Supporting Information

Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provides an efficient adsorption of Pb (II) from water

Jinling Gao^{*}, Mingzhe Song, Tongtong Li, Yuyao Zhao, Anxu Wang College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China

Corresponding author: Jinling Gao (gjlscl@sina.com)

Fig. S1. TEM image of WSCC-oSWCNTs complex.

Fig. S2. Raman spectra of (a) SWCNTs, (b) oSWCNTs, and (c) WSCC-oSWCNTs complex.

Fig. S3. Linear thermodynamic curve of $\ln k_d vs 1/T$ of Pb (II) adsorption using WSCCoSWCNTs complex.

Fig. S4. FT-IR spectra of WSCC-oSWCNTs (a) before and (b) after 4 successive cycles of adsorption/desorption process for Pb (II).

Table S1. Values of kinetic parameters for Pb (II) from water using WSCC-oSWCNTs complex

Kinetic Model	R ²	k ₁ (k ₂)	q _e (calculated)	q _e (experimental)
Pseudo First Order Kinetics	0.489	0.010	1.430	
Pseudo Second Order Kinetics	0.984	0.011	21.53	21.06

 Table S2. Parameter values of adsorption isotherms for Pb (II) from water using WSCCoSWCNTs complex

Isotherm model	Parameters	Parameter values		
Langmuir	\mathbb{R}^2	0.9709		
	q _m	113.63 mg g^{-1}		
	b	$1.702 \ {\rm L \ mg^{-1}}$		

Freundlich	R ²	0.9971	
	K _F	$51.62 \text{ mg g}^{-1}/\text{mg L}^{-1}$	
	1/n	0.5698	
Temkin	R ²	0.8764	
	\mathbf{k}_1	20.86 J mol ⁻¹	
	k ₂	12.03 L g ⁻¹	
Dubinin-Radusckevisch-Kanager	R ²	0.9182	
	q _{D-R}	220.7 mg g^{-1}	
	Е	1.929 kJ mol ⁻¹	

 Table S3. Thermodynamic parameters at different temperatures

Temperature (k)	$\Delta G(KJ \cdot mol^{-1})$	$\Delta H(KJ \cdot mol^{-1})$	$\Delta S(KJ \cdot mol^{-1} \cdot K^{-1})$
293	-8.07	9.15	58.76
298	-8.37		
303	-8.66		
308	-8.95		
313	-9.25		

Table S4. The Pb (II) ion adsorption in the presence of diverse competing metal ions by the

adsorbent								
Ions	Na ⁺	K^+	Ca ²⁺	Mg^{2+}	Cd^{2+}	Hg^{2+}	Al ³⁺	Cr ³⁺
Efficiency/ %	4.52	5.68	6.37	8.86	10.47	12.56	5.31	4.69