24 (d, J = 7.44 Hz, 1H), 7.19 (d, J = 7.59 Hz, 2H), 6.56 (s, 1H), 5.67 (td, J = 17.16, 7.44 Hz, 1H), 5.04 – 4.95 (m, 2H), 4.39 – 4.33 (m, 1H), 3.95 (d, J = 11.42 Hz, 1H), 3.93 – 3.87 (m, 1H), 2.45 (dt, J = 14.03, 6.47 Hz, 2H), 1.30 (s, 3H), 1.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.2, 142.9, 136.4, 133.8, 128.6, 128.3, 127.1, 126.4, 117.8, 75.7, 44.1, 37.3, 36.2, 28.6, 25.2.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{21}O_2$ 257.1541; found 257.1541.

(E)-4-benzylidene-6-(4-methoxyphenyl)-3,5,5-trimethyltetrahydro-

2H-pyran-2-one (3ac)

3ac

White crystalline solid, m.p. 145-148 °C, 55 mg, yield:55%; $R_f = 0.25$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3061, 3001, 2974, 2934, 2901, 2884, 1726, 1610, 1512, 1464, 1387, 1362, 1324, 1272, 1239, 1177, 1120, 1056, 1033, 889, 837, 748, 691, 552 cm⁻¹

¹**H NMR (400 MHz, CDCl₃):** δ 7.36 (t, J = 7.47 Hz, 2H), 7.27 (d, J = 11.38 Hz, 2H), 7.24 – 7.20 (m, 3H), 6.90 (d, J = 8.62 Hz, 2H), 6.50 (s, 1H), 5.35 (s, 1H), 3.98 (q, J = 7.41 Hz, 1H), 3.83 (s, 3H), 1.48 (d, J = 7.62 Hz, 3H), 1.26 (s, 3H), 1.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 174.0, 144.1, 136.8, 129.2, 128.6, 128.2, 127.8, 127.1, 126.2, 113.2, 85.8, 55.3, 40.9, 38.2, 26.2, 23.6, 19.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{22}H_{25}O_3$ 337.1803; found 337.1800.

(E)-4-benzylidene-6-(4-chlorophenyl)-3,5,5-trimethyltetrahydro-2H-

pyran-2-one (3ad)

3ad

White crystalline solid, m.p. 152-156°C, 51 mg, yield: 50%; $R_f = 0.24$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3057, 3028, 2974, 2934, 2878, 1739, 1599, 1491, 1385, 1281, 1260, 1093, 1054, 1012, 846, 766, 698, 637, 548, 506, 456 cm⁻¹

¹H NMR (300 MHz, CDCl₃): δ 7.37 (d, J = 6.40 Hz, 2H), 7.35 (s, 2H), 7.28 (s, 3H), 7.20 (d, J = 7.49 Hz, 2H), 6.52 (s, 1H), 5.37 (s, 1H), 3.98 (q, J = 7.50 Hz, 1H), 1.48 (d, J = 7.61 Hz, 3H), 1.27 (s, 3H), 1.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 173.6, 143.7, 136.6, 134.4, 134.2, 129.4, 128.7, 128.2, 128.1, 127.2, 126.6, 85.3, 40.7, 38.2, 26.2, 23.5, 19.8

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{22}ClO_2$ 341.1308; found 341.1303.

4,4-dimethyl-3-phenyl-4,5-dihydropyrano[3,4-c]pyrazol-7(2H)-one

(4a)

White crystalline solid, m.p. 83-85°C, 81 mg, yield: 67%; $R_f = 0.20$ (EtOAc/Petroleum ether 1:7).

IR (KBr) 3282, 3061, 2980, 2936, 2876, 1735, 1489, 1462, 1441, 1370, 1283, 1250, 1137, 1056, 1014, 971, 769, 719, 696, 552 cm⁻¹

¹H NMR (300 MHz, CDCl₃): δ 7.55 – 7.38 (m, 5H), 4.14 (s, 2H), 1.29 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 160.4, 130.5, 129.2, 129.1, 128.6, 128.1, 80.3, 32.1, 24.6.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{15}N_2O_2$ 243.1133; found 243.1132.

ethyl 3-benzylidene-5-((tert-butyldimethylsilyl)oxy)-4,4-dimethyl-

pentanoate (5a)

5a

Colorless liquid, 90 mg, yield: 80%; $R_f = 0.45$ (EtOAc/Petroleum ether 1:15). **IR (KBr)** 3061, 2963, 2938, 2863, 1730, 1470, 1370, 1250, 1154, 1077, 1020, 837, 775, 702, 662, 575 cm⁻¹

¹**H NMR (300 MHz, CDCl₃):** δ 7.31 (d, *J* = 7.50 Hz, 1H), 7.26 (dd, *J* = 7.89, 4.21 Hz, 3H), 7.20 (t, *J* = 6.83 Hz, 1H), 6.67 (s, 1H), 4.12 (q, *J* = 7.13 Hz, 2H), 3.47 (s, 2H), 3.23 (s, 2H), 1.24 (t, *J* = 7.13 Hz, 3H), 1.13 (s, 6H), 0.90 (s, 9H), 0.03 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 172.7, 140.4, 138.5, 129.2, 128.5, 128.1, 126.4, 71.3, 60.5, 41.8, 35.0, 25.9, 24.2, 18.2, 14.1, -5.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₂H₃₇O₃Si 377.2512; found 377.2504

9. X-Ray Analysis

9.1 X-Ray Analysis for 3b

Single crystals of $C_{17}H_{20}O_2$ **3b** were grown from ethyl acetate and PE. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 149.99(10) K during data collection. The data were collected and processed using CrysAlisPro. The structures were solved by direct methods using Olex2 software with the SHELXT structure solution program via intrinsic phasing algorithm, and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018 using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms.

Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2167329 for compounds **3b**

Figure S1. ORTEP Drawing of 3b (The ellipsoids are shown at 50% probability levels)

···· · · · · · · · · · · · · · · · · ·	
Identification code	3b
Empirical formula	$C_{17}H_{20}O_2$
Formula weight	256.33
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.8532(7)
b/Å	15.9018(9)
c/Å	8.3007(5)
α/°	90
β/°	108.936(7)
γ/°	90
Volume/Å ³	1355.05(16)
Z	4
$\rho_{calc}g/cm^3$	1.256
µ/mm ⁻¹	0.081
F(000)	552.0
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$

	Table 1 Cr	vstal data	and structu	re refinement	t for	3b.
--	------------	------------	-------------	---------------	-------	-----

Radiation	Mo Ka ($\lambda = 0.71073$)					
20 range for data collection/° 3.968 to 49.998						
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}18 \leq k \leq 18, \text{-}9 \leq l \leq 6$					
Reflections collected	5432					
Independent reflections	2378 [$R_{int} = 0.0212, R_{sigma} = 0.0313$]					
Data/restraints/parameters	2378/0/172					
Goodness-of-fit on F ²	1.079					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0409, wR_2 = 0.0923$					
Final R indexes [all data]	$R_1 = 0.0491, wR_2 = 0.0977$					
Largest diff. peak/hole / e Å ⁻³ 0.17/-0.26						

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3b. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
01	5663.4(11)	3548.7(7)	2328.5(14)	36.5(3)
O2	7212.4(10)	3594.4(7)	4811.9(13)	28.7(3)
C1	2843.6(14)	3510.1(9)	6158.8(17)	21.4(3)
C2	1846.1(14)	4074.3(10)	6105.8(18)	25.0(3)
C3	554.2(14)	3853.9(10)	5366(2)	28.7(4)
C4	222.9(15)	3068.5(10)	4653(2)	32.5(4)
C5	1197.6(15)	2499.6(10)	4701(2)	32.7(4)
C6	2493.3(14)	2712.3(9)	5460.9(19)	26.3(4)
C7	4212.4(13)	3770.3(9)	6960.4(18)	21.7(3)
C8	5218.2(13)	3623.4(8)	6411.1(17)	19.0(3)
С9	5065.4(14)	3160.5(9)	4764.9(18)	22.3(3)
C10	5966.3(15)	3454.3(9)	3847.2(19)	24.3(3)
C11	7513.2(14)	3460.3(10)	6625.4(19)	25.5(4)
C12	6592.4(13)	3948.3(9)	7335.6(17)	19.4(3)
C13	6650.9(14)	4901.3(9)	7004.3(18)	22.3(3)
C14	7952.4(15)	5302.0(9)	7994.1(19)	26.8(4)
C15	8266.9(15)	5143.2(10)	9893.9(19)	29.0(4)
C16	8288.6(15)	4208.3(10)	10282.7(19)	27.5(4)
C17	7007.2(14)	3787.7(9)	9267.8(18)	24.0(3)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 3b. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	47.2(7)	43.8(7)	23.1(6)	0.5(5)	17.9(5)	1.6(6)
02	26.1(6)	36.7(6)	28.3(6)	-3.3(5)	15.7(5)	-0.6(5)
C1	22.3(8)	26.3(8)	17.5(7)	2.4(6)	8.9(6)	-1.2(6)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C2	26.9(8)	26.0(8)	25.0(8)	-2.5(6)	12.4(6)	-1.0(7)
C3	21.8(8)	33.5(9)	33.3(9)	5.5(7)	12.5(7)	5.4(7)
C4	19.9(8)	37.4(10)	37.1(9)	2.7(8)	5.1(7)	-3.7(7)
C5	29.2(9)	26.7(9)	40.7(10)	-2.1(7)	9.4(7)	-5.4(7)
C6	23.6(8)	24.0(8)	32.7(9)	2.1(7)	11.2(7)	2.2(7)
C7	22.6(8)	24.8(8)	18.0(7)	-0.9(6)	6.8(6)	-0.6(6)
C8	21.8(8)	17.2(7)	17.7(7)	2.9(6)	6.2(6)	1.1(6)
С9	22.3(8)	24.2(8)	20.7(7)	-0.9(6)	7.7(6)	1.2(6)
C10	28.2(8)	22.2(8)	25.2(8)	-3.4(6)	12.5(7)	2.9(7)
C11	20.9(8)	28.8(8)	26.7(8)	-1.2(7)	7.5(6)	1.3(7)
C12	19.1(7)	20.2(7)	19.3(7)	1.3(6)	6.8(6)	-0.2(6)
C13	23.3(8)	22.1(8)	21.0(7)	2.8(6)	6.6(6)	0.6(6)
C14	28.0(8)	21.1(8)	30.2(9)	2.5(6)	8.2(7)	-3.0(7)
C15	26.6(8)	31.2(9)	25.7(8)	-4.7(7)	3.8(7)	-5.5(7)
C16	27.6(8)	31.0(9)	20.6(8)	3.2(7)	3.1(6)	-3.8(7)
C17	23.3(8)	25.9(8)	22.1(8)	5.2(6)	6.2(6)	-2.5(7)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 3b. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 3b.

Atom Atom		Atom	Length/Å	Atom	Atom	Length/Å
	01	C10	1.2045(18)	C8	C9	1.5131(19)
	02	C10	1.3479(18)	C8	C12	1.5289(19)
	02	C11	1.4488(18)	C9	C10	1.496(2)
	C1	C2	1.396(2)	C11	C12	1.527(2)
	C1	C6	1.395(2)	C12	C13	1.5451(19)
	C1	C7	1.476(2)	C12	C17	1.5400(19)
	C2	C3	1.381(2)	C13	C14	1.524(2)
	C3	C4	1.379(2)	C14	C15	1.522(2)
	C4	C5	1.383(2)	C15	C16	1.520(2)
	C5	C6	1.383(2)	C16	C17	1.527(2)
	C7	C8	1.333(2)			

Table 5 Bond Angles for 3b.

Atom	n Aton	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C10	02	C11	115.93(11)	01	C10	C9	124.77(14)
C2	C1	C7	119.40(13)	O2	C10	C9	116.40(12)
C6	C1	C2	117.86(13)	O2	C11	C12	111.80(11)
C6	C1	C7	122.73(13)	C8	C12	C13	109.38(11)
C3	C2	C1	121.08(14)	C8	C12	C17	112.00(11)

Table 5 Bond Angles for 3b.

Atom Atom Atom		n Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
C4	C3	C2	120.42(15)	C11	C12	C8	106.77(11)
C3	C4	C5	119.33(14)	C11	C12	C13	111.10(12)
C4	C5	C6	120.54(15)	C11	C12	C17	108.12(12)
C5	C6	C1	120.75(14)	C17	C12	C13	109.45(11)
C8	C7	C1	127.79(13)	C14	C13	C12	113.48(11)
C7	C8	C9	122.16(13)	C15	C14	C13	110.24(12)
C7	C8	C12	122.88(13)	C16	C15	C14	111.41(12)
C9	C8	C12	114.89(12)	C15	C16	C17	111.27(12)
C10	C9	C8	114.19(12)	C16	C17	C12	114.09(12)
01	C10	02	118.80(14)				

Table 6 Torsion Angles for 3b.

A B C	D A	Angle/°	A	B	С	D	Angle/°	
O2 C11 C12	C8	60.84(15)	C8	C9	C10	01	-138.78(15	5)
O2 C11 C12	C13	-58.35(15)	C8	C9	C10	02	43.38(18	3)
O2 C11 C12	C17	-178.48(11)	C8	C12	C13	C14	175.14(12	2)
C1 C2 C3	C4	-0.3(2)	C8	C12	C17	C16	-171.77(12	2)
C1 C7 C8	С9	1.7(2)	C9	C8	C12	C11	-18.47(16	5)
C1 C7 C8	C12	178.29(13)	C9	C8	C12	C13	101.84(14	4)
C2 C1 C6	C5	1.7(2)	C9	C8	C12	C17	-136.64(12	2)
C2 C1 C7	C8	-138.28(16)	C10	02	C11	C12	-52.76(16	5)
C2 C3 C4	C5	0.6(2)	C11	02	C10	01	-179.34(13	3)
C3 C4 C5	C6	0.3(2)	C11	02	C10	С9	-1.36(18	3)
C4 C5 C6	C1	-1.5(2)	C11	C12	C13	C14	-67.24(15	5)
C6 C1 C2	C3	-0.9(2)	C11	C12	C17	C16	70.86(16	5)
C6 C1 C7	C8	42.6(2)	C12	C8	С9	C10	-30.26(17	7)
C7 C1 C2	C3	179.96(13)	C12	C13	C14	C15	-56.37(17	7)
C7 C1 C6	C5	-179.10(14)	C13	C12	C17	C16	-50.29(16	5)
C7 C8 C9	C10	146.56(14)	C13	C14	C15	C16	57.21(17	7)
C7 C8 C12	C11	164.74(13)	C14	C15	C16	C17	-55.67(17	7)
C7 C8 C12	C13	-74.96(17)	C15	C16	C17	C12	53.12(18	3)
C7 C8 C12	C17	46.56(19)	C17	C12	C13	C14	52.09(16	5)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 3b.

Atom	x	У	Z	U(eq)
H2	2054.83	4607.33	6576.38	30
H3	-96.62	4237.74	5348.47	34
H4	-647.3	2922.84	4145.63	39

Atom	x	у	z	U(eq)
Н5	980.43	1969.72	4217.95	39
Н6	3138.04	2318.98	5507.19	32
H7	4394.99	4072.87	7969.65	26
H9A	5214.67	2565.93	5012.9	27
H9B	4174.94	3225.51	4016.77	27
H11A	8402.29	3636.03	7210.33	31
H11B	7449.24	2865.04	6841.04	31
H13A	6486.15	4990.85	5796.58	27
H13B	5964.28	5180.93	7310.93	27
H14A	8635.17	5066.94	7613.07	32
H14B	7914.11	5902.63	7779.25	32
H15A	9109.44	5385.85	10503.92	35
H15B	7619.11	5417.52	10287.89	35
H16A	8439.64	4129.38	11490.39	33
H16B	8999.79	3944.13	10004.92	33
H17A	6325.34	3989.5	9689.06	29
H17B	7089.18	3186.15	9467.54	29

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3b.

9.2 X-Ray Analysis for 3ad

Single crystals of $C_{21}H_{21}ClO_2$ **3ad** were grown from ethyl acetate and PE. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 149.99(10) K during data collection. The data were collected and processed using CrysAlisPro. The structures were solved by direct methods using Olex2 software with the SHELXT structure solution program via intrinsic phasing algorithm, and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018 using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms.

Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2167331 for compounds **3ad**

Figure S2. ORTEP Drawing of **3ad** (The ellipsoids are shown at 50% probability levels)

J	
Identification code	3ad
Empirical formula	$C_{21}H_{21}ClO_2$
Formula weight	340.83
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	10.2977(7)
b/Å	17.5607(12)
c/Å	19.3729(13)
$\alpha/^{\circ}$	90
β/°	96.121(6)
γ/°	90
Volume/Å ³	3483.3(4)
Ζ	8
$ ho_{calc}g/cm^3$	1.300
μ/mm^{-1}	0.229
F(000)	1440.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)

Table 1 Crystal data and structure refinement for 3ad.

2Θ range for data collection/° 4.23 to 49.99					
Index ranges	$-12 \le h \le 12, -20 \le k \le 20, -23 \le l \le 17$				
Reflections collected	7517				
Independent reflections	$3066 [R_{int} = 0.0221, R_{sigma} = 0.0284]$				
Data/restraints/parameters	3066/0/220				
Goodness-of-fit on F ²	1.023				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0372, wR_2 = 0.0879$				
Final R indexes [all data]	$R_1 = 0.0444, wR_2 = 0.0920$				
Largest diff. peak/hole / e Å ⁻³ 0.18/-0.23					

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3ad. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z,	U(eq)
Cl1	1655.9(4)	5239.9(3)	2707.6(2)	40.27(16)
01	8497.0(12)	2475.6(7)	3392.3(6)	42.0(3)
O2	7173.1(10)	3432.2(6)	3522.1(5)	27.5(3)
C1	10435.3(17)	3413.9(9)	5808.9(8)	30.4(4)
C2	11559.2(17)	3319.0(10)	5475.6(9)	36.0(4)
C3	12714.4(19)	3059.3(11)	5832.2(11)	42.6(5)
C4	12776(2)	2883.1(10)	6527.5(10)	43.7(5)
C5	11681(2)	2971.5(11)	6867.4(10)	46.2(5)
C6	10528(2)	3236.4(10)	6515.3(9)	40.1(5)
C7	9172.6(16)	3710.6(9)	5490.3(8)	28.9(4)
C8	8622.0(15)	3735.1(9)	4833.6(8)	23.0(3)
С9	7230.8(15)	4048.0(9)	4666.8(8)	23.3(3)
C10	6972.2(15)	4149.7(9)	3873.0(8)	22.6(3)
C11	8301.1(15)	3057.8(10)	3689.0(8)	27.0(4)
C12	9273.3(15)	3413.3(9)	4232.5(8)	25.9(4)
C13	5625.7(15)	4416.9(9)	3598.8(7)	23.1(3)
C14	4617.4(15)	3904.8(10)	3422.2(8)	27.6(4)
C15	3396.1(15)	4157.0(10)	3151.9(8)	28.3(4)
C16	3184.5(15)	4926.5(10)	3068.5(8)	26.9(4)
C17	4159.7(16)	5452.9(10)	3245.1(8)	28.8(4)
C18	5380.6(16)	5188.3(9)	3503.9(8)	26.7(4)
C19	7090.9(18)	4829.4(10)	5000.3(9)	31.6(4)
C20	6247.5(16)	3488.7(10)	4930.0(9)	32.1(4)
C21	10094.7(17)	3999.3(12)	3870.2(9)	39.0(5)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 3ad. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	31.5(3)	46.0(3)	42.1(3)	6.2(2)	-1.78(18)	12.0(2)
01	45.9(8)	42.5(8)	34.9(7)	-16.2(6)	-8.2(6)	16.0(6)
O2	26.0(6)	31.3(7)	23.9(6)	-6.7(5)	-3.4(4)	5.0(5)
C1	40.7(10)	20.3(9)	27.5(9)	-4.2(7)	-9.2(7)	-1.3(8)
C2	37.4(10)	32.1(10)	35.7(10)	2.8(8)	-9.4(8)	-7.1(8)
C3	36.5(10)	34.3(11)	53.5(12)	-0.1(9)	-12.1(8)	-4.8(9)
C4	50.6(12)	23.9(10)	50.1(12)	-3.5(8)	-24.9(10)	2.3(9)
C5	71.5(14)	30.4(10)	31.2(10)	-4.5(8)	-19.5(9)	10.6(10)
C6	57.9(12)	33.2(10)	26.2(9)	-6.0(8)	-9.4(8)	9.8(9)
C7	37.8(9)	24.0(9)	23.9(8)	-1.8(7)	-1.8(7)	1.2(8)
C8	29.1(8)	17.7(8)	21.7(8)	1.0(6)	0.1(6)	-4.6(7)
С9	27.9(8)	21.8(8)	20.0(8)	-0.4(6)	1.3(6)	-1.2(7)
C10	25.5(8)	20.5(8)	21.6(8)	-2.0(6)	1.9(6)	-1.6(7)
C11	28.3(9)	31.9(10)	20.6(8)	-0.3(7)	1.6(6)	2.2(8)
C12	24.2(8)	31.3(9)	21.3(8)	1.3(7)	-1.1(6)	0.3(7)
C13	27.4(8)	26.2(9)	15.9(7)	0.1(6)	3.5(6)	-0.2(7)
C14	29.8(9)	23.2(8)	29.3(9)	-0.3(7)	1.1(7)	1.6(7)
C15	25.4(8)	31.1(10)	28.2(9)	-2.0(7)	2.1(6)	-1.1(7)
C16	27.0(9)	35.7(10)	18.5(8)	2.1(7)	4.9(6)	6.1(8)
C17	38.0(9)	24.5(9)	24.6(8)	5.0(7)	6.1(7)	4.9(8)
C18	31.5(9)	26.0(9)	22.7(8)	2.9(7)	3.0(6)	-3.5(7)
C19	40.7(10)	28.8(10)	24.7(9)	-4.0(7)	0.0(7)	3.3(8)
C20	34.5(9)	34.4(10)	27.5(9)	5.9(7)	4.7(7)	-4.7(8)
C21	28.4(9)	53.8(12)	34.8(10)	11.7(9)	3.2(7)	-4.2(9)

Table 4 Bond Lengths for 3ad.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
Cl1	C16	1.7421(16)	C8	C12	1.514(2)
01	C11	1.200(2)	C9	C10	1.543(2)
02	C10	1.4569(18)	C9	C19	1.530(2)
02	C11	1.3439(19)	C9	C20	1.536(2)
C1	C2	1.394(3)	C10	C13	1.506(2)
C1	C6	1.397(2)	C11	C12	1.509(2)
C1	C7	1.474(2)	C12	C21	1.547(2)
C2	C3	1.387(2)	C13	C14	1.389(2)
C3	C4	1.377(3)	C13	C18	1.387(2)
C4	C5	1.374(3)	C14	C15	1.383(2)
C5	C6	1.385(3)	C15	C16	1.375(2)
C7	C8	1.337(2)	C16	C17	1.381(2)

Table 4 Bond Lengths for 3ad.	Table 4	Bond	Lengths	for	3ad.
-------------------------------	---------	------	---------	-----	------

Aton	n Atom	Length/Å	Atom Atom	Length/Å
C8	С9	1.536(2)	C17 C18	1.383(2)

Table 5 Bond Angles for 3ad.

Atom Atom Atom		n Atom	Angle/°	Atom	n Aton	Atom	Angle/°
C11	02	C10	118.23(12)	02	C10	С9	110.30(12)
C2	C1	C6	116.97(16)	02	C10	C13	106.02(12)
C2	C1	C7	125.96(15)	C13	C10	С9	116.24(12)
C6	C1	C7	117.03(16)	01	C11	O2	119.11(15)
C3	C2	C1	121.24(17)	01	C11	C12	123.63(15)
C4	C3	C2	120.55(19)	02	C11	C12	117.24(14)
C5	C4	C3	119.29(17)	C8	C12	C21	114.16(14)
C4	C5	C6	120.39(18)	C11	C12	C8	112.08(13)
C5	C6	C1	121.54(19)	C11	C12	C21	108.23(13)
C8	C7	C1	132.50(16)	C14	C13	C10	121.43(14)
C7	C8	С9	120.19(14)	C18	C13	C10	119.92(14)
C7	C8	C12	122.83(15)	C18	C13	C14	118.63(15)
C12	C8	С9	116.84(12)	C15	C14	C13	120.80(16)
C8	C9	C10	107.99(12)	C16	C15	C14	119.04(16)
C8	C9	C20	109.54(13)	C15	C16	Cl1	118.85(13)
C19	C9	C8	111.08(13)	C15	C16	C17	121.78(15)
C19	C9	C10	107.64(13)	C17	C16	Cl1	119.34(13)
C19	C9	C20	109.76(13)	C16	C17	C18	118.28(16)
C20	С9	C10	110.80(13)	C17	C18	C13	121.45(15)

Table 6 Torsion Angles for 3ad.

A B C D	Angle/°	Α	B	С	D	Angle/°
Cl1 C16 C17 C18	-177.35(12)	C8	C9	C10	C13	177.06(13)
O1 C11 C12 C8	-139.75(17)	С9	C8	C12	C11	-31.77(19)
O1 C11 C12 C21	93.5(2)	С9	C8	C12	C21	91.73(16)
O2 C10C13C14	34.07(18)	С9	C10	C13	C14	-88.89(17)
O2 C10 C13 C18	-144.50(14)	C9	C10	C13	C18	92.54(17)
O2 C11 C12 C8	42.03(19)	C10	002	C11	01	-178.12(14)
O2 C11 C12 C21	-84.74(17)	C10	002	C11	C12	0.2(2)
C1 C2 C3 C4	0.4(3)	C10)C13	C14	C15	-178.08(14)
C1 C7 C8 C9	176.52(16)	C10)C13	C18	C17	179.20(14)
C1 C7 C8 C12	1.0(3)	C11	02	C10	С9	-51.59(17)
C2 C1 C6 C5	-0.6(3)	C11	02	C10	C13	-178.22(12)
C2 C1 C7 C8	24.1(3)	C12	2 C 8	C9	C10	-15.06(18)

Table 6 Torsion Angles for 3ad.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C2	C3	C4	C5	-0.4(3)	C12	C8	С9	C19	-132.88(14)
C3	C4	C5	C6	-0.1(3)	C12	C8	С9	C20	105.70(15)
C4	C5	C6	C1	0.6(3)	C13	C14	C15	5C16	-0.9(2)
C6	C1	C2	C3	0.0(3)	C14	C13	C18	3C17	0.6(2)
C6	C1	C7	C8	-158.25(18)	C14	C15	C16	5 Cl1	178.41(12)
C7	C1	C2	C3	177.67(16)	C14	C15	C16	5C17	0.2(2)
C7	C1	C6	C5	-178.41(16)	C15	C16	6C17	7 C18	0.8(2)
C7	C8	C9	C10	169.11(14)	C16	C17	C18	3C13	-1.2(2)
C7	C8	C9	C19	51.29(19)	C18	C13	C14	4C15	0.5(2)
C7	C8	C9	C20	-70.13(18)	C19	C9	C10	002	176.37(12)
C7	C8	C12	2 C11	143.94(16)	C19	C9	C10)C13	-62.93(17)
C7	C8	C12	2 C21	-92.56(19)	C20	C9	C10	002	-63.60(16)
C8	C9	C10	002	56.37(15)	C20	C9	C10)C13	57.09(18)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement F	Parameters
(Å ² ×10 ³) for 3ad.	

Atom	x	У	Z	U(eq)
H2	11534.2	3431.82	5005.33	43
Н3	13453.6	3003.73	5599.7	51
H4	13549.8	2706.14	6764.48	52
Н5	11713.78	2852.78	7336.78	55
H6	9798.97	3297.42	6754.73	48
H7	8658.91	3921.96	5807.6	35
H10	7604.87	4519.2	3730.12	27
H12	9867.29	3009.16	4418.22	31
H14	4765.35	3385.93	3486.38	33
H15	2727.26	3811.41	3028.24	34
H17	3999.73	5971.92	3191.54	35
H18	6051.87	5535.47	3616.62	32
H19A	7272.17	4785.93	5495.17	47
H19B	6216.32	5013.36	4886.78	47
H19C	7696.42	5179.18	4828.22	47
H20A	6329.2	3001.65	4713.85	48
H20B	5377.18	3679.2	4816.23	48
H20C	6421.73	3435.88	5424.43	48
H21A	9523.97	4361	3620.91	59
H21B	10596.18	3739.97	3552.09	59
H21C	10673.59	4260.39	4212.69	59

9.3 X-Ray Analysis for 4a

Single crystals of $C_{14}H_{14}N_2O_2$ **4a** were grown from ethyl acetate and PE. A suitable crystal was selected and collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 179.99(10) K during data collection. The data were collected and processed using CrysAlisPro. The structures were solved by direct methods using Olex2 software with the SHELXT structure solution program via intrinsic phasing algorithm, and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018 using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms.

Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2167332 for compounds **4a**

Figure S3. ORTEP Drawing of 4a (The ellipsoids are shown at 50% probability levels)

Table 1 Crystal data and structure refinement for 4a.

Identification code	4a
Empirical formula	$C_{14}H_{14}N_2O_2$
Formula weight	242.27
Temperature/K	179.99(10)
Crystal system	orthorhombic

Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	6.4356(3)
b/Å	12.2960(5)
c/Å	15.5108(7)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1227.40(9)
Z	4
$\rho_{calc}g/cm^3$	1.311
μ/mm^{-1}	0.724
F(000)	512.0
Crystal size/mm ³	$0.14 \times 0.1 \times 0.08$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	° 9.178 to 147.64
Index ranges	$-7 \le h \le 4, -15 \le k \le 6, -13 \le l \le 18$
Reflections collected	3039
Independent reflections	2152 [$R_{int} = 0.0281$, $R_{sigma} = 0.0462$]
Data/restraints/parameters	2152/0/169
Goodness-of-fit on F ²	1.092
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0415, wR_2 = 0.1058$
Final R indexes [all data]	$R_1 = 0.0465, wR_2 = 0.1106$
Largest diff. peak/hole / e Å-	3 0.15/-0.23
Flack parameter	0.0(3)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	ζ	U(eq)
O1	137(4)	4444(2)	4399.8(17)	51.0(7)
03	1222(3)	5969.9(18)	5020.4(15)	38.7(5)
N1	5192(4)	3143(2)	5690.6(17)	34.9(6)
N2	3644(4)	3325(2)	5135.7(18)	37.2(6)
C1	7369(4)	3947(2)	6835.8(18)	23.6(5)
C2	7139(4)	4394(2)	7657.7(18)	27.0(6)
C3	8748(5)	4344(2)	8248.4(19)	31.2(6)
C4	10585(5)	3811(2)	8030(2)	31.8(6)
C5	10801(4)	3342(2)	7224(2)	29.9(6)
C6	9205(4)	3406(2)	6629.0(19)	26.6(6)
C7	5684(4)	4018(2)	6195.9(18)	24.2(5)
C8	4331(4)	4835(2)	5945.0(17)	21.6(5)
		S35		

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
С9	3127(4)	4360(2)	5290.9(18)	27.5(6)
C10	1409(5)	4885(2)	4857(2)	33.7(7)
C11	3032(5)	6533(2)	5378(2)	34.6(7)
C12	3967(4)	6007(2)	6183.4(17)	23.7(5)
C13	2444(5)	6120(2)	6939(2)	33.7(7)
C14	5978(5)	6628(2)	6376(2)	36.4(7)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 4a. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O1	51.1(14)	50.4(14)	51.4(14)	7.8(13)	-28.4(12)	-16.7(12)
O3	37.3(11)	35.8(11)	42.9(12)	5.8(10)	-15.6(10)	0.2(9)
N1	41.8(15)	25.8(11)	37.0(14)	-14.0(11)	-7.7(11)	8.2(11)
N2	43.8(14)	31.9(13)	36.0(14)	-12.9(12)	-9.3(12)	2.4(11)
C1	26.8(13)	19.1(11)	24.8(13)	2.2(11)	-0.3(11)	-0.8(10)
C2	25.7(12)	25.6(12)	29.6(14)	-1.0(12)	1.4(11)	3.5(11)
C3	37.5(14)	30.5(14)	25.7(13)	0.3(12)	-2.2(12)	3.0(12)
C4	30.5(14)	32.7(14)	32.1(15)	7.7(13)	-5.2(12)	0.8(12)
C5	23.9(13)	29.3(13)	36.5(15)	8.6(13)	3.4(12)	4.7(11)
C6	28.1(13)	23.9(12)	27.9(14)	1.9(11)	4.4(11)	1.1(11)
C7	25.2(12)	21.3(11)	26.2(13)	-4.7(11)	1.0(11)	0.9(10)
C8	22.6(12)	20.3(11)	21.9(12)	-2.1(10)	1.4(10)	-2.1(10)
С9	30.5(14)	25.9(12)	26.2(14)	-5.6(12)	-3.2(11)	-3.1(11)
C10	37.8(15)	33.5(14)	29.7(15)	3.9(13)	-7.0(13)	-8.0(12)
C11	42.7(16)	25.3(12)	35.7(16)	3.5(12)	-9.6(14)	-3.2(13)
C12	28.0(13)	17.9(11)	25.3(13)	-1.0(10)	-2.5(11)	-0.9(10)
C13	39.9(16)	26.5(12)	34.6(16)	-2.0(13)	3.9(13)	8.8(12)
C14	42.3(17)	24.4(14)	42.5(17)	0.7(13)	-8.5(14)	-9.6(13)

Table 4 Bond Lengths for 4a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C10	1.211(4)	C3	C4	1.393(4)
03	C10	1.364(4)	C4	C5	1.384(4)
03	C11	1.465(4)	C5	C6	1.384(4)
N1	N2	1.336(4)	C7	C8	1.385(4)
Table 4 Bond Lengths for 4a.

Atom Atom		Length/Å	Atom	Atom	Length/Å	
N1	C7	1.368(4)	C8	C9	1.403(4)	
N2	С9	1.337(4)	C8	C12	1.506(3)	
C1	C2	1.396(4)	C9	C10	1.446(4)	
C1	C6	1.393(4)	C11	C12	1.530(4)	
C1	C7	1.473(4)	C12	C13	1.534(4)	
C2	C3	1.384(4)	C12	C14	1.532(4)	

Table 5 Bond Angles for 4a.

Atom Atom Atom			Angle/°	Aton	1 Aton	n Atom	Angle/°
C10	03	C11	117.6(2)	C7	C8	C12	136.3(2)
N2	N1	C7	114.2(2)	C9	C8	C12	119.3(2)
N1	N2	C9	103.2(2)	N2	C9	C8	112.9(3)
C2	C1	C7	120.9(2)	N2	C9	C10	122.0(3)
C6	C1	C2	119.2(3)	C8	C9	C10	124.9(3)
C6	C1	C7	119.9(3)	01	C10	03	119.1(3)
C3	C2	C1	120.5(3)	01	C10	C9	126.2(3)
C2	C3	C4	119.7(3)	03	C10	C9	114.7(3)
C5	C4	C3	120.0(3)	03	C11	C12	115.0(2)
C6	C5	C4	120.3(3)	C8	C12	C11	105.4(2)
C5	C6	C1	120.2(3)	C8	C12	C13	111.9(2)
N1	C7	C1	120.6(2)	C8	C12	C14	113.2(2)
N1	C7	C8	105.3(2)	C11	C12	C13	109.5(2)
C8	C7	C1	134.1(2)	C11	C12	C14	106.3(2)
C7	C8	C9	104.4(2)	C14	C12	C13	110.2(2)

Table 6 Torsion Angles for 4a.

A B C D	Angle/°	A	B C	D	Angle/°
O3 C11 C12 C8	52.3(3)	C6	C1 C7	N1	40.8(4)
O3 C11 C12 C13	-68.3(3)	C6	C1 C7	C8	-138.7(3)
O3 C11 C12 C14	172.7(2)	C7	N1 N2	C9	0.2(3)
N1 N2 C9 C8	-0.4(3)	C7	C1 C2	C3	-178.6(3)
N1 N2 C9 C10	-176.5(3)	C7	C1 C6	C5	179.6(2)
N1 C7 C8 C9	-0.3(3)	C7	C8 C9	N2	0.4(3)
N1 C7 C8 C12	-178.2(3)	C7	C8 C9	C10	176.4(3)
N2N1 C7 C1	-179.6(3)	C7	C8 C1	2 C11	152.6(3)
N2N1 C7 C8	0.1(3)	C7	C8 C1	2 C13	-88.4(4)
N2C9 C10O1	8.8(5)	C7	C8 C1	2 C14	36.8(4)
N2C9 C10O3	-173.5(3)	C8	C9 C1	001	-166.9(3)

Table 6 Torsion Angles for 4a.

A B	С	D	Angle/°	А	B	С	D	Angle/°
C1 C2	C3	C4	-2.2(4)	C8	С9	C10	03	10.8(4)
C1 C7	C8	С9	179.3(3)	C9	C8	C12	C11	-25.1(3)
C1 C7	C8	C12	1.4(6)	C9	C8	C12	C13	93.9(3)
C2 C1	C6	C5	-1.8(4)	C9	C8	C12	C14	-140.9(3)
C2 C1	C7	N1	-137.7(3)	C10	03	C11	C12	-52.1(4)
C2 C1	C7	C8	42.7(5)	C11	03	C10	01	-164.4(3)
C2 C3	C4	C5	0.5(4)	C11	03	C10	C9	17.7(4)
C3 C4	C5	C6	0.5(4)	C12	2 C 8	C9	N2	178.8(3)
C4 C5	C6	C1	0.2(4)	C12	2 C 8	C9	C10	-5.2(4)
C6 C1	C2	C3	2.9(4)					

Table7	Hydrogen	Atom	Coordinates	(Å×10 ⁴)	and	Isotropic	Displacement	Parameters
(Å ² ×10 ³)	for 4a.							

Atom	x	У	z	U(eq)
H1	5960(60)	2540(40)	5650(30)	55(12)
H2	5895.32	4727.35	7809.56	32
H3	8604.28	4664.34	8788.13	37
H4	11666.4	3770.16	8426.75	38
Н5	12024.46	2981.3	7082.39	36
H6	9358.25	3087.3	6088.97	32
H11A	2632.31	7273.02	5519	41
H11B	4098.13	6571.16	4937.4	41
H13A	1160.36	5764.69	6797.12	51
H13B	2187.44	6876.25	7049.01	51
H13C	3031.48	5789	7443.98	51
H14A	6520	6399.52	6923.46	55
H14B	5693.54	7394.28	6392.36	55
H14C	6980.42	6479.9	5933.02	55

10. Reference

1. H.-J. Tang, X.-G. Zhang, Y.-F. Zhang, C. Fen, Visible-Light-Assisted Gold-Catalyzed Fluoroarylation of Allenoates, *Angew. Chem., Int. Ed.*, 2020, **59**, 5242 – 5247. 2. S. Castellano, H. D. G. Fiji, S. S. Kinderman, M. Leon, P. D. Watanabe, F. Tamanoi, O. Kwon, Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I, *J. Am. Chem. Soc.*, 2007, **129**, 5843-5845;

3. G. B. Chai, Z. Lu, C. L. Fu, S. M. Ma, Ferric Chloride Hexahydrate-Catalyzed Highly Regio- and Stereoselective Conjugate Addition Reaction of 2,3-Allenoates with Grignard Reagents: An Efficient Synthesis of β , γ -Alkenoates, *Adv. Synth. Catal.*, 2009, **351**, 1946 – 1954.

4. A. Kapat, E. Nyfeler, G. T. Giuffredi, P. Renaud, Intramolecular Schmidt Reaction Involving Primary Azidoalcohols under Nonacidic Conditions: Synthesis of Indolizidine (–)-167B, *J. Am. Chem. Soc.*, 2009, **131**, 17746-17747.

 B. M. Loertscher, P. R. Young, P. R. Evans, S. L. Castle, Diastereoselective Synthesis of Vicinal Tertiary Diols, *Org. Lett.*, 2013, 15, 1930-1933; (b) J. Barluenga, F. J. Fañanás, R. Sanz, C. Marcos, M. Trabada, On the Reactivity of o-Lithioaryl Ethers: Tandem Anion Translocation and Wittig Rearrangement, *Org. Lett.*, 2002, 4, 1587-1590.

W. Gladkowski, A. Skrobiszewski, M. Mazur, M. Siepka, A. Pawlak, B. O. nska-Mrukowicz, A. Bialonska, D. Poradowski, A. Drynda, M. Urbaniak, Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes, *Tetrahedron.*, 2013, 69, 10414-10423.

11. Copies of NMR and IR Spectra

S85

9

¹³C-NMR (101 MHz, CDCl₃)

5a
